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Abstract

In this paper we consider the local controllability problem for control-affine systems
that are homogeneous with respect to a one-parameter family of dilations corresponding
to time-scaling in the control. We construct and derive properties of a variational cone
that completely characterizes local controllability for these homogeneous systems. In
the process, we are able to give a bound on the order, in terms of the integers describing
the dilation, of perturbations that do not alter the local controllability property. Our
approach uses elementary Taylor expansions and avoids unnecessarily complicated open
mapping theorems to prove local controllability. Examples are given that illustrate the
main results.
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1. Introduction

The property of homogeneity is a key ingredient in many interesting results on local
controllability and stabilizability of nonlinear control systems, see for instance [Andreini,
Bacciotti, and Stefani 1988, Hermes 1991, Kawski 1995] and references therein. In this
paper, we consider the small-time local controllability of homogeneous control-affine systems

Σ : ẋ(t) = X0(x) +
m∑
a=1

uaXa(x), x(0) = x0, (1.1)

where X0, X1, . . . , Xm are smooth vector fields on a smooth manifold M with X0(x0) = 0x0 ,
and the controls t 7→ u(t) = (u1(t), . . . , um(t)) are piecewise constant taking their values in
a set U ⊆ Rm, assumed to contain a neighborhood of the origin 0 ∈ Rm. We say that Σ is
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small-time locally controllable (STLC) from x0 if the reachable set of Σ from x0 in time at
most T > 0, that is, the set

R(x0, T ) =
⋃

0≤t≤T

{γ(t) | γ : [0, t] → M satisfies (1.1) for some control u},

contains x0 in its interior for each T > 0. The concept of homogeneity that we employ rests
on the notion of a one-parameter family of dilations [Goodman 1976], by which we mean a
map ∆ : R>0 ×Rn → Rn of the form

∆(s, x1, . . . , xn) = (sk1x1, s
k2x2, . . . , s

knxn), (1.2)

for positive integers k1 ≤ k2 ≤ · · · ≤ kn. Throughout the paper, we denote ∆(s, ·) by ∆s.
Given a dilation ∆, we say that a control-affine system Σ on M = Rn is ∆-homogeneous
if for every trajectory γ : [0, T ] → Rn of Σ, corresponding to the control u : [0, T ] → U ,
it holds that γs(st) = ∆s(γ(t)) for all s > 0, where γs : [0, sT ] → Rn is the trajectory of
Σ corresponding to the scaled control us : [0, sT ] → U defined as us(st) = u(t). We note
that we are only considering systems that are homogeneous with respect to time-scalings in
the control, and not a more general notion of homogeneity where the controls can also be
scaled by their magnitudes, e.g., [Sussmann 1987]. However, we remark that, even for this
restricted class of homogeneous systems, sharp conditions for STLC are lacking. In this
regard, one of the main contributions of our paper is a necessary condition for STLC for the
type of homogeneous systems in consideration which, to the best of the authors knowledge,
is missing in the literature.

The local controllability problem has a long and rich history. Since the late 1970’s,
much of the work on local controllability has been concerned with deriving Lie bracket
conditions for establishing the STLC property or lack thereof. This effort can be explained
by a result due to Nagano [1966] relating diffeomorphism invariant properties, such as
STLC, and Lie bracket relations of families of real analytic vector fields. Much of the work
along these lines initiated with Hermes [1976] and Hermes [1978] and thoroughly developed
by Sussmann [1987] and Bianchini and Stefani [1993], although many others have made
significant contributions but our purpose is not to give an exhaustive survey. Although the
current sufficient conditions as given in [Bianchini and Stefani 1993, Sussmann 1987] are
rather general, they fail to capture the STLC property for relatively simple (polynomial)
systems. For example, the control-affine system on M = R4 given by

ẋ1 = u1, ẋ2 = x1, ẋ3 =
1
6x

3
1, ẋ4 = x2x3

fails the well-known sufficient condition in [Sussmann 1987, Theorem 7.3], yet STLC for
this system can be proved using its homogeneity properties (see Example 5.2 and [Kawski
1990]). This example, and several others [Kawski 1990], demonstrate the gap between the
known sufficient and necessary Lie bracket conditions for STLC. The purpose of this paper
is not to narrow the gap by giving new Lie bracket conditions, but instead to show that for
the class of homogeneous systems in consideration, STLC can be completely characterized
by a certain variational cone (Theorem 4.2), and that any control-affine system Σ̃, whose
Taylor approximation up to order kn−1 at x0 agreeing with that of Σ, is STLC from x0 if Σ
is STLC from x0 (Theorem 4.5). Although our results do not give explicit computational Lie
bracket conditions, they identify a particularly simple type of variation to study STLC for
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an important class of homogeneous systems. Specifically, Theorem 4.2 gives a sufficient and
necessary condition for STLC in terms of classical variations, and potentially can be used as
a guide to narrow the gap between the known conditions for STLC in terms of Lie brackets.
Moreover, the proof of Theorem 4.2 gives an algorithmic procedure for determining STLC
for the class of homogeneous systems considered when the known sufficient conditions fail.
Our approach uses Taylor expansions of the flows of vector fields as opposed to using
the Campbell–Baker–Hausdorff formula or the more general formalism of Chronological
Calculus [Agrachev and Gamkrelidze 1978]. Hence, a contribution of our paper is a self-
contained and straightforward exposition of the characterization of STLC for an important
class of nonlinear control-affine systems. In summary, the primary contributions of this
work are:

• a sufficient and necessary condition for STLC for control-affine systems that are ho-
mogeneous with respect to a family of dilations corresponding to time-scaling in the
control. (Theorem 4.2),

• a bound on the order of perturbations that do not alter the STLC property for control-
affine systems that are homogeneous with respect to a family of dilations correspond-
ing to time-scaling in the control. (Theorem 4.5), and

• a self-contained development of the main results.

Our contributions are significant for two main reasons. First, aside from linear and driftless
systems, the authors are unaware of any general result such as Theorem 4.2 that provides a
sufficient and necessary condition for STLC in terms of variations or Lie brackets. Second,
Theorem 4.5 establishes a bound on the order of derivatives needed to establish STLC for
the class of homogeneous systems in consideration, and thus answers a question posed in
[Kawski 2006] regarding the stability of STLC with respect to high-order perturbations.

