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Abstract

Tandem source-channel coding is proven to be optimal by Shannon given unlimited

delay and complexity in the coders. Under low delay and low complexity constraints,

joint source-channel coding may achieve better performance. Although digital joint

source-channel coding has shown a noticeable gain in terms of reconstructed signal

quality, coding delay, and complexity, it suffers from the leveling-off effect. However,

analog systems do not suffer from the leveling-off effect. In this thesis, we investigate

the advantage of analog systems based on the Shannon-Kotel’nikov approach and

hybrid digital-analog coding systems, which combine digital and analog schemes to

achieve a graceful degradation/improvement over a wide range of channel conditions.

First, we propose a low delay and low complexity hybrid digital-analog coding that is

able to achieve high (integer) expansion ratios (≥ 3). This is achieved by combining

the spiral mapping with multiple stage quantizers. The system is simulated for a 1 : 3

bandwidth expansion and the behavior for a 1 : M (with M an integer≥ 3) system is

studied in the low noise level regime.

Next, we propose an analog joint source-channel coding system that is able to achieve

a low (fractional) expansion ratio between 1 and 2. More precisely, this is an N : M

bandwidth expansion system based on combining uncoded transmission and a 1 : 2



ii

bandwidth expansion system (with N < M < 2N).

Finally, a 1 : 2 analog bandwidth expansion system using the (Shannon-Kotel’nikov)

Archimedes’ spiral mapping is used in the compressed sensing context, which is inher-

ently analog, to increase the system’s immunity against channel noise. The proposed

system is compared to a conventional compressed sensing system that assumes noise-

less transmission and a compressed sensing based system that account for noise during

signal reconstruction.
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Chapter 1

Introduction

Telecommunication is an increasingly important part of modern societies as it enables

the transportation of information in a short time without being hindered by distance.

One of the ultimate goals in communication systems is to provide highly reliable and

efficient transmission of data bearing signals, such as text, images, video, speech, over

a noisy medium (e.g., wireless channels). Such signals have a high information rate,

while the medium has a limited capacity.

Source compression (source coding) and efficient use of the channel (channel coding)

were subject to extensive research over the last decades. Despite great achieved

progress, particularly vis-a-vis separate (tandem) source and channel coding, it is not

always possible to reach the desired quality of the received signal under channel and

complexity constraints. The combination of source and channel coding may achieve

better performance under limited resources. Thus joint source-channel coding is a

topic that is receiving increasing attention.

In this thesis, we investigate two different joint source-channel coding methods for the
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reliable and efficient transmission of analog-valued sources over Gaussian channels.

One is based on analog mapping and referred to as Shannon-Kotel’nikov mapping,

and the other is based on hybrid digital-analog coding. Furthermore, we adapt and

apply the use of Shannon-Kotel’nikov mapping within the compressed sensing context

to increase the system’s immunity against channel noise.

1.1 Source and Channel Coding

1.1.1 Tandem Coding System

Typically, in communication systems, sources are often modeled by a discrete-time

continuous-amplitude (analog) random sequence. Due to bandwidth and storage

restrictions, source sequence are usually compressed using a source encoder to remove

its redundancy. This operation is referred to as source coding. The inevitable loss of

information from source coding may lead to a greater level of sensitivity to channel

noise. Hence, a channel encoder is required to add some controlled redundancy at

the output of the source encoder for error protection. This operation, which is often

called channel coding, can correct errors in addition to its ability to detect errors. To

get an estimate of the source sequence, channel and source decoders are, respectively,

applied on the noisy received channel encoder output. This communication system,

that uses separately designed source and channel coders as shown in Fig. 1.1, is often

called a tandem coding system.

According to Shannon, the rate distortion function R(D) is the minimum rate needed
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Figure 1.1: Block diagram of the tandem source-channel coding system.

to encode a source with an average distortion not exceeding D; and the capacity-

cost function C(P ) is the maximum rate at which channel can transmit information

reliably given an average power constraint P on the channel input. As a result,

Shannon showed that a source signal can be transmitted (optimally) with fidelity D

via a tandem coding scheme if R(D) ≤ C. This result is known as the source-channel

separation theorem [3, 4].

1.1.2 Joint Source-Channel Coding

There are a few problems with tandem systems that have motivated researchers to

investigate joint source-channel coding. One main problem that is worth mentioning

about the source-channel separation theorem is that the coders must have unlimited

delay and complexity in order to achieve optimality. This means that, in practice,

for delay and complexity constrained applications, the tandem system might not
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be optimal. Another problem is that both source and channel coders are designed

separately. This means that the source codes are designed assuming that the channel

codes can correct all errors introduced by the channel noise, and the channel codes

are designed to protect the source codes equally assuming the latter are uniformly

distributed. These assumptions are not true in practice and indeed unequal error

protection with source codes can achieve better performance. Another important

drawback is that the separate source-channel system is highly non-robust. More

specifically, if the true channel capacity is lower than the capacity of the designed

channel, channel codes cannot give a low error rate, and the performance degrades

drastically. This is often called the threshold effect [1]. Furthermore, if the true

capacity is higher than the capacity of the designed channel, the performance does

not improve beyond a certain threshold. This is referred to as the leveling-off effect

[1].

Joint source-channel coding techniques include: (a) unequal error protection in which

channel codes protect source information according to its level of importance ; (b)

optimal quantizer design for noisy channels such as channel-optimized vector quanti-

zation (COVQ) [5]; (c) direct source-channel mapping [1, 6, 7, 8].

Although digital joint source-channel coding have shown a noticeable gain in terms of

reconstructed signal quality, coding delay and complexity, it usually suffers from the

leveling-off effect. This leads us to investigate the advantage of (1) analog systems

(i.e., Shannon-Kotel’nikov mapping) that are based on the direct source-channel map-

ping technique and (2) hybrid digital-analog coding systems which combines digital

and analog schemes to achieve a graceful performance for a wide range of channel

conditions.
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1.2 Compressed Sensing

Compressed sensing or compressive sensing (CS) refers to the problem of recovering

a signal using fewer (“sparse”) linear measurements. The conventional signal com-

pression methodology is based on acquiring the entire signal (usually large), and then

throwing away information during compression. This technique, which uses a lot of

resources for data acquisition followed by compression, was questioned by Donoho [9]

by raising a fundamental question: Is there a method that acquires the signal in a

compressed manner and directly sense the essential part of the signal (i.e., combine

the two process of acquiring and compressing)? Recent work on compressed sensing

is continuously producing positive results in that direction.

As mentioned, the aim of CS is to reconstruct a signal from a set of few linear mea-

surements. At first glance, it might be impossible to reconstruct a signal from an

underdetermined (i.e., incomplete) set of measurements. However, considering sparse

finite-dimensional signals, those with few nonzero coordinates, the reconstruction only

depends on a number of degrees of freedom which is smaller than the signal dimen-

sional space. Many signals such as real-world images, and audio signals, are sparse

in some basis. These sparse signals, which lie in a lower dimensional space, may be

represented with a fewer measurements. However, it might be difficult to determine

in which lower dimensional subspace such signals lie. In the recent literature, several

reconstruction algorithms have been developed to solve the sparse recovery problem.

There are two main approaches to this problem. The first one is based on convex

relaxation which can be solved using linear programming such as basis pursuit [10],

whereas the second approach is based on iterative greedy search strategies such as

matching pursuit [11].
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Finally, for CS to be widely applicable, recovery algorithm should be stable. This

is essential, since in practice, we often encounter noisy signals or measurements, and

most real-world signals are not exactly sparse. This lead us to investigate Shannon-

Kotel’nikov mapping, that acts as an analog joint source-channel encoder, within the

CS context to increase immunity against channel noise.

1.3 Summary of Contribution

In this thesis, all studied systems are based on the 1 : 2 double Archimedes’ spiral

mapping. First, we combine the spiral mapping with multiple stage quantizers to

achieve high (integer) expansion ratios (≥ 3). Then, the uncoded and the spiral

mappings are used to obtain a low (fractional) overall expansion ratio between 1 and

2. Finally, the 1 : 2 spiral mapping is applied within the compressed sensing context

to increase system’s immunity against channel noise. The primary contributions of

this thesis are summarized as follows:

• Minimum mean square error (MMSE) and maximum a posteriori (MAP) de-

coders are investigated with 1 : 2 bandwidth expansion systems using the double

Archimedes’ spiral mapping. Using MMSE/MAP estimator instead of maxi-

mum likelihood (ML) is shown to achieve a graceful improvement/degradation

over a wide range of noise levels.

• A 1 : 3 joint source-channel coding system based on hybrid digital-analog scheme

is proposed. The proposed scheme has a low delay/complexity since it encodes

one source symbol at a time (no delay), and uses a scalar quantizer and a map-

ping function at the encoder side; the decoder is implemented using a quantizer
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and a table-lookup. An upper bound on the end-to-end distortion is derived.

The performance of the proposed hybrid system is investigated and compared to

other reference systems. A generalization of the 1 : 3 system to achieve higher

expansion ratio 1 : M (with M an integer bigger than 3) is proposed by using

multiple stage quantizers. Furthermore, the behavior of this system is studied

in the low noise level regime.

• A purely analog lossy joint source-channel coding system is presented. This sys-

tem is based on combining an uncoded system and a 1 : 2 bandwidth expansion

system. As a result, the proposed system can achieve any overall expansion

ratio between 1 and 2. Power is optimally allocated between the uncoded and

the expansion systems in order to minimize the overall distortion.

• Shannon-Kotel’nikov mapping is applied on compressed sensing in the presence

of noise. The proposed scheme is optimized for minimal end-to-end distortion.

The proposed system is compared to two CS-based systems.

1.4 Thesis Overview

The thesis contains 6 chapters. The main ones are Chapters 3− 5.

In Chapter 2, a description of the general communication system is first given. The

theoretical limit of such system is then presented. We further review various joint

source-channel coding schemes including optimal linear systems, power constraint

channel-optimized vector quantization, Shannon-Kotel’nikov mappings, and hybrid

digital-analog systems. In addition, a detailed description of a 1 : 2 Shannon-

Kotel’nikov system based on the double Archimedes’ spiral mapping is presented.
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Furthermore, MMSE and MAP decoders are assessed on this system instead of ML

decoder used previously.

In Chapter 3, a hybrid digital-analog source-channel coding with 1 : 3 bandwidth

expansion is proposed. The system parameters are numerically optimized to minimize

a target distortion. The performance of the 1 : 3 bandwidth expansion system is

investigated and compared to other reference systems. Moreover, an upper bound on

the end-to-end system distortion is derived. Furthermore, we generalize the system

to achieve higher expansion ratios 1 : M (where M > 3) in which its behavior in the

CSNR limit is studied.

In Chapter 4, a purely analog joint source-channel coding is presented. This system

is an N : M bandwidth expansion scheme as long as the condition N < M < 2N is

fulfilled. Power is optimally allocated to minimize the overall distortion.

In Chapter 5, a 1 : 2 Shannon-Kotel’nikov mapping is applied within the compressed

sensing context to increase the CS system’s immunity against channel noise. The

number of measurements is optimized to minimize the overall MSE distortion. The

proposed scheme is compared with a CS-based system which accounts for channel

noise during signal reconstruction.

Finally, conclusions are presented in Chapter 6.



Chapter 2

Preliminaries

2.1 General Problem Formulation

We consider the problem of transmitting a discrete-time, continuous-amplitude source

over a memoryless discrete-time, continuous-amplitude channel. We assume that the

channel symbols are corrupted by an additive white Gaussian noise (AWGN). This

communication system is illustrated in Fig. 2.1. The source symbol X is encoded

to generate the channel input symbol Y . After transmission, the channel input is

corrupted by noise W resulting in channel output Ŷ = Y + W , where W is drawn

from an independent and identically distributed (i.i.d.) Gaussian process with mean

zero and variance σ2
W (W ∼ N (0, σ2

W )). At the receiver side, the channel output Ŷ

is decoded to produce an estimate of the source symbol X̂.

