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Abstract

Shannon’s two-way channels (TWCs) allow two terminals to exchange data streams

in a full-duplex manner and enable interactive adaptive coding to improve transmis-

sion reliability. However, TWCs are often used in conjunction with orthogonal multi-

plexing to mitigate the interference incurred from simultaneous transmissions over a

shared channel. To date, TWCs with non-orthogonal multiplexing are still not fully

explored. This thesis examines channel capacity problems for TWCs and identifies

coding methods to facilitate and enhance two-way simultaneous transmission.

We first make use of channel symmetry properties to determine the capacity re-

gion of three types of two-way networks: (a) two-terminal discrete-memoryless TWCs

(DM-TWCs), (b) two-terminal TWCs with memory, and (c) three-terminal multiac-

cess/degraded broadcast DM-TWCs. For each network, symmetry conditions under

which a Shannon-type random coding inner bound (under independent non-adaptive

inputs) is tight are given. The results broaden the class of TWCs whose capacity re-

gion can be exactly determined and imply that interactive adaptive coding does not

enlarge the capacity region and is hence unnecessary for such channels. Moreover,

we generalize Shannon’s push-to-talk TWC and analytically derive this generalized

channel’s capacity region, which is a convex hull of at most four rate pairs. For gen-

eral two-terminal DM-TWCs that lack channel symmetry properties, a simple outer
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bound is further derived to obtain approximation capacity results.

In addition to examining capacity problems, we also study joint source-channel

coding (JSCC) for TWCs. Specifically, we propose an adaptive lossy JSCC scheme

for sending correlated sources over two-terminal DM-TWCs. Our idea is to couple

the independent operations of the terminals via an adaptive coding mechanism which

can mitigate cross-interference resulting from simultaneous channel transmissions and

concurrently exploit the sources’ correlation to reduce the end-to-end reconstruction

distortions. Our adaptive JSCC scheme not only subsumes existing lossy coding

methods for the same setup, but it also improves on their performance. Several

examples are given for illustration. Moreover, we derive outer bounds for our two-way

lossy transmission problem and establish complete JSCC theorems in some special

settings. In these special cases, a non-adaptive separate source-channel coding scheme

achieves the optimal performance, thus significantly simplifying the design of the

source-channel communication system.
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Chapter 1

Introduction

1.1 An Overview

Point-to-point two-way channels (TWCs) first appeared in Shannon’s seminal pa-

per [3], where two terminals (or users) desire to communicate with each other as

effectively as possible over a shared channel. TWCs allow bidirectional simultane-

ous transmissions (or in-band full-duplex transmissions) between the two terminals

to make full use of channel resources. They also enable the two terminals to gener-

ate their channel inputs by adapting to the previously received signals, which may

enhance the reliability of the overall communication. Even though TWCs provide sev-

eral advantages and are building blocks in many communication systems, the major

difficulties in the full-duplex implementation are due to user interference and residual

self-interference [4]. In the past decades, to avoid such interferences and simplify

the system design, TWCs have often been used in a half-duplex mode with the help

of orthogonal multiplexing [5]. Recently, non-orthogonal multiplexing techniques [6]

have gained popularity to improve the bandwidth efficiency due to advances in digital

signal processing. However, how much information can be reliably transmitted in a
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full-duplex manner is still unknown.

In this thesis, instead of focusing on the full-duplex communication problem un-

der practical constraints, we study the reliable communication problem from an

information-theoretic viewpoint. Here, the challenge for optimal reliable two-way

communication lies in how each terminal can effectively maximize its individual trans-

mission rate over the shared channel and concurrently provide sufficient feedback to

help the other terminal’s transmission. These competing objectives impose on each

terminal the difficult task of optimally adapting their inputs to the previously re-

ceived signals of the other terminal. As finding such an optimal coding procedure is

still elusive, the exact characterization of the capacity region for general two-terminal

TWCs remains open [7]. The design of effective error correction and interference

mitigation coding techniques that make the best use of TWCs is also a challenging

unsolved problem.

This thesis intends to achieve two objectives: (i) determining the capacity region

for a broad class of TWCs (with two or more terminals) and (ii) developing efficient

transmission schemes for sending correlated sources over TWCs. Before reviewing

related work and defining our research problems, we first present some milestones in

the development of TWCs, recent findings, and other subjects surrounding TWCs.

1.2 The Development of Two-Way Channels

Shannon’s Inner Bound can be Exceeded :

In [3], Shannon derived inner and outer bounds for the capacity region of two-

terminal discrete-memoryless TWCs (DM-TWCs), where the inner bound is obtained

via a standard random coding scheme (where the encoder of each terminal selects its
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code symbols as a function of the message only, independently of past received signals

from the other terminal). He pointed out that his inner bound is tight under certain

channel symmetry conditions [3, Sec. 11]; but in general, his inner bound differs from

his outer bound. Blackwell’s binary-multiplying TWCs (BM-TWCs) [3, Sec. 13] is a

classical example for which the two capacity bounds do not coincide. Even though

Shannon’s inner bound is generally not tight, whether or not his inner bound can be

enlarged was still in question at that time.

Jelinek made the first attempt to find DM-TWCs whose capacity region can exceed

Shannon’s inner bound region [8–10]. For binary-input binary-output DM-TWCs of a

certain type, Jelinek claimed (without proof) that an inner bound region larger than

Shannon’s can be obtained [8, Section 7.7], but later he mentioned in [10, Section VIII]

that this assertion remained unsubstantiated. Despite this unsuccessful attempt, his

result laid the foundations to study interference channels [11]; a summary of Jelinek’s

work can be found in [12]. The second attempt [13] was made by Libkind, who claimed

that adaptive coding cannot improve Shannon’s inner bound. However, his proof of

the equality of Shannon’s capacity bounds was considered to be incorrect [7]. Twenty-

eight years after Shannon’s result, the question was finally answered by Dueck [14],

who constructed a DM-TWC whose capacity region is strictly larger than Shannon’s

inner bound. In fact, Dueck’s example is not only an answer to the question but

it also demonstrates that certain feedback structures in a TWC facilitate adaptive

coding.

For the sake of completeness, we remark that Shannon’s random coding is further

generalized in [15, Section 5] but the scheme given there still uses non-adaptive coding.

Whether or not this generalization yields a larger inner bound region is not clear.
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Capacity can be Different under Maximal and Average Error Criteria:

In [3], Shannon adopted the average error probability to define channel capacity.

In the early seventies, Ahlswede showed that the notions of average and maximal error

probabilities are different for the capacity of general DM-TWCs [16]. Nevertheless,

El Gamal found that at least for “restricted TWCs” [7] both notions result in an

identical capacity region [17]. Here, restricted TWCs are TWCs for which interactive

adaptive coding is forbidden; the capacity region for such channels is determined by

Shannon’s inner bound [7].

Variants of Shannon’s TWCs :

In [15,16,18], Ahlswede proposed several variants of Shannon’s two-terminal DM-

TWC and established capacity results for some cases. Particularly, the variant where

two transmitters and two receivers are all located at distinct places and both transmit-

ters simultaneously send independent messages to both receivers [16], also known as a

compound multiple-access-channel (MAC) [19], brings a novel viewpoint to Shannon’s

TWCs. An interesting two-user degraded channel model was also studied in [20].

Adaptive Coding Inner Bounds and Improved Outer Bounds :

In addition to Dueck’s example, Schalkwijk proposed a coding strategy for BM-

TWCs to achieve a rate pair outside Shannon’s inner bound region [21]; his team

also made progressive refinements [22–27] by using the idea of dividing a unit square.

For general DM-TWCs, Han constructed an adaptive coding scheme based on Markov

block encoding and illustrated that the resulting achievable rate region contains Shan-

non’s result as a subset [28]. Several improved capacity outer bounds were also derived

in various studies in the eighties. For general DM-TWCs, Zhang et al. introduced

in [29] auxiliary random variables to control the dependency between the terminals’
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channel inputs, thereby providing a better outer bound than Shannon’s result. Hek-

stra and Willems derived an outer bound specialized for common-output DM-TWCs

such as BM-TWCs in [30, 31]. For this class of TWCs, they also gave sufficient

conditions for Shannon’s inner bound to be tight [31, Corollaries 2 and 3].

Further Results on the Capacity Region of DM-TWCs :

In the late nineties, methods to efficiently utilize DM-TWCs were investigated by

studying the role of feedback [32]. In [33], Kramer used an idea of concatenated codes

to design adaptive coding and extended Han’s result. Directed mutual information

[34], which is widely used in the study of one-way channels with feedback [35–39],

was also employed to characterize the capacity of DM-TWCs. Recently, the capacity

of non-binary additive-noise TWCs [40] and more general channel models such as

injective semi-deterministic TWCs (ISD-TWCs) [41], Cauchy [41], Poisson [42], and

exponential family type TWCs [43] were determined.1 A new tightness condition of

Shannon’s inner bound was also derived in [41], which allows us to determine the

capacity of a broader class of DM-TWCs. The graph-based coding method [44] for

common-output DM-TWCs further generalizes Schalkwijk’s 1982 scheme [21]. Zero-

error capacity and its bounds for common-output DM-TWCs were studied in [45].

Two-Way Lossy Source Transmission:

For noiseless two-terminal TWCs, Kaspi in [46] tackled a two-way lossy source

coding problem and established a rate-distortion (RD) region for this system,2 which

characterizes the trade-off between source compression rate and distortion, under an

interactive communication protocol. More specifically, the protocol divides the entire

1Han has shown that Shannon’s inner bound is tight for Gaussian TWCs [28].
2Kaspi’s original proof relies on tree codes using an intricate approach. A simper proof can be

found in [47, Section 20.3.3] based on the Wyzer-Ziv source coding scheme [48].
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transmission period into small segments, and only one terminal sends data in each

segment. With this protocol, each terminal can decode a coarse description of the

other terminal’s messages after observing a new segment of channel outputs. All

decoded coarse descriptions are then treated as side-information to compress source

messages until final reconstructions are obtained. In [49], Maor and Merhav extended

Kaspi’s result within the application of successive source refinement. Another related

two-way source coding problem, where each terminal is only interested in extracting

hidden information related to the source messages of the other terminal, is tackled

in [50] in the context of the so-called collaborative information bottleneck problem.

The rate-relevance trade-off is determined under Kaspi’s transmission protocol.

The Capacity Region for TWCs with Memory and Multi-Terminal DM-TWCs :

Two-terminal TWCs with memory were first studied by Shannon in [3, Sec. 16].

Assuming that the channel satisfies a so-called recoverable state property, Shannon

determined their capacity region by a general formula described in [3, Theorem 5].

Beyond Shannon’s two-terminal DM-TWCs, only a few results are available in the

literature. Cheng and Devroye in [51] showed that Shannon’s random coding scheme

is optimal in several deterministic multi-terminal DM-TWC settings (i.e., more than

two terminals) such as multiaccess/broadcast (MA/BC), Z, and interference TWCs,

hence finding the channel capacity in these cases. The channel capacity for a vari-

ant of the multi-terminal TWCs, called three-way channels, was also investigated in

different networks such as three-way multi-cast finite-field or phase-fading Gaussian

channels [52] and three-way Gaussian channels with multiple unicast sessions [53].

A comprehensive overview of multi-way communication can be found in [54]. We

remark that an additional capacity result for deterministic interference TWCs was
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derived in [55].

Other Topics Related to TWCs :

Besides the above developments on channel capacity and source transmission,

efforts were also devoted to research different aspects of TWCs such as error ex-

ponents [56–58], interactive capacity [59], and channel-optimized scalar quantiza-

tion [60]. TWCs were also studied in the presence of jammers [61, 62] and re-

lays [63–66] and considered in ad-hoc wireless networks [67], molecular communi-

cation [68], and visible light communication [69]. Furthermore, two-way function

computation [70] and two-way coding for control systems [71] are related to adaptive

coding for TWCs. Apart from the above theoretical perspective of TWCs, practical

system designs for two-way simultaneous transmission are now implemented in non-

orthogonal multiple-access systems [72] or via reconfigurable intelligent surface [73],

which are active areas for future advanced communication systems.

1.3 Notation

We next introduce the notation used in the thesis. The symbols Z+ and R≥0

denote the sets of positive integers and non-negative real numbers, respectively. The

probability distribution of a random variable A having alphabet A is denoted by

PA, i.e., PA(a) = Pr(A = a) for a ∈ A, and the cardinality of A is denoted by |A|.

The set of all probability distributions on A is denoted as P(A), and PU
A ∈ P(A)

represents the uniform distribution on A. For l ≥ 1, let Al , (A1, A2, . . . , Al) denote

a length-l sequence of random variables with common alphabet A. A realization of

Al is denoted by al = (a1, a2, . . . , al) ∈ Al, where Al is the l-fold Cartesian product of

A. When the length l is clear from the context, we may write A and a instead of Al
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and al, respectively. For any 1 ≤ l1 ≤ l2 ≤ l, we define Al2l1 = (Al1 , Al1+1, . . . , Al2); we

also set Al2l1 = ∅, a null sequence, when l1 > l2. Throughout the thesis, all alphabets

are finite, except for the Gaussian case briefly considered in Sections 5.5.1 and 5.6.3.

Furthermore, we delineate each terminal by index j or j′. To simplify our pre-

sentation, we assume that j 6= j′ when the two indices appear together. In capacity

problems, the message of terminal j intended for terminal j′ is denoted by Mjj′ ; when

there are only two terminals, we write Mj for the sake of brevity. For two-terminal

lossy transmission problems, we use Sj,k to denote the kth source message of termi-

nal j. The reconstructions of Mj, Mjj′ , and Sj,k is denoted by M̂j, M̂jj′ , and Ŝj,k,

respectively. The symbols Xj,n and Yj,n represent the nth channel input and output

of terminal j, respectively. For channels with erasures, the erasure symbol is given

by E. The alphabets of the above system variables will be respectively denoted by

Mjj′ , M̂jj′ , Mj, M̂j, Sj, Ŝj, Xj, and Yj.

The functions H( · ), H( · | · ), I( · ; · ), and I( · ; · | · ) represent entropy, conditional

entropy, mutual information, and conditional mutual information, respectively. We

define these in the standard way [74] and we hence omit their definitions here. In

some cases, we use Hb(·) for the binary entropy function. For a channel with input

X, output Y , and transition probability PY |X , the input-output mutual information

I(X;Y ) under an input distribution PX is sometimes written in a functional represen-

tation I(PX , PY |X) to emphasize its dependence on the probability distributions PX

and PY |X (the formal definition is given in (2.12)). Moreover, the channel transition

probability PY |X can be also expressed in a matrix form, denoted by [PY |X( · | · )],

whose rows and columns are indexed by x ∈ X and y ∈ Y , respectively, and whose

(x, y)-entry equals to PY |X(y|x). Given random variables X, Y , and Z with joint

8



probability distribution PX,Y,Z , the notation X (−− Y (−− Z indicates a Markov

relationship among them; i.e., their joint probability distribution can be decomposed

in this way: PX,Y,Z = PX,Y PZ|Y .

Finally, for the additive group ({0, 1, . . . , q − 1},⊕q) for some q ≥ 2, where ⊕q
is modulo-q addition, we let {0, 1, . . . , q − 1} , Gq and let 	q denote the modulo-q

subtraction. In any derivation involving summation, we will not specify the domain

of the summation when it is clear from the context. The standard notation E stands

for the expectation operator and 1{·} stands for the indicator function. Other terms

not mentioned here will be defined when first introduced.

1.4 Research Problems

Our first research problem concerns finding the capacity region for TWCs. In par-

ticular, we tackle the capacity problem for three two-way networks depicted in Fig. 1.1.

The two-terminal (point-to-point) memoryless TWC in Fig. 1.1(a) models device-to-

device communication [75]. The simplified TWC with memory in Fig. 1.1(b), which

is a generalization of additive-noise TWCs in [40], can capture the effect of time-

correlated channel noise which commonly arises in wireless communications. The

three-terminal memoryless multiaccess/degraded broadcast (MA/DB) TWC [51] in

Fig. 1.1(c) models the communication between two mobile users and one base station.

For the sake of simplicity, we assume that the shared channel in the users-to-base-

station (uplink) direction acts as a MAC while the reverse (downlink) direction acts

as a degraded broadcast channel (DBC). For these networks, we investigate when the

Shannon-type inner bound is optimal in terms of achieving channel capacity. As a

result, we identify TWCs for which interactive adaptive coding is useless in terms of
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improving the terminals’ transmission rates. Such a result has a practical significance

since communication without adaptive coding simplifies system design.

Our second research problem is in the scope of joint source-channel coding (JSCC)

for two-terminal TWCs. More specifically, we study the scenario where two terminals

exchange a block of correlated source messages (SK1 , S
K
2 ) of length-K via N uses of

a noisy DM-TWC in Fig. 1.1(a). Terminal j only observes SKj and intends to re-

construct SKj′ from SKj and Y N
j subject to a distortion constraint. Here, the source

pairs (S1,k, S2,k), 1 ≤ k ≤ K, are assumed to be independent in time having the com-

mon joint probability distribution PS1,S2 ; i.e., PSK1 ,SK2 (sK1 , s
K
2 ) =

∏K
k=1 PS1,S2(s1,k, s2,k),

where (s1,k, s2,k) ∈ S1 × S2. The distortion for the reconstruction ŝKj of source mes-

sage sKj is assessed via dj(s
K
j , ŝ

K
j ) , K−1

∑K
k=1 dj(sj,k, ŝj,k), where dj : Sj × Ŝj→R≥0

is a single-letter distortion measure for source Sj. Furthermore, the noisy DM-TWC

is used without adopting any interactive communication protocol such as in [46, 49].

Given channel transition probability PY1,Y2|X1,X2 of a DM-TWC, the memoryless prop-

erty of the channel then implies that PY1,n,Y2,n|Xn
1 ,X

n
2 ,Y

n−1
1 ,Y n−1

2
= PY1,n,Y2,n|X1,n,X2,n =

PY1,Y2|X1,X2 for all n. For this system setup, we seek forward and converse coding

theorems for lossy source-channel transmissibility.

1.5 Related Work and Our Approach

1.5.1 Channel Capacity for Two-Way Channels

The notion of channel symmetry properties, which has been extensively investi-

gated to simplify the computation of the capacity of one-way channels, also plays

a key role in determining the capacity region for TWCs. The first channel sym-

metry property for DM-TWCs was discovered by Shannon [3, Section 12]. Given
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Memoryless 

TWC
Terminal 1 Terminal 2

X1 X2

Y2Y1

(a)

Time-Correlated 

Noise

Z1 Z2

Terminal 2

X2

Y2

Terminal 1

X1

Y1

Y1 = F1(X1, X2, Z1)

Y2 = F2(X1, X2, Z2)

(b)

Memoryless
MA/DB TWC

Terminal 1

Terminal 2

Terminal 3
X3

Y3Y2

X1

X2

Y1

(c)

Figure 1.1: Block diagrams of the two-way networks considered: (a) point-to-point
memoryless TWC with two channel inputs X1 and X2 and two channel
outputs Y1 and Y2; (b) point-to-point TWC with memory, where F1 and
F2 are deterministic functions and (Z1, Z2) is a time-correlated channel
noise pair generated from a two-dimensional random process; (c) three-
terminal memoryless MA/DB TWC, where Xi and Yi respectively denote
channel input and output at terminal j for j = 1, 2, 3.

[PY1,Y2|X1,X2( · , · | · , · )], the channel transition matrix of a two-terminal DM-TWC.

Shannon gave two permutation invariance conditions on [PY1,Y2|X1,X2( · , · | · , · )] which

guarantee the equality of his inner and outer bounds (see Propositions 2.1 and 2.2

in Section II for details). A recent work [41] by Chaaban, Varshney, and Alouini

(CVA) presented another tightness condition, where the channel symmetry prop-

erty is given in terms of conditional entropies for the marginal channel distribution

[PYj |X1,X2( · | · , · )] (see Proposition 2.3).

The above conditions delineate classes of two-terminal DM-TWCs for which Shan-

non’s capacity inner bound is tight, hence exactly yielding their capacity region.

Examples include Gaussian TWCs [28], q-ary additive-noise TWCs [40], and more

general channel models such as injective semi-deterministic TWCs (ISD-TWCs) [41],
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Cauchy [41] and exponential family type TWCs [43]. We remark that Hekstra and

Willems [31] also presented conditions under which Shannon’s inner bound is tight,

but their result is only valid for common-output DM-TWCs.

For three-terminal MA/BC DM-TWCs, Cheng and Devroye [51] studied a class

of symmetric TWCs. In particular, they considered deterministic, invertible, and

alphabet-restricted MA/BC DM-TWCs, proving that the Shannon-type inner bound

is tight for that class of channels. However, to the best of our knowledge, symmetry

properties for TWCs beyond these have not been investigated. It is also important

to point out that two-terminal TWCs with memory are not well understood either.

In this thesis, we tackle the capacity problem by viewing a TWC as two interactive

state-dependent one-way channels [3], [10].3 Taking the two-terminal network as an

example, the state-dependent one-way channel from terminals 1 to 2 has input X1,

output Y2, state X2, and transition matrix given by [PY2|X1,X2( · | · , · )]; similarly, the

one-way channel [PY1|X1,X2( · | · , · )] in the reverse direction has input X2, output Y1,

and channel state X1. Note that this viewpoint may also be useful for all previously

mentioned two-way networks. Another useful tool is the rich set of symmetry concepts

for single-user one-way channels.4 From this viewpoint, the two one-way channels now

interact with each other through the channel states. In principle, this interaction

could improve bi-directional transmission rates by making use of adaptive coding.

To determine channel capacity, our approach is to study symmetry properties for

state-dependent one-way channels that imply that the capacity cannot be increased

3Another viewpoint for two-terminal TWCs is based on compound MACs, see [19, Problem 14.11]
and [76].

4Channel symmetry properties for single-user one-way memoryless channels can be roughly clas-
sified into two types. One type focuses on the structure of the channel transition probability such
as Gallager symmetric channels [77], weakly symmetric and symmetric channels [74], and quasi-
symmetric channels [78]. The other type aims at the invariance of information quantities including
T -symmetric channels [79] and channels with input-invariance symmetry [80].
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with the availability of channel state information at the transmitter (in addition to

the receiver).5 Such properties can potentially render interactive adaptive coding

useless in terms of enlarging TWC capacity. Taking two-terminal DM-TWCs as an

example, we develop the following two important channel symmetry notions. The

common optimal input distribution condition identifies a state-dependent one-way

channel that has an identical capacity-achieving input distribution for all channel

states, while the invariance of input-output mutual information condition identifies

a state-dependent one-way channel that produces the same input-output mutual in-

formation for all channel states under any fixed input distribution. If a DM-TWC

satisfies both conditions, one for each direction of the two-way transmission, then

the optimal transmission scheme of one terminal is irrelevant to the other terminal’s

transmission scheme, implying that the interaction between the terminals does not

increase their transmission rates and hence channel capacity.

Formally, we can prove that under certain symmetry properties (identified by the

derived conditions), any rate pair inside Shannon’s outer bound region is always con-

tained in his inner bound region, implying that the latter bound is tight. Furthermore,

it should be expected that validating generalized channel symmetry properties can be

a very complex procedure. However, we show that such a verification can be greatly

simplified for some TWCs. In other words, we not only seek general conditions but

also look for conditions which are simple to verify.

5We note that this idea has been adopted to determine capacity for certain one-way channels such
as one-way channels with memory [81–84] and compound channels with feedback [85], where feedback
information cannot be exploited to enlarge the capacity. More details regarding the inefficacy of
feedback in increasing capacity can be found in [86].
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1.5.2 Lossy Source Transmission over Two-Way Channels

In the literature, there are only few works related to our lossy transmission setup.

In [3, Section 14], Shannon implicitly illustrated that perfect matching among the

source and channel statistics and alphabets results in error-free communication, with

the optimal scheme given by uncoded transmission. In [49], the JSCC problem was

studied for DM-TWCs which consist of two independent one-way channels. Together

with the protocol mentioned in Section 1.2, Kaspi’s source coding result was extended

for successive source refinement. Also, a complete JSCC theorem was derived in this

particular setting. By contrast, the authors in [76, Section VIII] tackled the two-way

transmission problem for general DM-TWCs without deploying any protocol. The

correlation-preserving coding scheme of [87] was adopted for almost lossless trans-

mission; i.e., when requiring the block error rate of the source reconstructions to

vanish asymptotically. Similar to Shannon’s idea, the (non-adaptive) coding scheme

of [76] can preserve source correlation in the channel inputs to facilitate two-way

transmission; however, it does not apply to the lossy setup. In this thesis, we tackle a

transmission problem that is more general in many aspects; e.g., we do not consider

a particular type of DM-TWC or assume a given communication protocol. We next

sketch the concepts behind our main JSCC achievability result.

As the transmissions of the terminals influence each other on a shared channel and

generally cause cross-interference, we propose to design the coding strategies jointly.

For this purpose, we construct joint source-channel codes that induce a stationary

Markov chain that couples all variables of the communication system. In principle,

when the channel inputs are generated by such codes, all system variables will behave

according to the stationary distribution of the induced chain, thus coordinating the
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independent transmissions of the terminals. Specifically, we combine the following

coding techniques to build our adaptive codes. First, we adopt the functional form

of superposition coding [88] to generate channel inputs, which plays a central role in

inducing the desired Markov transmission process. We also modify the analog/digital

hybrid coding scheme of [89] to exploit side-information for decoding, in addition to

its original source-correlation-preserving mechanism. Moreover, we use past channel

inputs and outputs similarly to [28] to enable adaptive coding. We note that although

these techniques are not new, combining and integrating them into an adaptive two-

way coding framework for our problem setup is challenging.

1.6 Contributions of the Thesis

In this section, we summarize the contributions of each chapter. We note that

some results have been published in [1, 2, 90–94].

1.6.1 Chapter 2

This chapter contains three main contributions concerning two-terminal DM-

TWCs. First, we derive several sufficient and necessary conditions for Shannon’s

random coding inner bound to be tight, and we further show that our tightness con-

ditions strictly generalize prior results [3,41]. Although the most general form of our

conditions, which can be employed to determine the capacity region for a broader

class of DM-TWCs, is somewhat complex, we develop some easy-to-apply results.

In the simplest scenario, one can verify our conditions by only observing the channel

marginal distributions. On the other hand, we also develop a strategy to approximate

the capacity region of DM-TWCs that do not satisfy the tightness conditions. The
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approximation result relies on a simple but non-trivial outer bound, which can be

easily obtained within the framework of Shannon’s inner bound computation.

We next study the relationships between different tightness conditions, includ-

ing prior results and our new conditions. These relationships are summarized in an

implication diagram; counterexamples are also given to reveal invalid implications.

Moreover, we illustrate our conditions via examples. The capacity region for sev-

eral classes of DM-TWCs, including binary/non-binary additive-noise TWCs with

erasures (which subsume several classical TWCs), data-access TWCs, and injective

semi-deterministic (ISD) TWCs, are determined in a closed form.

The last part of this chapter presents a generalization of Shannon’s push-to-talk

channel [3, Table I]. Specifically, we introduce a new DM-TWC model that exhibits

a feature similar to Shannon’s push-to-talk channel. As this generalized channel does

not satisfy our tightness conditions, we develop another method to determine its

capacity region. We show that the capacity region can be characterized by at most

four extreme rate pairs, and hence its shape for non-trivial cases is either quadrilateral

or triangular. Moreover, unlike in the case of the DM-TWCs that satisfy our tightness

conditions, we find that one needs to use a time-sharing scheme to achieve capacity

for this class of channels. Based on a case study, we further investigate transmission

schemes for two terminals to achieve optimal trade-offs between the bidirectional

transmission rates.

1.6.2 Chapter 3

In this chapter, we establish a Shannon-type inner bound and outer bounds for the

capacity of TWCs with memory under certain invertibility, one-to-one mapping, and
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alphabet size constraints (Theorem 3.1, Corollaries 3.1-3.3, and Lemmas 3.1-3.2).

Two sufficient conditions for the tightness of the bounds are given (Theorems 3.2

and 3.3). The first condition is derived for TWCs with strict invertibility and al-

phabet size constraints, characterizing the channel capacity in single-letter form.

The other condition is specialized for injective semi-deterministic TWCs with mem-

ory.6 Furthermore, motivated by a simple example where adaptive coding can enlarge

achievable rates, we propose two adaptive coding schemes for two noise processes with

memory. The schemes not only show how to make use of time-correlation to achieve

our capacity outer bound but also illustrate a combination of the noise/interference

cancellation coding and superposition coding.

1.6.3 Chapter 4

In this chapter, we establish a Shannon-type inner bound and an outer bound

for the capacity region of multiaccess (MA) and degraded broadcast (DB) TWCs

(Theorems 4.1 and 4.2) where both bounds admit a common rate expression but

have different input distribution requirements. Three sufficient conditions (based on

different techniques) for these bounds to coincide are established (Theorems 4.3-4.5).

The first condition involves the existence of independent inputs that can achieve the

outer bound (similar to the idea of [41]). The second condition is derived from the

viewpoint of two interacting state-dependent one-way channels. The last one focuses

on the permutation invariance structure of the channel transition matrix (mirroring

the Shannon symmetry method [3]). The obtained results extend the results in [51]

and readily provide the capacity region for a larger class of MA/DB TWCs. We note

6ISD-TWC model with memoryless noise were introduced in [41]. Here, we merely extend this
setting by allowing noise processes with memory.
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that while the channel model here is admittedly simplified, our intention is to illustrate

a potential methodology for determining the capacity regions of multi-terminal TWCs

and to motivate future work in this area.

1.6.4 Chapter 5

The contributions of this chapter are divided into two parts. The first one estab-

lishes a general JSCC result (Theorem 5.1) for two-terminal two-way lossy simulta-

neous transmission using the concepts of hybrid analog/digital coding, superposition

coding and adaptive channel coding, together with a low-complexity sliding-window

decoder. Two simplified achievability results (Corollaries 5.1 and 5.2) are derived

from the main theorem. Moreover, our coding method is shown to subsume some ba-

sic schemes such as uncoded transmission and the concatenation of Wyner-Ziv (WZ)

source coding and Shannon’s (or Han’s) channel coding; it also recovers the almost

lossless transmission of [76]. Four illustrated examples (Examples 5.1-5.4) are pro-

vided to highlight the difference between the coding schemes. We also investigate the

performance of scalar coding.

In the second part, we use standard arguments to obtain two outer bounds (Lem-

mas 5.1 and 5.2) for the achievable distortion region. The bounds are expressed in

terms of the standard RD function and the conditional RD function and are hence

easy to compute for many classical models of correlated sources. Furthermore, four

complete theorems (Theorems 5.2-5.5) that fully characterize the achievable distor-

tion region for certain system settings are derived. Specifically, for DM-TWCs with

symmetry properties (defined in Chapter 2), we show the optimality of SSCC in the

following settings:
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• lossy transmission of independent sources;

• almost lossless transmission of correlated sources;

• lossy transmission of correlated sources whose WZ and conditional RD functions

are equal;

• lossy transmission of correlated sources having a common part in the sense of

Gács-Körner-Witsenhausen [47, Section 14.2.2].

Examples for Theorems 5.4 and 5.5 are also provided (Examples 5.5-5.7).
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Chapter 2

Two-Terminal Discrete-Memoryless Two-Way

Channels

This chapter focuses on two-terminal DM-TWCs and its organization is summa-

rized as follows. We first introduce the system model and several definitions regarding

the capacity region in Section 2.1.1. The capacity bounds in the literature are re-

viewed in Section 2.1.2. In Section 2.2, we begin with prior tightness conditions on

Shannon’s capacity inner bound (in Section 2.2.1). Our new conditions are given in

Section 2.2.2, followed by a section of examples (Section 2.2.3) that illustrate our

new results. In Section 2.3, we identify the relationships among different tightness

conditions. We also derive necessary conditions for our tightness conditions to hold

in Section 2.3.3. To give a global picture for our findings in Sections 2.2 and 2.3, we

illustrate them in Fig. 2.1. Furthermore, the generalized push-to-talk DM-TWCs are

defined and investigated in Section 2.4, and their capacity region is determined. In

the last section (Section 2.5), we present a simple yet non-trivial capacity outer bound

to approximate the capacity region for general two-terminal DM-TWCs. Numerical

examples are also provided at the end of each of Sections 2.4 and 2.5.
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Figure 2.1: The relationships between the results yielding the equality of Shannon’s
capacity bounds in two-terminal memoryless TWCs. Here, A → B indi-
cates that result A subsumes result B, and B 9 A indicates that result
B does not subsume result A. For example, Prop. 2.3 → Prop. 2.1 and
Prop. 2.1 9 Prop. 2.3 mean that the CVA result in Prop. 2.3 is more
general than the Shannon result in Prop. 2.1.
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Figure 2.2: The block diagram of two-way transmission

2.1 Preliminaries

2.1.1 Channel Model and Definitions

Consider the two-terminal (or point-to-point) two-way communication system as

shown in Fig. 2.2, where the terminals want to exchange independent messages M1

and M2 via N channel uses. Here, M1 and M2 are assumed to be uniformly distributed

on the finite sets M1 , {1, 2, ..., 2NR1} and M2 , {1, 2, ..., 2NR2} for some integers

NR1 ≥ 0 and NR2 ≥ 0, respectively. For j = 1, 2 and n = 1, 2, . . . , N , define

Xj,n ∈ Xj and Yj,n ∈ Yj as the channel input and output of terminal j at time n,

respectively, where Xj and Yj are two finite sets. The joint probability distribution
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of all random variables that involve the entire n transmissions can be written as

PM1,M2,XN
1 ,X

N
2 ,Y

N
1 ,Y N2

= PM1,M2 ·

 N∏
n=1

PX1,n|M1,Y
n−1
1

 N∏
n=1

PX2,n|M2,Y
n−1
2


·

 N∏
n=1

PY1,n,Y2,n|Xn
1 ,X

n
2 ,Y

n−1
1 ,Y n−1

2

 ,

where Xn
j , (Xj,1, Xj,2, . . . , Xj,n) and Y n

j , (Yj,1, Yj,2, . . . , Yj,n). Thus, the N chan-

nel uses can be described by the sequence of input-output conditional probabilities{
PY1,n,Y2,n|Xn

1 ,X
n
2 ,Y

n−1
1 ,Y n−1

2

}N
n=1

.

Definition 2.1. An (N,R1, R2) channel code for a two-terminal discrete TWC con-

sists of two message sets M1 = {1, 2, . . . , 2NR1} and M2 = {1, 2, . . . , 2NR2}, two sets

of encoding functions f1 , {f1,1, f1,2, . . . , f1,n} and f2 , {f2,1, f2,2, . . . , f2,n}:

f1,1 :M1 → X1, f1,n :M1 × Yn−1
1 → X1,

f2,1 :M2 → X2, f2,n :M2 × Yn−1
2 → X2,

for n = 2, 3, . . . , N , and two decoding functions g1 : M1 × YN1 → M2 and g2 :

M2 × YN2 →M1.

When messages M1 and M2 are encoded, the channel inputs at time n = 1 are

only functions of the messages, i.e., Xj,1 = fj,1(Mj) for j = 1, 2, but all the other

channel inputs are generated by also adapting to the previously received signals Y n−1
j

via Xj,n = fj,n(Mj, Y
n−1
j ) for j = 1, 2 and n = 2, 3, . . . , N . Upon receiving N channel

outputs, terminal j reconstructs Mj′ as M̂j′ = gj(Mj, Y
N
j ), where j, j′ = 1, 2 with

j 6= j′. The probability of decoding error is defined as

P (N)
e (f1,f2, g1, g2) = Pr({M̂1 6= M1} ∪ {M̂2 6= M2}).
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Based on P
(N)
e , we next define achievable rate pairs and the capacity region.

Definition 2.2. A rate pair (R1, R2) is said to be achievable for a two-terminal

discrete TWC if there exists a sequence of (N,R1, R2) codes with vanishing error

probability, i.e., limN→∞ P
(N)
e (f1,f2, g1, g2) = 0.

Definition 2.3. The capacity region C(PY1,Y2|X1,X2) of a two-terminal discrete TWC

is defined as the closure of all achievable rate pairs.

Definition 2.4. A two-terminal discrete TWC is said to be memoryless if the channel

input-output probabilities satisfy PY1,n,Y2,n|Xn
1 ,X

n
2 ,Y

n−1
1 ,Y n−1

2
= PY1,Y2|X1,X2 for all n ≥ 1.

2.1.2 Capacity Bounds

For two-terminal DM-TWCs with channel transition probability PY1,Y2|X1,X2 , let

R(PX1,X2 , PY1,Y2|X1,X2) , {(R1, R2) ∈ R2
≥0 : R1 ≤ I(X1;Y2|X2), R2 ≤ I(X2;Y1|X1)},

(2.1)

where the mutual information quantities are evaluated under the joint probability

distribution PX1,X2,Y1,Y2 = PX1,X2PY1,Y2|X1,X2 . In [3], Shannon derived two bounds for

the capacity region of two-terminal DM-TWCs, in which the inner bound is obtained

by using the standard random coding (without adaption).

Theorem 2.1 (Shannon’s Capacity Bounds [3]). The capacity region of a two-

terminal DM-TWC with transition probability PY1,Y2|X1,X2 is inner bounded by

CI(PY1,Y2|X1,X2) , co

 ⋃
PX1
∈P(X1),PX2

∈P(X2)

R(PX1PX2 , PY1,Y2|X1,X2)

 , (2.2)
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and outer bounded by

CO(PY1,Y2|X1,X2) ,
⋃

PX1,X2
∈P(X1×X2)

R(PX1,X2 , PY1,Y2|X1,X2), (2.3)

where co(·) denotes taking the closure of the convex hull.

Note that Shannon’s outer bound region is already convex and hence there is no

need to take convex closure. Moreover, Shannon’s inner bound can be alternatively

expressed by considering a coded time-sharing random variable [47], which results in

an inner bound without taking the convex closure operation.

Theorem 2.2 (Coded Time-Sharing Inner Bound [47]). For a two-terminal

DM-TWC with transition probability PY1,Y2|X1,X2, any rate pair (R1, R2) that satisfies

R1 ≤ I(X1;Y2|X2, Q), (2.4a)

R2 ≤ I(X2;Y1|X1, Q), (2.4b)

is achievable, where the joint probability distribution of all random variables is given

by PQ,X1,X2,Y1,Y2 = PQPX1|QPX2|QPY1,Y2|X1,X2.

We next summarize improved capacity bounds in the literature.

Theorem 2.3 (Block Markov Coding Inner Bound [28]). For a two-terminal

DM-TWC with transition probability PY1,Y2|X1,X2, any rate pair (R1, R2) that satisfies

R1 < I(Ũ1;X2, Y2, Ũ2, W̃2), (2.5a)

R2 < I(Ũ2;X1, Y1, Ũ1, W̃1), (2.5b)

is achievable, where the joint probability distribution of all random variables is given

by PU1,U2,Ũ1,Ũ2,W̃1,W̃2,X1,X2,Y1,Y2
= PU1PU2PŨ1Ũ1W̃1W̃2

PX1|U1,Ũ1,W̃1
PX2|U2,Ũ2,W̃2

PY1,Y2|X1,X2,
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a distribution that induces a stationary Markov chain for the {Z(t)} in [28, (4.12)].

Theorem 2.4 (Zhang-Berger-Schalkwijk (ZBS) Outer Bound [29]). For a two-

terminal DM-TWC with transition probability PY1,Y2|X1,X2, every achievable rate pair

(R1, R2) must satisfy

R1 ≤ min
(
H(X1|U1), I(X1;Y2|X2, U2)

)
, (2.6a)

R2 ≤ min
(
H(X2|U2), I(X2;Y1|X1, U1)

)
, (2.6b)

for some joint probability distribution PU1,U2,X1,X2,Y1,Y2 = PU1,U2PX1|U1PX2|U2PY1,Y2|X1,X2.

Note that there is no cardinality bound for auxiliary random variables U1 and U2 in

the ZBS outer bound, but weaker results with cardinality bound can be deduced from

it [29]. In the literature, there is a so-called dependence balance bound specialized

for common-output DM-TWCs, i.e., Y1 = Y2 = Y , as shown below.

Theorem 2.5 (Dependence Balance Bound [31]). For a common-output DM-

TWC with transition probability PY |X1,X2, every achievable rate pair (R1, R2) must

satisfy

R1 ≤ I(X1;Y |X2, Q),

R2 ≤ I(X2;Y |X1, Q),

for some joint probability distribution PQ,X1,X2,Y = PX1,X2,QPY |X1,X2 and |Q| ≤ 3 such

that I(X1;X2|Q) ≤ I(X1;X2|Y,Q).

In general, the above inner and outer bounds do not coincide, and hence the

capacity region of most DM-TWCs remains unknown. For single-output DM-TWCs,

it is known that if I(X1;X2|Y,Q) = 0 and thus I(X1;X2|Q) = 0 (i.e., X1 (−− Q(−−
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X2), then the coded time-sharing inner bound is tight. For general two-terminal

DM-TWCs, there are very few results available. Our first objective here is to derive

conditions under which the inner and outer bounds can be matched to each other,

thereby determining the capacity region. Specifically, we only focus on Shannon’s

inner and outer bounds and investigate when this inner bound is tight, i.e., when one

has CI(PY1,Y2|X1,X2) = CO(PY1,Y2|X1,X2). For notational simplicity, we use CI, CO, and C

in the rest of this chapter.

