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Abstract

Connections and the space of connections on a fibred manifold are described. Three
different means of prescribing a connection are shown to be equivalent. The special
case of linear connections is given particular attention. Nothing is new here.

1. Introduction

The two most commonly encountered characterisations of a connection on a bundle
are (1) in terms of differentiation of sections of the bundle with respect to vector fields
on the base space and (2) in terms of splitting the tangent space of the total space into
a direct sum with one component being the vertical bundle. These characterisations are
very often the most useful. However, they are not so convenient for understanding the
structure of the set of all connections. There is an alternative characterisation that, while
by no means unknown, is less often encountered, but which allows for a fairly easy explicit
characterisation of the set of connections. In this note we give this alternative definition of
a connection, establish explicitly its link with the more common definitions, and show how
it can be used to provide the structure of the space of connections.

Everything we say can be found in scattered places. More or less everything is to be
found, for example, in [Kolář, Michor, and Slovák 1993].

2. Connections on fibred manifolds

In this section we define what we mean by a connection and see how the definition we give
is equivalent to two more familiar constructions associated with a connection: (1) a covariant
derivative and (2) a splitting of the total space of the bundle on which the connection is
being defined.

2.1. The definition of a connection. A fibred manifold is a triple (Y, π,X) where X and
Y are differentiable manifolds and π : Y → X is a surjective submersion. By Jk(π) we denote
the bundle of k-jets of sections of π. By πk : J

k(π) → X and, for k < l, by πlk : J
l(π) → Jk(π)

we denote the canonical projections. We denote by V(π) = ker(Tπ) the vertical subbundle.
Our initial definition of a connection on (Y, π,X) is the following.
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2.1 Definition: A connection on a fibred manifold (Y, π,X) is a section S : Y → J1(π) of
the bundle π10 : J

1(π) → Y. •
In natural coordinates (xj , ya, ybk) for J1(π) a connection S has the form (xj , ya) 7→

(xj , ya, Sb
k(x, y)) which defines the connection coefficients Sa

j , a ∈ {1, . . . ,m}, j ∈
{1, . . . , n}, for the connection.

There are two interesting constructions one can make associated with a connection on
a fibred manifold, and we now describe these.

2.2. The horizontal subbundle associated with a connection. Let (Y, π,X) be a fibred
manifold. We suppose that X is n-dimensional and that Y is (n+m)-dimensional. One of
the interpretations of a connection is that it provides a complement to V(π) in TY. Let us
see how this interpretation is developed.

Let p1 ∈ J1(π), let p = π10(p1), and let x = π(p). Let ξ : U → Y be a local section
defined on a neighbourhood U containing x and satisfying j1ξ(x) = p1. Define Lp1 ∈
HomR(TxX;TpY) by Lp1(vx) = Txξ(vx).

2.2 Lemma: Let p1 ∈ J1(π), let p = π10(p1), and let x = π(p). The following statements
hold:

(i) Lp1 is a well-defined linear injection;

(ii) Tpπ ◦ Lp1 = idTxX;

(iii) image(Lp1) is a complement to Vp(π) in TpY.

Moreover, if p ∈ Y and x = π(p), and if L : TxX → TpY is a linear map satisfying
Tpπ ◦ L = idTxX, then there exists a unique p1 ∈ (π10)

−1(p) such that L = Lp1.

Proof: (i) Suppose that ξ1, ξ2 : U → Y satisfy j1ξ1(x) = j1ξ2(x) = p1. This means that, for
any smooth curve γ : I → X satisfying 0 ∈ int(I) and γ(0) = x it holds that d

ds

∣∣
s=0

(ξ1 ◦γ) =
d
ds

∣∣
s=0

(ξ2 ◦ γ). This immediately gives Txξ1(vx) = Txξ2(vx) for every vx ∈ TxX. Thus the
definition of Lp1 is independent of the choice of local section ξ. Linearity of Lp1 is now
obvious. To see that Lp1 is injective note that π ◦ ξ = idU and so Tξ(x)π ◦Txξ = idTxX. Thus
Lp1 possesses a left-inverse and so is injective.

