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Abstract

This thesis is concerned with studying the question whether or not Gaussian mixtures have

finitely many critical points. The relevance of this problem to the convergence of the mean-

shift algorithm is discussed and an overview of some basic properties of the critical points

of Gaussian mixtures is provided. Some previous results that are then reviewed include a

reduction of this problem in the homoscedastic case and the construction of a very simple

mixture with a large but finite number of critical points. A class of counterexamples is

then presented that indicate that the inverse function theorem cannot be used to provide a

direct solution to this problem. Finally, while the general problem is left unsolved, a proof

is obtained in each of two special cases not previously seen in the literature.
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1 Introduction

The aim of this thesis is to investigate the following question: do all Gaussian mixtures

have finitely many critical points? While the critical points of Gaussian mixtures have been

studied in the past, the focus has usually been on finding tight bounds on modality (i.e.,

number of local maxima), and such bounds have only been obtained in rather restricted

settings. In contrast, we seek a very loose bound on the total number of critical points

(including minima and saddle points).

A solution to the problem at hand would have direct implications for the so-called “mean-

shift algorithm.” Thus, for motivational purposes, we begin by introducing this algorithm

in Section 2.1. The mean-shift, first introduced in [8], is a mode-seeking algorithm intended

for a class of multimodal probability density functions that arise in density estimation; that

is, it was designed to find the local maxima of such functions. Knowledge of the locations

of such maxima may be used, for instance, in certain clustering schemes (see [4]).

However, the mean-shift is not guaranteed to converge. After reviewing the conditions

for convergence given in [12] and demonstrating in Section 2.2 that some basic facts from

[13] can be generalized, we introduce Gaussian mixtures in Section 3.1. These form an

important class of density functions for which the mean-shift will always converge provided

the following conjecture holds: Gaussian mixtures cannot have an infinite number of critical

points.

We continue in this section by specializing some of the results from Section 2.2 to the

case of Gaussian mixtures and presenting a result of [3] that simplifies our conjecture in the

case of homoscedastic mixtures. In Section 3.2, we present an interesting construction of

1



a simple high-modality mixture from [6]. This example is instructive with regards to the

unexpected behaviour that Gaussian mixtures can exhibit. However, our main focus is on

the fact that, as a rather trivial consequence of a preliminary result in the same paper, this

mixture satisfies our conjecture.

The rest of the thesis contains some results and constructions that we have not seen in

the literature. In Section 4, we construct a simple class of Gaussian mixtures in order to

show that the most direct approach to proving our conjecture (i.e., application of the inverse

function theorem) may not always succeed. Unfortunately, we are unable to characterize

any interesting situations in which such an approach does succeed.

Finally, in Section 5, we examine some situations under which the number of critical

points of a Gaussian mixture can be seen to be finite. It is significantly easier to identify

such situations when the critical points lie on a sufficiently smooth (in fact, analytic) curve.

Our approach is thus to use some of the basic properties of the critical points to determine

conditions under which this occurs. In particular, we show that proportional-covariance

mixtures whose component means lie on a straight line and 2-component mixtures with

arbitrary covariances have finitely many critical points.

2 Kernel Density Estimation and the Mean-Shift

2.1 Definitions and Convergence Criteria

The following discussion follows in the spirit of [5] and [9] but in the more general setting of

[12].
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Definition. Let k : [0,∞)→ [0,∞) be a non-increasing C1 function1 that is not identically

0. By a kernel with profile k, we mean an integrable function K : Rd → [0,∞) of the form

K(x) = Ck(‖x‖2), where C is a normalizing constant (so that K integrates to 1 over Rd).

Note. Given k as above, define K : Rd → [0,∞) by K(x) = Ck(‖x‖2), where C is a constant.

Then by Lemma C.2, K is integrable over Rd if and only if k(t2)td−1 is integrable over [0,∞).

Definition. Let K be a kernel with profile k and let H1, . . . , Hn be symmetric, positive-

definite d× d real matrices. Given a data sample x1, . . . , xn ∈ Rd drawn from a probability

distribution over Rd with density function f , a kernel density estimator f̂ : Rd → R of f

with kernel K is a function of the form

f̂(x) =
n∑
i=1

πiKi(x),

where (letting |A| = | det(A)| for any square matrix A)

Ki(x) = |Hi|−1/2K(H
−1/2
i (x− xi)) = Cik

(
(x− xi)>H−1i (x− xi)

)
,

Ci = C|Hi|−1/2, and the πi are elements of [0, 1] satisfying
n∑
i=1

πi = 1.

Note.

1. Since ∫
Rd

Ki(x) dx =

∫
Rd

K(H
−1/2
i x)|Hi|−1/2 dx =

∫
Rd

K(x) dx = 1,

the |Hi|−1/2 factor in the above summands ensures that f̂ is indeed a probability

density.

2. The matrices Hi are sometimes referred to as the bandwidth matrices of f̂ .

1See Appendix C on differentiability at the endpoints of a half-open interval and the notation used below.
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For the following discussion, fix a kernel density estimator f̂ as above. For convenience,

we shall define the norm ‖v‖2i = v>H−1i v for v ∈ Rd.

Assumption 1. Without loss of generality, we shall always assume that 0 < πi < 1 and

that the xi are distinct.

Definition. We shall refer to the local maxima of a probability density function as its modes.

It is often desirable to locate the modes of a density estimate f̂ . For instance, consider

the problem of clustering the data points x1, . . . , xn: generally speaking, this involves de-

termining a partition of {x1, . . . , xn} such that points in the same partition element share

similar features. One approach to clustering begins by postulating that the data has been

drawn from a multimodal density function. Then the space in which the data resides can be

partitioned into the regions whose points are nearest (in some sense) to the various modes;

this then induces a partition of the data.

A mode of f̂ , being a critical point, must satisfy ∇f̂(x) = 0, where

∇f̂(x) =
n∑
i=1

πi∇Ki(x)

and by symmetry of the Hi,

∇Ki(x) = Cik
′((x− xi)>H−1i (x− xi))

(
H−1i (x− xi) +H−>i (x− xi)

)
= 2Cik

′(‖x− xi‖2i )H−1i (x− xi). (1)

Assumption 2. Suppose that the derivative of the kernel profile k satisfies k′ < 0.

By the above assumption, if we let Li(x) = −2Cik
′ (‖x− xi‖2i ) > 0, then

n∑
i=1

πiLi(x)H−1i
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is invertible; we can thus write

∇f̂(x) =
n∑
i=1

πiLi(x)H−1i (xi − x)

=

[
n∑
i=1

πiLi(x)H−1i

]( n∑
i=1

πiLi(x)H−1i

)−1( n∑
i=1

πiLi(x)H−1i xi

)
− x


=

[
n∑
i=1

πiLi(x)H−1i

]
m(x), (2)

where

m(x) =

(
n∑
i=1

πiLi(x)H−1i

)−1( n∑
i=1

πiLi(x)H−1i xi

)
− x

=

(
n∑
i=1

πiLi(x)H−1i

)−1
∇f̂(x).

Thus, x is a critical point of f̂ if and only if m(x) = 0; equivalently, x must be a fixed point

of the map x 7→ x+m(x). This motivates the mean shift algorithm for seeking modes of f̂ :

an initial value y1 ∈ Rd is chosen and the sequence yj is computed via the iterative algorithm

yj+1 = yj +m(yj) =

(
n∑
i=1

πiLi(yj)H
−1
i

)−1( n∑
i=1

πiLi(yj)H
−1
i xi

)
. (3)

If this sequence converges1 to some y ∈ Rd, then taking the limit in j on both sides of the

first equality above yields y = y + m(y) by continuity of k′, so ∇f̂(y) = 0. In other words,

if the sequence generated by the mean-shift algorithm converges, then its limit is a critical

point of the kernel density estimate.