2.2 Tightness Conditions for Shannon’s Inner Bound

2.2.1 Prior Results

Before presenting our findings, we first summarize the Shannon [3] and Chaaban-

Varshney-Alouini (CVA) [41] conditions that imply the coincidence of CI and CO. In

short, the Shannon conditions focus on the symmetry structure of channel transition

probability PY1,Y2|X1,X2 , while the CVA condition aims at the existence of indepen-

dent inputs which can achieve Shannon’s outer bound. Some notations are given

in order. For a finite set A, let πA : A → A be a permutation (bijection), and

for any two symbols a′ and a′′ in A, let τAa′,a′′ : A → A denote the transposition

which swaps a′ and a′′ in A, but leaves the other symbols unaffected. Through-

out the thesis, we will use I(l)(Xj;Yj′|Xj′) and H(l)(Yj|X1, X2) to denote the condi-

tional mutual information and the conditional entropy evaluated under the input

distribution P
(l)
X1,X2

for j, j′ = 1, 2 with j 6= j′. For P
(l)
X1,X2

= P
(l)
Xj
P

(l)
Xj′ |Xj

with

j 6= j′, the conditional entropy H(l)(Yj|Xj) is evaluated using the marginal distri-

bution P
(l)
Yj |Xj(yj|xj) =

∑
xj′∈Xj′

P
(l)
Xj′ |Xj

(xj′ |xj)PYj |Xj ,Xj′ (yj|xj, xj′).
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Proposition 2.1 (Shannon’s One-sided Symmetry Condition [3]). For a two-

terminal DM-TWC with transition probability PY1,Y2|X1,X2, we have C = CI = CO if

for any pair of distinct input symbols x′1, x
′′
1 ∈ X1, there exists a pair of permutations

(πY1 [x′1, x
′′
1], πY2 [x′1, x

′′
1]) on Y1 and Y2 (which depend on x′1 and x′′1) such that

PY1,Y2|X1,X2(y1, y2|x1, x2)

= PY1,Y2|X1,X2(π
Y1 [x′1, x

′′
1](y1), πY2 [x′1, x

′′
1](y2)|τX1

x′1,x
′′
1
(x1), x2) (2.8)

holds for all x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1, and y2 ∈ Y2. Moreover, the capacity region

is given by

C =
⋃

PX2
∈P(X2)

R
(
PU
X1
PX2 , PY1,Y2|X1,X2

)
. (2.9)

Although Proposition 2.1 only describes a channel symmetry property with respect

to the channel input of terminal 1, an analogous condition for terminal 2 can be

obtained by exchanging the roles of terminals 1 and 2. The next proposition is for

a DM-TWC that satisfies one-sided symmetry condition with respect to the channel

inputs of both terminals.

Proposition 2.2 (Shannon’s Two-sided Symmetry Condition [3]). For a two-

terminal DM-TWC with transition probability PY1,Y2|X1,X2, we have C = CI = CO if

the TWC satisfies one-sided symmetry condition with respect to both channel inputs.

Moreover, the capacity region is rectangular and given by

C = R(PU
X1
PU
X2
, PY1,Y2|X1,X2). (2.10)

We next summarize the CVA condition in the following proposition; the proof is

straightforward and hence omitted here.

27



Proposition 2.3 (CVA Condition [41]). For a two-terminal DM-TWC with transi-

tion probability PY1,Y2|X1,X2, we have that C = CI = CO if H(Yj|X1, X2), j = 1, 2, does

not depend on PX1|X2 for any fixed PX2 and PYj |X1,X2, and for any P
(1)
X1,X2

= P
(1)
X2
P

(1)
X1|X2

there exists P̃X1 ∈ P(X1) such that H(1)(Yj|Xj) ≤ H(2)(Yj|Xj) for j = 1, 2, where

P
(2)
X1,X2

= P̃X1P
(1)
X2

. Also, the capacity region is given by

C =
⋃

PX1
∈P(X1),PX2

∈P(X2)

R(PX1PX2 , PY1,Y2|X1,X2). (2.11)

The capacity region of a two-terminal DM-TWC which satisfies any of the above

conditions can be determined by considering independent input distributions, i.e., the

input distributions are of a product form PX1PX2 . This result indicates that adaptive

coding, where channel inputs are generated by adapting to the previously received

signals, cannot improve achievable rates. Memoryless ISD-TWCs [41] are special

two-terminal DM-TWCs which satisfy the CVA condition (but not necessarily the

Shannon conditions). The DM-TWC with independent q-ary additive noise [40] is an

example of this class that also satisfies the Shannon’s two-sided symmetry condition.

2.2.2 New Tightness Conditions

In this section, we establish more general channel symmetry properties regarding

the tightness of Shannon’s inner and outer bounds and identify the relationship be-

tween different tightness conditions. We adopt the viewpoint that a two-way channel

consists of two state-dependent one-way channels; for example, the one-way chan-

nel from terminal 1 to terminal 2 is governed by the marginal distribution PY2|X1,X2

(derived from the channel probability distribution PY1,Y2|X1,X2), where X1 and Y2 are

respectively the input and the output of the channel with state X2.
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Let PX and PY |X be probability distributions on finite sets X and Y . To simplify

the presentation, we define

I(PX , PY |X) =
∑
x,y

PX(x)PY |X(y|x) log
PY |X(y|x)∑

x′ PX(x′)PY |X(y|x′) , (2.12)

which is the mutual information I(X;Y ) between input X (governed by PX) and

corresponding output Y of a channel with transition probability PY |X . A useful fact

is that I( · , · ) is concave in the first argument when the second argument is fixed. The

conditional mutual information I(X1;Y2|X2 = x2) and I(X2;Y1|X1 = x1) can be then

expressed as I(PX1|X2=x2 , PY2|X1,X2=x2) and I(PX2|X1=x1 , PY1|X1=x1,X2), respectively.

Due to the viewpoint of state-dependent one-way channels, each of the following

theorems comprises two conditions, one for each direction of the two-way transmission.

By symmetry, these theorems are also valid if the roles of terminals 1 and 2 are

swapped.

Theorem 2.6. For a two-terminal DM-TWC, if both of the following conditions are

satisfied, then CI = CO:

(i) There exists P ∗X1
∈ P(X1) such that for all x2 ∈ X2 we have

arg max
PX1|X2=x2

I(X1;Y2|X2 = x2) = P ∗X1
;

(ii) I(PX2 , PY1|X1=x1,X2) does not depend on x1 ∈ X1 for any fixed PX2 ∈ P(X2).

Moreover, the capacity region is given by

C =
⋃

PX2
∈P(X2)

R(P ∗X1
PX2 , PY1,Y2|X1,X2). (2.13)
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Proof: For any P
(1)
X1,X2

= P
(1)
X2
P

(1)
X1|X2

, let P
(2)
X1,X2

= P ∗X1
P

(1)
X2

, where P ∗X1
is given by (i).

In light of (i), we have

I(1)(X1;Y2|X2) =
∑
x2

P
(1)
X2

(x2) · I(1)(X1;Y2|X2 = x2) (2.14)

≤
∑
x2

P
(1)
X2

(x2) ·
[

max
PX1|X2=x2

I(X1;Y2|X2 = x2)

]
(2.15)

=
∑
x2

P
(1)
X2

(x2) · I(P ∗X1
, PY2|X1,X2=x2) (2.16)

=
∑
x2

P
(1)
X2

(x2) · I(2)(X1;Y2|X2 = x2) (2.17)

= I(2)(X1;Y2|X2). (2.18)

Moreover,

I(1)(X2;Y1|X1) =
∑
x1

P
(1)
X1

(x1) · I(1)(X2;Y1|X1 = x1) (2.19)

=
∑
x1

P
(1)
X1

(x1) · I(P
(1)
X2|X1=x1

, PY1|X1=x1,X2) (2.20)

=
∑
x1

P
(1)
X1

(x1) · I(P
(1)
X2|X1=x1

, PY1|X1=x′1,X2
) (2.21)

≤ I
∑

x1

P
(1)
X1

(x1)P
(1)
X2|X1=x1

, PY1|X1=x′1,X2

 (2.22)

= I(P
(1)
X2
, PY1|X1=x′1,X2

) (2.23)

=
∑
x′1

P ∗X1
(x′1) · I(P

(1)
X2
, PY1|X1=x′1,X2

) (2.24)

= I(2)(X2;Y1|X1), (2.25)

where (2.21) holds by the invariance assumption in (ii), (2.22) holds since the func-

tional I( · , · ) is concave in the first argument, and (2.24) is obtained from the in-

variance assumption in (ii). Combining the above yields R(P
(1)
X1,X2

, PY1,Y2|X1,X2) ⊆

R(P ∗X1
P

(1)
X2
, PY1,Y2|X1,X2), which implies that CO ⊆ CI and hence CI = CO.
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A special case where condition (i) of Theorem 2.6 trivially holds is when each

one-way channel PY2|X1,X2=x2 , x2 ∈ X2, is T -symmetric1 [79]; in this case we have

P ∗X1
= PU

X1
. This immediately gives the following corollary.

Corollary 2.1. For a given two-terminal DM-TWC, if conditions (i) and (ii) below

are satisfied, then CI = CO = C with C given in (2.9):

(i) All one-way channels governed by PY2|X1,X2=x2, x2 ∈ X2, are T -symmetric;

(ii) I(PX2 , PY1|X1=x1,X2) does not depend on x1 ∈ X1 for any fixed PX2 ∈ P(X2).

Another sufficient condition for condition (i) of Theorem 2.6 to hold is that

I(PX1 , PY2|X1,X2=x2) does not depend on x2 ∈ X2 for any fixed PX1 ∈ P(X1). Us-

ing this fact yields the following corollary of Theorem 2.6.

Corollary 2.2. For a given two-terminal DM-TWC, if both of the following condi-

tions are satisfied, then CI = CO:

(i) I(PX1 , PY2|X1,X2=x2) does not depend on x2 ∈ X2 for any fixed PX1 ∈ P(X1);

(ii) I(PX2 , PY1|X1=x1,X2) does not depend on x1 ∈ X1 for any fixed PX2 ∈ P(X2).

Moreover, the capacity region is given by

C = R(P ∗X1
P ∗X2

, PY1,Y2|X1,X2), (2.26)

where P ∗Xj = arg maxPXj |Xj′=xj′
I(Xj;Yj′ |Xj′ = xj′) for j, j′ = 1, 2 with j 6= j′.

Remark 2.1. One can also use the Karush–Kuhn–Tucker (KKT) conditions [95] to

verify the optimality of the product input distribution P ∗X1
P ∗X2

. Note that Shannon’s

1A two-terminal DM one-way channel is called T -symmetric if the optimal input distribution
(that maximizes the channel’s mutual information) is uniform.
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outer bound can be found via solving the following convex optimization problem for

all λ ∈ [0,∞):

arg max
PX1,X2

∈P(X1×X2)

I(X1;Y2|X2) + λI(X2;Y1|X1)

since the function to be maximized is a supporting hyperplane (with the normal vector

(1, λ)) to the outer bound region. Based on the KKT conditions, PX1,X2 = P ∗X1
P ∗X2

is

optimal if and only if for all λ ∈ [0,∞), we have that

−
∑
y2

PY2|X1,X2(y2|x′1, x′2) logPY2|X2(y2|x′2)−H(Y2|X1 = x′1, X2 = x′2)

−λ
∑
y1

PY1|X1,X2(y1|x′1, x′2) logPY1|X1(y1|x′1)− λH(Y1|X1 = x′1, X2 = x′2)

=


≤ µ if P ∗X1

(x′1)P ∗X2
(x′2) = 0

= µ if P ∗X1
(x′1)P ∗X2

(x′2) > 0

where PYj |Xj(yj|x′j) =
∑

xj′
PYj |Xj ,Xj′ (yj|x′j, xj′)P ∗Xj′ (xj′) for j, j′ = 1, 2 with j 6= j′

and µ is the KKT multiplier for the constraint
∑

x1,x2
PX1,X2(x1, x2) = 1.

Different from Theorem 2.6, which can identify DM-TWCs with non-rectangular

capacity region, the capacity region of a DM-TWC that satisfies Corollary 2.2 is

always rectangular. The capacity region in the next theorem is a case in point, but

the theorem is established by relaxing the requirement of the invariance of mutual

information with respect to all input distributions.

Theorem 2.7. For a given two-terminal DM-TWC, if both of the following conditions

are satisfied, then CI = CO = C with C given by (2.26):

(i) There exists P ∗X1
∈ P(X1) such that for all x2 ∈ X2 we have a common max-

imizer P ∗X1
= arg maxPX1|X2=x2

I(X1;Y2|X2 = x2) and the mutual information
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I(P ∗X1
, PY2|X1,X2=x2) does not depend on x2 ∈ X2;

(ii) There exists P ∗X2
∈ P(X2) such that for all x1 ∈ X1 we have a common max-

imizer P ∗X2
= arg maxPX2|X1=x1

I(X2;Y1|X1 = x1) and the mutual information

I(P ∗X2
, PY1|X1=x1,X2) does not depend on x1 ∈ X1.

Unlike the condition (ii) of Theorem 2.6 and conditions in Corollary 2.2, here, we

merely need to check the existence of common maximizers and test whether or not

I(P ∗X1
, PY2|X1,X2=x2) is invariant with respect to x2 ∈ X2 and I(P ∗X2

, PY1|X1=x1,X2) is

invariant with respect to x1 ∈ X1. The computational effort is then greatly reduced.

The next two corollaries of Theorem 2.6 provide even simpler ways than the above,

in which computations can be completely avoided.

Recall that [PY2|X1,X2( · | · , x2)] denotes the transition matrix of the channel from

terminals 1 to 2 when the input of terminal 2 is fixed to be x2; the entry in the matrix

corresponding to x1 (in row) and y2 (in column) is given by PY2|X1,X2(y2|x1, x2). Simi-

larly, [PY1|X1,X2( · |x1, · )] denotes the transition matrix of the channel from terminals 2

to 1 when the input of terminal 1 is fixed to be x1.

Corollary 2.3. For a given two-terminal DM-TWC, if both of the following condi-

tions are satisfied, then CI = CO = C with C given by (2.9):

(i) The channel with transition matrix [PY2|X1,X2( · | · , x2)] is quasi-symmetric2 for

all x2 ∈ X2;

(ii) The matrices [PY1|X1,X2( · |x1, · )], x1∈X1, are column permutations of each other.

2A discrete memoryless channel with transition matrix [PY |X( · | · )] is said to be weakly-symmetric
if the rows are permutations of each other and all the column sums are identical [74, 96]. Also
a discrete memoryless channel with transition matrix [PY |X(·|·)] is said to be quasi-symmetric if
[PY |X( · | · )] can be partitioned along its columns into weakly-symmetric sub-matrices [78].
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Corollary 2.4. For a given two-terminal DM-TWC, if both of the following condi-

tions are satisfied, then CI = CO = C with C given by (2.26):

(i) The matrices [PY2|X1,X2( · | · , x2)], x2∈X2, are column permutations of each other;

(ii) The matrices [PY1|X1,X2( · |x1, · )], x1∈X1, are column permutations of each other.

Except for the above new conditions, we found that Shannon’s original condi-

tions are too stringent to imply the tightness of his inner bound (from the proof in

Appendix A.1). The next two propositions refine Shannon’s results.

Proposition 2.4 (Extended Shannon’s One-Sided Symmetry Condition).

For a two-terminal DM-TWC with transition probability PY1,Y2|X1,X2, we have that

CI = CO = C with C given by (2.9) if for any pair of distinct input symbols x′1,

x′′1 ∈ X1, there exists a pair of permutations (πY1 [x′1, x
′′
1], πY2 [x′1, x

′′
1]) on Y1 and Y2,

respectively, (which depend on x′1 and x′′1) such that for all x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1,

y2 ∈ Y2,

PY1|X1,X2(y1|x1, x2) = PY1|X1,X2(π
Y1 [x′1, x

′′
1](y1)|τX1

x′1,x
′′
1
(x1), x2), (2.27a)

PY2|X1,X2(y2|x1, x2) = PY2|X1,X2(π
Y2 [x′1, x

′′
1](y2)|τX1

x′1,x
′′
1
(x1), x2), (2.27b)

where PY1|X1,X2 and PY2|X1,X2 are the marginals of PY1,Y2|X1,X2.

Proposition 2.5 (Extended Shannon’s Two-Sided Symmetry Condition).

For a two-terminal DM-TWC with transition probability PY1,Y2|X1,X2, we have that

CI = CO = C with C given by (2.10) if the TWC satisfies the extended Shannon’s

one-sided symmetry condition with respect to both channel inputs.

The following theorem generalizes the CVA condition.
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Theorem 2.8 (Generalized CVA Condition). For a given two-terminal DM-

TWC, if both of the following conditions are satisfied, then CI = CO = C with C given

by (2.13):

(i) There exists P ∗X1
∈ P(X1) such that for all x2 ∈ X2 we have

arg max
PX1|X2=x2

I(X1;Y2|X2 = x2) = P ∗X1
;

(ii) H(Y1|X1, X2) does not depend on PX1|X2 given PX2 and PY1|X1,X2, and P ∗X1
given

in (i) satisfies H(1)(Y1|X1) ≤ H(2)(Y1|X1) for any P
(1)
X1,X2

= P
(1)
X2
P

(1)
X1|X2

, where

P
(2)
X1,X2

= P ∗X1
P

(1)
X2

.

Proof: Given any P
(1)
X1,X2

= P
(1)
X2
P

(1)
X1|X2

, let P
(2)
X1,X2

= P ∗X1
P

(1)
X2

. By the same argu-

ment as in (2.14)-(2.18), we obtain that I(1)(X1;Y2|X2) ≤ I(2)(X1;Y2|X2) from the

condition (i). Moreover, condition (ii) implies that I(1)(X2;Y1|X1) = H(1)(Y1|X1) −

H(1)(Y1|X1, X2) ≤ H(2)(Y1|X1)−H(2)(Y1|X1, X2) = I(2)(X2;Y1|X1). Thus,

R(P
(1)
X1,X2

, PY1,Y2|X1,X2) ⊆ R(P ∗X1
P

(1)
X2
, PY1,Y2|X1,X2),

thereby proving CI = CO.

We note that a detailed implication chart for the above sufficient conditions is

given in Fig. 2.1.

2.2.3 Examples

We next illustrate the proposed conditions via examples.

Example 2.1 (Memoryless Binary Additive-Noise TWCs with Erasures).

Let X1 = X2 = G2 = {0, 1} (the binary additive group) and Y1 = Y2 = Z = {0, 1,E},
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where E denotes channel erasure. A binary additive noise DM-TWC with erasures is

defined by the channel equations

Y1,n = (X1,n ⊕2 X2,n ⊕2 Z1,n) · 1{Z1,n 6= E}+ E · 1{Z1,n = E},

Y2,n = (X1,n ⊕2 X2,n ⊕2 Z2,n) · 1{Z2,n 6= E}+ E · 1{Z2,n = E},

where {(Z1,n, Z2,n)}∞n=1 is a memoryless two-dimensional noise-erasure process that

is independent of the terminals’ messages and has components Z1,n, Z2,n ∈ Z such

that Pr
(
Zj,n = E

)
= εj and Pr

(
Zj,n = 1

)
= αj, where 0 ≤ εj + αj ≤ 1 for j = 1, 2,

and 1{·} denotes the indicator function. Here, we adopt the convention E · 0 = 0

and E · 1 = E to simplify the representation of the channel equations.3 The channel

equations yield the following transition matrices for the one-way channels:

[PY2|X1,X2( · | · , 0)] =

1− ε2 − α2 α2 ε2

α2 1− ε2 − α2 ε2

,
[PY2|X1,X2( · | · , 1)] =

 α2 1− ε2 − α2 ε2

1− ε2 − α2 α2 ε2

,
[PY1|X1,X2( · |0, · )] =

1− ε1 − α1 α1 ε1

α1 1− ε1 − α1 ε1

,
[PY1|X1,X2( · |1, · )] =

 α1 1− ε1 − α1 ε1

1− ε1 − α1 α1 ε1

,
where the rows are indexed by 0 and 1 (from top to bottom) and the columns are

indexed by 0, 1, and E (from left to right). As all our proposed conditions are

only based on the marginal transition probabilities, the relationship between Z1,n

3Strictly speaking, X1,n⊕2X2,n⊕2Zj,n is undefined when Zj,n = E, but we set (X1,n⊕2X2,n⊕2

E) · 0 = 0.
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and Z2,n can be arbitrary. By Corollary 2.4, we obtain that the optimal channel

input distribution is P ∗X1
P ∗X2

= PU
X1
PU
X2

since the marginal channel transition matrices

not only exhibit column permutation properties but also are quasi-symmetric. The

capacity region is given by

C =

{
(R1, R2) : R1 ≤ (1− ε2)

(
1−Hb

( α2

1− ε2

))
, R2 ≤ (1− ε1)

(
1−Hb

( α1

1− ε1

))}
,

where Hb(·) denotes the binary entropy function. One can verify that this TWC also

satisfies the conditions of Theorems 2.6 and 2.7 and Corollaries 2.2 and 2.3.

Remark 2.2. Various TWCs are special cases of this DM-TWC model:

1. If α1 = α2 = 0, then the memoryless binary additive TWC with erasures is

recovered:

Y1,n = (X1,n ⊕2 X2,n) · 1{Z1,n 6= E}+ E · 1{Z1,n = E},

Y2,n = (X1,n ⊕2 X2,n) · 1{Z2,n 6= E}+ E · 1{Z2,n = E}.

The capacity region is given by

C = {(R1, R2) : R1 ≤ 1− ε2, R2 ≤ 1− ε1}.

2. If ε1 = ε2 = 0, then the memoryless binary additive-noise TWC is obtained:

Y1,n = X1,n ⊕2 X2,n ⊕2 Z1,n,

Y2,n = X1,n ⊕2 X2,n ⊕2 Z2,n.
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The capacity region of this channel is given by

C = {(R1, R2) : R1 ≤ 1−Hb(α2), R2 ≤ 1−Hb(α1)}.

3. If ε1 = ε2 = 0 and α1 = α2 = 0, then we obtain the memoryless binary additive

TWC given by Y1,n = X1,n⊕2X2,n and Y2,n = X1,n⊕2X2,n. The capacity region

is given by C = {(R1, R2) : R1 ≤ 1, R2 ≤ 1} [3], [51].

Remark 2.3. Example 2.1 can be generalized to a non-binary setting: for some inte-

ger q > 2, X1 = X2 = {0, 1, . . . , q− 1}(= Gq) and Y1 = Y2 = Z = {0, 1, . . . , q− 1,E},

the q-ary channel model obeys the same equations as in Example 2.1 with modulo-

2 addition replaced with the modulo-q operation ⊕q. Furthermore, the channel

noise-erasure variables have marginal distributions given by Pr
(
Zj,n = E

)
= εj and

Pr
(
Zj,n = z

)
= αj/(q − 1) for z = 1, 2, . . . , q − 1, where 0 ≤ αj + εj ≤ 1 for j = 1, 2.

By Corollary 2.4, we directly have that CI = CO, and

C =

{
(R1, R2) : R1 ≤ (1− ε2)

(
log2 q −Hq

(
α2

(q − 1)(1− ε2)

))
,

R2 ≤ (1− ε1)

(
log2 q −Hq

(
α1

(q − 1)(1− ε1)

))}
,

where Hq(x) , x· log2(q − 1)− x· log2 x− (1− x)· log2(1− x).

Example 2.2 (Data Access DM-TWCs). Let q = 2m for some integer m ≥ 1 and

consider the alphabets X1 = X2 = X = {0, 1, . . . , q−1}, Y1 = Y2 = {0, 1, . . . , q−1,E},

and Z = {0, 1, 2}. A data access TWC linking two storage devices is described by

Y1,n = (X1,n �q X2,n)·1{Z1,n = 0}+((q − 1)�q X1,n �q X2,n)·1{Z1,n = 1}+ E·1{Z1,n = 2},

Y2,n = (X1,n �q X2,n)·1{Z2,n = 0}+((q − 1)�q X1,n �q X2,n)·1{Z2,n = 1}+ E·1{Z2,n = 2},
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where a�q b denotes bit-wise addition for the length-q standard binary representation

of a, b ∈ X , and {(Z1,n, Z2,n)}∞n=1 is a memoryless two-dimensional noise-erasure pro-

cess that is independent of the stored messages and has components Z1,n, Z2,n ∈ Z

such that Pr
(
Zj,n = 1

)
= αj and Pr

(
Zj,n = E

)
= εj, where 0 ≤ αj + εj ≤ 1 for

j = 1, 2. This channel model can capture the effect of terminal signal superposi-

tions (when Zj,n = 0), bit-level burst errors which flip all bits of X1,n �q X2,n (when

Zj,n = 1), and data package losses (when Zj,n = 2).

For this channel, an application of Corollary 2.4 immediately gives the capacity

region:

C =

{
(R1, R2) : R1 ≤ (1− ε2)

(
m−Hb

(
α2

1− ε2

))
,

R2 ≤ (1− ε1)

(
m−Hb

(
α1

1− ε1

))}
.

The next example rederives a known result in [41] based on our approach.

Example 2.3 (Memoryless Injective Semi-Deterministic TWCs [41]). Let Tj
and Zj denote finite sets. A memoryless ISD-TWC is defined in [41] by the channel

equations

Yj,n = hj(Xj,n, Tj,n) and Tj,n = h̃j(Xj′,n, Zj,n) (2.28)

for j, j′ = 1, 2 with j 6=j′, where hj : Xj×Tj → Yj is injective in Tj and h̃j : Xj′×Zj →

Tj is injective in Zj, i.e., for every xj ∈ Xj, hj(xj, tj) is one-to-one in tj ∈ Tj and

for every xj′ ∈ Xj′ , h̃j(xj′ , zj) is one-to-one in zj ∈ Zj. Here, {(Z1,n, Z2,n)}∞n=1 is a

memoryless two-dimensional noise process that is independent of terminals’ messages.

39



For this channel, we have [41]

I(X1;Y2|X2 = x2) ≤ max
PX1

H(h̃2(X1, Z2))−H(Z2).

This upper bound does not depend on X2, and hence a common maximizer exists, i.e.,

P ∗X1
= arg maxPX1

H(h̃2(X1, Z2)). Moreover, the value of maxPX1
I(X1;Y2|X2 = x2)

is identical for all x2 ∈ X2. We immediately observe that condition (i) in Theorem 2.7

holds. By a similar argument, condition (ii) in Theorem 2.7 also holds, implying that

Shannon’s inner and outer bounds coincide. The capacity region is given by

C =

{
(R1, R2) : R1 ≤ max

PX1

H(h̃2(X1, Z2))−H(Z2),

R2 ≤ max
PX2

H(h̃1(X2, Z1))−H(Z1)

}
.

Example 2.4. Consider the DM-TWC with

[PY1,Y2|X1,X2(·, ·|·, ·)] =



00 01 10 11

00 0.783 0.087 0.117 0.013

01 0.0417 0.3753 0.0583 0.5247

10 0.261 0.609 0.039 0.091

11 0.2919 0.1251 0.4081 0.1749


The corresponding one-way channel marginal distributions are given by

[PY2|X1,X2( · | · , 0)] =

0.9 0.1

0.3 0.7

 , [PY1|X1,X2( · |0, · )] =

 0.87 0.13

0.417 0.583

 ,

[PY2|X1,X2( · | · , 1)] =

0.1 0.9

0.7 0.3

 , [PY1|X1,X2( · |1, · )] =

 0.87 0.13

0.417 0.583

 .
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For this DM-TWC, Shannon’s symmetry condition in Theorem 2.1 does not hold

since there are no permutations on Y1 and Y2 which can result in (2.8). Furthermore,

since H(Y2|X1 = 0, X2 = 0) = Hb(0.1) and H(Y2|X1 = 1, X2 = 0) = Hb(0.3),

where Hb(·) denotes the binary entropy function, H(PX2P̃X1|X2 , PY2|X1,X2) depends on

P̃X1|X2 for given PX2 . Thus, the CVA condition in Theorem 2.3 does not hold, either.

However by Corollary 2.4, Shannon’s inner and outer bounds coincide. Moreover, the

optimal input distribution for this TWC can be obtained by searching for the common

maximizer for each of the two one-way channels via the Blahut-Arimoto algorithm [74,

Section 10.8] yielding P ∗X1
(0) = P ∗X2

(0) = 0.471. Thus, the capacity region is achieved

by P ∗X1,X2
= P ∗X1

P ∗X2
, i.e., C = {(R1, R2) : 0 ≤ R1 ≤ 0.2967, 0 ≤ R2 ≤ 0.1715}.

Example 2.5. Consider the DM-TWC with

[PY1,Y2|X1,X2( · , · | · , · )] =



00 01 10 11

00 0.783 0.087 0.117 0.013

01 0.36279 0.05421 0.50721 0.07579

10 0.261 0.609 0.039 0.091

11 0.173889 0.243111 0.243111 0.339889


where two one-way channel marginal distributions are

[PY2|X1,X2( · | · , 0)] =

0.9 0.1

0.3 0.7

 , [PY2|X1,X2( · | · , 1)] =

 0.87 0.13

0.417 0.583

 ,

and [PY1|X1,X2( · |0, · )] = [PY1|X1,X2( · |1, · )] = [PY2|X1,X2( · | · , 1)]. Using the same ar-

guments as in the previous example, one can easily see that this TWC satisfies neither

the Shannon nor the CVA conditions. However, it satisfies the conditions in Theo-

rem 2.6 since a common maximizer exists for the one-way channel from terminals 1
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Figure 2.3: The capacity region of the DM-TWC in Example 2.5.

to 2, i.e., P ∗X1
(0) = 0.471, and condition (ii) trivially holds. By considering all input

distributions of the form PX1,X2 = P ∗X1
PX2 , the capacity region of this channel is

determined as shown in Fig. 2.3.

2.3 Further Exploration on the Tightness Conditions

2.3.1 Comparison with Prior Results

In this section, we show that Theorem 2.6 and Corollary 2.2 generalize the Shan-

non results in Propositions 2.1 and 2.2, respectively, and that Theorem 2.8 subsumes

the CVA result in Proposition 2.3 as a special case.

Theorem 2.9. A DM-TWC that satisfies the Shannon’s one-sided symmetry condi-

tion of Proposition 2.1 must satisfy the conditions of Theorem 2.6.

Proof: If a DM-TWC satisfies the Shannon condition in Proposition 2.1, the capacity-

achieving input distribution is of the form PX1,X2 = PU
X1
PX2 for some PX2 ∈ P(X2) [3].
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This implies that condition (i) of Theorem 2.6 is satisfied because a common max-

imizer exists for all x2 ∈ X and is given by P ∗X1
= PU

X1
. To prove that condi-

tion (ii) is also satisfied, we consider the transition matrices [PY1|X1,X2( · |x′1, · )] and

[PY1|X1,X2( · |x′′1, · )] for arbitrary x′1, x
′′
1 ∈ X1 and show that these are column permu-

tations of each other and hence I(PX2 , PY1|X1=x′1,X2
) = I(PX2 , PY1|X1=x′′1 ,X2

). The first

claim is true because

PY1|X1,X2(y1|x′1, x2) = PY1|X1,X2(π
Y1 [x′1, x

′′
1](y1)|τX1

x′1,x
′′
1
(x′1), x2) (2.29)

= PY1|X1,X2(π
Y1 [x′1, x

′′
1](y1)|x′′1, x2),

where (2.29) is obtained by marginalizing over Y2 on both sides of (2.8). For the

second claim, we have

I(PX2 , PY1|X1=x′1,X2
)

=
∑
x2,y1

PX2(x2) · PY1|X1,X2(y1|x′1, x2)· log
PY1|X1,X2(y1|x′1, x2)∑

x̃2
PX2(x̃2)·PY1|X1,X2(y1|x′1, x̃2)

=
∑
x2,y1

PX2(x2) · PY1|X1,X2(π
Y1 [x′1, x

′′
1](y1)|x′′1, x2)

· log
PY1|X1,X2(π

Y1 [x′1, x
′′
1](y1)|x′′1, x2)∑

x̃2
PX2(x̃2)·PY1|X1,X2(π

Y1 [x′1, x
′′
1](y1)|x′′1, x̃2)

(2.30)

=
∑
x2,ỹ1

PX2(x2) · PY1|X1,X2(ỹ1|x′′1, x2)· log
PY1|X1,X2(ỹ1|x′′1, x2)∑

x̃2
PX2(x̃2)·PY1|X1,X2(ỹ1|x′′1, x̃2)

= I(PX2 , PY1|X1=x′′1 ,X2
),

where (2.30) holds by the first claim.

Remark 2.4. Since the optimal input distribution of terminal 1 in Theorem 2.6 is

not necessarily uniform as illustrated in Example 2.5, Theorem 2.6 is more general

than Proposition 2.1.
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Theorem 2.10. A DM-TWC that satisfies the Shannon two-sided symmetry condi-

tion of Proposition 2 must satisfy the conditions of Corollary 2.2.

This theorem is immediate, and hence the proof is omitted. Together with Ex-

ample 2.6 given in the next section, Theorem 2.2 is shown to be more general than

Proposition 2.2. We next show that the symmetry properties identified by the con-

ditions of Theorem 2.8 are more general than those in the CVA condition.

Theorem 2.11. A DM-TWC that satisfies the CVA condition in Proposition 2.3

must satisfy the conditions in Theorem 2.8.

Proof: Suppose that the condition of Proposition 2.3 is satisfied. To prove the theo-

rem, we show that for j = 1, 2, H(Yj|X1 = x′1, X2 = x2) = H(Yj|X1 = x′′1, X2 = x2)

for all x′1, x
′′
1 ∈ X1 and x2 ∈ X2. Given arbitrary pairs (x′1, x2) and (x′′1, x2), consider

the probability distributions

P
(1)
X1,X2

(a, b) =

 1, if a = x′1 and b = x2,

0, otherwise,

and

P
(2)
X1,X2

(a, b) =

 1, if a = x′′1 and b = x2,

0, otherwise.

Noting that P
(1)
X2

= P
(2)
X2

, we have H(Yj|X1 = x′1, X2 = x2) = H(1)(Yj|X1, X2) =

H(2)(Yj|X1, X2) = H(Yj|X1 = x′′1, X2 = x2), where the first and last equality are

due to the definitions of P
(1)
X1,X2

and P
(2)
X1,X2

, respectively, and the second equality

follows from the CVA condition since P
(1)
X2

= P
(2)
X2

. Thus H(Yj|X1 = x1, X2 = x2)

does not depend on x1 for fixed x2 as claimed. Also, since H(Yj|X1, X2 = x2) =
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∑
x1
PX1|X2(x1|x2) ·H(Yj|X1 = x1, X2 = x2), the conditional entropy H(Yj|X1, X2 =

x2) does not depend on PX1|X2=x2 .

Next, we show that condition (i) of Theorem 2.8 holds by constructing a common

maximizer from the CVA condition. For fixed x2 ∈ X2, let

P ∗X1|X2=x2
= arg max

PX1|X2=x2

I(X1;Y2|X2 = x2)

= arg max
PX1|X2=x2

(
H(Y2|X2 = x2)−H(Y2|X1, X2 = x2)

)
,

and define P
(1)
X1,X2

= P
(1)
X2
P ∗X1|X2

for some P
(1)
X2
∈ P(X2). Since H(Yj|X1, X2 = x2)

does not depend on PX1|X2=x2 , P
∗
X1|X2=x2

is in fact a maximizer of H(Y2|X2 = x2).

Note that the maximizer P ∗X1|X2=x2
is not necessarily unique, but any choice works

for our purposes. Now for P
(1)
X1,X2

, by the CVA condition, there exists P̃X1 ∈ P(X1)

such that H(1)(Y2|X2) ≤ H(2)(Y2|X2), where P
(2)
X1,X2

= P̃X1P
(1)
X2

. Since P ∗X1|X2=x2
is the

maximizer for H(Y2|X2 = x2), we have

H(1)(Y2|X2) =
∑
x2

P
(1)
X2

(x2) ·H(1)(Y2|X2 = x2)

=
∑
x2

P
(1)
X2

(x2) ·
[

max
PX1|X2=x2

H(Y2|X2 = x2)

]
≥
∑
x2

P
(1)
X2

(x2) ·H(2)(Y2|X2 = x2)

= H(2)(Y2|X2)

Thus, H(1)(Y2|X2) = H(2)(Y2|X2), i.e.,

∑
x2

P
(1)
X2

(x2) ·H(1)(Y2|X2 = x2) =
∑
x2

P
(1)
X2

(x2) ·H(2)(Y2|X2 = x2).

Since H(2)(Y2|X2 = x2) ≤ H(1)(Y2|X2 = x2) for each x2 ∈ X2, we obtain H(1)(Y2|X2 =
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x2) = H(2)(Y2|X2 = x2), i.e., P̃X1 achieves the same value for H(Y2|X2 = x2) as

P ∗X1|X2=x2
for all x2 ∈ X2. Consequently, P̃X1 is a common maximizer and thus

condition (i) of Theorem 2.8 is satisfied. Moreover, since the common maximizer P̃X1

is from the CVA condition, we have that H(1)(Y1|X1) ≤ H(2)(Y1|X1), which together

with the fact that H(Y1|X1, X2) does not depend on PX1|X2 given PX2 and PY1|X1,X2

(guaranteed by the CVA condition) implies that condition (ii) of Theorem 2.8 holds.

Remark 2.5. As illustrated by Example 2.5, a DM-TWC that satisfies the conditions

of Theorem 2.8 does not necessarily satisfy the CVA condition in Proposition 2.3.

Therefore, Theorem 2.8 is a more general result than Proposition 2.3. We note that

the main difference between Theorem 2.8 and Proposition 2.3 lies in the fact that we

allow H(Y2|X1, X2) to depend on PX1|X2 , given PX2 .

2.3.2 Connection Between the Shannon and CVA Conditions

In this section, we connect Shannon’s results to the CVA condition through our

refinement of Shannon’s results in Propositions 2.4 and 2.5. We first give an example

showing that the extended Shannon’s symmetry conditions in Propositions 2.4 and 2.5

are more general than their original versions since (2.1) implies (2.27) but the reverse

implication is not true as follows.

Example 2.6. Consider the DM-TWC with X1 = X2 = Y1 = Y2 = {0, 1} and
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transition probability

[PY1,Y2|X1,X2( · , · | · , · )] =



00 01 10 11

00 0.25 0.5 0.25 0

01 0.375 0375 0.125 0.125

10 0.125 0.125 0.375 0.375

11 0.125 0.125 0.375 0.375


The marginal distributions are

[PY1|X1,X2( · | · , · )] =



0 1

00 0.75 0.25

01 0.75 0.25

10 0.25 0.75

11 0.25 0.75


and [PY2|X1,X2( · | · , · )] =



0 1

00 0.5 0.5

01 0.5 0.5

10 0.5 0.5

11 0.5 0.5


Clearly, neither of the Shannon conditions in Proposition 2.1 or 2.2 holds, but the

extended condition in (2.27) holds.

We now show that the above extended symmetry condition implies the CVA con-

dition.

Theorem 2.12. A DM-TWC that satisfies the conditions in Proposition 2.4 must

satisfy the CVA condition of Proposition 2.3.

Proof: If the marginal channels PY1|X1,X2 and PY2|X1,X2 satisfy the extended one-sided

symmetry condition in (2.27), then H(Yj|X1 = x1, X2 = x2) does not depend on

x1 ∈ X1 for any fixed x2 ∈ X2 since the rows of [PYj |X1,X2( · | · , x2)] are permutations

of each other. Hence, H(Yj|X1, X2) does not depend on PX1|X2 given PX2 ∈ P(X2) as

required by the CVA condition.
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Next, for any given joint distribution P
(1)
X1,X2

= P
(1)
X2
P

(1)
X1|X2

, we show that P
(2)
X1,X2

=

P̃X1P
(1)
X2

with the choice P̃X1 = PU
X1

meets the remaining requirements of the CVA

condition in Proposition 2.3. Since the DM-TWC satisfies the extended Shannon

condition, Lemma A.1.3 in Appendix A.1 gives the two inequalities: I(1)(X1;Y2|X2) ≤

I(2)(X1;Y2|X2) and I(1)(X2;Y1|X1) ≤ I(2)(X2;Y1|X1). Observing that

I(1)(X1;Y2|X2) = H(1)(Y2|X2)−H(1)(Y2|X1, X2) = H(1)(Y2|X2)−H(2)(Y2|X1, X2),

we immediately obtain that H(1)(Y2|X2) ≤ H(2)(Y2|X2) since

I(1)(X1;Y2|X2) ≤ I(2)(X1;Y2|X2).

Moreover, asH(1)(Y1|X1, X2) = H(2)(Y1|X1, X2) and I(1)(X2;Y1|X1) ≤ I(2)(X2;Y1|X1),

we have that H(1)(Y1|X1) ≤ H(2)(Y1|X1). Thus, the CVA condition is fulfilled.

