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Abstract

The topic of Markov Random Fields (MRFs) has been well studied in the past, and has

found practical use in various image processing, and machine learning applications.

Where coding is concerned, MRF specific schemes have been largely unexplored. In

this thesis, an overview is given of recent developments and challenges in the lossless

coding of MRFs. Specifically, we concentrate on difficulties caused by computational

intractability due to the partition function of the MRF. One proposed solution to this

problem is to segment the MRF with a cutset, and encode the components separately.

Using this method, arithmetic coding is possible via the Belief Propagation (BP)

algorithm. We consider two cases of the BP algorithm: MRFs with only simple

cliques, and MRFs with complex cliques. In the latter case, we study a minimum

radius condition requirement for ensuring that all cliques are accounted for during

coding. This condition also simplifies the process of conditioning on observed sites.

Finally, using these results, we develop a systematic procedure of clustering and

choosing cutsets.
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Chapter 1

Introduction

1.1 Motivation

The topic of data compression has been a well studied topic in mathematics, com-

puter science, and engineering. Information Theory, fathered by Claude Shannon

in 1948 [25], concerns itself with the quantification, storage, and communication of

information. In particular, the study of source and channel coding provides inter-

esting results regarding lossless and lossy compression. Though instructions on how

to construct the codes themselves are not always explicit, the study of this topic is

fruitful in finding bounds on compression rates (usually for a given source distribution

or stochastic process). Given that stochastic processes are widely used in modelling

various real world phenomena (images and audio to name a few), such bounds play a

key role in understanding the limitations to compression and coding rates. Naturally,

the study of coding methods capable of approaching these bounds for a given class

of distributions has also become an important topic of interest. One mathematical

structure from the exponential family, often used for image modelling, is the Markov

1
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Random Field (MRF).

The study of MRFs was first inspired largely by statistical physics - more specif-

ically, a motivating example called the Ising model. Physicist Ernest Ising, in 1925,

used his model to describe the ferromagnetic interactions between iron atoms [15].

Under this model, individual iron atoms could be seen as nodes, and the effect of

spin phases on neighbouring atoms could be seen as edges. Thus, many of the tools

of graph theory have been applied to the study of MRFs as well. Bearing semblance

to other probabilistic graphical structures such as belief and Bayesian networks, the

MRF has found application in machine learning as well. This means tools and tech-

niques such as Belief Propagation can be extended to the study of MRFs. However,

it should be noted that the formal definition of MRFs allows for more complex struc-

tures beyond nodes and edges. These complex structures have great potential in

image modelling, where they can be used to capture larger, more complex patterns.

In more recent years, MRFs have gained popularity in image processing. Stuart and

Donald Geman demonstrated, in 1984, the usefulness of MRFs in capturing textural

patterns and features within images [12] by restoring noisy images using a MRF.

The usefulness of MRFs prompts the question of how one might encode such a

structure optimally. While there are universal coding methods that function well for

various sources, the MRF’s unique structure makes it computationally difficult if not

intractable. Nonetheless, the graphical nature of MRFs make them ideal candidates

for application in distributed computing settings.
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1.2 Problem and Contributions

In 2010, Reyes proposed both a lossy and a lossless method that sought to bridge

the gap between MRF structures and conventional techniques [23]. Both techniques

sought to break down the MRF structure into smaller, simpler structures, on which

conventional techniques could be used. In the former, he proposed encoding part

of the MRF using standard tools, and recovering the rest using MAP estimation.

In the latter, he proposed using using either clustering or local conditioning to at-

tain an acyclic graph on which Belief Propagation could be used to compute coding

distributions. He then suggested using arithmetic coding to encode the MRF.

In this thesis, we study a MRF encoding technique based on Reyes 2010. We

improve the technique by introducing a learning phase to try and optimally match

a MRF with a given image. Also, we choose not to adopt the local conditioning

technique, as the method relies on intricately trimming edges and creating conditioned

nodes to attain an acyclic graph. This is somewhat limiting as it relies heavily on node

and edge structures and fails to function under MRFs where higher order structures

are involved. We instead opt for the clustering technique, but generalize this technique

to MRFs with larger neighbourhoods and clique structures.

We establish a framework for clustering on MRFs with complex clique structures,

under which the traditional belief propagation technique (from a graphical approach)

can function with minimal modifications. We also go on to show these necessary

modifications and prove their functionality. The problem here is twofold. First, in

establishing clusters that bear semblance to the usual nodes and edges, and second,

ensuring that these clusters do not exhibit pathological behaviour. One should note

that, under our framework, the clustering technique proposed by Reyes is a special
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case where certain limitations are put upon the clique structures. For this reason, the

generalized technique proposed in this thesis can be more advantageous and versatile

in situations where a diverse set of clique structures are needed to capture desired

features.

1.3 Overview of Thesis

In Chapter 2, we introduce basic notions of graph theory and Markov Random Fields.

We also give short overviews of relevant results regarding Markov chains, information

theory, and inference and estimation techniques including Belief Propagation. We

end off the chapter with an overview of Reyes’ lossless coding method known as Re-

duced Cutset Coding (RCC). Chapter 3 considers the problem adding the additional

learning phase to the encoding process. In Chapter 4, we prove in detail the results

that make the inference and estimation machinery function properly over MRFs with

complex cliques. This is done in three steps. First, we go over some notions regarding

cluster graphs and cluster edges. We then examine examples that exhibit pathological

behaviour and prove the necessary results for avoiding such cases. Finally, we use

these results to demonstrate the robustness of our inference and estimation tools. At

last, Chapter 5 presents results using the techniques proposed in Chapter 4, conclud-

ing remarks, and suggestions for future work.



Chapter 2

Background

In this chapter, we present some background material on graphs, Markov Random

Fields (MRF), information theory, and related literature. We start with some basic

definitions and properties of graphs and MRFs. We then state important results

regarding homogenous and inhomogenous Markov chains, Gibbs sampling, and the

role these play in sampling MRFs. From here, we proceed by giving a quick overview

of information theoretic results regarding source coding and arithmetic coding. This

is then followed by a brief discussion on methods of inference on MRFs. We finish

the chapter by reviewing related literature on lossless coding of MRFs.

2.1 Graphs

A graph G is a pair (V,E), where V is a finite set of nodes, and E ⊂ V × V is

a set of pairs of nodes representing edges or connections between two nodes. The

following are some additional definitions and terminology regarding graphs that are

useful. We deal only with undirected graphs in this thesis.

5
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• Two nodes i, j ∈ V are adjacent if (i, j) ∈ E.

• A path is a sequence of nodes (ni)
N
i=1 where successive pairs (nm, nm+1) are

adjacent, i.e. (nm, nm+1) ∈ E, m = 1, . . . , N − 1.

• A connected graph is one where any two nodes i, j ∈ V can be joined by some

path; the graph is disconnected otherwise.

• A component, denoted C , of graph G is a maximal connected subset of V .

• A path where the first and last nodes coincide, and for which no other node

repeats itself (no backtracking) is called a cycle .

• A graph with no cycles is acyclic. Connected acyclic graphs are often referred

to as trees.

• For any set A ⊂ V , the boundary, denoted ∂A, of A is the set of nodes that

are not in A but adjacent to at least one node in A. Similarly, the surface of

A, denoted γA, consist of nodes in A which are adjacent to at least 1 node in

∂A.

• For some subset A ⊂ V , let EA ⊂ E be the set of edges where both ends of

the edge reside in A, i.e. {(i, j) ∈ E : i, j ∈ A}. We call GA = (A,EA) the

subgraph induced by A.

• For a connected graph G and some set L ⊂ V , if GLC is disconnected, then L

is called a cutset. Let {Cn} be the components of GLC and let A ⊂ Ck for

some k. For convenience, we introduce the notation GA\L to refer to Ck (the

component of GLC containing set A).
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• For a connected graph G and some edge e = (i, j) ∈ E, if removing e from

E produces a disconnected graph, then e is called a cut-edge. By slightly

adjusting the notation above, we identify components that result from removing

cut-edge e from graph G by Gi\j and Gj\i. If this causes confusion, the reader

can choose to use Gi\e or Gj\(i,j) instead. 1

2.2 Markov Random Fields (MRF)

To start, we first provide the basic definition of a random field.

Definition 2.2.1. Random Field

Let S be a finite set of elements where individual elements, called sites, are denoted

s. Let Λ be a finite set called the phase space. A random field is a collection X

of random variables X(s) on sites s in S and taking values in Λ.

X = {X(s)}s∈S.

The phase space Λ can also be called the alphabet on which the random variables

X(s) assume values; this is familiar terminology from information theory. Note that

the finiteness of Λ is not necessarily required, but in this thesis we will only consider

ones which are finite in size. A good way of looking at a random field is to treat it as

a random variable which takes values in the configuration space ΛS.

1Note that cutsets and cut-edges are different. Both generate a disconnected graph when removed,
but the former is a set of nodes, whereas the latter is an edge.



CHAPTER 2. BACKGROUND 8

2.2.1 Some Notational Conventions

Individual configurations x ∈ ΛS can be denoted x = {x(s) : s ∈ S}, where x(s) ∈ Λ

for every s ∈ S. Also, we will use xA to denote the configuration on a given subset

A ⊂ S; that is, for A ⊂ S,

xA = {x(s) : s ∈ A}

We will also use this notation in a consecutive manner to denote the configuration

on a larger set composed of disjoint subsets. For instance, if we have,

A,B,C ⊂ S

A ∪B = C

A ∩B = ∅

then,

xC = xAxB.

In cases where we have already defined some disjoint subsets of S, we will often

adopt the right hand side to avoid having to explicitly define a new set. In general

this notation will also be exercised when identifying a collection of random variables

on a subset of sites, i.e. XA refers to the random variables associated with the sites

in A ⊂ S, and P (XA = xA) refers to the probability of some configuration on A with

respect to the joint distribution of random variables XA.

Finally, to explicitly specify a phase λ ∈ Λ on some site s, we will often use the

notation λs as opposed to stating xs = λ. For example, we can write x∗ = λsxS\s to

mean some configuration x∗ that shares phase values with configuration x = xsxS\s
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on the set S\{s}, but holds the phase λ on site s.

2.2.2 Neighbourhoods, Cliques, and Potentials

The aforementioned definition of a random field is too general on its own; more

structure is needed. Where coding is concerned, one will often ask if a source possesses

some form of “Markov property”. This, along with some other characteristics, make

finding a coding scheme tractable and/or easier. As we shall see soon, a Markov

Random Field (MRF) possesses many of these useful properties we are looking for.

But before we begin, first we must introduce some basic building blocks that help us

define a MRF.

Definition 2.2.2. Neighbourhoods

A neighbourhood system is the set N = {Ns : s ∈ S} of neighbourhoods Ns ⊂ S

that satisfy the following,

(i) s /∈ Ns

(ii) t ∈ Ns ⇐⇒ s ∈ Nt.

The sites in Ns are referred to as the neighbours of s.

Definition 2.2.3. Cliques

A clique is a subset C ⊂ S where any two distinct sites of C are mutual neighbours.

Also, define any singleton {s} to be a clique. |C| is referred to as the order of the

clique.

In this thesis, we will refer to cliques with order n ≤ 2 to be simple cliques, and

those with order n > 2 to be complex cliques.



CHAPTER 2. BACKGROUND 10

Definition 2.2.4. Potentials

A potential relative to some neighbourhood system N is a function VC : ΛS 7→ R ∪

{+∞}, C ⊂ S, where,

(i) VC(x) ≡ 0 if C is not a clique

(ii) ∀x, x∗ ∈ ΛS and ∀C ⊂ S, we have that,

(
xC = x∗C

)
=⇒

(
VC(x) = VC(x∗)

)
.

For reasons which will be soon apparent, the collection of potential functions on all

possible cliques is often referred to as the Gibbs potential relative to neighbourhood

system N . Also, generally, the function VC(x) will depend only on the configuration

xC of the sites within C. For the remainder of this thesis, we will be using the

following notation interchangeably when appropriate,

VC(x) = VC(xC).

In the case where say C = A ∪B, we may use VC(x) = VC(xC) = VC(xAxB)

Definition 2.2.5. Energy

The energy is a function ε : ΛS 7→ R ∪ {+∞}.

In particular, the energy function is said to be derived from the Gibbs potential

{VC}C⊂S if,

ε(x) =
∑
C⊂S

VC(x).
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2.2.3 MRF’s and Gibbs Distributions

We now use the building blocks mentioned above to define the Gibbs distribution.

Definition 2.2.6. Gibbs Distribution

The probability distribution,

πT (x) =
1

Q(T )
e−

1
T
ε(x),

where the energy function ε(x) is derived from a Gibbs potential, T > 0, is called a

Gibbs distribution.

Here, T denotes temperature and is useful in annealing; we will not deal with

annealing in this thesis. Q(T ) is the normalizing constant that takes into account the

energy of all possible configurations on ΛS and is often referred to as the partition

function. It is given by,

Q(T ) =
∑
x∈ΛS

exp

(
− 1

T
ε(x)

)
.

Later on, we will also denote the partition function by Q(θ) to signify dependency

on the parameter θ that govern relevant potentials.

As evident from the expression for the Gibbs distribution, the probability of any

given configuration is dictated by its energy, which in turn is a function of the cliques

and potentials on the configuration. A random field whose distribution is a Gibbs

Distribution is called a Gibbs Field.

In this thesis, we will not be conducting any temperature annealing and will

usually just drop the T from the expression. This has the effect of assuming some
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constant temperature; i.e., the term simply acts as a constant scaling to the energy

of all configurations and we need not worry about its impact on the distribution.

Next, we formally define a MRF.

Definition 2.2.7. Markov Random Field (MRF)

A random field X is called a Markov Random Field with respect to a neighbourhood

system N if ∀s ∈ S and x ∈ ΛS, we have,

P (Xs = xs|XS\s = xS\s) = P (Xs = xs|XNs = xNs).

That is, the random variables Xs and XS\(s∪Ns) are conditionally independent

given XNs ; the distribution on site s is only directly influenced by the values of its

neighbours. 2

2.2.4 Useful Properties and Theorems

The following are some useful results about Gibbs distributions and MRFs. We refer

to Brémaud 1999 [3] and Winkler 2003 [26] for proofs and in-depth treatment.

Definition 2.2.8. Local Specification

The local characteristic of a MRF at site s is given by,

πs(x) = P (Xs = xs|XNs = xNs),

where πs : ΛS 7→ [0, 1]. The collection {πs}s∈S is referred to as the local specifica-

tion of the MRF.

2We abuse notation a little bit and use s interchangeably with {s} to avoid clutter.
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Note that πs should not be confused with the marginal distribution on site s since

it simply denotes the probability of a particular phase xs at that site given specific

neighbourhood configuration xNs (as specified by πs(x) where x = xsxNsxS\(s∪Ns)).

Definition 2.2.9. Positivity Condition

A probability distribution P satisfies the positivity condition if, ∀x ∈ ΛS we have,

P (x) > 0

Theorem 2.2.1. Uniqueness of Distribution for a Local Specification

If two MRF’s on a finite configuration space ΛS have distributions that satisfy the

positivity condition and have the same local specifications, then they are identical.

Theorem 2.2.2. Hammersley-Clifford (Gibbs-Markov Equivalence)

The distribution of a MRF satisfying the positivity condition is a Gibbs distribution

(it can be specified by an energy derived from a Gibbs potential). Additionally, the

local characteristics are given by,

πs(x) =

exp

(
−
∑
C⊂Ns

VC(x)

)
∑
λ∈Λ

exp

(
−
∑
C⊂Ns

VC(λsxS\s)

) .

Note that s ∈ C is not necessarily true for all C ⊂ Ns. Since xNs is given, the

potentials on cliques which do not contain s can be “factored” out of the top and

bottom. Thus, alternatively, the sum
∑

C3s can be used in place of
∑

C⊂NS
to denote

the sum over all C that contain s.

This is an important result since it gives an explicit form for the MRF. The proof
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in the forward direction simply involves rearranging the potentials in the energy

function in such a way that demonstrates the Markov property by cancellation of

potentials outside some relevant neighbourhood. The converse part of the proof, due

to Hammersley and Clifford 1971 [14], is based on the Möbius formula [13].