(ii) This was proved as part of the proof of the previous assertion.
(iii) Suppose that up ∈ image(Lp1) ∩ VpY. Let up ∈ image(Lp1) write up = Lp1(vx) for

vx ∈ TxX. Then let γ : I → X be a smooth curve satisfying 0 ∈ int(I) and γ′(0) = vx. If
ξ : U → Y is a local section satisfying j1ξ(x) = p1 then this means that up =

d
ds

∣∣
s=0

(ξ ◦ γ).
Since up is vertical we have Tpπ(up) = 0x. This in turn means that

0x =
d

ds

∣∣∣∣
s=0

(π ◦ ξ ◦ γ) =
d

ds

∣∣∣∣
s=0

γ = vx.

This means, therefore, that up = 0p. This gives image(Lp1)∩VpY = {0p}. This part of the
result then follows from a dimension count.

For the last assertion, let (V, ψ) be an adapted chart for Y and let (U, ϕ) be the associated
chart for X. Denote the coordinates for Y by (xj , ya). Suppose that ϕ(x) = 0n and that
ψ(p) = 0n+m. An arbitrary linear map between TxX and TpY will have the coordinate
representation

L = Aj
kdx

k ⊗ ∂

∂xj
+Ba

j dx
j ⊗ ∂

∂ya
.
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The condition that Tpπ ◦L = idTxX is readily seen to imply that Aj
k = δjk. Now, if we define

a local section ξ on U with local representative

ξ(x) = (x,Bx)

where B is the m × n matrix with components Ba
j , a ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, then

it is immediate that if we take p1 = j1ξ(x) we have L = Lp1 . This gives the existence
assertion. For uniqueness suppose that Lp1 = Lp2 and let ξ1 and ξ2 be local sections such
that Lp1 = Txξ1 and Lp2 = Txξ2. This means that j1ξ1(x) = j1ξ2(x) and so p1 = p2, as
desired. ■

In natural coordinates (xj , ya, ybk) for J
1(π) we have

Lp1 = δjkdx
k ⊗ ∂

∂xj
+ yaj (p)dx

j ⊗ ∂

∂yj
∈ T∗

xX⊗ TpY,

where (xj , ya, ybk) are the coordinate values for p1 ∈ J1(π).
Now we define an endomorphism PH

S of TY by

PH
S (up) = LS(p) ◦ Tpπ(up), up ∈ TpY.

The following assertions are more or less obvious.

2.3 Lemma: The endomorphism PH
S ∈ Γ∞(T∗Y ⊗ TY) has the following properties:

(i) ker(PH
S ) = V(π);

(ii) TY = ker(PH
S )⊕ image(PH

S ).

Proof: (i) It is clear that V(π) ⊂ ker(PH
S ). For the opposite inclusion, suppose that

PH
S (up) = 0p. Since LS(p) is injective this implies that Tpπ(up) = 0p whence up is ver-

tical.
(ii) Since Tpπ is surjective it follows that image(PH

S (p)) = image(LS(p)) which is com-
plementary to Vp(π) by Lemma 2.2. ■

The endomorphism PH
S is called the horizontal projection associated with the con-

nection S and the endomorphism P V
S = idTY −PH

S is called the vertical projection . It
is easy to see that P V

S is a projection onto V(π) and PH
S is a projection onto a subbundle,

denoted by H(π), that is complimentary to V(π). In adapted coordinates (xj , ya) we have

PH
S = δjkdx

k ⊗ ∂

∂xj
+ Sa

j dx
j ⊗ ∂

∂ya
,

P V
S = δabdy

b ⊗ ∂

∂ya
− Sa

j dx
j ⊗ ∂

∂ya
.