Remark 2.6. In [41], the existence of examples showing that the Shannon and CVA

results are not equivalent was posed as an open question. The example below shows

that the CVA condition is more general than the extended (one-sided) Shannon’s

symmetry condition in (2.3). Together with Example 2.6, we conclude that the CVA

result is more general than the Shannon result.

Example 2.7. Consider the DM-TWC with X1 = Y1 = Y2 = {0, 1, 2} and X2 =

{0, 1} and marginal distributions given by

[PY1|X1,X2( · | · , 0)] =



0 1 2

0 0.3 0.2 0.5

1 0.5 0.3 0.2

2 0.2 0.5 0.3


with [PY1|X1,X2( · | · , 1)] = [PY2|X1,X2( · | · , 0)] = [PY2|X1,X2( · | · , 1)] = [PY1|X1,X2( · | · , 0)].
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Clearly, there are no relabeling functions for Y1 and Y2 which recover [PY1|X1,X2( · | · , 0)]

after exchanging the labels of X1 = 0 and X1 = 1, so that the extended one-sided

symmetry condition does not hold. To check the CVA condition, we first observe

that H(Yj|X1 = x1, X2 = x2) does not depend on x1 ∈ X1 and x2 ∈ X2; thus

H(Yj|X1, X2) does not depend on PX1,X2 for j = 1, 2. Furthermore, for any given

P
(1)
X1,X2

= P
(1)
X2
P

(1)
X1|X2

, consider P
(2)
X1,X2

= P̃X1P
(1)
X2

with P̃X1 = PU
X1

. Then, we have

I(1)(X1;Y2|X2) =
∑
x2

P
(1)
X2

(x2) · I(1)(X1;Y2|X2 = x2)

≤
∑
x2

P
(1)
X2

(x2) · I(2)(X1;Y2|X2 = x2)

= I(2)(X1;Y2|X2),

where the inequality follows from the fact that PU
X1

is the capacity-achieving input

distribution for all one-way channels from terminals 1 to 2. On the other hand, since

the matrices [PY1|X1,X2( · |x1, · )], x1 ∈ X1, are column permutations of each other,

I(PX2 , PY1|X1=x1,X2) does not depend on x1 ∈ X1 for any fixed PX2 ∈ P(X2). One can

then follow the proof of Theorem 2.6 to obtain that I(1)(X2;Y1|X1) ≤ I(2)(X2;Y1|X1).

Now, since H(Yj|X1, X2) does not depend on the input distribution, we conclude that

H(1)(Yj|Xj) ≤ H(2)(Yj|Xj) for j = 1, 2, and thus the CVA condition is satisfied.

Remark 2.7. The channel in the above example in fact also satisfies the conditions

of Theorem 2.6. Nevertheless, the connection between the conditions of Theorem 2.6

and the CVA condition is still unclear.

2.3.3 Necessary Conditions for the Tightness Results

Known numerical methods to obtain Shannon’s capacity bounds involve (step 1)

uniformly quantizing the probability simplex of channel inputs; (step 2) evaluating
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the region R for each quantized input distribution; (step 3) taking the convex hull.

By definition, the quantized input distributions for CI and CO take values in the

spaces P(X1) × P(X2) and P(X1 × X2), with dimensions (|X1| − 1)(|X2| − 1) and

|X1||X2| − 1, respectively. Let ∆ ∈ (0, 1) denote the step size of the quantization and

suppose that ∆−1 ∈ N. We thus have
(

∆−1+|X1|−1
∆−1

)(
∆−1+|X2|−1

∆−1

)
and

(
∆−1+|X1||X2|−1

∆−1

)
quantized input distributions to compute for CI and CO, respectively. For example,

when all channel alphabet sizes are not larger than 3, setting ∆ = 0.025 is enough

to have visually indistinguishable region estimates of CI and CO. The number of

quantized input distributions for CI is roughly 7 × 106, but it is about 3 × 109 for

CO; evaluating CO clearly involves significantly more calculations. Although one can

apply the Lagrange multiplier method [3, Section 11] to find CO, the implementation

cost is still considerable.

On the other hand, even though the validation of individual symmetry conditions

is usually easy, the accumulated computational complexity can be significant. For in-

stance, validating condition (i) of Theorem 2.6 can be efficiently done via the Blahut-

Arimoto algorithm. The verification of condition (ii), though slightly complex, only

involves checking input distributions in P(X2). Clearly, the overall computational

complexity for Theorem 2.6 is lower than the one needed for evaluating CO. Never-

theless, if this validation fails, then we need to swap the roles of terminals 1 and 2 and

verify conditions (i) and (ii) of Theorem 2.6 again. If this process is still unsuccessful,

then one may switch to Proposition 2.8. Hence, the entire validation process can be

lengthy and requires significant computational resources.

To reduce the computational complexity of validating symmetry conditions, we
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provide three simple conditions that can be used to rule out certain symmetry prop-

erties. Two of these conditions appeared in the proof of Theorem 2.11. As the

conditions are useful in practice, we present them here as standalone results with-

out proof. The first one is derived for condition (ii) of Theorem 2.6, which can be

efficiently validated via the Blahut-Arimoto algorithm (as done for condition (i) of

Theorem 2.6). The second one is for condition (ii) of Theorem 2.8, which sometimes

can be verified by directly observing the channels’ marginal transition matrices.

Theorem 2.13. If a DM-TWC satisfies condition (ii) of Theorem 2.6, then there

exists P ∗X2
∈ P(X2) such that for all x1 ∈ X1,

arg max
PX2|X1=x1

I(X2;Y1|X1 = x1) = P ∗X2
.

Proof: Since the same channel input distribution yields the same input-output mutual

information for all sub-channels [PY1|X1,X2( · |x1, · )]’s, the capacity-achieving input

distribution for one sub-channel must also be the capacity-achieving input distribution

for any other sub-channel.

Theorem 2.14. If a DM-TWC satisfies condition (ii) of Theorem 2.8, then H(Y1|X1 =

x′1, X2 = x2) = H(Y1|X1 = x′′1, X2 = x2) for any x′1, x
′′
1 ∈ X1 and fixed x2 ∈ X2.

Furthermore, for DM-TWCs that satisfy the conditions of Theorem 2.8, the in-

equality I(1)(Xj′ ;Yj|Xj) ≤ I(2)(Xj′ ;Yj|Xj), j 6= j′, holds for the specific input distri-

butions P
(1)
X1,X2

= P ∗X1
P

(1)
X2|X1

= P
(1)
X2
P

(1)
X1|X2

and P
(2)
X1,X2

= P ∗X1
P

(1)
X2

. For j=2 and j′=1,

expanding the inequality, we have that

∑
x1

P ∗X1
(x1) · I

(
P

(1)
X2|X1=x1

, PY1|X1=x1,X2

)
≤
∑
x1

P ∗X1
(x1) · I

(
P

(1)
X2
, PY1|X1=x1,X2

)
,
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which indicates that using an average input P
(1)
X2

at terminal 2 does not incur any infor-

mation loss when terminal 1 uses the common optimal input P ∗X1
. As one can choose

P
(1)
X2|X1=x1

= arg maxPX2|X1=x1
I(PX2|X1=x1 , PY1|X1=x1,X2), the inequality suggests an-

other common maximizer property, which we use to derive a necessary condition for

conditions (i) and (ii) of Theorem 2.8 to hold.

Theorem 2.15. If a DM-TWC satisfies the conditions of Theorem 2.8 with P ∗X(x1) >

0 for all x1 ∈ X1, then there exists a common output conditional entropy maximizer

P ∗X2
such that for all x1 ∈ X1, arg maxPX2|X1=x1

H(Y1|X1 = x1) = P ∗X2
.

Proof: For any P
(1)
X1,X2

= P
(1)
X2
P

(1)
X1|X2

= P
(1)
X1
P

(1)
X2|X1

, let P
(2)
X1,X2

= P ∗X1
P

(1)
X2

; the sym-

metry condition (ii) of Theorem 2.8 gives the inequality H(1)(Y1|X1) ≤ H(2)(Y1|X1).

Consider the particular choice P
(1)
X1

= P ∗X1
and

P
(1)
X2|X1=x1

= arg max
PX2|X1=x1

H(Y1|X1 = x1)

for all x1 ∈ X1. Together with the assumption that P ∗X1
(x1) > 0 for all x1 ∈ X1 and

the non-negativity of entropy, we obtain that H(1)(Y1|X1 = x1) ≤ H(2)(Y1|X1 = x1)

for every x1∈X1. Since P
(1)
X2|X1=x1

is the maximizer of H(Y1|X1 = x1), we further have

that H(1)(Y1|X1 = x1) = H(2)(Y1|X1 = x1) for any x1 ∈ X1. In other words, the

conditional entropies H(Y1|X1 = x1), x1 ∈ X1, have a common maximizer (and P
(1)
X2

is the common maximizer).

As H(Y1|X1 = x1) is a concave function of PX2|X1=x1 for fixed PY1|X1=x1,X2 , one

can use a standard convex optimization program to check this necessary condition.

This result is useful since the inequality H(1)(Y1|X1) ≤ H(2)(Y1|X1) in condition (ii)

of Theorem 2.8 is often difficult to verify.
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2.4 Generalized Push-to-Talk Two-Way Channels

2.4.1 Shannon’s Push-to-Talk Channels

Let Xj ∈ {0, 1, 2} and Yj ∈ {0, 1} denote terminal-j’s channel input and output for

j = 1, 2, respectively. Shannon’s discrete-memoryless PTT-TWC (DM-PTT-TWC)

[3] as shown in Table 2.1(a) is a classic example where two-way simultaneous (i.e., full-

duplex) transmission is completely unreliable and time-sharing between two one-way

transmissions (i.e., half-duplex communication) is necessary to achieve capacity. As

observed from the channel’s marginal transition matrices in Tables 2.1(b) and 2.1(c),

terminal 1 can perfectly transmit a one-bit message to terminal 2 only when the

channel input of terminal 2 is ‘0’, and vice versa. A simple time-sharing argument

then gives the set of reliable transmission rate pairs (R1, R2) = (α, 1 − α), where

0 ≤ α ≤ 1. Since there is no other way to transmit information reliably, that set of

rate pairs clearly constitutes the boundary of the capacity region and thus determines

capacity.4

Inspired by Shannon’s TWC setup, the PTT idea was extended to other multi-

terminal channels such as PTT multiaccess channels [19, Problem 14.7], [97], switch-

to-talk broadcast channels, and incompatible broadcast channels [88, Section V]. In

[98], a capacity result was established for a DM-PTT network with more than two

terminals.

4A formal proof of this statement via the Lagrange multiplier method can be found in [32,
Section 2.5.3].
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Table 2.1: The full and marginal transition matrices of Shannon’s PTT-TWC, where
the rows and columns are indexed by the channel inputs and outputs,
respectively.

(a) PY1,Y2|X1,X2
[3, Table I]

(X1, X2) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 1
4

1
4

1
4

1
4

(0, 1) 1
2

1
2

0 0

(0, 2) 0 0 1
2

1
2

(1, 0) 1
2

0 1
2

0

(1, 1) 1
4

1
4

1
4

1
4

(1, 2) 1
4

1
4

1
4

1
4

(2, 0) 0 1
2

0 1
2

(2, 1) 1
4

1
4

1
4

1
4

(2, 2) 1
4

1
4

1
4

1
4

(b) PY2|X1,X2

(X1, X2) 0 1

(0, 0) 1
2

1
2

(1, 0) 1 0

(2, 0) 0 1

(0, 1) 1
2

1
2

(1, 1) 1
2

1
2

(2, 1) 1
2

1
2

(0, 2) 1
2

1
2

(1, 2) 1
2

1
2

(2, 2) 1
2

1
2

(c) PY1|X1,X2

(X1, X2) 0 1

(0, 0) 1
2

1
2

(0, 1) 1 0

(0, 2) 0 1

(1, 0) 1
2

1
2

(1, 1) 1
2

1
2

(1, 2) 1
2

1
2

(2, 0) 1
2

1
2

(2, 1) 1
2

1
2

(2, 2) 1
2

1
2

2.4.2 A Generalization of Shannon’s Model

For j = 1, 2, let Xj , {0, 1, . . . , rj − 1} and Yj , {0, 1, . . . , sj − 1}, where rj ≥ 3

and sj ≥ 2 (to avoid trivial cases). Without loss of generality, we set X1 = 0 and

X2 = 0 as the signals for the “PTT mode.” For j = 1, 2, let vj denote the length-sj

row vector with all entries equal to 1
sj

. Also, let Qj,xj′
denote a (rj − 1)× sj′ channel

transition matrix with capacity Cj,xj′ for j, j′ = 1, 2 with j 6= j′ and xj′ ∈ Xj′ .

An (r1, r2, s1, s2) generalized DM-PTT-TWC with transition probability PY1,Y2|X1,X2

is defined by imposing the following structure for the marginal channel transition

matrices [PYj |X1,X2( · | · , · )] (where the rows and columns are indexed by the channel

inputs and outputs, respectively): for all x2 ∈ X2,

[PY2|X1,X2( · | · , x2)] =
(

v2
Q1,x2

)
,

54



and for all x1 ∈ X1,

[PY1|X1,X2( · |x1, · )] =
(

v1
Q2,x1

)
.

We note that the above structures do not imply that PY1,Y2|X1,X2 = PY1|X1,X2PY2|X1,X2 .

Unlike Shannon’s original PTT-TWC, our proposed model considers both per-

fect and noisy reception in the PTT mode and allows reliable full-duplex transmis-

sion. Shannon’s PTT-TWC can be recovered by setting (r1, r2, s1, s2) = (3, 3, 2, 2),

Qj,0 = I2, and Qj,1 = Qj,2 = 1
2
· 12×2 for j = 1, 2, where I2 and 12×2 denote the

2 × 2 identity and all-one matrices, respectively, and the overall channel transition

probability can be obtained as PY1,Y2|X1,X2 = PY1|X1,X2PY2|X1,X2 . In fact, the capacity

region of an (r1, r2, s1, s2) DM-PTT-TWC is generally unknown. Below, we show

that the capacity region can be analytically determined when the marginal channels

exhibit the following symmetry property: for j, j′ = 1, 2 with j 6= j′, Qj,xj′
’s are

weakly-symmetric5 for all xj′ ∈ Xj′ and Cj,xj′ = Cj,1 for all xj′ 6= 0.

Recall that 1{·} denotes the indicator function. Letting PU0
Xj denote the probability

distribution that assigns zero probability mass to Xj = 0 and is uniform over the set

Xj\{0}, j = 1, 2, we define six rate pairs and their associated input distributions for

the generalized PTT-TWC with the above symmetry property as follows:

• R∗1 , (0, 0), PX1,X2(x1, x2) = 1{x1 = 0} · 1{x2 = 0};

• R∗2 , (C1,1, C2,1), PX1,X2 = PU0
X1
PU0
X2

;

• R∗3 , (C1,0, 0), PX1,X2(x1, x2) = PU0
X1

(x1) · 1{x2 = 0};
5A channel is said to be weakly-symmetric if its transition matrix has identical column sums and

its rows are permutations of each other [74, Section 7.2]; for such a channel, the mutual information
is maximized by the uniform input distribution. We note that for more general symmetric transition
matrices for which mutual information is maximized by the uniform input distribution (e.g. quasi-
symmetric channels [78]), Theorem (2.16) does not necessarily hold.
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• R∗4 , (0, C2,0), PX1,X2(x1, x2) = 1{x1 = 0} · PU0
X2

(x2);

• R∗5 , (C1,1, 0), PX1,X2(x1, x2) = PU0
X1

(x1) · 1{x2 = 1};

• R∗6 , (0, C2,1), PX1,X2(x1, x2) = 1{x1 = 1} · PU0
X2

(x2).

Note that the R∗l ’s are all attained via independent inputs.

Theorem 2.16. For an (r1, r2, s1, s2) DM-PTT-TWC that satisfies the above channel

symmetry property, Shannon’s inner bound is tight and the capacity region can be

determined by taking the convex hull of R∗1, R∗2, max(R∗3,R
∗
5), and max(R∗4,R

∗
6).6

The idea behind the proof of Theorem 2.16 is to show that any rate pair in

Shannon’s outer bound region CO can be upper-bounded component-wise by another

rate pair that is a convex combination of the R∗l ’s. More specifically, depending

on the value of Cj,xj′ ’s, we can use the four rate pairs: R∗1, R∗2, max(R∗3,R
∗
5),

and max(R∗4,R
∗
6), to upper-bound any rate pair in CO and hence determine the

capacity region. Here, we only prove the case where R∗3 = max(R∗3,R
∗
5) and

R∗4 = max(R∗4,R
∗
6). The same argument can be used to prove other cases, and

hence the details are omitted.

Proof of Theorem 2.16: Given any PX1,X2 , we bound the associated rate pair

(I(X1;Y2|X2), I(X2;Y1|X1)) as follows:

I(X1;Y2|X2) =

r2−1∑
x2=0

PX2(x2) · I(X1;Y2|X2 = x2) (2.31)

≤
r2−1∑
x2=0

PX2(x2) ·
[
(1− PX1|X2(0|x2)) · C1,x2

]
(2.32)

= (PX2(0)− PX1,X2(0, 0)) · C1,0

6We set max(A,B) = B iff A is upper-bounded component-wise by B.
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+
∑
x2 6=0

(PX2(x2)− PX1,X2(0, x2)) · C1,x2

= (PX2(0)− PX1,X2(0, 0)) · C1,0

+
∑
x2 6=0

(PX2(x2)− PX1,X2(0, x2)) · C1,1

+ (PX1(0)− PX1,X2(0, 0)) · 0 + PX1,X2(0, 0) · 0︸ ︷︷ ︸
=0

, (2.33)

where (2.32) follows from Lemma A.2.2 in the Appendix and (2.33) holds since C1,x2 =

C1,1 for all x2 6= 0. Similarly, we have

I(X2;Y1|X1) =

r1−1∑
x1=0

PX1(x1) · I(X2;Y1|X1 = x1)

≤
r1−1∑
x1=0

PX1(x1) ·
[
(1− PX2|X1(0|x1)) · C2,x1

]
= (PX1(0)− PX1,X2(0, 0)) · C2,0

+
∑
x1 6=0

(PX1(x1)− PX1,X2(x1, 0)) · C2,x1

= (PX1(0)− PX1,X2(0, 0)) · C2,0

+
∑
x1 6=0

(PX1(x1)− PX1,X2(x1, 0)) · C2,1

+ (PX2(0)− PX1,X2(0, 0)) · 0 + PX1,X2(0, 0) · 0︸ ︷︷ ︸
=0

. (2.34)

Note that (2.33) and (2.34) and the fact that
∑

x2 6=0(PX2(x2) − PX1,X2(0, x2)) =∑
x1 6=0(PX1(x1) − PX1,X2(x1, 0)) imply that the pair (I(X1;Y2|X2), I(X2;Y1|X1)) is

upper-bounded component-wise by

PX1,X2(0, 0) ·R∗1 +

[∑
x1 6=0

PX1(x1)−PX1,X2(x1, 0)

]
·R∗2+[

PX2(0)−PX1,X2(0, 0)
]
·R∗3 +

[
PX1(0)−PX1,X2(0, 0)

]
·R∗4.

Since the coefficients of the above four rate pairs sum to one, any rate pair in CO is
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outer bounded by some convex combination of R∗1, R∗2, R∗3, and R∗4. Since the four

rate pairs are achievable via independent inputs, we conclude that Shannon’s inner

bound is tight.

Clearly, the capacity region of Shannon’s PTT-TWC can be easily determined via

Theorem 2.16 without using the time-sharing argument [3] or the Lagrange multiplier

method [32].

Moreover, we note that (2.31) can be interpreted as the average amount of infor-

mation sent over a set of state-dependent one-way channels {PY2|X1,X2( · | · , x2) : x2 ∈

X2}. Thus, terminal-2’s input distribution PX2 not only carries its own message but

also determines how often each one-way channel can be used for terminal 1. The same

interpretation also applies to (2.34). Clearly, the best channel input distribution for

one terminal may not create the most favorable one-way channel usage for the other

terminal, necessitating a rate trade-off between the two terminals’ transmissions.

Quantifying the trade-off is often the most involved part of determining the ca-

pacity region of general DM-TWCs. The prior approach to tackle the problem is to

exploit (when they exist) channel symmetry or invariance properties so that for any

PX1,X2 = PX2PX1|X2 , one can always find a P̃X1 such that R(PX1,X2 , PY1,Y2|X1,X2) ⊆

R(P̃X1PX2 , PY1,Y2|X1,X2) [1, 3, 41]. However, this approach fails here since such P̃X1

may not exist for each PX1,X2 . This observation can be illustrated via Shannon’s

PTT-TWC as one can see that no single independent input distribution can achieve

the rate pair (R1, R2) = (α, 1− α), where 0 < α < 1. It is thus of interest to exploit

other symmetry property as the one stated in Theorem 2.16 that allows us to show

CO ⊆ CI directly.
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Table 2.2: Marginal transition matrices of a generalized PTT-TWC, where 0 ≤
a, b, c, d ≤ 2

3
.

(a) PY2|X1,X2

(X1, X2) 0 1 2

(0, 0) 1
3

1
3

1
3

(1, 0) 2
3
− a a 1

3

(2, 0) a 2
3
− a 1

3

(0, 1) 1
3

1
3

1
3

(1, 1) 2
3
− b b 1

3

(2, 1) b 2
3
− b 1

3

(0, 2) 1
3

1
3

1
3

(1, 2) 2
3
− b b 1

3

(2, 2) b 2
3
− b 1

3

(b) PY1|X1,X2

(X1, X2) 0 1 2

(0, 0) 1
3

1
3

1
3

(0, 1) 2
3
− c c 1

3

(0, 2) c 2
3
− c 1

3

(1, 0) 1
3

1
3

1
3

(1, 1) 2
3
− d d 1

3

(1, 2) d 2
3
− d 1

3

(2, 0) 1
3

1
3

1
3

(2, 1) 2
3
− d d 1

3

(2, 2) d 2
3
− d 1

3

2.4.3 Case Study

In fact, the capacity result in Theorem 2.16 suggests a way to use different state-

dependent one-way channels to optimize bi-directional transmission rates. In what

follows, we illustrate all possible shapes of the capacity region via examples and

discuss the optimal transmission strategy behind each result. Letting (r1, r2, s1, s2) =

(3, 3, 3, 3), we consider the generalized PTT-TWC with the parameterized marginal

transition matrices as shown in Table 2.2 and the following settings:

Setting 1: (a, b, c, d) = (0, 0.15, 0, 0.15) ⇒

Cj,0 = 0.6667 > Cj,xk = 0.1539

for j, k = 1, 2 with j 6= k and all xk 6= 0;

Setting 2: (a, b, c, d) = (0, 0.05, 0, 0.01) ⇒

C1,0 = 0.6667 > C1,x2 = 0.4105
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C2,0 = 0.6667 > C2,x1 = 0.5918

for all x1 6= 0 and x2 6= 0;

Setting 3: (a, b, c, d) = (0.1, 0, 0, 0.01) ⇒

C1,0 = 0.2601 < C1,x2 = 0.6667

C2,0 = 0.6667 > C2,x1 = 0.5918

for all x1 6= 0 and x2 6= 0;

Setting 4: (a, b, c, d) = (0.1, 0, 0.2, 0.05) ⇒

C1,0 = 0.2601 < C1,x2 = 0.6667

C2,0 = 0.0791 < C2,x1 = 0.4105

for all x1 6= 0 and x2 6= 0.

Note that, unlike for Shannon’s original PTT-TWC, reliable full-duplex transmission

is possible in the above settings since Cj,xj′ > 0 for all j, j′ = 1, 2 and xj′ ∈ Xj′ .

In Figures 2.4(a)-2.4(d) (corresponding to Settings 1–4, respectively), the blue

dots7 are the achievable rate pairs via independent inputs of the form: PX1,X2 =

PX1PX2 ; Shannon’s inner bound region CI is then given by taking the convex hull of

those rate pairs. Shannon’s outer bound CO is obtained using a similar method, but

the convex hull operation is not needed. We also depict the achievable rate region

using the half-duplex transmission mode (via input symbol ‘0’). In all settings, we

have that CI = CO as expected.

7In our computations, we discretized the standard 2-dimensional simplex to generate the input
distributions for each terminal. The mutual information I(Xj ;Yj′ |Xj′) is then evaluated under the
product of the discretized input distributions. A similar approach is used to obtain rate pairs in
Shannon’s outer bound region.
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Figure 2.4: The capacity region of the generalized DM-PTT-TWCs in Table II. Ex-
cept for Setting 1, the capacity region is determined by four rate pairs.

In Figure 2.4(a), we first observe that the half-duplex transmission can attain the

entire capacity region. Indeed, although full-duplex transmission is reliable, the large

difference between Cj,0 and Cj,xj′ (for xj′ 6= 0) limits the rates achievable via two-way

simultaneous transmission and hence the half-duplex transmission is still optimal (in

the sense of achieving capacity). Nevertheless, the benefit of full-duplex transmission

can be made significant by increasing the value of Cj,xj′ for xj′ 6= 0. In Figure 2.4(b),
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we illustrate a situation where two-way simultaneous transmission achieves better

rate pairs than using the half-duplex transmission.

Moreover, when the Cj,xj′ ’s (xj′ 6= 0) are much larger than Cj,0, using

[PY2|X1,X2( · | · , 0)] and [PY1|X1,X2( · |0, · )] for information transmission becomes ineffi-

cient since they contribute very little to the overall transmission rates in (2.31) and

(2.34). In this case, one should expect to abandon the (relatively) inefficient channels

and use only the efficient ones. This is illustrated in Figs. 2.4(c) and 2.4(d). In an

extreme case, such as Setting 4, the upper-right corner point of the capacity region

is given by R∗2 = (0.6667, 0.4105) = (C1,1, C2,1), implying that both terminals shut

down the state-dependent one-way channels [PY2|X1,X2( · | · , 0)] and [PY1|X1,X2( · |0, · )]

and only use the remaining channels for information exchange.

2.5 A Non-trivial Outer Bound and Approximation Capacity Results

For DM-TWCs that are not symmetric in the sense of Theorems 2.6 or 2.8, calcu-

lating outer bounds to assess the capacity region is almost inevitable. The discussion

in Section 2.3.3 highlighted the high computational demands for obtaining CO. When

using refined outer bounds such as in [29], the problem becomes even more complex

due to the use of auxiliary random variables. In this section, we derive an easy-

to-compute but non-trivial outer bound. Also, we give examples where our bound

(together with CI) results in a good estimate of C. We note that our goal here is not

to improve on any outer bound results; instead, we show that the computation of CI

can in itself produce a useful outer bound.
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2.5.1 A Relaxation of Channel Symmetry Properties

Our result is inspired by the proof of Theorem 2.6. To derive our simple outer

bound, we relax the symmetry conditions of Theorem 2.6 as follows. Without loss of

generality, the definitions are given for a specific direction of transmission.

Definition 2.5. Given the set of one-way channels {PY2|X1,X2( · | · , x2) : x2 ∈ X2}, let

α∗ = min
P̃X1
∈P(X1)

max
x2∈X2

∣∣∣I(P̃X1 , PY2|X1,X2=x2)− max
PX1
∈P(X1)

I(PX1 , PY2|X1,X2=x2)
∣∣∣. (2.35)

Such a collection of channels is said to have an α∗-close common optimal input dis-

tribution.

Remark 2.8. When |X1| = 2, we have that α∗ ≤ 0.011 [99] for any finite collection

of memoryless one-way channels under the uniform input: P̃X1(0) = P̃X1(1) = 1/2.

Definition 2.6. Given the set of one-way channels {PY1|X1,X2( · |x1, · ) : x1 ∈ X1}, let

β∗ = max
PX2
∈P(X2)

max
x1,x

′
1∈X1

x1 6=x′1

∣∣∣I(PX2 , PY1|X1=x1,X2)− I(PX2 , PY2|X1=x′1,X2
)
∣∣∣. (2.36)

Such a collection of channels is said to be β∗-invariant in the input-output mutual

information.

Based on Definitions 2.5-2.6, we obtain the following lemma, which will be used

to obtain our capacity outer bound result.

Lemma 2.1. For any DM-TWC and any achievable rate pair (R1, R2), there exists

a rate pair (R′1, R
′
2) in CI such that R1 ≤ R′1 + α∗ and R2 ≤ R′2 + 2β∗.

Proof: Given any P
(1)
X1,X2

= P
(1)
X2
P

(1)
X1|X2

, let P
(2)
X1,X2

, Pα∗
X1
P

(1)
X2

, where Pα∗
X1

denotes the

α∗-close common optimal input distribution; i.e., Pα∗
X1

attains the α∗ value in (2.35).
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First, we have that

I(1)(X1;Y2|X2) =
∑
x2

P
(1)
X2

(x2) · I
(
P

(1)
X1|X2=x2

, PY2|X1,X2=x2

)
≤
∑
x2

P
(1)
X2

(x2) · max
PX1|X2=x2

I
(
PX1|X2=x2 , PY2|X1,X2=x2

)
≤
∑
x2

P
(1)
X2

(x2) ·
(
I
(
Pα∗

X1
, PY2|X1,X2=x2

)
+ α∗

)
=
∑
x2

P
(1)
X2

(x2) · I
(
Pα∗

X1
, PY2|X1,X2=x2

)
+ α∗

= I(2)(X1;Y2|X2) + α∗,

where the second inequality follows from Definition 2.5. Moreover,

I(1)(X2;Y1|X1) =
∑
x1

P
(1)
X1

(x1) · I
(
P

(1)
X2|X1=x1

, PY1|X1=x1,X2

)
≤
∑
x1

P
(1)
X1

(x1) ·
(
I
(
P

(1)
X2|X1=x1

, PY1|X1=x′1,X2

)
+ β∗

)
≤ I

(
P

(1)
X2
, PY1|X1=x′1,X2

)
+ β∗

=

(∑
x1

Pα∗

X1
(x1)

)
· I
(
P

(1)
X2
, PY1|X1=x′1,X2

)
+ β∗

≤
∑
x1

Pα∗

X1
(x1) ·

(
I
(
P

(1)
X2
, PY1|X1=x1,X2

)
+ β∗

)
+ β∗

= I(2)(X2;Y1|X1) + 2β∗,

where the first and the last inequalities are due to Definition 2.6 while the second

inequality holds since I( · , · ) is concave in the first argument. The claim is proved

by noting that (R′1, R
′
2) = (I(2)(X1;Y2|X2), I(2)(X2;Y1|X1)) ∈ CI.

Theorem 2.17. For any DM-TWC,

C ⊆ co

( ⋃
(R′1,R

′
2)∈CI

{(R′1, R′2)} ∪ {(R′1 + α∗, R′2 + 2β∗)}
)
∩ C̃O,
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where C̃O , {(R1, R2) : 0 ≤ R1 ≤ I∗1 , 0 ≤ R2 ≤ I∗2} and

I∗j , max
xj′∈Xj′

max
PXj∈P(Xj)

I(Xj;Yj′ |Xj′ = xj′),

for j 6= j′.

The proof of Theorem 2.17 is omitted since it is straightforward given Lemma 2.1.

We emphasize that α∗ merely depends on the marginal input distributions on X1 (i.e.,

PX1 and P̃X1) and the marginal channel distribution PY2|X1,X2 . More importantly,

the mutual information quantities in (2.35) are already found when computing CI.

One can thus efficiently obtain α∗ within the framework of Shannon’s inner bound

computation; the same holds for β∗. As a result, forming this outer bound only

requires subtraction and comparison operations.

Moreover, our outer bound coincides with CO when α∗ = β∗ = 0, which is exactly

equal to CI as can be deduced from the proof of Lemma 2.1 (and hence recovers the

result in Theorem 2.6). For other cases, the values α∗ and 2β∗ roughly indicate how

much our outer bound deviates from CI in the R1 and R2 axis, respectively. Using

this fact, we can establish approximation capacity results for small deviations.

Definition 2.7. For ε ≥ 0, the ε-neighborhood CI,ε of Shannon’s inner bound is defined

as CI,ε , {(R1, R2) ∈ [0, I∗1 ] × [0, I∗2 ] : max
( |R1−R′1|

I∗1
,
|R2−R′2|

I∗2

)
≤ ε for some (R′1, R

′
2) ∈

CI}. If CO ⊆ CI,ε, then CI,ε is called an ε-approximated capacity region.

Combining this definition with Lemma 2.1, our outer bound is an ε-approximated

capacity region with ε = max
(
α∗

I∗1
, 2β∗

I∗2

)
. Thus, a smaller value of ε gives an approxi-

mation CI,ε ≈ C with higher accuracy.
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Table 2.3: Marginal channel transition matrices of Example 2.8

(a) PY1|X1,X2

PY1|X1,X2 0 1 2

(0, 0) 0.8 0.1 0.1
(0, 1) 0.1 0.8 0.1
(0, 2) 0.1 0.1 0.8

(1, 0) 0.8 0.1 0.1
(1, 1) 0.1 0.8 0.1
(1, 2) 0.1 0.1 0.8

(b) PY2|X1,X2

PY2|X1,X2 0 1

(0, 0) 0.7 0.3
(1, 0) 0.1 0.9

(0, 1) 1 0
(1, 1) 0.25 0.75

(0, 2) 0.5 0.5
(1, 2) 0 1

2.5.2 Examples

To end this section, we illustrate CI,ε via two examples. Example 2.8 also illustrates

Remark 2.8; Example 2.9 shows a general interplay between CI,ε and the underlying

channel parameters.

Example 2.8. Consider a DM-TWC with marginal channels given in Table 2.3. The

channel PY1|X1,X2 consists of two ternary sub-channels that satisfy condition (ii) of

Theorem 2.6. The channel PY2|X1,X2 is chosen to violate condition (i) of Theorem 2.6,

which includes one Z-type, one inverse Z-type, and one pure asymmetric binary sub-

channel; these sub-channels favor different input distributions. Based on the numeri-

cal computation for CI, we obtain that I∗1 = 0.5582, I∗2 = 0.6603, α∗ = 0.0102, β∗ = 0,

and an outer bound CI,ε with ε = 0.0183. As shown in Fig. 2.5, the region CI and CI,ε

are quite close to each other, thus providing a good estimation to C. Also, for any

fixed R2, the rate loss of R1 is less than 0.011 (bits per channel use) when terminal 1

always uses the uniform inputs.

Example 2.9. Consider the DM-TWC with the marginal channels given in Table 2.4.

The marginal channel PY1|X1,X2 does not satisfy condition (ii) of Theorem 2.6, and

its sub-channels are given by perturbing a BSC with crossover probability 0.04. To
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Figure 2.5: Numerical results for Example 2.8, where ε = 0.0183.

Table 2.4: Marginal channel transition matrices of Example 2.9

(a) PY1|X1,X2

PY1|X1,X2 0 1

(0, 0) 0.96 0.04
(0, 1) 0.04 0.96

(1, 0) 0.961 0.039
(1, 1) 0.041 0.959

(2, 0) 0.96 0.04
(2, 1) 0.041 0.959

(b) PY2|X1,X2

PY2|X1,X2 0 1 2

(0, 0) 1 0 0
(1, 0) 0 1 0
(2, 0) 0.5 0.5 0

(0, 1) 0 0.1 0.9
(1, 1) 0.2 γ 0.8− γ
(2, 1) 0.2 0.8− γ γ

Table 2.5: The values of α∗ and ε under different settings of γ in Example 2.9

γ 0.1 0.15 0.2 0.25 0.3 0.35 0.375 0.4

α∗ 0.1911 0.1808 0.1641 0.1398 0.1063 0.0608 0.0013 0.001
ε 0.1911 0.1808 0.1641 0.1398 0.1063 0.0608 0.0325 0.0066

demonstrate how CI,ε generally approximates C, we also consider non-standard sub-

channels for PY2|X1,X2 parameterized by γ ∈ [0, 0.8]. Note that when γ increases from

0.1 to 0.4, the sub-channel with transition matrix [PY2|X1,X2( · | · , 1)] becomes less
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Figure 2.6: Numerical results for Example 2.9. The five inner regions are the CI’s
corresponding to the channel parameters γ = 0.15, 0.25, 0.35, 0.375, and
0.4, respectively, while the five outer regions are the corresponding CI,ε’s
(in reverse order).

noisy and the overall marginal channel PY2|X1,X2 tends to be symmetric in the sense

of condition (a). For this setup, we have that β = 0.0025, I∗1 = 1, and I∗2 = 0.7577.

In Table 2.5, we list the values of α∗ and ε for different values of γ ∈ [0, 0.4]. We

also depict CI and CI,ε for selected values of γ in Fig. 2.6. It is observed that when

ε < 0.05, our simple outer bound and CI determine the capacity region C with large

accuracy. In other cases, our outer bound is still non-trivial.

To end this chapter, we present a DM-TWC whose capacity region can be exactly

determined but the channel does not satisfy any of the tightness conditions in this

thesis. The channel has the marginal transition matrices as shown in Table 2.6, and

its capacity region is identical to the triangular capacity region of Shannon’s PTT

channels. This simple example, though artificial, reveals certain limitations of the
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Table 2.6: The marginal transition matrices of the DM-TWC whose capacity is know
but does not satisfy any tightness conditions.

(a) PY2|X1,X2

(X1, X2) 0 1

(0, 0) 1
2

1
2

(1, 0) 1
2

1
2

(2, 0) 1 0

(3, 0) 0 1

(0, 1) 1
2

1
2

(1, 1) 1
2

1
2

(2, 1) 1
2

1
2

(3, 1) 1
2

1
2

(0, 2) 1
2

1
2

(1, 2) 1
2

1
2

(2, 2) 1
2

1
2

(3, 2) 1
2

1
2

(0, 3) 1
2

1
2

(1, 3) 1
2

1
2

(2, 3) 1
2

1
2

(3, 3) 1
2

1
2

(b) PY1|X1,X2

(X1, X2) 0 1

(0, 0) 1
2

1
2

(0, 1) 1
2

1
2

(0, 2) 1 0

(0, 3) 0 1

(1, 0) 1
2

1
2

(1, 1) 1
2

1
2

(1, 2) 1
2

1
2

(1, 3) 1
2

1
2

(2, 0) 1
2

1
2

(2, 1) 1
2

1
2

(2, 2) 1
2

1
2

(2, 3) 1
2

1
2

(3, 0) 1
2

1
2

(3, 1) 1
2

1
2

(3, 2) 1
2

1
2

(3, 3) 1
2

1
2

current results and hence further studies are needed.

We also remark that for common-output TWCs, i.e., where both terminals receive

the same channel outputs at each time instant, one can view the channels as a combi-

nation of two one-way channels with feedback. Although the common output is not

exactly the same as the perfect or noisy feedback studied in one-way systems such

as [100–102], one can possibly obtain capacity bounds for one system from the other

system by identifying their relationship. Moreover, by viewing a DM-TWC as two

multiple access channels with asymmetric side-information, the result in [103] could

be useful to develop new capacity inner and outer bounds for TWCs. We leave these

two directions for future research.
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Chapter 3

Two-Terminal Two-Way Channels with Memory

Two-terminal TWCs with memory are similar to their memoryless counterparts,

except that now their associated noise process can be correlated in time. There are

many ways to model TWCs with memory, but a very general model is difficult to

analyze. Shannon’s original work considered a two-way channel with a recoverable

state property [3, Section 16], where a limiting expression of the capacity region

was given. As another attempt to tackle TWCs with memory, we restrict the focus

to a simple model (Section 3.1) whose the channel inputs and outputs and noises

are related by some deterministic functions. For such a channel model, we first

derive inner and outer capacity bounds using standard techniques in Sections 3.2

and 3.3, respectively. Tightness conditions for the inner bound are also established

in Section 3.4 for two special cases of this channel model, showing that their capacity

can be achieved without the use of adaptive coding. A summary of these results is

given in Fig. 3.1.

Furthermore, motivated by Example 3.1 where adaptive coding can achieve higher

bi-directional transmission rates, we generalize that example and propose adaptive

coding schemes that achieve capacity for a class of additive-noise TWCs with memory
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Figure 3.1: The relationships between the results for two-terminal TWCs with mem-
ory. Here, A Thm.C B indicates that results A and B are combined in
Theorem C to determine the capacity region.

in Section 3.5. More specifically, given a finite impulse response noise process, we

incorporate adaptive coding and superposition coding to cancel interference during

transmissions.

3.1 System Model

Throughout this section, we consider the following two-terminal TWC with mem-

ory whose inputs and outputs are related via functions F1 and F2:

Y1,n = F1(X1,n, X2,n, Z1,n), (3.1a)

Y2,n = F2(X1,n, X2,n, Z2,n), (3.1b)

where {(Z1,n, Z2,n)}∞n=1 is a two-dimensional noise process which is independent of

the terminals’ messages M1 and M2. Note that this model is a special case of the

general model introduced in Section 2.1.1; it is also a generalization of the discrete

additive-noise TWC considered in [40].
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3.2 Achievability Results

In this section, we assume that the individual noise processes {Z1,n}∞n=1 and

{Z2,n}∞n=1 are stationary and ergodic. Note that we allow {Z1,n}∞n=1 and {Z2,n}∞n=1 to

be dependent. For simplicity, we will omit to mention this assumption in our theorem

statements throughout this section. We first state (without proof) an inner bound

for arbitrary (time-invariant) functions F1 and F2. The bound can be proved via

Shannon’s standard random coding scheme (under non-adaptive independent inputs)

for information stable one-way channels with memory [104], applied in each direction

of the two-way transmission.