This paper is organized as follows. In §2 we construct a type of high-order tangent
vector, or variation, using a composition of flows of vector fields and in §3 use them to
define a variational cone for control-affine systems. The use of variations to study the
reachable set is of course not new and the specific type of variations used here have been
used at least as early by Krener [1977] to prove the High-Order Maximum Principle. The
properties of these variations proved in §3 parallel the development of the more general
variations constructed in [Krener 1977]. However, as these simpler variations suffice to
characterize the STLC property for the systems we consider, we include all proofs and
details to make this paper as self-contained as possible. Moreover, as will be shown in §3,
our constructions lead to the use of an elementary open mapping theorem to prove STLC,
and furthermore, we are able to prove a theorem on subspaces of variations (Theorem 3.7)
using our formalism. In §4 we present our main results for the type of homogeneous systems
considered and finally in §5 we illustrate our main theorems with some examples.

1.1. Notation and conventions. In this paper, vector fields will be used in both the
geometric and algebraic sense. That is, a vector field ξ on a smooth manifold M will be
thought of as a section of the tangent bundle TM and also as a derivation on the ring of
smooth functions on M . In the latter case, the action of ξ on a smooth function f : M → R
will be denoted as ξf . Similarly, given a tangent vector v ∈ TxM , the directional derivative
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of f with respect to v will be denoted by vf . Given two vector fields ξ and η, the product ξη
will denote the differential operator (ξη)(f) = ξ(ηf). We will use the short-hand notation
ξ2 to denote ξξ, ξ3 to denote ξξξ, etc. The Lie bracket of ξ and η will be denoted by [ξ, η].
We also denote ad0ξη = η and adℓξη = [ξ, adℓ−1

ξ η] for ℓ ≥ 1.

We use the notation Rp
≥0 = {(τ1, . . . , τp) ∈ Rp : τi ≥ 0, i = 1, . . . , p}. Also, a control-

affine system of the form (1.1) will be denoted by Σ = ({X0, X1, . . . , Xm}, U).

2. Variations

For a smooth vector field ξ on M , its flow will be denoted by (t, x) 7→ Φξ(t, x) =

Φξ
t (x) = Φξ

x(t), which is defined for all (t, x) in an open subset of R×M . More generally, if
ξ = (ξ1, . . . , ξp) is a family of smooth vector fields on M , define the mapping Φξ : Ωξ → M
by

Φξ(t, x) = Φ
ξp
tp ◦ Φξp−1

tp−1
◦ · · · ◦ Φξ1

t1
(x)

where t = (t1, . . . , tp), and Ωξ is an open subset of Rp × M . For fixed t ∈ Rp, we let Φξ
t

denote the map x 7→ Φξ
t (x) = Φξ(t, x) (when it exists), and for fixed x ∈ M , Φξ

x is the map

defined as t 7→ Φξ
x(t) = Φξ(t, x), which is defined in a neighborhood of the origin in Rp.

Henceforth, for ease of presentation we omit explicitly stating the domain of definition of
composition of flows of vector fields understanding that they are defined only locally.

For a positive integer p let ETp denote the set of smooth mappings τ : [0, 1] → Rp
≥0

such that τ (0) = 0. An element of ETp will be called an end-time. Given a family of
vector fields ξ = (ξ1, . . . , ξp), τ ∈ ETp, and ϵ > 0 sufficiently small, the composite map

Φξ
x0 ◦ τ : [0, ϵ] → M is a well-defined curve at x0 whose image consists of points obtained

by following (in forward time) concatenations of the integral curves of ξ1, . . . , ξp. The order
of the pair (ξ, τ ) at x0, denoted ordx0(ξ, τ ), is the smallest integer k ≥ 1 such that

dk

dsk

∣∣∣
s=0

Φξ
x0
(τ (s)) ̸= 0x0

provided such an integer exists, where 0x0 ∈ Tx0M denotes the zero tangent vector at x0.
If k = ordx0(ξ, τ ), we call

vξ,τ :=
dk

dsk

∣∣∣
s=0

Φξ
x0
(τ (s))

the (ξ, τ )-end-time variation or just variation when (ξ, τ ) is understood.
To better understand how a variation vξ,τ depends on the jets of ξ at x0, by the chain

rule, we need to compute the Taylor series of the maps Φξ
x0 at the origin. To this end, we

first introduce some standard multi-index notation. For a multi-index I = (i1, . . . , ip), we
let |I| = i1 + · · ·+ ip and let I! = i1! · · · ip!. For a family of vector fields ξ = (ξ1, . . . , ξp), a
multi-index I = (i1, . . . , ip), and a smooth function f : M → R, let ξIf : M → R be the

function defined by (ξIf)(x) = (ξi11 · · · ξipp f)(x). For t = (t1, . . . , tp) ∈ Rp and a multi-index

I = (i1, . . . , ip), we set tI = ti11 · · · tipp . The proof of the following is straight-forward and
will be omitted.
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2.1 Proposition: Let f : M → R be a smooth function, let ξ = (ξ1, . . . , ξp) be a family of
smooth vector fields on M , and let x0 ∈ M . The Taylor series at the origin of Rp of the
function Rp ∋ t 7→ (f ◦ Φξ

x0)(t) is

∞∑
|I|=0

(ξIf)(x0)
tI

I!
.

Given a family of vector fields ξ = (ξ1, . . . , ξp), a smooth function f : M → R, and x0 ∈ M ,

we denote by (f ◦ Φξ
x0)k the Taylor approximation of f ◦ Φξ

x0 of order k ≥ 1. Explicitly,

(f ◦ Φξ
x0
)k(t) =

k∑
|I|=0

(ξIf)(x0)
tI

I!
. (2.1)

It will be important for us to know how the Taylor polynomials (2.1) decompose when
we view ξ = (ξ1, . . . , ξp) as being a concatenation of two families of vector fields. In
what follows, given ξ1 = (ξ1,1, . . . , ξ1,p) and ξ2 = (ξ2,1, . . . , ξ2,q) we set ξ1 ∗ ξ2 =
(ξ1,1, . . . , ξ1,p, ξ2,1, . . . , ξ2,q).

2.2 Lemma: Let ξ1 and ξ2 be families of smooth vector fields on M of length p and q,
respectively, and let f : M → R be a smooth function that vanishes at x0. Let ξ = ξ1 ∗ ξ2.
Then, for each positive integer k and (t1, t2) ∈ Rp ×Rq,

(f ◦ Φξ1∗ξ2
x0 )k(t1, t2) = (f ◦ Φξ1

x0)k(t1) + (f ◦ Φξ2
x0)k(t2) +Rξ

k(t1, t2),

where

Rξ
k(t1, t2) =

k−1∑
|J |=1

tJ2
J !

(hJ ◦ Φξ1
x0)k−|J |(t1) and hJ = ξJ2 f − ξJ2 f(x0).

Proof: From (2.1),

(f ◦ Φξ1∗ξ2
x0 )k(t1, t2) = (f ◦ Φξ1

x0)k(t1) + (f ◦ Φξ2
x0)k(t2) +

k∑
|I|+|J |=2
|I|,|J |≥1

(ξI1ξ
J
2 f)(x0)

tI1t
J
2

I!J !
.