Thus in this way we derive a splitting of TY associated to a connection.
One can also recover a connection from a splitting. Thus suppose that TY = V(π)⊕H(π)

for some subbundle H(π) and denote by PH the projection onto H(π). For each p ∈ Y the
restriction of Tpπ to Hp(π) is an isomorphism onto TxX where x = π(p). Thus the inverse
of this isomorphism defines a map L from TxX to TpY satisfying Tpπ ◦ L = idTxX. By
Lemma 2.2 it follows that there exists a unique p1 ∈ (π10)

−1(p) such that L = Lp1 . We
define a connection by S(p) = p1.

Let us summarise this construction.
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2.4 Proposition: For a fibred manifold (Y, π,X) let H(π) be a subbundle of TY comple-
mentary to V(π). If PH ∈ Γ∞(T∗Y ⊗ TY) is the projection onto H(π) along V(π) then
there exists a unique connection S on π for which PH = PH

S .

Quite obviously, if PH is given in adapted coordinates by

PH = δjkdx
k ⊗ ∂

∂xj
+ P a

j dx
j ⊗ ∂

∂ya
,

then the connection coefficients of S are exactly P a
j , a ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

It is evident that the constructions in this section establish a 1–1 correspondence between
connections on π and complements to V(π) in TY. This immediately gives the following
result.

2.5 Proposition: If (Y, π,X) is a fibred manifold with Y paracompact then there exists a
connection on π.

Proof: Since Y is paracompact it possesses a Riemannian metric. A subbundle to V(π) can
then be taken to be the orthogonal complement. This subbundle then prescribes a unique
connection according to Proposition 2.4. ■

2.3. The covariant derivative associated with a connection. In this section we introduce
the relationship between a connection and a covariant derivative operator on sections of
π. For the following definition we recall the fact that π10 : J

1(π) → Y is an affine bundle
modelled on π∗T∗X⊗Y V(π), where π∗T∗X denotes the pull-back of T∗X to Y by π.

2.6 Definition: If S : Y → J1(π) is a connection on a fibred manifold (Y, π,X) and if ξ : U →
Y is a local section of π, the S-covariant differential of ξ is the local section

S

∇ξ of
T∗X⊗ ξ∗V(π) defined by

S

∇ξ(x) = j1ξ(x)− S(ξ(x)). •

If Z is a vector field on X then
S

∇Zξ =
S

∇ξ(Z) is the S-covariant derivative of ξ with

respect to Z. Note that
S

∇Zξ is a section of ξ∗V(π). The coordinate expression for
S

∇ξ is

S

∇ξ =
(∂ξa
∂xj

− Sa
j

)
dxj ⊗ ∂

∂ya
.

The following result records the basic properties of the S-covariant derivative. We let
νY : V(π) → Y denote the canonical projection. We also denote by πTX : TX → X the
tangent bundle projection.

2.7 Lemma: For a local section ξ of π, for vector fields Z,Z1, Z2 ∈ Γ∞(πTX), and for
functions f1, f2 ∈ C∞(X), the following statements hold:

(i) νY ◦
S

∇Zξ(x) = ξ(x);

(ii)
S

∇f1Z1+f2Z2ξ = f1
S

∇Z1ξ + f2
S

∇Z2ξ.

Proof: (i) Since j1ξ(x), S(ξ(x)) ∈ (π10)
−1(ξ(x)) it follows that j1ξ(x)− S(ξ(x)) ∈ Vξ(x)(π).

(ii) This is clear from the definition. ■
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One can also recover a connection from a covariant derivative operator. We do this as
follows. Given a connection S let us define ΦS : J

1(π) → V(π) by

ΦS(p1) = p1 − S(π10(p1)),

and note that ΦS is a fibred morphism over idX. Moreover, if ξ : U → Y is a local section of π

then ΦS(j1ξ(x)) =
S

∇ξ(x). Through this bundle map we can easily establish the relationship
between a covariant derivative and a connection. To do so let us first establish the essential
properties of ΦS .