Note also that by positive-definiteness,

(∇f̂(x))>m(x) = (∇f̂(x))>

(
n∑
i=1

πiLi(x)H−1i

)−1
∇f̂(x) ≥ 0,

1In practice, of course, the yj may not converge in a finite number of steps, if indeed they converge at

all. Thus, one may wish to halt the algorithm once ‖yj+1 − yj‖ drops below a designated threshold.

5



with equality if and only if ∇f̂(x) = 0. Thus, f̂ at x increases in the m(x) direction.

Following incorrect proofs of convergence in [5] and [1], criteria for convergence of the

mean-shift were given in the following theorem of [12]; we reproduce the proof here with

some additional clarifications.

Theorem 2.1. Let f̂ satisfy the assumptions above and suppose that k is convex2 and k′ is

bounded.

(a) The sequence f̂(yj) converges.

(b) If yj converges to y, then y is a critical point of f̂ .

(c) The sequence yj converges if the set of critical points of f̂ is finite.

Proof. It has already been shown above that (b) holds.

To prove (a), it suffices to show that f̂(yj) is monotonic, since it is bounded. Now

f̂(yj+1)− f̂(yj) =
n∑
i=1

πi(Ki(yj+1)−Ki(yj))

=
n∑
i=1

πiCi
(
k(‖yj+1 − xi‖2i )− k(‖yj − xi‖2i )

)
≥

n∑
i=1

πiCik
′(‖yj − xi‖2i )

(
‖yj+1 − xi‖2i − ‖yj − xi‖2i

)
(by convexity)

=
1

2

n∑
i=1

πiLi(yj)
(
‖yj − xi‖2i − ‖yj+1 − xi‖2i

)
.

But

‖yj − xi‖2i − ‖yj+1 − xi‖2i = ‖yj − xi‖2i − ‖yj+1 − yj + yj − xi‖2i

= ‖yj − xi‖2i − ‖yj+1 − yj‖2i + 2(yj+1 − yj)>H−1i (xi − yj)− ‖yj − xi‖2i

2See Appendix C.1.
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= 2(yj+1 − yj)>H−1i (xi − yj)− ‖yj+1 − yj‖2i

≥ 2(yj+1 − yj)>H−1i (xi − yj),

so that

f̂(yj+1)− f̂(yj) ≥
n∑
i=1

πiLi(yj)(yj+1 − yj)>H−1i (xi − yj)

= (yj+1 − yj)>
[

n∑
i=1

πiLi(yj)H
−1
i xi −

n∑
i=1

πiLi(yj)H
−1
i yj

]

= (yj+1 − yj)>
[

n∑
i=1

πiLi(yj)H
−1
i yj+1 −

n∑
i=1

πiLi(yj)H
−1
i yj

]
(by (3))

= (yj+1 − yj)>
(

n∑
i=1

πiLi(yj)H
−1
i

)
(yj+1 − yj) (4)

≥ 0,

with equality if and only if yj = yj+1 by positive-definiteness of the Hi and the hypotheses

on k′. This proves (a).

Let us turn to the proof of (c). If yj = yj+1 for some j, then we are done, so suppose

otherwise; this immediately implies that f̂(yj) is strictly increasing and that ∇f̂(yj) 6= 0 for

all j. Now from (4),

f̂(yj+1)− f̂(yj) ≥
n∑
i=1

πiLi(yj)‖yj+1 − yj‖2i ≥ 0.

Thus, since f̂(yj+1)− f̂(yj)→ 0, either ‖yj+1 − yj‖i → 0 or

n∑
i=1

πiLi(yj)→ 0.

But since k′ < 0 and k is convex, the latter is only possible if yj gets arbitrarily far from

the xi; this would in turn imply that f̂(yj)→ 0, contradicting the fact that this quantity is
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increasing. Thus3,

yj+1 − yj → 0.

It follows from (2) and then (3) that

∇f̂(yj) =

(
n∑
i=1

πiLi(yj)H
−1
i

)
m(yj) =

(
n∑
i=1

πiLi(yj)H
−1
i

)
(yj+1 − yj)→ 0

since the Li are bounded by hypothesis.

Now suppose f̂ has finitely many critical points z1, . . . , zN . Since f̂ is bounded, the set

S = {x ∈ Rd : f̂(x) ≥ f̂(y2) > 0} is compact. Thus, ‖∇f̂‖ is bounded away from 0 on

S \
N⋃
i=1

B(zi, ε), where ε > 0 is such that the B(zi, ε) are disjoint4. It follows from the fact

that ∇f̂(yj) → 0 that for large enough j, yj is in either Sc or
N⋃
i=1

B(zi, ε); since f̂(yj) is

monotonically increasing, it must be the latter: yj ∈
N⋃
i=1

B(zi, ε). That yj is in only one of

the B(zi, ε) for large j then follows from the facts that these sets are separated by a positive

distance and that yj+1 − yj → 0.

2.2 Basic Properties of the Critical Points

The above proposition motivates an investigation of the set of critical points of various

kernels. For instance, rearranging the equation ∇f̂(x) = 0 and using the assumptions made

above yields the following.

Proposition 2.2. A point x ∈ Rd is a critical point of f̂ if and only if

x =

(
n∑
i=1

πiCik
′(‖x− xi‖2i )H−1i

)−1( n∑
i=1

πiCik
′(‖x− xi‖2i )H−1i xi

)
. (5)

3Note that by the equivalence of norms (Theorem A.5), the fact that we are using ‖·‖i here is immaterial.
4Here B(zi, ε) and B(zi, ε) denote the open and closed balls (respectively) of radius ε about zi; see

Appendix B for their definitions.
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Proof. We have

∇f̂(x) = 0⇔
n∑
i=1

πiCik
′(‖x− xi‖2i )H−1i (x− xi) = 0

⇔

(
n∑
i=1

πiCik
′(‖x− xi‖2i )H−1i

)
x =

n∑
i=1

πiCik
′(‖x− xi‖2i )H−1i xi

⇔ x =

(
n∑
i=1

πiCik
′(‖x− xi‖2i )H−1i

)−1( n∑
i=1

πiCik
′(‖x− xi‖2i )H−1i xi

)
since

n∑
i=1

πiCik
′(‖x− xi‖2i )H−1i

is invertible by our assumptions.

An observation made in [13] in the case of Gaussian kernels (which we introduce in the

next subsection) but that holds in our more general setting is that dividing the coefficients

πiCik
′(‖x−xi‖2i ) of both sums in (5) by

n∑
i=1

πiCik
′(‖x−xi‖2i ) (which is non-zero by Assump-

tion 2) leaves (5) unchanged. Writing,

αi = αi(x) =
πiCik

′(‖x− xi‖2i )∑n
i=1 πiCik

′(‖x− xi‖2i )
,

this means that the critical points x satisfy

x =

(
n∑
i=1

αiH
−1
i

)−1( n∑
i=1

αiH
−1
i xi

)
.

Corollary 2.3. The critical points of the kernel density estimate f̂ lie in the image of the

standard (n− 1)-simplex5 under the map

(α1, . . . , αn) 7→

(
n∑
i=1

αiH
−1
i

)−1( n∑
i=1

αiH
−1
i xi

)
. (6)

Corollary 2.4. The set S of critical points of the kernel density estimate f̂ is finite if and

only if it is discrete6.

5See Appendix A.1.
6See Appendix B for the definition.
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Proof. Clearly, if S is finite, then it is discrete. For the converse, suppose that S is discrete.

By the previous corollary, compactness of the (n− 1)-simplex, and continuity of (6), S is a

subset of a compact set. Thus, if S is infinite, then it has a limit point x by the Bolzano-

Weierstrass theorem (Theorem B.1). But since ∇f̂ is assumed to be continuous, S is closed,

hence contains x; but x is not isolated in S, so this contradicts the fact that S is discrete.