Now, directly,

k∑
|I|+|J |=2
|I|,|J |≥1

(ξI1ξ
J
2 f)(x0)

tI1t
J
2

I!J !
=

k−1∑
|J |=1

k−|J |∑
|I|=1

(ξI1ξ
J
2 f)(x0)

tI1t
J
2

I!J !

=
k−1∑
|J |=1

tJ2
J !

k−|J |∑
|I|=1

ξI1(ξ
J
2 f − ξJ2 f(x0))(x0)

tI1
I!

=

k−1∑
|J |=1

tJ2
J !

(hJ ◦ Φξ1
x0)k−|J |(t1),

where the last equality follows because the function x 7→ hJ(x) = ξJ2 f(x)−ξJ2 f(x0) vanishes
at x0. ■



6 C. O. Aguilar and A. D. Lewis

2.3 Lemma: Let ξ be a family of smooth vector fields of length p and let τ ∈ ETp. Suppose
that k = ordx0(ξ, τ ) ≥ 2 and let ρ : R → Rq be a smooth map such that ρ(0) = 0. For any
smooth function f : M → R and any multi-index J = (j1, . . . , jq) with 1 ≤ |J | ≤ k − 1,

the derivatives of the function s 7→ ρJ(s)(f ◦ Φξ
x0)k−|J |(τ (s)) of orders 0, 1, . . . , k vanish at

s = 0, where we denote ρJ(s) = (ρ1(s))
j1 · · · (ρq(s))jq .

Proof: Suppose that 1 ≤ |J | ≤ k − 1. By the Leibniz rule, the derivatives of the function
s 7→ ρJ(s) of orders 0, 1, . . . , |J |−1 all vanish at s = 0. By definition of ordx0 , the derivatives

of the function s 7→ (f◦Φξ
x0)k−|J |(τ 1(s)) of orders 1, . . . , k−|J | all vanish at s = 0. Therefore,

by the Leibniz rule, the derivatives of the function s 7→ ρJ(s)(f ◦ Φξ
x0)k−|J |(τ (s)) of orders

0, 1, . . . , k all vanish at s = 0. ■

3. A variational cone

In this section we fix a control-affine system Σ and define the family of vector fields
FΣ = {X0 + Σm

a=1uaXa : u ∈ U}. Let Fp
Σ denote the set of p-tuples of elements of FΣ. For

a positive integer k let

Vk
x0

= {vξ,τ : (ξ, τ ) ∈ ∪p≥1(F
p
Σ × ETp), ordx0(ξ, τ ) = k} ∪ {0x0}

and let
Vx0 =

⋃
k≥1

Vk
x0
.

By definition, Vx0 is a set of high-order tangent vectors at x0 to the reachable set of Σ from
x0. In this section, we will show that Vx0 is an approximating cone to the reachable set
of Σ in the sense that if Vx0 = Tx0M then Σ is STLC from x0. More general notions of
variations can be found in, for example, [Bianchini 1994, Frankowska 1989, Kawski 1990,
Krener 1977], with their corresponding approximating theorems. To keep this paper as
self-contained as possible, however, we include all proofs as they involve only elementary
Taylor series computations and a degree theory argument (Lemma 3.6).

To prove the main property of Vx0 that allows it to serve as an approximation to
R(x0, T ), we first note that a curve c : R → M is of order k at 0 if and only if for any
smooth function f : M → R, the derivatives at 0 of the function f ◦ c vanish up to order
k − 1, and in this case

dk

dsk

∣∣∣
s=0

f(c(s)) = vf,

where v = c(k)(0) ∈ Tc(0)M . Therefore, if k = ordx0(ξ, τ ) then for any smooth function

f : M → R, the derivatives of the function (f ◦ Φξ
x0)k ◦ τ : [0, ϵ] → R vanish up to order

k − 1 at 0, and
dk

dsk

∣∣∣
s=0

(f ◦ Φξ
x0
)k(τ (s)) = vξ,τf.
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3.1 Proposition: The set Vk
x0

is a convex cone.

Proof: We first prove that Vk
x0

is closed under addition. Let (ξ1, τ 1), (ξ2, τ 2) be of order k
at x0, set ξ = ξ1 ∗ ξ2, and set τ = τ 1 ∗ τ 2. We claim that (ξ, τ ) is of order k at x0 and
that vξ,τ = vξ1,τ1 + vξ2,τ2 . To prove this, we can assume that vξ1,τ1 ̸= −vξ2,τ2 ; if not, then
vξ1,τ1 + vξ2,τ2 = 0x0 ∈ Vk

x0
. Let f : M → R be a smooth function that vanishes at x0. By

Lemma 2.2,

(f ◦ Φξ
x0
)k(τ (s)) = (f ◦ Φξ1

x0)k(τ 1(s)) + (f ◦ Φξ2
x0)k(τ 2(s)) +Rξ

k(τ 1(s), τ 2(s)), (3.1)

where

Rξ
k(τ 1(s), τ 2(s)) =

k−1∑
|J |=1

τ J
2 (s)

J !
(hJ ◦ Φξ1

x0)k−|J |(τ 1(s)),

and hJ = ξJ2 f − ξJ2 f(x0). By Lemma 2.3, the first k derivatives of the function s 7→
Rξ

k(τ 1(s), τ 2(s)) vanish at s = 0. Therefore, k = ordx0(ξ, τ ) and from (3.1) we have

dk

dsk

∣∣∣
s=0

(f ◦ Φξ
x0
)k(τ (s)) = vξ1,τ1f + vξ2,τ2f = (vξ1,τ1 + vξ2,τ2)f

which proves the claim.
To prove that Vk

x0
is closed under R>0-multiplication, suppose that (ξ, τ ) is of order k

at x0, let α ∈ R>0, and define τα by τα(s) = τ (α1/ks). By the chain-rule, for all ℓ ∈ Z>0,

dℓ

dsℓ

∣∣∣
s=0

Φξ
x0
(τα(s)) = αℓ/k dℓ

dsℓ

∣∣∣
s=0

Φξ
x0
(τ (s)).

Therefore, (ξ, τα) is of order k at x0 and vξ,τα = αvξ,τ . This completes the proof. ■

The next key property that is needed to use Vx0 as an approximation to R(x0, T ) is a
nesting type condition.

3.2 Lemma: ([Krener 1977]) For positive integers k and m, Vk
x0

⊆ Vkm
x0

.

Proof: If (ξ, τ ) is of order k at x0, then, for any function f vanishing at x0,

(f ◦ Φξ
x0
)k(τ (s)) = (vξ,τf)

sk

k!
+ o(sk).