2.8 Lemma: The bundle map ΦS has the following properties:

(i) ΦS(p1) ∈ Vπ1
0(p1)

(π) for every p1 ∈ J1(π);

(ii) ΦS(p1) − ΦS(p
′
1) = p1 − p′1 if π10(p1) = π10(p

′
1), where we use the fact that (π10)

−1(p)
is an affine space modelled on T∗

π(p)X⊗ Vp(π) for each p ∈ Y.

Proof: (i) This is clear since S(p) ∈ (π10)
−1(p) for every p ∈ Y.

(ii) We have

ΦS(p1)− ΦS(p
′
1) = (p1 − S(π10(p1)))− (p′1 − S(π10(p

′
1)))

= (p1 − p′1)− (S(π10(p1))− S(π10(p
′
1))) = p1 − p′1,

as desired. ■

2.9 Remark: Condition (ii) amounts to saying that the symbol of ΦS is the identity map. •

2.10 Proposition: If Φ: J1(π) → V(π) is a bundle map over idX satisfying

(i) Φ(p1) ∈ Vπ1
0(p1)

(π) for every p1 ∈ J1(π) and

(ii) Φ(p1)− Φ(p′1) = p1 − p′1 if π10(p1) = π10(p
′
1),

then there exists a unique connection S for which Φ = ΦS.

Proof: Let p ∈ Y, let p1 ∈ (π10)
−1(p), and define S(p) = ΦS(p1)− p1. We claim that S(p) is

independent of the choice of p1. Indeed, let p1, p
′
1 ∈ (π10)

−1(p) and note that

(ΦS(p
′
1)− p′1)− (ΦS(p1)− p1) = (ΦS(p

′
1 − p1))− (p′1 − p1) = (p′1 − p1)− (p′1 − p1) = 0p,

giving ΦS(p
′
1)− p′1 = ΦS(p1)− p1, as desired. Thus S is a connection, and it is, moreover,

clear that ΦS = Φ. Uniqueness is clear. ■

The constructions in this section provide, therefore, a 1–1 correspondence between con-
nections on π and covariant differentiation of sections of π.

3. Linear connections on vector bundles

In the case when the bundle is question has the structure of a vector bundle, the general
definition of a connection still applies. However, it is interesting to also consider the vector
bundle structure. For a vector bundle π : E → X recall that the jet bundles Jk(π) are also
vector bundles over X.

3.1. The definition of a linear connection. It is straightforward to adapt the usual defi-
nition of a connection to incorporate the vector bundle structure.
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3.1 Definition: A linear connection on a vector bundle (E, π,X) is a connection S : E →
J1(π) that is also a vector bundle morphism. •

In coordinates (xj , ua, ubk) for J
1(π) adapted to vector bundle coordinates (xj , ua) for E,

a linear connection has the form (xj , ua) 7→ (xj , ua, Sb
jcu

c) which defines the connection
coefficients Sa

jb, a, b ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.
Let us now describe the constructions associated with a linear connection.

3.2. The horizontal subbundle associated with a linear connection. As with a connection
in the more general sense, given a linear connection S on a vector bundle (E, π,X) we have
associated horizontal and vertical projections PH

S , P
V
S : TE → TE. To understand how the

linearity of the connection S manifests itself in the splitting of TE we shall provide some
structure for the vertical projection. To do this we shall first understand the structure of
the vertical bundle V(π).

We let νE : V(π) → E be the restriction of the tangent bundle projection to V(π). We
denote by π∗π : π∗E → E the pull-back bundle. The map vlft : π∗E → V(π) defined by

vlft(ex, wx) =
d

ds

∣∣∣∣
s=0

(ex + swx)

is a vector bundle isomorphism such that the diagram

π∗E
vlft //

pr1
��

V(π)

νE
��

E E

(3.1)

commutes. Let us also denote by νX : V(π) → X the composition νX = π ◦ νE. We claim
that the bundle νX : V(π) → X has a natural vector bundle structure.