Theorem 3.1 (Inner Bound). For the channel described in (3.1), a rate pair

(R1, R2) is achievable if

R1 ≤ lim
N→∞

1

N
I(XN

1 ;Y N
2 |XN

2 ),

R2 ≤ lim
N→∞

1

N
I(XN

2 ;Y N
1 |XN

1 ),

for some sequence of product input probability distributions
{
PXN

1
PXN

2

}∞
N=1

and the

inputs XN
j are independent of {(Z1,n}∞n=1 and {Z2,n)}∞n=1, j = 1, 2.

We say that Fj(X1, X2, Zj) is invertible in Zj if Fj(x1, x2, · ) is one-to-one and

onto for any fixed (x1, x2) ∈ X1 × X2. Under this invertibility condition, we obtain

the following corollary.

Corollary 3.1. Suppose that Fj is invertible in Zj for j = 1, 2. A rate pair (R1, R2)

is achievable if

R1 ≤ lim
N→∞

1

N
H(Y N

2 |XN
2 )− H̄(Z2), (3.2a)
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R2 ≤ lim
N→∞

1

N
H(Y N

1 |XN
1 )− H̄(Z1), (3.2b)

for some sequence of product input distributions {PXN
1
PXN

2
}∞N=1, where H̄(Zj) denotes

the entropy rate of the noise process {Zj,n}∞n=1 and channel inputs are independent of

{(Z1,n, Z2,n)}∞n=1.

Proof: The proof follows from the fact that

I(XN
1 ;Y N

2 |XN
2 ) = H(Y N

2 |XN
2 )−H(Y N

2 |XN
1 , X

N
2 )

= H(Y N
2 |XN

2 )−H(ZN
2 |XN

1 , X
N
2 )

= H(Y N
2 |XN

2 )−H(ZN
2 ),

where the second equality holds since F2 is invertible in Z2 and the last equality

holds since the channel inputs are generated independently of the noise process

{(Z2,n, Z2,n)}∞n=1. Applying a similar argument to I(XN
1 ;Y N

2 |XN
2 ) completes the

proof.

Let F−1
j denote the inverse of Fj for fixed (x1, x2) ∈ X1 × X2 so that zj =

F−1
j (x1, x2, yj), j = 1, 2. If we further assume that zj = F−1

j (x1, x2, yj) is one-to-

one in xj′ for any fixed (xj, yj) ∈ Xj × Yj, where j, j′ = 1, 2 with j 6= j′, and impose

cardinality constraints on the alphabets, then the expressions in (3.2a) and (3.2b)

can be simplified as follows.

Corollary 3.2. Suppose that Fj is invertible in Zj and F−1
j is one-to-one in Xj′ for

j, j′ = 1, 2 with j 6= j′. Also, assume that |X2| = |Y1| = |Z1| = q1 and |X1| = |Y2| =

|Z2| = q2 for some integers q1, q2 ≥ 2. Then, a rate pair (R1, R2) is achievable if

R1 ≤ log q2 − H̄(Z2),

73



R2 ≤ log q1 − H̄(Z1).

Proof: The proof hinges on noting that H(Y N
j |XN

j ) ≤ N log qj and that the uniform

input distribution PXN
1 ,X

N
2

= (PU
X1
PU
X2

)N achieves the upper bound. More specifically,

we have to show that if PXn
1 ,X

n
2

is the uniform distribution, then PY Nj |XN
j

(yNj |xNj ) is

uniform on YNj for any given XN
j = xNj , and hence H(Y N

j |XN
j = xNj ) = N log qj. By

symmetry, we only provide the details for H(Y N
2 |XN

2 ). Suppose that PXN
1 ,X

N
2

is the

uniform distribution on XN
1 ×XN

2 . Then, for any xN2 we have

PY N2 |XN
2

(yN2 |xN2 ) =
∑
xN1

PY N2 |XN
1 ,X

N
2

(yN2 |xN1 , xN2 )PXN
1 |XN

2
(xN1 |xN2 )

=

(
1

q2

)N∑
xN1

PY N2 |XN
1 ,X

N
2

(F2(xN1 , x
N
2 , z

N
2 )|xN1 , xN2 )

=

(
1

q2

)N∑
xN1

PZN2 |XN
1 ,X

N
2

(F−1
2 (xN1 , x

N
2 , y

N
2 )|xN1 , xN2 )

=

(
1

q2

)N∑
zN2

PZN2 (zN2 ) (3.3)

=

(
1

q2

)N
,

where (3.3) holds since (XN
1 , X

N
2 ) is independent of ZN

2 and F−1
2 (X1, X2, Y2) is onto in

X1 due to the cardinality constraint. Clearly, PY N2 |XN
2 =xN2

is the uniform distribution

for any xN2 , implying that H(Y N
2 |XN

2 ) = N log q2.

Next we consider ISD-TWCs as in Example 2.3 and [41], but with the assumption

that the noise process {(Z1,n, Z2,n)}∞n=1 can have memory. Note that any ISD-TWC

with memory is a special case of the system model in (3.1) satisfying the injectivity

condition in Z1 and Z2. Thus, Corollary 3.1 applies to ISD-TWCs with memory to

obtain the following result.
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Corollary 3.3. For the ISD-TWC with memory, a rate pair (R1, R2) is achievable if

R1 ≤ lim
N→∞

max
P
XN1

1

N
H(h̃2(XN

1 , Z
N
2 ))− H̄(Z2),

R2 ≤ lim
N→∞

max
P
XN2

1

N
H(h̃1(XN

2 , Z
N
1 ))− H̄(Z1),

where H̄(Zj) denotes the entropy rate of the process {Zj,n}∞n=1 for j = 1, 2.

Note that the two limits above exist since the output process {h̃j(XN
j′ , Z

N
j )} is

stationary and ergodic when the input process {XN
j′ }’s is stationary and ergodic. We

also remark that Corollary 3.2 applies to ISD-TWCs with memory under identical

alphabet size constraints so that any rate pair in {(R1, R2) : R1 ≤ log q2−H̄(Z2), R2 ≤

log q1 − H̄(Z1)} is achievable for ISD-TWCs with memory.

3.3 Converse Results

In this section, we derive converses to Corollaries 3.2 and 3.3 under the assumption

that the two-dimensional noise process {(Z1,n, Z2,n)}∞n=1 is stationary.

Lemma 3.1 (Outer Bound for Noise-Invertible TWCs with Memory). Sup-

pose that |Yj| = qj for some integer qj ≥ 2. If Fj is invertible in Zj for j = 1, 2, any

achievable rate pair (R1, R2) must satisfy

R1 ≤ log q2 − lim
N→∞

1

N

N∑
n=1

H(Z2,n|Zn−1
1 , Zn−1

2 ),

R2 ≤ log q1 − lim
N→∞

1

N

N∑
n=1

H(Z1,n|Zn−1
1 , Zn−1

2 ),

provided that the above two limits exist for the given noise process {(Z1,n, Z2,n)}∞n=1.
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Proof: For an achievable rate pair (R1, R2), we have

NR1 = H(M1|M2)

= I(M1;Y N
2 |M2) +H(M1|Y N

2 ,M2)

≤ I(M1;Y N
2 |M2) +NεN (3.4)

=
N∑
n=1

[
H(Y2,n|M2, Y

n−1
2 )−H(Y2,n|M1,M2, Y

n−1
2 )

]
+NεN (3.5)

≤
N∑
n=1

[
log q2 −H(Y2,n|M1,M2, Y

n−1
2 )

]
+NεN (3.6)

≤
N∑
n=1

[
log q2−H(Y2,n|M1,M2, Y

n−1
1 , Y n−1

2 , X1,n, X2,n)
]
+NεN

=
N∑
n=1

[
log q2−H(Z2,n|M1,M2, Y

n−1
1 , Y n−1

2 , Xn
1 , X

n
2 )
]
+NεN (3.7)

=
N∑
n=1

[
log q2−H(Z2,n|M1,M2, Y

n−1
1 , Y n−1

2 , Xn
1 , X

n
2 , Z

n−1
1 , Zn−1

2 )
]

+NεN (3.8)

=
N∑
n=1

[
log q2 −H(Z2,n|Zn−1

1 , Zn−1
2 )

]
+NεN (3.9)

= N log q2 −
N∑
n=1

H(Z2,n|Zn−1
1 , Zn−1

2 ) +NεN , (3.10)

where (3.4) is due to Fano’s inequality with εN → 0 as N → ∞, (3.6) follows from

|Y2| = q2, (3.7) and (3.8) hold since Fj is invertible in Zj given (X1,n, X2,n), and (3.9)

holds since

H(Z2,n|Zn−1
1 , Zn−1

2 ) = H(Z2,n|M1,M2, Z
n−1
1 , Zn−1

2 ) (3.11)

= H(Z2,n|M1,M2, Z
n−1
1 , Zn−1

2 , X1,1, X2,1) (3.12)

= H(Z2,n|M1,M2, Z
n−1
1 , Zn−1

2 , X1,1, X2,1, Y1,1, Y2,1) (3.13)

= H(Z2,n|M1,M2, Z
n−1
1 , Zn−1

2 , X2
1 , X

2
2 , Y1,1, Y2,1) (3.14)
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= H(Z2,n|M1,M2, Z
n−1
1 , Zn−1

2 , Xn
1 , X

n
2 , Y

n−1
1 , Y n−1

2 ) (3.15)

where (3.11) is due to the fact that {(Z1,n, Z2,n)}∞n=1 is independent of (M1,M2),

(3.12) and (3.14) hold since Xj,n = fj,n(Mj, Y
n−1
j ) for j = 1, 2, (3.13) follows from

the identity Yj,n = Fj(X1,n, X2,n, Zj,n), and (3.15) is obtained by recursively using the

same argument as in (3.12)-(3.14). Similarly, we have

NR2 ≤ N log q1 −
N∑
n=1

H(Z1,n|Zn−1
1 , Zn−1

2 ) +Nε̂N . (3.16)

The proof is completed by dividing both sides of (3.10) and (3.16) by N and letting

N →∞.

Lemma 3.2 (Outer Bound for ISD-TWCs with Memory). For the ISD-TWCs

with stationary noise process {(Z1,n, Z2,n)}∞n=1, any achievable rate pair (R1, R2) must

satisfy

R1 ≤ lim inf
N→∞

1

N

(
max
P
XN1

H(h̃2(XN
1 , Z

N
2 ))−

N∑
n=1

H(Z2,n|Zn−1
1 , Zn−1

2 )

)
,

R2 ≤ lim inf
N→∞

1

N

(
max
P
XN2

H(h̃1(XN
2 , Z

N
1 ))−

N∑
n=1

H(Z1,n|Zn−1
1 , Zn−1

2 )

)
.

Proof: The proof is similar to the proof of the previous lemma and hence the details

are omitted. The main difference is that the first term in (3.5) is now upper bounded

as follows

N∑
n=1

H(Y2,n|M2, Y
n−1

2 ) =
N∑
n=1

H(h2(X2,n, T2,n)|M2, Y
n−1

2 , X2,n, T
n−1
2 )

=
N∑
n=1

∑
x2

PX2,n(x2) ·H(h2(X2,n, T2,n)|M2, Y
n−1

2 , X2,n = x2, T
n−1
2 )
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=
N∑
n=1

∑
x2

PX2,n(x2) ·H(T2,n|M2, Y
n−1

2 , X2,n = x2,n, T
n−1
2 )

=
N∑
n=1

H(T2,n|M2, Y
n−1

2 , X2,n, T
n−1
2 )

≤
N∑
n=1

H(T2,n|T n−1
2 )

= H(TN2 )

≤ max
P
XN1

H(h̃2(XN
1 , Z

N
2 )),

where the first equality holds since X2,n is a function of M2 and Y n−1
2 and Y2 =

h2(X2, T2) is injective in T2 given X2.

In the last step, we take limit infimum in N (instead of taking limit) since the limit

of 1
N

maxP
XN
j

H(h̃j′(X
N
j , Z

N
j′ )) may not exist. Nevertheless, since {(Z1,n, Z2,n)}∞n=1 is

stationary, the limit limN→∞
∑N

n=1
1
N
H(Zj,n|Zn−1

j , Zn−1
j′ ) always exists for j = 1, 2.

3.4 Tightness Conditions for Random Coding Inner Bound

Based on the preceding inner and outer bounds, the capacity region for two classes

of TWCs with memory (whose component noise processes are independent of each

other) can be exactly determined as follows.

Theorem 3.2. For a TWC with memory such that {Z1,n}∞n=1 and {Z2,n}∞n=1 are

stationary, ergodic and mutually independent, Fj is invertible in Zj and F−1
j is one-

to-one in Xj′ for j, j′ = 1, 2 with j 6= j′, and |X2| = |Y1| = |Z1| = q1 and |X1| =

|Y2| = |Z2| = q2 for some integers q1, q2 ≥ 2, the capacity region is given by

C =
{

(R1, R2) : R1 ≤ log q2 − H̄(Z2), R2 ≤ log q1 − H̄(Z1)
}
. (3.17)
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Theorem 3.3. For a ISD-TWC with memory such that {Z1,n}∞n=1 and {Z2,n}∞n=1 are

stationary, ergodic, and mutually independent, if stationary and ergodic inputs attain

the outer bound, then the capacity region is given by

C =
{

(R1, R2) : R1 ≤ lim
N→∞

1

N
max
P
XN1

H(h̃2(XN
1 , Z

N
2 ))− H̄(Z2),

R2 ≤ lim
N→∞

1

N
max
P
XN2

H(h̃1(XN
2 , Z

N
1 ))− H̄(Z1)

}
. (3.18)

Remark 3.1. Theorem 3.3 generalizes [41, Corollary 1] for memoryless ISD-TWCs. If

one further consider the settings: |X2| = |T1| = |Z1| = q1 and |X1| = |T2| = |Z2| = q2

for some integers q1, q2 ≥ 2, then limN→∞
1
N

maxP
XN1

H(h̃2(XN
1 , Z

N
2 )) = log q1 and

limN→∞
1
N

maxP
XN2

H(h̃1(XN
2 , Z

N
1 )) = log q2.

The next example shows that if the noise processes {Z1,n}∞n=1 and {Z2,n}∞n=1 are

dependent, then Shannon’s random coding scheme is not optimal. In the next section,

we will explore a class of TWCs with memory where adaptive coding is necessary to

achieve capacity.

Example 3.1 (Adaptation is Useful). Let q1 = q2 = 2 and suppose that the

channel is given by

Y1,n = F1(X1,n, X2,n, Z1,n) = X1,n ⊕2 X2,n ⊕2 Z1,n,

Y2,n = F2(X1,n, X2,n, Z2,n) = X1,n ⊕2 X2,n ⊕2 Z2,n,

where {Z1,n}∞n=1 is assumed to be memoryless with Z1,n uniformly distributed on the

alphabet {0, 1} for all n, and {Z2,n}∞n=1 is given by Z2,1 = 0 and Z2,n = Z1,n−1 for

n ≥ 2. Since the functions F1 and F2 are invertible in Z1 and Z2, the outer bound in
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Lemma 3.1 indicates that

R1 ≤ log 2− lim
N→∞

1

N

N∑
n=1

H(Z2,n|Zn−1
1 , Zn−1

2 ) = 1− 0 = 1,

R2 ≤ log 2− lim
N→∞

1

N

N∑
n=1

H(Z1,n|Zn−1
1 , Zn−1

2 ) = 1−H(Z1,n) = 0.

We claim that the rate pair (R1, R2) = (1, 0) can be achieved by an adaptive coding

scheme. Let M1,n ∈ {0, 1} denote the binary raw message to be sent from terminals 1

to 2 at time n. For each time n ≥ 1, set the encoder output of terminal 1 as

X1,n = M1,n ⊕2 X1,n−1 ⊕2 Y1,n−1

with initial conditionsX1,0 = X2,0 = Y1,0 = 0, and set the encoder output of terminal 2

to be zero, i.e., X2,n = 0 for all n. With this coding scheme, the received signal at

terminal 2 is given by

Y2,n = X1,n ⊕2 X2,n ⊕2 Z2,n

= M1,n ⊕2 X1,n−1 ⊕2 Y1,n−1 ⊕2 Z2,n

= M1,n ⊕2 X1,n−1 ⊕2 X1,n−1 ⊕2 Z1,n−1 ⊕2 Z2,n = M1,n,

and thus the rate pair (1, 0) is achievable. This achievability result together with

the outer bound imply that the channel capacity is given by C = {(R1, R2) : 0 ≤

R1 ≤ 1, R2 = 0}. However, the Shannon-type random coding scheme only provides

0 ≤ R1 ≤ 1 − H̄(Z2) = 0 and 0 ≤ R2 ≤ 1 − H̄(Z2) = 0, i.e., (R1, R2) = (0, 0), by

Corollary 3.2.1

1Corollary 3.2 is applicable here with a slight modification of Shannon’s random coding scheme.
Roughly speaking, information transmission occurs after the first time slot.
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3.5 Adaptive Coding for a Class of TWCs with Memory

In this section, we consider the following additive-noise TWC model:

Y1,n = F1(X1,n, X2,n, Z1,n) = X1,n ⊕q X2,n ⊕q Z1,n,

Y2,n = F2(X1,n, X2,n, Z1,n) = X1,n ⊕q X2,n ⊕q Z2,n.

Here, all system variables take value in the finite field Fq = ({0, 1, . . . , q},⊕q,�q) and

the two-dimensional noise process {(Z1,n, Z2,n)}∞n=1 is given by Z1,n = Z̃n and2

Z2,n =
M∑
m=0

βmZ̃n−m

where {Z̃n}∞n=1 is a stationary and ergodic noise process, M denotes the finite memory

order of the noise process {Z2,n}∞n=1 generated by {Z̃n}∞n=1 at each time instant, and

the coefficients βm’s are fixed and assumed to be known to both terminals. For

simplicity, we assume that Z̃n = 0 for n ≤ 0.

For this channel model, we further consider two cases: (i) β0 = 0 and (ii) β0 6= 0 to

illustrate two different adaptive coding schemes. We will first apply Corollary 3.2 and

Lemma 3.1 to obtain a random coding inner bound and a capacity outer bound for

each case, and then give the details of how adaptive coding achieves channel capacity.

Case (i): In this case, the random coding inner bound in Corollary 3.2 yields the

achievable rate region {(R1, R2) : 0 ≤ R1 ≤ log q− H̄(Z2), 0 ≤ R2 ≤ log q− H̄(Z1)},3

while Lemma 3.1 results in the outer bound region {(R1, R2) : 0 ≤ R1 ≤ log q, 0 ≤

R2 ≤ log q − H̄(Z1)}. The two regions generally do not coincide. However, the

2Note that the multiplication and summation are done over Fq. To simplify our notation, we will
omit �q when multiplication is considered.

3To apply Corollary 3.2 for this channel, one can modify Shannon’s random coding scheme to
send information after time M without affecting the asymptotic transmission rate.
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following adaptive coding scheme attains the outer bound region.

Our adaptive coding scheme consists of two phases of transmission. In the first

phase, both terminals send pilot symbols to help terminal 1 collect information about

the noise process Z̃n for future data transmission. In the second phase, terminal 1

then uses the information obtained in the first phase to combat the noise at terminal 2

and concurrently sends its own messages. Specifically, for 1 ≤ n ≤ M , we simply

set X1,n = X2,n = 0. For M + 1 ≤ i ≤ N , terminal 1 employs the following rule to

generate channel inputs:

X1,n = M1,n 	q
M∑
m=1

βm(Y1,n−m 	q X1,n−m)

= M1,n 	q
M∑
m=1

βm(X2,n−m ⊕q Z̃n−m)

where M1,n ∈ Fq is the nth raw message of terminal 1 and 	q denotes the subtraction

over Fq, while terminal 2 applies a length standard random coding designed for the

one-way channel Ỹ1,n = X2,n ⊕q Z̃1,n = X2,n ⊕q Z1,n to transmit its message M2.

Given the above transmission scheme, we now show how both receivers can recover

the transmitted messages from their received signals. First, the received signal of

terminal 1 is given by Y1,n = X1,n ⊕q X2,n ⊕q Z1,n for M + 1 ≤ n ≤ N . Since X1,n is

known to terminal 1, X1,n can be removed perfectly from Y1,n, which results in Ỹ1,n.

Clearly, terminal 1 can reliably decode M2 as long as R2 ≤ log q − H̄(X1). On the

other hand, terminal 2 employs the following decoding function to recover M1,n for

M + 1 ≤ n ≤ N :

M̂1,n = Y2,n 	q X2,n ⊕q
M∑
m=1

βmX2,n−m
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= X1,n ⊕q Z2,n ⊕q
M∑
m=1

βmX2,n−m

= M1,n 	q
M∑
m=1

βm(X2,n−m ⊕q Z̃n−m)⊕q Z2,n ⊕q
M∑
m=1

βmX2,n−m

= M1,n.

The maximum information transmission rate R1 is then given by (N−M)
N

log q, which

tends to log q as N → ∞. Combining the above then reveals that the outer bound

region {(R1, R2) : 0 ≤ R1 ≤ log q, 0 ≤ R2 ≤ log q − H̄(Z1)} is in fact the capacity

region for this case.

Case (ii): In this case, the random coding inner bound in Corollary 3.2 yields the

same achievable rate region as in Case (i), while Lemma 3.1 results in a different

outer bound region {(R1, R2) : 0 ≤ R1 ≤ log q− H̄(Z̃), 0 ≤ R2 ≤ log q− H̄(Z1)}. The

two regions do not coincide when H̄(Z2) 6= H̄(Z̃), but our adaptive coding scheme

attains the outer bound region. Note that in general H̄(Z2) ≥ H̄(Z̃) since for n ≥M ,

we have that

H(Z2,n|Zn−1
2,1 ) ≥ H(Z2,n|Zn−1

2,1 , Z̃n−1
1 )

= H(β0Z̃n|Zn−1
2,1 , Z̃n−1

1 )

= H(Z̃n|Z̃n−1
1 ).

Our adaptive coding scheme for this case still comprises two phases of transmis-

sion, where the first phase is identical to that in Case (i). For the second phase,

terminal 1 first employs the standard random coding scheme with codeword length

N−M to generate intermediate inputs X̃1,n for the one-way channel Ỹ2,n = X̃1,n⊕q Z̃n,

where M + 1 ≤ n ≤ N . The message M1 is conveyed in the X̃1,n’s, and these X̃1,n’s
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are next used to generate the channel inputs of the two-way channel via

X1,n = β0X̃1,n 	q
M∑
m=1

βm(Y1,n−m 	q X1,n−m)

= β0X̃1,n 	q
M∑
m=1

βm(X2,n−m ⊕q Z1,n−m).

Terminal 2 applies the standard random coding scheme with codeword length N −M

for the one-way channel Ỹ1,n = X2,n ⊕q Z1,n to transmit its message M2.

To recover M2 at terminal 1, the decoding scheme of Case (i) is employed and M2

can be reliably decoded if R2 ≤ log q − H̄(Z1). To see how terminal 2 decodes M1,

we first look at the content of Y2,n:

Y2,n = X1,n ⊕q X2,n ⊕q Z2,n

= β0X̃1,i 	q
M∑
m=1

βm(X2,n−m ⊕q Z1,n−m)⊕q X2,n ⊕q Z2,n

= β0X̃1,n 	q
M∑
m=1

βmX2,n−m 	q
M∑
m=1

βmZ̃n−m ⊕q X2,n ⊕q
M∑
m=1

βmZ̃n−m ⊕q β0Z̃n

= β0(X̃1,n ⊕q Z̃n)	q
M∑
m=1

βmX2,n−m ⊕q X2,n.

Since terminal 2 knows βm’s and X2,n’s and β0 6= 0, terminal 2 can convert Y2,n into

Ỹ2,n = X̃1,n ⊕q Z̃n. Based on the channel outputs Ỹ2,n, M + 1 ≤ n ≤ N , the message

M1 can be reliably decoded if R1 ≤ log q − H̄(Z̃). Thus, our adaptive coding scheme

achieves the outer bound region, and thus its associated coding rates determine the

capacity region.
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Chapter 4

Multiaccess-Broadcasting Memoryless Two-Way

Channels

This section considers a three-terminal two-way communication scenario combin-

ing multiaccess and broadcasting. We first introduce the channel model and derive

inner and outer bounds for the capacity region. Then, sufficient conditions for the

two bounds to coincide are provided, along with illustrative examples.

4.1 Channel Model and Definitions

Two-way communication over a discrete additive-noise MA/DB TWC comprises

three terminals as depicted in Fig. 4.1. Terminals 1 and 2 want to transmit messages

M13 and M23, respectively, to terminal 3 through the TWC that acts as a MAC in

the forward direction. Terminal 3 wishes to broadcast messages M31 and M32 to

terminals 1 and 2, respectively, through the TWC that acts as a DBC in the reverse

direction. The messages are assumed to be independent of each other and uniformly

distributed over their alphabets. The joint distribution of all the variables for N
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Terminal 1

Terminal 2

Terminal 3

M13

M23

M31M32

M̂13

M̂32

M̂31

M̂23

MAC with 

State X3

DBC with 

State (X1, X2)

 

X3

(X1, X2)

XN
1

XN
3

XN
2

Y N
1

Y N
2 Y N

3

Figure 4.1: The information flow of MA/DB TWCs.

channel uses is given by

PM{13,23,31,32},XN
{1,2,3},Y

N
{1,2,3}

= PM13PM23PM31PM32·

 N∏
n=1

PX1,n|M13,Y
n−1
1


·

 N∏
n=1

PX2,n|M23,Y
n−1
2

 ·
 N∏
n=1

PX3,n|M{31,32},Y n−1
3

 ·
 N∏
n=1

PY1,n,Y2,n,Y3,n|Xn
{1,2,3},Y

n−1
{1,2,3}

 ,

where M{13,23,31,32} , {M13,M23,M31,M32}, XN
{1,2,3} , {XN

1 , X
N
2 , X

N
3 }, and Y N

{1,2,3} ,

{Y N
1 , Y N

2 , Y N
3 }. Thus, the N transmissions can be described by the sequence of input-

output conditional probabilities
{
PY1,n,Y2,n,Y3,n|Xn

{1,2,3},Y
n−1
{1,2,3}

}N
n=1

.

To simplify our analysis, we assume that the channel is memoryless in the sense

that given current channel inputs, the current channel outputs are independent of

past signals, i.e., PY1,n,Y2,n,Y3,n|Xn
{1,2,3},Y

n−1
{1,2,3}

= PY1,n,Y2,n,Y3,n|X1,n,X2,n,X3,n for all n. Fur-

thermore, the two directions of transmission are assumed to interact in a way such

that PY1,n,Y2,n,Y3,n|X1,n,X2,n,X3,n = PY1,n,Y2,n|X1,n,X2,n,X3,nPY3,n|X1,n,X2,n,X3,n . Let all chan-

nel input and output alphabets other than Y3 equal Gq = {0, 1, . . . , q − 1} for some

q ≥ 2. The MA/DB TWC is defined by the transition probability PY3|X1,X2,X3 in the

MA direction and the transmission equations in the DB direction are given by

Y1,n = X1,n ⊕q X3,n ⊕q Z1,n, (4.1a)

Y2,n = X2,n ⊕q X3,n ⊕q Z1,n ⊕q Z2,n, (4.1b)
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for n = 1, 2, · · · , N , where Z1,n, Z2,n ∈ Gq denote additive noise variables, the com-

ponents of the memoryless and independent noise processes {Z1,n}∞n=1 and {Z2,n}∞n=1,

respectively. We also assume that the channel noise processes are independent of all

terminals’ messages. Thus, the channel transition probability of this MA/DB TWC

at time n can be written as

PY1,n,Y2,n,Y3,n|Xn
1 ,X

n
2 ,X

n
3 ,Y

n−1
1 ,Y n−1

2 ,Y n−1
3

(y1,n, y2,n, y3,n|xn1 , xn2 , xn3 , yn−1
1 , yn−1

2 , yn−1
3 )

= PY1,n,Y2,n,Y3,n|X1,n,X2,n,X3,n(y1,n, y2,n, y3,n|x1,n, x2,n, x3,n)

= PY3,n|X1,n,X2,n,X3,n(y3,n|x1,n, x2,n, x3,n)PY1,n|X1,n,X2,n,X3,n,Y3,n(y1,n|x1,n, x2,n, x3,n, y3,n)

·PY2,n|X1,n,X2,n,X3,n,Y1,n,Y3,n(y2,n|x1,n, x2,n, x3,n, y1,n, y3,n)

= PY3|X1,X2,X3(y3,n|x1,n, x2,n, x3,n)

·PZ1(y1,n 	q x1,n 	q x3,n)PZ2(y2,n 	q x2,n 	q y1,n ⊕q x1,n).

We remark that as our goal is to demonstrate a way to determine the capacity region

for multi-terminal DM-TWCs, we consider a simple (additive) DBC model to simplify

the derivation of tightness conditions. It is possible to consider general DBCs, but

the obtained results will be more complex. We next define channel codes, achievable

rates, and channel capacity for the MA/DB DM-TWC.

Definition 4.1. An (N,R13, R23, R31, R32) channel code for the memoryless MA/DB

TWC consists of four message setsM13 = {1, 2, . . . , 2NR13},M23 = {1, 2, . . . , 2NR23},

M31 = {1, 2, . . . , 2NR31}, M32 = {1, 2, . . . , 2NR32}, three sequences of encoding func-

tions: f1 = (f1,1, f1,2, . . . , f1,N), f2 = (f2,1, f2,2, . . . , f2,N), f3 = (f3,1, f3,2, . . . , f3,N)

such that

f1,1 :M13 → X1, f1,n :M13 × Yn−1
1 → X1, (4.2a)
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f2,1 :M23 → X2, f2,n :M23 × Yn−1
2 → X2, (4.2b)

f3,1 :M31 ×M32 → X3, f3,n :M31 ×M32 × Yn−1
3 → X3, (4.2c)

for n = 2, 3, . . . , N , and three decoding functions g1, g2, and g3, such that M̂31 =

g1(M13, Y
N

1 ), M̂32 = g2(M23, Y
N

2 ), and (M̂13, M̂23) = g3(M31,M32, Y
N

3 ).

When messages are encoded via the channel code, the average probability of de-

coding error is defined as

P (N)
e (f1,f2,f3, g1, g2, g3) = Pr{M̂13 6= M13 or M̂23 6= M23 or M̂31 6= M31 or M̂32 6= M32}.

Definition 4.2. A rate quadruple (R13, R23, R31, R32) is said to be achievable for the

memoryless MA/DB TWC if there exists a sequence of (N,R13, R23, R31, R32) codes

with limN→∞ P
(N)
e = 0.

Definition 4.3. The capacity region CMA-DBC of the memoryless MA/DB TWC is

the closure of all achievable rate quadruples (R13, R23, R31, R32).

4.2 Capacity Inner and Outer Bounds

Let RMA-DBC(PX1,X2,X3,V , PY3|X1,X2,X3 , PZ1 , PZ2) denote the set of rate quadruples

(R13, R23, R31, R32) which satisfy the constraints

R13 ≤ I(X1;Y3|X2, X3),

R23 ≤ I(X2;Y3|X1, X3),

R13 +R23 ≤ I(X1, X2;Y3|X3),

R31 ≤ I(X3;X3 ⊕q Z1|V ),

R32 ≤ I(V ;X3 ⊕q Z1 ⊕q Z2),
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where V is an auxiliary random variable with alphabet V such that |V| ≤ q + 1

and the mutual information terms are evaluated according to the joint probability

distribution PX1,X2,X3,V,Y3,Z1,Z2 = PX1,X2,X3,V PY3|X1,X2,X3PZ1PZ2 . We next establish a

Shannon-type inner bound and an outer bound for the capacity of MA/DB TWCs in

Theorems 4.1 and 4.2, respectively. Note that the achievable scheme in Theorem 4.1

is given by combining Shannon’s standard (non-adaptive) coding schemes for the

MAC [47, Theorem 4.2] and the DBC [47, Theorem 5.2], and hence the proof is

omitted here.

Theorem 4.1 (Inner Bound). For a memoryless MA/DB TWC with MA transition

probability PY3|X1,X2,X3 and DB noise distributions PZ1 and PZ2, any rate quadruple

(R13, R23, R31, R32) ∈ CMA-DBC
I (PY3|X1,X2,X3 , PZ1 , PZ2) is achievable, where

CMA-DBC
I (PY3|X1,X2,X3 , PZ1 , PZ2) , co

( ⋃
PX1

,PX2
,PV,X3

RMA-DBC(PX1PX2PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2)

)
.

Theorem 4.2 (Outer Bound). For a memoryless MA/DB TWC with MA transi-

tion probability PY3|X1,X2 and DB noise distributions PZ1 and PZ2, all achievable rate

quadruples (R13, R23, R31, R32) belong to CMA-DBC
O (PY3|X1,X2,X3 , PZ1 , PZ2), where

CMA-DBC
O (PY3|X1,X2,X3 , PZ1 , PZ2) , co

( ⋃
PX1,X2,X3,V

RMA-DBC(PX1,X2,X3,V , PY3|X1,X2,X3 , PZ1 , PZ2)

)
.

Proof: Given an achievable quadruple (R13, R23, R31, R32), we derive the necessary

conditions for those rates by the standard converse method. For R13, we have

NR13

= H(M13|M23,M31,M32)

= I(M13;Y N
3 |M23,M31,M32) +H(M13|Y N

3 ,M23,M31,M32)
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≤ I(M13;Y N
3 |M23,M31,M32) +NεN (4.3)

≤ I(M13;Y N
2 , Y N

3 |M23,M31,M32) +NεN

=
N∑
n=1

I(M13;Y2,n, Y3,n|Y n−1
2 , Y n−1

3 ,M23,M31,M32) +NεN

=
N∑
n=1

(
H(Y2,n, Y3,n|X2,n, X3,n, Y

n−1
2 , Y n−1

3 ,M23,M31,M32)

−H(Y2,n, Y3,n|X2,n, X3,n, Y
n−1

2 , Y n−1
3 ,M23,M31,M32,M13)

)
+NεN (4.4)

≤
N∑
n=1

(
H(Y2,n, Y3,n|X2,n, X3,n)−H(Y2,n, Y3,n|X1,n, X2,n, X3,n)

)
+NεN (4.5)

=
n∑
n=1

I(X1,n;Y2,n, Y3,n|X2,n, X3,n) +NεN

=
N∑
n=1

I(X1,n;X2,n ⊕q X3,n ⊕q Z1,n ⊕q Z2,n, Y3,n|X2,n, X3,n) +NεN

=
N∑
n=1

I(X1,n;Y3,n|X2,n, X3,n) + I(X1,n;Z1,n ⊕q Z2,n|Y3,n, X2,n, X3,n) +NεN

=
N∑
n=1

I(X1,n;Y3,n|X2,n, X3,n) +NεN , (4.6)

where (4.3) follows from Fano’s inequality with εN → 0 as N → ∞, (4.4) holds

since X2,n = f2,n(M23, Y
n−1

2 ) and X3,n = f3,n(M31,M32, Y
n−1

3 ), (4.5) follows since

the channel is memoryless, and (4.6) follows since (Z1,n, Z2,n) is independent of

(Y3,n, X1,n, X2,n, X3,n). By symmetry, we also have

NR23 ≤
N∑
n=1

I(X2,n;Y3,n|X1,n, X3,n) +NεN . (4.7)

For the sum rate R13 +R23, we have

N(R13 +R23)

= H(M13,M23|M31,M32)
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≤ I(M13,M23;Y N
3 |M31,M32) +NεN

=
N∑
n=1

(
H(Y3,n|X3,n, Y

n−1
3 ,M31,M32)−H(Y3,n|Y n−1

3 ,M31,M32,M13,M23)
)

+NεN

≤
N∑
n=1

(
H(Y3,n|X3,n)−H(Y3,n|Y n−1

3 ,M31,M32,M13,M23)
)

+NεN

≤
N∑
n=1

(
H(Y3,n|X3,n)−H(Y3,n|X1,n, X2,n, X3,n)

)
+NεN

=
N∑
n=1

I(X1,n, X2,n;Y3,n|X3,n) +NεN ,

where εN → 0 as N → ∞ by Fano’s inequality. Therefore, for the rates in the MA

direction, we have

R13 ≤
1

N

N∑
n=1

I(X1,n;Y3,n|X2,n, X3,n) + εN ≤ I(X1;Y3|X2, X3) + εN

R23 ≤
1

N

N∑
n=1

I(X2,n;Y3,n|X1,n, X3,n) + εN ≤ I(X2;Y3|X1, X3) + εN

R13 +R23 ≤
1

N

N∑
i=1

I(X1,n, X2,n;Y3,n|X3,n) + εN ≤ I(X1, X2;Y3|X3) + εN

where the inequalities hold since the conditional mutual information I(X1;Y3|X2, X3),

I(X2;Y3|X1, X3), and I(X1, X2;Y3|X3) are concave1 in the joint input distribution

PX1,X2,X3 , where

PX1,X2,X3 =
1

N

N∑
n=1

PX1,n,X2,n,X3,n .

For the achievable rate R32 in the DB direction, we have

NR32

1This follows from the fact that I(A;C|B) is concave in PA,B for fixed PC|A,B [3].
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= H(M32|M23)

≤ I(M32;Y N
2 |M23) +NεN

=
N∑
n=1

I(M32;Y2,n|Y n−1
2 ,M23, X

n
2 ) +NεN

=
N∑
n=1

I(M32;X3,n ⊕q Z1,n ⊕q Z2,n|Xn−1
3 ⊕q Zn−1

1 ⊕q Zn−1
2 ,M23, X

n
2 ) +NεN

=
N∑
n=1

I(M32;X3,n ⊕q Z1,n ⊕q Z2,n|Xn−1
3 ⊕q Zn−1

1 ⊕q Zn−1
2 ,M23) +NεN (4.8)

≤
N∑
n=1

I(M32, X
n−1
3 ⊕q Zn−1

1 ⊕q Zn−1
2 ,M23;X3,n ⊕q Z1,n ⊕q Z2,n) +NεN (4.9)

≤
N∑
n=1

I(M32,M23,M13, X
n−1
3 ⊕q Zn−1

1 ⊕q Zn−1
2 ,Xn−1

3 ⊕q Zn−1
1 ;

X3,n ⊕q Z1,n ⊕q Z2,n) +NεN

=
N∑
n=1

I(M{32,23,13}, Ỹ
n−1

1 , Ỹ n−1
2 ; Ỹ2,n) +NεN (4.10)

where (4.8) holds since Xn
2 is a function of (Xn−1

3 ⊕q Zn−1
1 ⊕q Zn−1

2 ,M23), (4.9) fol-

lows from the chain rule and the non-negativity of mutual information, and (4.10) is

expressed in terms of Ỹ1,n , X3,n⊕qZ1,n, and Ỹ2,n , X3,n⊕qZ1,n⊕qZ2,n = Ỹ1,n⊕qZ2,n.

For R31, we have

NR31

= H(M31|M{32,23,13})

≤ I(M31;Y N
1 , Y N

2 |M{32,23,13}) +NεN

=
N∑
n=1

I(M31;Y1,n, Y2,n|Y n−1
1 , Y n−1

2 ,M{32,23,13}) +NεN

≤
N∑
n=1

I(M31, X3,n;Y1,n, Y2,n|Y n−1
1 , Y n−1

2 ,M{32,23,13}) +NεN
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=
N∑
n=1

I(M31, X3,n;Y1,n, Y2,n|Y n−1
1 , Y n−1

2 ,M{32,23,13}, X
n
1 , X

n
2 ) +NεN

(4.11)

=
N∑
n=1

I(M31, X3,n; Ỹ1,n, Ỹ2,n|Y n−1
1 , Y n−1

2 ,M{32,23,13}, X
n
1 , X

n
2 ) +NεN

=
N∑
n=1

I(M31, X3,n; Ỹ1,n, Ỹ2,n|Ỹ n−1
1 , Ỹ n−1

2 ,M{32,13,23}) +NεN (4.12)

=
N∑
n=1

I(X3,n; Ỹ1,n, Ỹ2,n|Ỹ n−1
1 , Ỹ n−1

2 ,M{32,13,23})

+
N∑
n=1

I(M31; Ỹ1,n, Ỹ2,n|Ỹ n−1
1 , Ỹ n−1

2 ,M{32,13,23}, X3,n) +NεN

=
N∑
n=1

I(X3,n; Ỹ1,n, Ỹ2,n|Ỹ n−1
1 , Ỹ n−1

2 ,M{32,13,23}) +NεN (4.13)

=
N∑
n=1

I(X3,n; Ỹ1,n|Ỹ n−1
1 , Ỹ n−1

2 ,M{32,13,23}) +NεN (4.14)

where (4.11) holds since X1,n = f1,n(M13, Y
n−1

1 ) and X2,n = f2,n(M23, Y
n−1

2 ), (4.12)

holds since (Y n−1
1 , Y n−1

2 , Xn
1 , X

n
2 ) can be generated knowing (M13, M23, Ỹ

n−1
1 , Ỹ n−1

2 ),

(4.13) holds because M31 (−− (Ỹ n−1
1 , Ỹ n−1

2 ,M{32,13,23}, X3,n) (−− (Ỹ1,n, Ỹ2,n) form a

Markov chain, and (4.14) holds since Ỹ2,n(−− (Ỹ1,n, Ỹ
n−1

1 , Ỹ n−1
2 ,M{32,13,23})(−− X3,n

form a Markov chain. Note that these Markov chain properties hold since {Z1,n}Nn=1

and {Z2,n}Nn=1 are independent memoryless processes and are independent of all ter-

minals’ messages.