Therefore,

(f ◦ Φξ
x0
)k(τ ((k!/(km)!)1/ksm)) = (vξ,τf)

skm

(km)!
+ o(skm).

It follows that if
ρ(s) = τ ((k!/(km)!)1/ksm),

then (ξ,ρ) is of order km at x0 and vξ,ρ = vξ,τ . ■
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3.3 Corollary: Vx0 is a convex cone.

Proof: The set Vx0 is a cone because it is a union of cones. By Lemma 3.2, if v1, . . . , vr ∈ Vx0 ,

with vj ∈ V
kj
x0 and k = lcm(k1, . . . , kr), then v1, . . . , vr ∈ Vk

x0
. By Proposition 3.1, Vk

x0
is

convex and, therefore, any convex combination of v1, . . . , vr is an element of Vk
x0

⊆ Vx0 .
This completes the proof. ■

3.4 Remark: Our definition of a variation uses smooth functions τ : [0, 1] → Rp
≥0, so that

in general we do not have Vk
x0

⊆ Vk+1
x0

. If the end-times τ are allowed to be Cr at s = 0
for r ≥ 1, then a variation of order k can be realized as a variation of order ℓ > k after a
reparameterization. However, one then needs to keep track of the order of differentiability
of the end-times τ to be able to work with high-order jets. For this reason we choose to
work with smooth end-times, and Lemma 3.2 ensures that essentially nothing is lost by
doing so. The use of smooth end-times are employed for instance in [Krener 1977], whereas
Hermes [1978] uses end-times that are Cr, r ≥ 1. •

The following theorem relates Vx0 and STLC of Σ at x0. To prove the theorem, one
can use the general results of Bianchini [1994], Frankowska [1989], and Kawski [1990].
By contrast, our proof relies on the algebraic properties of Vx0 proven thus far and on a
relatively simple open mapping theorem.

3.5 Theorem: Let Σ be a control-affine system of the form (1.1). If Vx0 = Tx0M then Σ is
STLC from x0.

Proof: Let T > 0 be given. By assumption, there exists vξ1,τ1 , . . . , vξr,τ r ∈ Vx0 such that

0 ∈ int(co({vξ1,τ1 , . . . , vξr,τ r})). (3.2)

In (3.2), co(·) and int(·) denote the convex hull and interior, respectively. By Lemma 3.2,
we can assume that vξi,τ i

∈ Vk
x0

for some k ∈ Z>0, for all i = 1, . . . , r. Consider the map
µ : Ω ∩Rr

≥0 → M defined by

µ(s1, . . . , sr) = Φ
ξ1
τ1((k!s1)1/k)

◦ · · · ◦ Φξr
τ r((k!sr)1/k)

(x0),

where Ω is a neighbourhood of the origin in Rr with the property that if (s1, . . . , sr) ∈
Ω ∩ Rr

≥0, then Σi,jτj,i((k!sj)
1/k)) ≤ T . By construction, µ is differentiable at the origin,

µ(0) = x0, and the image of µ consists of points reachable from x0 in time at most T .
It is clear that ∂µ

∂si
(0) = vξi,τ i

, for i = 1, . . . , r, and therefore Dµ(0)(Rr
≥0) = Tx0M by

(3.2). Applying Lemma 3.6 below to (the coordinate representation of) µ then implies that
x0 ∈ int(R(x0, T )). This completes the proof. ■

3.6 Lemma: ([Agrachev and Sachkov 2004]) Let µ : Rr → Rn be Lipschitzean, µ(0) =
0, and differentiable at 0. Assume that Dµ(0)(Rr

≥0) = R
n. Then 0 ∈ int(µ(Ω ∩ Rr

≥0)) for
any neighbourhood Ω of the origin in Rr.
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3.1. Subspaces of variations. Before moving on to homogeneous systems, in this section
we construct linear approximations to the convex cone Vx0 . Explicitly, using a technique
from Krener [1977, section 4], we construct subspaces of variations. The main result of this
section (Theorem 3.7) implies that

span{adℓ1X0
(Xj)(x0), ad

ℓ2
X0

([Xi, Xj ])(x0) | ℓ1, ℓ2 ≥ 0, i, j = 1, . . . ,m}

is a subspace of variations, a result obtained in [Bianchini and Stefani 1993, Corollary 3.7]
using a more general notion of a variation.

If ζ is a vector field on M that vanishes at x0 then ζ induces a canonical linear map
Bζ : Tx0M → Tx0M defined by Bζ(v) = [V, ζ](x0), where V is any vector field extending
v ∈ Tx0M . For a control-affine system Σ define

Zx0 = {ζ ∈ FΣ : ζ(x0) = 0x0}.

We identify Zx0 with the corresponding subset of linear maps on Tx0M , which we still
denote by Zx0 . For a subspace W ⊆ Tx0M , let ⟨Zx0 ;W ⟩ denote the smallest subspace
containing W that is invariant under the linear maps in Zx0 . It is not hard to show that

⟨Zx0 ;W ⟩ = span{Bζ1Bζ2 · · ·Bζr(w) | w ∈ W, ζi ∈ Zx0 , r ∈ Z≥0}.

3.7 Theorem: Let Σ be a smooth control-affine system and let x0 ∈ M . For any subspace
W ⊆ Vx0, it holds that ⟨Zx0 ;W ⟩ ⊆ Vx0.

Proof: To prove the theorem, it is enough to show that, if w ∈ W and ζ ∈ Zx0 , then
Bζ(w) ∈ Vx0 .

Let w ∈ W and let ζ ∈ Zx0 . By Lemma 3.2, we can assume that there exists an integer
k ≥ 1 and (ξi, τ i) of order k at x0 such that vξi,τ i

= (−1)i+1w for i = 1, 2. Let τ̃ i(s) =

τ i((k!/(2k)!)
1/ks2), for i = 1, 2. Then, by the proof of Lemma 3.2, ordx0(ξi, τ̃ i) = 2k and

vξi,τ̃ i
= (−1)i+1w, for i = 1, 2. Now, since ζ(x0) = 0x0 and vξ1,τ̃1 = −vξ2,τ̃2 , we have that

ordx0(ξ1 ∗ ζ ∗ ξ2, τ̃ 1 ∗ s ∗ τ̃ 2) ≥ 2k + 1. By definition and then expanding,

(f ◦ Φξ1∗ζ∗ξ2
x0 )2k+1(τ̃ 1(s), s, τ̃ 2(s)) (3.3)

= (f ◦ Φξ1
x0)2k+1(τ̃ 1(s)) + (f ◦ Φξ2

x0)2k+1(τ̃ 2(s))

+ (f ◦ Φζ
x0
)2k+1(s) +

2k+1∑
|I1|+j=2
|I1|,j≥1

(ξI11 ζjf)(x0)
sj τ̃ I1

1 (s)

j!I1!