The aim in such communication system is to reconstruct the estimate source symbol

X̂ with some fidelity criterion. The distortion measure that is considered in this thesis
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Figure 2.1: A general point-to-point communication system.

is the mean square error (MSE)

d(X, X̂) = (X − X̂)2. (2.1)

The general system design can be formulated by finding the encoder and the decoder

that minimize the average distortion

D = E[d(X, X̂)] =

∫ ∫

(x− x̂)2fX,X̂(x, x̂)dxdx̂ (2.2)

where E[.] denotes the expectation operator, and fX,X̂(x, x̂) is the joint probability

density function (pdf) of the source symbol and the reconstructed one. The mini-

mization of (2.2) should be done under a transmission power constraint P

E[Y 2] =

∫

y2fY (y)dy ≤ P (2.3)

where fY (y) is the pdf of the channel input Y .
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2.2 Theoretical Limit

In this section, we present the theoretical limit of the communication problem. We

limit our discussion to the theoretical lower bound on the distortion for the case of

the memoryless Gaussian source and the AWGN channel. Note that the definition

of this bound is based on the fundamental source and channel separation theorem

introduced by Shannon [3].

2.2.1 Bounds on Source-Channel Coding

Fig. 2.2 shows the block diagram of a tandem source-channel coding system. In this

system, samples of the source are grouped into blocks of size N ; a source encoder

that compress the source information and a channel encoder that protect the source

information from channel noise by adding some controlled redundancy are applied to

the source vector XN in order to produce the channel input YM , where M is the

number of channel symbols. At the receiver side, both channel and source decoder

are applied to estimate the information source.

Figure 2.2: A point-to-point communication system based on the separation theorem.

Given a fidelity criterion, Shannon derived an absolute lower bound on the rate of

the source. This is known as the rate-distortion function. For a memoryless (i.i.d.)
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Gaussian source X under the MSE distortion measure, the rate-distortion function

can be expressed as follows [4]

R(D) = max

[

1

2
log

(

σ2
X

D

)

, 0

]

(bits/source symbol) (2.4)

where σ2
X is the source signal power, and D is the distortion.

Moreover, information from source encoder is transmitted over a noisy medium (chan-

nel). The channel capacity represents an upper limit on the rate at which information

can be transmitted reliably (with probability of error that asymptotically vanishes

with respect to the coding blocklength) given a certain channel signal-to-noise ratio

(CSNR) [3]. For the AWGN channel with an average power constraint P on the

channel input, the capacity-cost function is given by [4]

C(P ) =
1

2
log

(

1 +
P

σ2
W

)

(bits/channel use) (2.5)

where the ratio P/σ2
W is the CSNR.

2.2.2 Optimal Performance Theoretically Attainable

As a result of the definition of the rate-distortion and capacity-cost functions, a

memoryless source that can be reproduced (at an overall rate of M/N channel use

per source symbol) at the receiver side of a memoryless channel with power constraint

P and distortion at most D requires that its rate-distortion R(D) is less than or equal

to the capacity of the channel C(P ). Furthermore, it was shown by Shannon that the

source can be asymptotically reproduced at the receiver side with fidelity distortion
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at most D via a tandem code if R(D) ≤ C(D). Hence, for the memoryless Gaussian

source-channel pair, the optimal performance theoretically attainable (OPTA) can be

found by equating the source rate and the channel capacity (NR(D) = MC(P )) as

follows

SDR ,
σ2
X

D
=

(

1 +
P

σ2
W

)M/N

(2.6)

where SDR is the signal-to-distortion ratio. When M > N , redundant dimension is

available and error correction can be used; and when N > M , the source has to be

compressed to lower dimension before transmission.

2.3 Joint Source-Channel Coding Schemes

In order to implement a mapping from a source symbol of bandwidth BS to a channel

symbol of bandwidth BC , we will use the block-based approach as shown in Fig. 2.3.

In this system, samples of the memoryless source X are grouped into blocks of size N

and encoded using γ(.). The encoder maps the source vector XN to an input channel

vector YM of length M . By having M/N = BC/BS, bandwidth expansion/reduction

is obtained by mapping the N source samples into M channel samples. Note that

bandwidth expansion/reduction and dimension expansion/reduction are used inter-

changeably in this thesis.

2.3.1 Optimal Linear System

Block pulse amplitude modulation (BPAM) is the optimal (in the mean square sense)

linear system for transmitting a vector source on a vector channel with additive noise
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Figure 2.3: A point-to-point block-based system.

[2]. Assume that an i.i.d. N dimensional Gaussian source XN is to be transmitted

by means of a M dimensional channel vector YM . In [2], it was shown that when

N < M (bandwidth expansion), the transmitter and the receiver that minimize the

MSE distortion under an average power constraint P are given by

YM = α(XN) = TXN and X̂N = β(YM) = RŶM (2.7)

where ŶM = YM +WM is the received signal, T and R are respectively the encoder

and decoder matrices

γ , T =

√

M

N

√
P

σX

IM×N

β , R =

√

N

M

√

σ2
XP

P + σ2
W

IN×M (2.8)
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where IN×M is a N ×M matrix with ones on the main diagonal and zeros elsewhere.

On the other hand, when N > M (bandwidth reduction), the linear system’s trans-

mitter and receiver matrices can be expressed as follows

T =

√
P

σX

IM×N

R =

√

σ2
XP

P + σ2
W

IN×M . (2.9)

In effect, the optimal linear system inserts zero samples when more channel bandwidth

is available (M > N) and removes source samples when channel bandwidth is limited

(M < N). Fig. 2.4 shows the performance of the optimal linear system for a 1 : 2

bandwidth expansion ratio (i.e., N = 1, M = 2) and 2 : 1 bandwidth reduction.

The 1 : 1 theoretical limit is also shown for comparison. The plot is made for a

memoryless Gaussian source X with unit variance. From Fig. 2.4, we can notice

that when using a linear system for dimension reduction, the system performance

saturates at some point. This can be explained in a similar way to the leveling-

off effect in a purely digital system. In addition to that, it is clear that the linear

system is closest to the optimal performance at low CSNR levels; however as CSNR

increases, the linear system is far from optimal. Moreover, in [2], the authors have

proven that BPAM approaches OPTA when CSNR goes to −∞. Hence, the linear

system performs well for a very poor channels which is usually not of interest. This

motivates the investigation for other schemes that can achieve better performance

such as non-linear systems.
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Figure 2.4: Performance of the optimal linear system for different dimension expan-
sion/reduction ratios. The theoretical limit (OPTA) is also plotted for comparison.
The plot is for a memoryless Gaussian source with unit variance.

2.3.2 Power Constrained Channel-Optimized Vector Quan-

tization

The power constrained channel-optimized vector quantization (PCCOVQ) is proposed

in [12, 13]. The approach used follows the framework of the block-based system shown

in Fig. 2.3. Here again, the objective is to find the encoder γ and the decoder β that

minimize the average MSE distortion D(γ, β) = E[||XN − X̂N ||2]/N subject to an

average transmission power P (γ) = E[||γ(XN)||2]/M ≤ P . Using the Lagrangian

method, the constrained optimization problem can be recast into an unconstrained
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minimization problem given by

min
γ,β

[D(γ, β) + λP (γ)] (2.10)

where λ is the Lagrange multiplier used to control the average power. Note that this

problem is related to the COVQ design problem but with an additional constraint on

the transmission power.

At the encoder side, the authors in [12, 13] propose to use a vector quantizer followed

by a mapping from the source space to a finite channel space set. The channel signal

set is an M -fold cartesian product of a uniform pulse amplitude modulation (PAM)

alphabet. The receiver side uses a nearest neighbor detector to choose the decoded

source from a reconstruction codebook. The encoder partition, the reconstruction

codebook, and the distance between samples in the channel signal set are optimized

to minimize the MSE distortion under a power constraint. This is done using a

modified generalized Lloyd algorithm.

Both bandwidth reduction (N > M) and expansion (N < M) are developed in

[13]. It is shown that PCCOVQ performs well for dimension reduction; there is only

1 dB gap between the SDR performance of a 2 : 1 PCCOVQ and the theoretical

limit OPTA. However, for bandwidth expansion, PCCOVQ does not perform well

with respect to other reference systems. In [14], the authors focus on PCCOVQ for

bandwidth expansion. They apply the same algorithm as the one proposed in [13]

but using different initial conditions and a larger number of samples in the channel

signal set. These slight modifications are shown to improve the performance of the

PCCOVQ for bandwidth expansion. Simulation results indicate that the performance

of 1 : 2 and 1 : 3 PCCOVQ systems are comparable to other state of the art reference
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systems [14]. However, it is important to note that due to the use of a large number

of symbols in the channel signal set, the computational complexity for the system

design will get large as the expansion ratio and the CSNR level increase [14].

In Fig. 2.5, we show the reconstruction codebook of size 512 for a 2 : 1 PCCOVQ.

Notice that for low CSNR (0 dB), the codebook gives a straight line shape which is

similar to the linear system (BPAM). In BPAM, we disregard one component and

hence the mapping is a line along one of the axes. For high CSNR (20 dB), the

codebook has a similar shape to a double Archimedes’ spiral.
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Figure 2.5: The reconstruction codebook of size 512 for a 2 : 1 PCCOVQ system.
The system is designed for (a) CSNR = 0 dB and (b) CSNR = 20 dB. The graph is
made for an i.i.d. Gaussian source with unitary variance.
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2.3.3 Shannon-Kotel’nikov Mappings

As opposed to quantizing the source into a discrete set of representation points which

are then mapped into the channel space, Shannon-Kotel’nikov mapping [1, 15] is

an approach based on direct source-channel mapping in which source and channel

coders are combined into one mathematical operation. This operation maps the

source space directly into the channel space. The main idea is based on a geometrical

characterization of the communication problem in which the source is represented

using a point in the source space R
N (message space), and the channel input is

a point in the channel space R
M (signal space). This approach is introduced by

Shannon in [1]. Furthermore, Kotel’nikov presents a theory for bandwidth expansion

in his doctoral dissertation [15] by using a similar signal mapping approach; and hence

its name.

Shannon-Kotel’nikov mappings perform either a projection of the source onto a lower

dimensional space or map the source into a higher dimensional space. The former

represents a lossy compression of the source (system bandwidth reduction), while the

latter uses the redundant dimensions for error control (system bandwidth expansion).

In the case of a match between the source and the channel bandwidth (i.e., same di-

mension), it is well known that a linear, or uncoded, transmission is optimal [16].

However, when the source and channel dimensions are not equal, linear transmission

is suboptimal as was previously discussed in Section 2.3.1. Instead of discarding the

excess of source samples to achieve bandwidth reduction, or repeating part of the

source samples for bandwidth expansion, nonlinear mapping needs to be explored in

order to achieve a better performance.1 In [1], Shannon proposed a similar mapping as

1Note that repeating part of the source or inserting zeros samples will not alter the performance
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Figure 2.6: Shannon’s example on 1 : 2 dimension expansion mapping [1].

that shown in Fig. 2.6 as an example to achieve a 1 : 2 bandwidth expansion. In this

mapping, the one-dimensional source is given by the line space (e.g., the length along

the curve) which is mapped to a two-dimensional channel input using (Y1, Y2). This

approach will perform better than just sending twice the same source symbol and do

averaging at the decoder side. Shannon also suggested that the same mapping shown

in Fig. 2.6 can be used for bandwidth reduction by interchanging the source and the

channel space. This is done by projecting every source vector (X1, X2) into the near-

est point on the mapping curve which will be represented using a one-dimensional

of the system since both mapping are related by some orthonormal transformation.
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channel space (e.g., the distance from some reference origin to the projected point on

the curve).

Since the Shannon-Kotel’nikov approach uses space filling curves to perform the

source-to-channel space mapping, one main question is: How one can determine the

optimal geometrical structure of the mapping? One way is to look at the codebook

structure of the PCCOVQ [12, 13] which is closely related to Shannon-Koteln’nikov

approach. By connecting the adjacent codebook points of the PCCOVQ, we can ob-

tain a space filling-curve that can be used as a mapping function.

Another way is to search for a mapping function that satisfies some necessary require-

ments [8]: 1) The curve should cover well the entire source space to reduce overload

distortion; 2) source symbols with high probability have to be mapped to low power

channel symbols to minimize the transmission power; 3) points in the channel space

that are close to each other must be mapped to source symbols that are also close

in the source space in order to minimize distortion. Moreover, for bandwidth expan-

sion, it is important to design the mapping such that channel representations have a

low correlation so that no redundant information is transmitted on different channel

symbols.

In [17, 18, 19, 20], the authors have shown that for a memoryless Gaussian source,

the double Archimedes’ spiral is a good mapping for applying both 1 : 2 bandwidth

expansion and 2 : 1 bandwidth reduction. As shown in Fig. 2.5, the reconstruc-

tion codebook for a 2 : 1 PCCOVQ system designed for high CSNR levels resembles

the spiral mapping. In this case, the advantage of using a parameterized Shannon-

Kotel’nikov mapping is the easiness in designing the system for a given source and

channel characteristics. This is done by only modifying the parameters of the mapping
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so that the shape can be changed accordingly.