3 Gaussian Kernels and Mixtures

3.1 Definitions and Basic Properties

In this section, we specialize some of the above results and discussion to the important case

of Gaussian kernels.

Definition. The Gaussian kernel G over Rd is the kernel over Rd with profile g(t) = e−t/2.

Note. The profile of the Gaussian kernel satisfies all the assumptions of the previous section.

Thus, the Gaussian kernel G has the form

G(x) = Ce−x
>x/2,

where, in this case, C = (2π)−d/2.

Definition. The d-dimensional Gaussian density function with mean µ ∈ Rd and covariance

matrix Σ ∈ Rd×d (which is required to be a positive-definite symmetric matrix) is the function

h : Rd → R given by

h(x) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.
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A d-dimensional Gaussian mixture with n components is a convex combination of n Gaussian

densities in Rd.

Concretely, a Gaussian mixture is a probability density function f : Rd → R of the form

f(x) =
n∑
i=1

πifi(x),

where

fi(x) =
1√

(2π)d|Σi|
exp

(
−1

2
(x− µi)>Σ−1i (x− µi)

)
= |Σi|−1/2g(‖Σ−1/2i (x− µi)‖2),

where g is the Gaussian kernel profile. Thus, Gaussian mixtures arise as kernel density

estimators that use the Gaussian kernel. We call the fi the components of f and the µi and

Σi the component means and component covariances, respectively.

Definition. A proportional-covariance Gaussian mixture is one whose component covariance

matrices Σi are proportional, i.e., for which there exists a matrix Σ and constants σ2
i such

that Σi = σ2
i Σ for each i. Proportional-covariance mixtures with such covariance matrices

include as special cases

• homoscedastic mixtures, in which σ2
i = 1 for each i and

• isotropic mixtures, in which Σ = I (but the σ2
i may be arbitrary).

By Theorem 2.1, the mean-shift algorithm using a Gaussian kernel will always converge

if the following is true.

Conjecture A. Any Gaussian mixture has a finite set of critical points.

One might näıvely suppose that a Gaussian mixture with n components simply has n

modes. This is clearly false as a mixture in which the component means are sufficiently close
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to one another may only have one mode. An example of this phenomenon will be provided

in Section 4. Even worse, a mixture with n components may have more than n modes.

Situations in which this occurs will be discussed in Section 3.2.

It was pointed out in [3] that the modality of a homoscedastic mixture is equal to the

modality of an appropriate mixture of standard Gaussians. The focus there was on local

maxima, but the same proof applies to all critical points.

Theorem 3.1. The critical points of a homoscedastic Gaussian mixture f with component

covariances Σ and component means µ1, . . . , µn are in one-to-one correspondence with the

critical points of a homoscedastic isotropic mixture with component covariances I whose

component means are related to the µi by a non-singular linear map.

Proof. Using the spectral theorem, write Σ−1 = UΛU>. Let y : Rd → Rd be the linear

change of coordinates given by y(x) = UΛ−1/2x. Then

(y(x)− µi)>Σ−1(y(x)− µi) = (UΛ−1/2x− µi)>Σ−1(UΛ−1/2x− µi)

= (UΛ−1/2x)>Σ−1(UΛ−1/2x)− 2(UΛ−1/2x)>Σ−1µi + µ>i Σ−1µi

= x>Λ−1/2U>Σ−1UΛ−1/2x− 2x>Λ−1/2U>Σ−1µi + µ>i UΛU>µi

= x>x− 2x>Λ1/2U>µi + (Λ1/2U>µi)
>(Λ1/2U>µi)

= ‖x− Λ1/2U>µi‖2.

Thus,

f(y(x)) = (2π)−d/2|Σ|−1/2
n∑
i=1

πi exp

(
−1

2
(y(x)− µi)>Σ−1(y(x)− µi)

)

= (2π)−d/2|Σ|−1/2
n∑
i=1

πi exp

(
−1

2
‖x− Λ1/2U>µi‖2

)
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= |Σ|−1/2g(x),

where

g(x) = (2π)−d/2
n∑
i=1

πi exp

(
−1

2
‖x− Λ1/2U>µi‖2

)
is a homoscedastic isotropic Gaussian mixture with identity covariance and component means

Λ1/2U>µi. Moreover,

|Σ|−1/2∇g(x) = ∇(f ◦ y)(x) = (∇y(x))>∇f(y(x)) = Λ−1/2U>∇f(UΛ−1/2x),

so since Λ−1/2U> is non-singular, x is a critical point of f ◦ y, or equivalently of g, if and

only if UΛ−1/2x is a critical point of f .

Note. In the case of isotropic homoscedastic mixtures, the component covariance matrix Σ

is already diagonal so we get U = I and Λ = Σ = σ2I above (for some σ). It follows that x

is a critical point of the mixture with identity component covariances and component means

σµi if and only if
1

σ
x is a critical point of the mixture with component covariances σ2I and

component means µi.

We thus have the following.

Corollary 3.2. The homoscedastic case of Conjecture A is equivalent to the homoscedastic

isotropic case.

Despite this, we will discuss in the following section how even homoscedastic isotropic

mixtures can exhibit non-trivial behaviour. For convenience, we state the following special-

izations of the results of Section 2.2 to the case of Gaussian mixtures before proceeding.
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Since the derivative of the Gaussian kernel’s profile g(x) = e−x/2 is given by g′(x) =

−1

2
g(x),

∇fi(x) = −fi(x)Σ−1i (x− µi) (7)

and Proposition 2.2 and Corollaries 2.3 and 2.4 reduce to the following.

Proposition 3.3. Let f =
n∑
i=1

πifi be a Gaussian mixture, where the component fi has mean

µi and covariance Σi. Then x is a critical point of f if and only if

x =

(
n∑
i=1

πiΣ
−1
i fi(x)

)−1( n∑
i=1

πiΣ
−1
i µifi(x)

)
.

Corollary 3.4. If x is a critical point of the Gaussian mixture f , then

x =

(
n∑
i=1

αiΣ
−1
i

)−1( n∑
i=1

αiΣ
−1
i µi

)
, (8)

for some αi ∈ [0, 1] satisfying
n∑
i=1

αi = 1. Thus, the critical points of f lie in the image of

the standard (n− 1)-simplex under the map

(α1, . . . , αn) 7→

(
n∑
i=1

αiΣ
−1
i

)−1( n∑
i=1

αiΣ
−1
i µi

)
.

Note. The last result is stated as Theorem 1 in [13]; the authors of this paper refer to the

set containing the critical points of f as the “ridgeline manifold” of f .

The proof of the following corollary is the same as that of Corollary 2.4.

Corollary 3.5. The set of critical points of a Gaussian mixture is finite if and only if it is

discrete.
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3.2 Mixtures With Strong Symmetry Assumptions

As noted in [9], Conjecture A is trivial when d = 1 (this follows from Corollary D.5 of the

current thesis). Even more is known about the modes in this case: it was shown in [3] that

a 1-dimensional Gaussian mixture with n components has at most n modes.

However, the situation is more complicated in higher dimensions. For instance, the main

result in [14] states that a mere 2-component mixture in d > 1 dimensions can have at most

d+ 1 modes7 and that this bound is tight; the contour plot of a 2-component mixture with

3 modes constructed in [13] is shown in Figure 1. As can be seen, this construction requires

that the components of the mixture have very different covariances; indeed, Corollary 1

of [14] states that 2-component proportional-covariance mixtures can only have at most 2

modes.

One might thus hope that restrictions on the covariance matrices would improve the

situation for larger numbers of components. In fact, it was conjectured in [3] that the

number of modes of a homoscedastic or isotropic mixture is bounded by the number of

components of the mixture. A counterexample to this conjecture was later found by the

same authors and presented in [2] and then generalized and studied more deeply in [6] and

[7] (we shall address some of these last results below).