+
2k+1∑

|I2|+j=2
|I2|,j≥1

(ζjξI22 f)(x0)
sj τ̃ I2

2 (s)

j!I2!

+
2k+1∑

|I1|+|I2|=2
|I1|,|I2|≥1

(ξI11 ξI22 f)(x0)
τ̃ I1
1 (s)τ̃ I2

2 (s)

I1!I2!

+
2k+1∑

|I1|+j+|I2|=3
|I1|, j, |I2|≥1

(ξI11 ζjξI22 f)(x0)
τ̃ I1
1 sj τ̃ I2

2

I1!j!I2!
.
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Using the fact that ζ(x0) = 0x0 and letting hj , for each j ∈ {1, . . . , 2k}, be the smooth
function x 7→ hj(x) = (ζjf)(x)− (ζjf)(x0), we can rewrite (3.3) as

(f ◦ Φξ1∗ζ∗ξ2
x0 )2k+1(τ̃ 1(s), s, τ̃ 2(s)) =(f ◦ Φξ1∗ξ2

x0 )2k+1(τ̃ 1(s), τ̃ 2(s)) (3.4)

+

2k∑
j=1

sj

j!
(hj ◦ Φξ1

x0)(2k+1)−j(τ̃ 1(s))

+
2k+1∑

|I1|+j+|I2|=3
|I1|, j, |I2|≥1

(ξI11 ζjξI22 f)(x0)
τ̃ I1
1 sj τ̃ I2

2

I1!j!I2!
.

Now, ordx0(ξ1 ∗ ξ2, τ 1 ∗ τ 2) ≥ k + 1 because vξ1,τ1 + vξ2,τ2 = w − w = 0x0 , and
therefore ordx0(ξ1 ∗ ξ2, τ̃ 1 ∗ τ̃ 2) ≥ 2(k + 1) = 2k + 2. Hence, the derivatives of

(f ◦Φξ1∗ξ2
x0 )2k+1(τ̃ 1(s), τ̃ 2(s)) of orders 1, . . . , 2k+1 all vanish at s = 0. By Lemma 2.2, the

last term in (3.4) can be written as

2k∑
j+|I2|=2

sj τ̃ I2
2 (s)

j!I2!
(Hj,I2 ◦ Φ

ξ1
x0)(2k+1)−(j+|I2|)(τ̃ 1(s)), (3.5)

where Hj,I2 is the smooth function Hj,I2 = (ζjξI22 f) − (ζjξI22 )f(x0). By Lemma 2.3, the
derivatives of (3.5) up to order 2k+1 vanish at s = 0. Hence, vξ1∗ζ∗ξ2,τ̃1∗s∗τ̃2 is determined
by the 2k + 1 derivative of the R-valued function

s 7→ g(s) :=

2k∑
j=1

sj

j!
fj(s),

where, for each j ∈ {1, . . . , 2k},

fj(s) = (hj ◦ Φξ1
x0)(2k+1)−j(τ̃ 1(s)).

Now since ordx0(ξ1, τ̃ 1) = 2k, if j ∈ {2, . . . , 2k} then the derivatives of fj at s = 0 up to
order (2k + 1 − j) vanish. Therefore, the derivatives at s = 0 up to order 2k + 1 of the
function s 7→ sjfj(s) vanish, for all j ∈ {2, . . . , 2k}. Thus the 2k + 1 derivative at s = 0 of
the function g is equal to the 2k + 1 derivative at s = 0 of the function s 7→ sf1(s). But,
the 2kth derivative of f1 at s = 0 is

d2k

ds2k

∣∣∣
s=0

(h1 ◦ Φξ1
x0)2k(τ̃ 1(s)) = vξ1,τ̃1(h1) = w(ζf − ζf(x0)) = Bζ(w)(f).

Hence, the 2k + 1 derivative of s 7→ sf1(s) is (2k + 1)Bζ(w)(f). Therefore, we have (2k +
1)Bζ(w) ∈ Vx0 and since Vx0 is a cone, Bζ(w) ∈ Vx0 . This completes the proof. ■

Let us give an example of the previous theorem.

3.8 Example: On M = Rn, let Σ be the linear control system ẋ = Ax + Bu, where
A ∈ Rn×n, B ∈ Rn×m, and u lies in the unit cube in Rm. Making the usual identifications
on Rn, it is clear that V1

x0
= span{b1, . . . , bm}, where bi is the ith column of B. The

set Zx0 contains the vector field x 7→ Ax. Hence, by Theorem 3.7, the smallest subspace
containing span{b1, . . . , bm} and invariant under the linear vector field x 7→ Ax is a subspace
of variations. In other words, the image of the classical Kalman controllability matrix
[B AB · · ·An−1B] is a subspace of variations. •
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3.9 Remark: Theorem 3.7 is proved in [Krener 1977, section 4] for the case of a single-input
control-affine system. •

4. Homogeneous systems

Homogeneous systems have received much attention in the literature with regards to
controllability and stabilizability, see [Hermes 1991] for a survey. One of the basic problems
is concerned with constructing homogeneous approximations that preserve the property of
interest, for example, STLC or stabilizability. Our aim in this section is to show that, for a
class of homogeneous systems, one can characterize the local controllability property with
the variational cone constructed in section 3. In this section, M = Rn.

We recall the definition of ∆-homogeneity from section 1. Given a control-affine system

Σ : ẋ(t) = X0(x) +
m∑
a=1

uaXa(x), x(0) = x0, (4.1)

we will say that (γ, u) is a controlled trajectory of Σ on [0, T ] if γ : [0, T ] → Rn is the solution
of (4.1) corresponding to the control u : [0, T ] → U . The set of controlled trajectories of
Σ on [0, T ] will be denoted by TrajΣ(T ). Given (γ, u) ∈ TrajΣ(T ) and s > 0, define
(γs, us) ∈ TrajΣ(sT ) by setting us(st) = u(t), for all t ∈ [0, T ]. Given a one-parameter
family of dilations {∆s}s>0 on Rn, we say that Σ is ∆-homogeneous if, for every (γ, u) ∈
TrajΣ(T ) inducing (γs, us), it holds that γs(st) = ∆s(γ(t)), for all t ∈ [0, T ] and s > 0. A
∆-homogeneous system has, naturally, homogeneous reachable sets, that is, for each T > 0
and s > 0,

R(x0, sT ) = ∆s(R(x0, T )).

This for instance implies that if x0 ∈ int(R(x0, t)) for some t > 0 then x0 ∈ int(R(x0, T ))
for all T > 0.