2.3.4 Hybrid Digital-Analog Systems

One of the main advantages of digital lossy communication systems is the ability to

achieve asymptotically the theoretical performance for a given CSNR via the separate

source-channel coding (tandem system). However, there are two main disadvantages

with tandem systems. One is the threshold effect which means that the performance

degrades drastically when the true CSNR is lower than the designed one. The other

drawback is the leveling-off effect which means that the performance remains con-

stant beyond a certain level even if the CSNR is increased. This is due to the non-

recoverable distortion introduced by the quantizer.

The threshold effect can be solved using a digital joint source-channel coding. Such

systems, however, do not solve the leveling-off effect. On the other hand, an analog

system does not suffer from the leveling-off effect. This provides a motivation to ex-

ploit the advantage of both digital and analog systems by allowing part of the system

to use digital modulation and coding and another part to use analog signaling.

Schemes based on hybrid transmission are built by splitting the source into a quan-

tized (digital) part, and a quantization error (analog) part. A general block diagram

of a hybrid digital-analog (HDA) system is shown in Fig. 2.7 [21, 22, 23, 24, 25, 26].

In [23], an HDA system for bandwidth expansion is built based on vector quantization

and linear (uncoded) transmission. A design algorithm for the system optimization

is also presented. In [22], a bandwidth expansion/reduction system using HDA is

given. This system uses a tandem scheme using a turbo code in the digital part and a

linear/non-linear mappings in the analog part. Note that the schemes in [22, 23] can
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Figure 2.7: A block diagram of a general hybrid digital-analog system. The digital
part uses a tandem scheme and the analog part uses a linear transmission.

achieve any expansion/reduction ratio. In [24, 25], a hybrid scheme which is referred

to as hybrid scalar quantizer linear coder (HSQLC) is proposed. This scheme is able

to achieve a 1 : 2 bandwidth expansion by using a scalar quantizer in the digital

part and a linear mapping in the analog part. Note that the HSQLC system has

a low delay/complexity constraint since it encodes a single source sample at a time

(no delay), and uses a simple scalar quantizer and a linear coder. In contrast, the

previously mentioned HDA schemes use either a vector quantization or a tandem

system (with powerful channel coding) in the digital part and hence incurs large

delay and complexity.

In general, HDA systems have shown to offer a robust and graceful performance

improvement/degradation for a wide range of CSNRs which make them suitable in

many practical applications including broadcasting.
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2.4 Improved 1:2 Bandwidth Expansion System

In this section, we focus on a 1 : 2 bandwidth expansion analog system using the

Shannon-Kotel’nikov approach, where each source sample is represented as a point in

a two-dimensional channel space. The double Archimedes’ spiral mapping proposed

in [17] is used. MMSE and MAP decoding are proposed to recover the source instead

of ML decoding as used in [17]. Although ML decoder is simple and performs well at

high CSNR levels [27, pp. 291-292], it is not optimal for the MSE distortion criterion

and it is shown to give a poor performance at low CSNRs. MMSE decoding was

proposed in [28] for bandwidth reduction. Here we will assess the use of both MMSE

and MAP decoding with dimension expansion and compare it to the ML decoder.

2.4.1 System Model

Encoder

For an i.i.d. Gaussian source X ∼ N (0, σ2
X) and AWGN channel W ∼ N (0, σ2

W ),

the double Archimedes’ spiral is a suitable mapping for a 1 : 2 bandwidth expansion

[17]. Bandwidth expansion is performed by mapping each source sample x ∈ R to a

two-dimensional channel symbol, which is a point on the double Archimedes’ spiral

shown in Fig. 2.8 and given by [17]

s(x) =







y1(x)

y2(x)






=

1

π







sgn(x)∆ϕ(x) cosϕ(x)

sgn(x)∆ϕ(x) sinϕ(x)






(2.11)
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where sgn(·) is the signum function, ∆ is the radial distance between any two neigh-

boring spiral arms, and ϕ(x) =
√

6.25|x|/∆. The radial distance ∆ is the only
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Figure 2.8: Double Archimedes’ spiral. The negative source samples are mapped to
the dashed line, whereas the positive ones are mapped to the solid line. The graph is
plotted for ∆ = 0.25. The amplitude of the one-dimensional symbol is proportional to
the length along the spiral arm from the origin to the mapped point. Some examples
of the mapping are also plotted.

parameter that needs to be optimized in order to minimize the overall MSE distor-

tion from using spiral mapping. Note that as shown from Fig. 2.8, equal increments

in x correspond to equal increments in distance measured along the spiral curve.
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Decoder

ML decoding

Given the received noisy two-dimensional channel output vector Ŷ = Y + W, the

ML estimate is given by the source x that maximizes the likelihood function

f
Ŷ|X(ŷ|x) =

(

1

2πσ2
W

)

e
−

||ŷ−y||2

2σ2
W . (2.12)

This is achieved by the value x that minimizes the L2 norm ||ŷ − y||. Hence, the

estimated source symbol corresponds to the point on the curve that is closest to the

received point in the Euclidean norm. Although ML decoding is simple and performs

well at high CSNRs, it is not optimal for the MSE distortion criterion. Next, we will

describe the MMSE decoder, which is optimal, and the MAP decoder.

MMSE Decoding

In the mean square sense, the MMSE decoder is optimal and can be expressed as

follows

x̂MMSE = E[X|ŷ1, ŷ2] =

∫

xfX|Ŷ1,Ŷ2
(x|ŷ1, ŷ2)dx

=

∫

xfŶ1,Ŷ2|X
(ŷ1, ŷ2|x)fX(x)dx

∫

fŶ1,Ŷ2|X
(ŷ1, ŷ2|x)fX(x)dx

. (2.13)

For i.i.d. Gaussian noise, fŶ1,Ŷ2|X
(ŷ1, ŷ2|x) = fŶ1|X

(ŷ1|x)fŶ2|X
(ŷ2|x), where

fŶi|X
(ŷi|x) =

1√
2πσW

e
−

(ŷi−yi)
2

2σ2
W , i = 1, 2 (2.14)
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and yi(x) is given by (2.11). Note that (2.13) is numerically calculated by discretizing

x using a uniform quantization step d and calculating the mapped value (y1(x), y2(x))

for each discretized point. This gives a discretized version of each probability and

the integration is simplified to only multiplication and addition operations. Note that

this approximation is assumed to be good as long as the cardinality of the discrete set

is sufficiently large and d is small in relation to the standard deviation of the channel

noise.

Moreover, to make the decoder implementation computationally efficient, we devise

a decoder based on quantization and table-lookup, thereby avoiding to perform a

numerical integration for each received sample. This is achieved via uniform quanti-

zation of the output of the channel ŷ ∈ R
2 and looking up the decoded value x̂ for

each quantization bin in a table.

MAP Decoding

Here we exploit the use of the MAP decoder. MAP decoding is given by

x̂MAP = argmax
x

fX|Ŷ1,Ŷ2
(x|ŷ1, ŷ2) = argmax

x

fX(x)fŶ1,Ŷ2|X
(ŷ1, ŷ2|x)

fŶ1,Ŷ2
(ŷ1, ŷ2)

= argmax
x

fX(x)fŶ1,Ŷ2|X
(ŷ1, ŷ2|x). (2.15)

In a similar way to the MMSE decoder, MAP decoder can be also applied using a

quantizer and a table-lookup.
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2.4.2 System Optimization

For a given CSNR, the radial distance ∆ is the only parameter that needs to be

optimized in order to minimize the overall MSE distortion [17]. When a received

vector is decoded, we may encounter two types of error: 1) the threshold noise which

occurs when choosing the wrong spiral arm; 2) and the weak noise which occurs

when noise makes the estimated source sample to fall on the same spiral arm. Two

examples that illustrate both weak and threshold distortion are shown in Fig. 2.9.

When considering weak noise, the signal curve s can be approximated in the vicinity
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Figure 2.9: Cases 1 and 2 illustrate the weak noise and threshold distortion, respec-
tively.
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of a transmitted signal x0 by (linear approximation) [17]

s(x) ≈ s(x0) + s′
0
(x− x0) (2.16)

where s′0 =
ds(x)
dx
|x=x0 . The ML estimate of x can be approximated as the projection

onto the tangent line through s(x0) on the signal curve. Hence, the reconstructed

sample x̂ML corresponds to the point on the curve given by

s(x̂ML) = s(x0) +
< w, s′0 >

||s′0||2
s′0 (2.17)

where < ., . > denotes the inner product operator. Comparing (2.16) and (2.17), the

MSE distortion given that x0 was transmitted, can be expressed as follows [17]

ε2wn = E[(x̂ML − x)2|x = x0] =
E[< w, s′0 >

2]

||s′0||4

=
σ2
W

||s′0||2
(2.18)

where the last equality is valid for Gaussian noise. The average weak noise MSE is

then given by

ε̄2wn = σ2
W

∫

1

||s′(x)||2fX(x)dx. (2.19)

From (2.19), one can observe that the norm of the tangent vector of s appears in the

denominator. Hence, the longer these vectors are, the smaller the weak noise. In-

creasing the length without violating the transmission power constraint (i.e., without

leaving a specified hyper-sphere), requires bending the curve. However, it is impos-

sible to do that without increasing the threshold distortion. From Fig. 2.10, we can
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notice how the power constraint which is illustrated using the dashed circle will in-

crease the probability of having a threshold distortion from twisting and elongating

the mapping function.
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Figure 2.10: 1 : 2 dimension expansion using Archimedes’ spiral. The big dashed
circle shows the constraint region due to power constraint. (b) The same mapping
of part (a) has been stretched to lower the weak noise however this will introduce
threshold noise as shown from the noise vector w. The small dotted circle around the
dotted source sample shows a region in which weak noise can occur.

Hence, for the spiral mapping, threshold distortion decreases when increasing ∆,

whereas weak noise increases. The optimal ∆ that minimizes the total distortion can

be found by solving the following unconstrained optimization problem

∆opt = argmin
∆

[ε̄2wn(∆) + ε̄2th(∆)] (2.20)
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where ε̄2wn and ε̄2th are, respectively, the average weak noise and threshold distor-

tion. From (2.11), ||s′(αx0)||2 = α2, hence the average weak noise distortion can be

expressed as follows [17]

ε̄2wn =
σ2
W

α2
(2.21)

where α is a gain factor related to the average channel power constraint P via

P =
1

2

∫

||s(αx)||2fX(x)dx. (2.22)

The threshold distortion is calculated according to Fig. 2.11. Due to symmetry, it

is sufficient to calculate the threshold distortion for one of the spiral arms, and then

multiplying the result by 2.

Considering the positive spiral arm, the threshold distortion is calculated as follows

[17]

ε̄2th = 2Pr

∫

[(x− x̂+)
2 + (x− x̂−)

2]fX(x)dx (2.23)

where x̂± are the reconstructed values when the threshold effect occur and Pr is the

probability of a threshold distortion to occur [17]

Pr =
1

2

[

1− erf

(

∆

2
√
2σW

)]

(2.24)

where erf(·) is the Gaussian error function. Note that the value that one get when the

threshold effect occurs is the one corresponding to the point on the curve in radial

distance ∆ from the source point. In order to find the reconstructed values x̂±, it is
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Figure 2.11: Threshold distortion calculation. The dotted curve represents the deci-
sion spiral and Pr is the probability of a threshold distortion to occur.

convenient to do the calculations in polar coordinates

s+(x) = s(x) + ∆

−∆

π
(ϕ(αx̂+)) =

∆

π
(ϕ(αx)) + ∆. (2.25)

Hence, the reconstructed values can be expressed as follows

x̂± = −η∆
(
√

x

η∆
± π√

α

)2

(2.26)

where η = 0.16. For a Gaussian source X, the threshold distortion ε̄2th, and the gain
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factor α can be expressed, respectively, as follows

ε̄2th ≈
[

1− erf

(

∆

2
√
2σW

)][(

π4η2∆2

α2
+ 4σ2

X

)

erf(a)

−
(

2π2η∆+ aσXα√
2πα

)

8σXe
− a2

2σ2
X +

16π2η∆σX√
2πα

]

(2.27)

α =
Pη
√
2π5

∆σX(1− e
− a

2σ2
X )

(2.28)

where a = 4σX . Fig. 2.12 shows the calculated and the simulated distortion for a

1 : 2 spiral mapping under ML decoding. One can notice that the calculated end-

to-end distortion D = ε̄2wn + ε̄2th matches with the simulated MSE E[(X − X̂)2] for

moderate to high CSNRs; however, for low CSNRs, there is some mismatch. This

shows that (2.21) and (2.27) are very accurate for high CSNR levels. Note that the

calculation of the threshold distortion assume that the distance between the spiral

arms are equidistant. However, this is not the case close to the origin of the spiral.