Thus far, we know that MRF’s are Gibbs fields and that their distributions can

be specified by Gibbs potentials. However, we have not addressed whether or not

these Gibbs potentials are unique. As it turns out, they are not unique. In fact,

this can be easily shown by adding some constant to every potential. The result

is a new Gibbs potential with higher/lower overall energy, but the same associated

Gibbs distribution. Fortunately, some uniqueness can be found with a special type of

potentials called normalized potentials. The existence and uniqueness of Gibbs fields

have been studied in [9, 10, 11].

Definition 2.2.10. Normalized Potentials

Let λ ∈ Λ be some phase and {VC}C⊂S be some Gibbs potential. If,

(
xt = λ, t ∈ C

)
=⇒

(
VC(x) = 0

)
,

then we say that the Gibbs potential is normalized with respect to λ.

Theorem 2.2.3. Uniqueness of Normalized Potential

If a Gibbs distribution is specified by an energy derived from a Gibbs potential nor-

malized with respect to some λ ∈ Λ, then there exists no other λ-normalized potential

which specifies the same Gibbs distribution.
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2.2.5 Ising Model

When modelling a class of images, we can use a random field where the nodes of the

graph (or sites) represent the individual pixels of an image (or configuration). In this

context, Gibbs fields can be especially useful when attempting to specify a model for

images with particular local interactions. This is done by selecting the appropriate

neighbourhood, cliques, and potential functions. An example can be found in [12]

where MRFs were used in texture modelling.

A well known example of a MRF is the “Ising model” [15, 22]. This model

was studied primarily for its usefulness in modelling the ferromagnetic interactions

between iron atoms. Here, the phase space, Λ, is {1,−1}, where the two values

account for the magnetic “spin” of the atom at some site. The set of sites is simply

S = Z2
m (where Zm = {0, 1, . . . ,m−1}), that is some finite “surface” of sites arranged

on a square integer enumerated grid. A commonly used neighbourhood is the 4-point

neighbourhood composed of sites immediately above, below, left, and right of some

site s. The cliques for this model are limited to just individual nodes, and sets of two

neighbouring nodes. The potential functions on these cliques are defined to be,

V{s}(x) = −H̄
k
xs,

V{s,t}(x) = −J
k
xsxt.

Here, k is the Boltzmann constant, H is a value representing the biasing effect of
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external magnetic fields, and J is a value representing the coupling effects of elemen-

tary magnetic dipoles. We make the following adjustments,

θ1 = −H̄
k

,

θ2 = −J
k

,

where in this context, θ1 and θ2 can simply be viewed as governing parameters for site

interactions; the former being restricted to a single node (the tendency for individual

sites towards a given phase), and the latter for pairs of nodes (phase coupling effect

for neighbouring sites). From this, the following energy, Gibbs distribution, and local

specification can be found, 3

ε(x) =
∑
{s}⊂S

θ1xs +
∑
{s,t}⊂S

θ2xsxt,

π(x) =
1

Q(θ)
exp

− ∑
{s}⊂S

θ1xs −
∑
{s,t}⊂S

θ2xsxt

 ,

πs(x) =

exp

−θ1xs −
∑

{s,t}⊂Ns

θ2xsxt


∑
λ∈Λ

exp

−θ1λs −
∑

{s,t}⊂Ns

θ2λsxt

 .

Q(θ) shows that the partition function depends on the values of θ1 and θ2. His-

torically, the Ising model typically used a 4-point neighbourhood where Ns includes

the nodes just east, south, west, and north of site s. Figure 2.1 shows examples of

3Where potential functions are concerned, xsxt will usually refer to a mathematical operation
between the phases of sites as opposed to denoting some given configuration on s and t.
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(a) θ1 = 0, θ2 = 0.487 (b) θ1 = 0, θ2 = 0.600 (c) θ1 = 0, θ2 = 1.227

Figure 2.1: Sample Ising configurations with varying parameters

the Ising model with various parameters.

2.3 Homogenous and Nonhomogenous Markov Chains

The results discussed here will pertain specifically to Markov chains in discrete time

with finite state space - this is all we need to proceed. We include short proofs, and

omit others.

2.3.1 Overview of Basic Notions

• A discrete-time stochastic process is a sequence {Xn}n≥0 of random vari-

ables taking values on some state space X.

• The stochastic process {Xn}N≥0 is called a Markov chain if ∀n ≥ 0, and states

i0, . . . , in−1, i, j ∈ X, we have that,

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j|Xn = i).
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• The transition matrix of a Markov chain at time n is the matrix Pn =

{pnij
}i,j∈X, where pnij

= P (Xn+1 = j|Xn = i) is the one step probability of

going from state i to state j. Note that
∑

k∈X pnik
= 1.

• If Pn is independent of n, then the Markov chain is called a homogeneous

Markov chain.

• For homogeneous Markov chains, the n step transition matrix is given by,

P1 · · ·Pn = Pn.

• A distribution µ on X is called an invariant distribution for some homoge-

neous Markov process with transition matrix P if it satisfies µP = µ. It is also

often referred to as the stationary distribution.

• The total variation distance between two distributions µ and ν on X is the

L1-norm, 4

‖µ− ν‖ =
∑
k∈X

|µk − νk|.

Definition 2.3.1. A Markov chain is irreducible if ∀i, j ∈ X, ∃n such that Pn
i,j > 0.

Definition 2.3.2. The period k of some state i is defined as,

k = gcd{n : Pn
i,i > 0}

A Markov chain is aperiodic if k = 1 ∀ i ∈ X.

4In general, when we refer to a distribution µ on the finite state space X, we think of it in terms
of a vector where µi represents the ith entry, i.e., the probability of the ith state.
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Definition 2.3.3. The support of a distribution refers to the set of states on which

it is strictly positive. Distributions with disjoint support are said to be orthogonal.

The following are some important results by Dobrushin [8].

Definition 2.3.4. Dobrushin’s Coefficient

Let P be the transition matrix for some Markov chain on a finite state space, then

Dobrushin’s coefficient is defined,

δ(P) =
1

2
max
i,j∈X

∑
k∈X

|pik − pjk| =
1

2
max
i,j∈X
‖pi· − pj·‖.

Note that 0 ≤ δ(P) ≤ 1 with it being equal to 1 if and only if the two distributions

(rows of P) pi· and pj· have disjoint supports and 0 if the rows of P are identical.

Thus, the coefficient can be thought of as a measure of orthogonality.

Lemma 2.3.1. Let µ and ν, and P be probability distributions and transition matrix

on X respectively, then,

‖µP− νP‖ ≤ δ(P)‖µ− ν‖.

Theorem 2.3.1. Dobrushin’s Inequality

δ(PQ) ≤ δ(P)δ(Q).

2.3.2 Convergence of Homogeneous Markov Chains

We are now ready to present some important results regarding the convergence of

homogeneous and inhomogenous Markov chains. Again, see [3, 26] for more in-depth
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treatment.

Definition 2.3.5. Primitive Homogenous Markov Chain

Let P be the transition matrix of a Markov chain. If ∃τ ∈ Z+ such that ∀i, j ∈ X we

have,

Pτ
i,j > 0,

then the homogeneous Markov chain is said to be primitive.

Theorem 2.3.2. A Markov chain is primitive if and only if it is irreducible and

aperiodic.

Lemma 2.3.2. If P is the transition matrix for a homogeneous Markov chain, then

{δ(Pn)}n≥0 is a decreasing sequence. Specifically, if P is primitive, then the sequence

decreases to 0.

Theorem 2.3.3. Convergence of Homogeneous Markov Chains

Let P be the transition matrix for a primitive homogeneous Markov chain on a finite

state space X with invariant distribution µ, then for all distributions ν, uniformly we

have,

lim
n→∞

νPn = µ.

Lemma 2.3.3. Reversible Markov Chain

If for some distribution µ, the transition matrix P for a Markov chain satisfies,

µipij = µjpji

∀i, j ∈ X, called the detailed balance equations, then the chain is said to be

reversible and µ is an invariant distribution for P.
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Proof.

µp·j =
∑
i∈X

µipij =
∑
i∈X

µjpji = µj.

This result is often known as Dobrushin’s Theorem [8]. The proof for this theorem

will not be shown, but it is useful to note for some sequence of Markov transition

matrices {Pn}n≥0 and distributions µ and ν, δ(P0 · · ·Pn)→ 0 implies,

‖µP0 · · ·Pn − νP0 · · ·Pn‖ ≤ 2δ(P0 · · ·Pn)→ 0.

That is, some convergence or “loss of memory over time” takes place in an asymptotic

manner.

2.3.3 Gibbs Sampler

Sampling from a MRF is problematic because the configuration space ΛS is too large

for direct sampling methods. In particularly, as S increases in size, the partition

function becomes computationally intractable. The Gibbs Sampler, coined by D. and

S. Geman [12], avoids this problem by setting up a Markov chain {Xn}n≥0 where Xn

takes on values from the finite configuration space ΛS, and by which the invariant

distribution is the Gibbs distribution associated with the MRF of interest.

To start, the transition probabilities between two configuration x, y ∈ ΛS are

needed. A natural approach is to take a look at the set of sites on which x and y

hold different values (denote this set by A), and using the Markov property to deter-

mine the probability of a configuration switch on the set A conditioned on relevant
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neighbours. That is,

pxy = P (Xn+1 = x|Xn = y) = P (XA = xA|XS\A = xS\A),

where xA 6= yA, xS\A = yS\A, and x = xAxS\A, y = yAyS\A = yAxS\A. The last part

of the above expression bears resemblance to local characteristics - this gives rise to

the following definition.

Definition 2.3.6. Local Interactions

The local interactions 5 of a MRF on set A ⊂ S are given by,

πA(x) = P (XA = xA|XS\A = xS\A).

It is easy to see that local characteristics are simply a special case of local inter-

actions when A ⊂ S,A = {s}, s ∈ S.

Lemma 2.3.4. Let A ⊂ S. For a Gibbs field with distribution π, we have the following

local interactions,

πA(x) =
exp(−ε(xAxS\A))∑

yA

exp(−ε(yAxS\A))
.

5This terminology is not commonly used in literature. The term local characteristics are some-
times used interchangeably between what’s defined here as local interactions and local characteristics.
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Proof.

P (XA = xA|XS\A = xS\A) =
P (X = xAxS\A)

P (XS\A = xS\A)
=

π(xAxS\A)∑
yA

π(yAxS\A)

=

1

Q
exp(−ε(xAxS\A))∑

yA

1

Q
exp(−ε(yAxS\A))

=
exp(−ε(xAxS\A))∑

yA

exp(−ε(yAxS\A))
.

Lemma 2.3.5. A Gibbs distribution and its associated local interactions satisfy the

detailed balance equations. That is, let x, y ∈ ΛS and the set A ⊂ S be the sites on

which x and y differ in phase, then,

π(x)pxy = π(y)pyx.

Proof. By Lemma 2.3.4

π(x)pxy = π(x)πA(yAxS\A) =
1

Q
exp(−ε(xAxS\A))

exp(−ε(yAxS\A))∑
zA

exp(−ε(zAxS\A))

=
1

Q
exp(−ε(yAxS\A))

exp(−ε(xAxS\A))∑
zA

exp(−ε(zAxS\A))

= π(y)πA(xAxS\A) = π(y)pyx.

Note that y = yAyS\A = yAxS\A.
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By Lemma 2.3.3, this means that the Gibbs distribution π is an invariant distri-

bution for a homogeneous Markov chain {Xn}n≥0, where the transition matrix P is

defined by {pxy}x,y∈ΛS where pxy are the local interactions.

Furthermore, by Theorem 2.3.3, given any initial distribution ν on ΛS, we have

that,

lim
n→∞

νPn = π.

This means that by starting with a sample from distribution ν, a sample from π can

be approximately attained by conducting a large number of probability experiments

using P.

Typically, experiments are done on individual sites using the easily computable

local characteristics (i.e. sample xn+1 and sample xn differ at a single site). Site

alterations follow a specified visiting scheme, and once every site has been updated,

it is said that a sweep has been completed. This idea of sweeps is rather important

in ensuring that the Markov chain is primitive [26]. 6

It is also interesting to note that with some adjustments to the transition proba-

bilities by introducing a temperature schedule, the Gibbs sampler can be adjusted

for simulated annealing; a technique useful in finding maximal modes on some con-

figuration space [12, 3, 26].

6That is, by making sure each site undergoes one “alteration”, we are demonstrating a τ such
that ∀i, j ∈ X, Pτi,j > 0, hence showing that the Markov chain is primitive.
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(a) 50 sweeps (b) 200 sweeps (c) 1000 sweeps

Figure 2.2: Generating an Ising sample from a noise seed (θ1 = 0, θ2 = 0.600)

2.4 Information Theory and Source Coding

Some knowledge of information theory is assumed here. Since we are primarily inter-

ested in encoding to binary bits, all logarithms are base 2 unless otherwise specified.

2.4.1 Overview of Basic Information Theory

A discrete source is a discrete random variable taking on values in the alphabet

Λ. Claude Shannon’s source coding theorem in 1948 demonstrated that discrete

sources could not be compressed below a certain threshold without loss of information

[25]. This entity is known as the entropy of the source.

Definition 2.4.1. Entropy for a Discrete Source

For a discrete source with source alphabet Λ and probability mass function (pmf) p ,

the entropy of the source is defined as,

H(p) = −
∑
x∈Λ

p(x) log p(x) = Ep

[
log

1

p(X)

]
.
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Definition 2.4.2. Conditional Entropy

Let X and Y be discrete sources with alphabets ΛX and ΛY , and let p(x, y) be the joint

distribution for (X, Y ). The conditional entropy of X condition on Y is given by,

H(X|Y ) = −
∑
x∈ΛX

∑
y∈ΛY

p(x, y) log
p(x, y)

p(y)

= −
∑
x∈ΛX

∑
y∈ΛY

p(x, y) log p(x|y).

For stochastic processes, the entropy rate is defined as follows [25],

Definition 2.4.3. Entropy Rate

The entropy rate and conditional entropy rate of a stochastic process X =

{XN}n≥0 are respectively defined,

H(X ) = lim
n→∞

1

n
H(X0, . . . , Xn),

H ′(X ) = lim
n→∞

H(Xn|Xn−1, . . . , X0),

whenever the limit exists.

For a stationary process, the limits that define the entropy rate H(X ) and the

conditional entropy rate H ′(X ) exist and are equal. Moreover, if a Markov chain

taking values on Λ with transition matrix P has an invariant distribution µ, then by

letting X0 ∼ µ, we have, [4]

H(X ) = −
∑
i∈Λ

∑
j∈Λ

µipij log pij = H(X1|X0).

The relative entropy, also called the Kullback-Leibler divergence, is a well known
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measurement of dissimilarity between two distributions [16].

Definition 2.4.4. Kullback-Leibler Divergence

Let p and q be pmfs over the same alphabet Λ. The Kullback-Leibler divergence

between p and q is defined to be,

D(p||q) =
∑
x∈Λ

p(x) log
p(x)

q(x)
.

2.4.2 Lossless Source Coding

Definition 2.4.5. Codes

• A source code is a function C : Λ 7→ D∗, where D∗ is the set of finite-length

string of symbols from a D-ary alphabet. The code is said to be nonsingular

if C is injective.

• The extension C∗ of a code C is the mapping from finite-length strings of Λ

to that of D, i.e. C(x1 . . . xn) = C(x1) . . . C(xn).

• The length of the codeword C(x) associated with source symbol x is denoted

l(x). The expected length of the code, L(C) is,

L(C) =
∑
x∈Λ

p(x)l(x) = E[l(x)],

if X ∼ p.

• A code C is uniquely decodable if its extension is nonsingular. The code is

also instantaneous or a prefix code if no codeword is a “prefix” of another;

the code self-punctuates and the end of a codeword is immediately recognizable.
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In particular, a rather important result regarding uniquely decodable codes is

given by [17],

Theorem 2.4.1. Kraft-McMillan

Given any uniquely decodable D-ary code for a discrete source on Λ, we have,

∑
x∈Λ

D−l(x) ≤ 1.

Also, conversely, for any set of codeword lengths that satisfy the above inequality, it

is possible to construct a uniquely decodable code with these code lengths.

The coding process involves an encoder that uses a code C to map source sym-

bols from Λ to D-ary codewords. A decoder is then used to transform the D-ary

codewords back to source symbols from Λ.

In particular, a distinction is made between lossless coding and lossy coding;

the former requires the perfect reconstruction of source symbols while the latter does

not. In either case, the goal is usually to minimize the expected code length for

efficient storage purposes.

Definition 2.4.6. Optimal code

A code C∗ is optimal if L(C∗) ≤ L(C) for all other codes C.