Setting Vn = (Ỹ n−1
1 , Ỹ n−1

2 ,M{32,13,23}), we have the following Markov chain

Vn (−− X3,n (−− (Ỹ1,n, Ỹ2,n). From (4.10) and (4.14), we further obtain that

NR32 ≤
∑N

n=1 I(Vn; Ỹ2,n) +NεN and NR31 ≤
∑N

n=1 I(X3,n; Ỹ1,n|Vn) +NεN . Let Q be

a time-sharing random variable that is uniform over {1, 2, . . . , N} and independent

of all messages, inputs, and outputs. Setting V = (Q, VQ), X3 = X3,Q, Z1 = Z1,Q,
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Z2 = Z2,Q Ỹ1 = X3 ⊕q Z1 = Ỹ1,Q, Ỹ2 = X3 ⊕q Z1 ⊕q Z2 = Ỹ2,Q, we have

NR32 ≤
N∑
n=1

I(Vn; Ỹ2,n) +NεN

= N · I(VQ; Ỹ2,Q|Q) +NεN

≤ N · I(V ; Ỹ2) +NεN

= N · I(V ;X3 ⊕q Z1 ⊕q Z2) +NεN ,

and

NR31 ≤
N∑
n=1

I(X3,n; Ỹ1,n|Vn) +NεN

= N · I(X3; Ỹ1|V ) +NεN

= N · I(X3;X3 ⊕q Z1|V ) +NεN

for some PZ1,Z2,X3,V = PX3,V PZ1PZ2 . Combining the obtained bounds for rates R13

and R23, the proof is completed by dividing N on both sides of the bounds and letting

N →∞. The bound on the alphabet size of V can be established by the convex cover

method [47].

4.3 Tightness Conditions for Random Coding Inner Bound

The inner and outer bounds derived in the previous section are of the same form

but have different restrictions on the joint distribution PX1,X2,X3,V , and hence they do

not match. Here, we establish conditions under which the two bounds have matching

input distributions, implying that they coincide and yield the capacity region.

Theorem 4.3. The inner and outer capacity bounds in Theorems 4.1 and 4.2 coin-

cide if for every conditional input distribution P
(1)
X1,X2|X3

, there exists a product input

94



distribution P
(2)
X1,X2|X3

= P̃X1P̃X2 (which depends on P
(1)
X1,X2|X3

) such that

I(1)(X1;Y3|X2, X3 = x3) ≤ I(2)(X1;Y3|X2, X3 = x3) (4.15)

I(1)(X2;Y3|X1, X3 = x3) ≤ I(2)(X2;Y3|X1, X3 = x3) (4.16)

I(1)(X1, X2;Y3|X3 = x3) ≤ I(2)(X1, X2;Y3|X3 = x3) (4.17)

hold for all x3 ∈ X3. Under this condition, the capacity region is given by

CMA-DBC = co

( ⋃
PX1

,PX2
,PV,X3

RMA-DBC
(
PX1PX2PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2

))
.

Proof: Consider a MA-DB TWC governed by PY3|X1,X2,X3 , PZ1 , and PZ2 . Recall that

RMA-DBC(PX1,X2,X3,V , PY3|X1,X2,X3 , PZ1 , PZ2) =
{

(R13, R23, R31, R32) :

R13 ≤ I(X1;Y3|X2, X3), (4.18)

R23 ≤ I(X2;Y3|X1, X3), (4.19)

R13 +R23 ≤ I(X1, X2;Y3|X3), (4.20)

R31 ≤ I(X3;X3 ⊕q Z1|V ), (4.21)

R32 ≤ I(V ;X3 ⊕q Z1 ⊕q Z2)
}
. (4.22)

Since (4.18)-(4.20) do not depend on V and (4.21) and (4.22) do not depend on

(X1, X2), we have

RMA-DBC(PX1,X2,X3,V , PY3|X1,X2,X3 , PZ1 , PZ2)

= RMA-DBC(PX1,X2|X3PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2). (4.23)

To complete the proof, it suffices to show that for every PX1,X2|X3 , the corresponding
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P̃X1P̃X2 (which depends on PX1,X2|X3) given by our assumption, satisfies

RMA-DBC(PX1,X2|X3PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2)

⊆ RMA-DBC(P̃X1P̃X2PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2), (4.24)

since then we clearly have

CMA-DBC
O (PY3|X1,X2,X3 , PZ1 , PZ2) ⊆ CMA-DBC

I (PY3|X1,X2,X3 , PZ1 , PZ2).

To show (4.24), consider two input distributions P
(1)
X1,X2,X3,V

, P
(1)
X1,X2|X3

P
(1)
V,X3

and

P
(2)
X1,X2,X3,V

, P̃X1P̃X2P
(1)
V,X3

, where P̃X1P̃X2 is given by the assumption. Then,

I(1)(X3;X3 ⊕q Z1|V ) = I(2)(X3;X3 ⊕q Z1|V ) (4.25)

I(1)(V ;X3 ⊕q Z1 ⊕q Z2) = I(2)(V ;X3 ⊕q Z1 ⊕q Z2) (4.26)

since P
(1)
X1,X2,X3,V

and P
(2)
X1,X2,X3,V

have the same marginal P
(1)
V,X3

. Furthermore,

I(1)(X1;Y3|X2, X3) =
∑
x3

P
(1)
X3

(x3) · I(1)(X1;Y3|X2, X3 = x3)

≤
∑
x3

P
(1)
X3

(x3) · I(2)(X1;Y3|X2, X3 = x3)

= I(2)(X1;Y3|X2, X3),

where the inequality follows from (4.15) and the last equality holds since P
(1)
X1,X2,X3,V

and P
(2)
X1,X2,X3,V

have the same marginal P
(1)
X3

. Similarly, we obtain that

I(1)(X2;Y3|X1, X3) ≤ I(2)(X2;Y3|X1, X3)

and

I(1)(X1, X2;Y3|X3) ≤ I(2)(X1, X2;Y3|X3).
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Consequently, (4.24) holds.

A special case of the above theorem is when P̃X1P̃X2 does not depend on PX1,X2|X3 .

This case may happen when PY3|X1,X2,X3 has a strong symmetry property.

Corollary 4.1. The inner and outer capacity bounds in Theorems 4.1 and 4.2 coin-

cide if there exists an input distributions P
(2)
X1,X2

= P ∗X1
P ∗X2

such that for all P
(1)
X1,X2|X3

and x3 ∈ X3 the inequalities given in (4.15)-(4.17) hold. In this case, the capacity

region is given by

CMA-DBC = co

( ⋃
PV,X3

RMA-DBC
(
P ∗X1

P ∗X2
PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2

))
.

The next result is derived by treating the channel as a composition of state-

dependent one-way channels.

Theorem 4.4. The inner and outer capacity bounds in Theorems 4.1 and 4.2 coincide

if the following conditions hold:

(i) There exists P ∗X1
∈ P(X1) such that

arg max
PX1|X2=x2,X3=x3

I(X1;Y3|X2 = x2, X3 = x3) = P ∗X1

for all x2 ∈ X2 and x3 ∈ X3, and I(P ∗X1
, PY3|X1,X2=x2,X3=x3) does not depend on

x2 for every fixed x3;

(ii) For any PX2 ∈ P(X2), I(PX2 , PY3|X1=x1,X2,X3=x3) does not depend on x1 ∈ X1

and x3 ∈ X3;

(iii) For any fixed PX1,X2, we have that I(PX1,X2 , PY3|X1,X2,X3=x3) does not depend on
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x3 ∈ X3, and for each x3 ∈ X3 we have that

I(PX1,X2 , PY3|X1,X2,X3=x3) ≤ I(P ∗X1
PX2 , PY3|X1,X2,X3=x3),

where P ∗X1
is given by condition (i) and PX2 is marginalized from PX1,X2.

Under this condition, the capacity region is given by

CMA-DBC = co

( ⋃
PX2

,PV,X3

RMA-DBC
(
P ∗X1

PX2PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2

))
.

Proof: Similar to the proof in Theorem 4.3, for any PX1,X2|X3PV,X3 = PX2|X3PX1|X2,X3

PV,X3 , it suffices to show that

RMA-DBC(PX1,X2|X3PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2)

⊆ RMA-DBC(P ∗X1
PX2|X3PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2), (4.27)

where P ∗X1
is given by conditions (i).

For any P
(1)
X1,X2,X3,V

= P
(1)
X1,X2|X3

P
(1)
V,X3

, let P
(2)
X1,X2,X3,V

= P ∗X1
P

(1)
X2
P

(1)
V,X3

, where P ∗X1

is given by condition (i) and P
(1)
X2

denotes the marginal distribution of X2 derived

from P
(1)
X1,X2,X3,V

. For the rate constraints in the DB direction, the same identities as

in (4.25)-(4.26) can be obtained because P
(1)
X1,X2,X3,V

and P
(2)
X1,X2,X3,V

share a common

marginal distribution given by P
(1)
V,X3

. For R13 in the MA direction, we have

I(1)(X1;Y3|X2, X3)

=
∑
x2,x3

P
(1)
X2,X3

(x2, x3) · I(1)(X1;Y3|X2 = x2, X3 = x3)

=
∑
x2,x3

P
(1)
X2,X3

(x2, x3) · I
(
P

(1)
X1|X2=x2,X3=x3

, PY3|X1,X2=x2,X3=x3

)
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≤
∑
x2,x3

P
(1)
X2,X3

(x2, x3) ·
[

max
PX1|X2=x2,X3=x3

I
(
PX1|X2=x2,X3=x3 , PY3|X1,X2=x2,X3=x3

)]
=
∑
x2,x3

P
(1)
X2,X3

(x2, x3) · I
(
P ∗X1

, PY3|X1,X2=x2,X3=x3

)
(4.28)

=
∑
x3

P
(1)
X3

(x3)
∑
x2

P
(1)
X2|X3

(x2|x3) · I
(
P ∗X1

, PY3|X1,X2=x2,X3=x3

)

=
∑
x3

P
(1)
X3

(x3) ·

∑
x2

P
(1)
X2|X3

(x2|x3)

 · I(P ∗X1
, PY3|X1,X2=x′2,X3=x3

)
(4.29)

=
∑
x′2

P
(1)
X2

(x′2)
∑
x3

P
(1)
X3

(x3) · I
(
P ∗X1

, PY3|X1,X2=x′2,X3=x3

)
= I(2)(X1;Y3|X2, X3),

where (4.28) and (4.29) directly follow from condition (i).

For R23, we have

I(1)(X2;Y3|X1, X3)

=
∑
x1,x3

P
(1)
X1,X3

(x1, x3) · I(1)(X2;Y3|X1 = x1, X3 = x3)

=
∑
x1,x3

P
(1)
X1,X3

(x1, x3) · I
(
P

(1)
X2|X1=x1,X3=x3

, PY3|X1=x1,X2,X3=x3

)
=
∑
x1,x3

P
(1)
X1,X3

(x1, x3) · I
(
P

(1)
X2|X1=x1,X3=x3

, PY3|X1=x′1,X2,X3=x′3

)
(4.30)

≤ I
(∑

x1,x3

P
(1)
X1,X3

(x1, x3)P
(1)
X2|X1,X3

(x2|x1, x3), PY3|X1=x′1,X2,X3=x′3

)
(4.31)

= I
(
P

(1)
X2
, PY3|X1=x′1,X2,X3=x′3

)
=
∑
x′1,x

′
3

P ∗X1
(x′1)P

(1)
X3

(x′3) · I
(
P

(1)
X2
, PY3|X1=x′1,X2,X3=x′3

)
(4.32)

= I(2)(X2;Y3|X2, X3),

where (4.30) and (4.32) follow from condition (ii) and (4.31) is due to convexity of
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I(·, ·) in its first argument.

Moreover, for the sum rate R13 +R23, we have

I(1)(X1, X2;Y3|X3)

=
∑
x3

P
(1)
X3

(x3) · I(1)(X1, X2;Y3|X3 = x3)

=
∑
x3

P
(1)
X3

(x3) · I
(
P

(1)
X1,X2|X3=x3

, PY3|X1,X2,X3=x3

)
=
∑
x3

P
(1)
X3

(x3) · I
(
P

(1)
X1,X2|X3=x3

, PY3|X1,X2,X3=x′3

)
(4.33)

≤ I
(∑

x3

P
(1)
X3

(x3)P
(1)
X1,X2|X3

(x1, x2|x3), PY3|X1,X2,X3=x′3

)
(4.34)

= I
(
P

(1)
X1,X2

, PY3|X1,X2,X3=x′3

)
≤ I

(
P ∗X1

P
(1)
X2
, PY3|X1,X2,X3=x′3

)
(4.35)

=
∑
x′3

P
(1)
X3

(x′3) · I
(
P ∗X1

P
(1)
X2
, PY3|X1,X2,X3=x′3

)
= I(2)(X1, X2;Y3|X3),

where (4.33) and (4.35) follow from condition (iii) and (4.34) is due to convexity of

I( · , · ) in its first argument. Therefore, (4.27) holds under conditions (i)-(iii).

Next, we derive our last sufficient condition by generalizing Shannon’s condition

(in Proposition 2.1) to the three-terminal setting. This new condition is easier to

verify than the previous ones.

Theorem 4.5. The inner and outer capacity bounds in Theorems 4.1 and 4.2 coincide

if the following conditions hold:

(i) For any relabeling τX1

x′1,x
′′
1

on X1, there exists a permutation πY3 [x′1, x
′′
1] on Y3 such
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that for all x1, x2, x3, and y3, we have

PY3|X1,X2,X3(y3|x1, x2, x3)= PY3|X1,X2,X3

(
πY3 [x′1, x

′′
1](y3)

∣∣τX1

x′1,x
′′
1
(x1), x2, x3

)
; (4.36)

(ii) For any relabeling τX2

x′2,x
′′
2

on X2, there exists a permutation on πY3 [x′2, x
′′
2] on Y3

such that for all x1, x2, x3, and y3, we have

PY3|X1,X2,X3(y3|x1, x2, x3)= PY3|X1,X2,X3

(
πY3 [x′1, x

′′
1](y3)

∣∣x1, τ
X2

x′2,x
′′
2
(x2), x3

)
. (4.37)

Under these conditions, the capacity region is given by

CMA-DBC= co

( ⋃
PV,X3

RMA-DBC
(
PU
X1
PU
X2
PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2

))
, (4.38)

where PU
Xi denotes uniform probability distribution on Xi for i = 1, 2.

Proof: It suffices to show that

RMA-DBC(PX1,X2|X3PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2)

⊆ RMA-DBC(PU
X1
PU
X2
PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2) (4.39)

for any PX1,X2|X3PV,X3 . We first give a proof sketch. Analogous to Shannon’s proof

for point-to-point DM-TWCs (see Appendix A.1), we want to show that for any input

distribution P
(1)
X1,X2,X3,V

= P
(1)
X1,X2|X3

P
(1)
V,X3

, if we set P
(2)
X1,X2,X3,V

= P
(2)
X1,X2|X3

P
(1)
V,X3

and

P
(3)
X1,X2,X3,V

= P
(3)
X1,X2|X3

P
(1)
V,X3

, where

P
(2)
X1,X2|X3

( · , · | · ) , P
(1)
X1,X2|X3

(τX1

x′1,x
′′
1
( · ), · | · ), (4.40)

P
(3)
X1,X2|X3

( · , · | · ) , 1

2

(
P

(1)
X1,X2|X3

( · , · | · ) + P
(2)
X1,X2|X3

( · , · | · )
)
, (4.41)
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and x′1, x
′′
1 ∈ X1, then we have

RMA-DBC(P
(1)
X1,X2|X3

P
(1)
V,X3

, PY3|X1,X2,X3 , PZ1 , PZ2)

= RMA-DBC(P
(2)
X1,X2|X3

P
(1)
V,X3

, PY3|X1,X2,X3 , PZ1 , PZ2) (4.42)

⊆ RMA-DBC(P
(3)
X1,X2|X3

P
(1)
V,X3

, PY3|X1,X2,X3 , PZ1 , PZ2), (4.43)

where the last inclusion is shown using (4.36) and extending Lemma A.1.2 to the

MA/DBC setup. Then, we use an induction argument as in the proof of Lemma A.1.3

to obtain

RMA-DBC(PX1,X2|X3PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2)

⊆ RMA-DBC(PU
X1
PX2|X3PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2). (4.44)

Next, we consider input distributions of the form P
(1)
X1,X2,X3,V

= PU
X1
P

(1)
X2|X3

P
(1)
X3,V

and

set P
(2)
X1,X2,X3,V

= P
(2)
X1,X2|X3

P
(1)
V,X3

and P
(3)
X1,X2,X3,V

=P
(3)
X1,X2|X3

P
(1)
V,X3

, where

P
(2)
X1,X2|X3

( · , · | · ) , P
(1)
X1,X2|X3

( · , τX2

x′2,x
′′
2
( · )| · ),

P
(3)
X1,X2|X3

( · , · | · ) , 1

2

(
P

(1)
X1,X2|X3

( · , · | · ) + P
(2)
X1,X2|X3

( · , · | · )
)
,

and x′2, x
′′
2 ∈ X2. It can be shown via (4.37) that (4.42)-(4.43) also hold, and thus

applying an induction argument again yields

RMA-DBC(PU
X1
PX2|X3PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2)

⊆ RMA-DBC(PU
X1
PU
X2
PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2). (4.45)

Combining (4.44) and (4.45) then proves our claim. Due to symmetry, we only prove

(4.44). We begin with the following lemma whose proof is detailed in Appendix B.1.
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Lemma 4.1. For any P
(1)
X1,X2,X3,V

= P
(1)
X1,X2|X3

P
(1)
V,X3

, let P
(2)
X1,X2,X3,V

= P
(2)
X1,X2|X3

P
(1)
V,X3

and P
(3)
X1,X2,X3,V

= P
(3)
X1,X2|X3

P
(1)
V,X3

, where P
(2)
X1,X2|X3

and P
(3)
X1,X2|X3

are given by (4.40)

and (4.41), respectively. Then, (4.42)-(4.43) hold.

Without loss of generality, suppose that X1 = {1, 2, ..., κ}. For 1 ≤ m ≤ κ,

define Λm as the set of all conditional probability distributions PX1,X2|X3 satisfying

PX1,X2|X3(1, x2|x3) = PX1,X2|X3(2, x2|x3) = · · · = PX1,X2|X3(m,x2|x3) for any fixed

x2 ∈ X2 and x3 ∈ X3. As in the proof of Lemma A.1.3, it can be shown by induction

on m that

RMA-DBC(PX1,X2|X3PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2)

⊆ RMA-DBC(P̃X1,X2|X3PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2)

where PX1,X2|X3 ∈ Λm and P̃X1,X2|X3 ∈ Λm+1 for 1 ≤ m < κ. Note that the base

case m = 1 was proved in Lemma 4.1. Since PX1,X2|X3 ∈ Λκ can be expressed as

PX1,X2|X3 = PU
X1
PX2|X3 , (4.44) holds. To show (4.45), we consider input probability

distributions of the form PX1,X2,X3,V = PU
X1
PX2|X3PX3,V . By changing the roles of X1

and X2 in the above derivation, the rest of the proof is straightforward.

4.4 Examples

We next illustrate Theorems 4.3-4.5 via three examples.

Example 4.1 (Additive-Noise MA/DB DM-TWCs). Consider an additive-

noise MA/DB DM-TWC in which the inputs and outputs of the DBC are described

by (4.1a) and (4.1b) and the inputs and outputs of MAC are related via
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Y3,n = X1,n ⊕q X2,n ⊕q X3,n ⊕q Z3,n,

where {Z3,n}∞n=1 with Z3,n ∈ Gq is a discrete memoryless noise process which is

independent of all messages of the terminals and the noise processes {Z1,n}∞n=1 and

{Z2,n}∞n=1. For any x3 ∈ X3, we have the following bounds:

I(X1;Y3|X2, X3 = x3) = H(Y3|X2, X3 = x3)−H(Y3|X1, X2, X3 = x3) ≤ log2 q −Hb(Z3),

I(X2;Y3|X1, X3 = x3) = H(Y3|X1, X3 = x3)−H(Y3|X1, X2, X3 = x3) ≤ log2 q −Hb(Z3),

I(X1, X2;Y3|X3 = x3) = H(Y3|X3 = x3)−H(Y3|X1, X2, X3 = x3) ≤ log2 q −Hb(Z3),

where equalities hold when PX1,X2 = PU
X1
PU
X2

. Choosing P̃X1 = PU
X1

and P̃X2 = PU
X2

, it

is clear that (4.15)-(4.17) in Theorem 4.3 hold, and hence the capacity region is given

by

CMA-DBC = co

 ⋃
PV,X3

RMA-DBC
(
PU
X1
PU
X2
PU,X3 , PY3|X1,X2,X3 , PZ1 , PZ2

)
= co

( ⋃
PV,X3

{
(R13, R23, R31, R32) : R13 +R23 ≤ log2 q −Hb(Z3),

R31 ≤ I(X1;X3 ⊕2 Z1|V ),

R32 ≤ I(X2 ⊕ Z1 ⊕ Z2;V )
})

.

Example 4.2. Suppose that X1 = X2 = X3 = {0, 1}, Y1 = Y2 = {0, 1}, and Y3 =

{0, 1, 2}. We consider a memoryless MA/DB TWC in which the DB direction is de-

scribed by (4.1a) and (4.1b) and the channel transition matrix [PY3|X1,X2,X3( · | · , · , · )]
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for the MA direction is given by



0 1 2

000 1− ε 0 ε

100 1− ε 0 ε

010 0 1− ε ε

110 0 1− ε ε

001 0 ε 1− ε

101 0 ε 1− ε

011 1− ε ε 0

111 1− ε ε 0


where 0 ≤ ε ≤ 1. Since each marginal channel governed by the transition matrix

[PY3|X1,X2,X3( · | · , x2, x3)] is quasi-symmetric, we immediately have that P ∗X1
= PU

X1
.

Also, since [PY3|X1,X2,X3( · | · , x2, x3)], x2 ∈ X2 and x3 ∈ X3, are column permutations

of each other, for any fixed x3 ∈ X3, I(P ∗X1
, PY3|X1,X2=x2,X3=x3) does not depend

on x2 ∈ X2. Thus, condition (i) of Theorem 4.4 holds. Moreover, condition (ii)

holds since the matrices [PY3|X1,X2,X3( · |x1, · , x3)], x1 ∈ X1 and x3 ∈ X3, are column

permutations of each other.

Verifying condition (iii) involves several steps. We first observe that

I(PX1,X2 , PY3|X1,X2,X3=x3) does not depend on x3 ∈ X3 for any fixed PX1,X2 since the

matrices [PY3|X1,X2,X3( · | · , · , x3)], x3 ∈ X3, are column permutations of each other.

Due to (4.33) and (4.34), it suffices to consider input distributions of this form:

PX1,X2,X3,V = PX1,X2PX3,V . Thus, given any P
(1)
X1,X2,X3,V

= P
(1)
X1,X2

P
(1)
X3,V

, we define

P
(2)
X1,X2,X3,V

(x1, x2, x3, v) = P
(1)
X1,X2,X3,V

(x1 ⊕2 1, x2, x3, v) for all x1, x2, x3, v. Also, let

P
(3)
X1,X2,X3,V

=
1

2

(
P

(1)
X1,X2,X3,V

+ P
(2)
X1,X2,X3,V

)
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so that we have P
(3)
X1,X2,X3,V

= P
(3)
X1
P

(1)
X2
P

(1)
X3,V

with P
(3)
X1

= PU
X1

= P ∗X1
. Now, since

(4.36) holds in this example, one can directly obtain that I(1)(X1, X2;Y3|X3 = x3) ≤

I(3)(X1, X2;Y3|X3 = x3) from the proof of Lemma 4.1. As a result, this TWC satisfies

all conditions of Theorem 4.4 and has capacity region given by

CMA-DBC= co

( ⋃
PX2

,PV,X3

RMA-DBC
(
PU
X1
PX2PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2

))
.

Example 4.3 (Binary MA/DB TWCs with Erasures). Suppose that X1 = X2 =

X3 = {0, 1}, Y1 = Y2 = {0, 1}, and Y3 = {0, 1,E}, where E denotes erasure symbol.

We consider a discrete memoryless MA/DB TWC in which the DBC direction is

described by (4.1a) and (4.1b) and the MAC direction is described by

Y3,n = (X1,n ⊕2 X2,n ⊕2 X3,n) · 1{Z3,n 6= E}+ E · 1{Z3,n = E},

where {Z3,n}∞n=1 with Z3,n ∈ {0,E} is a discrete memoryless noise process which is in-

dependent of all terminals’ messages and the noise processes {Z1,n}∞n=1 and {Z2,n}∞n=1.

Also, we assume that Pr
(
Z3,n = E

)
= ε for all n, thereby obtaining the channel tran-

sition matrix [PY3|X1,X2,X3( · | · , · , · )] on the top of the next page. It can be directly

verified that (4.36) and (4.37) in Theorem 4.5 hold. Hence, the inner and outer

bounds coincide and the capacity region is given by

CMA-DBC = co

( ⋃
PV,X3

RMA-DBC
(
PU
X1
PU
X2
PV,X3 , PY3|X1,X2,X3 , PZ1 , PZ2

))

= co

( ⋃
PV,X3

{
(R13, R23, R31, R32) : R13 +R23 ≤ 1−Hb(ε),

R31 ≤ I(X1;X3 ⊕2 Z1|V ),

R32 ≤ I(X2 ⊕2 Z1 ⊕2 Z2;V )
})

.
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[PY3|X1,X2,X3( · | · , · , · )] =



0 1 E

000 1− ε 0 ε

100 0 1− ε ε

010 0 1− ε ε

110 1− ε 0 ε

001 0 1− ε ε

101 1− ε 0 ε

011 1− ε 0 ε

111 0 1− ε ε



Remark 4.1. Examples 4.2 and 4.3 also satisfy Theorem 4.3 since the product dis-

tribution P̃X1P̃X2 required by Theorem 4.3 are explicitly given in these examples.

Moreover, it is straightforward to show that Examples 4.2 and 4.3 do not satisfy

the conditions of Theorems 4.5 and 4.4, respectively. In other words, Theorems 4.4

and 4.5 are neither equivalent nor special cases of each other.

107



Chapter 5

Two-Way Source-Channel Coding

5.1 Preliminaries

Recall the problem setup in Section 1.4, which is recapped in Fig. 5.1. Two termi-

nals T1 and T2 exchange a block of correlated source messages (SK1 , S
K
2 ) of length-K

via N uses of a noisy DM-TWC. Lossy reconstructions are allowed, and our objective

is to seek direct and converse coding theorems for lossy source-channel transmissi-

bility. Note that the noisy DM-TWC here is used without adopting any interactive

communication protocol and the memoryless property of the channel implies that

PY1,n,Y2,n|Xn
1 ,X

n
2 ,Y

n−1
1 ,Y n−1

2
= PY1,n,Y2,n|X1,n,X2,n = PY1,Y2|X1,X2 for all n.

T1 T2DM-TWC

E[d1(SK
1 , ŜK

1 )] ≤ D1

E[d2(SK
2 , ŜK

2 )] ≤ D2

SK
1

ŜK
2

ŜK
1

SK
2

XN
1 XN

2

Y N
1 Y N

2

Figure 5.1: The block diagram for the lossy transmission of correlated source pair
(SK1 , S

K
2 ) via N uses of a noisy DM-TWC.
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5.1.1 Definitions

In this section, we define joint source-channel codes and the achievable distortion

region for source-channel communication over a DM-TWC. We also review various

RD function expressions for point-to-point communication and channel coding results

for DM-TWCs, which will be used in Section 5.3. For our problem setup, a joint

source-channel code is defined as follows.

Definition 5.1. An (N,K) code for transmitting (SK1 , S
K
2 ) over a DM-TWC consists

of two sequences of encoding functions f1 , {f1,n}Nn=1 and f2 , {f2,n}Nn=1 such that

f1,1 : SK1 → X1, f1,n : SK1 × Yn−1
1 → X1

f2,1 : SK2 → X2, f2,n : SK2 × Yn−1
2 → X2

for n = 2, 3, . . . , N , and two decoding functions g1 : SK1 × YN1 → ŜK2 and g2 :

SK2 × YN2 → ŜK1 .

The channel inputs at time n = 1 are only functions of the source messages, i.e.,

Xj,1 = fj,1(SKj ), but the subsequent channel inputs are generated by also adapting

to the previous channel outputs via Xj,n = fj,n(SKj , Y
n−1
j ) for n = 2, 3, . . . , N . Such

encoding strategy is known as adaptive coding, in contrast to its non-adaptive coun-

terpart where Xj,n = fj,n(Skj ) for all n. We remark that our code definition also

involves block-wise decoding; i.e., terminal j reconstructs SKj′ via ŜKj′ = gj(S
K
j , Y

N
j )

after receiving the entire N channel outputs.

Moreover, the rate of the joint source-channel code is given by K/N (source sym-

bols/channel use), and the associated expected distortion is Dj(K) , E[dj(S
K
j , Ŝ

K
j )],
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where the expectation is taken with respect to the joint probability distribution

PSK1 ,SK2 ,XN
1 ,X

N
2 ,Y

N
1 ,Y N2

= PSK1 ,SK2

(
N∏
n=1

PX1,n|SK1 ,Y
n−1
1

)

·
(

N∏
n=1

PX2,n|SK2 ,Y
n−1
2

)(
N∏
n=1

PY1,n,Y2,n|X1,n,X2,n

)
,

where PY1,nY2,n|X1,n,X2,n = PY1,Y2|X1,X2 for n = 1, 2, . . . , N (determined by the DM-

TWC).

Definition 5.2. A distortion pair (D1, D2) is said to be achievable at rate R if there

exists a sequence of (N,K) joint source-channel codes (where N is a function of K)

such that limK→∞K/N = R and lim supK→∞Dj(K) ≤ Dj, j = 1, 2. The achievable

distortion region of a rate-R two-way lossy transmission system is the convex closure

of all achievable distortion pairs (at rate R).

5.1.2 Rate-Distortion Functions

As a DM-TWC can be viewed as two state-dependent one-way channels, the

following source coding related functions (each expressed in terms of a constrained

minimization of a mutual information quantity) for one-way systems are also useful

in the two-way channel setup.

• Standard RD function [47, Sec. 3.6]:

R(j)(Dj) = min
PŜj |Sj

:E[dj(Sj ,Ŝj)]≤Dj
I(Sj; Ŝj). (5.1)

• WZ RD function [48]: Letting Tj ∈ Tj with |Tj| ≤ |Sj| + 1 denote an auxiliary
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random variable that satisfies the Markov chain Tj (−− Sj (−− Sj′ , we have

R
(j)
WZ(Dj) = min

PTj |Sj

min
h:Tj×Sj′→Ŝj

E[dj(Sj ,h(Tj ,Sj′ )]≤Dj

I(Sj;Tj|Sj′). (5.2)

• Conditional RD function [105]:

RSj |Sj′ (Dj) = min
PŜj |S1,S2

E[dj(Sj ,Ŝj)]≤Dj

I(Sj; Ŝj|Sj′). (5.3)

We remark that the source coding schemes that achieve the standard RD and WZ-

RD functions can be the building blocks of an SSCC scheme for our overall system.

For example, terminal j can apply the WZ coding scheme to compress source SKj given

side-information SKj′ . Although the coding scheme that achieves the conditional RD

function cannot be applied in our problem setup (since there is no common side-

information at the encoder and the decoder in general), the scheme is useful when S1

and S2 have a common part in the sense of Gács-Körner-Witsenhausen [47, Section

14.2.2]. We will use this result in Theorem 5.5 (see Section 5.4.2).

5.2 Forward JSCC Theorem Based on Adaptive Coding

This section establishes the most general achievability result in the paper. Without

loss of generality, we only consider rate-one transmission, i.e., N = K; other rates can

be obtained via suitable super-symbols.1 First of all, we describe the key technical

ingredients used in obtaining the main result in Theorem 5.1. Our approach is to

construct an extended channel (from the original DM-TWC) and use a stationary

1To obtain a rate-K1

N1
result, we define a super source symbol (resp., a super channel input/output

symbol) by combining K1 source symbols (resp., N1 channel input/output symbols).
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DM-TWC
F1 F2

Y1 Y2

X2X1(S1, U1, S̃1, Ũ1, W̃1) (S2, U2, S̃2, Ũ2, W̃2)

Two-Way Coded Channel

Transmission Process

Markov

Figure 5.2: An illustration of the transmission over the two-way coded channel.

Markov chain to coordinate the terminals’ transmissions.

5.2.1 Two-Way Coded Channel

Consider an auxiliary coded channel built on the original (physical) DM-TWC,

as shown in the central box of Fig. 5.2. The coded channel has inputs Sj, Uj, S̃j, Ũj

and W̃j at terminal j. The input pairs (Sj, Uj) and (S̃j, Ũj) are used to carry the

current and some prior source information, respectively, where Uj (resp., Ũj) denotes

the coded version of Sj (resp., S̃j). The input W̃j carries some past channel inputs

and outputs at terminal j. The new channel also involves two encoding functions

Fj : Sj × Uj × S̃j × Ũj × W̃j → Xj, which transform the inputs of the coded channel

into the inputs for the original DM-TWC. The outputs of the new channel are still

Y1 and Y2. The joint input probability distribution of the coded channel is given by

PS1,S2,U1,U2,S̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2
= PS1,S2PU1|S1PU2|S2PS̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2

,

and the transition probability of the coded channel is given by

PY1,Y2|S1,S2,U1,U2,S̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2
(y1, y2|s1, s2, u1, u2, s̃1, s̃2, ũ1, ũ2, w̃1, w̃2)

=
∑
x1,x2

1{x1 = F1(s1, u1, s̃1, ũ1, w̃1)}

1{x2 = F2(s2, u2, s̃2, ũ2, w̃2)}PY1,Y2|X1,X2(y1, y2|x1, x2). (5.4)
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5.2.2 Markov Chain for the Coded Channel

For the repeated use over time of the two-way coded channel, we next construct

a discrete-time Markov chain for the overall system with state space:

S1 × S2 × U1 × U2 × S̃1 × S̃2 × Ũ1 × Ũ2 × W̃1 × W̃2 ×X1 ×X2 × Y1 × Y2,

where S̃j , Sj, Ũj , Uj, and W̃j , Xj × Yj for j = 1, 2. This Markov chain will be

used to coordinate the transmissions of the two terminals as shown in Fig. 5.2. Let

Z(t) , (S
(t)
1 , S

(t)
2 , U

(t)
1 , U

(t)
2 , S̃

(t)
1 , S̃

(t)
2 , Ũ

(t)
1 , Ũ

(t)
2 , W̃

(t)
1 , W̃

(t)
2 , X

(t)
1 , X

(t)
2 , Y

(t)
1 , Y

(t)
2 )

denote the state of the Markov chain at time t ∈ Z+, where we set

S̃
(t)
j , S

(t−1)
j , Ũ

(t)
j , U

(t−1)
j , and W̃

(t)
j , (X

(t−1)
j , Y

(t−1)
j ).

Given a parameter tuple (PU1|S1 , PU2|S2 , PS̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2
, F1, F2), we generate the

quadruple (S
(t)
1 , S

(t)
2 , U

(t)
1 , U

(t)
2 ) for all t according to PS1,S2,U1,U2 = PS1,S2PU1|S1PU2|S2

independently of (S̃
(t)
1 , S̃

(t)
2 , Ũ

(t)
1 , Ũ

(t)
2 , W̃

(t)
1 , W̃

(t)
2 ). We also initialize the tuple (S̃

(1)
1 ,

S̃
(1)
2 , Ũ

(1)
1 , Ũ

(1)
2 , W̃

(1)
1 , W̃

(1)
2 ) according to PS̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2

, while the physical channel

input at terminal j is naturally produced as X
(t)
j = Fj(S

(t)
j , U

(t)
j , S̃

(t)
j , Ũ

(t)
j , W̃

(t)
j ), and

the received channel output is Y
(t)
j . Based on this construction, the transition kernel

of {Z(t)} is given by

PZ(t)|Z(t−1)(s1, s2, u1, u2, s̃1, s̃2, ũ1, ũ2, w̃1, w̃2, x1, x2, y1, y2

|s′1, s′2, u′1, u′2, s̃′1, s̃′2, ũ′1, ũ′2, w̃′1, w̃′2, x′1, x′2, y′1, y′2)

= PS1,S2(s1, s2)PU1|S1(u1|s1)PU2|S2(u2|s2)1{s̃1 = s′1}1{s̃2 = s′2}1{ũ1 = u′1}1{ũ2 = u′2}

·1{w̃1 = (x′1, y
′
1)}1{w̃2 = (x′2, y

′
2)}1{x1 = F1(s1, u1, s̃1, ũ1, w̃1)}
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·1{x2 = F2(s2, u2, s̃2, ũ2, w̃2)}PY1,Y2|X1,X2(y1, y2|x1, x2) (5.5)

for t ≥ 2. It is easy to see that the process {Z(t)} is a first-order time-homogeneous

Markov chain. However, whether or not the chain is stationary depends on the given

parameters.

5.2.3 Stationary Distribution under Distortion Constraints

To obtain an achievability result with time-independent conditions, we only con-

sider a stationary Markov chain for the coded channel. The following procedure can

be used to find its parameters. Given PS1,S2 and PY1,Y2|X1,X2 , we first fix a choice

of PUj |Sj and Fj, j = 1, 2, and write the transition kernel (5.5) in matrix form as

QZ . The matrix QZ is stochastic, and since all alphabets are finite, an eigenvector

of QZ associated with the eigenvalue 1 exists and gives a stationary distribution PZ

for {Z(t)}, i.e., PZ = PZQZ . Clearly, using the marginal distribution PS̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2

of PZ with the chosen PUj |Sj and Fj, j = 1, 2, to initialize the Markov chain en-

sures stationarity. Note that for the stationary chain the two independent quadruples

(S
(t)
1 , S

(t)
2 , U

(t)
1 , U

(t)
2 ) and (S̃

(t)
1 , S̃

(t)
2 , Ũ

(t)
1 , Ũ

(t)
2 ) have identical distributions for all t; thus

PS1,S2,U1,U2 = PS̃1,S̃2,Ũ1,Ũ2
. Moreover, due to our construction of {Z(t)}, we have the

following necessary conditions for stationarity

PS1,S2 = PS̃1,S̃2
, (5.6)

PUj |Sj = PŨj |S̃j , (5.7)
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for j = 1, 2. For source reconstruction, we next associate the parameters with decod-

ing functions2 Gj : Ũj′ ×Sj ×Uj × S̃j × Ũj × W̃j ×Yj → ˆ̃Sj′ , j = 1, 2. For simplicity,

we call the tuple (PU1|S1 , PU2|S2 , PS̃1,S̃2,Ũ1,Ũ2
, PW̃1,W̃2|S̃1,S̃2,Ũ1,Ũ2

, F1, F2, G1, G2) a config-

uration, which specifies a stationary distribution PZ given by

PZ = PS1,S2PU1|S1PU2|S2︸ ︷︷ ︸
=PS1,S2,U1,U2

PS̃1,S̃2
PŨ1|S̃1

PŨ2|S̃2︸ ︷︷ ︸
=PS̃1,S̃2,Ũ1,Ũ2

PW̃1,W̃2|S̃1,S̃2,Ũ1,Ũ2

·PX1|S1,U1,S̃1,Ũ1,W̃1
PX2|S2,U2,S̃2,Ũ2,W̃2

PY1,Y2|X1,X2 ,

where PS1,S2 and PY1,Y2|X1,X2 are fixed by the problem setup and PXj |Sj ,Uj ,S̃j ,Ũj ,W̃j
is

determined by Fj, j = 1, 2. We also let ΠZ(D1, D2) denote the set of all configurations

that induce a stationary chain and satisfy the distortion constraint E[dj(S̃j,
ˆ̃Sj)] ≤ Dj

for j = 1, 2. Note that the set ΠZ(D1, D2) might be empty for some (D1, D2).

5.2.4 Main Result: JSCC Achievability

Based on the above setup, we establish the achievability result in Theorem 5.1

below. In Theorem 5.1, one can further convexify the achievable distortion region via

a standard time-sharing argument [74].