3.2 Lemma: Let Z : X → TX be the zero section. The map

V(π) ∋ ue 7→ (ue, π(e)) ∈ TE× X

is a bijection onto Z∗TE. Moreover, this bijection commutes with the following classes of
charts for V(π) and Z∗TE, respectively:

(i) the restriction to V(π) of the natural charts for TE induced by vector bundle charts
for E;

(ii) the vector bundle charts for Z∗TE induced by natural charts for TX and vector bundle
charts for E.

Proof: Note that

Z∗TE = {(u, x) ∈ TE× X | TπTE(u) = Z(x)} = {(u, x) ∈ TE×M | TπTE(u) = 0π(e)}.

This shows that the points (u, x) ∈ Z∗TE are in 1–1 correspondence with the point u which
must lie in V(π).

For the second assertion of the lemma, let us consider coordinates (xj) and (x̃j) for
X, natural coordinates (xj , vk) and (x̃j , ṽk) for TX, and vector bundle coordinates (xj , ua)
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and (x̃j , ũa) for E. We then have transition maps for the vector bundle structure of E that
define the relation ũa = Aa

b (x)u
b. In natural and vector bundle coordinates an element

of V(π) is represented as (xj , ua, 0, wb) and (x̃j , ũa, 0, w̃b). The transition functions for the
vector bundle structure give w̃a = Aa

b (x)w
b. Now, an element of Z∗TE in natural and vector

bundle coordinates has the form ((xj , ua, 0, wb), xj) and ((x̃j , ũa, 0, w̃b), x̃j). The transition
functions for the vector bundle structure give w̃a = Aa

b (x)w
b. Since the bijection from

V(π) to Z∗TE has the form (xj , ua, 0, wb) 7→ ((xj , ua, 0, wb), xj) it follows that the bijection
commutes with the various natural charts. ■

To better understand the vector bundle structure of νX : V(π) → X we note that, as
manifolds, π∗E = E ⊕ E where E ⊕ E denotes the Whitney sum of vector bundles over X.
Therefore, we have the diffeomorphism vlft : E⊕E → V(π). Using vector bundle coordinates
and Lemma 3.2 one can easily see that vlft is, in fact, an isomorphism of vector bundles
over X. That is to say, the diagram

E⊕ E
vlft //

π⊕π
��

V(π)

νX
��

X X

(3.2)

commutes, where π ⊕ π : E⊕ E → X is the vector bundle projection. If we further consider
the rôle of Lemma 3.2 in the preceding diagram we have the diagram

E⊕ E
vlft //

π⊕π
��

V(π)

Tπ|V(π)
��

X
Z

// TX

which is a vector bundle morphism.
Now that we better understand the structure of V(π) we can use this structure to see

how a linear connection gives rise to a more structured vertical projection. We first make
the following observation about the vertical projection P V

S .

3.3 Lemma: If S : E → J1(π) is a (not necessarily linear) connection on the vector bundle
(E, π,X) then the vertical projection P V

S : TE → TE is a vector bundle morphism with respect
to the diagram

TE
PV
S //

πTE

��

V(π)

νE
��

E E

If additionally S is linear then P V
S is also a vector bundle morphism with respect to the

diagram

TE
PV
S //

Tπ
��

V(π)

νX
��

TX πTX

// X
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Proof: As P V
S is a (1, 1)-tensor field on E the first diagram commutes and the top arrow

is a morphism of vector bundles. So it is only the bottom diagram that is of concern.
For commutativity of the bottom diagram we let u ∈ TE be such that u ∈ TeE and
Tπ(u) = v ∈ TxX. Then νX ◦ P V

S (u) = x. We also have

πTX ◦ Tπ(u) = πTX(vx) = x,

which gives commutativity of the bottom diagram. Thus it remains to show that the top
arrow in the bottom diagram is a vector bundle morphism.

Let vx ∈ TxX for x ∈ X. We must show that P V
S |Tπ−1(vx) is a linear map from Tπ−1(vx)

to ν−1
X (x). Let u1, u2 ∈ Tπ−1(vx) and let e1, e2 ∈ E be such that u1 ∈ Te1E and u2 ∈ Te2E.