This makes the calculation to be inaccurate close to the origin and its effect will be

prominent at low CSNR levels. This explains in part the mismatch between the two

curves in Fig. 2.12 for low CSNRs.

Since it is hard to find an analytical expression for the weak noise and threshold

distortion under MAP and MMSE decoding, the optimization of ∆ is done numerically

by searching for the value of ∆ that maximizes the SDR. We create a set of 105 source

samples {x}. Knowing the optimized radial distance under ML decoding ∆ML, we

form an interval v = [∆ML/2 3∆ML/2] in order to choose the radial distance ∆ ∈ v

that gives the best performance. For a given noise variance level, a set of noise

samples {w} is created to model the AWGN channel. Using MMSE/MAP decoder,

we estimate the source sample x̂ and evaluate the SDR over the data set {x}. We
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Figure 2.12: Comparison between calculated and simulated performance of 1 : 2 spiral
mapping under ML decoding. The graph is made for a Gaussian source with standard
deviation σX = 0.25.

search over the interval v and choose a ∆ that maximizes the SDR. For comparison,

we also simulate the system using the ∆ optimized for ML decoding (i.e., using (2.20))

but with the MMSE and MAP decoders.

2.4.3 Numerical Results

In this section, we assume an i.i.d. Gaussian source X with standard deviation

σX = 0.25. For ML decoding, the radial distance ∆ is calculated using (2.20), whereas

for MMSE and MAP decoding, numerical search is used to find the ∆ value that gives

the best performance as described in Section 2.4.2. Comparing Figs. 2.13 and 2.14,
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Figure 2.13: Performance of 1:2 bandwidth expansion using spiral mapping. In ad-
dition to ML decoder, MMSE and MAP decoders are used at the receiver side. The
radial distance ∆ is found using (2.20). The optimal linear system (BPAM) and the
theoretical limit (OPTA) of the system are also plotted. The graph is made for a
Gaussian source X with standard deviation σX = 0.25.

we can notice that MMSE and MAP decoders give better performance than the ML

decoder (as expected). There is a substantial improvement at low CSNR levels and

the performance from the spiral mapping is now similar to the linear system which

is proven to achieve OPTA for asymptotically bad channels [2]. However as CSNR

gets large, the ML decoder gives a similar performance as the MMSE decoder. This

was expected since the ML decoder approaches that of the optimal decoder in the

MSE sense for high CSNR levels [27, pp. 291-292]. When using the optimized ∆ for

the given decoding technique, we notice around 0.3 dB gain for most CSNR range.

The highest gain from optimizing ∆ was noticed for the MAP decoder at CSNR = 25

dB; by comparing Figs. 2.13 and 2.14, a 1 dB gain can be noticed from using the
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optimized ∆ under MAP decoding over the one found using (2.20). However, it is

important to mention that for most CSNR range, when using the MMSE or MAP

decoders, parameter optimization is less critical and it suffices to use the optimized

∆ under ML decoder as given in (2.20).
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Figure 2.14: Performance of 1:2 bandwidth expansion using spiral mapping. In ad-
dition to ML decoder, MMSE and MAP decoders are used at the receiver side. The
radial distance ∆ is found using the numerical optimization method for MAP and
MMSE decoder. The optimal linear system (BPAM) and the theoretical limit (OPTA)
of the system are also plotted. The graph is made for a Gaussian source X with stan-
dard deviation σX = 0.25.

Motivated by the broadcast scenario, we optimize the encoder for a fixed-design CSNR

level and assume that the true CSNR is known at the receiver so that the decoder

can be updated accordingly. Figs. 2.15, 2.16, 2.17, and 2.18 show the robustness

curve for a design CSNR = 6 and 16 dB. We can observe a large gain from using

MMSE and MAP decoding over ML at low CSNRs. Note that ML decoding does not
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Figure 2.15: Robustness curve for the 1:2 spiral mapping system against a noise
mismatch. The receiver side is assumed to know the true CSNR while the encoder is
designed for a given CSNR level. The designed CSNR is 6 dB. The performance of a
linear system and the OPTA are also shown.

use the knowledge of channel noise in estimating the source symbol. However, both

MMSE and MAP decoding use source and channel knowledge to improve the system

performance. When the true CSNR is higher than the designed one, the performance

is still increasing with a strictly positive slope (slope = 1) which is due to the analog

nature of our system; the slope, however, is noticeably less than that of the OPTA

curve (slope = 2). This is contrasted with the leveling-off effect (slope = 0) of a

purely digital system. However, when the true CSNR is lower than the designed

one, the performance decreases drastically especially for ML decoder. This behavior

is due to the threshold distortion which happens for bad channel conditions. When

using MMSE or MAP, in addition to the noise characteristics, the decoder will use the

source knowledge to pick the spiral arm that is more probable to occur. This will lower
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the effect of threshold distortion over ML decoding. It is evident that when using

MMSE or MAP decoder, the system exhibits various degrees of robustness against

mismatch in noise level. More specifically, for low to moderate design CSNR level, the

degradation in performance is small when the actual CSNR is lower than the designed

one. However, for high design CSNR, we can notice substantial degradation from best

performance when the actual CSNR deviates from the designed one. Moreover, when

the actual CSNR is higher than the designed one, the performance is increasing with

a strictly positive slope. Finally, MMSE decoding incurs less degradation than MAP

decoding.

0 5 10 15 20 25
−10

−5

0

5

10

15

20

25

30

35

40

CSNR[dB]

S
D

R
[d

B
]

 

 

Spiral designed for CSNR=16 dB and MMSE
Spiral designed for CSNR=16 dB and MAP
Spiral designed for CSNR=16 dB and ML
Spiral designed at each CSNR and MMSE
Linear system (BPAM)
Theoretical limit (OPTA)

Figure 2.16: Robustness curve for the 1:2 spiral mapping system against a noise
mismatch. The receiver side is assumed to know the true CSNR while the encoder is
designed for a given CSNR level. The designed CSNR is 16 dB. The performance of
a linear system and the OPTA are also shown.
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Figure 2.17: A zoomed plot of Fig. 2.15.
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Figure 2.18: A zoomed plot of Fig. 2.16.



Chapter 3

Hybrid Digital-Analog Coding for

High Bandwidth Expansion

3.1 Introduction

With the increasing popularity of wireless sensors networks, reliable transmission

with delay and complexity constraints is more relevant than ever. A sensor node

communicates its sensed field information to a fusion center over a noisy wireless

channel. In this chapter, we focus on low delay and low complexity lossy JSCC by

proposing a bandwidth expansion scheme based on combining scalar quantizers with

a 1 : 2 nonlinear analog coder operating on the quantization error. The hybrid scheme

HSQLC provides a dimension expansion of rate r = 2 [25]. This scheme uses pulse

amplitude modulation to send a scalar quantizer output on one channel, and linear

uncoded analog transmission of the quantization error on another channel. For rates

larger than two (r > 2), Coward suggested to repeatedly quantize the error from the
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previous quantization step and finish the last step with a linear coder [29]. Recently, a

similar system, referred to as “generalized HSQLC”, was studied in [30], and shown to

achieve the optimal scaling exponent. Our system is closely related to the generalized

HSQLC; one main difference is that we are using a non-linear coder in the analog

part. Similar hybrid systems based on splitting the source into a quantization part

and a quantization error part were also proposed in [22]. These schemes, however,

use long channel block codes for the quantization part, thus incurring large delay and

complexity and making them not comparable with our proposed low delay/complexity

scheme. The rest of the chapter is organized as follows. Section 3.2 describes the

system model and optimization for a 1 : 3 bandwidth expansion. In Section 3.3, a

lower bound on the system SDR is derived. A generalization of the system to account

for higher expansion ratio and its performance in the CSNR limit are presented in

Section 3.4. Simulation results are included in Section 3.5. Finally, conclusions are

drawn in Section 3.6.

3.2 System Model

3.2.1 System Structure

In this section, we assume a memoryless Gaussian source X with variance σ2
X to be

transmitted over a power limited, discrete time, and continuous amplitude channel

with additive white Gaussian noise W ∼ N (0, σ2
W ). We propose a 1 : 3 bandwidth

expansion system that consists of a scalar quantizer and a 1 : 2 dimension expansion

using Archimedes’ spiral, as shown in Fig. 3.1. The proposed system works as follows.

A source symbol X is first quantized using an l-level quantizer Q(.). The quantizer



3.2. System Model 42

Figure 3.1: System Model.

uses a set of decision intervals Di = (di, di+1) with d0 = −∞ and dl = +∞. It returns

both the index i and the representation level A = ai, i = {0, . . . , l − 1}. The index

i is represented by the channel input Y1 = ci. The quantization error B = X − A is

mapped to a two-dimensional channel symbol using the 1:2 Archimedes’ spiral. The

system is optimized to minimize the MSE E[(X− X̂)2] distortion while satisfying the

average channel power constraint P

1

3

{

E[Y 2
1 ] +

∫

||s(αb)||2fB(b)db
}

≤ P (3.1)

where α is the gain factor, fB(b) is the pdf of the quantization error B, and s(.)

denotes the spiral mapping given by

s(b) =







z1(b)

z2(b)






=

1

π







sgn(b)∆ϕ(b) cosϕ(b)

sgn(b)∆ϕ(b) sinϕ(b)






(3.2)

where sgn(·) is the signum function, ∆ is the radial distance between any two

neighboring spiral arms, and ϕ(b) =
√

6.25|b|/∆ [17]. The optimal decoder is
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β(ŷ1, ŷ2, ŷ3) , E[X|ŷ1, ŷ2, ŷ3] = E[A|ŷ1, ŷ2, ŷ3]+E[B|ŷ1, ŷ2, ŷ3], where each expectation

terms are respectively given as follows

E[A|ŷ1, ŷ2, ŷ3] =

∑l−1
i=0 aifW (ŷ1 − ci)

∫ di+1−ai
di−ai

fX(b+ ai)fW (ŷ2 − z1(αb))
∑l−1

i=0 fW (ŷ1 − ci)
∫ di+1−ai
di−ai

fX(b+ ai)fW (ŷ2 − z1(αb))

fW (ŷ3 − z2(αb))db

fW (ŷ3 − z2(αb))db

=

∑

i aie
−

(ŷ1−ci)
2

2σ2
W

∫ di+1−ai
di−ai

e
−

(b+ai)
2

2σ2
X

−
(ŷ2−y1(αb))2+(ŷ3−z2(αb))2

2σ2
W db

∑

i e
−

(ŷ1−ci)
2

2σ2
W

∫ di+1−ai
di−ai

e
−

(b+ai)
2

2σ2
X

−
(ŷ2−z1(αb))2+(ŷ3−z2(αb))2

2σ2
W db

E[B|ŷ1, ŷ2, ŷ3] =

∑l−1
i=0 fW (ŷ1 − ci)

∫ di+1−ai
di−ai

bfX(b+ ai)fW (ŷ2 − z1(αb))
∑l−1

i=0 fW (ŷ1 − ci)
∫ di+1−ai
di−ai

fX(b+ ai)fW (ŷ2 − z1(αb))

fW (ŷ3 − z2(αb))db

fW (ŷ3 − z2(αb))db

=

∑

i e
−

(ŷ1−ci)
2

2σ2
W

∫ di+1−ai
di−ai

be
−

(b+ai)
2

2σ2
X

−
(ŷ2−z1(αb))2+(ŷ3−z2(αb))2

2σ2
W db

∑

i e
−

(ŷ1−ci)
2

2σ2
W

∫ di+1−ai
di−ai

e
−

(b+ai)
2

2σ2
X

−
(ŷ2−z1(αb))2+(ŷ3−z2(αb))2

2σ2
W db

(3.3)

with fW (.) and fX(.) denote, respectively, the pdf of the Gaussian noise and the

source, {z1(αb), z2(αb)} represents the mapped spiral point as given in (3.2), and