Theorem 5.1 (Adaptive JSCC). A distortion pair (D1, D2) is achievable for the

rate-one lossy transmission of correlated sources over a DM-TWC if there exists a

configuration in ΠZ(D1, D2) such that

I(S̃1; Ũ1) < I(Ũ1;S2, U2, S̃2, Ũ2, W̃2, X2, Y2), (5.8a)

I(S̃2; Ũ2) < I(Ũ2;S1, U1, S̃1, Ũ1, W̃1, X1, Y1). (5.8b)

2As will be seen in the proof of Theorem 5.1, terminal j reconstructs the prior source message

S̃j′ as ˆ̃Sj′ after recovering Ũj′ ; this reconstruction is done via Gj .
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To facilitate the understanding of the conditions in (5.8), we sketch our coding

method before giving a formal proof, which extends the hybrid analog/digital coding

scheme of [89], used in conjunction with superposition block Markov encoding [28,

106] and a sliding-window decoder, as shown in Fig. 5.3. In our method, instead of

exchanging a single block of source message pairs (SK1 , S
K
2 ) via K channel uses, we

exchange B blocks of such source message pairs via K(B + 1) channel uses for some

B ∈ Z+. The overall transmission rate is B
B+1

, which approaches 1 as B → ∞. The

extra K channel uses can be viewed as added redundancy for data protection.

S
(1)
j S

(2)
j S

(3)
j S

(B)
j

U
(B)
j

U
(1)
j U

(2)
j U

(3)
j

X
(1)
j X

(2)
j X

(3)
j X

(B)
j X

(B+1)
jX

(4)
j

Y
(1)
j Y

(2)
j Y

(3)
j Y

(B)
j Y

(B+1)
j

…

Y
(B−1)
j

Superposition Coding Adaptive Channel CodingHybrid Analog/Digital Coding

(a) The encoding process of terminal j, where each node represents a block of variables
and each node is a function of other nodes specified by the incoming edges.

b = 1 b = 2 b = 3 b = B + 1b = B…

…

(Ŝ
(1)
1 , Ŝ

(1)
2 ) (Ŝ

(2)
1 , Ŝ

(2)
2 ) … (Ŝ

(B)
1 , Ŝ

(B)
2 )

Sliding-Window Decoder
with Window Size 2 Blocks

(b) The block diagram for sliding-window decoding.

Figure 5.3: An illustration of the proposed JSCC method.

For 1 ≤ b ≤ B, let S
(b)
j = (S

(b)
j,1 , S

(b)
j,2 , . . . , S

(b)
j,K) denote the bth source message block
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at terminal j; the same indexing convention applies to other variables. As shown in

Fig. 5.3(a),3 the encoding involves hybrid analog/digital coding, superposition coding,

and adaptive channel coding. In the bth transmission block, terminal j first encodes

its source message S
(b)
j into the digital codeword U

(b)
j . The codeword U

(b)
j not only

plays the role of source compression but also data protection. Then, the current in-

formation (S
(b)
j ,U

(b)
j ) and the prior information (S

(b−1)
j ,U

(b−1)
j ) and (X

(b−1)
j ,Y

(b−1)
j )

are combined to generate the channel input X
(b)
j .

To reconstruct source messages, we employ a sliding-window decoder as depicted

in Fig. 5.3(b). The decoder is designed to operate on two consecutive transmission

blocks, but each time it only decodes the earlier source block. For 2 ≤ b ≤ B + 1,

suppose that the decoding window is now across the (b−1)st and the bth transmission

blocks. Given that terminal j has successfully recovered U
(b′)
j′ and reconstructed S

(b′)
j′

for all b′ < b−1, the decoder uses all available information in the (b−1)st and the bth

blocks to recover U
(b−1)
j′ and reconstructs S

(b−1)
j′ as Ŝ

(b−1)
j′ via Gj. Then, the decoder

moves to the bth and the (b+ 1)st blocks to reconstruct S
(b)
j′ .

With the above sketch, the left-hand-side and the right-hand-side of (5.8) can

be interpreted as source compression rates and as transmission rates for reliable

communication, respectively. Moreover, the appearance of (S̃j, Ũj) (rather than

(Sj, Uj)) on the left-hand-side of (5.8) is due to the sliding-window decoder. The

tuple (Sj, Uj, S̃j, Ũj, W̃j, Xj, Yj) on the right-hand-side of (5.8) also illuminates the

fact that the decoder at terminal j uses all information within two blocks to decode

3To simplify the presentation of our encoding scheme, we write S
(b−1)
j ,U

(b−1)
j , and

(X
(b−1)
j ,Y

(b−1)
j ) in lieu of S̃

(b)
j , Ũ

(b)
j , and W̃

(b)
j , respectively, to refer to the prior information

variables of the bth block, for 2 ≤ b ≤ B+1. Later, when presenting our decoder, we also use Ŝ
(b−1)
j

(resp., Û
(b−1)
j ) rather than ˆ̃S

(b)
j (resp., ˆ̃U

(b)
j ) to denote the reconstruction of S̃

(b)
j (resp., Ũ

(b)
j ).
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Ũj′ . Now, we present the detailed proof of Theorem 5.1 as follows.

Proof: For the sake of brevity, the complete proof is presented using several auxiliary

claims whose proofs are given in Appendix C.1. Let T (n)
ε denote the typical set of

sequences with parameters n ∈ Z+ and ε > 0 as defined in [47]; the domain of T (n)
ε

will be clear from the context and hence omitted. Here, we set n = N = K as we

consider the rate-one transmission. For j = 1, 2 and b = 1, 2, · · · , B, we define 2nR
(b)
j

as the size of terminal j’s codebook C(b)
j , which is used to encode the bth block S

(b)
j

of source messages. For an event E , we let E denote its complement.

Codebook Generation: Given a configuration in ΠZ(D1, D2), generate two length-n

sequences (S̃
(1)
1 , S̃

(1)
2 , Ũ

(1)
1 , Ũ

(1)
2 , W̃

(1)
1 , W̃

(1)
2 ) and (S

(B+1)
1 ,S

(B+1)
2 ,U

(B+1)
1 ,U

(B+1)
2 ) to

initialize and terminate the (B + 1)-blocks encoding process with distributions

P
S̃

(1)
1 ,S̃

(1)
2 ,Ũ

(1)
1 ,Ũ

(1)
2 ,W̃

(1)
1 ,W̃

(1)
2

(s̃
(1)
1 , s̃

(1)
2 , ũ

(1)
1 , ũ

(1)
2 , w̃

(1)
1 , w̃

(1)
2 )

=
n∏
i=1

PS̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2
(s̃

(1)
1,i , s̃

(1)
2,i , ũ

(1)
1,i , ũ

(1)
2,i , w̃

(1)
1,i , w̃

(1)
2,i ) (5.9)

and

P
S

(B+1)
1 ,S

(B+1)
2 ,U

(B+1)
1 ,U

(B+1)
2

(s
(B+1)
1 , s

(B+1)
2 ,u

(B+1)
1 ,u

(B+1)
2 )

=
n∏
i=1

PS1,S2,U1,U2(s
(B+1)
1,i , s

(B+1)
2,i , u

(B+1)
1,i , u

(B+1)
2,i ). (5.10)

Moreover, generate codebooks C(b)
j , {U (b)

j (m
(b)
j ) : m

(b)
j = 1, 2, . . . , 2nR

(b)
j } for b =

1, 2, . . . , B and j = 1, 2, where U
(b)
j (m

(b)
j ) is a length-n sequence distributed according

to PUj(u
(b)
j (m

(b)
j )) =

∏n
i=1 PUj(u

(b)
j,i (m

(b)
j )) and U

(b)
j (m

(b)
j )’s are independent of each

other. The initialization and termination sequences and all codebooks are revealed

to both terminals. We note that due to the construction of the Markov chain {Z(t)},
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the codebook C(b)
j is also used for Ũ

(b+1)
j .

Encoding : Let ε1 > ε > 0. For b = 1, 2, . . . , B and j = 1, 2, terminal j finds m
(b)
j such

that (S
(b)
j ,U(m

(b)
j )) ∈ T (n)

ε1 . If there is more than one such index, the encoder chooses

one of them at random. If there is no such index, it chooses an index at random from

{1, 2, . . . , 2nR
(b)
j }. The transmitter then sends X

(b)
j , where

X
(b)
j,i = Fj(S

(b)
j,i , U

(b)
j,i (m

(b)
j ), S̃

(b)
j,i , Ũ

(b)
j,i , W̃

(b)
j,i )

for i = 1, 2, . . . , n, S̃
(b)
j,i = S

(b−1)
j,i , Ũ

(b)
j,i = U

(b−1)
j,i , and W̃

(b)
j,i = (X

(b−1)
j,i , Y

(b−1)
j,i ) for

b = 2, 3, . . . , B. For b = B + 1, X(B+1) is generated in the same way using the

termination sequence.

Decoding : For b = 2, 3, . . . , B + 1 and j, j′ = 1, 2 with j 6= j′, terminal j finds an

index m̂
(b−1)
j′ such that

(S
(b)
j ,U

(b)
j , S̃

(b)
j , Ũ

(b)
j , Ũ

(b)
j′ (m̂

(b−1)
j′ ), W̃

(b)
j ,X

(b)
j ,Y

(b)
j ) ∈ T (n)

ε ,

where Ũ
(b)
j′ (m̂

(b−1)
j′ ) ∈ C(b−1)

j′ . If there is more than one choice, the decoder chooses

one of them at random. If there is no such index, it chooses one at random from

{1, 2, . . . , 2nR
(b)

j ′ }. The reconstruction for the source message S
(b−1)
j′ is given by

Ŝ
(b−1)
j′,i = Gj(Ũ

(b)
j′,i(m̂

(b−1)
j′ ), S

(b)
j,i , U

(b)
j,i , S̃

(b)
j,i , Ũ

(b)
j,i , W̃

(b)
j,i , Y

(b)
j,i )

for i = 1, 2, . . . , n.

Performance Analysis : Let M
(b)
j and M̂

(b)
j denote the random encoded and decoded

indices for S
(b)
j . We first define the following events for terminal 1.
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E (1)
1 , {(S(1)

1 ,S
(1)
2 ,U

(1)
1 (M

(1)
1 ),U

(1)
2 (M

(1)
2 ), S̃

(1)
1 , S̃

(1)
2 ,

Ũ
(1)
1 , Ũ

(1)
2 , W̃

(1)
1 , W̃

(1)
2 ,X

(1)
1 ,X

(1)
2 ,Y

(1)
1 ,Y

(1)
2 ) /∈ T (n)

ε }. (5.11a)

E (B+1)
1 , {(S(B+1)

1 ,S
(B+1)
2 ,U

(B+1)
1 ,U

(B+1)
2 , S̃

(B+1)
1 , S̃

(B+1)
2 , Ũ

(B+1)
1 (M̂

(B)
1 ), Ũ

(B+1)
2 (M

(B)
2 ),

W̃
(B+1)
1 , W̃

(B+1)
2 ,X

(B+1)
1 ,X

(B+1)
2 ,Y

(B+1)
1 ,Y

(B+1)
2 ) /∈ T (n)

ε }. (5.11b)

E (b)
1 , {(S

(b)
1 ,S

(b)
2 ,U

(b)
1 (M

(b)
1 ),U

(b)
2 (M

(b)
2 ), S̃

(b)
1 , S̃

(b)
2 , Ũ

(b)
1 (M̂

(b−1)
1 ), Ũ

(b)
2 (M

(b−1)
2 ),

W̃
(b)
1 , W̃

(b)
2 ,X

(b)
1 ,X

(b)
2 ,Y

(b)
1 ,Y

(b)
2 ) /∈ T (n)

ε }, (5.11c)

where b = 2, 3, . . . , B.

We analogously define the events E (b)
2 for terminal 2 (not shown here) and consider

the error event E = ∪B+1
b=1 E

(b)
1 ∪ E (b)

2 . The expected distortion of terminal j’s source

reconstruction (averaged with respect to all codebooks, source messages, channel

inputs, and channel outputs) can be bounded by

1

B

B∑
b=1

E[dj(S
(b)
j , Ŝ

(b)
j )] ≤ Pr(E)dj,max +

1

B

B∑
b=1

Pr
(
E
)
E[dj(S

(b)
j , Ŝ

(b)
j )|E ] (5.12)

≤ Pr(E)dj,max +
1

B

B∑
b=1

(1 + ε)E[dj(S
(b)
j , Ŝ

(b)
j )] (5.13)

= Pr(E)dj,max + (1 + ε)E[dj(Sj, Ŝj)] (5.14)

≤ Pr(E)dj,max + (1 + ε)Dj, (5.15)

where (5.12) follows from E[dj(S
(b)
j , Ŝ

(b)
j )|E ] ≤ dj,max with dj,max , maxsj ,ŝj dj(sj, ŝj),

(5.13) is due to the typical average lemma [47], (5.14) follows from the stationarity

of the Markov chain, and the last inequality holds by assumption.

If we can further show that Pr
(
E
)
→ 0 and the joint source-channel coding rate

goes to one as both n and B go to infinity, then the distortion pair ((1+ε)D1, (1+ε)D2)
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is achievable. Note that it suffices to show that Pr
(
E (1)
j

)
→ 0 and Pr

(
E (b)
j ∩E

(b−1)

j

)
→

0 for all j = 1, 2 and b = 2, 3, . . . , B + 1 since by the identity

B⋃
b=1

E (b)
j = E (1)

j ∪
(

B⋃
b=2

E (b)
j ∩ E

(b−1)

j

)
,

we have

Pr(E) ≤ Pr
(
E (1)

1

)
+ Pr

(
E (1)

2

)
+

B+1∑
b=2

(
Pr
(
E (b)

1 ∩ E
(b−1)

1

)
+ Pr

(
E (b)

2 ∩ E
(b−1)

2

))
.

Due to symmetry, we only analyze Pr
(
E (1)

1

)
and Pr

(
E (b)

1 ∩ E
(b−1)

1

)
. For j = 1, 2

and b = 1, 2, . . . , B + 1, we first define

F (b)
j = {(S(b)

j ,U
(b)
j (m

(b)
j )) /∈ T (n)

ε1
for all m

(b)
j },

F (b)
3 = {(S(b)

1 ,S
(b)
2 ,U

(b)
1 (M

(b)
1 ),U

(b)
2 (M

(b)
2 ), S̃

(b)
1 , S̃

(b)
2 ,

Ũ
(b)
1 (M

(b−1)
1 ), Ũ

(b)
2 (M

(b−1)
2 ), W̃

(b)
1 , W̃

(b)
2 X

(b)
1 ,X

(b)
2 ,Y

(b)
1 ,Y

(b)
2 ) /∈ T (n)

ε },

F (b)
4 = {∃ m̂(b−1)

1 6= M
(b−1)
1 s.t. (S

(b)
2 ,U

(b)
2 (M

(b)
2 ), S̃

(b)
2 ,

Ũ
(b)
1 (m̂

(b−1)
1 ), Ũ

(b)
2 (M

(b−1)
2 ), W̃

(b)
2 ,X

(b)
2 ,Y

(b)
2 ) ∈ T (n)

ε },

with the exception that F (1)
3 , E (1)

1 and F (B+1)
3 , E (B+1)

1 due to the initialization

and termination phases of the encoding process. We will use the following results to

obtain (5.8a); detailed proofs of the claims are given in Appendix C.1.

Claim 1: For b = 2, 3, . . . , B + 1, the event F (b)

3 ∩ F
(b)

4 implies that M̂
(b−1)
1 = M

(b−1)
1 .

Claim 2: E (1)
1 ⊆ F (1)

1 ∪ F (1)
2 ∪ (F (1)

1 ∩ F
(1)

2 ∩ E (1)
1 )

Claim 3: The inclusion E (b)
1 ∩E

(b−1)

1 ⊆ F (b)
1 ∪F (b)

2 ∪ (F (1)

1 ∩F
(1)

2 ∩F (b)
3 ∩E

(b−1)

1 )∪F (b)
4

holds for b = 2, 3, . . . , B.

Claim 4: E (B+1)
1 ∩ E (B)

1 ⊆ (F (B+1)
3 ∩ E (B)

1 ) ∪ F (B+1)
4
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Claim 5: If R
(1)
j > I(Sj;Uj) + δ1(ε1), then limn→∞ Pr

(
E (1)
j

)
= 0.

Claim 6: If R
(B)
1 < I(Ũ1;S2, U2, S̃2, Ũ2, W̃2, X2, Y2) − δ(ε), then limn→∞ Pr

(
E (B+1)

1 ∩

E (B)

1

)
= 0.

Claim 7: For b = 2, 3, . . . , B, if R
(b)
j > I(Sj;Uj) + δ1(ε1) and R

(b−1)
1 < I(Ũ1;S2, U2, S̃2,

Ũ2, W̃2, X2, Y2)− δ(ε), then limn→∞ Pr
(
E (b)

1 ∩ E
(b−1)

1

)
= 0.

The non-negative quantities δ1(ε1) and δ(ε) above arise from the standard typical-

ity arguments and limε1→0 δ1(ε1) = 0 and limε→0 δ(ε) = 0. Swapping the role of termi-

nals 1 and 2, we obtain that limn→∞ Pr
(
E (1)

2

)
= 0 and that limn→∞ Pr

(
E (b)

2 ∩E
(b−1)

2

)
=

0 for b = 2, 3, . . . , B + 1 provided that R
(b)
j > I(Sj;Uj) + δ1(ε1) for j = 1, 2 and b =

1, 2, . . . , B and R
(b−1)
2 < I(Ũ2;S1, U1, S̃1, Ũ1, W̃1, X1, Y1)− δ(ε) for b = 2, 3, . . . , B + 1.

Combining all conditions above then gives the two inequalities in (5.8). To complete

the proof, we first increase B so that the JSCC rate B/(B+ 1) is close to one. Fixing

this choice of B, we next make n sufficiently large to ensure that all joint typicality

requirements behind Claims 5-7 (and similar claims for terminal 2) are satisfied. As

now we have limn→∞ Pr(E)=0 (provided that all conditions hold) and ε is arbitrary,

the distortion pair (D1, D2) is achievable.

In the next section, we simplify the expressions in (5.8) by imposing some encoding

constraints. Examples illustrating the main theorem will be given in Section 5.5.

5.3 Simplified Configurations and Special Cases

In this section, we consider two simplified forms of encoding to derive special cases

from Theorem 5.1. Our objective is not only to obtain simpler achievability condi-

tions but also to recover existing forward coding theorems for our problem setup.
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By-products of the derivation are reduced-complexity coding schemes in those spe-

cial cases. As we will see later in Section 5.4.2, the reduced-complexity schemes in

the special cases are sometimes optimal in the sense that the associated achievable

distortion region matches a certain outer bound; i.e., the scheme provides a complete

JSCC theorem. In such a case, optimal performance can be achieved by a less com-

plex coding scheme. To ease our presentation, we will not refer to the probability

distributions PS1,S2 and PY1,Y2|X1,X2 in the following result statements as they are fixed

and given by the problem setup. Also, we continue to focus on the rate-one case.

5.3.1 A Non-Adaptive JSCC Scheme

Our first simplification disables the superposition and adaptive coding compo-

nents, i.e., we let Xj = Fj(Sj, Uj, S̃j, Ũj, W̃j) , fj(S̃j, Ũj) and ˆ̃Sj′ = Gj(Ũj′ , Sj, Uj, S̃j,

Ũj, W̃j, Yj) , gj(Ũj′ , S̃j, Ũj, Yj) for some fj and gj, j = 1, 2. Set PS̃1,S̃2
= PS1,S2 , and

set PŨj |S̃j = PUj |Sj for a chosen PUj |Sj , j = 1, 2, so that (5.6) and (5.7) holds. We also

set the pair (W̃1, W̃2) to be independent of (S1, S2, U1, U2, S̃1, S̃2, Ũ1, Ũ2, X1, X2, Y1, Y2)

with joint probability distribution given by

PW̃1,W̃2
(w̃1, w̃2) =

∑
a1∈S1,a2∈S2,b1∈U1,b2∈U2

PS̃1,S̃2
(a1, a2)PŨ1|S̃1

(b1|a1)PŨ2|S̃2
(b2|a2)

·1{x̃1 = f1(a1, b1)}1{x̃2 = f2(a2, b2)}PY1,Y2|X1,X2(ỹ1, ỹ2|x̃1, x̃2).(5.16)

With the above setting, one can directly verify that

PZ = PS1,S2PU1|S1PU2|S2PS̃1,S̃2
PŨ1|S̃1

PŨ2|S̃2
PW̃1,W̃2

PX1|S̃1,Ũ1
PX2|S̃2,Ũ2

PY1,Y2|X1,X2 (5.17)
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is a stationary distribution, i.e., PZ = QZPZ . Given such PZ , suppose that the chosen

gj attains distortion level Dj, j = 1, 2, so that

(PU1|S1 , PU2|S2 , PS̃1,S̃2,Ũ1,Ũ2
, PW̃1,W̃2

, f1, f2, g1, g2) ∈ ΠZ(D1, D2).

For simplicity, we define the set Π′Z(D1, D2) ⊂ ΠZ(D1, D2) as the one that contains all

such special configurations. Using Π′Z(D1, D2), Theorem 5.1 reduces to the following

corollary.

Corollary 5.1 (Non-Adaptive Hybrid Coding). A distortion pair (D1, D2) is achiev-

able for the rate-one lossy transmission of correlated sources over a DM-TWC if there

exists a configuration in Π′Z(D1, D2) such that

I(S̃1; Ũ1|S̃2, Ũ2) < I(Ũ1;Y2|S̃2, Ũ2), (5.18a)

I(S̃2; Ũ2|S̃1, Ũ1) < I(Ũ2;Y1|S̃1, Ũ1). (5.18b)

Proof: Since Ũj′ is independent of (Sj, Uj) and by definition W̃j is independent of

(S̃j′ , Sj, Uj, S̃j, Ũj, Xj, Yj) for j = 1, 2, we can remove (Sj, Uj, W̃j) from (5.8) without

changing the values on the right-hand-side of (5.8), e.g.,

I(Ũ1;S2, U2, S̃2, Ũ2, W̃2, X2, Y2) = I(Ũ1; S̃2, Ũ2, X2, Y2)+I(Ũ1;S2, U2, W̃2|S̃2, Ũ2, X2, Y2)︸ ︷︷ ︸
=0

.

For (5.8a), we then have that

I(S̃1; Ũ1) < I(Ũ1; S̃2, Ũ2, X2, Y2)

⇔ H(Ũ1)−H(Ũ1|S̃1) < I(Ũ1; S̃2, Ũ2) + I(Ũ1;X2, Y2|S̃2, Ũ2)

⇔ H(Ũ1)−H(Ũ1|S̃1, S̃2, Ũ2) < H(Ũ1)−H(Ũ1|S̃2, Ũ2) + I(Ũ1;X2, Y2|S̃2, Ũ2)
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⇔ H(Ũ1|S̃2, Ũ2)−H(Ũ1|S̃1, S̃2, Ũ2) < I(Ũ1;X2|S̃2, Ũ2)︸ ︷︷ ︸
=0

+ I(Ũ1;Y2|X2, S̃2, Ũ2)︸ ︷︷ ︸
=I(Ũ1;Y2|S̃2,Ũ2)

(5.19)

⇔ I(S̃1; Ũ1|S̃2, Ũ2) < I(Ũ1;Y2|S̃2, Ũ2),

where the two equalities in (5.19) hold since X2 = f2(S̃2, Ũ2). By symmetry, one can

analogously deduce (5.18b) from (5.8b).

We remark that Corollary 5.1 further subsumes several special cases. In the

following derivations, we will show that our chosen parameters form a configuration

in Π′Z(D1, D2). As PW̃1,W̃2
can be determined via (5.16) given other parameters, we

will not specify PW̃1,W̃2
for the sake of simplicity.

(i) Uncoded transmission scheme: Strictly speaking, the achievability result of

an uncoded scheme cannot be deduced from Corollary 5.1 since the conditions

in (5.18) have no impact on the scheme’s performance. Nevertheless, we still

can view it as a special case since every uncoded scheme can be converted into a

configuration in our setup, which implies that our coding scheme (used to prove

Theorem 5.1) can emulate uncoded transmission and attains the same distortion

levels. Specifically, let Xj = Sj, j = 1, 2. Given encoding functions f̃j and

decoding functions g̃j of an uncoded scheme such that E[dj(S̃j,
ˆ̃Sj)] ≤ Dj, we

set Xj = fj(Ũj, S̃j) = f̃j(S̃j) and ˆ̃Sj = gj′(Ũj, S̃j′ , Ũj′ , Yj′) = g̃j′(S̃j′ , Yj′). Also,

set PS̃1,S̃1
= PS1,S2 and Uj = Ũj = constant. This setting determines PUj |Sj

and PŨj |S̃j uniquely and satisfies (5.6) and (5.7). We further obtain PW̃1,W̃2

via (5.16). Clearly, the configuration (PU1|S1 , PU2|S2 , PS̃1,S̃2,Ũ1,Ũ2
, PW̃1,W̃2

, f̃1, f̃2,

g̃1, g̃2) belongs to Π′Z(D1, D2). Thus, one can establish the achievability result

of uncoded transmission in our setup by giving appropriate functions f̃j and g̃j.
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(ii) SSCC for the lossy transmission of independent sources: To satisfy

(5.6), we let PS1,S2 = PS̃1,S̃2
= PS1PS2 . Define two independent random variables

V1 ∈ X1 and V2 ∈ X2, whose joint probability distribution PV1PV2 achieves the

rate pair (I(V1;Y2|V2), I(V2;Y1|V1)) in Shannon’s capacity inner bound. For j =

1, 2, we let Ŝj denote the reconstruction variable in the standard RD function

of Sj in (5.1) and choose PŜj |Sj that attains R(j)(Dj). Also, we define (V ′1 , V
′

2) ∈

X1×X2 with PV ′1PV ′2 = PV1PV2 and define Ŝ ′j ∈ Ŝj as the reconstruction variable

in the standard RD function of S̃j at distortion level Dj, i.e., we set PŜ′j |S̃j
=

PŜj |Sj . For j = 1, 2, let Uj , (Vj, Ŝj) and Ũj , (V ′j , Ŝ
′
j) and set PUj |Sj =

PVjPŜj |Sj and PŨj |S̃j = PV ′jPŜ′j |S̃j
. Clearly, the necessary condition in (5.7) is

satisfied. Moreover, set

Xj = fj(Ũj, S̃j) = fj((V
′
j , Ŝ

′
j), S̃j) = V ′j

and choose the decoding function gj as

ˆ̃Sj′ = gj(Ũj′ , Ũj, S̃j, Ỹj) = gj((V
′
j′ , Ŝ

′
j′), (V

′
j , Ŝ

′
j), S̃j, Ỹj) = Ŝ ′j′ ,

which yields E[dj(S̃j,
ˆ̃Sj)] ≤ Dj for j = 1, 2. The above construction ensures

that the tuple

(PV1PŜ1|S1︸ ︷︷ ︸
=PU1|S1

, PV2PŜ2|S2︸ ︷︷ ︸
=PU2|S2

, PS̃1
PS̃2

PV ′1PŜ′1|S̃1
PV ′2PŜ′2|S̃2︸ ︷︷ ︸

=PS̃1,S̃2,Ũ1,Ũ2

, PW̃1,W̃2
, f1, f2, g1, g2)

is a configuration in Π′Z(D1, D2). Next, using the fact that S1 and S2 are

independent, one can simplify the sufficient conditions in (5.18) as follows (the
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details are given in Appendix C.2):

R(1)(D1) < I(X1;Y2|X2)

R(2)(D2) < I(X1;Y1|X2)

which is the achievability result for the SSCC scheme based on the stan-

dard lossy source coding and Shannon’s random channel coding (without time-

sharing).

(iii) SSCC for the lossy transmission of correlated sources: For j = 1, 2,

we define pairs (V1, V2) ∈ X1 × X2 and (V ′1 , V
′

2) ∈ X1 × X2 in the same way

as in the special case (ii); set the two pairs to have identical distributions,

i.e., PV1PV2 = PV ′1PV ′2 . Letting Tj ∈ Tj denote the auxiliary random variable

in the WZ RD function of Sj in (5.2), we choose PTj |Sj and the associated

decoding function hj′(Tj, Sj′) that achieves R
(j)
WZ(Dj). Similarly, we use T ′j ∈ Tj

in the WZ RD function of S̃j and set PT ′j |S̃j = PTj |Sj . Letting Uj , (Vj, Tj)

and Ũj , (V ′j , T
′
j), we set PUj |Sj = PVjPTj |Sj and PŨj |S̃j = PV ′jPT ′j |S̃j . Also,

set PS̃1,S̃2
= PS1,S2 . Thus, (5.6) and (5.7) are satisfied. Moreover, we set the

encoding and decoding functions as

Xj = fj(Ũj, S̃j) = fj((V
′
j , T

′
j), S̃j) = V ′j

and

ˆ̃Sj = gj′(Ũj, Ũj′ , S̃j′ , Ỹj′) = gj′((V
′
j , T

′
j), (V

′
j′ , T

′
j′), S̃j′ , Ỹj′) = hj′(T

′
j , S̃j′),

such that the decoder satisfies E[dj(S̃j,
ˆ̃Sj)] ≤ Dj for j = 1, 2. With the above

specifications, we next apply (5.16) to obtain PW̃1,W̃2
, yielding the following
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configuration in Π′Z(D1, D2):

(PV1PT1|S1︸ ︷︷ ︸
=PU1|S1

, PV2PT2|S2︸ ︷︷ ︸
=PU2|S2

, PS̃1,S̃2
PV ′1PT ′1|S̃1

PV ′2PT ′2|S̃2︸ ︷︷ ︸
=PS̃1,S̃2,Ũ1,Ũ2

, PW̃1,W̃1
, f1, f2, h1, h2).

Furthermore, using the Markov chain relationship: T ′1 (−− S̃1 (−− S̃2 (−− T ′2

and the memoryless property of the channel, one can easily deduce the following

two inequalities from (5.18):

R
(1)
WZ(D1) < I(X1;Y2|X2)

R
(2)
WZ(D2) < I(X2;Y1|X1)

which is the achievability result for the SSCC scheme based on the WZ lossy

source coding and Shannon’s random channel coding (without time-sharing)

[90]. As the derivation is very similar to the previous case (see Appendix C.2),

we omit the details.

(iv) Correlation-preserving coding scheme for (almost) lossless transmis-

sion of correlated sources [76]: Suppose that Sj = Ŝj and consider the

Hamming distortion measure [47, Sec. 3.6]. We first set PS̃1,S̃2
= PS1,S2 to

meet the necessary condition in (5.6). Recall the definitions of (V1, V2) and

(V ′1 , V
′

2) in the special case (ii) with PV1PV2 = PV ′1PV ′2 , which achieve the same

rate pair (I(V1;Y2|V2), I(V2;Y1|V1)) in Shannon’s capacity inner bound. More-

over, we recall the variables (Ŝ1, Ŝ2) and (Ŝ ′1, Ŝ
′
2) from the special case (ii), but

here we choose PŜj |Sj to achieve R(j)(0) in (5.1) and set PŜ′j |S̃j
= PŜj |Sj for

j = 1, 2. Let Uj , (Vj, Ŝj) and Ũj , (V ′j , Ŝ
′
j), and set PUj |Sj = PVjPŜj |Sj and

PŨj |S̃j = PV ′jPŜ′j |S̃j
. The setting satisfies the condition in (5.7). We next consider
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the following encoding and decoding functions:

Xj = fj(Ũj, S̃j) = fj((V
′
j , Ŝ

′
j), S̃j) = V ′j

and

ˆ̃Sj′ = gj(Ũj′ , Ũj, S̃j, Yj) = gj((V
′
j′ , Ŝ

′
j′), (V

′
j , Ŝ

′
j), S̃j, Ỹj) = Ŝ ′j′ .

Using (5.16) to obtain PW̃1,W̃2
, we ensure that the resulting configuration belongs

to Π′Z(0, 0). Furthermore, one can easily show that the sufficient conditions in

(5.18) become

R(1)(0) = H(S̃1|S̃2) < I(V ′1 ;Y2|V ′2 , S̃2) = I(X1;Y2|X2, S̃2)

R(2)(0) = H(S̃2|S̃1) < I(V ′2 ;Y1|V ′1 , S̃1) = I(X2;Y1|X1, S̃1)

which recover the achievability conditions in [76, Cor. 8.1] (the rate-one case

without coded time-sharing). Note that the block error rate for reconstructing

the source messages is asymptotically vanishing here since the above conditions

imply that limK→∞ Pr
(
E
)

= 0 (see the proof of Theorem 5.1 for the definition

of the error event E) and hence limK→∞ Pr
(
(S̃Kj ,

ˆ̃SKj ) ∈ T (K)
ε

)
= 1 for j = 1, 2,

where T (K)
ε denotes the jointly typical set with parameters K and ε as defined

in [47]. This result implies that limK→∞ Pr
(
{S̃K1 6= ˆ̃SK1 } ∪ {S̃K2 6= ˆ̃SK2 }

)
= 0.

In fact, since superposition coding is disabled in this simplified scheme, it is un-

necessary to use the sliding window decoder. The decoding of each new source block

can be done within the same transmission block. The block diagram of such cod-

ing system is depicted in Fig. 5.4 with the following system operations. The source

messages SKj are first mapped to a digital codeword UK
j (Mj) with index Mj. The
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Figure 5.4: Rate-one non-adaptive hybrid coding scheme for the transmission of cor-
related sources over DM-TWCs.

channel inputs XK
j are then generated via the symbol-by-symbol map f̃j, which com-

bines the digital information UK
j (M1) with the raw (or analog) information SKj . Upon

receiving Y K
j , terminal j estimates the codeword index Mj′ based on all available in-

formation. Finally, the decoded codeword Uj′(M̂j′) and source message SKj are passed

together through the symbol-by-symbol map g̃j to produce ŜKj′ . The performance of

this specific coding system is analyzed in [92]. The sufficient conditions in the achiev-

ability result are identical to those in (5.18) except that (S̃1, S̃2, Ũ1, Ũ2) are replaced

with (S1, S2, U1, U2). We remark that one can also employ the unified coding re-

sults in [107] to obtain these conditions since the coded system in Fig. 5.4 involves

block-wise operations without adaptation.

5.3.2 An SSCC Scheme with Adaptive Channel Coding

In the second simplification, we disable superposition coding for the raw source

messages; i.e., we let Xj = Fj(Sj, Uj, S̃j, Ũj, W̃j) , fj(Uj, Ũj, W̃j) and ˆ̃Sj′ = Gj(Ũj′ ,

Sj, Uj, S̃j, Ũj, W̃j, Yj) , gj(Ũj′ , S̃j) for some fj and gj, j = 1, 2. Set PS̃1,S̃2
= PS1,S2

to satisfy (5.6). Let Vj, Ṽj, and W̃j be the auxiliary random variables used in

Han’s result [28] and let γj : Vj × Ṽj × W̃j → Xj denote the encoding func-

tion of terminal j. Here, we choose PV1,V2,Ṽ1,Ṽ2,W̃1,W̃2
and γj that achieves the rate
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pair (I(Ṽ1;X2, Y2, Ṽ2, W̃2), I(Ṽ2;X1, Y1, Ṽ1, W̃1)) in Han’s channel coding inner bound.

Note that in Han’s result, PV1,V2,Ṽ1,Ṽ2,W̃1,W̃2
= PV1PV2PṼ1PṼ2PW̃1,W̃2|Ṽ1,Ṽ2 and PṼj = PVj ,

j = 1, 2.

Moreover, recall in (5.2) the auxiliary random variable Tj in the WZ-RD function

for Sj, j = 1, 2; we choose PTj |Sj and the associated decoding function hj′ that

attains R
(j)
WZ(Dj). We also define its counterpart T̃j for S̃j and set PT̃j |S̃j = PTj |Sj

for j = 1, 2. Let Uj , (Vj, Tj) and Ũj , (Ṽj, T̃j) and set PUj |Sj = PVjPTj |Sj and

PŨj |S̃j = PṼjPT̃j |S̃j , which satisfy (5.7). Next, we consider the following encoding

and decoding functions: fj(Uj, Ũj, W̃j) = γj(Vj, Ṽj, W̃j) and gj(Ũj′ , S̃j) = hj(T̃j′ , S̃j),

which ensures that E[dj(S̃j,
ˆ̃Sj)] ≤ Dj for j = 1, 2. Under the above setting, the joint

probability distribution of all involved random variables is then given by

PZ = PS1,S2 PV1PT1|S1︸ ︷︷ ︸
=PU1|S1

PV2PT2|S2︸ ︷︷ ︸
=PU2|S2

PS̃1,S̃2
PṼ1PT̃1|S̃1︸ ︷︷ ︸

=PŨ1|S̃1

PṼ2PT̃2|S̃2︸ ︷︷ ︸
=PŨ2|S̃2

PW̃1,W̃2|Ṽ1,Ṽ2︸ ︷︷ ︸
=PW̃1,W̃2|S̃1,S̃2,Ũ1,Ũ2

·PX1|V1,Ṽ1,W̃1
PX2|V2,Ṽ2,W̃2

PY1,Y2|X1,X2 , (5.23)

where PW̃1,W̃2|Ṽ1,Ṽ2 is specified by Han’s result [28] and PXj |Vj ,Ṽj ,W̃j
is determined by

γj, j = 1, 2. It can be shown (by definition) that PZ = PZQZ , thus implying that

(PV1PT1|S1 , PV2PT2|S2 , PS̃1,S̃2
PṼ1PT̃1|S̃1

PṼ2PT̃2|S̃2
, PW̃1,W̃2|Ṽ1,Ṽ2 , γ1, γ2, h1, h2) ∈ ΠZ(D1, D2).

Letting Π
′′
Z(D1, D2) ⊆ ΠZ(D1, D2) denote the set of all such special configurations,

we obtain the following corollary from Theorem 5.1.

Corollary 5.2 (SSCC with WZ Source Coding and Han’s Adaptive Channel Cod-

ing). A distortion pair (D1, D2) is achievable for the rate-one lossy transmission of

correlated sources over a DM-TWC if there exists a configuration in Π
′′
Z(D1, D2) such
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that

R
(1)
WZ(D1) < I(Ṽ1;X2, Y2, Ṽ2, W̃2), (5.24a)

R
(2)
WZ(D2) < I(Ṽ2;X1, Y1, Ṽ1, W̃1). (5.24b)

Proof: For any configuration in Π′′Z(D1, D2), the associated stationary distribu-

tion PZ can be factorized into the product form in (5.23). In addition to the

independence between (S1, S2, U1, U2) and (S̃1, S̃2, Ũ1, Ũ2, W̃1, W̃2), the quadruple

(S̃1, S̃2, T̃1, T̃2) is independent of (Ṽ1, Ṽ2). These facts imply the independence be-

tween Ṽj and (Sj′ , Vj′ , S̃j′ , T̃j′). Moreover, we have the following Markov chain re-

lationships: T1 (−− S1 (−− S2 (−− T2, T̃1 (−− S̃1 (−− S̃2 (−− T̃2, and

T̃j (−− (Ṽj, Sj′ , Uj′ , S̃j′ , T̃j′) (−− (Ṽj′ , W̃j′ , Xj′ , Yj′), j = 1, 2. We now show that

(5.8a) reduces to (5.24a):

I(S̃1; Ũ1) < I(Ũ1;S2, U2, S̃2, Ũ2, W̃2, X2, Y2)

⇔ I(S̃1; T̃1) + I(S̃1; Ṽ1|T̃1)︸ ︷︷ ︸
=0

< I(Ũ1;S2, U2)︸ ︷︷ ︸
=0

+I(Ũ1; S̃2, Ṽ2, T̃2, W̃2, X2, Y2|S2, U2)

⇔ I(S̃1; T̃1)− I(Ũ1; S̃2, T̃2|S2, U2) < I(Ũ1; Ṽ2, W̃2, X2, Y2|S2, U2, S̃2, T̃2)

⇔ I(S̃1; T̃1)− I(Ṽ1, T̃1; S̃2, T̃2) < I(Ṽ1, T̃1; Ṽ2, W̃2, X2, Y2|S2, U2, S̃2, T̃2) (5.25)

⇔ I(S̃1; T̃1|S̃2) < I(Ṽ1; Ṽ2, W̃2, X2, Y2) (5.26)

where (5.25) holds since I(Ũ1; S̃2, T̃2|S2, U2) = I(Ũ1; S̃2, T̃2) and Ũj = (Ṽj, T̃j), and we

have the equivalence in (5.26) since

I(S̃1; T̃1)− I(Ṽ1, T̃1; S̃2, T̃2)

= I(S̃1; T̃1)− I(T̃1; S̃2, T̃2)− I(Ṽ1; S̃2, T̃2|T̃1)︸ ︷︷ ︸
=0
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= I(S̃1; T̃1)− I(T̃1; S̃2, T̃2)− I(S̃1; T̃1|S̃2) + I(S̃1; T̃1|S̃2)

= H(T̃1)−H(T̃1|S̃1)−H(T̃1) +H(T̃1|S̃2, T̃2)︸ ︷︷ ︸
=H(T̃1|S̃2)

−H(T̃1|S̃2) +H(T̃1|S̃1, S̃2)︸ ︷︷ ︸
=H(T̃1|S̃1)

+I(S̃1; T̃1|S̃2)

= I(S̃1; T̃1|S̃2),

and

I(Ṽ1, T̃1; Ṽ2, W̃2, X2, Y2|S2, U2, S̃2, T̃2)

= I(Ṽ1; Ṽ2, W̃2, X2, Y2|S2, U2, S̃2, T̃2) + I(T̃1; Ṽ2, W̃2, X2, Y2|S2, U2, S̃2, T̃2, Ṽ1)︸ ︷︷ ︸
=0

= H(Ṽ1|S2, U2, S̃2, T̃2)−H(Ṽ1|S2, U2, S̃2, T̃2, Ṽ2, W̃2, X2, Y2)

= H(Ṽ1)−H(Ṽ1|Ṽ2, W̃2, X2, Y2) (5.27)

= I(Ṽ1; Ṽ2, W̃2, X2, Y2),

where (5.27) holds since Ṽ1 is independent of (S2, V2, S̃2, T̃2) given (Ṽ2, W̃2, X2, Y2).