Other factors such as robustness to error and minimization of distortion also come

into play. The scope of this thesis covers only the lossless compression of MRFs, with

the main focus being that of data compression - i.e. small L(C). From this point

forth, we restrict ourselves to binary codes - that is, D = 2. We now go over some

well known results regarding optimal codes [25].
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Theorem 2.4.2. Bounds for the Expected Length of an Optimal Code

Let X be a discrete source on a finite alphabet Λ of with probability mass function

(pmf) p, and let C∗ be an optimal code for this source. Then,

H(p) ≤ L(C∗) < H(p) + 1.

Instead of encoding symbols from Λ, it is often useful to encode symbols from

Λn, n ∈ Z+ instead, i.e., encode strings of length n at a time. With a minor adjustment

to notation, for a code Cn : Λn 7→ 2∗, we define the expected codeword length per

symbol by,

Ln(Cn) =
1

n

∑
xn∈Λn

p(xn)l(xn),

where xn = (x1 . . . xn). The following establish some bounds for block coding and

stationary processes [25, 4].

Theorem 2.4.3. Let X1, . . . , Xn be discrete random variables taking values on a

finite alphabet Λ. Let C∗n be an optimal code for this source of super-symbols from Λn,

then

H(X1, . . . , Xn)

n
≤ Ln(C∗n) <

H(X1, . . . , Xn)

n
+

1

n
.

Additionally, if X = {XN}n≥0 is a stationary process, then the minimum expected

codeword length per symbol approaches the entropy rate,

lim
n→∞

Ln(C∗n) = H(X ).
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2.4.3 Shannon-Fano-Elias Coding

The Shannon-Fano-Elias code [4] is a code that maps each source symbol to a given

subinterval of [0, 1]. This is done by using the cumulative distribution function of

the source to allot the subintervals, or “bins”. The codeword for each bin is then

determined by selecting an appropriate number from the bin so that altogether the

codeword lengths meet the uniquely decodable criteria.

Given the cumulative distribution function for some discrete source X taking

values on some ordered set,

F (x) =
∑
y≤x

p(y),

define the following,

F̄ (x) =
∑
y<x

p(y) +
1

2
p(x).

That is, F̄ (x) is the midpoint between F (x) and F (x∗) where x∗ is the symbol

immediately smaller than x. If all the source symbols occur with non-zero probability,

then for a 6= b (a, b ∈ Λ), we have F̄ (a) 6= F̄ (b).

F̄ (x) itself is not a good choice for a codeword since it is a real number and

will require an infinite number of bits, in general, to encode. Thus instead F̄ (x) is

approximated by using only the first l(x) bits where l(x) = dlog p(x)−1e+ 1. Denote

the truncated F̄ (x) by bF̄ (x)cl(x), observe that,

∑
x∈Λ

D−l(x) ≤ 1

and,

F̄ (x)− bF̄ (x)cl(x) <
1

2l(x)
<

1

2p(x)−1 =
p(x)

2
.
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The first expression shows that l satisfy the inequality of Theorem 2.4.1, and the

second shows that bF̄ (x)cl(x) retains enough precision to stay within the appropriate

subinterval. Additionally, it is not hard to show that the code is instantaneous. The

expected length of the code is,

L(C) =
∑
x∈Λ

p(x)

(⌈
log

1

p(x)

⌉
+ 1

)
< H(X) + 2.

An extension of Shannon-Fano-Elias coding is arithmetic coding.

2.4.4 Universal and Arithmetic Coding

Many codes rely on the assumption that the source distribution is known. In practice,

this typically is not the case. Usually the only assumptions made about the source

is that it belongs to a certain fixed family of source. Loosely speaking, a sequence of

codes {Cn}n≥0 that compress each source in some family of sources asymptotically to

its entropy rate is called a universal coding scheme [4].

Another problem that arises is the integer constraint on length of codewords. As

seen from Theorem 2.4.2, even for optimal codes there is potential for up to 1 bit

per symbol worth of inefficiency. By Theorem 2.4.3, this loss can be reduced by

using block coding on strings of source symbols from Λn, but this will require the

decoder to wait for n symbols before any decoding can be done. Thus, for real-time

applications, block coding (compressing efficiently with large n) can be impractical.

Also, the computational complexity of determining a code (e.g. Huffman code) for

super-symbols grows exponentially as n gets large, meaning that a lot of time may
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need to be devoted to pre-computations, rendering the technique useless for any ad-

hoc situations. Arithmetic coding offers a solution which essentially allows for block

coding on-the-go with significantly less computational complexity [4].

Using the approach from Shannon-Fano-Elias coding, arithmetic coding uses subin-

tervals of the unit interval to represent source symbols. It uses incoming source sym-

bols to empirically construct a code that gets incrementally better in the block coding

sense; as more symbols arrive, the subintervals become “finer”.

Define,

F̂ (xn) =
∑
yn<xn

p(yn).

That is, F̂ (xn) is the value of the cumulative distribution function for the source

symbol sequence immediately “smaller” than xn. Note that when n = 1, we can

relate this directly to the Shannon-Fano-Elias code by,

F (x) + F̂ (x)

2
= F̄ (x).

It is easy to show that,

F̂ (xn) = F̂ (xn−1) + p(xn−1)
∑
yk<xk

p(yk|xk−1).

This means that the subintervals at each stage can be computed using values

from the previous stage. If the p(yk|xk−1)’s are easy to compute, then the interval[
F̂ (xn), F (xn)

)
(used to represent xn) can be easily computed as well. Shannon-Fano-

Elias coding then tells us that such a coding scheme yields an expected code length
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of,

L(Cn) < H(Xn) + 2.

Where H(Xn) = H(X0, . . . , Xn), and so it is not hard to see that the expected

length per symbol Ln(Cn) approaches entropy.

When compared to Shannon-Fano-Elias coding, one differentiating feature of arith-

metic coding is that no specific codewords are assigned for each interval, rather a

subinterval of the current subinterval is chosen at the next stage, hence only an ex-

plicit expression of F̂ (X) is needed for the actual code. This also means that source

symbols can be encoded “on-the-go” and be decoded in the same manner since they

simply amount to some subinterval search.

The main challenge of arithmetic coding is the fact that the interval sizes decrease

rapidly as n increases and so requires high floating point precision. Also, even though

the source can be encoded in real time, the number of symbols it takes before the

next subinterval is found is not constant. Nonetheless, there exist practical algorithms

which solve these problems [24, 20].

For the purpose of this thesis, all we need to know is that it is possible to ap-

proach the entropy asymptotically via arithmetic coding. In particular note that the

p(yk|xk−1)’s are easily computable for Markov sources.

2.5 Estimation and Inference

Where MRF estimation and inference are concerned, past work has focused primarily

on MRFs with only simple cliques. This was a natural choice since simple cliques

translate nicely to the notion of nodes and edges in graphs, thus allowing various
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tools from graph theory and computer science to be utilized. Also, most of the

clique potentials studied in the past have largely been of the “Ising type”7 since

Ising’s model played a motivating role in the study of MRFs. For these reasons, the

methods described here will generally apply specifically to MRFs with simple cliques

and “Ising” interactions. In Chapter 4, we generalize some these methods for use on

MRFs which contain complex cliques. Also, we will defer the proofs to Chapter 4.

2.5.1 Statistics and Moments

One particular class of MRFs 8 can also be specified using a parameter θ ∈ Θ, and

a collection of statistics t. For example, in the 4-point neighbourhood Ising case, the

probability for a configuration x ∈ ΛS is given by,

π(x) =
1

Q(θ)
exp

− ∑
{s}⊂S

θ1xs −
∑
{s,t}⊂S

θ2xsxt

 .

This could be expressed alternatively as,

π(x) =
1

Q(θ)
exp (−θ1t1(x)− θ2t2(x)) = exp (−〈θ, t〉 − lnQ(θ)) ,

7Self-potential and pair-wise interactions.
8By this we mean MRFs which are specified by a special class of potentials. We discuss this

further in Chapter 4 when we talk about linear parameter potentials.
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where t1(x), and t2(x) are the statistics,

t1(x) =
∑
{s}⊂S

xs,

t2(x) =
∑
{s,t}⊂S

xsxt,

and, θ and t are the vectors containing the respective θ’s and statistics. Note that for

a given configuration x ∈ ΛS, the vector t does not show dependency on x. Also, the

partition function Q(θ) has dependency on t, but we leave this out. For this thesis,

the MRFs we discuss will generally share common statistics t, but vary in θ.

In this way, the set of possible θ ∈ Θ form a coordinate system for MRFs of a given

statistic t. Also, for a given θ, µ denotes the vector containing the expected value of

statistic t under the MRF specified by θ - we call this the moment parameter of the

MRF. If t is minimal, then there is a one-to-one correspondence between a given θ

and some moment µ [2] 9. Thus, for MRFs with minimal statistic t, it is also possible

to specify the MRF using the vectors µ and t.

The statistic t is said to be positively correlated if for some θ with positive

entries, the covariance (on the MRF) between any two components of t is greater or

equal to zero. If t is minimal, then these covariances are strictly positive.

Finally, concerning notation, for L ⊂ V on graph G = (V,E), we use θL, µL and

tL to denote the vectors that contain the entries of θ, µ, and t which involve only

nodes from L.

9t is minimal if its components are affinely independent.
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2.5.2 Least Squares Estimation

For a Gibbs field, it can be easily shown that,

ln

(
P (Xs = λ,XNs = xNs)

P (Xs = λ∗, XNs = xNs)

)
= −

∑
C⊂Ns

(
VC(λsxS\s)− VC(λ∗sxS\s)

)
.

In the case of the Ising model, we have for λ, λ∗ ∈ Λ,

ln

(
P (Xs = λ,XNs = xNs)

P (Xs = λ∗, XNs = xNs)

)
= −θ1(λ− λ∗)− θ2

∑
{s,t}⊂Ns

(λ− λ∗)xt.

Note that P (Xs = λ,XNs = xNs) and P (Xs = λ∗, XNs = xNs) can be estimated

empirically and thus the above is just a linear equation involving the unknowns θ1

and θ2. The estimation procedure by [7] is as follows,

1. Collect data for various neighbourhood and site configurations.

2. Construct an over-determined system of equations with θ1 and θ2 unknowns

(use the data collected in (1) to compute the relevant coefficients).

3. Solve by least squares method.

It is worth mentioning that the least squares (LS) method is the most easily

computable method for estimating an MRF. This comes from the fact that it avoid

computing the partition function and dealing with non-linear equations. The size of

the system of equations increases exponentially with the number of sites |S|, and the

size of phase space |Λ|.
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2.5.3 Maximum Likelihood Estimation

The maximum likelihood estimate seeks to maximize the probability of some obser-

vations given some parameter, that is,

θ̂ = arg max
θ∈Θ

L(θ),

where L(θ) is the likelihood and θ ∈ Θ is the parameter of interest. Often, we will

instead equivalently maximize the log likelihood lnL(θ) instead. Assuming that we

make an estimate from n independent observations, the likelihood is written,

L(θ) =
n∏
i=1

f(xi|θ),

where f is the relevant distribution for which we are estimating θ - in our case, a Gibbs

distribution. Note that xi ∈ ΛS ∀i. In the case of the Ising model, θ = {θ1, θ2}, we

have,

θ̂ = arg max
θ∈Θ

−n lnQ(θ)− θ1

n∑
i=1

xis − θ2

n∑
i=1

∑
(s,t)∈E

xisxit

 .

However since the partition function Q(θ) is computationally intractable10, θ̂ can-

not be determined directly. Instead, an approximation can attained via a local search

given some starting parameter θ. This is done by gradient ascent on the function

∇Q(θ) : θ 7→ L(θ). The gradient is given by,

{
∂

∂θk
ln
(
L(θ)

)}
.

10Recall that the partition function is a normalizing factor composed of the sum of energies across
all possible configurations on ΛS .
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As it turns out, for the Ising case, we have,

∂

∂θ1

ln
(
L(θ)

)
= n

(
µ(t1)− t1(x1, . . . , xn)

)
,

∂

∂θ2

ln
(
L(θ)

)
= n

(
µ(t2)− t2(x1, . . . , xn)

)
,

where t1, t2 are the statistics given by,

t1(x1, . . . , xn) =
1

n

n∑
i=1

∑
s∈S

xis ,

t2(x2, . . . , xn) =
1

n

n∑
i=1

∑
(s,t)∈E

xisxit .

and µ(t1), µ(t2) are their respective expected values on fθ.

Thus, minimizing the gradient amounts to a sort of moment matching to a suffi-

cient training set. The estimation procedure [12] can be summed up as follows,

1. Using a training set of n samples, compute t1(x1, . . . , xn) and t2(x1, . . . , xn).

2. Starting with a “guess” for θ, approximate µ(t1), and µ(t2) by generating suffi-

cient samples from fθ using the Gibbs sampler, and computing their statistics.

3. Increment θ by gradient ascent. Specifically,

θn+1 = θn + α∇Q(θ),

where α > 0 is the step size.

4. repeat steps (2) and (3) until the gradient becomes small.
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Finally, due to the fact that the Gibbs sampler has to be used at every stage of the

iterative search, the maximum likelihood (ML) method is generally computationally

time consuming. The number of samples needed for approximation increases expo-

nentially with the number of sites |S|, and the size of phase space |Λ|. 11 The time

to generate a sample increases with |S| and |Λ| as well. 12

2.5.4 Belief Propagation

The Belief Propagation (BP) algorithm allows us to compute conditional probabil-

ities and marginal probabilities on subsets of a graph G = (V,E). For this thesis,

this method becomes particularly useful in evaluating the relevant probabilities when

conducting arithmetic coding [21, 23].

Definition 2.5.1. Belief

Given graph G = (V,E), the belief for some set A ⊂ V is defined as ZA = {ZA(xA) :

xA ∈ ΛA} where,

ZA(xA) =
∑
xV \A

∏
C⊂V

exp
(
− VC(xAxV \A)

)
.

That is, a sum of configuration energies 13 over sites not in A for given xA. Since

the potentials determine the probability associated with a configuration, this sum-

ming process is analogous to computing the marginal on A and it is no surprise that

ZA(xA) ∝ pA(xA). 14

Definition 2.5.2. Messages

11Since the configuration space ΛS grows exponentially
12The time it takes for a sweeps grows in proportion to ΛS
13We abuse the terminology here a bit since energy usually refers to the sum of potentials in a

configuration.
14Note that Q(θ) =

∑
xA
ZA(xA)
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Let G = (V,E) be some graph. For some cut-edge (i, j) ∈ E, the message from node

j to node i is defined to be mj→i = {mj→i(xi) : xi ∈ Λ} where,

mj→i(xi) =
∑
xj

φi,j(xi, xj)Zj\i(xj),

where φi,j(xi, xj) denotes the edge potential on the edge (i, j) and Zj\i denotes the

belief of node j on the subgraph Gj\i.

If G is acyclic, then every edge in the graph is a cut-edge and we have the following

theorems:

Theorem 2.5.1. Belief Decomposition

Let G = (V,E) be acyclic, then we have that ∀i ∈ V, xi ∈ Λ,

Zi(xi) = ϕi(xi)
∏
j∈∂i

mj→i(xi),

where ϕi(xi) is the self potential on node i.

Theorem 2.5.2. Message Recursion

Let G = (V,E) be acyclic, then messages can be calculated recursively by,

mj→i(xi) =
∑
xj

φi,j(xi, xj)ϕj(xj)
∏
k∈∂j\i

mk→j(xj),

where k ∈ ∂j\i are the neighbours of j except i.
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Note in the case of Ising model, the edge and self potentials are,

ϕi(xi) = exp(−θ1xi),

φi,j(xi, xj) = exp(−θ2xixj).

The procedure for computing the belief for some node i involves treating node

i as the root of a tree and recursively computing the messages from children nodes

until leaf nodes are reached. Note that at each step a message is not passed back up

to a parent node until a child node has received all relevant messages from its own

children.

2.5.5 Clustering

For cyclic graphs, the BP algorithm can still be made to work by grouping nodes into

clusters or supernodes in such a way that the resulting groups of nodes form an

acyclic graph.

The potentials associated with supernode Ci and superedge (Ci, Cj) are defined

as follows,

ϕCi
(xCi

) =
∏
j∈Ci

ϕj(xj)
∏
i,j∈Ci

φi,j(xi, xj),

φCi,Cj
(xCi

, xCj
) =

∏
m∈Ci,n∈Cj

φm,n(xm, xn).

