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Abstract

It is well-known that the Lebesgue integral generalises the Riemann integral. How-
ever, as is also well-known but less frequently well-explained, this generalisation alone
is not the reason why the Lebesgue integral is important and needs to be a part of
the arsenal of any mathematician, pure or applied. Those who understand the cor-
rect reasons for the importance of the Lebesgue integral realise there are at least two
crucial differences between the Riemann and Lebesgue theories. One is the difference
between the Dominated Convergence Theorem in the two theories, and another is the
completeness of the normed vector spaces of integrable functions. Here topological in-
terpretations are provided for the differences in the Dominated Convergence Theorems,
and explicit counterexamples are given which illustrate the deficiencies of the Riemann
integral. Also illustrated are the deleterious consequences of the defects in the Riemann
integral on Fourier transform theory if one restricts to Riemann integrable functions.

Keywords. Lebesgue integral, Riemann integral.

AMS Subject Classifications (2020). 28-01

1. Introduction

The title of this paper is a reference to the well-known quote of the applied mathemati-
cian and engineer Richard W. Hamming (1915–1998):

Does anyone believe that the difference between the Lebesgue and Riemann
integrals can have physical significance, and that whether say, an airplane would
or would not fly could depend on this difference? If such were claimed, I should
not care to fly in that plane.

The statement by Hamming is open to many interpretations, but the interpretation of
Hamming himself can be gleaned from [Hamming 1980] and, particularly, [Hamming 1998];
also see [Davis 1998] for a discussion of some of Hamming’s views on mathematics and
the “real world.” Perhaps a fair summary of Hamming’s views toward the Riemann and
Lebesgue theories of integration is that the distinction between them is not apt to be seen in
Nature. This seems about right to us. Unfortunately, however, this quote of Hamming’s is
often used in a confused manner that indicates the quoter’s misunderstanding of the purpose
and importance of the Lebesgue integral. Indeed, very often Hamming’s quote is brought
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out as an excuse to disregard Lebesgue integration, the idea being that it is the product
of some vapid pursuit of generality. Oxymoronically, this is often done simultaneously
with the free use of results (like completeness of the Lp-spaces) which rely crucially on the
distinctions between the Riemann and Lebesgue integrals.

That the value of the Lebesgue theory of integration (and all of the theories equivalent
to or generalising it1) may not be appreciated fully by non-mathematicians should not be
too surprising: the Lebesgue theory is subtle. Moreover, it is definitely not the case that the
importance of the Lebesgue theory over the Riemann theory is explained clearly in all texts
on integration theory; in fact, the important distinctions are rarely explicitly stated, though
they are almost always implicitly present. What is most discomforting, however, is that
mathematicians themselves sometimes offer an incorrect defence of the Lebesgue theory.
For example, it is not uncommon to see defences made along the lines of, “The class of
functions that can be integrated using the Lebesgue theory is larger than that using the
Riemann theory” [Davis and Insall 2002]. Sometimes, playing into the existing suspicions
towards unnecessary generality, it is asserted that the mere fact that the Lebesgue theory
generalises the Riemann theory is sufficient to explain its superiority. These sorts of defences
of the Lebesgue theory are certainly factual. But they are also emphatically not the sorts of
reasons why the Lebesgue theory is important. The functions that can be integrated using
the Lebesgue theory, but which cannot be integrated using the Riemann theory, are not
important; just try showing a Lebesgue integrable but not Riemann integrable function to
someone who is interested in applications of mathematics, and see if they think the function
is important. This certainly must at least partially underlie Hamming’s motivation for his
quote.

The value of the Lebesgue theory over the Riemann theory is that it is superior, as a
theory of integration. By this it is meant that there are theorems in the Lebesgue theory
that are true and useful, but that are not true in the Riemann theory. Probably the most
crucial such theorem is the powerful version of the Dominated Convergence Theorem that
one has in the Lebesgue theory. This theorem is constantly used in the proof of many results
that are important in applications. For example, the Dominated Convergence Theorem is
used crucially in the proof of the completeness of Lp-spaces. In turn, the completeness
of these spaces is an essential part of why these spaces are useful in, for example, the
theory of signals and systems that is taught to all Electrical Engineering undergraduates.
For instance, in many texts on signals and systems one can find the statement that the
Fourier transform is an isomorphism of L2(R;C). This statement is one that needs a sort
of justification that is (understandably) not often present in such texts. But its presence
can at least be justified by its being correct. With only the Riemann theory of integration
at one’s disposal, the statement is simply not correct. We illustrate this in Section 3.3.

In this paper we provide topological explanations for the differences between the Rie-
mann and Lebesgue theories of integration. The intent is not to make these differences
clear for non-mathematicians. Indeed, for non-mathematicians the contents of the preced-
ing paragraphs, along with the statement that, “The Lebesgue theory of integration is to
the Riemann theory of integration as the real numbers are to the rational numbers,” (this
is the content of our Example 3.7) seems about the best one can do. No, what we aim to do

1Hamming [1998] himself seems to find the Henstock integral, which generalises the Lebesgue integral,
to be a more satisfactory construction than the Lebesgue integral.
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in this paper is clarify for mathematicians the reasons for the superiority of the Lebesgue
theory. We do this by providing two theorems, both topological in nature, that are valid
for the Lebesgue theory and providing counterexamples illustrating that they are not true
for the Riemann theory. We also illustrate the consequences of the topological deficiencies
of the Riemann integral by explicitly depicting the limitations of the L2-Fourier transform
with the Riemann integral. One of the contributions in this paper is that we give the correct
counterexamples. All too often one sees counterexamples that illustrate some point, but
not always the one that one wishes to make. The core of what we say here exists in the
literature in one form or another, although we have not seen in the literature counterex-
amples that illustrate what we illustrate in Examples 3.5 and 3.7. The principal objective
here is to organise the results and examples in an explicit and compelling way.

In the event that the reader is consulting this paper in a panic just prior to boarding
an airplane, let us answer the question posed in the title of the paper. The answer is, “The
question is meaningless as the distinctions between the Riemann and Lebesgue integrals do
not, and should not be thought to, contribute to such worldly matters as aircraft design.”
However, the salient point is that this is not a valid criticism of the Lebesgue integral. What
follows is, we hope, a valid defence of the Lebesgue integral.

2. Spaces of functions

To keep things simple and to highlight the important parts of our presentation, in
this section and in most of the rest of the paper we consider R-valued functions defined on
I = [0, 1] ⊆ R. Extensions to more general settings are performed mostly by simple changes
of notation. The Lebesgue measure on [0, 1] is denoted by λ. In order to distinguish the
Riemann and Lebesgue integrals we denote them by∫ 1

0
f(x) dx,

∫
I
f dλ,

respectively. In order to make our statements as strong as possible, by the Riemann integral
we mean the improper Riemann integral to allow for unbounded functions [Marsden and
Hoffman 1993, Section 8.5].

2.1. Normed vector spaces of integrable functions. We use slightly unconventional no-
tation that is internally self-consistent and convenient for our purposes here.