0 ≤ i ≤ l− 1. Unfortunately, using the optimal joint decoder makes it hard to find a

closed form expression for the overall MSE distortion and will certainly increase the

system complexity. Since one of our main objectives is to present a simple system

for hybrid digital-analog coding with minimized MSE distortion, we will not use the

optimal joint decoder. Instead, we use two separate optimal decoders for both the

received quantized symbol and the received quantization error. The MMSE decoder
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introduced in Section 2.4 is used for recovering the quantization error

β2(ŷ2, ŷ3) = E[B|ŷ2, ŷ3] =
∫

bfB|Ŷ2,Ŷ3
(b|ŷ2, ŷ3)db =

∫

bfŶ2,Ŷ3|B
(ŷ2, ŷ3|b)fB(b)db

∫

fŶ2,Ŷ3|B
(ŷ2, ŷ3|b)fB(b)db

(3.4)

where fŶ2,Ŷ3|B
(ŷ2, ŷ3|b) = fW (ŷ2 − z1(αb))fW (ŷ3 − z2(αb)). The quantized symbol is

decoded using the MMSE estimator as follows

β1(ŷ1) = E[A|ŷ1] =
∑l−1

i=0 aiP (ai)e
−

(ŷ1−ci)
2

2σ2
W

∑l−1
i=0 P (ai)e

−
(ŷ1−ci)

2

2σ2
W

(3.5)

where P (ai) = P (X ∈ Di) is the probability that A = ai. Note that table-lookup can

be used on both decoders to reduce the complexity. We also use a mid-tread uniform

quantizer, so that only spacing between levels need to be specified

ai =
(

i− (l − 1)/2
)

δa

ci = Kai for i ∈ 0, ..., l − 1

dj =
(

j − l/2
)

δd for j ∈ 1, ..., l − 1 (3.6)

where δa, δd represent, respectively, the reproduction and decision levels step, K is a

gain factor related to power constraint on Y1, and the number of quantization level

l is assumed to be an odd integer. The distribution of the quantization error B is

given by

fB(b) =
l−1
∑

i=0

fA,B(ai, b) (3.7)
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where fA,B(ai, b) can be expressed as follows

fA,B(ai, b) =











fX(b+ ai), b ∈ (di − ai, di+1 − ai)

0, Otherwise
. (3.8)

Using (3.7), the average channel power constraint in (3.1) becomes

1

3

{

σ2
Y1

+
α∆

π2η

l−1
∑

i=0

(
∫ di+1

di

|x− ai|fX(x)dx
)

}

≤ P (3.9)

where σ2
Y1

is the variance of the channel input Y1 given by

σ2
Y1

=
l−1
∑

i=0

c2iP (X ∈ Di) = K
l−1
∑

i=0

a2i

∫ di+1

di

fX(x)dx. (3.10)

3.2.2 System Optimization

In this section, we will optimize a target distortion MSEtarget

MSEtarget = MSEq +MSEexp (3.11)

where MSEq is the distortion in decoding A, and MSEexp is the distortion in decoding

B. 1

1Note that MSEtarget is equal to the overall MSE distortion E[(X − X̂)2] if we were using a
centroid quantizer. Moreover, simulations have shown that the difference between the target and
the real distortion is very small.



3.2. System Model 46

The MSEq is calculated as follows

MSEq = E[(A− Â)2] = E[(A− β1(C(A) +W ))2]

=

∫ +∞

−∞

l−1
∑

i=0

(ai − β1(ci + w))2P (ai)fW (w)dw. (3.12)

The distortion from the spiral mapping MSEexp is given by

MSEexp = E[(B − B̂)2] ≈ ε̄2wn + ε̄2th (3.13)

where the weak noise ε̄2wn is given by

ε̄2wn ≈
σ2
W

α2
(3.14)

and the threshold distortion ε̄2th is calculated by inserting (3.7) into (2.23)

ε̄2th ≈ 8

[

1− erf

(

∆

2
√
2σW

)]

[

σ2
X

2
+

η2∆2π4

8α2
+

l−1
∑

i=0

(

a2i
2

−π2η∆

α
ai

)
∫ di+1

di

fX(x)dx− ai

∫ di+1

di

xfX(x)dx

]

.

(3.15)

Note that (3.14) and (3.15) are calculated assuming ML decoder; hence, they are very

accurate for representing system distortion under MMSE decoding at high CSNR

levels.

We minimize the target distortion MSEtarget with respect to the quantizer parameters

(δd, δa, K) in (3.6), and to the spiral parameters (∆,α). For a given amount of power

P1 assigned to channel input Y1 (i.e., σ
2
Y1

= P1), the quantizer parameters (δd, δa) are
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found by minimizing the target distortion MSEtarget in (3.11). The gain factor K is

used to control the power allocation on Y1 and is found from the power constraint

P1 using (3.10). The spiral parameters (∆, α), which affect only the analog part of

the system, are calculated by minimizing (3.13) under the power constraint in (3.9).

The optimization of the quantizer parameters is performed over a range of (δd, δa)

values to obtain the one that produces the minimum MSEtarget distortion. The design

algorithm is formally stated as follows.

1. Choose some initial values for (δd, δa, l).

2. Set i = 0, the target distortion D(0) = ∞, Dbest = ∞, and the power assigned

to Y1, P1 = βP , 0 ≤ β ≤ 3.

3. Set i← i+ 1, and find K according to (3.10).

4. For the given quantizer parameters, find the optimal spiral parameters (∆, α)

that minimize (3.13) while (3.9) is satisfied with equality.

5. Calculate MSEq using (3.12), and D(i) using (3.11).

6. If Dbest > D(i), set Dbest ← D(i), and R← (δd, δa, K,∆, α,Dbest, P1).

7. Loop over the quantizer parameters (δd, δa) values until we reach the end of the

range limits, and go to Step 3.

8. Return R.

In our simulations, we used l = 35, β = 1 (i.e., the power constraint at the quantized

symbol is equal to the average power constraint P ).
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3.3 System Lower Bound on the SDR

In this section, we derive a lower bound on the proposed system SDR following the

approach of [30]. For this bound, we assume (suboptimal) ML decoding for recovering

both the quantized symbol and quantization error.

For the quantized symbol, the system works as follows. At the encoder side, the

quantized symbol is scaled by a gain factor K to satisfy the power constraint and

transmitted through the channel. At the receiver, the channel output is rescaled using

1/K, and a ML decoder, which is a minimum distance estimator, is applied on the

rescaled signal Ŷ1 = A + W̃ , where W̃ ∼ N (0, (σW

K
)2). The error in decoding the

quantized value can be expressed as follows

E[(A− Â)2] = δ2a

l−1
∑

i=0

P (ai)
l−1
∑

j=0

(j − i)2Pi,j

≤ δ2al

l−1
∑

g=1

g2Pg (3.16)

where g = |j−i|, and Pg = Pi,j is the probability of receiving aj when ai is transmitted,

given by

Pi,j = Q

(

(|j − i| − 1/2)δa
σW

K

)

−Q

(

(|j − i|+ 1/2)δa
σW

K

)

(3.17)

where j = 2, ..., l − 2, and Q(x) is the Gaussian Q-function which can be upper

bounded for x ≥ 0 as

Q(x) =
1√
2π

∫ ∞

x

e−τ2/2dτ ≤ 1

2
e−x2/2. (3.18)

Using (3.18) and dropping the second term in (3.17), the transition probability Pi,j
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can be upper bounded by

Pi,j ≤
1

2
exp

(

−K2 (g − 1/2)2δ2a
2σ2

W

)

. (3.19)

Thus (3.16) can be expressed as follows

E[(A− Â)2] ≤ δ2al

2

l−1
∑

g=1

g2 exp

(

−(Kδa)
2(g − 1/2)2

2σ2
W

)

≤ δ2al

2
exp

(

−K2δ2a
8σ2

W

)

+
δ2al

2

l−1
∑

g=2

g2 exp

(

−(Kδa)
2g

2σ2
W

)

(3.20)

where we have used the fact that (g − 1/2)2 > g for g ≥ 2. The summation can be

bounded to obtain an upper bound on the distortion from decoding the quantized

symbol

ℓ
∑

g=2

g2zg ≤
ℓ
∑

g=1

g2zg =
z

(1− z)3
(

1 + z − (ℓ+ 1)2zℓ

+(2ℓ2 + 2ℓ− 1)zℓ+1 − ℓ2zℓ+2
)

(3.21)

where z = exp
(

− (Kδa)2

2σ2
W

)

, and ℓ = l − 1.

The distortion from decoding B is bounded by

E[(B − B̂)2] ≤ ε̄2wn + ε̄2th (3.22)

where ε̄2wn and ε̄2th are, respectively, the weak noise and threshold distortion (under

ML decoding) given by (3.14) and (3.15). Adding (3.20) and (3.22) gives an upper
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bound on the end-to-end distortion, thus yielding a lower bound on the system SDR.

3.4 Asymptotic Achievable Scaling Exponent

For a memoryless Gaussian source with variance σ2
X and AWGN noise with power

σ2
W , the average MSE distortion D and the average transmission power P are related

by the converse lossy joint source-channel coding theorem as

R(D) ≤ rC(P ) (3.23)

where R(D) = 0.5 log(σ2
X/D), D < σ2

X , is the rate-distortion function, C(P ) =

0.5 log(1+P/σ2
W ) is the capacity function of the channel, and r = m is the expansion

ratio for 1 : m bandwidth expansion system. Therefore, (3.23) can be expressed as

follows

SDR ≤ (1 + CSNR)m. (3.24)

The optimal scaling exponent as CSNR goes to infinity is defined as limCSNR→∞(ln SDR

/ ln CSNR) = m [30]. In this section, we focus on the system behavior as CSNR goes

to infinity and we generalize the system to achieve higher expansion ratio using the

multiple stage quantizer as proposed in [29] and recently in [30]. This is done by

coding the source symbol using multiple stages of quantizers and finishing with a 1:2

nonlinear analog encoder at the last stage. To encode a single source sample X into
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m ≥ 3 channel symbols Y1, ..., Ym, we proceed by first finding the pairs (Ai, Bi), via

Ai = (δa)
iint

(

Bi−1

(δa)i

)

Bi = (Bi−1 − Ai) (3.25)

where i = 1, ...,m − 2, B0 = X, δa is the quantization resolution, and int(θ) is the

unique integer j such that θ ∈ [j − 1
2
, j + 1

2
). Note that Ai represents the hierarchical

quantization of the source, and Bi is the associated quantization error.

Proposition 1 [30] As δa goes to zero, the variance of Ai converges to that of Bi−1,

i = 1, ...,m− 2.

Proposition 2 As δa goes to zero, the quantization error Bi is uniformly distributed

on the interval [−(δa)i/2, (δa)i/2].

The Ai’s and Bi’s satisfy the following properties

1. The mapping X → (A1, ..., Am−2, Bm−2) is one-to-one and

X =
m−2
∑

i=1

Ai + Bm−2. (3.26)

2. The variance of B0 is σ2
X , and Bi has a variance approximately (for sufficiently

small δa) equal to (δa)
2i/12, for i = 1, ...,m − 2. This follows directly from

Proposition 2.
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3. The variance of the Ai’s are given by

σ2
Ai
≈











σ2
X , for i = 1

δ
2(i−1)
a /12, for i = 2, ...,m− 2

. (3.27)

This directly follows from Propositions 1 and 2.

To complete the description of the transmission strategy, Ai’s are scaled by Ki =
√

P/σ2
Ai

to satisfy the power constraint, and Bm−2 is mapped to a two-dimensional

space using the Archimedes’s spiral as in (3.2). The weak noise ε̄2wn can be written

as in (2.21), where the gain factor α is calculated in a similar way to (2.22)

α =
8π2ηP

∆(δa)m−2
. (3.28)

From the assumption that the quantization error follows a uniform distribution (for

sufficiently small δa), the threshold distortion ε̄2th can be expressed using (2.23) as

follows

ε̄2th ≈
[

1− erf

(

∆

2
√
2σW

)][

8p3

3
+

8π2η∆p2

α
+

2π4η2∆2p

α2

]

(3.29)

where p = (δa)
m−2/2. To study the system behavior when CSNR goes to +∞,

we assume (suboptimal) ML decoding, which is a minimum distance estimator, for

recovering the quantized symbols and the quantization error. Note that ML decoding

approaches that of the optimum estimate in the MSE sense as CSNR gets large [27,

pp. 291-292].
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The overall MSE E[(X − X̂)2] distortion under MMSE decoding can upper bounded

by the distortion from decoding Ai’s and Bm−2, via

MSE ≤
m−2
∑

i=1

E[(Ai − Âi)
2] + E[(Bm−2 − B̂m−2)

2] (3.30)

where Âi’s and B̂m−2 are, respectively, the estimated quantized symbols and quan-

tization error from ML decoder. At the receiver, the received quantized symbol is

rescaled by 1/Ki and the ML decoder is used. The error in decoding the received

quantized symbols can be calculated in a similar approach to (3.20). Using the fact

that the first term in (3.20) will dominate the summation when l→∞ and for large

values of (δa)
2(CSNR), the distortion in decoding the quantized symbols can be upper

bounded by

E[(Ai − Âi)
2] ≤ c(δa)

2i exp
(

−κ(δa)2(CSNR)
)

(3.31)

where c and κ are some positive constants, and i = 1, ...,m− 2.