Nevertheless, the results of [6] make clear the fact that their high-modality mixtures

have only finitely many critical points; this is a direct consequence of their “axes lemma,”

which is the focus of this section due to its direct relevance to Conjecture A. First, we need

the following “coordinate transformation lemma” of [6]. The reader may wish to consult

7It seems likely that the methods of [13] and [14] could also be used to study the number of minima and

saddle points of 2-component mixtures.
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Figure 1: Contour plot of a Gaussian mixture in 2 dimensions with 2 components and 3

modes. See [13] for details.

Appendix A.1 for some terminology before proceeding.

Lemma 3.6. Let x be an element of the scaled standard n-simplex cSn. Then the barycentric

coordinates αi = αi(x) of x are given by

αi =
1

n+ 1
+

1

2(n+ 1)c2

(
n+1∑
j=1

‖x− cej‖2 − (n+ 1)‖x− cei‖2
)
.

Proof. For i 6= j, let Lij denote the 1-face of cSn spanned by cei and cej and note that

‖cei − cej‖2 = 2c2. Let pij : cSK → Lij be the orthogonal projection map onto Lij (so that

x− pij(x) is orthogonal to ej − ei) and define xij = xij(x) =
1

c
√

2
‖cej − pij(x)‖. Let us show

that

xij =
1

2
+

1

4c2
(‖x− cej‖2 − ‖x− cei‖2). (9)
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First note that the right-hand side depends only on x through pij(x) since

‖x− cej‖2 − ‖x− cei‖2 = (‖x− pij(x)‖2 + ‖pij(x)− cej‖2)− (‖x− pij(x)‖2 + ‖pij(x)− cei‖2)

= ‖pij(x)− cej‖2 − ‖pij(x)− cei‖2.

It thus suffices to verify (9) in the case that x = pij(x); in this case, we can write x =

(1− t)cej + tcei for some t ∈ [0, 1]. It follows that

‖x− cei‖2 = (1− t)2‖cej − cei‖2 = 2(1− t)2c2

and

‖x− cej‖2 = t2‖cej − cei‖2 = 2t2c2,

so that the right-hand side of (9) becomes

1

2
+

1

4c2
(‖x− cej‖2 − ‖x− cei‖2) =

1

2
+

2c2

4c2
(2t− 1) = t,

which agrees with the definition of xij in this case:

xij =
1

c
√

2
‖x− cej‖ =

tc
√

2

c
√

2
= t.

Next let bi(c) denote the barycenter of the (n − 1)-face of cSn complementary to the

0-face cei, i.e.

bi(c) =
n+1∑
k=1
k 6=i

1

n
cek,

so that

‖cei − bi(c)‖2 =
n+ 1

n
c2, (10)

bi(c)
>ej =

c

n
, (j 6= i),
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and bi(c)
>ei = 0. Let θ be the angle between Lij and the line segment Li from cei to bi(c),

i.e.

± cos θ =
(v1 − v2)>(w1 − w2)

‖v1 − v2‖‖w1 − w2‖

for any v1, v2 ∈ Lij and w1, w2 ∈ Li. In particular,

cos θ =
(bi(c)− cei)>(cej − cei)
‖bi(c)− cei‖‖cej − cei‖

=
bi(c)

>cej + c2

c
√

2‖bi(c)− cei‖

=
bi(c)

>ej + c√
2‖bi(c)− cei‖

.

But by (10),

bi(c)
>ej + c =

c

n
+ c =

(
n+ 1

n

)
c =
‖cei − bi(c)‖2

c
,

so

cos θ =
‖cei − bi(c)‖2

c
√

2‖cei − bi(c)‖
=
‖cei − bi(c)‖

c
√

2
=
c‖bi(1)− ei‖

c
√

2
=
‖ei − bi(1)‖√

2
,

where the third equality also follows from (10). Note that the final expression for cos θ

obtained above is (again by (10)) independent of i and j.

Another expression for cos θ may be obtained when x ∈ Li; in this case, the barycentric

coordinates αk of x for k 6= i are all equal (since x is a convex combination of bi(c) and cei)

and so we can write

x =
n+1∑
j=1
j 6=i

1− αi
n

cej + αicei = (1− αi)bi(c) + αicei.

It follows that

cos θ =
(x− cei)>(pij(x)− cei)
‖x− cei‖‖pij(x)− cei‖

=
(x− pij(x))>(pij(x)− cei) + pij(x)>(pij(x)− cei)− ce>i (pij(x)− cei)

(1− αi)‖bi(c)− cei‖‖pij(x)− cei‖
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=
‖pij(x)− cei‖

(1− αi)‖bi(c)− cei‖

=
‖cej − cei‖ − ‖cej − pij(x)‖

(1− αi)‖bi(c)− cei‖

=
c
√

2(1− xij)
(1− αi)‖bi(c)− cei‖

=

√
2(1− xij)

(1− αi)‖bi(1)− ei‖
,

where the third equality follows from orthogonality of x− pij(x) and pij(x)− cei, the fourth

equality follows from the fact that pij(x) lies on Lij, and the last equality follows from (10).

Setting the two expressions for cos θ above equal to each other and rearranging yields

‖bi(1)− ei‖2(1− αi) = 2(1− xij)

for x ∈ Li. Summing both sides of this equation over all j 6= i yields

n‖bi(1)− ei‖2(1− αi) = 2n− 2
n+1∑
j=1
j 6=i

xij (11)

for x ∈ Li. However, the left-hand side (hence also the right-hand side) of this equality

depends on x only through its orthogonal projection pi(x) onto Li; this follows from the fact

that αi is constant along the hyperplane P orthogonal to Li and containing pi(x).

To see this, note that the vertices vj of the (n−1)-simplex formed by intersecting P with

cSn are all equally distant from cei so can be written as

vj = βcei + (1− β)cej

for some β ∈ [0, 1]. Thus, x ∈ P ∩ cSn has the form

x =
∑
j 6=i

γjvj = β

(∑
j 6=i

γj

)
cei +

∑
j 6=i

γj(1− β)cej = βcei +
∑
j 6=i

γj(1− β)cej,
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where
∑
j 6=i

γj = 1. Since β+
∑
j 6=i

γj(1−β) = 1, this means that the i-th barycentric coordinate

of x in cSn is given by αi = β; that is, αi is the same for all x ∈ P .

It follows that (11) holds for all x ∈ cSn. Simplifying this equation using our expressions

for ‖bi − ei‖ and xij, we get

(n+ 1)(1− αi) = n+
1

2c2

(
n‖x− cei‖2 −

∑
j 6=i

‖x− cej‖2
)

= n+
1

2c2

(
(n+ 1)‖x− cei‖2 −

n+1∑
j=1

‖x− cej‖2
)
.

Rearranging this yields the desired expression for αi.

Following [6], consider the homoscedastic isotropic (n+1)-component Gaussian mixture f

in Rn+1 with component covariances σ2I, component means µi = cei, and weights πi =
1

n+ 1
.

The main result of [6] is that, for appropriately chosen values of c, the mixture f can have

n + 2 modes and a number of critical points that grows exponentially in n. Here, though,

we are more interested in the locations of the critical points.

Definition. An axis of an n-simplex S spanned by v1, . . . , vn+1 is a line segment connecting

a barycenter of a k-face F of S (for k < n) to the barycenter of the (n − k − 1)-face of S

complementary to F .

Note. Suppose x lies on an axis of an n-simplex S, i.e., suppose x can be written as a convex

combination of the barycenter of a k-face of S and the barycenter of the complementary

(n − k − 1)-face. Equivalently, k + 1 of the barycentric coordinates of x are a multiple of

1

k + 1
and the remaining n− k are a multiple of

1

n− k
. Thus, x lies on an axis if and only

if its barycentric coordinates take on at most two distinct values. When S = cSn, this is
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equivalent by Lemma 3.6 to ‖x−cei‖ taking on at most two distinct values as i runs through

1, . . . , n+ 1.