Let us first provide the large vector spaces whose subspaces are of interest. By R[0,1]

we denote the set of all R-valued functions on [0, 1]. This is also the product of card([0, 1])
copies of R, and we shall alternatively think of elements of R[0,1] as being functions or
elements of a product of sets, as is convenient for our purposes. We consider the standard
R-vector space structure on R[0,1]:

(f + g)(x) = f(x) + g(x), (af)(x) = a(f(x)), f, g ∈ R[0,1], a ∈ R.

In R[0,1] consider the subspace

Z([0, 1];R) = {f ∈ R[0,1] | λ({x ∈ [0, 1] | f(x) ̸= 0}) = 0}.
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Then denote R̂[0,1] = R[0,1]/Z([0, 1];R); this is then the set of equivalence classes of func-
tions agreeing almost everywhere. We shall denote by [f ] = f +Z([0, 1];R) the equivalence
class of f ∈ R[0,1].

Now let us consider subspaces of R[0,1] and R̂[0,1] consisting of integrable functions. Let
us denote by

R1([0, 1];R) = {f : [0, 1] → R | f is Riemann integrable}.

On R1([0, 1];R) define a seminorm ∥·∥1 by

∥f∥1 =
∫ 1

0
|f(x)| dx,

and denote
R0([0, 1];R) = {f ∈ R1([0, 1];R) | ∥f∥1 = 0}.

Then we define
R̂1([0, 1];R) = R1([0, 1];R)/R0([0, 1];R),

and note that this R-vector space is then equipped with the norm ∥[f ]∥1 = ∥f∥1, accepting
the slight abuse of notation of using ∥·∥1 is different contexts.

The preceding constructions can be carried out, replacing “R” with “L” and replacing
the Riemann integral with the Lebesgue integral, to arrive at the seminormed vector space

L1([0, 1];R) = {f : [0, 1] → R | f is Lebesgue integrable}

with the seminorm

∥f∥1 =
∫
I
|f |dλ,

the subspace
L0([0, 1];R) = {f ∈ L1([0, 1];R) | ∥f∥1 = 0},

and the normed vector space

L̂1([0, 1];R) = L1([0, 1];R)/L0([0, 1];R).

We denote the norm on L̂1([0, 1];R) by ∥·∥1, this not being too serious an abuse of no-
tation since R̂1([0, 1];R) is a subspace of L̂1([0, 1];R) with the restriction of the norm on
L̂1([0, 1];R) to R̂1([0, 1];R) agreeing with the norm on R̂1([0, 1];R). This is a consequence
of the well-known fact that the Lebesgue integral generalises the Riemann integral [Cohn
2013, Theorem 2.5.4].

During the course of the development of the Lebesgue theory of integration one shows
that

L0([0, 1];R) = Z([0, 1];R)

[e.g., Cohn 2013, Corollary 2.3.11]. The corresponding assertion is not true for the Riemann
theory.
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2.1 Example: Let us denote by F ∈ R[0,1] the characteristic function of Q ∩ [0, 1]. This
is perhaps the simplest and most commonly seen example of a function that is Lebesgue
integrable but not Riemann integrable [Cohn 2013, Example 2.5.4]. Thus F ̸∈ R0([0, 1];R).
However, F ∈ Z([0, 1];R). •

While the preceding example is often used as an example of a function that is not
Riemann integrable but is Lebesgue integrable, one needs to be careful about exaggerating
the importance, even mathematically, of this example. In Examples 3.5 and 3.7 below we
shall see that this example is not sufficient for demonstrating some of the more important
deficiencies of the Riemann integral.

2.2. Pointwise convergence topologies. For x ∈ [0, 1] let us denote by px : R[0,1] → R≥0

the seminorm defined by px(f) = |f(x)|. The family (px)x∈[0,1] of seminorms onR[0,1] defines
a locally convex topology. A basis of open sets for this topology is given by products of
the form

∏
x∈[0,1] Ux where Ux ⊆ R is open and where Ux = R for all but finitely many

x ∈ [0, 1]. A sequence (fj)j∈Z>0 in R[0,1] converges to f ∈ R[0,1] if and only if the sequence
converges pointwise in the usual sense [Willard 1970, Theorem 42.2]. Let us, therefore,
call this the topology of pointwise convergence and let us denote by Cp([0, 1];R) the
vector space R[0,1] when equipped with this topology. For clarity, we shall prefix with “Cp”
topological properties in the topology of pointwise convergence. Thus, for example, we shall
say “Cp-open” to denote an open set in Cp([0, 1];R).

We will be interested in bounded subsets of Cp([0, 1];R). We shall use the characterisa-
tion of a bounded subset B of a topological R-vector space V that a set is bounded if and
only if, for every sequence (vj)j∈Z>0 in B and for every sequence (aj)j∈Z>0 in R converging
to 0, it holds that the sequence (ajvj)j∈Z>0 converges to zero in the topology of V [Rudin
1991, Theorem 1.30].

2.2 Proposition: A subset B ⊆ Cp([0, 1];R) is Cp-bounded if and only if there exists a
nonnegative-valued g ∈ R[0,1] such that

B ⊆ {f ∈ Cp([0, 1];R) | |f(x)| ≤ g(x) for every x ∈ [0, 1]}.

Proof: Suppose that there exists a nonnegative-valued g ∈ R[0,1] such that |f(x)| ≤ g(x) for
every x ∈ [0, 1] if f ∈ B. Let (fj)j∈Z>0 be a sequence in B and let (aj)j∈Z>0 be a sequence
in R converging to 0. If x ∈ [0, 1] then

lim
j→∞

|ajfj(x)| ≤ lim
j→∞

|aj |g(x) = 0,

which gives Cp-convergence of the sequence (ajfj)j∈Z>0 to zero.
Next suppose that there exists no nonnegative-valued function g ∈ R[0,1] such that

|f(x)| ≤ g(x) for every x ∈ [0, 1] if f ∈ B. This means that there exists x0 ∈ [0, 1] such
that, for every M ∈ R>0, there exists f ∈ B such that |f(x0)| > M . Let (aj)j∈Z>0 be a
sequence in R converging to 0 and such that aj ̸= 0 for every j ∈ Z>0. Then let (fj)j∈Z>0

be a sequence in B such that |fj(x0)| > |a−1
j | for every j ∈ Z>0. Then |ajfj(x0)| > 1 for

every j ∈ Z>0, implying that the sequence (ajfj)j∈Z>0 cannot Cp-converge to zero. Thus
B is not Cp-bounded. ■
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Of course, in the theory of integration one is interested, not in pointwise convergence of
arbitrary functions, but in pointwise convergence of measurable functions. Let us, therefore,
denote

M([0, 1];R) = {f ∈ R[0,1] | f is Lebesgue measurable},

where we understand the topology on M([0, 1];R) to be the subspace topology inherited
from Cp([0, 1];R). Standard theorems on measurable functions show that M([0, 1];R) is a
subspace [Cohn 2013, Proposition 2.1.6] and is Cp-sequentially closed [Cohn 2013, Propo-
sition 2.1.5]. Moreover, the stronger assertion of closedness does not hold. The following
result shows this, as well as giving topological properties of Z([0, 1];R).