BP then proceeds in the “usual” sense. We discuss this in depth and in greater

generalization (non-Ising) in Chapter 4.
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2.6 Coding of MRF’s

Coding of MRF’s has been largely unexplored. [23] proposes two coding methods for

binary images treated as MRF’s on 2-D graphs. Both methods reduce computational

complexity by appropriately choosing certain subsets that segment the image into

disconnected components, or subgraphs, of fewer sites - the subsets chosen are referred

to as cutsets.

The first is a lossy method whereby the cutsets are simply a one pixel boundary of

subgraphs. These cutsets are encoded using standard procedures such as run length

coding and no information is stored regarding the subgraphs. In the decoding process,

the subgraphs are MAP reconstructed where the probabilities involved are governed

by a set of of loop-filling theorems. We do not deal with this method in this thesis.

The second is a lossless method whereby the cutsets and subgraphs are encoded by

assuming a MRF structure. The encoding process involves inference and arithmetic

coding via the BP algorithm. This method is called Reduced Cutset Coding. This

thesis adopts a similar method.

2.6.1 Entropy of MRFs

Theorem 2.6.1. Entropy of MRF

For MRFs introduced in Section 2.5.1, 15 the entropy of the MRF can be expressed

by,

H(X; θ) = Q(θ)−∇Q(θ)T θ,

where Q(θ)
.
= logQ(θ).

15Specifiable by θ and t.
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This is can be verified by direct computation. We use the notation H(X; θ) to

indicate the dependency on parameter θ. Though not reflected by the notation, it

should also be mentioned that there is dependency on G - that is, since a MRF

distribution rises from potentials over cliques on the set of sites, the number of sites

and their arrangement is significant to the entropy of the MRF.

2.6.2 Reduced MRFs

For an MRF on graph G, we will often denote the distribution of the MRF by pG to

clearly identify the graph (specifically we are interested in knowing the set of relevant

sites). For some subset L ⊂ S, we denote the marginal distribution of XL by,

pLG(xL) =
∑
xS\L

pG(xLxS\L).

A reduced MRF on GL, L ⊂ S, is a MRF specified by some θL, and tL. Its

distribution is denoted by pGL
and the probability of a given configuration xL can be

written as,

pGL
(xL) = exp{−〈θ̂L, tL〉 − lnQL(θ̂L)}.

We use QL to indicate that the partition function is not the same as that of pG.

As mentioned before, in general, we are interested in MRFs which share the same

statistic t, but differ in θ,16 and so we drop notation which show dependency on t.

Lastly, we use the following notation to identify different MRF distributions,

1. pG,θ, is a MRF on graph G with parameter θ.

16In the case of receded MRFs, we are interested in MRFs on GL that have the same statistic t
(i.e. tL), but do not necessarily the same parameter θ (i.e. θ∗L 6= θL).
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2. pLG,θ, is the marginal distribution on L ∈ S for an MRF on graph G with

parameter θ.

3. pGL,θ̂L
, is a reduced MRF on graph GL with parameter θ̂L.

4. pGL,µL . is a reduced MRF on graph GL with moments µL.

For (4), note that if t is not minimal, then a θ̂L giving giving rise to the distribution

need not be unique. In this case, simply refers to some MRF with the moments µL and

do not care about the parameter. If the reduced MRF with distribution pGL,µL has the

same moments on L as some MRF on graph G with moments µ and distribution pG,θ,

then we call it a moment-matching reduced MRF for the MRF with distribution

pG,θ.

Definition 2.6.1. Statistical Manifolds

• The set of all possible MRFs on graph G with statistic t is denoted by F .

• The e-flat submanifold of some L ⊂ S is the set of MRFs for which the

entries of parameter θ not in θL are set to zero. That is,

F ′L(0) = {p′ ∈ F : θ\θL = 0}.17

• Given an MRF with distribution pG,θ and moments µ, the m-flat submanifold

of some L ⊂ V is the set of MRFs that share the same moments on µL. That

is,

F ′′L(µL) = {p′′ ∈ F : µ′′L = µL}.
17We abuse the vector notation of θ and θL a bit. Also, note that we simply use the distribution

to represent the MRF.
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F ′L and F ′′L [2] are known as orthogonal submanifolds since the two partition

F [1]. The two intersect uniquely at an MRF pG,θ∗ . The following Lemma states a

well known result from information geometry [1].

Lemma 2.6.1. Pythagorean Decomposition

Given an MRF with distribution pG,θ with moments µ. Take some subset L ⊂ S. Let

θ′ be the parameter for some MRF in F ′L(0). Let θ∗ be the parameter representing the

MRF at the intersection of F ′L(0) and F ′′L(µL), then we have that,

D
(
pG,θ||pG,θ′

)
= D

(
pG,θ||pG,θ∗

)
+D

(
pG,θ∗ ||pG,θ′

)
.

Reyes, in [23] shows further that this decomposition can be extended to reduced

MRFs.

Theorem 2.6.2. Pythagorean Decomposition for Reduced MRFs

Given an MRF with distribution pG,θ with moments µ. Take some subset L ⊂ S

non-empty. Let θ′ be the parameter for some MRF in F ′L(0), then we have the fol-

lowing decomposition for the marginal distribution pLG,θ on L, and the reduced MRF

distribution pGL,θ
′
L

,

D
(
pLG,θ||pGL,θ

′
L

)
= D

(
pLG,θ||pGL,µL

)
+D

(
pGL,µL||pGL,θ

′
L

)
,

where pGL,µL is the unique moment-matching reduced MRF given by the intersection

of the submanifolds.

Furthermore, [23] shows that,
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Theorem 2.6.3. Given an MRF with minimal and positive correlated statistic t,

parameter θ, and moments µ, for a subset L ⊂ S, we have,

HL
G(XL; θ) ≤ HGL

(XL;µL) ≤ HGL
(XL; θL)

2.6.3 Reduced Cutset Coding (RCC)

As previously discussed, arithmetic coding allows us to encode on-the-go with ex-

pected code length which approaches the entropy asymptotically. At each given

stage k, if p(yk|xk−1) is easy to compute, then the coding distribution can be updated

accordingly. Given some MRF, if we cluster the nodes accordingly to form an acyclic

cluster graph of clusters {Ai}, then as discussed previously, we can compute the be-

liefs for each of these clusters using the BP algorithm. If we encode the clusters in

some sequential manner, this means the probabilities at each stage can be calculated

easily. In particular, note that,

P (XAk
= xAk

|xAk−1
, . . . , xA1) =

P (XAk
= xAk

, XAk−1
= xAk−1

, . . . , XA1 = xA1)

P (XAk−1
= xAk−1

, . . . , XA1 = xA1)

=
Z(A1∪...∪Ak)(xA1 . . . xAk

)

Z(A1∪...∪Ak−1)(xA1 . . . xAk−1
)
,

and so the computation amounts to a belief calculation via message collection at each

stage.

For MRFs with large number of sites, the number of possible super symbols grows

quite large to make computation difficult. [23] proposes that a cutset L ⊂ S be

chosen to separate the MRF into disconnected components. Conditioning on the

cutset L, these components can be encoded at a rate close to the conditional entropy



CHAPTER 2. BACKGROUND 47

HG

(
XS\L|XL

)
. As for the cutset L, it can be encoded by appropriately choosing a

reduced MRF. This is called Reduced Cutset Coding (RCC); the rate for this

coding method is stated precisely in Theorem 2.6.4 below.

Theorem 2.6.4. Encoding Rate for RCC

Let a MRF be defined on a graph G = (V,E), and let pG(θ) be the distribution of the

MRF. Let µ be the moment coordinates corresponding to the parameter θ, L ⊂ V be a

cutset, and {Ci} be the set of components that result from removing the cutset. If the

cutset is encoded using coding distribution pGL
(θ′L), then the overall rate R for RCC

is,

R =
|L|
|V |

RL +
|V \L|
|V |

RV \L,

where RL and RV \L are the coding rates on the cutset and components respectively.

These are given by,

RL =
1

|L|

[
HL
G

(
θ
)

+D
(
pLG,θ||pGL,µL

)
+D

(
pGL,µL||pGL,θ

′
L

)]
,

RV \L =
1

|V \L|
HG

(
XV \L|XL

)
=

1

|V \L|
∑
Ci

HG

(
XCi
|X∂Ci

)
.

Proof. The expression for RL follows from Theorem 2.6.2 and Theorem 2.6.3. We omit

the necessary steps and leave them to Reyes 2010 [23]. The last equality for RV \L

follows from the MRF property of the components being conditionally independent

from each other given the cutset 18.

18If two components were not conditionally independent, then they would not be disconnected.
This can be easily shown for MRFs with only simple cliques, but is trickier with complex cliques.
We discuss this further in Chapter 4 with the minimum radius condition.
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It should be noted that by picking parameter θ′L so that it induces a moment-

matching reduced MRF for µL, the rate RL is minimized. Finding these moment-

matching parameters is not trivial. If the cutset forms an acyclic graph, then BP could

be used. For cyclic cutsets, [23] proposes approximation via Loopy Belief Propagation

[21], and Iterative Fitting or Scaling [5, 6].



Chapter 3

Learning and Precoding

In this chapter, we apply RCC to black and white images. We also seek to improve

this method by introducing a precoding phase. This phase attempts to learn the best

MRF parameter θ ∈ Θ for a given image. The encoding process would then involve

encoding both the image itself and the “learned” parameters.

3.1 Learned RCC

The following steps give a high level description of the coding procedure,

1. Establish MRF and cutset specifications.

2. Learn parameter θ.

3. Encode parameter θ.

4. Encode cutsets.

5. Encode components.

49
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Essentially, for each image, we tailor a coding distribution that is best suited for

that image and encode the image accordingly. The decoding method would then be

as follows,

1. Obtain MRF and cutset specifications.

2. Decode for θ.

3. Decode cutset(s).

4. Decode remaining components.

We now give a precise breakdown of each step.

3.1.1 MRF and Cutset Specifications

Before learning or encoding, we specify the following,

1. MRF M = (S,N,V)

2. Cutset L ⊂ S

First, a MRF is specified by the triple (S,N,V) of sites S, neighbourhood system

N , and potentials V 1. The parameters θ are intricately linked with the potentials

V ; V can be seen as representing the parameters θ and statistics t that give rise to a

certain energy and distribution.

Second, the cutset L ⊂ S defines how the sites are to be segmented into com-

ponents for RCC. Picking the cutset L also gives rise to an enumeration of graph

1We will address this issue in more detail in Chapter 4.
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components {Cn}. The enumeration and its ordering are not trivial and are impor-

tant for proper decoding.

For example, in results we present in the next part of this Chapter, we may refer

to the “Ising equipotential model” with “line spacing 3”. The former specifies MRF

M, and the latter specifies the cutset L. Together, they provide the identifying

information on how the image was encoded.

3.1.2 Learning

It is assumed, for a given image (to be encoded), that there exists a MRFM of which

the image is a sample. Thus, the image can be used as a training set for learning

this MRF. Specifically, for a set of sites S and a given neighbourhood system N , we

are interested in knowing the parameter θ for some statistics t. Once such an MRF

is learned, it can be used to find coding distributions for the encoding process.

For the learning procedure, a variety of techniques could be used to estimate θ.

The results we present in this thesis will be concerned with the LS and MLE methods

mentioned in Chapter 2.

3.1.3 Encoding Parameter, Cutset, and Components

The encoding process then involves 3 steps,

1. Encode θ to a given precision.

2. Encode cutset L as a reduced MRF by arithmetic coding with the moment

matching MRF.



CHAPTER 3. LEARNING AND PRECODING 52

3. Encode components {Cn} conditioned on cutset L by arithmetic coding with

the learned MRF.

The difference between this procedure and RCC is the encoding of parameter θ.

Encoding θ is a fixed cost and becomes negligible for large images.

As mentioned in Chapter 2, L is encoded as a reduced MRF. In particular, note

that to minimize inefficiency, it is desirable to identify the moment matching reduced

MRF on L - this equates to another learning procedure of sorts to identify the param-

eters θL that give rise to µL. This would be a one time procedure for each specified

MRFM and can be pre-computed. 2 In this thesis, we do not make explicit attempts

to find the moment matching reduced MRF on L. Instead, we simply encode L using

some standard method (JBIG2) as a reduced MRF and incur any inefficiencies. For

the components {Cn}, arithmetic coding is made possible by clustering and BP.

3.1.4 Some Remarks About the Decoder

We assume the following decoder structure.

First, the encoder and decoder must have a pre-established agreement regarding

the MRF M and the cutset L. That is, the choice of MRF and cutset are not made

dynamically during encoding, otherwise we would need to additionally encode the

MRF specification, as well as the locations of the cutset pixels. This assumption is

made apparent by the step (1) of encoding/decoding process.

Second, the encoder and decoder must have some pre-established agreement re-

garding the ordering MRF encoding of the components {Cn}. Otherwise, we would

2The main concern here is computation. This step could be eliminated as an encoding time cost
if say images to be encoded were learned and classified into a “bin” of MRFs. We discuss this later
in Chapter 5.
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need to encode the location of the components as well.

Finally, it is natural to say that any other procedural elements of the encoding

process such as ordering of the parameter vector θ is known to the decoder.

3.2 Estimation and Encoding

With gradient ascent, it is not clear if ML estimation yields the global maximizer.

Thus, it is important to ask if the log likelihood is strictly concave. While not true for

MRFs with large neighbourhoods or large number of cliques, strict concavity holds

for MRFs with small neighbourhoods or few cliques. 3 For example, the results

shown later this chapter are based on the Ising 4-point neighbourhood with a single

parameter to estimate. Figures 3.10- 3.16 show that in this case, the log likelihood is

strictly concave. Comparably, for MRFs with large neighbourhoods or large numbers

of cliques, it becomes difficult to judge the concavity of the log likelihood due to high

dimensionality of the parameter vector θ. This is the case for results shown later in

Chapter 5, where it is clear that the log likelihood is not strictly concave.

Also, it is not clear how many synthesized samples are needed to ensure that data

collected from the samples reflect the statistical expected value. Without going into

too much detail, in this thesis we choose the number of samples to generate based on

the size of the MRF neighbourhood and neighbourhood system. 4

We now present some experimental data for this coding procedure. The cutset

we use are horizontal strips, 1-pixel in thickness, that segment the image into slices.

We refer to the thickness of these slices as the line spacing. We then encode each

3By “small”, we mean no larger than 4-point Ising.
4Larger neighbourhood require more samples and larger neighbourhood systems require fewer

samples.
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slice by generating clusters 1-pixel in width, and running the BP algorithm on these

clusters.

3.2.1 Using LS Estimation

(a) “opp2” (b) “barcode”

Figure 3.1: 512 × 512 bilevel test images.

In the following experiments, we use an Ising equipotential model with no external

field. Recall from Chapter 2 that this is a 4-point neighbourhood system with θ =

{θ1, θ2}, where θ1 = 0 (no external bias on nodes for a particular phase value), and

where every edge potential function is governed by θ2 (equipotential).

For test image “opp2” in Figure 3.1 (a), we get a LS estimate for θ2 around 1.22.

This yields a coding rate of approximately 0.093 bits per pixel with line spacing set

at 2. If equipotential is not assumed and we use instead θ = {θ1, θ2, θ3}, where θ2

and θ3 are the parameters for vertical and horizontal edge potentials respectively,

then LS estimation gives θ1 = 1.19, θ2 = 1.26, and a coding rate around 0.093 (again

line spacing 2). This indicates that the image does not have edges correlated in any

particular direction.

Now consider an image which does have “edges” biased in a particular direction.
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Figure 3.1 (b) is a “barcode” where the lines are generated by Bernoulli(0.75) for

white. With LS estimation, we get θ2 = 8.84, θ3 = −0.0073, and a coding rate in

the 10−16’s with line spacing 2. This seems almost unrealistically low at first glance,

but we should note that this is only the rate on the “slices”. Cutset coding treats

these slices as MRF’s conditioned on cutsets. In this case, given the potentials on

vertical edges, when we condition on the upper and lower boundaries (cutsets) of the

slices, the observed values on these boundaries essentially dictate that the pixel values

within the slices must be of a certain configuration with such high probability that it

is virtually a dirac distribution. Thus, it is not so hard to believe that such a low code

rate could be achieved on the “slices”. Heuristically, one might ask why we would

want to use cutset coding at all in this example - a more efficient approach might be

to just encode a single row of the image. Here, we note that doing so actually is no

different than encoding the entire image using cutset coding without line spacing (i.e.

no cutset). Thus, it also becomes clear that the choice of cutset play a significant role

in the performance of coding.