Theorem 3.7. The critical points of the mixture f lie on the axes of the scaled standard

n-simplex cSn.

Proof. The case n = 1 follows directly from Corollary 3.4, so suppose n ≥ 2. Moreover, by

the note following Theorem 3.1, it suffices to consider a fixed value of σ2; for simplicity, take

σ2 =
1

2π
so that the components fi of f have the form

fi(x) = e−π‖x−µi‖
2

.

Let x be a critical point of f , so that the barycentric coordinates of x are given by

αi =
fi(x)

f(x)
by Proposition 3.3. Suppose by way of contradiction that x does not lie on an axis,

so that by the preceding note, for some i, j, and k, we have ‖x−sei‖ < ‖x−sej‖ < ‖x−sek‖.

Then by the previous lemma,

αi − αk =
1

2(n+ 1)c2
((n+ 1)(‖x− cek‖2 − ‖x− cei‖2)) =

1

2c2
(‖x− cek‖2 − ‖x− cei‖2).

Thus,

1

2c2
(‖x− cek‖2 − ‖x− cei‖2) =

fi(x)− fk(x)

f(x)
=
e−π‖x−cei‖

2 − e−π‖x−cek‖2

f(x)

and similarly,

1

2c2
(‖x− cek‖2 − ‖x− cej‖2) =

e−π‖x−cej‖
2 − e−π‖x−cek‖2

f(x)
.

It follows that

−f(x)

2c2
=
e−π‖x−cek‖

2 − e−π‖x−cei‖2

‖x− cek‖2 − ‖x− cei‖2
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=
e−π‖x−cek‖

2 − e−π‖x−cej‖2

‖x− cek‖2 − ‖x− cej‖2
.

In other words, letting tl = ‖x− cel‖2 for l = i, j, k, we have

g(tk)− g(ti)

tk − ti
=
g(tk)− g(tj)

tk − tj
,

where ti < tj < tk and g(t) = e−πt. But this contradicts the strict convexity of g (see

Theorem C.3).

As will be shown in Section 5, the axes lemma implies that the mixture f has finitely

many critical points.

A somewhat tangential line of inquiry suggested by the axes lemma is an investigation

of Gaussian mixtures satisfying certain symmetry conditions. For instance, what can we

say about the critical points of a homoscedastic isotropic mixture with equal weights whose

component means are placed at the vertices of a regular polytope? Due to the rather opaque

nature of the proof of the axes lemma (which seems to stem from its reliance upon a rather

complicated change of coordinates), it is not entirely clear how to pursue an investigation

of this nature. Perhaps a good place to start would with an elucidation of the role that

symmetry plays in the locations of the critical points.

4 Mixtures with a Degenerate Critical Point

The most direct approach to proving Conjecture A is to use the following corollary to the

inverse function theorem (Theorem C.1).

Corollary 4.1. Let f : U → Rd, where U ⊆ Rd is open. Suppose f is C2 about one of its

critical points x. If x is non-degenerate, then it is isolated.
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Proof. The hypotheses of the inverse function theorem are satisfied with ∇f in place of f ,

so ∇f is injective in a neighbourhood of x. Thus, in this neighbourhood, there is no y 6= x

such that ∇f(y) = 0.

The purpose of this section is to show that that Corollary 4.1 does not suffice to prove

Conjecture A. Let f =
n∑
i=1

πifi be a Gaussian mixture, where the component fi has mean

µi and covariance Σi. Recalling (7), we compute the Hessian8

Hfi(x) = −Σ−1i (Ifi(x) + (x− µi)Dfi(x))

= −Σ−1i (Ifi(x)− (x− µi)(x− µi)>Σ−1i fi(x))

= Σ−1i ((x− µi)(x− µi)>Σ−1i − I)fi(x).

Thus, the Hessian of f is

Hf(x) =
n∑
i=1

πiΣ
−1
i ((x− µi)(x− µi)>Σ−1i − I)fi(x).

Unfortunately, it is not clear how to characterize all the situations under which Hf(x)

degenerates, even when we restrict our attention to the case of x a critical point. It is not

too hard, however, to present a simple class of mixtures with a degenerate critical point.

For instance, consider the mixture f =
f1 + f2

2
with parameters

n = 2,Σ1 = Σ2 = σ2I, π1 = π2 = 1/2, µ1 = 0, and µ2 = µ,

for some µ ∈ Rd and σ2 > 0. By Proposition 3.3, x is a critical point of f if and only if

x =
f2(x)µ

2f(x)
.

8See Appendix C for the notation used here.

23



Since f1(µ/2) = f2(µ/2) = f(µ/2), it is easy to see that x = µ/2 is a critical point of f .

Moreover, the Hessian of this mixture is

Hf(x) =
1

2
σ−2(xx>σ−2 − I)f1(x) +

1

2
σ−2((x− µ)(x− µ)>σ−2 − I)f2(x).
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Figure 2: Gaussian mixture with a degenerate critical point at x = 1.

Therefore,

σ2Hf(µ/2) =
1

2

(
1

4
µµ>σ−2 − I

)
f1(µ/2) +

1

2

(
1

4
µµ>σ−2 − I

)
f2(µ/2)

=
1

2
f(µ/2)

(
1

4
µµ>σ−2 − I

)
,

so by Lemma A.6

(
2σ2

f(µ/2)

)d
detHf(µ/2) = det

(
1

4
µµ>σ−2 − I

)
=

1

4σ2
‖µ‖2 − 1.

Thus, Hf(µ/2) degenerates when ‖µ‖ = 2σ. Note that this is the largest value of ‖µ‖ for

which Corollary 4(a) of [13] allows us to deduce that the mixture is unimodal. The case

where d = 1, σ = 1, and µ = 2 is plotted in Figure 2.
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5 Critical Points Lying on an Analytic Curve

One can attempt to study the critical points of Gaussian mixtures by looking at cases in

which an analytic curve passes through them. Note that given any finite set of points

x(1), . . . , x(N) ∈ Rd, one can fix distinct t1, . . . , tN ∈ R and let pi : R→ R be the polynomial

whose graph passes through the points (t1, x
(1)
i ), . . . , (tn, x

(N)
i ) ∈ R× R. Then the curve p :

R→ Rd whose components are the pi has a graph passing through (t1, x
(1)), . . . , (tn, x

(N)) ∈

R × Rd. With regards to the critical points of a Gaussian mixture, we have the following

partial converse.

Proposition 5.1. Suppose an analytic curve x : [a, b] → Rd passes through the critical

points of a Gaussian mixture f . Then f has finitely many critical points as long as f ◦ x is

non-constant.

Proof. By hypothesis, we have

{y ∈ Rd : Df(y) = 0} = x({t ∈ [a, b] : (Df)(x(t)) = 0})

and since (f ◦ x)′(t) = (Df)(x(t))x′(t),

x({t : (Df)(x(t)) = 0}) ⊆ x({t : (f ◦ x)′(t) = 0}) = x(S),

where S = {t ∈ [a, b] : (f ◦ x)′(t) = 0}. But the composition f ◦ x : [a, b] → R, being given

by

f(x(t)) =
n∑
i=1

πiCi exp

(
−1

2

d∑
i,j=1

a
(k)
ij (x(t)− µk)i(x(t)− µk)j

)
,

where Σ−1k =
(
a
(k)
ij

)
, is analytic by Theorem D.2; hence, its set of critical points S is discrete

as long as it is non-constant. Moreover, (f ◦ x)′ is continuous, so S is closed. Thus, when
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f ◦ x is non-constant, S is finite; otherwise, it would contain a limit point, contradicting the

fact that it is discrete. It follows that x(S) is finite and so the set of critical points of f is a

subset of a finite set.

Corollary 5.2. If the critical points of a Gaussian mixture f lie on a straight line, there

are finitely many of them.