2.3 Proposition: The subspaces M([0, 1];R) and Z([0, 1];R) of Cp([0, 1];R) are not Cp-
closed, but are Cp-sequentially closed.

Proof: The Cp-sequential closedness of M([0, 1];R) and Z([0, 1];R) follow from standard
theorems, as pointed out above. We first show that Cp([0, 1];R) \ M([0, 1];R) is not Cp-
open. Let f ∈ Cp([0, 1];R) \M([0, 1];R) and let V be a Cp-open set containing f . Then V
contains a basic neighbourhood. Thus there exists ϵ ∈ R>0, x1, . . . , xk ∈ [0, 1], and a basic
neighbourhood U =

∏
x∈[0,1] Ux contained in V where

1. Uxj = (f(xj)− ϵ, f(xj) + ϵ) for j ∈ {1, . . . , k} and

2. Ux = R for x ∈ [0, 1] \ {x1, . . . , xk}.

Then the function g ∈ R[0,1] defined by

g(x) =

{
f(x), x ∈ {x1, . . . , xk},
0, otherwise

is in U ∩ M([0, 1];R). Thus g ∈ V , so showing that every neighbourhood of f contains a
member of M([0, 1];R).

To show that Z([0, 1];R) is not Cp-closed we shall show that Cp([0, 1];R) \ Z([0, 1];R)
is not Cp-open. Let f ∈ Cp([0, 1];R) \ Z([0, 1];R) be given by f(x) = 1 for all x ∈ [0, 1].
Let V be a Cp-open subset containing f . Then V contains a basic neighbourhood from
Cp([0, 1];R), and in particular a basic neighbourhood of the form U =

∏
x∈[0,1] Ux where

the Cp-open sets Ux ⊆ R, x ∈ [0, 1], have the following properties:

1. there exists ϵ ∈ (0, 1) and a finite set x1, . . . , xk ∈ [0, 1] such that Uxj = (1− ϵ, 1 + ϵ)
for each j ∈ {1, . . . , k};

2. for x ∈ [0, 1] \ {x1, . . . , xk} we have Ux = R.

We claim that such a basic neighbourhood U contains a function from Z([0, 1];R). Indeed,
the function

g(x) =

{
1, x ∈ {x1, . . . , xk},
0, otherwise

is in U ∩Z([0, 1];R), and so is in V ∩Z([0, 1];R). This shows that Cp([0, 1];R)\Z([0, 1];R)
is not Cp-open, as desired. ■
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2.3. Almost everywhere pointwise convergence limit structures. For many applications,
it is the space L̂1([0, 1];R), not L([0, 1];R), that is of interest, this by virtue of its possessing
a norm and not a seminorm. (Of course, one might also be interested in R̂1([0, 1];R), but
the point of this paper is to clarify the ways in which this space is deficient.) Thus one is
interested in subspaces of R̂[0,1]. The largest such subspace in which we shall be interested
is the image of the Lebesgue measurable functions in R̂[0,1] under the projection from R[0,1]:

M̂([0, 1];R) = M([0, 1];R)/Z([0, 1];R).

Note that the quotient is well-defined since completeness of the Lebesgue measure gives
Z([0, 1];R) ⊆ M([0, 1];R).

Now, one wishes to provide structure on M̂([0, 1];R) such that there is a notion of
convergence which agrees with almost everywhere pointwise convergence. First let us be
clear about what we mean by almost everywhere pointwise convergence relative to the
various function spaces we are using.

2.4 Definition: (i) A sequence (fj)j∈Z>0 in M([0, 1];R) is almost everywhere point-
wise convergent to f ∈ M([0, 1];R) if

λ({x ∈ [0, 1] | (fj(x)) does not converge to f(x)}) = 0.

(ii) A sequence ([fj ])j∈Z>0 in M̂([0, 1];R) is almost everywhere pointwise convergent

to [f ] ∈ M̂([0, 1];R) if

λ({x ∈ [0, 1] | (fj(x)) does not converge to f(x)}) = 0. •

We should ensure that the definition of almost everywhere pointwise convergence in
M̂([0, 1];R) is well-defined.

2.5 Lemma: For a sequence ([fj ])j∈Z>0 in M̂([0, 1];R) and for [f ] ∈ M̂([0, 1];R) the fol-
lowing statements are equivalent:

(i) there exists a sequence (gj)j∈Z>0 in M([0, 1];R) and g ∈ M([0, 1];R) such that

(a) [gj ] = [fj ] for j ∈ Z>0,

(b) [g] = [f ], and

(c) (gj)j∈Z>0 converges pointwise almost everywhere to g.

(ii) for every sequence (gj)j∈Z>0 in M([0, 1];R) and for every g ∈ M([0, 1];R) satisfying

(a) [gj ] = [fj ] for j ∈ Z>0 and

(b) [g] = [f ],

it holds that (gj)j∈Z>0 converges pointwise almost everywhere to g.

Proof: It is clear that the second statement implies the first, so we only prove the converse.
Thus we let (gj)j∈Z>0 in M([0, 1];R) and g ∈ M([0, 1];R) be such that

1. [gj ] = [fj ] for j ∈ Z>0,

2. [g] = [f ], and

3. (gj)j∈Z>0 converges pointwise almost everywhere to g.
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Let (hj)j∈Z>0 be a sequence in M([0, 1];R) and let h ∈ M([0, 1];R) be such that

1. [hj ] = [fj ] for j ∈ Z>0 and

2. [h] = [f ].

Define
A = {x ∈ [0, 1] | g(x) ̸= f(x)}, B = {x ∈ [0, 1] | h(x) ̸= f(x)}

and, for j ∈ Z>0, define

Aj = {x ∈ [0, 1] | gj(x) ̸= fj(x)}, Bj = {x ∈ [0, 1] | hj(x) ̸= fj(x)}

and note that

x ∈ [0, 1] \ (A ∪B) = ([0, 1] \A) ∩ ([0, 1] \B) =⇒ h(x) = f(x) = g(x)

and

x ∈ [0, 1] \ (Aj ∪Bj) = ([0, 1] \Aj) ∩ ([0, 1] \Bj) =⇒ hj(x) = fj(x) = gj(x).

Thus,

x ∈ [0, 1] \
(
(∪j∈Z>0Aj ∪Bj) ∪ (A ∪B)

)
=⇒ lim

j→∞
hj(x) = lim

j→∞
gj(x) = g(x) = h(x).

Since (∪j∈Z>0Aj ∪ Bj) ∪ (A ∪ B) is a countable union of sets of measure zero, it has zero
measure, and so (hj)j∈Z>0 converges pointwise almost everywhere to h. ■

Now that we understand just what sort of convergence we seek in M̂([0, 1];R), we can
think about how to achieve this. The obvious first guess is to use the quotient topology on
M̂([0, 1];R) inherited from the Cp-topology on M([0, 1];R). However, convergence in this
topology fails to agree with almost everywhere pointwise convergence. Indeed, we have the
following more sweeping statement.