The distortion in decoding the quantization error E[(Bm−2 − B̂m−2)
2] is given by

E[(Bm−2 − B̂m−2)
2] ≤ ε̄2wn + ε̄2th (3.32)

where the weak noise ε̄2wn and threshold distortion ε̄2th are given by (2.21) and (3.29),

respectively. The optimized radial distance ∆ is observed numerically to fit well the

following function

∆ =
√
Pa exp (−bCSNRdB) (3.33)
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where a and b are some positive constant. Using (3.33) in (2.21), and (3.29), the weak

and threshold distortion can be expressed as follows

ε̄2wn ≈
a2(δa)

2(m−2)

64π4η2CSNR(1+
20b
ln 10)

ε̄2th ≈ (δa)
3(m−2)

[

1− erf

(

aCSNR(
1
2
− 10b

ln 10)

2
√
2

)]

[

1

3
+

a2CSNR(−
20b
ln 10)

4
+

a4CSNR(−
40b
ln 10)

64

]

.

(3.34)

Using the bound on the Gaussian Q-function as given in (3.18), the threshold distor-

tion can be upper bounded by

ε̄2th ≤
[

(δa)
3(m−2) exp

(

−a2CSNR(1− 20b
ln 10

)

8

)]

[

1

3
+

a2CSNR(−
20b
ln 10)

4
+

a4CSNR(−
40b
ln 10)

64

]

.

(3.35)

When (δ2aCSNR) goes to infinity, the quantization error in (3.31) decreases exponen-

tially. This happens for increasing CSNR if we set δ2a = CSNR(ǫ−1), for some ǫ > 0.

Taking b = ln 10
20
− ǫ

′
, where ǫ

′
> 0, the threshold distortion decreases exponentially,

and the weak noise can be expressed as follows

ε̄2wn ≈
a2(CSNR)(ǫ−1)(m−2)

64π2η2CSNR(2− 20
ln 10

ǫ
′
)
. (3.36)
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Hence the overall distortion, which will be dominated by the weak noise, satisfies

E[(X − X̂)2] ∈ O
(

CSNR−(m−ǫ
′′
)
)

(3.37)

where ǫ
′′
= (m− 2)ǫ+ 20

ln 10
ǫ
′
.2 Therefore, the scaling exponent for a fixed ǫ and ǫ

′
is

lim
CSNR→∞

ln SDR

lnCSNR
≥ lim

CSNR→∞

ln σ2
X + (m− ǫ

′′
) lnCSNR

lnCSNR

= m− ǫ
′′

. (3.38)

Note that ǫ and ǫ
′
represent a tradeoff, i.e., for a small ǫ the error due to the quantized

part vanishes slowly, but the scaling exponent in the limit is larger; and for a small ǫ
′

the threshold distortion vanishes slowly whereas the scaling exponent gets larger in

the limit.

3.5 Numerical Results

In this section, we again assume an i.i.d. Gaussian source X with variance σ2
X = 1.

We simulate a 1 : 3 bandwidth expansion system as described in Section 3.2. As

reference systems, we consider 1) the optimal linear system (1 : 3 BPAM) which is

the best possible linear solution [2], and 2) a 1 : 3 HDA-Linear system which differs

from the proposed system by using a 1 : 2 linear coder on the quantization error. This

system was optimized to achieve the best possible performance. As shown in Fig. 3.2,

the proposed system has the highest performance over all CSNR levels. Moreover, the

performance of the HDA-Linear and BPAM system approach that of the proposed

2The ”Big-O” notation is defined as follows. Let f(x) and g(x) be two functions on R. We write
f(x) ∈ O(g(x)) if and only if for all x ≥ x0 we have f(x) ≤ cg(x), where c is some constant.
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Figure 3.2: Performance of the proposed system for X ∼ N (0, 1). This system is also
compared to the HDA-Linear, the optimal linear system (BPAM) [2], and OPTA.
The lower bound on system SDR is also plotted.

one at low CSNRs. Comparing our system to the 1 : 3 PCCOVQ found in [14], we can

notice that both systems have similar performance for CSNR≤ 15 dB. However, as

the CSNR gets large, the computational complexity from the design algorithm of the

PCCOVQ gets too large and make it intractable to design the system [14]. Hence,

the main advantage of our system over the PCCOVQ is in the design complexity.

The lower bound on the proposed system SDR, derived in Section 3.3, is also shown

in Fig. 3.2. Notice that the lower bound is a good approximation for moderate to

high CSNRs and is a few dBs away from the actual performance at low CSNRs. It is

important to note that the theoretical limit is achieved asymptotically using infinite-

size block code in the source and the channel coders. Hence, the gap between the
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theoretical limit and our low-delay system is not surprising.
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Figure 3.3: The robustness curves for the proposed (solid line) and the HDA-Linear
(dotted line) system against a noise mismatch. The graph is made for a unitary
Gaussian source.

Motivated by the broadcast scenario, we also optimize the encoder for a fixed-design

CSNR level and assume that the true CSNR is known at the receiver so that the

decoder can be updated accordingly. The solid and the dotted curves in Fig. 3.3

represent, respectively, the performance of the proposed and the HDA-Linear system

when there is a mismatch between the design and the true CSNR level. It is evident

that both systems exhibit various degrees of robustness against mismatch in noise

level. The gap between the proposed and the reference system increases as CSNR

gets large; at low CSNRs, we can notice that both system achieve similar performance.

Fig. 3.3 suggests that a system that provides a given SDR level at a lower CSNR level
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is less sensitive to mismatch than one that is less sensitive to mismatch than one that

achieves the same SDR at a higher CSNR level. Fig. 3.4 shows the channel space

structure optimized for CSNR = 20 dB. The solid line represents neighbors in the

one-dimensional source space. Note that the channel space is discontinuous due to

the use of scalar quantization.
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Figure 3.4: Channel signal set for a 1 : 3 bandwidth expansion designed for CSNR =
20 dB. Each point on this mapping corresponds to a specific Y = (Y1, Y2, Y3). The
lines drawn between the selected Y show the correspondence between neighbors in
the one dimensional reconstructed signal. The lines linking the spiral end points
represent the jump to another quantized point.
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3.6 Summary and Conclusion

In this chapter, we have presented a low-delay lossy joint source-channel coding

scheme which combines scalar quantizers and a 1 : 2 nonlinear analog coder. The

proposed system is evaluated and optimized numerically to minimize the MSE given

an average channel power constraint for a 1 : 3 bandwidth expansion. Simulation

results have shown that the proposed system outperforms both purely linear analog

system and the 1 : 3 HDA-Linear due to the use of a nonlinear analog coder on the

quantization error. Also, our system has shown to achieve similar performance as

the 1 : 3 PCCOVQ system. However, the advantage in our system is the low design

complexity which is very high in the other system. Moreover, the hybrid scheme,

which has low complexity and low delay, has been generalized to achieve higher ex-

pansion ratios. This is done by coding the source symbol using multiple stages of

quantizers and finishing with a 1:2 nonlinear analog encoder at the last stage. This

communication strategy has shown to achieve a near optimal scaling exponent in the

CSNR limit.



Chapter 4

Analog Source-Channel Coding for

Low Bandwidth Expansion

4.1 Introduction

In the previous chapter, we studied a lossy source-channel coding system with band-

width expansion ratio M/N , where M is an integer≥ 3 and N = 1. In this chapter,

we present a system with a (fractional) bandwidth expansion ratio of 1 < M/N < 2.

This scheme is based on the combination of a 1 : 1 uncoded system in which each sym-

bol is scaled to its power constraint and a 1 : 2 bandwidth expansion system in which

each source symbol is mapped to a two-dimensional channel input for protection over

noisy channels. This combination makes any overall expansion ratio between 1:1 and

1:2 achievable. In other words, this is a N : M bandwidth expansion system as long

as the condition N < M < 2N is fulfilled. Power is optimally allocated between 1 : 1

uncoded and 1 : 2 nonlinear systems in order to maximize the overall performance.
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In [31] a system that gives an overall compression ratio between 2 : 1 and 1 : 1 is

proposed based on the combination of 1 : 1 and 2 : 1 systems. The rest of the chapter

is organized as follows. Section 4.2 presents the problem considered and develops the

system model. In Section 4.3, we introduce the power allocation strategy. Simulation

results are included in Section 4.4. Finally, conclusions are drawn in Section 4.5.

4.2 System Model

We again consider a memoryless Gaussian source X with variance σ2
X for transmission

over the AWGN channel with noise variance σ2
W (i.e., W ∼ N (0, σ2

W )). Samples from

the source X are grouped into blocks of size N denoted by XN . Depending on the

overall expansion ratio, the source vector XN is split into two subvectors of dimension

L and N −L. The L symbols are transmitted using the 1 : 1 uncoded system and the

other N − L symbols use 1 : 2 bandwidth expansion system to protect transmission

over noisy channels. By properly choosing the subvectors dimensions, any overall

expansion ratio between 1 : 1 and 1 : 2 can be achieved. The system, which is shown

in Fig. 4.1, includes a power allocator which is responsible for determining how much

power is allocated to each subvectors. Note that this system can be seen as a group

of sensors that has the ability to either use uncoded transmission or 1 : 2 bandwidth

expansion. In what follows, we will briefly describe both uncoded and expansion

systems.
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Figure 4.1: Proposed system where L and N −L symbols are transmitted using 1 : 1
and 1 : 2 system, respectively.

4.2.1 1:1 Uncoded System

It is known that for the case of memoryless Gaussian source X over AWGN channel

with matched bandwidth, uncoded, or linear, transmission is optimal [32]. This

system is obtained by simply using the transmitter

Y = γX =
σY

σX

X (4.1)

and the receiver

X̂ = βŶ =
γσ2

X

γ2σ2
X + σ2

W

Ŷ (4.2)
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where σ2
Y is the average channel power constraint, and Ŷ is the noisy received signal.

This gives an MSE equal to

Duncoded = E[(X − X̂)2] = σ2
X

(

1 +
σ2
Y

σ2
W

)−1

. (4.3)

Comparing (4.3) to the distortion from OPTA, it is clear that the 1 : 1 uncoded

system achieves the theoretical limit.

4.2.2 1:2 Bandwidth Expansion

In order to perform 1 : 2 bandwidth expansion, we use the double Archimedes’ spiral

in a similar fashion to Section 2.4. At the receiver side, we use the optimal MMSE

decoder instead of ML decoder used in [17]. Under ML decoding, the overall distortion

from using spiral mapping can be expressed as follows [17]

DML = ε̄2wn + ε̄2th (4.4)

where ε̄2wn and ε̄2th are the weak noise and threshold distortion, respectively. Hence,

the calculated performance of the 1 : 2 spiral mapping under ML decoding is SDR =

σ2
X/(ε̄

2
wn + ε̄2th).