Let us agree that u1+u2 refers to addition in the vector space Tπ−1(vx). Since the diagram

TE
Tπ

}}

πTE

  
TX

πTX !!

E

π
~~

X

commutes we have π(e1) = π(e2) and so we may add e1 and e2 using the vector bundle
structure of E. Using linearity of S we then compute

P V
S (u1 + u2) = u1 + u2 − LS(e1+e2)

◦ Tπ(u1 + u2)

= u1 + u2 − LS(e1)(vx)− LS(e2)(vx)

= P V
S (u1) + P V

S (u2),

as desired. ■

Using this property of the vertical projection for a connection we make the following
definition.

3.4 Definition: For a vector bundle (E, π,X) and a (not necessarily linear) connection
S : E → J1(π), the connector for S is the map KS : TE → E defined by KS =
pr2 ◦ vlft−1 ◦ P V

S . •
Note that one can define the connector for any connection on a vector bundle E. But

the following lemma gives the structure of the connector that arises from the linearity of
S.

3.5 Proposition: For a (not necessarily linear) connection S the connector KS is a vector
bundle morphism with respect to the diagram

TE
KS //

πTE

��

E

π
��

E π
// X
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If S is additionally linear then KS is a vector bundle morphism with respect to the diagram

TE
KS //

Tπ
��

E

π
��

TX πTX

// X

Proof: This follows from combining Lemmata 3.2 and 3.3 along with the joint properties of
vlft described in diagrams (3.1) and (3.2). ■

3.3. The covariant derivative associated with a linear connection. Now let us see how
the linearity of a connection alters the picture of covariant differentiation. For a general

connection S : E → J1(π) on a vector bundle (E, π,X) and a section ξ of π we have
S

∇ξ
as a section of T∗X ⊗ ξ∗V(π). This induces, even when the connection is not linear, an

interpretation of
S

∇ξ as a section of T∗X ⊗ E using the fact that Vξ(x)(π) ≃ Ex. However,
when the connection is additionally linear there are further properties of the covariant
differential.

3.6 Proposition: If S is a linear connection on a vector bundle (E, π,X) then the covari-
ant derivative has the following properties for vector fields Z,Z1, Z2 ∈ Γ∞(πTX), functions
f, f1, f2 ∈ C∞(X), and sections ξ, ξ1, ξ2 ∈ Γ∞(π):

(i)
S

∇Z(ξ1 + ξ2) =
S

∇Zξ1 +
S

∇Zξ2;

(ii)
S

∇Z(fξ) = f
S

∇Zξ + (LZf)ξ;

(iii)
S

∇f1Z1+f2Z2ξ = f1
S

∇Z1ξ + f2
S

∇Z2ξ.

Proof: (i) We have

S

∇(ξ1 + ξ2)(x) = j1(ξ1 + ξ2)(x)− S(ξ1 + ξ2)(x)

= j1ξ1(x)− S(ξ1(x)) + j1ξ2(x)− S(ξ2(x))

=
S

∇ξ1(x) +
S

∇ξ2(x).

(ii) We have

S

∇(fξ)(x) = j1(fξ)(x)− S(f(x)ξ(x))

= f(x)j1ξ(x) + df(x)⊗ ξ(x)− f(x)S(ξ(x))

= f(x)
S

∇ξ(s) + df(x)⊗ ξ(x),

and the result follows directly from this.
(iii) This was already shown in Lemma 2.7. ■

4. Spaces of connections

Now that we understand what a connection is we can talk about the set of all such things.
It turns out that the jet bundle characterisation of a connection is extremely convenient for
doing this. As we shall see the set of connections has the structure of the set of sections of
an affine bundle. First we consider the case of the set of general connections.
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4.1. The space of connections on a fibred manifold. The structure of the set of connec-
tions on a general fibred manifold follows directly from the definition of a connection as a
section of π10. Indeed, we immediately have the following result.