3.2.2 Using ML Estimation

We also run this procedure with additional images shown in Figure 3.2 (images taken

from USC-SIPI database [18]) and attain the following results - we include the JBIG2

compression results for comparison. Again, the Ising equipotential model with no

external field is used. The cutset is composed again of horizontal strips with some

line spacing.
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(a) “house” (b) “boat” (c) “elaine”

(d) “aerial” (e) “lines” (f) “dots”

Figure 3.2: 512 × 512 bilevel test images.

Table 3.1 below shows a comparison between the performance of encoding the

images using RCC, and encoding them with JBIG2. All rates are shown in bits per

pixel. Also, JBIG2 compression is used to encode the cutset (not to be confused with

the comparison of overall encoding rate comparison with RCC and JBIG2). This

means that we do not encode the cutset with a moment matching reduced MRF, and

so we incur all the inefficiencies of doing so; as shown in the results below, the cost

of encoding the cutset rises with increased line spacing.
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Image θ2 RCC JBIG2

“opp2” 0.91 0.0911 0.0882

“house” 0.85 0.1067 0.1005

“boat” 0.62 0.2229 0.2288

“elaine” 0.59 0.2557 0.2340

“aerial” 0.44 0.5878 0.6317

“lines” 0.40 0.6886 0.6237

“dots” 0.52 0.2013 0.0648

Table 3.1: MLE parameters and code rates for test images from Figure 3.2

The following Figures show the coding rates on the cutsets, the component, and

the average RCC rate.

Figure 3.3: Encoding rates for “opp2” with θ2 = 0.91.
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Figure 3.4: Encoding rates for “house” with θ2 = 0.85.

Figure 3.5: Encoding rates for “boat” with θ2 = 0.62.
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Figure 3.6: Encoding rates for “elaine” with θ2 = 0.59.

Figure 3.7: Encoding rates for “aerial” with θ2 = 0.44.
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Figure 3.8: Encoding rates for “lines” with θ2 = 0.40.

Figure 3.9: Encoding rates for “dots” with θ2 = 0.52.

As we can see, test images “house”, and “boat” perform somewhat well under this
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coding scheme. This is most likely due to the images’ similarities to the “blobby”

nature of the Ising model (as seen in Chapter 2).

On the other hand, images “aerial” and “lines” perform poorly. This might largely

be due to the fact that patterns exhibited in the images are of varying scale. Looking

at the “aerial” photograph, we notice that there are blocks separated by a grid of

streets. The streets show up largely as solid black lines a few pixels wide, while the

blocks are largely white with a very textural pattern of black interspersed within.

Individually, these blocks appear almost like a typical Ising image we saw in Chapter

2. Since the “blobs” within these blocks are quite small, this is suggestive of a high

number of phase switches, hence a lower θ2 (neighbouring nodes being less correlated).

But we also notice that in the upper, lower right, and lower left regions of the image,

we have large areas of black and white; this is suggestive of a higher θ2 value. This

means that estimating a “good” θ essentially involved a trade-off between the sections

of the image with higher, and lower energy - the greater the spread, the poorer we

expect the performance to be. We note that in “boat” and “elaine”, similar behaviour

is also noted, but to a lesser degree 5. We see this also in “lines”.

Additionally, in “aerial”, the “jagged” ways in which the black and white parts

interact do not exhibit any particular directionality, and hence can appear more

“chaotic” under this model. It is interesting to note that for LS estimation, this means

that the the relative abundance of neighbourhood configurations are not largely dif-

ferent, suggesting relatively equal energy across most configurations. In “lines”, while

the image displays a general directionality, this directionality is not captured by a 4-

point neighbourhood. Thus, it might be better to consider to larger neighbourhoods

5More “blobs” and less “noise”. We note in the case of “elaine” that the centre left portion of
the image appear like random noise (uniform Bernoulli(0.5) pixels), high in entropy, and cannot be
good for coding under a model where “blogs” are expected.
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and cliques.

Lastly, we consider the test image “dots” where we have a very distinct pattern of

“blobs”. Naturally, the code rate is better here. However, we should also note from

Figure 3.16 (see below) that the ML estimator did not perform very well here. We

should remember that the ML procedure replies on moment matching at each step of

the gradient descent. In this case, the consistent pattern within the image actually

matches well under a wider range of θ2 - thus, it is hard to find the best estimate.

This also suggests that the MRF here is poor in capturing the type of interactions

in test images such as “dots”; similar, but poor matching over most θ2. Again, a

relevant question we might ask is if larger neighbourhoods and cliques might be able

to better “capture” this pattern. We discuss this in Chapters 4 and 5.

Making a comparison with M. Reyes’ results, he achieved a coding rate of roughly

0.065 bits per pixel (bpp) using θ2 = 0.6 [23]. In our case, with a LS estimate of

θ2 = 1.21, a rate of roughly 0.053 bpp was obtained. With a ML estimate of θ2 = 0.92,

a rate of 0.051 bpp was obtained. Thus, even with a quick estimation procedure

added to RCC, some significant improvement in rate can be made. Note that the

rate comparisons here are being made strictly between the encoding of segmented

components - we do this since our technique of encoding the cutset differs from that

of Reyes’. It should also be noted that ML estimate is significantly more costly

in computation time, though this does not necessarily become restricting since the

estimation procedure could potentially be done “offline”.

When comparing the RCC results with that of JBIG2, with the exception of “dots”

we note that the overall encoding rates were relatively on par with JBIG2 compression.

There are two reasons that can explain this anomaly case. First, JBIG2 specializes in
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compressing bi-level images mainly by extracting a combination of set-pattern data,

and halftone regions [19]. 6 As such, “dots” can be considered as an image that

JBIG2 should perform extremely well on due to its symbol-like or strictly patterned

nature. In many ways, this also explains why the compression rate is so poor on

“arial” and “lines”; the images lack both pattern and halftone regions. Second, there

is an observable periodicity within “dots”. This accounts for the the drop in cost

of encoding cutset at line spacing 5 - see 3.9. Apart from contributing to the good

performance of JBIG2, such image structures when modelled with a MRF with small

neighbourhoods yield training data that suggest the abundance of virtually every

kind of neighbourhood configuration, i.e. high entropy. Hence, it might be the case

that the choice of MRF model here is particularly poor. Overall, since JBIG2 is a

specialized bi-level encoding method, it is rather encouraging to note that RCC can

be competitive and yet maintain its versatility in being extendable to greyscale or

colour images as well.

Finally, before we end the discussion of above results, we note that to under-

stand how close the proposed encoding method comes to theoretical bounds, ideally

a comparison should be made between the encoding rates and the entropy rate of

the source. Unfortunately in the case of large MRFs like here, the entropy rate is

computationally intractable due to the partition function. Instead, the JBIG2 results

can be considered as a good benchmark for encoding bi-level images.

6Can be intuitively understood to be structured visual artefacts in the former, and “gradient”
areas in the latter (visual effect generated by varying relative density of black and white pixels).
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3.2.3 Parameter Sensitivity

Regarding the encoding parameter θ, we ask whether or not the coding rate is sensitive

to deviations in an appropriate θ, and if so, how precise need θ be. Figure 3.10,

Figures 3.11- 3.16 illustrate that the sensitivity is not high and we do not need to

commit too much resource to encoding the parameter.

The data was gathered by taking the ML estimate, and encoding the image by

increments above and below the estimate. One common characteristic we note for

the figures below is the asymmetric nature of the curves. This is because θ2 = 0 in

this case indicates no “edge” interactions, and effectively means that the sites are

independent of each other. Under such a scenario, since there are no relationships to

exploit, for a binary phase space, we would expect something along the lines of 1 bit

per pixel. Thus, while there might be a wide range of parameters that “well-capture”

the features of a particular image, as θ approaches 0, it is natural for the curves to

approach the rate for coding independent sites.

Figure 3.10: Encoding rates for “opp2” using various θ2, and line spacings.
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Figure 3.11: Encoding rates for “house” using various θ2, and line spacings.

Figure 3.12: Encoding rates for “boat” using various θ2, and line spacings.
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Figure 3.13: Encoding rates for “elaine” using various θ2, and line spacings.

Figure 3.14: Encoding rates for “aerial” using various θ2, and line spacings.



CHAPTER 3. LEARNING AND PRECODING 67

Figure 3.15: Encoding rates for “lines” using various θ2, and line spacings.

Figure 3.16: Encoding rates for “dots” using various θ2, and line spacings.



Chapter 4

MRFs with Complex Cliques

Chapter 3 showed that good compression can be achieved by learning the appropriate

MRF parameters. Since this was done mainly for the simple cliques (pairwise inter-

actions) of the “Ising model”, it’s natural to ask how well this method performs on

MRF’s with complex cliques. To our knowledge, this topic has not been explored in

the past.

An immediate relevant question regarding complex cliques is whether or not the

prescribed estimation and inference methods mentioned in Chapter 2 work.

For example, where complex cliques are concerned, BP breaks down simply by

the fact that it is only capable of accounting for interaction between at most 2 nodes.

With clustering, we saw that BP in the traditional sense can be made to work by

grouping sites together and creating an acyclic graph. As it turns out, though less

intuitive, similar modifications can be made in the case of complex cliques. We will

devote the rest of this chapter to explain the necessary changes in detail. In Chapter

5, we will discuss some experimental results.

68
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4.1 Some Preliminaries

4.1.1 Some Definitions

To start, recall that MRF’s and Gibbs fields are equivalent, and that Gibbs fields can

be specified by the Gibbs potential which are given by some neighbourhood system

and the associated cliques. Knowing this, we can describe an MRF, M, by the

3-tuple,

M = (S,N,V)

where S is the set of nodes (sites), N is the neighbourhood family, and V is the Gibbs

potential relative to N . Given MRF M = (S,N,V), we also define the following,

• A cluster or supernode is a subset of nodes A ⊂ S.

• The set of cliques in a cluster A is denoted by,

CA = {C : C ⊂ A,C is a clique}.1

• The set of all cliques “between” clusters A and B is denoted by,

∆A,B = {C : C ∩ A 6= ∅, C ∩B 6= ∅, C ⊂ A ∪B,C is a clique}

Additionally, if A ∩ B = ∅, and ∆A,B is non-empty, then ∆A,B is referred to

as the superedge between A and B. We will also use the notation ∆A,B,D to

denote the set of cliques “between” the three clusters A, B, and D; and so on

1Remember that cliques are induced by the neighbourhood family N of a MRF
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for any finite number of clusters. 2

We are now ready to talk about cluster graphs.

4.1.2 Cluster Graphs

A cluster graph induced by MRF M is a pair G = (A,∆A), where A =

{A1, . . . , An} is a set of disjoint supernodes that form a partition of S,

Ai ∩ Aj = ∅, i 6= j

S =
n⋃
i=1

Ai

and ∆A is the set of all superedges exist between the supernodes in A. The reason

we refer to the cluster graph as being induced by MRF M is because the cluster

graph very much depends on the structure of the MRF. From this point forth, all the

cluster graphs we deal with will be induced by some MRF defined a priori, and thus

we’ll simply leave out the “induced” part. The following are some definitions, and

terminology about cluster graphs,

• The set of cliques in cluster graph G is defined as,

CG =

( ⋃
Ai∈A

CAi

)
∪

( ⋃
∆Ai,Aj

∈∆A

∆Ai,Aj

)
.3

• A cluster graph G = (A,∆A) is said to satisfy the minimum-radius condition

2Note that the condition C ⊂ A∪B is important in ensuring that the clique C is contained strictly
by A and B. This prevents repeat repeat entries in ∆A,B and ∆A,B,D, i.e. ∆A,B ∩∆A,B,D = ∅.

3Note that CG ⊆ CS
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if,

CS = CG

• Supernodes Ai, Aj ∈ A are cluster neighbours if ∆Ai,Aj
∈ ∆A. We will use

γA to denote the set of all neighbours of A, i.e. γA = {B ∈ A : ∆A,B ∈ ∆A}.

• A cluster path is a sequence of supernodes {Bi ∈ A} where successive supern-

ode pairs (Bm, Bm+1) are neighbours.

• A connected cluster graph is a graph where every pair of supernodes can be

linked by some path.

• A cluster cycle is a cluster path that starts and ends on the same super node.

If no cycles exist within a cluster graph, then it is said to be a acyclic cluster

graph. A cluster tree is simply a connected acyclic cluster graph.

• For a connected cluster graph, if removing some superedge ∆A,B between su-

pernodes A and B creates a disconnected cluster graph, then ∆A,B is called a

super-cut-edge and we use the notation GA\B and GB\A to denote the compo-

nents containing cluster A and cluster B respectively (this is completely anal-

ogous to the graph notation discussed in Chapter 2). We will also denote the

set of sites on these subgraphs SA and SB respectively.

4.2 Useful Lemmas and Corollaries

Lemma 4.2.1. If cluster graph G = (A,∆A) is acyclic, then it satisfies the minimum-

radius condition. i.e. CS = CG.



CHAPTER 4. MRFS WITH COMPLEX CLIQUES 72

Proof. We proceed by proving the contrapositive. Assume that the minimum-radius

condition is not satisfied, then ∃ C such that C ∈ CS, but C /∈ CG. By definition,

CG accounts for for all cliques in two categories: (1) cliques within a cluster Ai ∈ A,

and (2) cliques between any two clusters Ai, Aj ∈ A. Thus, C must contain sites

from at least 3 different clusters - denote these Ai, Aj, and Ak. Arbitrarily select sites

ai, aj, ak ∈ C, where ai ∈ Ai, aj ∈ Aj, ak ∈ Ak. By definition of cliques, ai, aj, and ak

are pairwise neighbours of each other, and so {ai, aj}, {aj, ak}, and {ak, ai} are valid

cliques. This means ∆Ai,Aj
, ∆Aj ,Ak

, and ∆Ak,Ai
are non-empty, and are thus valid

superedges that form a cycle - G cannot be acyclic.

It is worthwhile to note that the converse is not always true. This can be illustrated

by the example of a doughnut graph shown in Figure 4.1. For the Ising model with a

4-point neighbourhood, it is easy to see that while CS = CG, the graph remains cyclic.

Figure 4.1: A cluster graph of 8 supernodes arranged in a doughnut manner. The
4-point Ising neighbourhood system is used.

Before continuing, it’s worth it to provide a brief explanation of why the mini-

mum radius condition is interesting. It is interesting mainly in that it is a necessary

condition for a cluster graph to be acyclic. As we shall soon see, one of the main

problems of cluster graphs is keeping track of cliques and making sure that certain
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clique configurations are not omitted in computations. When omitted, the results is

either wrong marginalization, dysfunctional BP, or unending BP from cyclic cluster

graphs. By understanding the minimum radius condition, these problems can be

eliminated, and the task of ensuring that a cluster graph is acyclic can be reduced

to simply ensuring that the minimum radius condition is met, and ensuring there are

no cycles in the traditional graph theory sense.

We now present an interesting result that tells us that if cluster graph G satisfies

the minimum-radius condition, then its subgraphs satisfy the condition as well.

Lemma 4.2.2. Let G = (A,∆A) be a cluster graph satisfying the minimum-radius

condition, and let ∆A,B ∈ ∆A be a super-cut-edge, then the subgraphs GA\B = (AA,∆AA
)

and GB\A = (AB,∆AB
) also satisfy the minimum-radius condition (on SA and SB re-

spectively). That is,

CSA
= CGA\B

CSB
= CGB\A

Proof. Again, we proceed by proving the contrapositive. Assume that CSA
6= CGA\B ,

that is ∃ C such that C ∈ CSA
, but C /∈ CGA\B . Since,

AA ⊂ A

∆AA
⊂ ∆A

we have that C /∈ CG, meaning CS 6= CG, and so G cannot satisfy the minimum-radius

condition.
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The following Lemma shows that mutual exclusive clusters induce mutually ex-

clusive clique sets.