2.6 Proposition: Let Ta.e. be the set of topologies τ on M̂([0, 1];R) such that the convergent
sequences in τ are precisely the almost everywhere pointwise convergent sequences. Then
Ta.e. = ∅.

Proof: Suppose that Ta.e. ̸= ∅ and let τ ∈ Ta.e.. Let us denote by z ∈ M([0, 1];R) the zero
function. Let (fj)j∈Z>0 be a sequence in M([0, 1];R) converging in measure to z, i.e., for
every ϵ ∈ R>0,

lim
j→∞

λ({x ∈ [0, 1] | |fj(x)| ≥ ϵ}) = 0,

but not converging pointwise almost everywhere to z [Cohn 2013, Example 3.1.1(b)]. Since
almost everywhere pointwise convergence agrees with convergence in τ , there exists a neigh-
bourhood U of [z] in M̂([0, 1];R) such that the set

{j ∈ Z>0 | [fj ] ∈ U}
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is finite. As is well-known [Cohn 2013, Proposition 3.1.3], there exists a subsequence
(fjk)k∈Z>0 of (fj)j∈Z>0 that converges pointwise almost everywhere to z. Thus the se-
quence ([fjk ])k∈Z>0 converges pointwise almost everywhere to [z], and so converges to [z]
in τ . Thus, in particular, the set

{k ∈ Z>0 | [fjk ] ∈ U}

is infinite, which is a contradiction. ■

It is moderately well-known that there can be no topology on M̂([0, 1];R) which gives
rise to almost everywhere pointwise convergence. For instance, this is observed by [Fréchet
1921]. Our proof of Proposition 2.6 is adapted slightly from the observation of Ordman
[1966]. The upshot of the result is that, if one is going to provide some structure with which
to describe almost everywhere pointwise convergence, this structure must be something
different than a topology. This was addressed by Arens [1950] who observed that the notion
of convergence in measure is topological, but almost everywhere pointwise convergence is
not. To structurally distinguish between the two sorts of convergence, Arens introduces the
notion of a limit structure. This idea is discussed in some generality for Borel measurable
functions by Höhle [2000] using multiple valued topologies. Here we will introduce the notion
of a limit structure in as direct a manner as possible, commensurate with our objectives.
Readers wishing to explore the subject in more detail are referred to [Beattie and Butzmann
2002].

For a set X let F (X) denote the set of filters on X and, for x ∈ X, denote by

Fx = {S ⊆ X | x ∈ S}

the principal filter generated by {x}. If (Λ,⪯) is a directed set and if ϕ : Λ → X is a Λ-net,
we denote the tails of the net ϕ by

Tϕ(λ) = {ϕ(λ′) | λ′ ≥ λ}, λ ∈ Λ.

We then denote by
Fϕ = {S ⊆ X | Tϕ(λ) ⊆ S for some λ ∈ Λ}

the “tail filter” (also sometimes called the “Fréchet filter”) associated to the Λ-net ϕ.

2.7 Definition: A limit structure on a set X is a subset L ⊆ F (X) × X with the
following properties:

(i) if x ∈ X then (Fx, x) ∈ L ;

(ii) if (F, x) ∈ L and if F ⊆ G ∈ F (X) then (G, x) ∈ L ;

(iii) if (F, x), (G, x) ∈ L then (F ∩ G, x) ∈ L .

If (Λ,⪯) is a directed set, a Λ-net ϕ : Λ → X is L -convergent to x ∈ X if (Fϕ, x) ∈ L .
Let us denote by S (L ) the set of L -convergent Z>0-nets, i.e., the set of L -convergent
sequences. •

The intuition behind the notion of a limit structure is as follows. Condition (i) says that
the trivial filter converging to x should be included in the limit structure, condition (ii) says
that if a filter converges to x, then every coarser filter also converges to x, and condition (iii)
says that “mixing” filters converging to x should give a filter converging to x. Starting
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from the definition of a limit structure, one can reproduce many of the concepts from
topology, e.g., openness, closedness, compactness, continuity. Since we are not going to
make us of any of these general constructions, we merely refer the interested reader to
[Beattie and Butzmann 2002]. The one notion we will use is the following: a subset A of a
set X with a limit structure L is L -sequentially closed if every L -convergent sequence
(xj)j∈Z>0 in A converges to x ∈ A.

We are interested in the special case of limit structures on a R-vector space V; one will
trivially see that there is nothing in the definitions that requires the field to be R. For
F,G ∈ F (V) and for a ∈ R we denote

F + G = {A+B | A ∈ F, B ∈ G}, aF = {aA | A ∈ F},

where, as usual,

A+B = {u+ v | u ∈ A, v ∈ B}, aA = {au | u ∈ A}.

We say that a limit structure L on a vector space V is linear if (F1, v1), (F2, v2) ∈ L
implies that (F1 + F2, v1 + v2) ∈ L and if a ∈ R and (F, v) ∈ L then (aF, av) ∈ L .
Following the characterisation of bounded subsets of topological vector spaces, we say a
subset B ⊆ V is L -bounded if, for every sequence (vj)j∈Z>0 in B and for every sequence
(aj)j∈Z>0 in R converging to 0, the sequence (ajvj)j∈Z>0 is L -convergent to zero.

For [f ] ∈ M̂([0, 1];R) define

F[f ] = {F ∈ F (M̂([0, 1];R)) | Fϕ ⊆ F for some Z>0-net ϕ such that

(ϕ(j))j∈Z>0 is almost everywhere pointwise convergent to [f ]}.

We may now define a limit structure on M̂([0, 1];R) as follows.

2.8 Theorem: The subset of F (M̂([0, 1];R))× M̂([0, 1];R) defined by

Lλ = {(F, [f ]) | F ∈ F[f ]}

is a linear limit structure on M̂([0, 1];R). Moreover, a sequence ([fj ])j∈Z>0 is Lλ-
convergent to [f ] if and only if the sequence is almost everywhere pointwise convergent
to [f ].

Proof: Let [f ] ∈ M̂([0, 1];R). Consider the trivial Z>0-net ϕ[f ] : Z>0 → M̂([0, 1];R) defined
by ϕ[f ](j) = [f ]. Since Fϕ = F[f ] and since (Fϕ, [f ]) ∈ Lλ, the condition (i) for a limit
structure is satisfied.

Let (F, [f ]) ∈ Lλ and suppose that F ⊆ G. Then F ∈ F[f ] and so F ⊇ Fϕ for some
Z>0-net ϕ that converges pointwise almost everywhere to [f ]. Therefore, we immediately
have Fϕ ⊆ G and so (G, [f ]) ∈ Lλ. This verifies condition (ii) in the definition of a limit
structure.