4.1 Proposition: If (Y, π,X) is a fibred manifold then the set of connections on π is the
set of sections of the affine bundle π10 : Y → J1(π) which is modelled on the vector bundle
π∗T∗X⊗ V(π).

Not much else to say here, really.

4.2. The space of linear connections on a vector bundle. For a vector bundle (E, π,X)
a linear connection is, by our definition, an element of Γ∞(π10) ∩ Γ∞(E∗ ⊗ J1(π)). Thus
a linear connection has “access” to the affine structure of π10 : J

1(π) → E and the vector
bundle structure of E∗ ⊗ J1(π). After distillation this structure is most simply represented
as follows.

4.2 Proposition: If (E, π,X) is a vector bundle then the set of linear connections on π is
the set of sections of an affine subbundle of the vector bundle E∗ ⊗ J1(π) (over X) modelled
on the vector bundle E∗ ⊗ T∗X⊗ E.

Proof: Note that a section S of E∗
x ⊗ J1(π)x is a linear connection on π if and only if

idE∗
x
⊗π10(S(x)) = idEx ∈ E∗

x ⊗ Ex.

This immediately gives the set of linear connections as sections of an affine subbundle as
it is the set of solutions to a fibrewise linear equation. Thus we need only show that the
model vector bundle is E∗ ⊗ T∗X ⊗ E. Let S1, S2 ∈ Γ∞(E∗ ⊗ J1(π)) be linear connections
and note that

idE∗
x
⊗π10(S1(x)− S2(x)) = 0E∗

x⊗Ex .

Thus S1 − S2 is a section of ker(idE∗ ⊗π10); in other words a section of E∗ ⊗ T∗X ⊗ E.
This shows that the model vector bundle for the set of linear connections is contained in
E∗⊗T∗X⊗E. To give the converse inclusion, let S ∈ Γ∞(E∗⊗ J1(π)) be a linear connection
and let A ∈ Γ∞(E∗ ⊗ T∗X⊗ E). Then

idE∗
n
⊗π10(S(x) +A(x)) = idE∗

n
⊗π10(S(x)) = idE∗

x⊗Ex ,

and so S+A is a linear connection. This shows that the model vector bundle for the set of
linear connections contains E∗ ⊗ T∗X⊗ E∗. ■

4.3. The space of affine connections on a manifold. In the particular case of a linear
connection on the vector bundle (TX, πTX,X) (i.e., what is often called an affine connection
on X) we have the following result which follows immediately from Proposition 4.2.

4.3 Proposition: The set of affine connections on a manifold X is the set of sections of an
affine subbundle of the vector bundle T∗X⊗J1(πTX) (over X) modelled on the vector bundle
T∗X⊗ T∗X⊗ TX.

For colour we also have the following result.
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4.4 Proposition: The set of torsion-free affine connections on a manifold X is the set of
sections of an affine subbundle of the vector bundle T∗X ⊗ J1(πTX) (over X) modelled on
the vector bundle S2(T∗X)⊗ TX.

Proof: Let S1 and S2 be two torsion-free affine connections and let

A = S1 − S2 ∈ Γ
∞
(T∗X⊗ T∗X⊗ TX).

Since S1 and S2 are torsion free we have

S1

∇ZW −
S1

∇WZ = [Z,W ],
S2

∇ZW −
S2

∇WZ = [Z,W ]

for vector fields Z and W on X. Thus

S1

∇ZW −
S1

∇WZ =
S2

∇ZW −
S2

∇WZ

for all vector fields Z and W on X. Using the definition of the relationship between the
covariant derivative and the connection this implies that

S1(Z,W )−S1(Z,W ) = S2(Z,W )−S2(W,Z) =⇒ (S1−S2)(Z,W )−(S1−S2)(W,Z) = 0

and so A is a section of S2(T∗X) ⊗ TX. Reversing the computation shows that if S is a
torsion-free affine connection and if A is a section of S2(T∗X)⊗TX then S +A is a torsion-
free affine connection. ■

References
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