Lemma 4.2.3. For clusters A,B ⊂ S, the following statements are equivalent

(a) A ∩B = ∅

(b) CA ∩ CB = ∅

(c) CA ∩∆A,B = ∅

(d) CB ∩∆A,B = ∅

Proof. (a) ⇐⇒ (b) by definition of CA. We show (a) ⇐⇒ (c) by showing the

contrapositives. First, assume that CA ∩∆A,B 6= ∅. This means ∃ some clique C ⊂ A

such that C ∩ B 6= ∅, and thus A ∩ B 6= ∅. Now assume that A ∩ B 6= ∅. Since any

singleton is a clique, by taking any node n ∈ (A ∩ B), we get that {n} ∈ CA, and

{n} ∈ ∆A,B, and thus CA ∩∆A,B 6= ∅. The proof for (a) ⇐⇒ (d) follows the same

steps, but uses CB instead.

Lemma 4.2.4. Total Cliques

Given clusters A,B ⊂ S, let A ∪B = D. Then we have that,

CD = CA ∪ CB ∪∆A,B = CA,B

Note that the last part of the equality is just a change in notation. As opposed to

writing C(A∪B), we simply write CA,B.

Proof. Take any clique C ⊂ D, then either C ⊂ A, that is C ∈ CA; or C ⊂ B, that is

C ∈ CB; or C is neither in A nor B, but is in “between” A and B, that is C ∩A 6= ∅

and C ∩B 6= ∅, and so C ∈ ∆A,B.



CHAPTER 4. MRFS WITH COMPLEX CLIQUES 75

By the above lemmas, we attain the following corollary useful for manipulating

potentials.

Corollary 4.2.1. Let A,B ⊂ S be disjoint, and let D = A ∪B, then,

∏
C∈CD

ψC(xD) =
∏
C∈CA

ψC(xA)
∏
C∈CB

ψC(xB)
∏

C∈∆A,B

ψC(xAxB)

where ψC(xD) = exp
(
VC(xD)

)
.

Proof. By Lemma 4.2.4, we have that,

∏
C∈CD

ψC(xD) =
∏

C∈(CA∪CB∪∆A,B)

ψC(xD)

Now since A ∩B = ∅, by Lemma 4.2.3, we have that,

∏
C∈CD

ψC(xD) =
∏
C∈CA

ψC(xA)
∏
C∈CB

ψC(xB)
∏

C∈∆A,B

ψC(xAxB)

4.3 Clustering and Belief Propagation for MRF’s

with Complex Cliques

We now begin the derivations that will lead us to a modified BP algorithm on cluster

graphs induced by an MRF with complex cliques. We first introduce the following.

Definition 4.3.1. Supernode Self-potential
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Let G a cluster graph. For a supernode A ∈ A, we define the supernode self-

potential of A to be,

ΨA(xA) =
∏
C∈CA

ψC(xA)

Definition 4.3.2. Superedge potential

Let G a cluster graph. For neighbouring supernodes A,B ∈ A, we define the su-

peredge potential of ∆A,B ∈ ∆A to be,

ΨA,B(xAxB) =
∏

C∈∆A,B

ψC(xAxB)

This is analogous to the self and edge potentials defined previously in our discus-

sion of BP for graphs of nodes and edges. Also, as the case with superedge notation,

we’ll use the modified notation of ΨA,B,D(xAxBxD) to denote the product of poten-

tials on cliques between more than two nodes. We now proceed to present the BP

algorithm for cluster graphs.

4.3.1 Beliefs, Messages, and Recursion

Recall that the belief vector for a set of sites A ⊂ S is defined as ZA = {ZA(xA) :

xA ∈ ΛA} where,

ZA(xA) =
∑
xS\A

∏
C∈CS

exp
(
− VC(xAxS\A)

)
The definition of belief remains the same here (in the context of complex cliques).

Recall also that ZA(xA) ∝ pA(xA) since the sum essentially amounts to an unnormal-

ized marginalization. Additionally, we define the following,

Definition 4.3.3. Belief on Cluster Subgraphs
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Let G be a cluster graph, and let GA\B be the cluster subgraph containing cluster A

after removing the super-cut-edge ∆A,B ∈ ∆A. Then the belief of cluster A on the

subgraph GA\B is defined to be ZA\B = {ZA\B(xA) : xA ∈ ΛA} where,

ZA\B(xA) =
∑
xSA\A

∏
C∈CSA

exp
(
− VC(xAxSA\A)

)

We now define messages for BP on cluster graphs.

Definition 4.3.4. Messages for Cluster Graphs

Let G be some cluster graph. For some super-cut-edge ∆A,B ∈ ∆A, the message from

supernode B to supernode A is defined to be mB→A = {mB→A(xA) : xA ∈ ΛA} where,

mB→A(xA) =
∑
xB

ΨA,B(xAxB)ZB\A(xB)

We now present a lemma which will help us find the necessary belief decomposition

for the Belief Propagation Algorithm.

Lemma 4.3.1. Cluster Subgraph Message Passing

Let G be a cluster graph, and ∆A,B ∈ ∆A be a super-cut-edge, then,

ZA(xA) = ZA\B(xA)mB→A(xA)

That is to say the belief of cluster A in G is simply the belief of A on the subgraph

GA\B times the “message” passed from cluster B to A “across” the super-cut-edge

(essentially accounting for the “potential” from the other cluster subgraph). 4

4For some configuration xA on A.
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Proof. Since ∆A,B ∈ ∆A is a super-cut-edge on G, the set of sites on the resulting

subgraphs form a partition of all sites. That is,

SA ∪ SB = S

SA ∩ SB = ∅

and so by Corollary 4.2.1, we have,

ZA(xA) =
∑
xS\A

∏
C∈CS

exp
(
− VC(xAxS\A)

)
=
∑
xS\A

∏
C∈CS

ψC(xAxS\A)

=
∑
xS\A

∏
C∈CSA

ψC(xAxS\A)
∏

C∈CSB

ψC(xAxS\A)
∏

C∈∆A,B

ψC(xAxS\A)

=
∑
xS\A

∏
C∈CSA

ψC(xAxS\A)
∏

C∈CSB

ψC(xS\A)
∏

C∈∆A,B

ψC(xAxS\A)

Now notice that S\A = SB ∪ (SA\A), and so we can break down the sum as,

ZA(xA) =
∑
xSB

∑
xSA\A

∏
C∈CSA

ψC(xAxSB
xSA\A)

∏
C∈CSB

ψC(xSB
xSA\A)

∏
C∈∆A,B

ψC(xAxSB
xSA\A)

=
∑
xSB

∑
xSA\A

∏
C∈CSA

ψC(xAxSA\A)
∏

C∈CSB

ψC(xSB
)
∏

C∈∆A,B

ψC(xAxSB
)

=

∑
xSA\A

∏
C∈CSA

ψC(xAxSA\A)

∑
xSB

∏
C∈CSB

ψC(xSB
)
∏

C∈∆A,B

ψC(xAxSB
)


= ZA\B(xA)

∑
xSB

∏
C∈CSB

ψC(xSB
)
∏

C∈∆A,B

ψC(xAxSB
)

 ,
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where we were able to separate the sums due to the fact that potential functions only

depend the values of sites in the associated clique (as discussed in Chapter 2).

Now notice that SB = B ∪ (SB\B), and so we can again break the sum into a

double sum.

ZA(xA) = ZA\B(xA)

∑
xB

∑
xSB\B

∏
C∈CSB

ψC(xBxSB\B)
∏

C∈∆A,B

ψC(xAxB)


= ZA\B(xA)

∑
xB

ΨA,B(xAxB)

 ∑
xSB\B

∏
C∈CSB

ψC(xBxSB\B)


= ZA\B(xA)

(∑
xB

ΨA,B(xAxB)ZB\A(xB)

)

= ZA\B(xA)mB→A(xA),

where again, the sums were separated based on the dependency of potential functions.

Lemma 4.3.1 gives the basis for calculating the belief of a cluster by collecting

messages from neighbouring nodes. In an acyclic cluster graph, every superedge is a

super-cut-edge, and so we have the following theorem.

Theorem 4.3.1. Belief Decomposition for Acyclic Cluster Graphs

Let G be a connected acyclic cluster graph, and A be some cluster in the graph. Then,

ZA(xA) = ΨA(xA)
∏
B∈γA

mB→A(xA)

Proof. First, notice that when |γA| = 1, the result is equivalent to Lemma 4.3.1.
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Since G is connected, the cluster subgraph GA\B generated by removing super-cut-

edge ∆A,B contains only a single cluster - namely A - and so,

ZA(xA) = ZA\B(xA)mB→A(xA)

=

∑
xSA\A

∏
C∈CSA

ψC(xAxSA\A)

mB→A(xA)

=

( ∏
C∈CA

ψC(xA)

)
mB→A(xA)

= ΨA(xA)mB→A(xA)

Now for |γA| > 1, since G is acyclic, notice that ZA\B(xA) can be found by

reapplying the results of Lemma 4.3.1 - this time to the subgraph GA\B. That is,

let GA\B = (AA,∆AA
), and let D be a neighbouring cluster of A in the subgraph

(D ∈ AA, ∆A,D ∈ ∆AA
), then we have that,

ZA\B(xA) = Z
′

A\D(xA)mD→A(xA)

where Z
′

A\D(xA) is belief calculated on a subgraph of GA\B, not of G. Thus it is

possible to recursively apply Lemma 4.3.1 until only one neighbour remains, and so,

ZA(xA) = ΨA(xA)
∏
B∈γA

mB→A(xA)

The recursive formula then follows.

Theorem 4.3.2. Message Recursion on Cluster Graphs
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Let G be a connected acyclic cluster graph satisfying the minimum-radius condition.

Messages can be expressed recursively by,

mB→A(xA) =
∑
xB

ΨA,B(xAxB)ΨB(xB)
∏

D∈(γB)\A

mD→B(xB)

Proof. The proof follows from applying Theorem 4.3.1 to the belief term in messages.

4.4 Conditional Beliefs and Cutset Coding

One of the steps of cutset coding is conditioning on the cutset. Recall that in the

Ising case, the cutset was simply the boundary and conditioning amounted to “col-

lapsing” the “energy” of the cutset onto a relevant strip via some edge potentials.

With complex cliques, the conditioning process is a bit more complicated. For exam-

ple, consider the case where a clique simultaneously contains sites from two distinct

clusters, and also the cutset (see Figure 4.2).

4.4.1 Conditional Beliefs

To encode a cluster A conditioned on cutset L, we need to know P (XA = xA|XL =

xL).

Definition 4.4.1. Conditional Belief

Let L ⊂ S be some cluster to be conditioned on, and let xL be the observed configura-

tion on this cluster. Then for cluster A ⊂ S, A ∩ L = ∅, we define the conditional

belief (or the belief of A conditioned on L) to be ZA|L = {ZA|L(xA|xL) : xA ∈ ΛA},
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Figure 4.2: A cluster graph of 3 supernodes. A and B are nodes “to be encoded” and
L is the cutset. An 8-point neighbourhood system is used here.

where,

ZA|L(xA|xL) =
1

ΨL(xL)

∑
xS\(A∪L)

∏
C∈CS

ψC(xAxLxS\(A∪L))



CHAPTER 4. MRFS WITH COMPLEX CLIQUES 83

It is not difficult to see that ZA|L(xA|xL) ∝ P (XA = xA|XL = xL) since,

P (xA|xL) =
P (xA, xL)

P (xL)

=
ZAL(xAxL)

ZL(xL)

=

∑
xS\(A∪L)

∏
C∈CS

ψC(xAxLxS\(A∪L))∑
xS\L

∏
C∈CS

ψC(xLxS\L)

=

ΨL(xL)
∑

xS\(A∪L)

∏
C∈CS

ψC(xAxLxS\(A∪L))

ΨL(xL)
∑
xL

∑
xS\(A∪L)

∏
C∈CS

ψC(xLxLxS\(A∪L))

=
ZA|L(xA|xL)∑

xL

ZA|L(xA|xL)

Now, consider the case of Figure 4.2 above where the graph is partitioned by

clusters A, B, and L. Let these clusters form the cluster graph G = (A,∆A), that

is A = {A,B,L}. What we should immediately note is that G does not satisfy the

minimum-radius condition,

CS ⊃ CG

In fact, by inspection, we can write,

CS = CG ∪∆A,B,L

=
(
CA ∪ CB ∪ CL

)
∪
(

∆A,B ∪∆A,L ∪∆B,L

)
∪∆A,B,L

Also if we consider only the sites in A and B, that is if we let S ′ = A∪B, then the

graph G ′ = (A′,∆A′), where A′ = {A,B}, does indeed satisfy the minimum-radius
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condition 5. This is important to note because if we were interested in encoding G ′

by itself as opposed to encoding it as a subgraph of G conditioned on L, then the BP

procedure detailed in Section 4.3 could be applied.

We now examine the following pathological examples (Figure 4.3).

(a) (b) (c)

Figure 4.3: Various clique arrangements across 4 clusters with 12-point, 8-point, and
20-point neighbourhood systems.

Take the subgraph G ′ = (A′,∆A′) where A′ = A\L, then we notice a few potential

problems. In (a), we see that A′ does not satisfy the minimum-radius condition, and

so BP will not work 6. In (b), we notice a particularly interesting situation where a

clique exists across 4 different clusters. (c) simply illustrates that when using a larger

neighbourhood system, the example in (a) actually exhibits the same phenomenon

shown in (b).

Based on how G ′ and L are chosen, the set of cliques not accounted for by CG can

be quite diverse. 7 Fortunately, the following lemma tells us that these pathological

5Proven in Corollary 4.4.1 below.
6By Lemma 4.2.1, not satisfying the minimum-radius condition means G′ is also acyclic.
7With larger neighbourhoods, if multiple clusters closely border each other, many cliques will

have sites in numerous clusters.
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cliques can be avoided by choosing clusters that allow us to systematically keep track

of all cliques with confidence.

Also, from now on, when we say that a cluster graph G = (A,∆A) is composed

of the subgraph G ′ and some cluster L, we mean that,

A = A′ ∪ {L}

Lemma 4.4.1. Unaccounted Cliques Involve at Most 3 Clusters

Let G be a cluster graph composed of the subgraph G ′, and the cutset cluster L. If G ′

satisfies the minimum-radius condition, then CS\CG is composed of cliques that involve

exactly 3 different clusters including L.

Essentially, this means that as long as we pick G ′ in such a way as to ensure

the minimum-radius condition, then we do not need to worry about the cases where

cliques exist across more than 3 clusters. This is analogous to talking about the order

of cliques - here, we can think of the order of supernode interactions being limited to

at most 3.

Proof. Assume the Lemma is not true. Let G ′ satisfy the minimum-radius condition,

and without loss of generality, say ∃ C ⊂ S such that C contains sites from 4 different

clusters (one of which must be L). Denote these clusters by Ai, Aj, Ak ∈ A′ ⊂ A.

Arbitrarily select sites ai, aj, ak, al ∈ C, where ai ∈ Ai, aj ∈ Aj, ak ∈ Ak, al ∈ L. By

definition of cliques, ai, aj, ak, and al are pairwise neighbours of each other, and so

{ai, aj, ak} is a valid clique. This means ∆Ai,Aj ,Ak
is non-empty. However, since G ′

satisfies the minimum-radius condition, ∆Ai,Aj ,Ak
is necessarily empty, and so we have

a contradiction.
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Note that it may be the case that G itself satisfies the minimum-radius condition.

In this case, it is obvious that CS\CG = ∅.

Corollary 4.4.1. Let some cluster graph be composed of the subgraph G ′, and cluster

L. Let ∆A,B ∈ ∆A′ be a super-cut-edge in G ′. Then for the cluster graph G composed

of G∗ = ({S ′A, S ′B},∆{S′A,S′B}) and L, we have,

CS =
(
CS′A ∪ CS′B ∪ CL

)
∪
(

∆S′A,SB
∪∆S′A,L

∪∆S′B ,L

)
∪∆S′A,S

′
B ,L

= CG ∪∆S′A,S
′
B ,L

This is somewhat of an obvious result since S ′A∪S ′B∪L = S and so any unaccounted

cliques can only involve at most those 3 nodes. For the sake of illustrating how

Lemma 4.4.1 is useful, we present the following proof.

Proof. Since ∆A,B ∈ ∆A′ is a super-cut-edge on G ′, we know that S ′A ∪ S ′B = S ′. By

Lemma 4.2.4 we have CS′ =
(
CS′A ∪CS′B

)
∪∆S′A,S

′
B

, meaning G∗ satisfies the minimum-

radius condition, and so by Lemma 4.4.1, we know that any CS\CG involve 3 clusters.

In this case, these clusters are S ′A, S ′B, and L.