Finally, let (F, [f ]), (G, [f ]) ∈ Lλ and let ϕ and ψ be Z>0-nets that converge pointwise
almost everywhere to [f ] and satisfy Fϕ ⊆ F and Fψ ⊆ G. Define a Z>0-net ϕ ∧ ψ by

ϕ ∧ ψ(j) =

{
ϕ(12(j + 1)), j odd,

ψ(12j), j even.
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We first claim that ϕ ∧ ψ converges pointwise almost everywhere to [f ]. Let

A =
{
x ∈ [0, 1]

∣∣ lim
j→∞

ϕ(j)(x) ̸= f(x)
}
, B =

{
x ∈ [0, 1]

∣∣ lim
j→∞

ψ(j)(x) ̸= f(x)
}
.

If x ∈ [0, 1] \ (A ∪B) then

lim
j→∞

ϕ(j)(x) = lim
j→∞

ψ(j)(x) = f(x).

Thus, for x ∈ [0, 1] \ (A ∪B) and ϵ ∈ R>0 there exists N ∈ Z>0 such that

|f(x)− ϕ(j)(x)|, |f(x)− ψ(j)(x)| < ϵ, j ≥ N.

Therefore, for j ≥ 2N and for x ∈ [0, 1] \ (A ∪B) we have |f(x)− ϕ ∧ ψ(j)(x)| < ϵ and so

lim
j→∞

ϕ ∧ ψ(j)(x) = f(x), x ∈ [0, 1] \ (A ∪B).

Since λ(A ∪ B) = 0 it indeed follows that ϕ ∧ ψ converges pointwise almost everywhere to
[f ].

We next claim that Fϕ∧ψ ⊆ F ∩ G. Indeed, let S ∈ Fϕ∧ψ. Then there exists N ∈ Z>0

such that Tϕ∧ψ(N) ⊆ S. Therefore, there exists Nϕ, Nψ ∈ Z>0 such that Tϕ(Nϕ) ⊆ S and
Tψ(Nψ) ⊆ S. That is, S ∈ Fϕ∩Fψ ⊆ F∩G. This shows that (F∩G, [f ]) ∈ Lλ and so shows
that condition (iii) in the definition of a limit structure holds.

Thus we have shown that Lλ is a limit structure. Let us show that it is a linear limit
structure. Let (F1, [f1]), (F2, v2) ∈ Lλ. Thus there exists Z-nets ϕ1 and ϕ2 in M̂([0, 1];R)
converging pointwise almost everywhere to [f1] and [f2], respectively, and such that Fϕ1 ⊆
F1 and Fϕ2 ⊆ F2. Let us denote by (f1,j)j∈Z>0 and (f2,j)j∈Z>0 sequences in M([0, 1];R)
such that [f1,j ] = ϕ1(j) and [f2,j ] = ϕ2(j) for j ∈ Z>0. Then, as in the proof of Lemma 2.5,
there exists a subset A ⊆ [0, 1] of zero measure such that

lim
j→∞

fj,1(x) = f1(x), lim
j→∞

f2,j(x) = f2(x), x ∈ [0, 1] \A.

Thus, for x ∈ [0, 1] \A,
lim
j→∞

(f1,j + f2,j)(x) = (f1 + f2)(x).

This shows that the Z>0-net ϕ1 + ϕ2 converges pointwise almost everywhere to [f1 + f2].
Since Fϕ1+ϕ2 ⊆ F1 + F2, it follows that (F1 + F2, [f1 + f2]) ∈ Lλ. An entirely similarly
styled argument gives (aF, av) ∈ Lλ for (F, v) ∈ Lλ.

We now need to show that S (Lλ) consists exactly of the almost everywhere pointwise
convergent sequences. The very definition of Lλ ensures that if a Z>0-net ϕ is almost
everywhere pointwise convergent then ϕ ∈ S (Lλ). We prove the converse, and so let ϕ be
Lλ-convergent to [f ]. Therefore, by definition of Lλ, there exists a Z>0-net ψ converging
pointwise almost everywhere to [f ] such that Fψ ⊆ Fϕ.
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1 Lemma: There exists of a subsequence ψ′ of ψ such that Fψ′ = Fϕ.

Proof: Let n ∈ Z>0 and note that Tψ(n) ∈ Fψ ⊆ Fϕ. Thus there exists k ∈ Z>0 such that
Tϕ(k) ⊆ Tψ(n). Then define

kn = min{k ∈ Z>0 | Tϕ(k) ⊆ Tψ(n)},

the minimum being well-defined since

k > k′ =⇒ Tϕ(k) ⊆ Tϕ(k
′).

This uniquely defines, therefore, a sequence (kn)n∈Z>0 . Moreover, if n1 > n2 then Tψ(n2) ⊆
Tψ(n1) which implies that Tϕ(kn2) ⊆ Tψ(n1). Therefore, kn2 ≥ kn1 , showing that the
sequence (kn)n∈Z>0 is nondecreasing.

Now define θ : Z>0 → Z>0 as follows. If j < kn for every n ∈ Z>0 then define θ(j) in
an arbitrary manner. If j ≥ k1 then note that ϕ(j) ∈ Tϕ(k1) ⊆ Tψ(1). Thus there exists
(possibly many) m ∈ Z>0 such that ϕ(j) = ψ(m). If j ≥ kn for n ∈ Z>0 then there exists
(possibly many) m ≥ n such that ϕ(j) = ψ(m). Thus for any j ∈ Z>0 we can define
θ(j) ∈ Z>0 such that ϕ(j) = ψ(θ(j)) if j ≥ k1 and such that θ(j) ≥ n if j ≥ kn.

Note that any function θ : Z>0 → Z>0 as constructed above is unbounded. Therefore,
there exists a strictly increasing function ρ : Z>0 → Z>0 such that image(ρ) = image(θ).
We claim that Fρ = Fθ. First let n ∈ Z>0 and let j ≥ kρ(n). Then θ(j) ≥ ρ(n). Since
image(ρ) = image(θ) there exists m ∈ Z>0 such that ρ(m) = θ(j) ≥ ρ(n). Since ρ is strictly
increasing, m ≥ n. Thus θ(j) ∈ Tρ(n) and so Tθ(kρ(n)) ⊆ Tρ(n). This implies that Fρ ⊆ Fθ.

Conversely, let n ∈ Z>0 and let rn ∈ Z>0 be such that

ρ(rn) > max{θ(1), . . . , θ(n)};

this is possible since ρ is unbounded. If j ≥ rn then

ρ(j) ≥ ρ(rn) > max{θ(1), . . . , θ(n)}.

Since image(ρ) = image(θ) we have ρ(j) = θ(m) for some m ∈ Z>0. We must have m > n
and so ρ(j) ∈ Tθ(n). Thus Tρ(rn) ⊆ Tθ(n) and so Fθ ⊆ Fρ.

To arrive at the conclusions of the lemma we first note that, by definition of θ, Fϕ = Fψ◦θ.
We now define ψ′ = ψ ◦ ρ and note that

Fϕ = Fψ◦θ = ψ(Fθ) = ψ(Fρ) = Fψ◦ρ,

as desired. ▼

Since a subsequence of an almost everywhere pointwise convergent sequence is almost
everywhere pointwise convergent to the same limit, it follows that ψ′, and so ϕ, converges
almost everywhere pointwise to [f ]. ■

The preceding theorem seems to be well-known; see [Beattie and Butzmann 2002] where,
in particular, the essential lemma in the proof is given. Nonetheless, we have never seen
the ingredients of the proof laid out clearly in one place, so the result is worth recording.