4.1 Remark: The definition of homogeneity that we employ is equivalent to the notion of
geometric/flow homogeneity as developed in [Hermes 1992, Kawski 1995]. Following Kawski
[1995], let Z be a complete vector field on Rn such that −Z has x0 = 0 as a global attractor.
A vector field X is said to be Z-homogeneous of degree κ ∈ Z if

ΦZ
s ◦ ΦX

t = ΦX
t ΦZ

eκts.

It is straightforward to verify that X is Z-homogeneous if and only if [Z,X] = κX. To
relate the notion of ∆-homogeneity with Z-homogeneity, we say that a control-affine system
Σ = ({X0, X1, . . . , Xm}, U) is Z-homogeneous of degree κ if each Xi, i = 0, 1, . . . ,m, is Z-
homogeneous of degree κ. It is then straightforward to show that our definition for Σ to
be ∆-homogeneous with respect to ∆(s, x) = (sk1x1, . . . , s

knxn) is equivalent to Σ being Z-
homogeneous with Z(x) = (k1x1, . . . , knxn). We remark that, as stated in the Introduction,
our notion of homogeneity does not include magnitude scalings of the control. In terms of
geometric homogeneity as just defined, allowing magnitude scalings of the control translates
to the possibility of having different degrees κ0, κ1, . . . , κm of geometric homogeneity for the
system vector fields X0, X1, . . . , Xm, respectively, with respect to Z. •

Let us now state and prove the main result of this paper.



12 C. O. Aguilar and A. D. Lewis

4.2 Theorem: Let Σ be a control-affine system on Rn that is ∆-homogeneous with respect
to the dilation ∆s(x) = (sk1x1, . . . , s

knxn). Then Σ is STLC from x0 = 0 if and only if

Vk1
x0

+ Vk2
x0

+ · · ·+ Vkn
x0

= Tx0R
n.

Proof: If Vk1
x0

+ Vk2
x0

+ · · ·+ Vkn
x0

= Tx0R
n then by Corollary 3.3 and Theorem 3.5 it follows

that Σ is STLC from x0. Conversely, suppose that Σ is STLC from x0 and let T > 0 be
arbitrary. Let {e1, . . . , en} be the standard basis inRn and let ej ∈ {e1, . . . , en} be arbitrary.
By hypothesis, there is a controlled trajectory (γ, u) on [0, T ] and a constant c > 0 such
that γ(T ) = cej . In other words, there exists a family of vector fields ξ = (ξ1, . . . , ξp) ⊆ FΣ,
times t1, . . . , tp > 0 satisfying t1 + · · ·+ tp = T , such that

γ(T ) = cej = Φ
ξp
tp ◦ · · · ◦ Φξ1

t1
(x0).

Consider the curve ν : [0, 1] → Rn given by

ν(s) = Φ
ξp
tps ◦ · · · ◦ Φ

ξ1
t1s

(x0).

By construction of ν, for s ∈ (0, 1] it holds that ν(s) = γs(sT ), where (γs, us) ∈ TrajΣ(sT )
is induced by (γ, u) ∈ TrajΣ(T ). By ∆-homogeneity and the fact that ν(0) = x0, it follows

that ν(s) = cejs
kj for all s ∈ [0, 1]. By construction of ν and the fact that V

kj
x0 is a cone, it

is clear that ∂
∂xj

∈ V
kj
x0 . An identical procedure shows that also − ∂

∂xj
∈ V

kj
x0 . This proves

that Vk1
x0

+ Vk2
x0

+ · · ·+ Vkn
x0

= Tx0R
n. ■

By Lemma 3.2, the following corollary is immediate.

4.3 Corollary: Let Σ be a control-affine system on Rn that is ∆-homogeneous with respect
to the dilation ∆s(x) = (sk1x1, . . . , s

knxn). Let k = lcm(k1, . . . , kn). Then Σ is STLC from
x0 = 0 if and only if Vk

x0
= Tx0R

n.

4.4 Remark: The if part of Theorem 4.2 still holds in the case of Lebesgue measurable
controls, provided that we assume that the family FΣ satisfies the Lie algebra rank condition
(LARC) at x0. Indeed, if the family FΣ satisfies the LARC at x0 and Σ is STLC using
Lebesgue measurable controls, then by a theorem of Grasse [1992, Corollary 4.15], Σ is
STLC using piecewise constant controls. •

4.1. STLC preserved by high-order perturbations. In [Kawski 2006] (see also [Agrachev
1999]), the following problem was posed: Suppose that the smooth control-affine system
Σ = ({X0, X1, . . . , Xm}, U) is STLC from x0. Does there exist an integer k such that
every smooth control-affine system Σ̃ = ({Y0, Y1, . . . , Ym}, U) is also STLC from x0 if the
Taylor expansions at x0 of the vector fields of the two systems agree up to order k? This
problem remains open in the general case. For the class of homogeneous systems considered,
Theorem 4.2 can be used to give a bound on the order of perturbations that do not destroy
STLC. In the following theorem, we will emphasize the dependence of Vk

x0
on Σ by writing

of Vk
Σ,x0

.
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4.5 Theorem: Suppose that Σ = ({X0, X1, . . . , Xm}, U) is ∆-homogeneous with respect to
the dilation ∆s(x) = (sk1x1, . . . , s

knxn). Let Σ̃ = ({Y0, Y1, . . . , Ym}, U) be a control-affine
system such that the Taylor expansion at x0 of Yi up to order kn − 1 is equal to that of Xi,
for all i = 0, 1, . . . ,m. If Σ is STLC from x0 = 0 then so is Σ̃.

Proof: If Σ is STLC from x0, by Theorem 4.2, Vk1
Σ,x0

+ Vk2
Σ,x0

+ · · · + Vkn
Σ,x0

= Tx0R
n. By

definition, Vℓ
Σ,x0

depends only on at most the (ℓ − 1) derivatives of X0, X1, . . . , Xm at x0.

Hence, if Σ̃ = ({Y0, Y1, . . . , Ym}, U) is a control-affine system whose Taylor expansion up to

order kn − 1 at x0 agrees with that of Σ then V
kj
Σ,x0

= V
kj

Σ̃,x0
for all j ∈ {1, . . . , n}. Hence,

Vk1
Σ̃,x0

+ Vk2
Σ̃,x0

+ · · ·+ Vkn
Σ̃,x0

= Tx0R
n, and thus by Theorem 3.5, Σ̃ is also STLC from x0.■

5. Examples

Let us illustrate the procedure in the proof of Theorem 4.2 with two known examples.

5.1 Example: The following single-input control-affine system Σ was considered by Stefani
[1985]. The state space is M = R3, x0 = 0 ∈ R3, and the system vector fields are

X0 = x1
∂

∂x2
+ x31x2

∂

∂x3
, X1 =

∂

∂x1
.