Going back to the initial example in Figure 4.2. Since G ′ = ({A,B},∆{A,B})

satisfies the minimum-radius condition, Corollary 4.4.1 confirms the observation that,

CS =
(
CA ∪ CB ∪ CL

)
∪
(

∆A,B ∪∆A,L ∪∆B,L

)
∪∆A,B,L

= CG ∪∆A,B,L

Using this, we can get the following expression for the conditional belief of A on
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L,

ZA|L(xA|xL) =
1

ΨL(xL)

∑
xS\(A∪L)

∏
C∈CS

ψC(xAxLxS\(A∪L))

=
1

ΨL(xL)

∑
xB

ΨA(xA)ΨB(xB)ΨL(xL)ΨA,B(xAxB)ΨA,L(xAxL)ΨB,L(xBxL)

ΨA,B,L(xAxBxL)

=

(
ΨA(xA)ΨA,L(xAxL)

)∑
xB

ΨA,B(xAxB)ΨA,B,L(xAxBxL)(
ΨB(xB)ΨB,L(xBxL)

)
,

where the first step is by Corollary 4.2.1. It is no surprise that this look strangely

similar to the BP algorithm. Before we continue to formally define Conditional Belief

Propagation, we define the following,

Definition 4.4.2. Conditioned Supernode Self-potential

Let G be a cluster graph. For neighbouring supernodes A,L ∈ A, we define the

supernode self-potential of A conditioned on L to be,

ΨA|L(xAxL) = ΨA(xA)ΨA,L(xAxL)

Note that if A and L are not neighbours, then the result is equivalent to just the

self-potential of supernode A.

Definition 4.4.3. Conditioned Superedge potential

Let G a cluster graph. For pairwise-neighbouring supernodes A,B,L ∈ A, we define
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the superedge potential of ∆A,B ∈ ∆A conditioned on L to be,

ΨA,B|L(xAxBxL) = ΨA,B(xAxB)ΨA,B,L(xAxBxL)

4.4.2 Conditional Belief Propagation

Definition 4.4.4. Conditional Belief on Cluster subgraphs

Let G be a cluster graph composed of a cluster subgraph G ′, and cutset L. Let xL

be the configuration on the observed cluster L. Let G ′A\B = (A′A,∆A′A) be the cluster

subgraph containing cluster A after removing ∆A,B ∈ ∆A′ (a subgraph of G ′). Then

the conditional subgraph belief of cluster A on the subgraph G ′A\B is defined to be

ZA\B|L = {ZA\B|L(xA) : xA ∈ ΛA} where,

ZA\B|L(xA|xL) =
∑
xS′

A
\A

∏
C∈

(
CS′

A
∪∆S′

A
,L

)ψC(xAxS′A\AxL)

=
∑
xS′

A
\A

ΨS′A
(xAxS′A\A)ΨS′A,L

(xAxS′A\AxL)

We now define conditional messages.

Definition 4.4.5. Conditional Messages for Cluster Graphs

Let G be a cluster graph composed of a cluster subgraph G ′, and cutset L. Let xL be

the configuration on the observed cluster L. For some super-cut-edge ∆A,B ∈ ∆A′ (a

super-cut-edge of G ′), the conditional message from supernode B to supernode A

is defined to be mB→A|L = {mB→A|L(xA|xL) : xA ∈ ΛA} where,

mB→A|L(xA|xL) =
∑
xB

ΨA,B(xAxB)ΨA,B,L(xAxBxL)ZB\A|L(xB|xL)
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Lemma 4.4.2. Conditional Cluster Subgraph Message Passing

Let G be a cluster graph composed of cluster subgraph G ′ and cutset L. Let xL be the

configuration on the observed cluster L. Let ∆A,B ∈ ∆A′ be a super-cut-edge of G ′,

then,

ZA|L(xA|xL) = ZA\B|L(xA|xL)mB→A|L(xA|xL)

The proof is analogous to the proof for Lemma 4.3.1.

Proof. By Corollary 4.4.1, we know that,

CS =
(
CS′A ∪ CS′B ∪ CL

)
∪
(

∆S′A,S
′
B
∪∆S′A,L

∪∆S′B ,L

)
∪∆S′A,S

′
B ,L

.

Using the approach we took with the example given in Figure 4.2, we get the

following breakdown of cliques.

ZA|L(xA|xL) =
1

ΨL(xL)

∑
xS\(A∪L)

∏
C∈CS

ψC(xAxLxS\(A∪L))

=
∑

xS\(A∪L)

(
ΨS′A

(xAxS\(A∪L))ΨS′A,L
(xAxLxS\(A∪L))

)
(

ΨS′A,S
′
B

(xAxS\(A∪L))ΨS′A,S
′
B ,L

(xAxLxS\(A∪L))

)
(

ΨS′B
(xS\(A∪L))ΨS′B ,L

(xLxS\(A∪L))

)
.
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Since S\(A ∪ L) = S ′B ∪ (S ′A\A), we can break down the sum.

ZA|L(xA|xL) =
∑
xS′

A
\A

(
ΨS′A

(xAxS′A\A)ΨS′A,L
(xAxS′A\AxL)

)
∑
xS′

B

(
ΨS′A,S

′
B

(xAxS′A\AxS′B)ΨS′A,S
′
B ,L

(xAxS′A\AxS′BxL)

ΨS′B
(xS′B)ΨS′B ,L

(xS′BxL)

)
,

where the sums were separated based on the dependency of the potential functions.

Since S ′B = B ∪ (S ′B\B), we can again break the sum into a double sum.

ZA|L(xA|xL) =
∑
xS′

A
\A

(
ΨS′A

(xAxS′A\A)ΨS′A,L
(xAxS′A\AxL)

)
∑
xB

∑
xS′

B
\B

(
ΨS′A,S

′
B

(xAxS′A\AxS′B)ΨS′A,S
′
B ,L

(xAxS′A\AxS′BxL)

ΨS′B
(xS′B)ΨS′B ,L

(xS′BxL)

)
.

Since G ′A\B and G ′B\A were induced by removing the super-cut-edge ∆A,B ∈ ∆A′ ,

we have that,

∆S′A,S
′
B

= ∆A,B

∆S′A,S
′
B ,L

= ∆A,B,L,
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and so the expression simplifies to,

ZA|L(xA|xL) =
∑
xS′

A
\A

(
ΨS′A

(xAxS′A\A)ΨS′A,L
(xAxS′A\AxL)

)
∑
xB

(
ΨA,B(xAxB)ΨA,B,L(xAxBxL)

∑
xS′

B
\B

ΨS′B
(xBxS′B\B)ΨS′B ,L

(xBxS′B\BxL)

)
,

where again, the sums are separated based on the dependency of potential functions.

Noticing that the first and last term are simply conditional beliefs on subgraphs, we

get,

ZA|L(xA|xL) = ZA\B|L(xA|xL)
∑
xB

ΨA,B(xAxB)ΨA,B,L(xAxBxL)ZB\A|L(xB|xL)

= ZA\B|L(xA|xL)mB→A|L(xA|xL).

Lemma 4.4.2 provides the basis for Conditional BP on a cutset L. Assuming

that G ′ is an acyclic graph, then it satisfies the minimum-radius condition, and every

subgraph satisfies it as well. Also, since every superedge is a super-cut-edge, we can

decompose the conditional beliefs.

Theorem 4.4.1. Conditional Belief Decomposition for Acyclic Cluster Graphs

Let G be a cluster graph composed of acyclic cluster subgraph G ′ and cutset L. Taking
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cluster A ∈ A′, we have,

ZA|L(xA|xL) = ΨA|L(xAxL)
∏
B∈γA

mB→A|L(xA|xL).

Proof. The proof is analogous to the proof for Theorem 4.3.1. Since G ′ is acyclic, we

can repeatedly apply Lemma 4.4.2 to subgraphs conditioned on L 8.

When comparing this procedure to the simpler one in the Ising case, this makes

heuristic sense. The conditional beliefs do indeed show a “collapsing” of potentials

from the cutset to the cluster graph of interest. At the same time, because of the

higher order cliques, the superedges require some “conditioning” as well. We view

these superedges as having some “ends” that hold constant (observed) value. Finally,

Lemma 4.4.1 and Corollary 4.4.1 assures us that conditioning will never result in one

of the pathological cases we discussed previously where some cliques are unaccounted

for.

Theorem 4.4.2. Conditional Message Recursion on Cluster Graphs

Let G be a cluster graph composed of acyclic cluster subgraph G ′ and cutset L. Mes-

sages can be expressed recursively by,

mB→A|L(xA|xL) =
∑
xB

ΨA,B(xAxB)ΨA,B,L(xAxBxL)ΨB|L(xBxL)
∏

D∈(γB)\A

mD→B|L(xB|xL)

8The cluster subgraphs at each iteration are composed of a subgraph induced by removing a
super-cut-edge and L.
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4.5 Classifying Cliques and Potentials

The following classification for cliques and potentials will come in useful when dis-

cussing estimation for MRF’s with complex cliques.

4.5.1 Clique Types

Definition 4.5.1. Geometrically Related Cliques

If two cliques are related to each other by some constant shift in sites, then they

are geometrically related. That is, assume that sites are identified by the vector

~s = 〈x, y〉. Let C = {~s1, . . . , ~sn}, and C∗ = {~s∗1, . . . , ~s∗n}, then ~si = ~s∗i + ~d ∀1 ≤ i ≤ n

where ~d is some constant vector in R2.

Definition 4.5.2. Clique Type

A clique type refers to a class of geometrically related cliques. Given a neighbourhood

system N , we enumerate all possible clique types and denote the set of these types by

C = {Ci}. For A ⊆ S, Ci(A) is the set of all cliques of type i on A.

Figure 4.4: Clique types for a 12-point neighbourhood system.

Figure 4.4 shows possible clique types for different neighbourhood systems. Note
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how it is possible for a neighbourhood to contain more than one clique of a certain

type - this is generally true for larger neighbourhoods, and cliques of lower order.

Lemma 4.5.1. Clique Types and Total Cliques

Let M = (S,N,V) be an MRF with clique type C. Then for A ⊆ S,

CA =

|C|⋃
i=1

Ci(A)

Proof. Result follows by definition of clique type.

Corollary 4.5.1. Clique Types and Manipulating Potentials

Let M = (S,N,V) be an MRF with clique type C. Then for A ⊆ S,

ΨA(xA) = exp

− |C|∑
i=1

∑
C∈Ci(A)

VC(xA)


Proof. By Lemma 4.5.1

ΨA(xA) =
∏
C∈CA

ψC(xA)

=

|C|∏
i=1

( ∏
C∈Ci

ψC(xA)

)

= exp

− |C|∑
i=1

∑
C∈Ci(A)

VC(xA)
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4.5.2 Linear Parameter Potentials

As discussed previously, potential functions are often governed by a parameter θ.

Here, we are interested in a particular kind of potential functions we call the linear

parameter potentials.

Definition 4.5.3. Linear Parameter Potentials

A potential function VC is a linear parameter potential if it is of the following form,

VC(xC) = ξC(xC)θC + c

where θC is the governing parameter for the potential. ξC is some real valued function

mapping from the configuration on clique C; and c ∈ R is some constant (call these

the ranking function and ranking constant).

We denote Θ the space of parameters that govern the potentials for a MRF. In

the case of the Ising model, θ = {θ1, θ2}, θ ∈ Θ. The following definitions follow.

Definition 4.5.4. Clique Type Parameters

For a MRF with |C| enumerated clique types in C, the set θ = {θ1, . . . , θ|C|} will denote

the the corresponding parameters for each clique type.

Definition 4.5.5. Clique Type Potentials

For a MRF with |C| enumerated clique types in C, the set V = {V1, . . . , V|C|} will

denote the the corresponding potential functions for each clique type.

Likewise, ξ = {ξi} and c = {ci} denote the associated ranking functions and

constants on relevant sites. We shall soon see that MRFs with only linear parameter

potentials can be estimated by LS or MLE.
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4.6 Estimation

We now go over LS and ML estimation techniques for MRF’s with complex cliques. As

it turns out, as long as the MRF has only linear parameter potentials, the estimation

procedure does not change much.

4.6.1 Least Squares

Lemma 4.6.1. Let MRF M = (S,N,V) have only linear parameter potentials, then

for some site s ∈ S and λs, λ
∗
s ∈ Λ,

ln

(
P (Xs = λs|XNs = xNs)

P (Xs = λ∗s|XNs = xNs)

)
= −

|C|∑
k=1

∑
C∈Ck(s∪Ns)

(
θk
(
ξk(xC)− ξk(xC)

))

For all intents and purposes, the probabilities above do not need to be conditional;

we use them to illustrate that during LS estimation, we hold the configuration of the

neighbourhood constant.

Proof.

P (Xs = λs|XNs = xNs)

P (Xs = λ∗s|XNs = xNs)
=
P (Xs = λs, XNs = xNs)

P (Xs = λ∗s, XNs = xNs)

=
Z(s∪Ns)(λsxNs)

Z(s∪Ns)(λ
∗
sxNs)

=

∑
xS\(s∪Ns)

∏
C⊂S

ψC
(
λsxNsxS\(s∪Ns)

)
∑

xS\(s∪Ns)

∏
C⊂S

ψC
(
λ∗sxNsxS\(s∪Ns)

) .
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By Corollary 4.2.1, we have,

Z(s∪Ns)(λsxNs)

Z(s∪Ns)(λ
∗
sxNs)

=

Ψ(s∪Ns)(λsxNs)
∑

xS\(s∪Ns)

ΨS\(s∪Ns)(xS\(s∪Ns))

Ψ(s∪Ns)(λ
∗
sxNs)

∑
xS\(s∪Ns)

ΨS\(s∪Ns)(xS\(s∪Ns))

Ψ(s∪Ns),(S\(s∪Ns))((λsxNsxS\(s∪Ns))

Ψ(s∪Ns),(S\(s∪Ns))((λ
∗
sxNsxS\(s∪Ns))

=
Ψ(s∪Ns)(λsxNs)

Ψ(s∪Ns)(λ
∗
sxNs)

=

exp

− ∑
C⊂(s∪Ns)

VC(λsxNs)


exp

− ∑
C⊂(s∪Ns)

VC(λ∗sxNs)


= exp

− ∑
C⊂(s∪Ns)

(
VC(λsxNs)− VC(λ∗sxNs)

)
.

By Corollary 4.5.1, and by the fact that all the potentials are of the linear param-

eter type, we have,

−
∑

C⊂(s∪Ns)

(
θC
(
ξ(λsxNs)−ξ(λ∗sxNs)

))
= −

|C|∑
k=1

∑
C∈Ck(s∪Ns)

(
θk
(
ξk(λsxNs)−ξk(λ∗sxNs)

))

and so,

ln

(
P (Xs = λs|XNs = xNs)

P (Xs = λ∗s|XNs = xNs)

)
= −

|C|∑
k=1

∑
C∈Ck(s∪Ns)

(
θk
(
ξk(λsxNs)− ξk(λ∗sxNs)

))
.
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P (Xs∪Ns = λsxNs) and P (Xs∪Ns = λ∗sxNs) can be empirically determined by

collecting data from a training set. Once these are found, we end up with a set of

overdetermined linear equations which we could use to solve for θ ∈ Θ. To be precise,

there are, (
r

2

)
r|∂s|

equations, where r = |Λ| is the cardinality of the phase space (number of possible

values that a site can take). There are r|∂s| possible neighbourhood configurations

around the site s, and for each specific neighbourhood, there are
(
r
2

)
possible combi-

nations for comparing differing values on site s.

The following steps summarize the estimation procedure.

1. Collect data for various neighbourhood and site configurations.

2. Construct an over-determined system of equations with θ = {θ1, . . . , θ|C|} un-

knowns.

(a) Use data from (1) to compute the L.H.S. of Lemma 4.6.1.

(b) Compute the relevant coefficients for each θk using the R.H.S of Lemma 4.6.1.

3. Solve by least squares method.

4.6.2 MLE

As discussed previously, ML estimation attempts to maximize the likelihood, L(θ),

over the space of parameters Θ. The likelihood function is the probability of some
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observations given some parameter θ ∈ Θ,

L(θ) = f(x1, . . . , xn|θ)

= f(x1|θ) . . . f(xn|θ)

=
n∏
i=1

f(xi|θ).

When appropriate, this is equivalent to maximizing the log likelihood lnL(θ),

ln
(
L(θ)

)
=

n∑
i=1

ln
(
f(xi|θ)

)
.

In our case, it is obvious that the MRF is part of the exponential family by the

way it is defined, and so,

θ̂ = arg max
θ∈Θ

L(θ)

= arg max
θ∈Θ

ln
(
L(θ)

)
.