Let us record a characterisation of Lλ-bounded subsets of M̂([0, 1];R).
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2.9 Proposition: A subset B ⊆ M̂([0, 1];R) is Lλ-bounded if and only if there exists a
nonnegative-valued g ∈ M([0, 1];R) such that

B ⊆ {[f ] ∈ M̂([0, 1];R) | |f(x)| ≤ g(x) for almost every x ∈ [0, 1]}.

Proof: We first observe that the condition that |f(x)| ≤ g(x) for almost every x ∈ [0, 1] is
independent of the choice of representative f from the equivalence class [f ].

Suppose that there exists a nonnegative-valued g ∈ M([0, 1];R) such that, if [f ] ∈ B,
then |f(x)| ≤ g(x) for almost every x ∈ [0, 1]. Let ([fj ])j∈Z>0 be a sequence in B and let
(aj)j∈Z>0 be a sequence in R converging to zero. For j ∈ Z>0 define

Aj = {x ∈ [0, 1] | |fj(x)| ≤ g(x)}.

Note that if x ∈ [0, 1] \ (∪j∈Z>0Aj) then

lim
j→∞

|ajfj(x)| ≤ lim
j→∞

|aj |g(x) = 0.

Since λ(∪j∈Z>0Aj) = 0 this implies that the sequence (aj [fj ])j∈Z>0 is Lλ-convergent to
zero. One may show that this argument is independent of the choice of representatives fj
from the equivalence classes [fj ], j ∈ Z>0.

Conversely, suppose that there exists no nonnegative-valued function g ∈ M([0, 1];R)
such that, for every [f ] ∈ B, |f(x)| ≤ g(x) for almost every x ∈ [0, 1]. This means that
there exists a set E ⊆ [0, 1] of positive measure such that, for any M ∈ R>0, there exists
[f ] ∈ B such that |f(x)| > M for almost every x ∈ E. Let (aj)j∈Z>0 be a sequence in R
converging to 0 and such that aj ̸= 0 for every j ∈ Z>0. Then let ([fj ])j∈Z>0 be a sequence
in B such that |fj(x)| > |a−1

j | for almost every x ∈ E and for every j ∈ Z>0. Define

Aj = {x ∈ E | |fj(x)| > |a−1
j |}.

If x ∈ E \ (∪j∈Z>0Aj) then |ajfj(x)| > 1 for every j ∈ Z>0. Since λ(E \ (∪j∈Z>0Aj)) > 0
it follows that (aj [fj ])j∈Z>0 cannot Lλ-converge to zero, and so B is not Lλ-bounded. ■

3. Two topological distinctions between the Riemann and Lebesgue theories
of integration

In this section we give topological characterisations of the differences between the Rie-
mann and Lebesgue theories. In Section 3.3 we also explicitly see how these distinctions
lead to a deficiency in the Fourier transform theory using the Riemann integral.

3.1. The Dominated Convergence Theorems. Both the Lebesgue and Riemann theories
of integration possess a Dominated Convergence Theorem. This gives us two versions of
the Dominated Convergence Theorem that we can compare and contrast. Moreover, there
are also “pointwise convergent” and “almost everywhere pointwise convergent” versions of
both theorems. Typically, the “pointwise convergent” version is stated for the Riemann in-
tegral2 and the “almost everywhere pointwise convergent” version is stated for the Lebesgue

2Since the “almost everywhere pointwise convergent” version actually requires the Lebesgue theory of
integration.
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integral. However, both versions are valid for both integrals, so this gives, in actuality, four
theorems to compare and contrast. What we do here is state both versions of the Dominated
Convergence Theorem for the Lebesgue integral using topological and limit structures, and
we give counterexamples illustrating why these statements are not valid for the Riemann
integral.

Let us first state the various Dominated Convergence Theorems in their usual form.
The Dominated Convergence Theorem—including the pointwise convergent and almost
everywhere pointwise convergent statements—for the Riemann integral is the following.

3.1 Theorem: Let (fj)j∈Z>0 be a sequence of R-valued functions on [0, 1] satisfying the
following conditions:

(i) fj ∈ R1([0, 1];R) for each j ∈ Z>0;

(ii) there exists a nonnegative-valued g ∈ R1([0, 1];R) such that |fj(x)| ≤ g(x) for every
(resp. almost every) x ∈ [0, 1] and for every j ∈ Z>0;

(iii) the limit limj→∞ fj(x) exists for every (resp. almost every) x ∈ [0, 1];

(iv) the function f : [0, 1] → R defined by f(x) = limj→∞ fj(x) is in R1([0, 1];R)
(resp. there exists f ∈ R1([0, 1];R) such that limj→∞ fj(x) = f(x) for almost ev-
ery x ∈ [0, 1]).

Then

lim
j→∞

∫ 1

0
fj(x) dx =

∫ 1

0
f(x) dx.

For the Lebesgue integral we have the following Dominated Convergence Theorem(s).

3.2 Theorem: Let (fj)j∈Z>0 be a sequence of R-valued functions on [0, 1] satisfying the
following conditions:

(i) fj is measurable for each j ∈ Z>0;

(ii) there exists a nonnegative-valued g ∈ L1([0, 1];R) such that |fj(x)| ≤ g(x) for every
(resp. almost every) x ∈ [0, 1] and for every j ∈ Z>0;

(iii) the limit limj→∞ fj(x) exists for every (resp. almost every) x ∈ [0, 1].

Then the function f : [0, 1] → R defined by

f(x) =

{
limj→∞ fj(x), the limit exists,

0, otherwise

and each of the functions fj, j ∈ Z>0, are in L1([0, 1];R) and

lim
j→∞

∫
I
fj dλ =

∫
I
f dλ.

Our statements make it clear that there is one real difference between the Riemann and
Lebesgue theories: the condition of integrability of the limit function f is an hypothesis in
the Riemann theory but a conclusion in the Lebesgue theory. This distinction is crucial and
explains why the Lebesgue theory is more powerful than the Riemann theory. Moreover,
the structure we introduced in Section 2 allows for an elegant expression of this distinction.
The result which follows is simply a rephrasing of the Dominated Convergence Theorem(s)
for the Lebesgue integral, and follows from that theorem, along with Theorem 2.8 and
Proposition 2.9.
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3.3 Theorem: The following statements hold:

(i) Cp-bounded subsets of L1([0, 1];R) are Cp-sequentially closed;

(ii) Lλ-bounded subsets of L̂1([0, 1];R) are Lλ-sequentially closed.

The necessity of the weaker conclusions for the Dominated Convergence Theorem(s) for
the Riemann integral is illustrated by the following examples. First we show why part (i)
of Theorem 3.3 does not hold for the Riemann integral.