Proof. First note that f(x) 6= 0 and f(x) → 0 as ‖x‖ → ∞ (i.e., f is non-constant along

straight lines). Now by Corollary 3.4, the critical points of f lie in a compact set; so by

hypothesis, they lie on a line segment of finite length. Thus, letting x : [a, b] → Rd be a

sufficiently long line segment (so that f ◦ x is non-constant), the result follows from the

previous proposition.

Corollary 5.3. The mixture f considered in Theorem 3.7 has finitely many critical points.

Proof. This follows from Theorem 3.7 along with Corollary 5.2.

A simple case in which Proposition 5.1 is applicable can be found using the following

preliminary result.

Lemma 5.4. If A is a symmetric matrix, then the entries of the parameterized matrix

(I − αA)−1 are analytic functions of α for all α ∈ R such that I − αA is non-singular.

Proof. Since A is symmetric, we can diagonalize it as A = UΛU>. It follows that I − αA =

U(I −αΛ)U>, so the entries of (I −αA)−1 = U(I −αΛ)−1U> are linear combinations (with

constant coefficients) of the entries of (I−αΛ)−1. But the non-zero entries of this last matrix

are all of the form (1 − αλ)−1 for eigenvalues λ of A, hence are analytic for αλ 6= 1. That
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is, the entries of (I − αA)−1 are analytic for all α such that the eigenvalues of I − αA are

non-zero.

Corollary 5.5. Any 2-component Gaussian mixture has finitely many critical points.

Proof. By Corollary 3.4 the critical points of a 2-component Gaussian mixture lie in the

image of a curve of the form

(α1, α2) 7→ (α1Σ
−1
1 + α2Σ

−1
2 )−1(α1Σ

−1
1 µ1 + α2Σ

−1
2 µ2).

Here, α1, α2 ∈ [0, 1] and α1 + α2 = 1, so we can let α1 = α so that α2 = 1 − α to see that

the critical points lie in the image of the map

α 7→ x(α) = (αΣ−11 + (1− α)Σ−12 )−1(αΣ−11 µ1 + (1− α)Σ−12 µ2),

which is clearly analytic for all α such that the entries of

(αΣ−11 + (1− α)Σ−12 )−1

are analytic.

Since

αΣ−11 + (1− α)Σ−12

is positive-definite for α ∈ [0, 1] and

(αΣ−11 + (1− α)Σ−12 )−1 = (Σ−12 − α(Σ−12 − Σ−11 ))−1

= ((I − α(Σ−12 − Σ−11 )Σ2)Σ
−1
2 )−1

= Σ2(I − α(I − Σ−11 Σ2))
−1,

the curve x is analytic on [0, 1].
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Thus, either f has finitely many critical points or f ◦ x is constant i.e., (f ◦ x)′(α) = 0

for α ∈ [0, 1]. But

∇f(x) = π1f1(x)Σ−11 (µ1 − x) + π2f2(x)Σ−12 (µ2 − x)

and x′(α) is given by

−(αΣ−11 + (1− α)Σ−12 )−1(Σ−11 − Σ−12 )(αΣ−11 + (1− α)Σ−12 )−1(αΣ−11 µ1 + (1− α)Σ−12 µ2)

+ (αΣ−11 + (1− α)Σ−12 )−1(Σ−11 µ1 − Σ−12 µ2).

Thus,

∇f(x(0)) = ∇f(µ2) = π1f1(µ2)Σ
−1
1 (µ1 − µ2)

and

x′(0) = Σ2Σ
−1
1 (µ1 − µ2),

so

(f ◦ x)′(0) = (∇f(x(0)))>x′(0) = π1f1(µ2)(µ1 − µ2)
>Σ−11 Σ2Σ

−1
1 (µ1 − µ2) ≥ 0

with equality if and only if π1 = 0 or µ1 = µ2, both of which contradict our assumptions.

With regards to modes, this is weaker than the main result of [14], which was discussed

in Section 3.2.

Another special case under which the critical points of a Gaussian mixture lie on an

analytic curve can be found using the fact, noted in [13], that the critical points of a ho-

moscedastic mixture lie in the convex hull of the mixture’s component means. In fact, this

holds more generally for proportional-covariance mixtures.

Proposition 5.6. The critical points of a proportional-covariance Gaussian mixture lie in

the convex hull of the mixture’s component means.
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Proof. If Σi = σ2
i Σ, then (8) becomes

x =

(
n∑
i=1

αiσ
−2
i Σ−1

)−1( n∑
i=1

αiσ
−2
i Σ−1µi

)

=

(
n∑
i=1

αiσ
−2
i

)−1( n∑
i=1

αiσ
−2
i µi

)

=
n∑
i=1

βiµi,

where

βi =
1∑n

j=1 αjσ
−2
j

αiσ
−2
i

and αi ∈ [0, 1], so 0 ≤ βi ≤ 1 and
n∑
i=1

βi = 1.

Corollary 5.7. If the component means of a proportional-covariance Gaussian mixture lie

on a straight line, then the mixture has finitely many critical points.

Proof. By Propositions 5.6, the critical points of such a mixture lie on a straight line, so the

result follows from Corollary 5.2.

Note. The above yields a simplified proof of Corollary 5.5 in the proportional-covariance

case.

6 Conclusion

We have brought together a variety of results related to the conjecture that Gaussian mixtures

have finitely many critical points. As discussed, this problem is motivated in large part by

the convergence criteria for the the mean-shift algorithm presented in [12]. However, proving

this conjecture can be regarded as a problem of more general mathematical interest due to
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the significance of the Gaussian density in mathematics and the importance of Gaussian

mixture models in applications. Moreover, Gaussian mixtures can exhibit rather interesting

behaviours, such as the high (but finite) modality of the mixtures in [6].

As an aside, we are of the opinion that the axes lemma proved there motivates a more

general investigation into the critical points of Gaussian mixtures satisfying various sym-

metry conditions. As discussed earlier, a first step in such an investigation could involve a

clarification of the proof of the axes lemma.

We have also constructed a class of Gaussian mixtures that exhibit a degenerate critical

point, demonstrating that Conjecture A is not necessarily implied by the inverse function

theorem. However, a precise characterization of the situations under which the critical points

of a Gaussian mixture degenerate is rather elusive due to the complexity of the Hessian of

such mixtures. It is interesting to note the connection between the transition to unimodality

and the degeneration of the critical point in our class of examples. It could be of some

interest to examine this connection more closely.

Finally, we have found some situations under which the critical points of a Gaussian

mixture lie on an analytic curve and are easily seen to be finite in number. Unfortunately,

the “dimensionality reduction” approach we took to prove these special cases of Conjecture

A is rather hard to apply most of the time; indeed, the cases of this conjecture that we

verified in this way are rather special. Moreover, a generalization of this approach that

seeks out surfaces or higher-dimensional manifolds containing the critical points would likely

be fruitless due to the behaviour of the zero sets of analytic functions in more than one

dimension.

Though we have encountered certain difficulties in attempting to prove Conjecture A, let
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us remind the reader that we have only used very elementary methods thus far. In addition

to the potential for future work discussed above, let us not forget the possibility of applying

more sophisticated tools to this problem. A highly relevant subject in this regard is that of

real analytic geometry, the study of the zero sets of real analytic functions, and we believe

that [11] is an excellent resource on this subject.
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A Linear Algebra

Definition. A d× d matrix A is symmetric if it equals its own transpose: A = A>. A d× d

symmetric matrix A is said to be positive-definite if x>Ax ≥ 0 for all x ∈ Rd with equality

if and only if x = 0.

Note that since the operations of inverting and of transposing a matrix commute with

one another, the inverse of a symmetric matrix is itself symmetric.

Definition. An invertible matrix U is said to be orthogonal if its transpose equals its inverse:

U> = U−1.

Theorem A.1 (Spectral theorem for symmetric matrices). Let A be a symmetric matrix.