Applying the definition, it is straightforward to show that Σ is ∆-homogeneous with respect
to the dilation ∆s(x) = (sx1, s

2x2, s
6x3). Hence, by Theorem 4.2, Σ is STLC from x0 if

and only if V1
x0

+ V2
x0

+ V6
x0

= Tx0R
3. For u ∈ U let ξu = X0 + uX1. One computes, using

Theorem 3.7, that V2
x0

= span{ ∂
∂x1

, ∂
∂x2

}. According to Theorem 4.2, to produce variations

in the ± ∂
∂x3

directions, we need to look at variations of order six. Following the proof of
Theorem 4.2, let τ (s) = (a1s, a2s, a3s) and let ξ = (ξu1 , ξu2 , ξu3), with a1u1+a2u2+a3u3 =
0. Then ordx0(ξ, τ ) ≥ 2 and one computes that

d2

ds2

∣∣∣
s=0

Φξ
x0
(τ (s)) = (u1a1(a1 + 2a2 + a3) + u2a2(a2 + a3))

∂

∂x2

and so we set u2 = −a1(a1+2a2+a3)u1

a2(a2+a3)
, so that ord(ξ, τ ) ≥ 3. Then one computes that the

derivatives of Φξ
x0(τ (s)) of orders 3, 4, and 5 vanish at s = 0, and that the 6th derivative

of Φξ
x0(τ (s)) at s = 0 equals

−30a41(a1 + a2)(a1 − a3)(a1 + a2 + a3)(a1a2 + 2a1a3 + a2a3)u
4
1

(a2 + a3)3
∂

∂x3
.

By inspection, the above expression can be made negative and positive for all choices of
u1 ̸= 0 for appropriate values of a1, a2, a3 > 0. Hence, span{ ∂

∂x3
} ⊆ V6

x0
. Moreover, because

u2 and u3 are proportional to u1, we can make u1 sufficiently small to force u1, u2, u3 to lie
in the interior of U . Hence, the system is STLC from x0 by Theorem 4.2. •
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5.2 Example: The following single-input control-affine system Σ was considered in [Kawski
1990]. The state space is M = R4, x0 = 0 ∈ R4, and the system vector fields are

X0 = x1
∂

∂x2
+

1

6
x31

∂

∂x3
+ x2x3

∂

∂x4
, X1 =

∂

∂x1
.

Applying the definition, it is straightforward to verify that Σ is ∆-homogeneous with respect
to the dilation ∆s(x) = (sx1, s

2x2, s
4x3, s

7x4). Hence, by Theorem 4.2, Σ is STLC from x0
if and only if V1

x0
+ V2

x0
+ V4

x0
+ V7

x0
= Tx0R

4. For u ∈ U let ξu = X0 + uX1. We proceed
in steps:

(i) Using Theorem 3.7, one computes that V2
x0

= span{ ∂
∂x1

, ∂
∂x2

}.

(ii) According to Theorem 4.2, to produce± ∂
∂x3

as variations, we must look at variations of
order 4. Let τ (s) = (a1s, a2s, a3s) and ξ = (ξu1 , ξu2 , ξu3), where a1u1+a2u2+a3u3 = 0.
Then ordx0(ξ, τ ) ≥ 2 and

d2

ds2

∣∣∣
s=0

Φξ
x0
(τ (s)) = (a21u1 + a1(2a2 + a3)u1 + a2(a2 + a3)u2)

∂

∂x2
. (5.1)

Setting u2 = − 1
a2(a2+a3)

(a21u1 + a1(2a2 + a3)u1) results in ordx0(ξ, τ ) ≥ 4 and

d4

ds4

∣∣∣
s=0

Φξ
x0
(τ (s)) = −a31(a1 + a2)(a1 − a3)(a1 + a2 + a3)u

3
1

(a2 + a3)2
∂

∂x3
.

We can then vary the parameters a1, a2, a3 > 0 to produce the variations ± ∂
∂x3

for

any u1 ̸= 0. Therefore span{ ∂
∂x3

} ⊆ V4
x0
.

(iii) Now we investigate whether we can produce variations in the directions ± ∂
∂x4

. Let
τ (s) = (a1s, a2s, a3s), let ξ = (ξu1 , ξu2 , ξu3), where a1u1 + a2u2 + a3u3 = 0. If we set
ξ̃ = (ξ−u1 , ξ−u2 , ξ−u3), then ordx0(ξ ∗ ξ̃, τ ∗τ ) ≥ 3 because the controls u1, u2, u3 enter
linearly in (5.1). In fact, one can compute that ordx0(ξ ∗ ξ̃, τ ∗ τ ) ≥ 7, and if we set
u2 = λu1 then

d7

ds7

∣∣∣
s=0

(Φξ∗ξ̃
x0

◦ (τ ∗ τ ))(s) = fa(λ)u
4
1

∂

∂x4

where fa(λ) is a polynomial in λ of degree four with coefficients depending polynomi-
ally on a = (a1, a2, a3). Choosing a∗ = (1, 1/4, 10), we obtain that

fa∗(λ) =
2007761

16
+

7105411

64
λ+

9990047

256
λ2 +

6410283

1024
λ3 +

6186859

16384
λ4.

One can verify that fa∗(−5) < 0 and that fa∗(−4) > 0. Hence, for any value of
u1 ̸= 0, we can produce ± ∂

∂x4
as a variation of order 7. Therefore span{ ∂

∂x4
} ⊆ V7

x0
.

From the relationships a1u1 + a2u2 + a3u3 = 0 and u2 = λu1, and the chosen a∗, we
obtain that u3 = − 1

40(4+λ)u1. Hence, by choosing u1 sufficiently small, we can force
u1, u2, u3 ∈ U since U contains the origin in its interior. Therefore, by Theorem 4.2,
Σ is STLC from x0. •

In the following example we consider a family of control-affine systems.
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5.3 Example: Consider the control-affine system Σ on M = Rm ×Rr of the form

ẋ = u

ẏ = F (x)
(5.2)

where z = (x, y) ∈ Rm × Rr, u ∈ U ⊆ Rm, and F : Rm → Rr is a homogeneous
map of integer degree k ≥ 2, that is, F (λx) = λkF (x) for all x ∈ Rm and λ ∈ R. Let
X0(x, y) = Σr

j=1Fj(x)
∂

∂yj
denote the associated drift vector field, where we denote F (x) =

(F1(x), . . . , Fr(x)), and X1 = ∂
∂x1

, . . . , Xm = ∂
∂xm

the associated control vector fields of
(5.2). For u = (u1, . . . , um) ∈ U let ξu = X0+u1X1+· · ·+umXm. Let z0 = (0, 0) ∈ Rm×Rr.