3.4 Example: By means of an example, we show that there are Cp-bounded subsets of the
seminormed vector space R1([0, 1];R) that are not sequentially closed in the topology of
Cp([0, 1];R). Let us denote

B = {f ∈ R1([0, 1];R) | |f(x)| ≤ 1},

noting by Proposition 2.2 that B is Cp-bounded. Let (qj)j∈Z>0 be an enumeration of the
rational numbers in [0, 1] and define a sequence (Fk)k∈Z>0 in R1([0, 1];R) by

Fk(x) =

{
1, x ∈ {q1, . . . , qk},
0, otherwise.

The sequence converges in Cp([0, 1];R) to the characteristic function of Q ∩ [0, 1]; let us
denote this function by F . This limit function is not Riemann integrable and so not in
R1([0, 1];R). Thus B is not Cp-sequentially closed. •

Next we show why part (ii) of Theorem 3.3 does not hold for the Riemann integral.

3.5 Example: We give an example that shows that Lλ-bounded subsets of the normed vec-
tor space R̂1([0, 1];R) are not Lλ-sequentially closed. We first remark that the construction
of Example 3.4, projected to R̂1([0, 1];R), does not suffice because [F ] is equal to the equiv-
alence class of the zero function which is Riemann integrable, even though F is not, cf. the
statements following Example 3.117 in [Kurtz 2004]. The fact that [F ] contains functions
that are Riemann integrable and functions that are not Riemann integrable is a reflection
of the fact that R0([0, 1];R) is not sequentially closed. This is a phenomenon of interest,
but it is not what is of interest here.

The construction we use is the following. Let (qj)j∈Z>0 be an enumeration of the rational
numbers in [0, 1]. Let ℓ ∈ (0, 1) and for j ∈ Z>0 define

Ij = [0, 1] ∩ (qj − ℓ
2j+1 , qj +

ℓ
2j+1 )

to be the interval of length ℓ
2j

centred at qj . Then define Ak = ∪kj=1Ij , k ∈ Z>0, and
A = ∪j∈Z>0Aj . Also define Gk = χAk

, k ∈ Z>0, and G = χA be the characteristic functions
of Ak and A, respectively. Note that Ak is a union of a finite number of intervals and so
Gk is Riemann integrable for each k ∈ Z>0. However, we claim that G is not Riemann
integrable. Indeed, the characteristic function of a set is Riemann integrable if and only the
boundary of the set has measure zero; this is a direct consequence of Lebesgue’s theorem
stating that a function is Riemann integrable if and only if its set of discontinuities has
measure zero [Cohn 2013, Theorem 2.5.4]. Note that since cl(Q ∩ [0, 1]) = [0, 1] we have

[0, 1] = cl(A) = A ∪ bd(A).
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Thus
λ([0, 1]) ≤ λ(A) + λ(bd(A)).

Since

λ(A) ≤
∞∑
j=1

λ(Ij) ≤ ℓ,

it follows that λ(bd(A)) ≥ 1− ℓ ∈ R>0. Thus G is not Riemann integrable, as claimed.
It is clear that (Gk)k∈Z>0 is Cp-convergent to G. Therefore, by Theorem 2.8 it follows

that ([Gk])k∈Z>0 is Lλ-convergent to [G]. We claim that [G] ̸∈ R̂1([0, 1];R). This requires
that we show that if g ∈ Cp([0, 1];R) satisfies [g] = [G], then g is not Riemann integrable.
To show this, it suffices to show that g is discontinuous on a set of positive measure. We
shall show that g is discontinuous on the set g−1(0)∩bd(A). Indeed, let x ∈ g−1(0)∩bd(A).
Then, for any ϵ ∈ R>0 we have (x−ϵ, x+ϵ)∩A ̸= ∅ since x ∈ bd(A). Since (x−ϵ, x+ϵ)∩A
is a nonempty open set, it has positive measure. Therefore, since G and g agree almost
everywhere, there exists y ∈ (x− ϵ, x+ ϵ)∩A such that g(y) = 1. Since this holds for every
ϵ ∈ R>0 and since g(x) = 0, it follows that g is discontinuous at x. Finally, it suffices to
show that g−1(0)∩ bd(A) has positive measure. But this follows since bd(A) = G−1(0) has
positive measure and since G and g agree almost everywhere.

To complete the example, we note that the sequence ([Gk])j∈Z>0 is in the set

B = {[f ] ∈ R̂1([0, 1];R) | |f(x)| ≤ 1 for almost every x ∈ [0, 1]},

which is Lλ-bounded by Proposition 2.9. The example shows that this Lλ-bounded subset
of R̂1([0, 1];R) is not Lλ-sequentially closed. •

3.2. Completeness of spaces of integrable functions. In Section 2.1 we constructed the
two normed vector spaces R̂1([0, 1];R) and L̂1([0, 1];R). Using the Dominated Convergence
Theorem, one proves the following well-known and important result [Cohn 2013, Theo-
rem 3.4.1].

3.6 Theorem: (L̂1([0, 1];R), ∥·∥1) is a Banach space.

It is generally understood that (R̂1([0, 1];R), ∥·∥1) is not a Banach space. However,
we have not seen this demonstrated in a sufficiently compelling manner, so the following
example will hopefully be interesting in this respect.

3.7 Example: Let us consider the sequence of functions (Gk)k∈Z>0 in R1([0, 1];R) con-
structed in Example 3.5. We also use the pointwise limit function G defined in that same
example. We shall freely borrow the notation introduced in this example.

We claim that the sequence ([Gk])k∈Z>0 is Cauchy in R̂1([0, 1];R). Let ϵ ∈ R>0. Note
that

∑∞
j=1 λ(Ij) ≤ ℓ. This implies that there exists N ∈ Z>0 such that

∑m
j=k+1 λ(Ij) < ϵ

for all k,m ≥ N . Now note that for k,m ∈ Z>0 with m > k, the functions Gk and Gm
agree except on a subset of Ik+1 ∪ · · · ∪ Im. On this subset, Gm has value 1 and Gk has
value 0. Thus ∫ 1

0
|Gm(x)−Gk(x)|dx ≤ λ(Ik+1 ∪ · · · ∪ Im) ≤

m∑
j=k+1

λ(Ij).
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Thus we can choose N ∈ Z>0 sufficiently large that ∥Gm − Gk∥1 < ϵ for k,m ≥ N . Thus
the sequence ([Gk])k∈Z>0 is Cauchy, as claimed.

We next show that the sequence ([Gk])k∈Z>0 converges to [G] in L̂1([0, 1];R). In
Example 3.5 we showed that ([Gk])k∈Z>0 is Lλ-convergent to [G]). Since the sequence
([G−Gk])k∈Z>0 is in the subset

{[f ] ∈ L̂1([0, 1];R) | |f(x)| ≤ 1 for almost every x ∈ [0, 1]},

and since this subset is Lλ-bounded by Proposition 2.9, it follows from Theorem 3.3(ii)
that

lim
k→∞

∥G−Gk∥1 =
∫
I
lim
k→∞

|G−Gk| dλ = 0.