More specifically, we have,

fX|Θ(x|θ) =
1

Q(θ)

∏
C⊂V

exp
(
− VC(x, θ)

)
,

where the updated notation of VC appropriately indicates dependency on θ. Hence,

L(θ) =
1

Q(θ)n

n∏
i=1

(
exp

(
−
∑
C⊂V

VC(xi, θ)

))
.
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Maximizing the log likelihood over Θ then becomes,

θ̂ = arg max
θ∈Θ

ln
(
L(θ)

)
= arg max

θ∈Θ

(
−n lnQ(θ)−

n∑
i=1

(∑
C⊂V

VC(xi, θ)

))
.

As we discussed previously, direct computation of the partition function Q(θ) is

intractable, and so θ̂ can only be approximated by locally searching via gradient

ascent. To do this, we need to compute the gradient at each step.

{
∂

∂θk
ln
(
L(θ)

)}

We present the following Lemma regarding the gradient for MRF’s with linear

parameter potentials.

Lemma 4.6.2. Let MRF M = (S,N,V) be a MRF which has only linear parameter

potentials, then,

∂

∂θk
ln
(
L(θ)

)
= n

(
µ(tk)− tk(x1, . . . , xn)

)
where Ck ∈ C and,

tk(x1, . . . , xn) =
1

n

n∑
i=1

∑
C∈Ck(S)

ξk(xiC )

µ(tk) =
∑
x∈ΛS

π(x)

 ∑
C∈Ck(S)

ξk(xiC )


are statistics with respect to θk ∈ θ.

Proof. First, note that by Corollary 4.5.1 we have,
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ln
(
L(θ)

)
= −n lnQ(θ)−

n∑
i=1

 |C|∑
k=1

∑
C∈Ck(S)

VC(xi, θ)


= −n lnQ(θ)−

n∑
i=1

 |C|∑
k=1

∑
C∈Ck(S)

(
θkξk(xiC ) + ck

)
The last part follows from the fact that MRF has only linear parameter potentials.

The xiC refers to the configuration on clique C for sample i; recall that potentials

depend only on its relevant clique. Now, given the statistics {tk}, we get,

ln
(
L(θ)

)
= −n lnQ(θ)−

n∑
i=1

 |C|∑
k=1

∑
C∈Ck(S)

(
θkξk(xiC ) + ck

)
= −n lnQ(θ)− n

 |C|∑
k=1

θk

 1

n

n∑
i=1

∑
C∈Ck(S)

ξk(xiC )


−

n∑
i=1

|C|∑
k=1

∑
C∈Ck(S)

ck

= −n lnQ(θ)− n

 |C|∑
k=1

θktk(x1, . . . , xn)

− n∑
i=1

|C|∑
k=1

ck

∣∣∣Ck(S)
∣∣∣.

Now, taking the partial derivative with respect to θk, we have,

∂

∂θk
ln
(
L(θ)

)
= −n 1

Q(θ)

∂

∂θk
Q(θ)− ntk(x1, . . . , xn).
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Taking a closer look at the partition function Q(θ),

Q(θ) =
∑
x∈ΛS

exp

(
−
∑
C⊂S

VC(x, θ)

)

=
∑
x∈ΛS

exp

− |C|∑
k=1

∑
C∈Ck(S)

(
θkξk(xC) + ck

)

∂

∂θk
Q(θ) =

∑
x∈ΛS

exp

− |C|∑
k=1

∑
C∈Ck(S)

(
θkξk(xC) + ck

)− ∑
C∈Ck(S)

ξk(xC)

 .

Thus we obtain the following expression,

∂

∂θk
ln
(
L(θ)

)
= −n 1

Q(θ)

∂

∂θk
Q(θ)− ntk(x1, . . . , xn)

= −n
∑
x∈ΛS

1

Q(θ)
exp

− |C|∑
k=1

∑
C∈Ck(S)

θkξk(xC)

− ∑
C∈Ck(S)

ξk(xC)


− ntk(x1, . . . , xn)

= n
∑
x∈ΛS

π(x)

 ∑
C∈Ck(S)

ξk(xiC )

− ntk(x1, . . . , xn)

= n
(
µ(tk)− tk(x1, . . . , xn)

)
.

As mentioned in Chapter 2, calculating the gradient amounts to moment matching

to a set of training data. We now review the estimation procedure when approximat-

ing θ̂ by gradient ascent.

1. Approximate {µ(tk)} by taking a “sufficiently large” set of training data and
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computing the relevant statistics {tk}.

2. Start by picking an initial guess θ = {θk}.

3. Generate a “sufficiently large” set of n samples (x1, . . . , xn) with the Gibbs Sam-

pler using θ as parameters, and compute the relevant statistics {tk(x1, . . . , xn)}

over the set of samples.

4. Using Lemma 4.6.2, compute the gradient using {µ(tk)} from (1), and {tk(x1, . . . , xn)}

from (3).

5. Increment θ in the direction of gradient and use this as the new “guess”. Again,

note that we are maximizing L and hence need to travel in the direction of

steepest ascent.

6. Repeat steps (3) to (5) until the gradient becomes small.

The maximum likelihood (ML) method is computationally time consuming since

the Gibbs Sampler is used at every step to generate n samples. The number of samples

needed for approximation increases exponentially with the number of sites |S|, and

the size of phase space |Λ|. The time to generate a sample increases with |S| and |Λ|

as well. Finally, with complex cliques and larger neighbourhood systems, the number

of clique types |C| increases rapidly as well, increasing the number of statistics to be

computed.



Chapter 5

Precoding with Complex Cliques

We now utilize the precoding procedure described in Chapter 3 with higher order

cliques. The general procedure remains the same. The only adjustments we make are

to steps (1) and (5),

• Step 1: Establish MRF and cutset specifications. We now need to choose the

appropriate cutset and clusters so to satisfy the minimum radius condition.

• Step 5: Encode components. We now use conditional belief propagation.

Some results are presented here, and the Chapter ends with some suggestions for

future work.

5.1 Minimum Radius Clustering

We saw from Chapter 4 that a prerequisite for the BP algorithm is a cluster graph G

composed of acyclic subgraph G ′ and cutset L. In Chapter 3, the cutsets were hori-

zontal strips 1-pixel in thickness. This segmented the image into multiple horizontal

104
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slices of a certain column spacing. These slices were treated as individual MRF’s

and cluster graphs were generated by grouping sites within the same pixel column.

This was then followed by arithmetic coding via BP. Since the neighbourhood system

was of the 4-point Ising type, notice that for graph G composed of a given slice and

relevant cutsets1, the subgraph G ′ was clearly acyclic since the “radius” of the neigh-

bourhood is 1-pixel. That is, there were no cliques that extended beyond 1-pixel in

either direction2, meaning all clique potentials within the graph were captured by the

self potentials of supernodes and superedges. We now provide a more well defined

statement of this method.

Definition 5.1.1. Radius of a Neighbourhood

Let the set of sites S be a finite 2-D grid identified by ordered pairs as per usual in R2.

Then the radius, denoted rs, of a neighbourhood Ns, s ∈ S, is the largest distance

between the specifying site s of Ns and any other site t ∈ Ns, where distance is as

usually defined in R2. That is,

rs = max
t∈Ns

d(s, t)

For the Ising 4-point neighbourhood, rs = 1. Similarly, we define the width of a

clique.

Definition 5.1.2. Width of a Clique

The width of a clique C is given by,

wC = max
s,t∈C

d(s, t)

1Mainly the 1-pixel strips above and below “bordering” the slice.
2Towards the clusters immediately before or after. In this case the clusters immediately left and

right.
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It is not too hard to see that the width of a clique will always be less or equal to

the radius of a neighbourhood.

Lemma 5.1.1. Widths of Cliques Less or Equal to Radius of Neighbourhood

For some site s ∈ S and clique C ⊂ Ns,

wC ≤ rs

Proof. The result follows by definition of cliques being a group of sites that are pair-

wise neighbours. By symmetry of neighbourhoods, the maximum width of a clique

cannot exceed the radius of the neighbourhood.

We now present the following result regarding cluster graphs which satisfy the

minimum radius condition.

Theorem 5.1.1. Minimum Radius Cluster Graphs

For a cluster graph G ′ = (A′,∆A′) induced by MRF M = (S ′, N,V), G ′ satisfies the

minimum radius condition if for every cluster Ai ∈ A′, we have that the following is

true for any Aj, Ak ∈ γAi.

d(aj, ak) > max(raj , rak)

∀ aj ∈ Aj, and ak ∈ Ak.

That is to say, a cluster graph satisfies the minimum radius condition if given any

cluster Ai, the minimum distance between any of its two neighbour-clusters Aj and

Ak is greater than the radius of a neighbourhood.
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Proof. Since the distance between any two sites ofAj andAk is more than the radius of

a neighbourhood, Lemma 5.1.1 state that no clique can span across Aj andAk (contain

site from both clusters). More importantly, this means that no clique can span across

all three clusters Ai, Aj, and Ak. Thus, the superedges {∆Ai,Al
: Al ∈ γAi}, contain

all cliques that span across Ai and other nodes in A′. Since this is true ∀ Ai ∈ A′,

we have that CS′ = CG′ .

This provides the justification for clustering as we did in Chapter 3. We can now

also use Theorem 5.1.1 to formulate the following procedure for generating acyclic

graphs.

1. Choose cutsets (in this case horizontal strips) to generate slices for encoding.

2. For each slice, cluster by sequentially grouping columns at least rs in width

from left to right. This ensures that the condition specified by Theorem 5.1.1

is satisfied. 3

In Chapter 4, we mentioned that the minimum radius condition itself is not enough

to ensure acyclic-ness due to the possibility of picking a “strange” cutset. Here, by

inspection, since we are sequentially generating a linear line of clusters, there cannot

be any loops or “doughnuts”, and hence the generated cluster graph must be acyclic.

5.2 Results and Discussion

The experimental results here are generated using cutsets of thickness rs and slices of

column spacing 2rs. Clusters are generated by grouping rs columns within the slices.

3By exactly +1 in distance.
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Each slice is treated as the cluster subgraph G ′ that make up a cluster graph G along

with cutset L. Cutset L contains the sites in the strips immediately above and below

the slice. Linear parameter potentials are assumed as well.

5.2.1 Some Results

The test image used is shown in Figure 5.1. We use a MRF with the diamond neigh-

bourhood system shown in Figure 5.2. Estimates are made only for the parameters

for the cliques listed in the Table 5.1. All other cliques types are assumed have zero

parameter. The potentials on simple cliques are assumed to be of the “Ising” kind.

Figure 5.1: Test Image “opp2”

Figure 5.2: “Diamond” neighbourhood and some cliques.
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Clique Type (i) θi

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

Table 5.1: Clique types used.

Using the parameters in Table 5.2 below, an overall coding rate of 0.0970 is

achieved.

Clique Type (i) θi

i = 0 0.064

i = 1 0.062

i = 2 0.062

i = 3 0.063

i = 4 0.077

i = 5 0.072

Table 5.2: ML estimates using θi = 0.5 initial guess.
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Using the parameters in Table 5.3 below, an overall coding rate of 0.1058 is

achieved.

Clique Type (i) θi

i = 0 0.987

i = 1 1.109

i = 2 0.488

i = 3 0.316

i = 4 -0.132

i = 5 -0.068

Table 5.3: ML estimates using LS estimate as initial guess.

Both sets of parameters are ML estimates; they differ only in choice of initial

guess.

Note that the cliques used are all of the simple type. We simply expanded the

neighbourhood size, but have ignored the higher order cliques by setting their param-

eters to 0. We introduce the “square” clique, shown as clique type 6 in Table 5.1.

Using the parameters in Table 5.4 below, an overall coding rate of 0.1326 is

achieved. A general “ranking” function is used for the type 6 clique potential to

give higher probability to “homogeneous” configurations 4.

4Referring to configurations with generally the same pixel phases across the clique. In the interest
of time, we do not go over a detailed breakdown of our ranking function here.
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Clique Type (i) θi

i = 0 1.610

i = 1 1.609

i = 2 -0.098

i = 3 -0.096

i = 4 0.028

i = 5 0.025

i = 6 -5.344

Table 5.4: ML estimates, including parameter for square clique. Square clique poten-
tial favours “homogeneous” configurations.

Using the parameters in Table 5.5 below, an overall coding rate of 0.0977 is

achieved. The potential function of clique type 6 uses the same “ranking” approach

mentioned above, but additionally, adds bias against “diagonal” patterns by reducing

the rank for such configurations (Figure 5.3).
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Clique Type (i) θi

i = 0 1.010

i = 1 0.995

i = 2 0.313

i = 3 0.308

i = 4 -0.097

i = 5 -0.348

i = 6 0.348

Table 5.5: ML estimates. Square clique potential contains specific bias against “di-
agonal” patterns.

(a) (b)

Figure 5.3: “Cross diagonal” patterns in a square clique.

Overall, when compared to the results from Figure 3.3 in Chapter 3, using the

parameters in Table 5.5 does yield a slightly better coding rate for similar line spacing.

We conclude that in this case, the image can be suitably encoded by MRFs with simple

cliques (e.g. the Ising model), and that the introduction of complex cliques only yield

a marginal improvement that does not justify its computation cost. Nonetheless, the
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rate improvement shows that using complex cliques to capture larger structures can

indeed be advantageous.

5.2.2 Discussion

Local Maximums

By using 2 different starting “guesses”, MLE yield 2 completely different sets of

parameters (Tables 5.2, and 5.3). This indicates that there are numerous local maxima

on the likelihood. This is not surprising due to the increase in dimensionality. Also, by

comparing the vertical and horizontal parameters (clique types 0,1,4,5) of Tables 5.2

with those of Table 5.3, we note that in the latter case exhibit significantly stronger

interaction on “close” vertical/horizontal neighbours, but much weaker interaction

on “far” ones. In some sense, we can interpret this as a case of spurious correlations

caused by near/far neighbours of the same direction acting as facilitating/suppressing

variables.

Non-uniqueness of Potentials

In Chapter 2, it was briefly mentioned that the potentials are not unique. That is,

different types of cliques, and different types of potential functions can, together, sum

up to the same distribution over configurations; giving rise to the same MRF. Thus,

deciding which “group” of potentials to use is not a trivial task, and determining

which group suits best for a space of images is difficult as well.
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Computational Complexity

With more parameters to learn, the iterations needed for MLE with the gradient

ascent method increase. This can be attributed in part to the increased number of

statistics and computations needed for learning and Gibbs sampling. More impor-

tantly, as mentioned above, the increase in dimensionality results in a more difficult

search on the likelihood. MLE’s with strict stopping conditions may not have a solu-

tion, or may take multiple attempts and significantly more iterations to complete.

Also, increasing the neighbourhood system and using complex cliques result in

larger clusters (if one adheres to a method which satisfies the minimum radius re-

quirement). This means the super-alphabet for encoding the clusters grows large as

well, increasing the computation time.

5.3 Future Work

5.3.1 Identifying Cliques and Potentials

With the introduction of complex cliques, one of the problems we observed is the

non-uniqueness of potentials. This could be either potentials which vary in their

parameters or entirely different potentials on entirely different cliques. For MLE,

growing numbers of clique types results in a rapid increase in the difficulty of learning

a desired set of parameters. This problem should be addressed on two fronts. First,

as mentioned in Chapter 2, there has been past work regarding the uniqueness of

potential distributions that arise [9, 10, 11]. Chapter 2 also mentioned that one way

of doing this is to use normalized potentials, though this could be quite restricting

to the types of potentials functions that can be used. Thus, one direction for future
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work could be to identify standard ways by which potentials could be formulated to

guarantee uniqueness. Second, to avoid the problem seen in the results of Table 5.2

and 5.3, we should try to use as few clique types as possible. Essentially, this amounts

to identifying the minimal sufficient statistics (potentials) on the cliques which capture

“most” features.

5.3.2 Coding and Computational Considerations

Due to the fact that the MLE computation time can be quite lengthy (especially for

MRFs with complex cliques or high number of clique types), one practical considera-

tion for coding purposes might be to use bins of MRFs. That is, learn the appropriate

MRFs and parameters for some space of images offline, and classify the results into

bins. The coding procedure could then be sped up by replacing the precoding phase

with a supervised classification procedure that simply identifies the “bin” of param-

eters to use. This would also eliminate the cost of encoding MRF parameters.
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