By symmetry, one can also deduce (5.24b) from (5.8b), thus completing the proof.

We note that by working with super-symbols, we obtain a rate-K/N extension of

Corollary 5.2.

Corollary 5.3 (General Rate SSCC with WZ Source Coding and Han’s Adaptive

Channel Coding). A distortion pair (D1, D2) is achievable for the rate-K/N lossy

transmission of correlated sources over a DM-TWC if

K ·R(1)
WZ(D1) < N · I(Ṽ1;X2, Y2, Ṽ2, W̃2), (5.28a)

K ·R(2)
WZ(D2) < N · I(Ṽ2;X1, Y1, Ṽ1, W̃1), (5.28b)

for some joint probability distribution PṼ1,Ṽ2,W̃1,W̃2,X1,X2
as defined in [28, Section IV].

As Han’s channel coding result subsumes Shannon’s result, the following corollary
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is immediate, which is perhaps the simplest SSCC result for our problem setup.

Corollary 5.4 (General Rate SSCC with WZ Source Coding and Non-Adaptive

Channel Coding). A distortion pair (D1, D2) is achievable for the rate-K/N lossy

transmission of correlated sources over a DM-TWC if

K ·R(1)
WZ(D1) < N · I(X1;Y2|X2), (5.29a)

K ·R(2)
WZ(D2) < N · I(X2;Y1|X1), (5.29b)

for some PX1PX2.

We remark that since our general JSCC scheme (in the proof of Theorem 5.1)

does not consider time-sharing for the sake of simplicity, the channel coding rate pairs

obtained by the convex closure operation in Han’s and Shannon’s inner bound (see

Section 2.1.2) are excluded in Corollary 5.3 and Corollary 5.4, respectively. However,

one can clearly incorporate time-sharing in our coding scheme and Theorem 5.1.

After such convexification operation, one can include any achievable rate pair in

Han’s (resp., Shannon’s) capacity inner bound region on the right-hand-side of (5.28)

(resp., (5.29)). Furthermore, despite the fact that Corollary 5.3 strictly subsumes

Corollary 5.4, the associated achievable distortion regions are identical when DM-

TWCs are symmetric in the sense of Theorem 2.6, 2.7, or 2.8; i.e., when Shannon’s

inner bound is tight. In such situation, the simpler coding scheme of Corollary 5.4 is

preferred.

5.4 Converse Results and Complete JSCC Theorems

The last two sections were devoted to the construction of achievable coding

schemes. In this section, we derive two outer bounds to the achievable distortion
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region. Our objective is not only to identify unattainable distortion pairs but also to

establish complete JSCC theorems.

5.4.1 Two Outer Bounds

Lemmas 5.1 and 5.2 provide two outer bounds. Lemma 5.2 is obtained via a

genie-aided argument where the encoder at terminal j can access the decoder side-

information SKj′ at terminal j′. The proofs are standard and hence omitted. Details

are given in [90] and [92], respectively.

Lemma 5.1. If a rate-K/N JSCC scheme achieves the distortion levels D1 and D2

for the lossy transmission of correlated sources over a DM-TWC, then

K ·R(1)(D1) ≤ K · I(S1;S2) +N · I(X1;Y2|X2), (5.30a)

K ·R(2)(D2) ≤ K · I(S1;S2) +N · I(X2;Y1|X1), (5.30b)

for some PX1,X2.

Lemma 5.2 (Genie-Aided Outer Bound). If a rate-K/N JSCC scheme achieves the

distortion levels D1 and D2 for the lossy transmission of correlated sources over a

DM-TWC, then we have

K ·RS1|S2(D1) ≤ N · I(X1;Y2|X2), (5.31a)

K ·RS2|S1(D2) ≤ N · I(X2;Y1|X1), (5.31b)

for some PX1,X2.

Lemmas 5.1 and 5.2 generally give different outer bounds; however, the regions

are identical for independent sources S1 and S2 since in this case I(S1;S2) = 0 and
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R(j)(Dj) = RSj |Sj′ (Dj). The conditions in (5.30) and (5.31) are also equivalent for

arbitrarily correlated sources for the specific distortion requirement (D1, D2) = (0, 0)

since RSj |Sj′ (0) = R(j)(0)− I(S1;S2) = H(Sj|Sj′).

5.4.2 Complete JSCC Theorems

Matching the achievability results in Section 5.3 with the converse results in Lem-

mas 5.1 and 5.2, we obtain three complete JSCC theorems (Theorems 5.2-5.4). We

also establish a complete theorem (Theorem 5.5) for correlated source pairs that

have common parts. In the results below, a “symmetric DM-TWC” is a DM-TWC

that possesses the symmetry properties defined in Chapter 2. With these properties,

Shannon’s inner bound in (2.2) is tight and hence the capacity region is achieved via

independent inputs. Moreover, taking the convex closure in (2.2) is not needed.

Theorem 5.2 (Lossy Transmission of Indenpendent Sources). For the rate-K/N

lossy transmission of independent sources over a symmetric DM-TWC, a distortion

pair (D1, D2) is achievable if and only if

K ·R(1)(D1) ≤ N · I(X1;Y2|X2),

K ·R(2)(D2) ≤ N · I(X2;Y1|X1),

for some PX1PX2.

Proof: This result is due to the special case (ii) of Corollary 5.1 and Lemma 5.1,

together with the facts that R
(j)
WZ(Dj) = R(j)(Dj) and I(S1;S2) = 0 for independent

sources pair.
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Theorem 5.3 (Almost Lossless Transmission of Correlated Sources). For the rate-

K/N transmission of correlated sources over a symmetric DM-TWC, the almost loss-

less transmission is achievable if and only if

K ·H(S1|S2) ≤ N · I(X1;Y2|X2),

K ·H(S2|S1) ≤ N · I(X2;Y1|X1),

for some PX1PX2.

Proof: In Lemma 5.1, we have that K · R(j)(0) − K · I(S1;S2) = K · H(Sj|Sj′).

Combining this result with the special case (iv) of Corollary 5.1 then completes the

proof.

Theorem 5.4 (Lossy Transmission of Correlated Sources with Equal WZ and Con-

ditional RD Functions). For the rate-K/N lossy transmission of correlated sources

whose WZ-RD functions equal to their conditional RD functions over a symmetric

DM-TWC, a distortion pair (D1, D2) is achievable if and only if

K ·RS1|S2(D1) ≤ N · I(X1;Y2|X2),

K ·RS2|S1(D2) ≤ N · I(X2;Y1|X1),

for some PX1PX2.

Proof: The result follows from the special case (iii) of Corollary 5.1 and Lemma 5.2.

Theorem 5.5 (Lossy Transmission of Correlated Sources with a Common Part).

Assume that correlated sources S1 and S2 have a common part S0 in the sense of

Gács-Körner-Witsenhausen and the triplet (S0, S1, S2) forms a Markov chain S1 (−−
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S0 (−− S2. For the rate-K/N lossy transmission of such correlated sources over a

symmetric DM-TWC, a distortion pair (D1, D2) is achievable if and only if

K ·RS1|S0(D1) ≤ N · I(X1;Y2|X2), (5.32a)

K ·RS2|S0(D2) ≤ N · I(X2;Y1|X1), (5.32b)

for some PX1PX2.

Proof: We construct a two-way coding scheme using two one-way SSCC schemes, one

for each direction of the bi-directional transmission. Specifically, we employ the source

coding scheme that achieves the distortion level Dj of the conditional RD function

R
(j)
Sj |S0

(Dj) given in (5.3), j = 1, 2, followed by Shannon’s one-way channel coding for

data protection. The sufficient conditions for achieving the distortion pair (D1, D2)

as shown in (5.32) are thus immediate. Note that in this two-way coding scheme, we

do not employ time-sharing and the channel inputs X1 and X2 are independent.

To derive outer bound, we let Sk2j,k1 , (Sj,k1 , Sj,k1+1, . . . , Sj,k2) for k1 ≤ k2. Given

a rate-K/N joint source-channel code that achieves the distortion pair (D1, D2), we

obtain (5.32a) by the following derivation:

K ·RS1|S0(D1) ≤ K ·RS1|S0

K−1

K∑
k=1

E
[
d1(S1,k, Ŝ1,k)

] (5.33)

≤
K∑
k=1

RS1|S0

(
E[d1(S1,k, Ŝ1,k)]

)
(5.34)

≤
K∑
k=1

I(S1,k; Ŝ1,k|S0,k) (5.35)

≤
K∑
k=1

I(S1,k;S
K
2 , Y

N
2 |S0,k) (5.36)
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≤
K∑
k=1

H(S1,k|S0,k)−H(S1,k|Sk0 , SK2 , Y N
2 ) (5.37)

≤
K∑
k=1

H(S1,k|SK0 , Sk−1
1 , SK2 )−H(S1,k|SK0 , Sk−1

1 , SK2 , Y
N

2 ) (5.38)

=
K∑
k=1

I(S1,k;Y
N

2 |SK0 , Sk−1
1 , SK2 )

= I(SK1 ;Y N
2 |SK0 , SK2 )

=
N∑
n=1

I(SK1 ;Y2,n|SK0 , SK2 , Y n−1
2 )

≤
N∑
n=1

H(Y2,n|X2,n)−H(Y2,n|SK0 , SK1 , SK2 , Y n−1
2 , X1,n, X2,n) (5.39)

=
N∑
n=1

H(Y2,n|X2,n)−H(Y2,n|X1,n, X2,n) (5.40)

= N
N∑
n=1

1

N
· I(X1,n;Y2,n|X2,n)

≤ N · I(X1;Y2|X2), (5.41)

where (5.33) holds since RS1|S0(D1) is non-increasing and the expected distortion of

the code is not larger than D1, (5.34) and (5.35) are respectively due to convexity and

the definition of conditional RD function, (5.36) follows from the data-processing in-

equality, (5.37) holds since conditioning reduces entropy, (5.38) holds by the Markov

chain relationships S1,k (−− S0,k (−− (Sk−1
0 , SK0,k+1, S

k−1
1 ) and SK1 (−− SK0 (−− SK2

and since conditioning reduces entropy, (5.39) holds since X2,n is a function of

(Y n−1
2 , SK2 ) and since conditioning reduces entropy, (5.40) follows from the memo-

ryless property of channel, and (5.41) holds with PX1,X2 = N−1
∑N

n=1 PX1,n,X2,n since

I(X1,n;Y2,n|X2,n) is concave in PX1,n,X2,n . By symmetry, a similar argument shows

(5.32b).

Although the inputs X1 and X2 are arbitrarily correlated in the outer bound
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Figure 5.5: A general Venn diagram of the achievable distortion regions for the coding
schemes presented in Sections 5.2 and 5.3, for a fixed source pair and
channel. Moreover, Examples 5.1-5.3 in Section 5.5.1 show that certain
inclusion relationships can be strict.

result, we can restrict to independent inputs without changing the outer bound region

due to the channel symmetry property, i.e., the capacity region of the DM-TWC

can be determined via independent channel inputs. Combining this fact with the

achievability result then completes the proof.

5.5 Examples and Discussion

In this section, we illustrate our achievability results and discuss possible exten-

sions. The Venn diagram in Fig. 5.5 summarizes the relationship of the achievable

rate regions for the coding schemes in Sections 5.2 and 5.3. We begin with three ex-

amples showing that some inclusion relationships can be strict, followed by illustrative

examples for Theorems 5.1, 5.4, and 5.5.
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5.5.1 Examples

Examples 5.1 and 5.2 below show that Theorem 5.1 strictly generalizes Corol-

lary 5.1 and Corollary 5.2, respectively. Example 5.3 not only illustrates a special

use of the two-way hybrid coding scheme but also reveals that Corollary 5.1 strictly

subsumes all of its special cases; see Section 5.3.1. Example 5.4 shows how a simple

instance of our adaptive JSCC helps source transmission. At the end of this sec-

tion, we provide two examples (Examples 5.5-5.6) for Theorem 5.4 and an example

(Example 5.7) for Theorem 5.5. Note that except for the Gaussian case examined

in Example 5.6, the Hamming distortion is considered in all examples. Let Ber(p)

denote a Bernoulli random variable with probability of success p ∈ [0, 1]. We will also

need the following specialized converse result in Examples 5.1 and 5.4, whose proof

is similar to Lemma 5.1.

Proposition 5.1. Assume that the non-adaptive encoder fj : SKj → XK
j is used for

j = 1, 2. If a distortion pair (D1, D2) is achievable for the rate-one lossy transmission

of independent sources over a DM-TWC, then

R(1)(D1) ≤ I(X1;Y2|X2, Q),

R(2)(D2) ≤ I(X2;Y1|X1, Q),

for some PQPX1|QPX2|Q.

Note that the pair (I(X1;Y2|X2, Q), I(X2;Y1|X1, Q)) under the distribution

PQPX1|QPX2|Q in Proposition 5.1 is an alternative expression for the achievable rate

pair in Shannon’s inner bound (see (2.2)).
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Example 5.1 (Transmitting Independent Binary Non-Uniform Sources over

Dueck’s DM-TWC [14]). Consider the independent sources S1 = Ber(0.89) and

S2 = Ber(0.89) so that H(S1) = H(S2) ≈ 0.5. We recall Dueck’s DM-TWC [14],

where Xj = (Xj,1, Xj,2),4 Yj = (X1,1 · X2,1, Zj ⊕2 Xj′,2, Zj′), and Z1 = Ber(0.5)

and Z2 = Ber(0.5) are independent channel noise variables that are independent of

all channel inputs and sources. Han [28] showed that the channel coding rate pair

(Rc,1, Rc,2) = (0.5, 0.5) is not achievable via Shannon’s random coding scheme but

can be achieved via his adaptive channel coding scheme. Based on this fact and

Proposition 5.1, we conclude that the hybrid coding scheme of Corollary 5.1 cannot

achieve the distortion pair (D1, D2) = (0, 0) (since it uses non-adaptive encoders

and violates the necessary conditions in Proposition 5.1). By contrast, Corollary 5.2

shows that the distortion pair (0, 0) is achievable via our general JSCC scheme as

R
(j)
WZ(0) = H(Sj) < Rc,j holds for j = 1, 2. Thus, Theorem 5.1 strictly subsumes

Corollary 5.1.

Example 5.2 (Transmitting Correlated Binary Sources over Binary-Mul-

tiplying DM-TWCs [3]). Consider the binary-multiplying TWC given by Yj =

X1 ·X2 for j = 1, 2. The capacity region of the channel is not known, but it is known

that any symmetric achievable channel coding rate pair is component-wise upper

bounded by (0.646, 0.646) [31]. Suppose that we want to exchange binary correlated

sources with joint probability distribution PS1,S2(0, 0) = 0 and PS1,S2(s1, s2) = 1/3

for (s1, s2) 6= (0, 0). The WZ coding theorem indicates that the minimum source

coding rate pair is (H(S1|S2), H(S2|S1)) = (0.667, 0.667) to achieve the distortion

4As Dueck’s DM-TWC has Xj = {0, 1}2 and Yj = {0, 1}3, we here use (Xj,1, Xj,2) ∈ Xj to denote
the two channel inputs of terminal j.
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pair (D1, D2) = (0, 0). Clearly, this pair is not achievable by any SSCC scheme, in-

cluding the adaptive coding scheme of Corollary 5.2, because the source coding rate

exceeds the largest possible transmission rate for reliable communication. However,

the uncoded scheme: Xj = Sj for j = 1, 2 can be easily shown to provide loss-

less transmission. As Corollary 5.2 and the uncoded scheme are special cases of our

general JSCC method, Theorem 5.1 strictly subsumes Corollary 5.2.

Example 5.3 (Transmitting Correlated Binary Sources over a Mixed-Type

DM-TWC). Suppose that all alphabets are binary. Let the source messages S1 and

S2 have the joint probability distribution PS1,S2(1, 0) = 0 and PS1,S2(s1, s2) = 1/3

for (s1, s2) 6= (1, 0). Consider the DM-TWC described by Y1 = X1 ⊕2 X2 ⊕2 Z1 and

Y2 = X1 · X2, where Z1 = Ber(0.05) that is independent of Sj’s and Xj’s. In other

words, we have a (one-way) binary-multiplying channel in one direction and a binary

additive channel with additive noise in another direction.

For this channel, none of the special cases of Corollary 5.1 can achieve the dis-

tortion pair (D1, D2) = (0, 0). More specifically, the SSCC schemes in the spe-

cial cases cannot attain the distortion pair since H(S1|S2) < I(X1;Y2|X2) and

H(S2|S1) < I(X2;Y1|X1) cannot hold simultaneously. Moreover, using uncoded trans-

mission in both directions yields the distortion pair (D1, D2) = (0, 0.033). However,

we can use the two-way hybrid coding scheme in Corollary 5.1 in the following way:

use uncoded transmission from terminal 1 to 2 and use the concatenation of WZ

source coding and Shannon’s channel coding for the reverse direction. Then the dis-

tortion pair (0, 0) is achievable. This example shows that Corollary 5.1 is a strictly

generalization of its presented special cases.
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Example 5.4 (Transmitting Independent Binary Uniform Sources over

Dueck’s DM-TWC). Consider the almost lossless transmission of the indepen-

dent sources S1 = Ber(0.5) and S2 = Ber(0.5) through Dueck’s DM-TWC (given in

Example 1). Here, the binary noise variables Z1 and Z2 are assumed to be corre-

lated with joint distribution given by PZ1,Z2(0, 0) = 0 and PZ1,Z2(z1, z2) = 1/3 for

(z1, z2) 6= (0, 0). For this channel, the optimal symmetric rate pair in Proposition 5.1

is obtained as (I(X1;Y2|X2), I(X2;Y1|X1)) = (0.9503, 0.9503). Since the required

source coding rate R
(j)
WZ(0) = H(Sj) = 1 (at terminal j) exceeds the outer bound

in Proposition 5.1, the hybrid coding scheme in Corollary 5.1 cannot achieve the

distortion pair (D1, D2) = (0, 0).

By contrast, the following use of our general JSCC scheme provides rate-one loss-

less transmission. Suppose that we exchange a length-K of such source pair via K+1

channel uses. Clearly, the transmission rate approaches one as K goes to infinity.

For j = 1, 2, we next set (X
(1)
j,1 , X

(1)
j,2 ) = (1, S

(1)
j ), (X

(K+1)
j,1 , X

(K+1)
j,2 ) = (Y

(K)
j,3 , 1), and

(X
(b)
j,1 , X

(b)
j,2 ) = (Y

(n−1)
j,3 , S

(b)
j ) for b = 2, 3, . . . , K, where the superscripts represent time

index. Via such adaptive encoding, terminal j can exploit the correlation between

N1 and N2 to perfectly decode N
(b−1)
j from Y

(b)
j,1 and Y

(b−1)
j,3 and reconstruct S

(b−1)
j′ as

Ŝ
(b−1)
j′ = Z

(b−1)
j ⊕2 Y

(b−1)
j,2 = S

(b−1)
j′ for all 2 ≤ b ≤ K + 1, thus achieving zero-error

transmission. For 2 ≤ b ≤ K, the above encoding and decoding procedure is depicted

in Fig. 5.6. Note that whether or not the SSCC scheme in Corollary 5.2 achieves the

same performance remains unclear.

Example 5.5 (Transmitting Binary Correlated Sources with Z-channel Cor-

relation over Binary Additive Noise DM-TWCs). Suppose that all alpha-

bets are binary. Given 0 ≤ ε1, ε2 < 0.5, the binary additive noise DM-TWC is
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Figure 5.6: An illustration of adaptive encoding and sliding-window decoding in Ex-
ample 4. At time-b, terminal 2 cannot perfectly decode S

(b−1)
1 from Y

(b)
2,2

due to the additive noise Z
(b)
2 . However, at time-(b+1), the adaptive chan-

nel inputs X
(b+1)
1,1 and X

(b+1)
2,1 enable a perfect decoding for Z

(b)
2 (based on

Y
(b)

2,3 , Y
(b+1)

2,1 , and the noise correlation) at terminal 2, which can be used

to eliminate the noise in Y
(b)

2,2 and achieve error-free transmission.

described by Yj = Xj ⊕2 Xj′ ⊕ Zj, j = 1, 2, where the channel noise variables

Z1 = Ber(ε1) and Z2 = Ber(ε2) are independent of each other, of the source mes-

sages, and of the channel inputs. The capacity region of the channel is given by [40]:

{(Rc1 , Rc2) : 0 ≤ Rc1 ≤ 1−Hb(ε2), 0 ≤ Rc2 ≤ 1−Hb(ε1)}. Consider the binary corre-

lated source pair (S1, S2) with Z-channel correlation [108]; i.e., the transition matrices

[PS2|S1( · | · )] and [PS1|S2( · | · )] between the sources S1 and S2 can be interpreted as

a Z-channel and a reverse Z-channel, respectively. Assume that the crossover prob-

abilities of the Z-type channels are α1 and α2, respectively. Let PS1(1) = q1 and

PS2(1) = q2, where q2 is a function of q1 and α1 (note that one may also write q1 as a

function of q2 and α2). According to Theorem 5.4, the achievable distortion region for
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the rate-K/N transmission consists of all pairs (D1, D2) that satisfy the inequalities

below:

K(1− q1 + q1α1)

[
Hb

(
q1α1

1− q1 + q1α1

)
−Hb

(
D1

1− q1 + q1α1

)]
≤ N(1−Hb(ε2)),

K(1− q2 + q2α2)

[
Hb

(
q2α2

1− q2 + q2α2

)
−Hb

(
D2

1− q2 + q2α2

)]
≤ N(1−Hb(ε1)).

Example 5.6 (Transmitting Correlated Gaussian Sources over DM-TWCs

with Additive White Gaussian Noise (AWGN) DM-TWCs). Consider the

squared-error distortion measure. The AWGN DM-TWC is described by Yj = Xj +

Xj′ + Zj, j, j
′ = 1, 2, where Z1 and Z2 are independent zero mean Gaussian noises

with variance σ2
1 and σ2

2, respectively, and are independent of the source messages

and of the channel inputs. The average power of channel inputs Xj is set as Pj for

j = 1, 2. Moreover, the correlated sources S1 and S2 are considered to be zero-mean

unit-variance jointly Gaussian random variables with correlation coefficient ρ for some

0 ≤ ρ ≤ 1. For this setting, Theorem 5.4 (more specifically, Corollary 5.5) yields the

achievable distortion region {(D1, D2) : Dj ≥ (1 − ρ2)(1 +
Pj
σj′

)
K
N , j = 1, 2}, for the

rate-K/N transmission. The detailed derivation can be found in [90, Lemma 4].

Example 5.7 (Transmitting Quaternary Correlated Sources over Binary

Additive Noise DM-TWCs). Suppose that S1 = S2 = Ŝ1 = Ŝ2 = {A,B,C,D}

and X1 = X2 = Y1 = Y2 = {0, 1}. Consider the correlated source pair with joint

probability distribution given by

PS1,S2(s1, s2) =


1

8
if (s1, s2) ∈ {A,B} × {A,B} ∪ {C,D} × {C,D},

0 otherwise.
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For such sources, we observe a binary common part S0; S0 = 0 and S0 = 1 are cor-

responding to S1, S2 ∈ {A,B} and S1, S2 ∈ {C,D}, respectively. Given this common

part, we can decompose Sj into (S0, S
′
j), where S ′j = Ber(0.5). It is easy to show that

Sj and (S0, S
′
j) have a one-to-one correspondence and the Markov chain relationship

S ′1 (−− S0 (−− S ′2 holds. Moreover, the conditional RD function PS′j |S0
(Dj) is given

by PS′j |S0
(Dj) = 1−Hb(Dj) for 0 ≤ Dj ≤ 0.5.

Due to the above decomposition, the terminals only need to exchange (S ′1, S
′
2).

When transmitting the pair (S ′1, S
′
2) over the binary additive noise DM-TWCs (defined

in Example 5.5) at rate-K/N , we can apply Theorem 5.5 to characterize the achievable

distortion region of the overall system, which is the convex hull of all distortion pairs

(D1, D2) satisfying

K(1−Hb(D1)) ≤ N(1−Hb(ε2)),

K(1−Hb(D2)) ≤ N(1−Hb(ε1)).

5.5.2 Adaptive Coding with More Past Information

In our JSCC scheme (detailed in the proof of Theorem 5.1), we merely use the most

recent channel inputs and outputs (X
(t−1)
j , Y

(t−1)
j ) to generate the current channel

input X
(t)
j . Although ideally one would use the entire past channel input and output

history for adaptive coding, the accumulated information in this case causes the

Markov chain not only to have a time-varying transition kernel but also to drastically

expand the state space. The idea to jointly optimize the terminals’ transmission via

a stationary Markov chain becomes infeasible. In the following, we sketch two coding

strategies to deal with this problem. Each of the strategies can be directly integrated

into our JSCC scheme, but the encoding/decoding complexity will be higher and the
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sufficient conditions will be significantly more complicated than the current ones.

The first strategy is to generate X
(t)
j as a function of the past µ channel inputs

(X
(t−µ)
j , X

(t−µ+1)
j , . . . , X

(t−1)
j ) and outputs (Y

(t−µ)
j , Y

(t−µ+1)
j , . . . , Y

(t−1)
j ) for some µ >

1, which is similar to the memory-µ channel coding for DM-TWCs [33, Section 4.4].

This strategy increases the encoding and decoding complexity, but the state space

complexity of the Markov chain is constant.

The second strategy quantizes the past channel inputs and outputs at each termi-

nal into a set with fixed size. The channel inputs can be then generated as a function

of the quantized information in that set, rather than the entire past information. This

strategy is similar to the Q-graph channel coding for single-output DM-TWCs [44],

and it adds a minor encoding cost. However, as the quantized knowledge is not

necessarily a sufficient statistic for optimal decoding, we still need to store all past

information, which clearly increases system complexity.5

5.5.3 Adaptive Coding with Incremental Side-Information

Our adaptive coding mainly coordinates the terminals’ transmission on the shared

channel as we did not attempt to apply Kaspi’s interactive source coding idea [46] to

make the best use of the sequentially received signals. Here, we give an SSCC scheme

that encompasses both ideas.

The exchange of correlated sources SK1 and SK2 is now accomplished in L rounds

for some L ≥ 1, which comprises N channel uses (note that N is a function of K).

Specifically, for 1 ≤ l ≤ L, let Nl denote the number of channel uses in the lth round of

transmission, where
∑L

l=1 Nl = N . In each round, viewing the previously transmitted

and decoded source codewords as side-information, each terminal applies binning for

5One can apply sliding-window decoding to limit the amount of past information at each receiver.
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source coding, followed by Han’s adaptive channel coding. Each terminal also decodes

the other terminal’s source codeword at the end of each transmission round. After L

rounds, each terminal reconstructs the other terminal’s source messages from the side-

information and its own source messages. Clearly, this simple SSCC scheme allows

two-way simultaneous transmission and interactive source coding. We summarize the

achievability result in Proposition 5.2 below (without proof). Here, Tj,l, j = 1, 2 and

l = 1, 2, . . . , L, are auxiliary random variables.

Proposition 5.2. A distortion pair (D1, D2) is achievable for the rate-K/N lossy

transmission of correlated sources over a DM-TWC if for all 1 ≤ l ≤ L, we have that

K · I(S1;T1,l|S2, T
l−1
1 , T l−1

2 ) < Nl · I(Ṽ1,l;X2,l, Y2,l, Ṽ2,l, W̃2,l),

K · I(S2;T2,l|S1, T
l−1
1 , T l−1

2 ) < Nl · I(Ṽ2,l;X1,l, Y1,l, Ṽ1,l, W̃1,l),

for some joint probability distributions PṼ1,l,Ṽ2,l,W̃1,l,W̃2,l,X1,l,X2,l
as defined in [28, Sec-

tion IV] and

PTL1 ,TL2 |S1,S2
=

L∏
l=1

PT1,l|S1,T
l−1
1 ,T l−1

2
PT2,l|S2,T

l−1
1 ,T l−1

2

and two decoding functions Ŝj′ = gj(Sj, T
L
j , T

L
j′ ) such that E[dj(Sj, Ŝj)] ≤ Dj for

j = 1, 2.

Note that the above proposition reduces to Corollary 5.3 when L = 1. In light

of this, it is of interest to ask if there exists a general adaptive JSCC scheme that

integrates both features and subsumes all of our presented achievability results. We

leave this question for future research.
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5.6 Case Study: Scalar Coding

In this section, we evaluate the performance of scalar coding defined below. Such

coding scheme has low encoding/decoding latency and is very suitable for real-time

communication.

Definition 5.3 (Scalar Coding). Set N = K. Scalar coding is a transmission

scheme such that Xj,n = fj(Sj,n) for some time-invariant function fj : Sj → Xj and

Ŝj′,n = gj(Sj,n, Yj,n), for j, j′ = 1, 2 with j 6= j′ and n = 1, 2, . . . , N .

In Sections 5.6.1-5.6.2, we consider the following DM-TWC with q-ary modulo

additive noise and Hamming distortion measure:Y1,n = X1,n ⊕q X2,n ⊕q Z1,n

Y2,n = X1,n ⊕q X2,n ⊕q Z2,n,

where X1,n, X2,n, Z1,n, Z2,n ∈ Gq = {1, 2, . . . , q − 1}, ⊕q is the modulo-q addition,

and {Z1,n}∞n=1 and {Z2,n}∞n=1 are memoryless noise processes which are independent of

each other and of the correlated sources. For j = 1, 2 and for all n, we further assume

that Pr
(
Zj,n = 0

)
= 1 − εj and Pr

(
Zj,n = zj

)
= εj/(q − 1) for zj = 1, 2, . . . , q − 1,

where 0 ≤ εj ≤ (q − 1)/q.

In Section 5.6.3, we consider the following memoryless AWGN-TWCs and the

mean-square-error distortion measure:Y1,n = X1,n +X2,n + Z1,n,

Y2,n = X1,n +X2,n + Z2,n,

where {Z1,n}∞n=1 and {Z2,n}∞n=1 are memoryless zero mean Gaussian noise processes

with variance σ2
1 and σ2

2, respectively. Also, {Z1,n}∞n=1 and {Z2,n}∞n=1 are assumed to

be independent of each other and of the sources. The Xj,n’s are additionally required
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to satisfy the power constraint E[
∑N

n=1 |Xj,n|2] ≤ NPj, where Pj > 0 is the average

transmission power of terminal j.

5.6.1 Transmitting Doubly Binary Symmetric Sources over Binary

Additive-Noise DM-TWCs

Consider a joint binary source whose marginal probability distributions are uni-

form such that the individual sources are respectively modeled as the input and

output of a binary symmetric channel with crossover probability δ ∈ [0, 1/2]. For this

joint source, the correlation coefficient is ρ = 1− 2δ and the associated RD function

R(j)(Dj) under the Hamming distortion measure is given by [74]

R(j)(Dj) =

 1−Hb(Dj), 0 ≤ Dj ≤ 1/2,

0, Dj > 1/2.
(5.43)

By Lemma 5.1, we known that any rate-one source-channel coding scheme achiev-

ing distortion pair (D1, D2) must satisfy

R(1)(D1) ≤ I(S1;S2) + I(X1;Y2|X2)

≤ 1−Hb(δ) + (H(Y2)−H(Y2|X1, X2)) (5.44)

≤ 2−Hb(δ)−Hb(ε2) (5.45)

where (5.44) holds since H(Y2|X2) ≤ H(Y2) and (5.45) follows that H(Y2) ≤ 1 and

H(Y2|X1, X2) = H(Z2|X1, X2) = H(Z2) = Hb(ε2). Similarly, we have R(2)(D2) ≤

2−Hb(δ)−Hb(ε1). Using (5.45) and (5.43), lower bounds for the system distortions

D1 and D2 can be found numerically for given δ and εj’s.

Now, we consider the scalar coding scheme with fj(Sj) = Sj so that Xj,n = Sj,n
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for j = 1, 2 and n = 1, 2, . . . , N . For this encoder, it can be shown that the estimate

Ŝj,n = Yj′,n ⊕2 Xj′,n, j 6= j′, yields the optimum decoding performance, and the

average distortions are given by D1 = ε2 and D2 = ε1. In Fig. 5.7, we plot the

gap between the distortion lower bound and ε2 (for the direction from terminal 1 to

2). The numerical results show that scalar coding is sub-optimal. In particular, as

the source correlation ρ increases, the gap becomes larger. Also, when the quality

of the channel deteriorates, the scalar coding scheme suffers a serious performance

degradation. Nevertheless, when S1 and S2 are independent, i.e., ρ = 0, scalar coding

becomes optimal (with the gap in Fig. 5.7 reducing to zero).
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Figure 5.7: The performance loss of transmitting binary correlated sources via scalar
coding. The curves from top to bottom correspond to ρ ranging from 0.9
to 0 with a step size of 0.1.
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5.6.2 Transmitting Non-Binary Independent Sources over Non-Binary

Additive-Noise DM-TWCs

Suppose that S1 and S2 are independent and uniformly distributed q-ary sources,

i.e., Pr(S1 = s) = Pr(S2 = s) = 1/q for s = 0, 1, . . . , q − 1. For such sources, the RD

function R(j)(Dj) under the Hamming distortion measure is given by [109]

R(j)(Dj) =

 log2 q −Hb(Dj)−Dj log2(q − 1), 0 ≤ Dj ≤ q−1
q
,

0, Dj >
q−1
q
,

(5.46)

for j = 1, 2. By Lemma 5.1 (with r = 1), one has

R(1)(D1) ≤ I(S1;S2) + I(X1;Y2|X2)

≤ log2 q −H(Z2)

= log2 q −Hb(ε2)− ε2 log2(q − 1) (5.47)

for the q-ary additive-noise DM-TWCs, where the last equation is obtained by eval-

uating H(Z2). From (5.46) and (5.47), we obtain that D1 ≥ ε2. Similarly, we have

D2 ≥ ε1. On the other hand, one can easily show that the distortion achieved by the

optimum decoder for scalar coding in this case is D1 = ε2 and D2 = ε1. Thus, scalar

coding is optimal for this non-binary setting.

We remark that Theorem 5.2 has asserted that the SSCC scheme is optimal for

this setting at an expense of long decoding delay. However, based on the above result,

it is sufficient to employ the scalar coding to attain the optimal performance, thus

significantly reducing the coding complexity and lowering the coding latency.
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5.6.3 Transmitting Gaussian Sources over Memoryless AWGN-TWCs

The correlated sources S1 and S2 are herein considered to be jointly Gaussian with

correlation coefficient ρ. Without loss of generality, S1 and S2 are assumed to have

zero mean and unit variance. In this case, the RD function under the squared error

distortion measure is given by [74]

R(j)(Dj) =


1
2

log 1
Dj

0 < Dj ≤ 1,

0 Dj > 1,

(5.48)

and I(S1;S2) = −1
2
· log

(
1− ρ2

)
, where −1 ≤ ρ ≤ 1.

We next derive a bound on the performance limit of rate-one transmission over the

Gaussian TWCs. Let γj , Pj/σ
2
j′ be the signal-to-noise ratio (SNR) for j, j′ = 1, 2

with j 6= j′. Combining (5.48) with Lemma (5.1), we obtain the lower bounds D1 ≥

(1− ρ2)/(1 + γ1) and D2 ≥ (1− ρ2)/(1 + γ2). In fact, as the WZ-RD and conditional

RD functions are equal for the jointly Gaussian sources and adaptive coding cannot

enlarge the channel capacity of the AWGN-TWC, we can apply the complete JSCC

Theorem 5.5 to obtain the following corollary for general rate.

Corollary 5.5. For the rate-K
N

lossy transmission of zero mean, unit variance, and

correlation ρ jointly Gaussian source (S1, S2) over the memoryless AWGN-TWC with

SNRs γ1 and γ2, (D1, D2) is achievable if and only if
K ·R(1)

WZ(D1) ≤ N

2
log(1 + γ1),

K ·R(2)
WZ(D2) ≤ N

2
log(1 + γ2).

Now, consider the scalar coding from terminal j to j′ with fj given by Xj,n =
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Figure 5.8: The performance loss of transmitting jointly Gaussian sources via scalar
coding. The curves from top to bottom correspond to ρ ranging from 0.9
to 0 with a step size of 0.1.

fj(Sj,n) = αSj,n, where α =
√
P1 is set to satisfy the power constraint. At the

receiver, we employ a minimum mean square error (MMSE) detector to yield the

optimum estimate Ŝj,n =
√
Pj(Yj′,n − Xj′,n)/(Pj + σ2

j′). From the numerical results

shown in Fig. 5.8 (about the distortion gap from terminals 1 to 2), we observe a

behavior similar to the discrete system of Fig. 5.7. In the extreme case of ρ = 0, i.e.,

when S1 and S2 are independent, scalar coding achieves the distortion lower bounds

for both direction of transmission and is hence optimal.
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Chapter 6

Conclusion and Future Work

We investigated capacity problems for TWCs and devised efficient JSCC schemes

for sending correlated sources over two-terminal DM-TWCs. A large portion of this

thesis was devoted to two-terminal DM-TWCs, laying the foundation to study trans-

mission problems for other, more complex two-way networks. For the capacity prob-

lems, our approach relies on the viewpoint that a TWC can be decomposed into two

interactive state-dependent one-way channels, which enables a more tractable analy-

sis when the transmission of one terminal is not affected by the transmission of the

other terminal. Taking this viewpoint, a rich set of conditions under which Shannon’s

random coding scheme is optimal was derived, together with a detailed examination

of their relationships. The same approach was also used to obtain approximation

results for two-terminal DM-TWCs and refine the current capacity results for TWCs

with memory and multi-terminal DM-TWCs.

It is worth mentioning that our approach can be used to investigate whether or not

Shannon-type random coding schemes (under independent and non-adaptive inputs)

provide tight bounds for other classical communication scenarios such as MACs with

feedback and one-way compound channels. In particular, our results can be used to
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identify compound channels where the availability of channel state information at the

transmitter (in addition to the receiver) cannot improve capacity.

For two-terminal source transmission problems, we constructed an adaptive coding

scheme to prove a forward JSCC theorem, which results in an achievable distortion

region for two-way lossy simultaneous transmission. Our adaptive coding method

demonstrates a way to coordinate the independent transmissions of the terminals;

it also underscores the importance of preserving source correlation as illustrated via

several examples. Moreover, our coding scheme subsumes several simple non-adaptive

coding methods, providing a unified transmission framework that allows for diverse

various system complexity and performance trade-offs. Although the general form

of our scheme is complex, in many cases its SSCC instances suffice to achieve the

optimal performance. Still, its potential use in practice needs a further study.

It is hoped that our results can serve as a basis for further study in two-way

communication. To conclude this thesis, we outline some future research topics:

• Most of the available tightness conditions for Shannon’s random coding inner

bound only identify TWCs whose capacity region can be determined without the

use of time-sharing. Those conditions are not applicable to determine capacity

region for TWC where a time-sharing scheme is necessary to achieve capacity

such as in the case of push-to-talk TWCs. It would be important to derive a

more general tightness condition which takes both situations into account.

• In addition to our method to approximate the capacity region, one may use

TWCs with symmetry properties to inner and outer bound the capacity region

for asymmetric TWCs. The idea of degraded broadcast channels [88, 110] can

be borrowed to define degradation among two TWCs. This research problem
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also needs a study on the notion of channel ordering for TWCs [111–114].

• For common-output DM-TWCs, one might develop a graph-based capacity

outer bound using the techniques in [115] and find conditions under which the

graph-based outer bound matches the graph-based inner bound [44]. Whether

or not the concept of posterior matching [116] can be applied to design adaptive

coding for such channels is also of interest.

• For source-channel communication with encoding/decoding latency constraint,

one can study the optimality condition of scalar coding, as done in [117] for one-

way systems. Causal coding [118] and zero-delay JSCC [119] are also interesting

subjects to investigate in the context of TWCs. For practical considerations,

one may refine the channel-optimized quantization design for DM-TWCs in [60]

using a machine learning approach [120].

• The design of finite-length error correction codes for DM-TWCs is another chal-

lenging task in practice. Whether or not the start-of-the-art codes such as

low-density parity-check codes [121] and polar codes [122] can perform well on

DM-TWCs is not clear. How to incorporate the idea of adaptive coding into

those channel codes also requires a further investigation.