Then there exists an orthogonal matrix U such that A = UΛU>, where Λ is a diagonal matrix

whose diagonal entries are the eigenvalues of A (counting multiplicities).

Proof. See the corollary to Theorem 18 on p. 314 of [10].

Theorem A.2. A symmetric d × d matrix A is positive-definite if and only if all of its

eigenvalues are positive.
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Proof. Using the spectral theorem, write A = U>ΛU . Then

x>Ax = x>U>ΛUx = (Ux)>Λ(Ux) =
d∑
i=1

λi(Ux)2i ,

where the λi are the entries of Λ (i.e., the eigenvalues of A). Since U is invertible, x 6= 0 if

and only if Ux 6= 0. Thus, it is clear for such x that x>Ax > 0 whenever the eigenvalues of

A are positive.

Conversely, suppose x>Ax > 0 for x 6= 0. Then letting x = U>ej, we see that

0 < x>Ax = x>U>ΛUx = e>j Λej = λj.

Corollary A.3. Every positive-definite matrix A has a positive-definite square root, i.e. a

positive-definite matrix B such that B2 = A.

Proof. Applying the spectral theorem to a symmetric positive-definite matrix A to get A =

UΛU>, it is easy to see thatB = UΛ1/2U> is a positive-definite square root of A, where Λ1/2 is

the diagonal matrix whose diagonal entries are the positive square roots of the corresponding

diagonal entries of Λ.

In fact, the positive-definite square root of a positive-definite matrix A is unique; we shall

content ourselves with denoting the square root obtained in the proof above by A1/2.

Corollary A.4. If A and B are symmetric and positive-definite, then so are A−1 and aA+bB

for any a, b ≥ 0.

Proof. We have already noted above that A−1 is symmetric. That it is positive-definite can

be seen to be true by writing

x>A−1x = x>A−1AA−1x = (A−1x)>A(A−1x) > 0
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or by noting that the eigenvalues of A−1 are the reciprocals of the eigenvalues of A (by the

spectral theorem).

Symmetry of aA+ bB is obvious; positive-definiteness can be seen by writing

x>(aA+ bB)x = ax>Ax+ bx>Bx > 0.

Theorem A.5 (Equivalence of norms). Let ‖ · ‖1 : Rd → R and ‖ · ‖2 : Rd → R be two

norms on Rd. Then there exist constants C ≥ c > 0 such that

c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1

for every x ∈ Rd. Hence, if xn ∈ Rd is a sequence, then ‖xn‖1 → 0 if and only if ‖xn‖2 → 0.

Proof. See Theorem 4 on p. 260 of [15].

Lemma A.6. If A and B are d× d invertible matrices and u, v ∈ Rd, then

det(A+ uv>B) = (1 + v>BA−1u) det(A).

Proof. First, note that I 0

v> 1


 I + uv> u

0 1


 I 0

−v> 1

 =

 I + uv> u

v> + v>uv> v>u+ 1


 I 0

−v> 1



=

 I u

0 v>u+ 1

 ,
where the above are all (d + 1) × (d + 1) matrices (written in block form). Thus, the

determinant of the last matrix must equal the product of the determinants of the first three

matrices above; that is,

v>u+ 1 = det(I + uv>).
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Replacing u and v above by A−1u and B>v (respectively) thus yields

det(A+ uv>B) = det(A) det(I + (A−1u)(v>B)) = det(A)(1 + v>BA−1u),

as required.

A.1 Simplices

For i = 1, . . . , d, denote by ei the vector in Rd whose j-th component is 1 if j = i and 0

otherwise.

Definition. An n-simplex Sn in Rd (for d ≥ n+ 1) is the convex hull of any n+ 1 linearly

independent vectors in Rd; concretely, Sn has the form

Sn =

{
n+1∑
i=1

αivi : αi ∈ [0, 1],
n+1∑
i=1

αi = 1

}

for some choice of linearly independent v1, . . . , vn+1. In this case, we will say that Sn is

spanned (as a simplex) by the vi. The standard n-simplex is obtained by setting d = n + 1

and vi = ei. A scaled standard n-simplex is an n-simplex of the form

cSn = {cx : x ∈ Sn}

for some c > 0, where Sn is the standard n-simplex.

Definition. Let Sn be the n-simplex spanned by the set of vectors A = {v1, . . . , vn+1} ⊆ Rd.

1. If x ∈ Sn, then the αi ∈ [0, 1] such that x =
n+1∑
i=1

αivi are called the barycentric

coordinates of x (in Sn).

2. The barycenter of Sn is the point b ∈ Sn whose barycentric coordinates αi in Sn all

equal
1

n+ 1
.
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3. For 0 ≤ k ≤ n, a k-face of Sn is a standard k-simplex (so the previous definitions apply

to it) spanned by a subset of size k + 1 of A.

4. Given a k-face Fk of Sn (for k < n) spanned by a subset B ⊆ A, the l-face complemen-

tary to Fk is the l-face of Sn spanned by the complementary subset A \ B ⊆ A; thus,

l = (n+ 1)− (k + 1)− 1 = n− k − 1.

B Topology

Definition. Let d be a positive integer. The open ball (or open interval if d = 1) in Rd of

radius r > 0 centered at x ∈ Rd is the subset B(x, r) of the form

B(x, r) = {y ∈ Rd : ‖x− y‖ < r}.

Call a subset S ⊆ Rd open if for every x ∈ S there exists r > 0 such that B(x, r) ⊆ S.

Definition. Let S ⊆ Rd.

1. A point x ∈ S is said to be isolated in S if for some r > 0 the open ball B(x, r) is

disjoint from S \ {x}. The set S is said to be discrete if every x ∈ S is isolated in S.

2. A point x ∈ Rd is called a limit point of S if for every r > 0, the open ball B(x, r)

contains an element of S not equal to x. The closure of S is the union of S and its set

of limit points and will be denoted by S. The set S is said to be closed if it equals its

closure (i.e., if it contains all of its limit points).

3. The set S is said to be bounded if S ⊆ B(0, R) for some R > 0.

4. We shall call S compact if it is both closed and bounded.
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Definition. We refer to the closure B(x, r) of the open ball B(x, r) as the closed ball of

radius r about x.

Concretely, we have

B(x, r) = {y ∈ Rd : ‖x− y‖ ≤ r}.

We will make use of the following important theorem.

Theorem B.1 (Bolzano-Weierstrass). A set S ⊆ Rd is compact if and only if every infinite

subset of S has a limit point in S.

Proof. See Theorem 2.41 on p. 40 of [16].

C Calculus

Let U ⊆ Rd be open and let f : U → Rm. We denote the space of linear maps Rd → Rm

by L(Rd,Rm), the derivative of f by Df : U → L(Rd,Rm), and the k-th partial derivative

of f with respect to the variables xi1 , . . . , xik (where i1, . . . , ik ∈ {1, . . . , d}, possibly with

repetition) by
∂kf

∂xi1 . . . ∂xik
(we assume the reader is familiar with the definitions of these

objects). We will identify the derivative of a function with its matrix representative, the

Jacobian matrix. When d = 1, we usually refer to the vector f ′(x) = (Df)(x) · 1 ∈ Rm as

the derivative of f at x ∈ U ⊆ R.

Note. In the case that d = 1 and U is a half-open or closed interval, say U = [a, b], we may

still define differentiability of f at the endpoints a and b by replacing the limit in the usual

definition by a one-sided limit. For instance, in this case, we would call f : [a, b] → Rm
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differentiable at a with derivative f ′(a) if for all ε > 0 there exists h > 0 such that

‖f(a+ h)− f(a)− hf ′(a)‖ < ε.

Definition. The function f is said to be Ck if all of its k-th partial derivatives exist and

are continuous. We say that f is C∞ if it is Ck for all positive integers k.