As shown in Fig. 4.2, it can be noticed that the performance of the 1 : 2 spiral

mapping with MMSE decoder is close to the calculated performance of the optimal

linear system (BPAM) at low CSNRs (≤ 10) dB, and to the 1 : 2 bandwidth expansion

system with ML decoding at high CSNRs (≥ 10) dB. Since it is hard to find an

analytical expression for the system performance under MMSE decoding, we use the
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Figure 4.2: Performance of the 1:2 bandwidth expansion system for a Gaussian source
with standard deviation σX = 0.25. The graph showns the simulated performance
under MMSE decoder and the calculated performance under ML decoder. The per-
formance of a linear system and the OPTA are also plotted.

following approximation

Dexp ≈











DBPAM =
(

σXσW

σ2
Y2

+σ2
W

)2 (

σ2
W +

σ4
Y2

2

)

, 0 ≤ CSNR ≤ 10dB

DML ≈ ε̄2wn + ε̄2th, otherwise
(4.5)

where σ2
Y2

is the average power constraint on the channel input, DBPAM and DML are,

respectively, the distortion from the 1 : 2 BPAM and 1 : 2 spiral expansion under ML

decoding. In Fig. 4.2, this is given by the dashed curve for 0 ≤CSNR≤ 10 dB and by

the solid curve (with pluses) for CSNR> 10 dB.
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4.3 Optimal Power Allocation

Without loss of generality, we assume that the average power constraint per channel

use is set to 1. The total power allocated for both 1 : 1 uncoded transmission and

1 : 2 expansion system is L+ 2(N −L). Denoting by p ∈ (0, 1) the proportion of the

total power allocated for the uncoded system, then the power for transmitting each

channel symbol is σ2
Y = (L+2(N−L))p

L
in the 1 : 1 system and σ2

Y2
= (L+2(N−L))(1−p)

2(N−L)
in

the 1 : 2 system. Thus γ in Fig. 4.1 can be found as follows

γ =
σY

σX

=

√

(L+2(N−L))p
L

σX

. (4.6)

The gain factor α is related to the average power constraint in the 1 : 2 system σ2
Y2
,

via

σ2
Y2

=
1

2

∫

||s(αx)||2fX(x)dx (4.7)

where fX(x) is the source pdf, and s(.) denotes the 1 : 2 spiral mapping described in

chapter 2. For a Gaussian source, α can be expressed as follows

α =
σ2
Y2
η
√
2π5

∆σX(1− e
− a2

2σ2
X )

(4.8)

where η = 0.16, ∆ is the radial distance of the spiral mapping, and a = 4σX .

The average MSE distortion D̄ , E[(XN − X̂N)2]/N is given by

D̄ =
E[(XL − X̂L)2] + E[(XN−L − X̂N−L)2]

N
=

LDuncoded + (N − L)Dexp

N
(4.9)

where Duncoded and Dexp are given in (4.3) and (4.5), respectively.
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Given L, (N − L) (i.e. expansion rate), and a noise level σ2
W , D̄ can be expressed as

a function of p. Thus, it is possible to find numerically the optimal power allocation

p by solving the following unconstraint optimization problem

popt = argmin
p

D̄ = argmin
p
(LDuncoded + (N − L)Dexp). (4.10)

Fig. 4.3 shows the average power allocation in the 1 : 2 nonlinear system for different
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Figure 4.3: Average power allocated for each channel symbol in the 1:2 nonlinear
system. The plot is made for a Gaussian source with standard deviation σX = 0.25.

expansion ratio as a function of CSNR level. For a given expansion ratio, one can

notice that the average channel power allocated for the 1:2 system decreases as CSNR

increases. This can be explained by the fact that the difference in output SDR between
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1 : 1 and 1 : 2 system increases with CSNR which requires more power to be allocated

to the 1 : 1 uncoded system. Notice also that the average channel power allocated

to the 1 : 2 system is less than 1, which is the average channel power for the whole

system. This means that the average power per channel use in the 1 : 1 system is

higher than in the 1 : 2 nonlinear system. This can be explained by the fact that

the distortion from the 1 : 1 system is always greater than the distortion from 1 : 2

system; hence more power should be allocated to the 1 : 1 system in order to balance

the distortion from both uncoded and bandwidth expansion system to decrease the

overall distortion.

4.4 Numerical Results

In this section, we assume a Gaussian source X with standard deviation σX = 0.25

and N = 10. In order to show the improvement brought by optimizing the power

allocation, we compare the performance of the proposed system when applying opti-

mal power allocation using (4.10) to the system when power is equally allocated to

each channel symbol. Figs. 4.4, 4.5, 4.6, and 4.7 show the system performance for

expansion ratio 10 : 12, 10 : 14, 10 : 16, and 10 : 18, respectively. The performance

of the system when the optimal power allocation is found by numerical search is also

plotted. This is done by calculating through simulation the output SDR for different

power allocation (p) and choosing the one that give the best performance. This is

represented by the dashed curve which shows similar performance when optimizing

p using (4.10). For reference, we also compare the proposed scheme to the optimal

linear system (BPAM) [2]. From simulation plots, we can notice that the proposed
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Figure 4.4: Performance of the proposed system for 10:12 expansion ratio for a Gaus-
sian source with standard deviation σX = 0.25 and N = 10.

system outperforms the linear system even without power allocation. The gain over

the linear system increases as the expansion ratio increases. However, at low CSNR

levels, both system gives similar performance. When using power allocator, the sys-

tem SDR increases by several dB for moderate to high CSNRs over the one without

power allocator. This substantial improvement in SDR increases as CSNR and the

expansion ratio increase. By comparing the dashed line and the solid line (with as-

terisk), we can notice that the simulated performance matches with the performance

from the theoretical analysis.
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Figure 4.5: Performance of the proposed system for 10:14 expansion ratio for a Gaus-
sian source with standard deviation σX = 0.25 and N = 10.

4.5 Summary and Conclusion

In this chapter, we have presented a lossy purely analog joint source-channel coding

which combines uncoded transmission and a 1 : 2 bandwidth expansion system us-

ing the spiral mapping. The proposed system, which is able to achieve any overall

expansion ratio between 1 and 2, is evaluated and optimized to minimize the MSE

distortion under an average channel power constraint. This is done by allocating

power properly between the uncoded and the expansion systems. Simulation results

have shown that the proposed scheme outperforms the purely analog linear system.

Moreover, using optimal power allocation, the system has shown to give several dB

gain over the one without power allocation.
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Figure 4.6: Performance of the proposed system for 10:16 expansion ratio for a Gaus-
sian source with standard deviation σX = 0.25 and N = 10.
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Figure 4.7: Performance of the proposed system for 10:18 expansion ratio for a Gaus-
sian source with standard deviation σX = 0.25 and N = 10.



Chapter 5

Compressed Sensing with

Shannon-Kotel’nikov Mappings

5.1 Introduction

Wireless sensor networking is a technology that monitors the physical world through

a distributed network of wireless sensor nodes. These nodes, often conceived as hav-

ing limited lifetime and processing power, communicate their sensed field information

to a fusion center (FC). Communication takes place over power and bandwidth con-

strained noisy wireless channels [33]. To meet these challenges, we investigate using

low delay/complexity source-channel mapping with compressed sensing in WSNs.

The sensor inputs are treated as samples from an analog source. The traditional

approach for analog source transmission is to use separate digital source and channel

coders. This separation is optimal from a theoretical perspective [3]. In such sys-

tems, the analog source is encoded using a powerful vector quantizer, and capacity
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approaching channel codes, such as turbo or low-density-parity-check codes, are used

for channel error protection. This approach results in very high delay and complexity,

which is not desirable in WSNs. The approach used here is analog joint source-channel

coding which has been shown to achieve an excellent performance under low delay

and complexity constraints [1, 15, 7, 8, 17, 34]. More specifically, we propose to use

1 : 2 Shannon-Kotel’nikov mappings within the CS context. The key idea is to use

nonlinear dimension expansion, that acts as an analog joint source-channel encoder

on the compressed sensing measurements to increase their immunity against channel

noise. In [35], a hybrid digital-analog system is used with distributed compressed

sensing over noisy channels. In this Chapter, we consider a purely-analog system

where all sensed and transmitted signals are analog-valued. For reference, we com-

pare the proposed system with 1) a conventional CS system that assumes noiseless

transmission, and 2) a CS-based system that accounts for channel noise during sig-

nal reconstruction [36]. Both reference systems are used with 1:1 linear mapping.

The rest of this chapter is organized as follows. In Section 5.2, we briefly review the

compressed sensing theory. In Section 5.3, we develop the system structure and its

optimization. Simulation results are included in Section 5.4. Finally, conclusions are

drawn in Section 5.5.

Note that in this chapter, we will not use a superscript (e.g., XN) for vectors as

opposed to previous chapters. We will simply use bold symbols.
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5.2 Overview of Compressed Sensing Theory

The theory of compressed sensing has been developed in [9, 37, 38, 36]. In essence,

CS exploits prior knowledge about the sparsity of a signal x ∈ R
N in order to provide

efficient signal sampling and reconstruction [36]. The signal x is assumed to be sparse

in some orthonormal basis Ψ

x = Ψu (5.1)

where u is the transform coefficients vector in the orthobasis Ψ. The sparsity as-

sumption means that there is only K (K ≪ N) nonzero elements in u.

In CS we record M < N linear measurements, which can be expressed as

y = Φx (5.2)

where Φ ∈ R
M×N is a measurement matrix which obeys the restricted isometry

property [39]. This property can be achieved when the entries of the matrix Φ are

i.i.d. Gaussian variables. In this case, with M in the order of K log2(N/K), recovery

of x from the linear measurements y works with overwhelming probability, and is

conducted by solving the following convex optimization problem

min
x̂

||ΨT x̂||ℓ1 , subject to Φx̂ = y (5.3)

where ||(·)||ℓ1 is the ℓ1 norm (||x||ℓ1 ,
∑N

i=1 |xi|) and (.)T denotes the transpose

operator. Several optimization algorithms were developed to solve the ℓ1 minimiza-

tion problem such as basis pursuit (BP) [10], matching pursuit [11], and orthogonal

matching pursuit [40].
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In practice, the collected measurements are usually disturbed by noise w; thus y is

modeled as

y = Φx+w. (5.4)

For CS to be widely applicable, signal recovery should be robust against noise; a small

disturbance in the measurements should result in a small disturbance in the signal

reconstruction. Using a noise-aware version of (5.3), the signal can be reconstructed

as follows

min
x̂

||ΨT x̂||ℓ1 , subject to ||Φx̂− y||2 ≤ ǫ (5.5)

where ǫ bounds the total amount of noise in the measurements. This convex problem

can be expressed using the Lagrange multipliers as

min
x̂

||ΨT x̂||ℓ1 + λ||Φx̂− y||22. (5.6)

This is often referred to as the least absolute shrinkage and selection operator prob-

lem [41]. The term λ is used to control the tradeoff between the sparsity and the

approximation error (||Φx̂− y||2).

5.3 System Model

5.3.1 System Structure

Consider a group of sensors that is observing a discrete time continuous amplitude

source signal x ∈ R
N . This observation is assumed to be sparse in some transform

basis Ψ. Each sensor encodes its observation and transmits it to the FC over additive
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white Gaussian noise channels with variance σ2
w. The objective is to recover the

sensor observations under a mean square error fidelity criterion. The proposed system

structure is shown in Fig 5.1.

On the encoder side, the sensors measure the observation using a random projection

matrix Φ. A practical method is to draw each entry of the projection matrix indepen-

dently from a Gaussian distribution (i.e., [Φ]ij ∼ N (0, 1/M)) and then orthogonalize

the rows of Φ. The measurement vector is given by

y = Φx, (5.7)

where Φ ∈ R
M×N is the measurement matrix for the CS encoder. Each sample of

the measurement vector y is mapped to a two-dimensional channel space using the

double Archimedes’ spiral as given in Section 2.4

s(y) =







z1(y)

z2(y)






=

1

π







sgn(y)∆ϕ(y) cosϕ(y)

sgn(y)∆ϕ(y) sinϕ(y)






(5.8)

where sgn(·) is the signum function, ∆ is the radial distance between any two neigh-

boring spiral arms, and ϕ(y) =
√

6.25|y|/∆. It is observed that the measurements

from the CS encoder fit well a Gaussian distribution. Hence, for simplicity, the radial

spiral distance ∆ is calculated using (2.20), where the weak noise ε̄2wn, and the thresh-

old distortion ε̄2th can be found in a similar way to (2.21) and (2.27), respectively.

At the receiver side, we use the MMSE decoder to obtain the measurement estimate

ŷ. To recover the original signal, we use BP [10] to solve the ℓ1 minimization problem

in (5.3), and for comparison also the minimization in (5.6).
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Figure 5.1: The proposed system structure.

5.3.2 System Optimization

The proposed system is optimized for minimal end-to-end MSE distortion E[||x−x̂||2]

which is a function of two sources of distortion: DCS from compressed sensing (without

lossy transmission) and Dexp from channel noise. Given a total transmission power

constraint Ptot, the aim is to minimize the end-to-end distortion. From CS theory, it

is known that the distortion DCS decreases with increasing number of measurements.