This gives us the desired convergence of ([Gk])k∈Z>0 to [G] in L̂1([0, 1];R). However, in

Example 3.5 we showed that [G] ̸∈ R̂1([0, 1];R). Thus the Cauchy sequence ([Gk])k∈Z>0

in R̂1([0, 1];R) is not convergent in R̂([0, 1];R), giving the desired incompleteness of
(R̂([0, 1];R), ∥·∥1). •

In [Kurtz 2004, Example 3.117] the sequence (fj)j∈Z>0 defined by

fj(x) =

{
0, x ∈ [0, 1j ],

x−1/2, x ∈ (1j , 1]

is shown to be Cauchy in R̂1([0, 1];R), but not convergent in R̂1([0, 1];R). This sequence,
however, is not as interesting as that in our preceding example since the limit function
f ∈ L̂1([0, 1];R) in Kurtz’s example is Riemann integrable using the usual rule for defin-
ing the improper Riemann integral for unbounded functions. In the construction used in
Example 3.7, the limit function in L1([0, 1];R) is not Riemann integrable in the sense of
bounded functions defined on compact intervals, i.e., in the sense of the usual construction
involving approximation above and below by step functions.

In [Dickmeis, Mevissen, Nessel, and van Wickeren 1988] a convergence structure is
introduced on the set of Riemann integrable functions that is sequentially complete. The
idea in this work is to additionally constrain convergence in L̂1([0, 1];R) in such a way that
Riemann integrability is preserved by limits.

3.3. The L2-Fourier transform for the Riemann integral. In order to illustrate why it is
important that spaces of integrable functions be complete, we consider the theory of the
L2-Fourier transform restricted to square Riemann integrable functions. Let us first recall
the essential elements of the theory.

For p ∈ [1,∞) we denote by Lp(R;C) the set of C-valued functions f defined on R which
satisfy ∫

R
|f |p dλ <∞,

where we now denote by λ the Lebesgue measure on R. We let

L0(R;C) =
{
f ∈ Lp(R;C)

∣∣∣ ∫
R
|f |p dλ = 0

}



18 A. D. Lewis

and denote
L̂p(R;C) = Lp(R;C)/L0(R;C).

As we have done previously, we denote [f ] = f + L0(R;C). If we define

∥[f ]∥p =
(∫
R
|f |p dλ

)1/p

then one shows that (L̂p(R;C), ∥·∥p) is a Banach space [Cohn 2013, Theorem 3.4.1].

For a ∈ C let us denote expa : R → C by expa(x) = eax. For [f ] ∈ L̂1(R;C) one defines
F1([f ]) : R → C by

F1([f ])(ω) =

∫
R
f exp−2πiω dλ

the L1-Fourier transform of [f ] ∈ L̂1(R;C). If we define C0
0,uc(R;C) to be the set of

uniformly continuous C-valued functions f on R that satisfy lim|x|→∞|f(x)| = 0, then
(C0

0,uc(R;C), ∥·∥∞) is a Banach space with

∥f∥∞ = sup{|f(x)| | x ∈ R}.

Moreover, F1([f ]) ∈ C0
0,uc(R;C) and the linear map F1 : L̂

1(R;C) → C0
0,uc(R;C) is contin-

uous [Gasquet and Witomski 1999, Theorem 17.1.3].
For [f ] ∈ L̂2(R;C) the preceding construction cannot be applied verbatim since L̂2(R;C)

is not a subspace of L̂1(R;C). However, one can make an adaptation as follows [Gasquet and
Witomski 1999, Lesson 22]. One shows that L̂1(R;C) ∩ L̂2(R;C) is dense in L̂2(R;C). One
can do this explicitly by defining, for [f ] ∈ L̂2(R;C), a sequence ([fj ])j∈Z>0 in L̂1(R;C) ∩
L̂2(R;C) by

fj(x) =

{
f(x), x ∈ [−j, j],
0, otherwise,

and showing, using the Cauchy–Bunyakovsky–Schwarz inequality, that this sequence con-
verges in L̂2(R;C) to [f ]. Moreover, one can show that the sequence (F1([fj ]))j∈Z>0 is a

Cauchy sequence L̂2(R;C) and so converges to some element of L̂2(R;C) that we denote by
F2([f ]), the L̂2-Fourier transform of [f ] ∈ L̂2(R;C). The map F2 : L̂

2(R;C) → L̂2(R;C)
so defined is, moreover, a Hilbert space isomorphism. The inverse has the property that

F −1
2 ([f ])(x) =

∫
R
f exp2πix dλ

for almost every x ∈ R, where the same constructions leading to the definition of F2 for
functions in L̂2(R;C) are applied.

Let us see that F2 restricted to the subspace of square Riemann integrable functions is
problematic. We denote by Rp(R;C) the collection of functions f : R → C which satisfy∫ ∞

−∞
|f(x)|p dx <∞,

where we use, as above, the Riemann integral for possibly unbounded functions defined on
unbounded domains [Marsden and Hoffman 1993, Section 8.5]. We also define

R0(R;C) =
{
f ∈ Rp(R;C)

∣∣∣ ∫ ∞

−∞
|f(x)|p dx = 0

}
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and denote
R̂p(R;C) = Rp(R;C)/R0(R;C).

As we have done previously, we denote [f ] = f + R0(R;C). If we define

∥[f ]∥p =
(∫ ∞

−∞
|f(x)|p dx

)1/p

then (R̂p(R;C), ∥·∥p) is a normed vector space. It is not a Banach space since the example

of Example 3.7 can be extended to R̂p(R;C) by taking all functions to be zero outside the
interval [0, 1].

Let us show that F2|R̂2(R;C) does not take values in R̂2(R;C), and thus show that
the “R̂2-Fourier transform” is not well-defined. We denote by G the function defined in
Example 3.5, but now extended to be defined on R by taking it to be zero off [0, 1]. We
have G ∈ L1(R;C) ∩ L2(R;C) since G is bounded and measurable with compact support.
Now define F : R → C by

F (x) =

∫
R
G exp2πix dλ;

thus F is the inverse Fourier transform of G. Since G ∈ L1(R;C) it follows that
F ∈ C0

0,uc(R;C). Therefore, F |[−R,R] is continuous and bounded, and hence Riemann

integrable for every R ∈ R>0. Since G ∈ L2(R;C) we have F ∈ L2(R;C) which implies that∫ R

−R
|F (x)|2 dx =

∫
[−R,R]

|F |2 dλ ≤
∫
R
|F |2 dλ, R ∈ R>0.

Thus the limit

lim
R→∞

∫ R

−R
|F (x)|2 dx

exists. This is exactly the condition for Riemann integrability of F as a function on an un-
bounded domain [Marsden and Hoffman 1993, Section 8.5]. Now, since [F ] = F −1

2 ([G]) by

definition, we have F2([F ]) = [G]. In Example 3.5 we showed that [G]|[0, 1] ̸∈ R̂1([0, 1];C).
From this we conclude that [G] ̸∈ R̂1(R;C) and, since |G|2 = G, [G] ̸∈ R̂2(R;C). Thus
F2(R̂

2(R;C)) ̸⊆ R̂2(R;C), as it was desired to show.
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