Definition. We call x a critical (or stationary) point of f if Df(x) = 0. We shall call a

critical point of f isolated if it is isolated as an element of the set of critical points of f .

Theorem C.1 (Inverse function theorem). Let m = d, so that f : U → Rd. Let x ∈ U

and suppose that f is C1 and Df(x) is invertible. Then there exists an open set X ⊆ Rd

containing x such that f |X : X → Rd is one-to-one.

Proof. See Theorem 9.24 on p. 221 of [16].

In what follows, let m = 1 so that f : U → R and Df : U → L(Rd,R); thus, Df(x) can

be represented as a 1 × n matrix for any x ∈ U . We denote the vector represented by the

transpose of this matrix by ∇f(x).

Definition. We define the gradient of f : U → R to be the map ∇f : U → Rd, which

assigns to each x ∈ U the vector ∇f(x) = (Df(x))>.

Note that x is a critical point of f if and only if ∇f(x) = 0.

Definition. The Hessian of f is the derivative of the gradient of f , i.e. the map

Hf = D(∇f) : U → L(Rd,Rd).

A critical point x of f is said to be non-degenerate if Hf(x) is non-degenerate.
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Thus, Hf(x) : Rd → Rd is a linear map for each x ∈ U .

We will make use of the following change of coordinates.

Lemma C.2 (Integration of spherically symmetric functions). Let k : [0,∞)→ R and define

K : Rd → Rd by K(x) = k(‖x‖2). Then

∫
Rd

K(x) dx = Ad

∫ ∞
0

k(t2)td−1 dt

for some constant Ad.

Proof. The case d = 1 is trivial, so suppose d ≥ 2 and consider the change of coordinates9

(x1, . . . , xd) = T (r, θ) = T (r, θ1, . . . , θd−1)

given by

x1(r, θ) = r cos θ1

xi(r, θ) = r sin θ1 . . . sin θi−1 cos θi

xd(r, θ) = r sin θ1 . . . sin θd−1,

where 2 ≤ i ≤ d− 1, r ∈ [0,∞), θj ∈ [0, π] for 1 ≤ j ≤ d− 2 and θd−1 ∈ [0, 2π).

The Jacobian matrix DT (r, θ) contains only two nonzero entries in its top row:

∂x1
∂r

= cos θ1

∂x1
∂θ1

= −r sin θ1.

Thus, by the Laplace expansion of the determinant,

detDT (r, θ) = M11 cos θ1 −M12r sin θ1,

9When d = 2 and 3 these are simply polar and spherical coordinates, respectively.
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where Mij is the determinant of the (d − 1) × (d − 1) matrix mij obtained by eliminating

the i-th row and j-th column of DT (r, θ). Now the entries of m11 are the partial derivatives

of the xi with respect to the θj, hence are of the form rcij(θ), where cij(θ) is a product of

trigonometric functions (each taking a single angle θk as an argument); hence, M11 equals

rd−1 times a sum of products of trigonometric functions. Similarly, one can observe that M12

equals rd−2 times a sum of products of such functions. It follows that | detDT (r, θ)| is of the

form rd−1|c(θ)|, where |c| is integrable, say with integral Ad.

Therefore, using this change of coordinates we get∫
Rd

k(‖x‖2) dx =

∫ 2π

0

∫ π

0

. . .

∫ π

0

∫ ∞
0

k(r2)rd−1|c(θ)| drdθ1 . . . dθd−1

= Ad

∫ ∞
0

k(r2)rd−1 dr.

We can determine the constant Ad by considering the case where

k(r) =


1, if r ≤ 1

0, otherwise

.

By the above, we get

Vol(B(0, 1)) =

∫
B(0,1)

dx =

∫
Rd

k(‖x‖2) dx = Ad

∫ ∞
0

k(r2)rd−1 dr = Ad

∫ 1

0

rd−1 dr =
Ad
d
,

where Vol(B(0, 1)) is the volume of the closed unit ball B(0, 1). Thus,

Ad = dVol(B(0, 1)).

C.1 Convexity

Here we follow Section 6.6 of [15].
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Definition. A subset S ⊆ Rd is said to be convex if for all x, y ∈ S and t ∈ [0, 1] we

have tx + (1 − t)y ∈ S. If S is convex, then a function f : S → R is said to be convex

(respectively, strictly convex ) if for all x, y ∈ S (respectively, all distinct x, y ∈ S) and

t ∈ [0, 1] (respectively, t ∈ (0, 1)) we have f(tx+(1− t)y) ≤ tf(x)+(1− t)f(y) (respectively,

f(tx+ (1− t)y) < tf(x) + (1− t)f(y)).

Theorem C.3. Let U ⊆ R be a convex open set and let f : U → R.

1. The function f is convex if and only if for all x, y, z ∈ U with x < y < z,

f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
;

the same holds for strictly convex functions if we replace the inequality by a strict

inequality.

2. If f is differentiable, then it is convex if and only if

f ′(x) ≤ f(x)− f(y)

x− y

for all x, y ∈ U ; the same holds for strictly convex functions if we replace the inequality

by a strict inequality and require that x 6= y.

3. If f is twice differentiable and f ′′(x) ≥ 0 (respectively, f ′′(x) > 0) for all x ∈ U , then

it is convex (respectively, strictly convex).

D Real Analytic Functions

This section follows the first two chapters of [11].
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Definition. A power series in d variables about x0 ∈ Rd is an expression of the form

∑
α∈Nd

aα(x− x0)α,

where x ∈ Rd, aα ∈ R and

yα =
d∏
i=1

yαi
i

for any y ∈ Rd and α ∈ Nd. Such a power series is said to converge (at x) if it converges in

the ordinary sense under some ordering of Nd.

Note that if the power series above converges at a point, it does not necessarily converge

in the ordinary sense under every ordering of Nd. For this reason, we restrict attention to

the domain of convergence of a power series, the set of all points x for which the power series

converges absolutely in some neighbourhood of x, i.e. for which there exists an r > 0 such

that |x− y| < r implies that ∑
α∈Nd

|aα(y − x0)α|

converges; here the ordering of Nd is irrelevant.

Definition. Let U ⊆ Rd be open. A function f : U → R is said to be real analytic if for

each x0 ∈ U , there exist aα ∈ R and r > 0 such that |x− x0| < r implies that

f(x) =
∑
α∈Nd

aα(x− x0)α.

Call a function F : U → Rm (real) analytic if each of its components U → R is analytic.

Several familiar facts about analytic functions on open subsets of R generalize to the

situation at hand.
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Theorem D.1. Let f be a real analytic function on an open set U ⊆ Rd. Then f is C∞ in

U .

Theorem D.2. If f : U → R and g : V → R are analytic, where U, V ⊆ Rd are open

sets with non-empty intersection, then f + g : U ∩ V → R, fg : U ∩ V → R, and f/g :

U ∩ V ∩ {x ∈ Rd : g(x) 6= 0} → R are analytic.

A particular feature of analytic functions of one variable is the following.

Theorem D.3. Let U be an open interval. Suppose f, g : U → R are analytic and let

E = {x ∈ U : f(x) = g(x)}.

If E contains a limit point of U , then f(x) = g(x) for all x ∈ U .

Theorem D.4. If f : U → R is analytic, where U ⊆ Rd is open, then f is C∞.

Corollary D.5. Let U ⊆ R be an open interval. If f : U → R is a non-constant analytic

function, then it has a discrete set of critical points.

Proof. A point x ∈ U is critical for f if it is a zero of f ′, which is analytic. But f is

non-constant, so f ′ is not identically zero, hence has a discrete set of zeros.

It is well-known that the previous theorem need not hold if f or g is only required to be

C∞ in U . Similarly, it may fail for analytic functions in several variables. For instance, take

f : R2 → R defined by f(x, y) = xy. Then f is clearly analytic and not identically zero, but

the zero set of f is the union of the x- and y-axes.
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