However, due to the total power constraint, the average power per channel (use) will

decrease. This will increase the distortion Dexp from bandwidth expansion transmis-

sion. Thus, for a given channel quality, we aim to determine the optimal number

of measurements which balances these two distortion contributions and results in a

minimum overall distortion under the power constraint Ptot.

Distortion Dexp from dimension expansion is minimized by optimizing ∆ using (2.20).

In the CS literature, however, there is not yet an explicit relation between the number

of measurements M and the distortion DCS obtained with BP. Thus optimization is

done numerically by searching for the number of measurements that minimizes the

end-to-end MSE distortion E[||x − x̂||2]. We create a set of source vectors {x} with

signal dimension N . Each source vector is synthesized as x = Ψu, where Ψ is

the sparsity basis and u is a K sparse transform coefficients. There are
(

N
K

)

possible
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sparsity patterns for u.1 Each realization is drawn uniformly from these patterns. For

each number of measurements M , we create a fixed measurement matrix Φ whose

entries are drawn from a Gaussian distribution. The set of CS measurement vectors

{y} is calculated using (5.7). For a given noise variance level, (∆, α) are optimized

using (2.20) under the average power constraint P = Ptot/(2M), and a set of noise

vectors {w} is created to model the AWGN channel. A 1:2 bandwidth expansion is

applied on each vector measurements using the Archimedes’ spiral in (5.8). Then,

the measurement estimate ŷ is decoded using MMSE decoder and BP is used for

signal reconstruction according to (5.3). The end-to-end MSE distortion E[||x− x̂||2]

is evaluated over the data set {x}. We keep increasing the number of measurements

M until we observe an increase in the end-to-end distortion. The design suboptimal

search algorithm is shown herein.2

In our simulations, we used T = 30000, m is set to a small value (∼ K), and the

incremental step Inc = 4.

Fig. 5.2 shows the system SDR as a function of the number of measurements M

at different TSNR , Ptot/σ
2
w levels.3 Notice that for a fixed TSNR level, the SDR

increases with increasing M until reaching a maximum and then starts to decrease.

This occurs because the compressed sensing part performs better as M increases but

at the same time, the distortion from channel noise increases. For small M , the CS

distortion dominates over the distortion contributions from channel noise. This is

clearly shown from the closeness between the SDR curves as well as from the steep

increase in SDR of each curve, which is a trend observed in CS theory. As M gets

1The sparsity pattern is the set of the indices of nonzero components of u.
2One source of suboptimality is that the system parameters are not jointly optimized to minimize

end-to-end distortion.
3TSNR stands for ”total” SNR and is related to CSNR as TSNR/(2M).
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Algorithm 1 System Optimization

Data Input: Input a data set X = {x1, . . . ,xT}, a channel noise variance σ2
w, and

a transmission power constraint Ptot.
Initialization: Set the number of measurements M = m, the incremental step Inc
for the number of measurements, and i = 1. Set the end-to-end MSE distortion
D(0) = 1020T, D(1) = 1019T, the spiral radial distance ∆ =∞, and the gain factor
α =∞.
while D(i) < D(i−1) do

i← i+ 1.
Set ∆opt ← ∆, αopt ← α, and Dopt ← D(i−1).
Initialize the measurement matrix Φ(i) as a random Gaussian matrix.
Obtain measurement vector y for each observation in X according to (5.7).
Scale the average channel power constraint according to P = Ptot

2M
, so that power

is equally divided between channels.
Optimize (∆, α) for the given channel noise variance σ2

w according to (2.20) under
the power constraint E[z2] = P .
Map each element in y to a two-dimensional channel space using (3.2).
Decode ŷ using MMSE decoder according to (3.4), and x̂ using BP according to
(5.3).
Calculate numerically D(i) = E[||x− x̂||2] over the data set X .
M ←M + Inc.

end while

M ←M − Inc.
Return (M,Dopt,∆opt, αopt).

larger beyond a certain level (∼38), the CS distortion contribution levels off, and the

trend in the SDR curves follow the performance of the bandwidth expansion systems.

We notice around 7 dB gap in system SDR between neighboring curves. For a given

M , there is a 4 dB difference in CSNR between adjacent SDR curves. From Fig. 5.2,

it can be seen that for M between 40-90, the CSNR levels are in the range 8-19 dB.

For a 4 dB difference in CSNR in this range, a 1 : 2 bandwidth expansion system

using double Archimedes’ spiral gives 6 ∼ 8 dB SDR gain [17]. This explains the

∼ 7 dB gap between neighboring curves. Thus the trends in Fig. 5.2 show clearly the

dominance of CS distortion for small M and channel noise for large M .
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Figure 5.2: Performance of the proposed system as a function of number of measure-
ments M with sparsity level K = 6 and signal length N = 100. For TSNR=38dB,
the CSNR [dB] levels at the data points are as follows: [22.9 21.2 20.2 19.7 19.2 18.7
18.4 18 17.6 17.2 16.5 15.9 15.4]. Note that there is a 4dB difference in CSNR levels
(as well as in TSNR) between adjacent curves. MMSE decoding and BP are used on
the receiver side.

5.4 Numerical Results

In this section, we assume a sparse source x in the discrete cosine transform basis Ψ

with signal length N = 100. The signal x is synthetically generated as Ψu, where

there is only K = 6 nonzero elements in the transform coefficients u (||u||ℓ0 = K ≪

N). The results presented here are for the case where the nonzero elements ui are i.i.d.

Gaussian with unitary variance and the sparsity pattern is uniformly distributed. We

use the spiral mapping to apply 1 : 2 dimension expansion, and BP to recover the
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source signal x̂ from the received measurements.

The conventional CS system “CS-BP” which uses BP for signal recovery, does not ac-

count for channel noise during reconstruction. However, as mentioned in Section 5.2,

there is also a noise-aware version of ℓ1 minimization in CS theory that can recover

source signal from noisy measurements [36]. The structure of these linear analog ref-

erence systems is shown in Fig. 5.3. We scale the channel input by a gain factor γ in

order to satisfy the average channel power constraint P = E[(γy)2] = γ2
E[y2]. At the

receiver, we use a MMSE optimal scaling factor β = γE[y2]/(γ2
E[y2] + σ2

w) to obtain

an estimate of y, and use either BP or basis pursuit with denoising (BPDN) [10] for

signal reconstruction. This is conducted by solving the optimization problem stated

in (5.3) or (5.5).

Figure 5.3: CS-BP/CS-BPDN structure with 1:1 linear mapping.

The number of measurements M is optimized for all systems under the total trans-

mission power Ptot. This is done using Algorithm 1 for the proposed system, whereas

for the reference systems, we search over a range of M to obtain the one that produces

the minimum end-to-end distortion. Since the number of measurements varies with

the channel noise variance, system SDR is plotted based on TSNR. From Fig. 5.4, it

can be seen that the proposed system “CS-Mapping” outperforms the CS-BP system

for all CSNR levels, and “CS-BPDN” from moderate to high CSNRs. At low CSNRs,
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CS-BPDN gives similar performance as the CS-Mapping. This can be explained by

realizing that the 1 : 2 bandwidth expansion using the double Archimedes’ spiral

has a similar performance as a linear encoder at low CSNR levels [17]. Notice that

the gain from CS-Mapping as well as its gap to CS-BPDN gets more prominent as

CSNR increases. We also simulate the proposed system when using BPDN instead

of BP on the noisy decoded measurement ŷ. This gives around 1 dB gain in SDR

over the CS-Mapping with BP.4 In Fig. 5.4, the “Best least-square” decoding scheme

(applied on the output ŷ of the Shannon-Kotel’nikov decoder) is also plotted as a

reference. This decoding scheme requires additional side information as it assumes

that the support I (i.e., the indices of the nonzero components in u) is known a priori

by the decoder. Hence, the best way to recover the source signal from the decoded

measurement ŷ would be to apply the pseudo-inverse (ΦΨ)†I on the support, and set

the remaining coordinates of u to zero.

In what follows, we summarize the results of our study of the sensitivity of the CS-

Mapping and CS-BPDN system against mismatch in noise level. As in several appli-

cations, the encoder has no knowledge on the actual noise variance and a design noise

level is assumed. However, the decoder can be designed to operate at the actual noise

level provided the receiver can estimate the channel condition. The CS-BPDN system

uses an uncoded linear system at the transmitter side which make it less sensitive to

noise mismatch.

For the proposed system, as shown in Fig. 5.5, we notice that for low and moderate

design TSNR levels, the mismatch in system SDR is insignificant when the actual

TSNR is lower than the design TSNR level (TSNRD). In contrast, when the actual

4The number of measurements is optimized for CS-Mapping with BP.
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Figure 5.4: Performance of CS-Mapping and CS-BPDN with sparsity level K = 6
and signal length N = 100. The graph is made for ui ∼ N (0, 1). The number of
measurements used by CS-Mapping at the asterisk marks are: [38 38 42 42 42 42],
which correspond to the following CSNR[dB] levels: [3.2 7.2 10.7 14.7 18.7 22.7]. The
performance of CS-BP is also shown for comparison.

TSNR> TSNRD, a 2 ∼ 3 dB loss in system SDR is noticed for each 4 dB mismatch

in TSNR. For high TSNRD, the proposed system is highly sensitive when the ac-

tual TSNR is lower than TSNRD. Whereas, when the actual TSNR is greater than

TSNRD, the system SDR does not suffer from leveling-off effect and increases linearly

with TSNR– for instance, an increase of 1 dB in TSNR results in a 1 dB increase in

SDR. This trend is due to the analog nature of the proposed system. It is important

to note that when the proposed system is designed for moderate to high TSNR, it

will certainly perform better than the CS-BPDN when actual TSNR is greater than

the designed one. Hence, it might be better to design the proposed system for the
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highest expected channel noise. But at the same time, the gain from using the pro-

posed system over CS-BPDN will decrease. Finally, it needs to be mentioned that

the proposed purely-analog system is quite robust against a reasonable mismatch in

channel noise.
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Figure 5.5: Performance of CS-Mapping where the encoder and decoder are, respec-
tively, designed for the given TSNR and actual TSNR. The CS-Mapping and CS-
BPDN optimized for each TSNR levels are also plotted. MMSE decoder and BPDN
are used with CS-Mapping. The graph is made for signal length N = 100, sparsity
level K = 6, and ui ∼ N (0, 1).

5.5 Summary and Conclusion

In this chapter, we have presented a system which combines compressed sensing and

bandwidth expansion using Shanon-Kotel’nikov mapping in the presence of noise. The
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proposed purely-analog system is optimized for minimal end-to-end distortion under

a transmission power constraint. Simulation results have shown that the system

outperforms the conventional CS system that assumes noiseless environment and a

CS-based system that accounts for channel noise at the decoder. Note that one can

also use the source-channel mappings of Chapter 3 and 4 in CS context for different

rate targets.



Chapter 6

Conclusions

This chapter summarizes the major contributions in this thesis. All systems studied

in the previous chapters are based on the 1 : 2 double Archimedes’ spiral. First, we

combine the spiral mapping with multiple stage quantizers to achieve high (integer)

expansion ratio. Then, the uncoded transmission and the spiral mapping are used to

obtain a low (fractional) expansion ratio between 1 and 2. Finally, the 1 : 2 spiral

mapping is used within the compressive sensing context to increase immunity against

channel noise. The main contributions can be summarized as follows

• In Chapter 3, a hybrid digital-analog source-channel coding with 1 : 3 band-

width expansion is proposed. The system parameters are numerically optimized

to minimize the overall distortion. Moreover, an upper bound on the end-to-end

system distortion is derived. Furthermore, we generalize the system to achieve

higher expansion ratios 1 : M (where the integer M > 3) by using multiple

stage quantizers.

• In Chapter 4, a purely analog joint source-channel coding is presented. This
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system is a N : M bandwidth expansion scheme as long as the condition N <

M < 2N is fulfilled. Power is optimally allocated to minimize the overall

distortion.

• In Chapter 5, a 1 : 2 Shannon-Kotel’nikov mapping is applied in the compressed

sensing context to increase the CS system’s immunity against channel noise.

The number of linear measurements is optimized to minimize the overall MSE

distortion. The proposed scheme is compared with a CS-based system which

accounts for channel noise during signal reconstruction.

All source-channel mappings proposed in this thesis can be used where low complexity

and low delay are crucial constraints. Some applications can be found in wireless

sensors networks, feedback channels, and closed-loop control. Finally, it is worth to

investigate some of these mappings for sources with memory which is left for future

work.
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