Applying the definition, it is straightforward to verifty that (5.2) is ∆-homogeneous
with respect to the dilation ∆s(x, y) = (sx, sk+1y). For this system, it is clear that V1

z0 =

span{ ∂
∂x1

, . . . , ∂
∂xm

}, provided U contains the origin in its interior (in fact all we need is
that co(U) contains the origin in its interior). Hence, according to Theorem 4.2, (5.2) is
STLC from the origin if and only if span{ ∂

∂y1
, . . . , ∂

∂yr
} ⊆ Vk+1

z0 . A sufficient condition for

span{ ∂
∂y1

, . . . , ∂
∂yr

} ⊆ Vk+1
z0 is that co(img(F )) = Rr. To prove this, a straightforward but

tedious calculation shows that that if ±u ∈ U then

dk+1

dsk+1

∣∣∣
s=0

Φξ−u
s ◦ Φξu

s (z0) = 2(k − 1)!
r∑

j=1

Fj(u)
∂

∂yj

Since we assume that U contains a neigbourhood of the origin and Vk+1
z0 is a convex cone,

it follows that the convex hull of the set
r∑

j=1

Fj(x)
∂

∂yj
: x ∈ Rm


is contained in Vk+1

z0 . Therefore, co(img(F )) = Rr implies that span{ ∂
∂y1

, . . . , ∂
∂yr

} ⊆ Vk+1
z0 .

•
In the proof of Theorem 4.2, linear end-times were used. As we show in the next

example, this can result in an over estimate for an integer k for which Vk
x0

= Tx0R
n, i.e.,

the bound lcm(k1, . . . , kn) in Corollary 4.3 is not sharp. This apparent inefficiency is an
immaterial artifact of our decision to use smooth end-times and does not, for example, have
any impact on our main theorems Theorem 4.2 and 4.5. The following example will make
this point clear.

5.4 Example: We again consider the homogeneous system in Example 5.2, in which the
integers associated with the dilation are k1 = 1, k2 = 2, k3 = 4, k4 = 7. In that example,
we showed that span{ ∂

∂x1
, ∂
∂x2

, ∂
∂x3

} ⊆ V4
x0
. We now show, by using higher-order end-times,

that span{ ∂
∂x4

} ⊆ V8
x0
, and thus by Lemma 3.2, V8

x0
= Tx0R

n, while from Corollary 4.3

we can only conclude that V28
x0

= Tx0R
n. This apparent weakness has no impact on the

efficiency of our approach to determine STLC from the derivatives of the system since from
Theorem 4.5 any perturbation of order greater than 6 will not destroy STLC for this system,
whereas the fact that V8

x0
= Tx0R

n allows one to conclude the weaker statement that any
perturbation of order greater than 7 will not destroy STLC for this system.
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For u ∈ U let ξu = X0 + uX1. Producing a variation in the direction ∂
∂x4

is

straightforward but we will treat both cases ± ∂
∂x4

simultaneously. To this end, let

τi(s) = ais + bi
s2

2 , for i = 1, 2, 3, let τ (s) = (τ1(s), τ2(s), τ3(s)), let ξ = (ξu1 , ξu2 , ξu3),

let τ̃ (s) = (τ3(s), τ2(s), τ1(s)), and let ξ̃ = (ξu3 , ξu2 , ξu1). If a1u1 + a2u2 + a3u3 = 0 then
ordx0(ξ, τ ) ≥ 2 and

d2

ds2

∣∣∣
s=0

Φξ
x0
(τ (s)) =

(
b1u1 + b2u2 −

b3(a1u1 + a2u2)

a3

)
∂

∂x2

+
(
a21u1 + a1(2a2 + a3)u1 + a2(a2 + a3)u2

) ∂

∂x3
.

If we set b3 =
a3

a1u1+a2u2
(b1u1 + b2u2), then we obtain that

d2

ds2

∣∣∣
s=0

Φξ
x0
(τ (s)) =

[
(a21u1 + a1(2a2 + a3)u1 + a2(a2 + a3)u2

] ∂

∂x3
. (5.3)

It is not hard to choose u1, u2, a1, a2 to make the tangent vector in (5.3) equal to zero, so
that we can continue to produce a higher-order variation. Instead, we augment to (ξ, τ ) the
reverse pair (ξ̃, τ̃ ) so that we can keep the variables u1, u2, a1, a2 free and simultaneously
cancel the tangent vector in (5.3). In fact, one computes that if we continue to use

a1u1 + a2u2 + a3u3 = 0 and b3 =
a3

a1u1 + a2u2
(b1u1 + b2u2),

then ordx0(ξ ∗ ξ̃, τ ∗ τ̃ ) ≥ 7 and

d7

ds7

∣∣∣
s=0

Φξ∗ξ̃
x0

((τ ∗ τ̃ )(s)) = fa(u1, u2)
∂

∂x4
,

where fa(u1, u2) is a homogeneous polynomial of degree 4 in the variables (u1, u2) whose
coefficients are homogeneous polynomials in a = (a1, a2, a3) of degree 7. Setting a∗ =
(1, 1/10, 5), and u2 = λu1, where λ ∈ R is to be determined, one computes that

fa∗(u1, λu1) =
[
c0 + c1λ+ c2λ

2 + c3λ
3 + c4λ

4
]
u41,

where c0, . . . , c4 are positive rational numbers. Using a computer algebra system, one can
verify that the polynomial c(λ) = c0 + c1λ+ c2λ

2 + c3λ
3 + c4λ

4 has two real roots and they
can be computed explicitly. Up to four digits they are given as λ1 = −15.7499 . . . and λ2 =
−13.4544 . . .. Hence, choosing a∗ = (1, 1/10, 5) and λ = λ1 yields that ordx0(ξ∗ξ̃, τ ∗τ̃ ) ≥ 8
and one computes that

d8

ds8

∣∣∣
s=0

Φξ∗ξ̃
x0

((τ ∗ τ̃ )(s)) = (−r1b1 + r2b2)u
4
1

∂

∂x4
,

where r1, r2 > 0 are constants. By inspection, one can vary the parameters b1 and b2 to
produce variations in the ± ∂

∂x4
directions for any choice of u1 ̸= 0. Moreover, since u2 and

u3 are proportional to u1, by choosing u1 sufficient small we can force u1, u2, u3 ∈ U . •
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6. Conclusion

In this paper we considered the small-time local controllability problem for control-affine
systems that are homogeneous with respect to a one-parameter family of dilations corre-
sponding to time-scalings of the control. The main contribution was the identification of
a relatively simple variational cone to characterize STLC for this important class of non-
linear control-affine systems. Although our main results do not give explicit computational
conditions for STLC, they can potentially be used as a guide to develop sharp Lie bracket
conditions for STLC for the systems in consideration.
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