• The two-way communication in this thesis only considers a single transmitter

and receiver antenna pair. As multiple-input and multiple-output (MIMO)

transmission systems [123] are now widely adopted in commercial standards, it

will be useful to define a MIMO-TWC model and study its capacity from an

information-theoretic perspective. We note that a possible way to define such

a channel model is to consider finite-field matrix channels [124].
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[120] D. B. Kurka and D. Gündüz, “DeepJSCC-f: Deep joint source-channel coding

of images with feedback,” IEEE J. Select. Areas Inf. Theory, vol. 1, no. 1, pp.

178–193, May 2020.

[121] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. 8,

no. 1, pp. 21–28, Jan. 1962.

[122] E. Arikan, “Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,” IEEE Trans.

Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[123] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cam-

bridge, UK: Cambridge University Press, 2005.

[124] D. Silva, F. R. Kschischang, and R. Kotter, “Communication over finite-field

matrix channels,” IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1296–1305, Mar.

2010.

173



Appendix A

Proofs of Supplementary Results for Chapter 2

A.1 Proof of Proposition 2.1

The proof of Proposition 2.1 is based on the following Lemmas A.1.1 to A.1.3.

Lemma A.1.1. If a DM-TWC satisfies the conditions in Proposition 2.1, then

for any input distribution P
(1)
X1,X2

, any pair of distinct symbols x′1, x′′1 ∈ X1, and

P
(2)
X1,X2

(x1, x2) , P
(1)
X1,X2

(τX1

x′1,x
′′
1
(x1), x2), the following results hold:

I(1)(X1;Y2|X2) = I(2)(X1;Y2|X2), (A.1)

I(1)(X2;Y1|X1) = I(2)(X2;Y1|X1), (A.2)

R(P
(1)
X1,X2

, PY1,Y2|X1,X2) = R(P
(2)
X1,X2

, PY1,Y2|X1,X2), (A.3)

where the superscript indicates the corresponding input distribution under evaluation.

Proof: For any P
(1)
X1,X2

and P
(2)
X1,X2

(x1, x2) = P
(1)
X1,X2

(τX1

x′1,x
′′
1
(x1), x2), we have

I(2)(X1;Y2|X2)

=
∑
x2

P
(2)
X2

(x2) · I(2)(X1;Y2|X2 = x2)
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=
∑
x2

P
(2)
X2

(x2)
∑
x1,y2

P
(2)
X1|X2

(x1|x2)PY2|X1,X2(y2|x1, x2) log
PY2|X1,X2(y2|x1, x2)

P
(2)
Y2|X2

(y2|x2)

=
∑

x1,x2,y2

P
(2)
X1,X2

(x1, x2)PY2|X1,X2(y2|x1, x2) log
PY2|X1,X2(y2|x1, x2)∑

x̃1
P

(2)
X1|X2

(x̃1|x2)PY2|X1,X2(y2|x̃1, x2)

=
∑

x1,x2,y2

P
(1)
X1,X2

(τX1

x′1,x
′′
1
(x1), x2)PY2|X1,X2(π

Y2 [x′1, x
′′
1](y2)|τX1

x′1,x
′′
1
(x1), x2)

· log
PY2|X1,X2(π

Y2 [x′1, x
′′
1](y2)|τX1

x′1,x
′′
1
(x1), x2)∑

x̃1
P

(1)
X1|X2

(τX1

x′1,x
′′
1
(x̃1)|x2)PY2|X1,X2(π

Y2 [x′1, x
′′
1](y2)|τX1

x′1,x
′′
1
(x̃1), x2)

(A.4)

=
∑

x1,x2,y2

P
(1)
X1,X2

(τX1

x′1,x
′′
1
(x1), x2)PY2|X1,X2(π

Y2
2 [x′1, x

′′
1](y2)|τX1

x′1,x
′′
1
(x1), x2)

· log
PY2|X1,X2(π

Y2 [x′1, x
′′
1](y2)|τX1

x′1,x
′′
1
(x1), x2)∑

x̃1
P

(1)
X1|X2

(x̃1|x2)PY2|X1,X2(π
Y2 [x′1, x

′′
1](y2)|x̃1, x2)

(A.5)

=
∑

x1,x2,y2

P
(1)
X1,X2

(τX1

x′1,x
′′
1
(x1), x2)PY2|X1,X2(π

Y2
2 [x′1, x

′′
1](y2)|τX1

x′1,x
′′
1
(x1), x2)

· log
PY2|X1,X2(π

Y2 [x′1, x
′′
1](y2)|τX1

x′1,x
′′
1
(x1), x2)

P
(1)
Y2|X2

(πY2 [x′1, x
′′
1](y2)|x2)

=
∑

x1,x2,ỹ2

P
(1)
X1,X2

(τX1

x′1,x
′′
1
(x1), x2)PY2|X1,X2(ỹ2|τX1

x′1,x
′′
1
(x1), x2) log

PY2|X1,X2(ỹ2|τX1

x′1,x
′′
1
(x1), x2)

P
(1)
Y2|X2

(y2|x2)

(A.6)

=
∑

x̃1,x2,ỹ2

P
(1)
X1,X2

(x̃1, x2)PY2|X1,X2(ỹ2|x̃1, x2) log
PY2|X1,X2(ỹ2|x̃1, x2)

P
(1)
Y2|X2

(ỹ2|x2)
(A.7)

= I(1)(X1;Y2|X2), (A.8)

where (A.4) holds by the definition of P
(2)
X1,X2

(x1, x2) and the marginal
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PY2|X1,X2(y2|x1, x2) = PY2|X1,X2(π
Y2 [x′1, x

′′
1](y2)|τX1

x′1,x
′′
1
(x1), x2) derived from the Shan-

non condition in (2.8), (A.5) and (A.7) hold since τX1

x′1,x
′′
1

is a bijection, and (A.6)

follows the bijection of πY2 [x′1, x
′′
1].

By a similar argument, we can verify that I(1)(X2;Y1|X1)=I(2)(X2;Y1|X1). The

proof is then completed by noting thatR(P
(1)
X1,X2

, PY1,Y2|X1,X2)=R(P
(2)
X1,X2

, PY1,Y2|X1,X2),

which follows from the definition of R in (2.1), (A.1), and (A.2).

Lemma A.1.2. If a DM-TWC satisfies the condition in Proposition 2.1, then

for any input distribution P
(1)
X1,X2

, any pair of distinct symbols x′1, x′′1 ∈ X1, and

P
(2)
X1,X2

(x1, x2) , P
(1)
X1,X2

(τX1

x′1,x
′′
1
(x1), x2), we have

R(P
(1)
X1,X2

, PY1,Y2|X1,X2) ⊆ R(P
(3)
X1,X2

, PY1,Y2|X1,X2) (A.9)

where P
(3)
X1,X2

(x1, x2) , 1
2
(P

(1)
X1,X2

(x1, x2) + P
(2)
X1,X2

(x1, x2)).

Proof: The proof relies on the fact that both I(X1;Y2|X2) and I(X2;Y1|X1) are

concave in input distribution PX1,X2 [3]. For any given P
(1)
X1,X2

, let P
(2)
X1,X2

(x1, x2) ,

P
(1)
X1,X2

(τX1

x′1,x
′′
1
(x1), x2) and P

(3)
X1,X2

(x1, x2) = 1
2
(P

(1)
X1,X2

(x1, x2) + P
(2)
X1,X2

(x1, x2)). The

concavity then implies that

I(3)(X1;Y2|X2) ≥ 1

2
I(1)(X1;Y2|X2) +

1

2
I(2)(X1;Y2|X2) (A.10)

= I(1)(X1;Y2|X2), (A.11)

and

I(3)(X2;Y1|X1) ≥ 1

2
I(1)(X2;Y1|X1) +

1

2
I(2)(X2;Y1|X1) (A.12)

= I(1)(X2;Y1|X1), (A.13)
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where (A.11) and (A.13) follow the result in Lemma A.1.1. The rest of the proof

follows the definition of R in (2.1).

Lemma A.1.3. If a DM-TWC satisfies the condition in Proposition 2.1, then for

any given input distribution PX1,X2, we have

R(PX1,X2 , PY1,Y2|X1,X2) ⊆ R
(
PU
X1
PX2 , PY1,Y2|X1,X2

)
, (A.14)

where PU
X1

is the uniform probability distribution on X1 and PX2 =
∑

x1
PX1,X2(x1, x2).

Proof: Without loss of generality, suppose that X1 , {1, 2, . . . , κ}. For any input

distribution PX1,X2 and some integer 1 ≤ l ≤ κ, define

PUl
X1,X2

(x1, x2) =


1
l

∑l
i=1 PX1,X2(i, x2), if 1 ≤ x1 ≤ l,

PX1,X2(x1, x2), if l < x1 ≤ κ.
(A.15)

Clearly, we have PU1
X1,X2

= PX1,X2 and PUκ
X1,X2

= PU
X1
PX2 . We prove this lemma by using

(finite) induction on l showing that R(PX1,X2 , PY1,Y2|X1,X2) ⊆ R(PUl
X1,X2

, PY1,Y2|X1,X2)

for 2 ≤ l ≤ κ. For the base case, i.e., l = 2, we set P
(1)
X1,X2

= PX1,X2 , x
′
1 = 1, and

x′′1 = 2 in Lemma A.1.2, in which

P
(3)
X1,X2

(x1, x2) =
1

2

(
P

(1)
X1,X2

(x1, x2) + P
(2)
X1,X2

(x1, x2)
)

=
1

2

(
P

(1)
X1,X2

(x1, x2) + P
(1)
X1,X2

(τX1

x′1,x
′′
1
(x1), x2)

)
=

1

2

(
PX1,X2(x1, x2) + PX1,X2(τ

X1
1,2(x1), x2)

)
=


1
2

(
PX1,X2(1, x2) + PX1,X2(2, x2)

)
, if x1 = 1 or 2,

PX1,X2(x1, x2), if 2 < x1 ≤ κ,

= PU2
X1,X2

(x1, x2),
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thereby proving that IU2(X1;Y2|X2) ≥ I(1)(X1;Y2|X2) and IU2(X2;Y1|X1) ≥

I(1)(X2;Y1|X1), and hence R(PX1,X2 , PY1,Y2|X1,X2) ⊆ R(PU2
X1,X2

, PY1,Y2|X1,X2).

Now, assume that R(PX1,X2 , PY1,Y2|X1,X2) ⊆ R(PUl
X1,X2

, PY1,Y2|X1,X2) holds for 3 ≤

l < m < κ. We want to show that R(PX1,X2 , PY1,Y2|X1,X2) ⊆ R(PUm
X1,X2

, PY1,Y2|X1,X2).

Observing that

PUm
X1,X2

(x1, x2) =
1

m

(
PU1
X1,X2

(τX1
1,m(x1), x2) + (m− 1)P

Um−1

X1,X2
(x1, x2)

)
(A.16)

and by the concavity of I(X1;Y2|X2), we have

IUm(X1;Y2|X2) ≥ 1

m

(
IU1(X1;Y2|X2) + (m− 1)IUm−1(X1;Y2|X2)

)
≥ 1

m

(
IU1(X1;Y2|X2) + (m− 1)IU1(X1;Y2|X2)

)
(A.17)

= IU1(X1;Y2|X2), (A.18)

where (A.17) is due to the induction hypothesis. Similarly, we have

IUm(X2;Y1|X1) ≥ IU1(X2;Y1|X1), (A.19)

Combining the definition of R in (2.1), (A.18) and (A.19) then completes the proof.

We are ready to prove Proposition 2.1.

Proof: Note that

CO(PY1,Y2|X1,X2) =
⋃

PX1,X2

R(PX1,X2 , PY1,Y2|X1,X2)

⊆ co

⋃
PX2

R
(
PU
X1
PX2 , PY1,Y2|X1,X2

) (A.20)
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⊆ CI(PY1,Y2|X1,X2), (A.21)

where (A.20) follows from Lemma A.1.3. Together with CI(PY1,Y2|X1,X2) ⊆

CO(PY1,Y2|X1,X2) then gives the conclusion:

C(PY1,Y2|X1,X2) = CI(PY1,Y2|X1,X2) = CO(PY1,Y2|X1,X2) = co

⋃
PX2

R
(
PU
X1
PX2 , PY1,Y2|X1,X2

) .

(A.22)

We remark that, based on the proof of Proposition 2.1, it is straightforward to

prove Proposition 2.2, i.e., Shannon’s full symmetry conditions, and hence the details

are omitted.

A.2 Auxiliary Results for the Proof of Theorem 2.16

The appendix establishes input-output mutual information results for one-way

channels that are of the same type as the state-dependent one-way channels in the

generalized PTT-TWC of Theorem 2.16. Let X = {0, 1, . . . , r−1} and Y = {0, 1, . . . ,

s−1} denote channel input and output alphabets, respectively, for some integers r ≥ 3

and s ≥ 2. Suppose that the set of probability vectors {[PY |X( · |x1)] : x1 ∈ X\{0}}

specifies a weakly-symmetric channel and PY |X(y|0) = 1/s for all y ∈ Y . The input-

output mutual information for a specific channel input symbol x ∈ X is defined as

I(X = x;Y ) ,
∑
y∈Y

PY |X(y|x) · log
PY |X(y|x)

PY (y)
.

The following results are needed in the proof of Theorem 2.16.

Lemma A.2.1. The capacity of the channel with the above properties is given by
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C∗ = maxPX I(X;Y ) = log s − H([PY |X( · |1)]), where H([PY |X( · |1)]) denotes the

entropy of the probability vector [PY |X( · |1)]. The capacity-achieving input distribution

is given by:

P ∗X(x) =


0 if x = 0,

1
r−1

otherwise.

Proof: We apply the KKT condition for channel capacity [77, Theorem 4.5.1] to

check the optimality of P ∗X . Under P ∗X , we first have that I(X = x;Y ) = log s −

H([PY |X( · |1)]) for x 6= 0 [74, Theorem 7.2.1] since P ∗X is a uniform distribution when

restricted to the input alphabet X \ {0} and the channel with the restricted inputs

is weakly-symmetric. Moreover, for x 6= 0, we have

I(X = 0;Y ) =
s−1∑
y=0

1

s
· log

1/s∑
x′ 6=0 PY |X(y|x′)/(r − 1)

= log
r − 1

s
−

s−1∑
y=0

1

s
· log

∑
x′ 6=0

PY |X(y|x′)


= log

r − 1

s
− log

∑
x′ 6=0

PY |X(y′|x′)

 (A.23)

= − log s+ log(r − 1)

−

 s−1∑
y′=0

PY |X(y′|x)


︸ ︷︷ ︸

=1

· log

∑
x′ 6=0

PY |X(y′|x′)


≤ −H(Y |X = x) + log(r − 1)

−
s−1∑
y′=0

PY |X(y′|x) · log

∑
x′ 6=0

PY |X(y′|x′)

 (A.24)

=
s−1∑
y′=0

PY |X(y′|x) · log
PY |X(y′|x)∑

x′ 6=0 PY |X(y′|x′)/(r − 1)
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= I(X = x;Y ),

where y′ ∈ Y is arbitrary in (A.23) since
∑

x′ 6=0 PY |X(y|x′) does not depend on y and

(A.24) holds since H(Y |X = 0) ≤ log s. Combining the above results then gives

that I(X = 0;Y ) ≤ I(X = x;Y ) for all x 6= 0, thus implying the optimality of P ∗X .

Finally, we conclude that C∗ = maxPX I(X;Y ) = I(X = x;Y ) for any x 6= 0 by the

KKT condition.

Lemma A.2.2. For any 0 ≤ α ≤ 1, consider the following channel input distribution:

P
(1)
X (x) =


α if x = 0,

1−α
r−1

otherwise,

Let P
(2)
X denote any input distribution with P

(2)
X (0) = α. Then, we have that

I(2)(X;Y ) ≤ I(1)(X;Y ) = (1 − α)C∗ (here the superscript indicates which input

distribution is used for evaluation).

Proof: First, we have that H(2)(Y ) ≤ log s = H(1)(Y ). Also, since H(Y |X =

x) = H(Y |X = 1) for all x 6= 0 due to the weakly-symmetric structure, one

can easily conclude that H(1)(Y |X) = H(2)(Y |X). The above results then imply

that I(2)(X;Y ) ≤ I(1)(X;Y ). Moreover, a direct computation (with the result in

Lemma A.2.1) yields that I(1)(X;Y ) = (1− α)C∗, thereby completing the proof.
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Appendix B

Proofs of Supplementary Results for Chapter 4

B.1 Proof of Lemma 4.1

Proof: We have

I(2)(X1;Y3|X2, X3 = x3)

=
∑

x1,x2,y3

P
(2)
X1,X2|X3

(x1, x2|x3)·PY3|X1,X2,X3(y3|x1, x2, x3)

· log
PY3|X1,X2,X3(y3|x1, x2, x3)∑

x̃1
P

(2)
X1|X2,X3

(x̃1|x2, x3) · PY3|X1,X2,X3(y3|x̃1, x2, x3)

=
∑

x1,x2,y3

P
(1)
X1,X2|X3

(τX1

x′1,x
′′
1
(x1), x2|x3)PY3|X1,X2,X3(π

Y3 [x′1, x
′′
1](y3)|τX1

x′1,x
′′
1
(x1), x2, x3)

·
[

logPY3|X1,X2,X3(π
Y3 [x′1, x

′′
1](y3)|τX1

x′1,x
′′
1
(x1), x2, x3)

− log

(∑
x̃1

P
(1)
X1|X2,X3

(τX1

x′1,x
′′
1
(x̃1)|x2, x3)PY3|X1,X2,X3(π

Y3 [x′1, x
′′
1](y3)|τX1

x′1,x
′′
1
(x̃1), x2, x3)

)]
(B.1)

=
∑

x1,x2,y3

P
(1)
X1,X2|X3

(x1, x2|x3)·PY3|X1,X2,X3(y3|x1, x2, x3)

· log
PY3|X1,X2,X3(y3|x1, x2, x3)∑

x̃1
P

(1)
X1|X2,X3

(x̃1|x2, x3)PY3|X1,X2,X3(y3|x̃1, x2, x3)
(B.2)
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= I(1)(X1;Y2|X2, X3 = x3),

where (B.1) follows from (4.36) and (4.40), (B.2) holds since πY3 [x′1, x
′′
1] and τX1

x′1,x
′′
1

are bijections. By a similar argument, we have that I(2)(X2;Y3|X1, X3 = x3) =

I(1)(X2;Y3|X1, X3 = x3) and that I(2)(X1, X2;Y3|X3 = x3) = I(1)(X1, X2;Y3|X3 =

x3). Next, using the concavity of I(X1;Y3|X2, X3 = x3), I(X2;Y3|X1, X3 = x3), and

I(X1, X2;Y3|X3 = x3) in PX1,X2|X3( · , · |x3)1 yields that

I(3)(X1;Y3|X2, X3 = x3) ≥ 1

2

(
I(1)(X1;Y3|X2, X3 = x3) + I(2)(X1;Y3|X2, X3 = x3)

)
= I(1)(X1;Y3|X2, X3 = x3),

I(3)(X2;Y3|X1, X3 = x3) ≥ 1

2

(
I(1)(X2;Y3|X1, X3 = x3) + I(2)(X2;Y3|X1, X3 = x3)

)
= I(1)(X2;Y3|X1, X3 = x3),

I(3)(X1, X2;Y3|X3 = x3) ≥ 1

2

(
I(1)(X1, X2;Y3|X3 = x3) + I(2)(X1, X2;Y3|X3 = x3)

)
= I(1)(X1, X2;Y3|X3 = x3),

and hence

I(3)(X1;Y3|X2, X3) ≥ I(1)(X1;Y3|X2, X3),

I(3)(X2;Y3|X1, X3) ≥ I(1)(X2;Y3|X1, X3),

I(3)(X1, X2;Y3|X3) ≥ I(1)(X1, X2;Y3|X3),

since P
(1)
X3

= P
(3)
X3

. Together with the definition of RMA-DBC given in Section 4.2, the

inclusions in (4.42)-(4.43) are proved.

1I(X1;Y3|X2, X3 = x3) and I(X2;Y3|X1, X3 = x3) are concave function of PX1,X2|X3
( · , · |x3)

since I(X1;Y2|X2) and I(X2;Y1|X1) are both concave in the input distribution PX1,X2 [3].
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Appendix C

Proofs of Supplementary Results for Chapter 5

C.1 Auxiliary Results for the Proof of Theorem 5.1

Here, we prove Claims 1-7 in the proof of Theorem 5.1. The notation T (n)
ε ( · | · )

is used to denote conditional typical sets.

Claim 1: For b = 2, 3, . . . , B+ 1, the event F (b)

3 ∩F
(b)

4 implies that M̂
(b−1)
1 = M

(b−1)
1 .

Proof: F (b)

3 implies that

(S
(b)
2 ,U

(b)
2 , S̃

(b)
2 , Ũ

(b)
1 (M

(b−1)
1 ), Ũ

(b)
2 (M

(b−1)
2 ), W̃

(b)
2 ,X

(b)
2 ,Y

(b)
2 ) ∈ T (n)

ε .

Thus, we have that M̂
(b−1)
1 = M

(b−1)
1 under F (b)

3 ∩ F
(b)

4 .

Claim 2: E (1)
1 ⊆ F (1)

1 ∪ F (1)
2 ∪ (F (1)

1 ∩ F
(1)

2 ∩ E (1)
1 )

Proof: This follows since the right-hand-side is equal to E (1)
1 ∪ F (1)

1 ∪ F (1)
2 .

Claim 3: The inclusion E (b)
1 ∩E

(b−1)

1 ⊆ F (b)
1 ∪F (b)

2 ∪ (F (b)

1 ∩F
(b)

2 ∩F (b)
3 ∩E

(b−1)

1 )∪F (b)
4

holds for b = 2, 3, . . . , B.

Proof: Claim 1 implies that F (b)

3 ∩F
(b)

4 ⊆ E
(b)

1 and hence E (b)
1 ⊆ F (b)

3 ∪F (b)
4 . Together
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with the facts that

E (b)
1 ∩ E

(b−1)

1 ⊆ (F (b)
3 ∩ E

(b−1)

1 ) ∪ (F (b)
4 ∩ E

(b−1)

1 ) ⊆ (F (b)
3 ∩ E

(b−1)

1 ) ∪ F (b)
4

and that

F (b)
3 ∩ E

(b−1)

1 = (F (b)
3 ∩ E

(b−1)

1 ∩ (F (b)
1 ∪ F (b)

2 )) ∪ (F (b)
3 ∩ E

(b−1)

1 ∩ F (b)
1 ∪ F (b)

2 )

⊆ F (b)
1 ∪ F (b)

2 ∪ (F (b)
1 ∪ F (b)

2 ∩ F (b)
3 ∩ E

(b−1)

1 ),

we obtain the desired inclusion relationship.

Claim 4: E (B+1)
1 ∩ E (B)

1 ⊆ (F (B+1)
3 ∩ E (B)

1 ) ∪ F (B+1)
4

Proof: The result follows from the proof of Claim 3.

Claim 5: If R
(1)
j > I(Sj;Uj) + δ1(ε1), then limn→∞ Pr

(
E (1)
j

)
= 0.

Proof: Due to Claim 2, it suffices to show that limn→∞ Pr
(
F (1)
j

)
= 0 for j = 1, 2 and

limn→∞ Pr

(
F (1)

1 ∪ F (1)
2 ∩ E (1)

1

)
= 0 under the hypothesis. For Pr

(
F (1)
j

)
, we define

a non-typical set Aj = {S(1)
j /∈ T (n)

ε0 } for some ε0 < ε1, j = 1, 2. Then, F (1)
j ⊆

Aj ∪ (F (1)
j ∩Aj). Clearly, limn→∞ Pr

(
Aj
)

= 0 due to the weak law of large numbers,

and Pr
(
F (1)
j ∩ Aj

)
≤ Pr

(
F (1)
j |Aj

)
. For Pr

(
F (1)
j |Aj

)
, we apply the covering lemma

[47, Lemma 3.3] with the correspondences

X ↔ ∅, U ↔ Sj, X̂ ↔ Uj, R↔ R
(1)
j , ε′ ↔ ε0, and ε↔ ε1

to obtain that if R
(1)
j > I(Sj;Uj) + δ(ε1), then limn→∞ Pr

(
F (1)
j |Aj

)
= 0. Thus, we

obtain limn→∞ Pr
(
F (1)
j

)
= 0 under the hypothesis for j = 1, 2.

The proof of limn→∞ Pr

(
F (1)

1 ∪ F (1)
2 ∩ E (1)

j

)
= 0 is more involved. For ε2 and ε3
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such that ε1 < ε2 < ε3, let

B1 , {(S(1)
1 ,S

(1)
2 ,U

(1)
1 (M

(1)
1 )) /∈ T (n)

ε2
}

and

B2 , {(S(1)
1 ,S

(1)
2 ,U

(1)
1 (M

(1)
1 ),U

(1)
2 (M

(1)
2 )) /∈ T (n)

ε3
}.

We first show that conditional on the event F (1)
1 ∪ F (1)

2 , we have that limn→∞ Pr(B2) =

0. We begin by considering the inclusion relationship:

B2 ⊆ F (1)
1 ∪ (B1 ∩ F (1)

1 ) ∪ F (1)
2 ∪ (B2 ∩ B1 ∩ F (1)

2 ).

Using union bound, we have that

Pr(B2) ≤ Pr
(
F (1)

1

)
+ Pr

(
F (1)

2

)
+ Pr

(
B1 ∩ F (1)

1

)
+ Pr

(
B2 ∩ B1 ∩ F (1)

2

)
≤ Pr

(
F (1)

1

)
+ Pr

(
F (1)

2

)
+ Pr

(
B1|F (1)

1

)
+ Pr

(
B2|B1 ∩ F (1)

2

)
. (C.1)

Now, applying the conditional typicality lemma [47, Section 2.5] with the correspon-

dences

X ↔ (S1, U1), Y ↔ S2, ε
′ ↔ ε1, and ε↔ ε2,

we have that limn→∞ Pr
(
B1|F (1)

1

)
= 1. Similarly, applying the conditional typical

lemma with the correspondences:

X ↔ (S1, S2, U1), Y ↔ U2, ε
′ ↔ ε2, and ε↔ ε3,

one further obtains that limn→∞ Pr
(
B2|B1 ∩ F (1)

2

)
= 1. Together with the first part

of the proof and (C.1), we conclude that limn→∞ Pr(B2) = 0.
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We next use the inclusion F (1)
1 ∪ F (1)

2 ∩ E (1)
j ⊆ B2 ∪ E (1)

j ⊆ B2 ∪ (E (1)
j ∩ B2), which

yields the inequality

Pr

(
F (1)

1 ∪ F (1)
2 ∩ E (1)

j

)
≤ Pr(B2) + Pr

(
E (1)
j |B2

)
.

For Pr
(
E (1)
j |B2

)
, since (S̃

(1)
1 , S̃

(1)
2 , Ũ

(1)
1 , Ũ

(1)
2 , W̃

(1)
1 , W̃

(1)
2 ) is generated according to

(5.9) (and is independent of (S
(1)
1 ,S

(1)
2 ,U

(1)
1 ,U

(1)
2 )) and the channel input X

(1)
1 is

generated component-wise, the conditional typicality lemma implies that

lim
n→∞

Pr
(
S

(1)
1 ,S

(1)
2 ,U

(1)
1 ,U

(1)
2 , S̃

(1)
1 , S̃

(1)
2 , Ũ

(1)
1 , Ũ

(1)
2 , W̃

(1)
1 , W̃

(1)
2 ,X

(1)
1 ,X

(1)
2

)
∈ T (n)

ε4
) = 1

under B2 for some ε4 > ε3. Applying the conditional typicality lemma again with the

correspondences

X ↔ (S1, S2, U1, U2, S̃1, S̃2, Ũ1, Ũ2, W̃1, W̃2, X̃1, X̃2), Y ↔ (Y1, Y2), ε′ ↔ ε4, and ε↔ ε,

and using the memoryless property of the channel, we further have that limn→∞

Pr
(
E (1)
j |B2

)
= 0. Combining this with (C.1) implies

lim
n→∞

Pr

(
F (1)

1 ∪ F (1)
2 ∩ E (1)

j

)
= 0,

which completes the proof of the claim.

Claim 6: If R
(B)
1 < I(Ũ1;S2, U2, S̃2, Ũ2, W̃2, X2, Y2)− δ(ε), then limn→∞ Pr

(
E (B+1)

1 ∩

E (B)

1

)
= 0.

Proof: With the help of Claim 4, it suffices to show that limn→∞ Pr
(
F (B+1)

3 ∩ E (B)

1

)
=

0 and limn→∞ Pr
(
F (B+1)

4

)
= 0 under the hypothesis. To obtain the first result, we
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follow the proof of Claim 5. Consider the inequality

Pr
(
F (B+1)

3 ∩ E (B)

1

)
≤ Pr

(
F (B+1)

3 |E (B)

1

)
.

Conditioning on E (B)

1 clearly imposes a joint typicality constraint on the sequence

(S̃
(B+1)
1 , S̃

(B+1)
2 , Ũ

(B+1)
1 , Ũ

(B+1)
2 , W̃

(B+1)
1 , W̃

(B+1)
2 ) in the event F (B+1)

3 . We also know

that the sequence (S
(B+1)
1 ,S

(B+1)
2 ,U

(B+1)
1 ,U

(B+1)
2 ) in the event F (B+1)

3 will be jointly

typical with high probability due to (5.10) and the weak law of large numbers. Using

these observations, we apply the conditional typicality lemma twice, as in the last

part of the proof of Claim 5, to conclude that limn→∞ Pr
(
F (B+1)

3 ∩ E (B)

1

)
= 0.

To analyze Pr
(
F (B+1)

4

)
, we may assume that (M

(B)
1 ,M

(B)
2 ) = (1, 1) , M

(B)
1,1 by

the symmetry of random codebook generation and the encoding procedure. Then,

we have two Markov chain relationships for m1 6= 1:

Ũ
(B+1)
1 (m1)(−− (S

(B+1)
1 ,S

(B+1)
2 ,U

(B+1)
1 ,U

(B+1)
2 , S̃

(B+1)
1 , S̃

(B+1)
2 , Ũ

(B+1)
1 (1),

Ũ
(B+1)
2 (1), W̃

(B+1)
1 , W̃

(B+1)
2 )(−− (X

(B+1)
1 ,X

(B+1)
2 )(−− (Y

(B+1)
1 ,Y

(B+1)
2 ) (C.2)

and

Ũ
(B+1)
1 (m1)(−− (S̃

(B+1)
1 , Ũ

(B+1)
1 (1))(−− (S

(B+1)
1 ,S

(B+1)
2 ,U

(B+1)
1 ,U

(B+1)
2 ,

S̃
(B+1)
2 , Ũ

(B+1)
2 (1), W̃

(B+1)
1 , W̃

(B+1)
2 ,X

(B+1)
1 ,X

(B+1)
2 ). (C.3)

To simplify the derivation, we define

A1(m̂
(B)
1 ) = (S

(B+1)
2 ,U

(B+1)
2 , S̃

(B+1)
2 , Ũ

(B+1)
1 (m̂

(B)
1 ), Ũ

(B+1)
2 (1), W̃

(B+1)
2 ,X

(B+1)
2 ,Y

(B+1)
2 )

and let a1 = (s2,u2, s̃2, ũ1, ũ2, w̃2,x2,y2) to denote a realization of A1(m̂
(B)
1 ). When

excluding the variable Ũ
(B+1)
1 (m̂

(B)
1 ) (resp., (Ũ

(B+1)
1 (m̂

(B)
1 ),X

(B+1)
2 ,Y

(B+1)
2 )) from
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A1(m̂
(B)
1 ), we let the remaining tuples denoted as A2 (resp., A3). Note that when a1

is given, a2 and a3 are determined as well. Moreover, we define

B = (S
(B+1)
1 ,U

(B+1)
1 , S̃

(B+1)
1 , Ũ

(B+1)
1 (1), W̃1

(B+1)
)

and let b = (s1,u
′
1, s̃1, ũ

′
1,w1) to denote a realization of it. In the following, we find

an upper bound for Pr
(
F (B+1)

4

)
using the fact that Pr

(
F (B+1)

4

)
= Pr

(
F (B+1)

4 |M (B)
1,1

)
:

Pr
(
F (B+1)

4 |M (B)
1,1

)
≤

2nR
(B)
1∑

m̂1=2

∑
a1∈T (n)

ε

Pr
(
A1(m̂1) = a1|M (B)

1,1

)
(C.4)

=
2nR

(B)
1∑

m̂1=2

∑
a1∈T (n)

ε

∑
b

Pr
(
A1(m̂1) = a1,B = b|M (B)

1,1

)
(C.5)

=
2nR

(B)
1∑

m̂1=2

∑
a1∈T (n)

ε

∑
b

Pr
(
X

(B+1)
2 = x2,Y

(B+1)
2 = y2|M (B)

1,1

)
Pr
(
A3 = a3,B = b|X(B+1)

2 = x2,Y
(B+1)

2 = y2,M
(B)
1,1

)
Pr
(
Ũ

(B+1)
1 (m̂1) = ũ1|A2 = a2,B = b,M

(B)
1,1

)
(C.6)

=
2nR

(B)
1∑

m̂1=2

∑
a1∈T (n)

ε

∑
b

Pr
(
X

(B+1)
2 = x2,Y

(B+1)
2 = y2|M (B)

1,1

)
Pr
(
A3 = a3,B = b|X(B+1)

2 = x2,Y
(B+1)

2 = y2,M
(B)
1,1

)
Pr
(
Ũ

(B+1)
1 (m̂1) = ũ1|S̃(B+1)

1 = s̃1, Ũ
(B+1)
1 (1) = u′1,M

(B)
1 = 1

)
(C.7)

≤
2nR

(B)
1∑

m̂1=2

∑
a1∈T (n)

ε

Pr
(
X

(B+1)
2 = x2,Y

(B+1)
2 = y2|M (B)

1,1

)
· (1 + ε)

n∏
i=1

P
Ũ

(B+1)
1

(ũ1,i)

∑
b

Pr
(
A3 = a3,B = b|X(B+1)

2 = x2,Y
(B+1)

2 = y2,M
(B)
1,1

)
(C.8)
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= (1 + ε)
2nR

(B)
1∑

m̂1=2

∑
a2∈T (n)

ε

Pr
(
A2 = a2|M (B)

1,1

) n∏
i=1

P
Ũ

(B+1)
1

(ũ1,i)

≤ (1 + ε) · 2nR
(B)
1

∑
a2∈T (n)

ε

∑
ũ1∈T (n)

ε (Ũ1|a2)

Pr
(
A2 = a2|M (B)

1,1

) n∏
i=1

PŨ1
(ũ

(B+1)
1,i )

≤ (1 + ε) · 2nR
(B)
1

∑
a2∈T (n)

ε

|T (n)
ε (Ũ1|a2)| · Pr

(
A2 = a2|M (B)

1,1

)
· 2−n(H(Ũ1)−δ1(ε)) (C.9)

≤ (1 + ε) · 2nR
(B)
1 2n(H(Ũ1|S2,U2,S̃2,Ũ2,W̃2,X2,Y2)+δ2(ε)) · 2−n(H(Ũ1)−δ1(ε)) (C.10)

≤ (1 + ε) · 2n(R
(B)
1 −I(Ũ1;S2,U2,S̃2,Ũ2,W̃2,X2,Y2)+δ(ε)) (C.11)

where (C.4) is due to the union bound, (C.5) and (C.6) respectively follow from

the law of total probability and the chain rule, (C.7) is due to the Markov chain

relationships in (C.2) and (C.3), the inequality in (C.8) is obtained using [89, Lemma

1] with the correspondences

S ↔ S̃
(B)
1 , U ↔ Ũ

(B)
1 , ε′ ↔ ε1, and M ↔M

(B)
1 ,

(C.9)-(C.11) follow standard bounds for typical sets, and in the last equation we set

δ(ε) , δ1(ε) + δ2(ε).1 Therefore, if

R
(B)
1 < I(Ũ1;S2, U2, S̃2, Ũ2, W̃2, X2, Y2)− δ(ε)

holds, then limn→∞ Pr
(
F (B+1)

4

)
= 0. By symmetry, one can easily obtain a similar

condition for terminal 2. Combining the first part then completes the proof.

Claim 7: For b = 2, 3, . . . , B, if R
(b)
j > I(Sj;Uj) + δ1(ε1) and R

(b−1)
1 < I(Ũ1;S2, U2,

S̃2, Ũ2, W̃2, X2, Y2)− δ(ε), then limn→∞ Pr
(
E (b)

1 ∩ E
(b−1)

1

)
= 0.

Proof: We sketch the proof since the details follow similar lines of the proofs for

1Note that limε→0 δ1(ε) = 0 and limε→0 δ2(ε) = 0.
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Claims 5 and 6. Using Claim 3, it suffices to show that under the hypothesis, we have

that limn→∞ Pr
(
F (b)
j

)
= 0 for j = 1, 2, limn→∞ Pr

(
F (b)

1 ∪ F (b)
2 ∩ F (b)

3 ∩ E
(b−1)

1

)
= 0,

and limn→∞ Pr
(
F (b)

4

)
= 0. Note that the first two quantities can be easily proved

using the argument in the first part of the proof for Claim 5, which imposes the

condition R
(b)
j > I(Sj;Uj) + δ(ε1) for j = 1, 2.

To show limn→∞ Pr

(
F (b)

1 ∪ F (b)
2 ∩ F (b)

3 ∩ E
(b−1)

1

)
= 0, we follow the proofs of

Claim 5 and 6. Based on the proof of Claim 5, it is straightforward to obtain that

limn→∞ Pr

(
F (b)

1 ∪ F (b)
2

)
= 1 under the conditions R

(b)
j > I(Sj;Uj) + δ(ε1), j = 1, 2.

Consider the inequality

Pr

(
F (b)

1 ∪ F (b)
2 ∩ F (b)

3 ∩ E
(b−1)

1

)
≤ Pr

(
F (b)

3 |F (b)
1 ∪ F (b)

2 ∩ E
(b−1)

1

)
,

where the event E (b−1)

1 implies that (S̃
(b)
1 , S̃

(b)
2 , Ũ

(b)
1 , Ũ

(b)
2 , W̃

(b)
1 , W̃

(b)
2 ) is a jointly typ-

ical sequence. Noting that the right-hand-side of the inequality is now at a position

similar to Pr
(
F (B+1)

3 |E (B)

1

)
in the proof of Claim 6, we obtain the desired result by

applying conditional typicality lemma twice as done before.

For the probability Pr
(
F (b)

4

)
, we adopt the proof of Claim 6 with the correspon-

dence B + 1 ↔ b, which imposes the sufficient condition R
(b−1)
1 < I(Ũ1;S2, U2, S̃2,

Ũ2, W̃2, X2, Y2) − δ(ε) for limn→∞ Pr
(
F (b)

4

)
= 0. Combining the above results then

completes the proof.
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C.2 Auxiliary Result for Special Case (ii) of Corollary 5.1

By symmetry, we only show that I(S̃1; Ũ1|S̃2, Ũ2) < I(Ũ1;Y2|S̃2, Ũ2) reduces to

R(1)(D1) < I(X1;Y2|X2). First, observe that

I(S̃1; Ũ1|S̃2, Ũ2) = I(S̃1;V ′1 , Ŝ
′
1|S̃2, V

′
2 , Ŝ

′
2)

= I(S̃1;V ′1 |S̃2, V
′

2 , Ŝ
′
2)︸ ︷︷ ︸

=0

+I(S̃1; Ŝ ′1|S̃2, V
′

2 , Ŝ
′
2, V

′
1)

= H(Ŝ ′1|S̃2, V
′

2 , Ŝ
′
2, V

′
1)−H(Ŝ ′1|S̃2, V

′
2 , Ŝ

′
2, V

′
1 , S̃1)

= H(Ŝ ′1)−H(Ŝ ′1|S̃1) (C.12)

= I(S̃1; Ŝ ′1)

= R(1)(D1) (C.13)

where (C.12) holds since S̃1 and S̃2 are independent and hence Ŝ ′1 is independent of

(S̃2, V
′

2 , Ŝ
′
2, V

′
1), and (C.13) follows since the joint probability distribution PS̃1,Ŝ′1

=

PS1,Ŝ1
achieves R(1)(D1).

Moreover, we have that

I(Ũ1;Y2|S̃2, Ũ2) = I(V ′1 , Ŝ
′
1;Y2|S̃2, V

′
2 , Ŝ

′
2)

= I(V ′1 ;Y2|S̃2, V
′

2 , Ŝ
′
2) + I(Ŝ ′1;Y2|S̃2, V

′
2 , Ŝ

′
2, V

′
1)

= I(X1;Y2|S̃2, X2, Ŝ
′
2) + I(Ŝ ′1;Y2|S̃2, X2, Ŝ

′
2, X1) (C.14)

= H(Y2|S̃2, X2, Ŝ
′
2)−H(Y2|S̃2, X2, Ŝ

′
2, X1) (C.15)

= H(Y2|X2)−H(Y2|X2, X1) (C.16)

= I(X1;Y2|X2)

where (C.14) follows since Xj = V ′j , (C.15) holds since given channel inputs X1 and
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X2, the output Y2 is independent of other variables, and (C.16) holds due to the

Markov chain relationship (S̃2, Ŝ
′
2)(−− X2 (−− Y2.
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