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Abstract

We study the optimal maximum likelihood (ML) block decoding of general binary codes sent

over two classes of binary additive noise channels with memory. Specifically, we consider the infinite

and finite memory Polya contagion and queue-based channel models which were recently shown to

approximate well binary modulated correlated fading channels used with hard-decision demodulation.

We establish conditions on the codes and channels parameters under which ML and minimum Hamming

distance decoding are equivalent. We also present results on the optimality of classical perfect and quasi-

perfect codes when used over the channels under ML decoding. Finally, we briefly apply these results

to the dual problem of syndrome source coding with and without side information.
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I. INTRODUCTION

The fundamental results in coding theory are primarily derived under the assumption that

communication channels are memoryless in the sense that their noise is an independent and

identically distributed process (e.g., see [1]). In fact, for such channels and in particular the

memoryless binary symmetric channel (BSC), the development of high-performing codes with

rich algebraic structures has reached an advanced stage. However, these codes are not necessarily

good for other channel models. Moreover, most real life channels have statistical memory [2],

[3] and cannot be adequately represented via memoryless channel models. As a result, current

systems commonly employ interleaving to spread channel error bursts over the set of received

codewords so that block decoding can recover most of the corrupted codewords (if the number

of channel errors within a codeword is within the code’s error correction capability) [1], [4],

[5]. In other words, the use of interleaving makes the channel appear memoryless to the block

decoder. This method has immediate shortcomings as it fails to exploit the channel memory

(since channels with memory have larger capacity than their memoryless counterparts in a wide

range of cases [6], [7]) while adding delay to the system (which is substantial when long error

bursts occur in the channel) [5].

It is therefore of interest to understand the structures of ML decoders and the properties of

optimal block codes for channels with memory. Since the ML decoding of binary codes over

the BSC with crossover probability less than 1/2 is equivalent to minimum Hamming distance

decoding, it is natural to investigate whether a similar relation exists when the channel has

memory. Indeed when such equivalence holds, any optimal or good code for the BSC will

work well on the channel with memory. In this work, we derive conditions on arbitrary binary

codes and on the channel characteristics, under which the equivalence holds. The channel models

considered are the binary infinite and finite memory Polya-contagion channels [8] and the queue-

based channel (QBC) [7]. These additive noise models, which subsume the BSC as a special

cases, feature desirable properties for tractable system analysis.

The infinite memory contagion channel (IMCC) is non-ergodic, has a closed-form expression
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for its epsilon-capacity1 and admits a simple ML decoding rule. The finite memory contagion

channel (FMCC) and the QBC (which generalizes the FMCC) both feature ergodic M th-order

Markov noise processes and have a single-letter capacity expression. They were shown to accu-

rately model (in terms of replicating channel capacity and noise autocorrelation function) ergodic

discrete fading channels composed of a binary modulator, a time-correlated flat Rayleigh or

Rician fading channel and a hard-decision demodulator [7], [11]. Furthermore, it is demonstrated

in [12] that the QBC with small values of M approximates well in terms of codeword error

probability the packet error process of the above discrete fading channels when block-coded via

Reed-Solomon codes.

The use of these binary channel models is relevant to the following scenarios. In a wireless

sensor network where hard-decision demodulation is used at the sensors due to their limited

computational and storage resources, the end-to-end binary system between any pair of sensors

can be better represented by the above models than the BSC by virtue of the time-correlated

nature of the fading links. Also, digital storage devices where errors occur in clusters can be

well approximated by these models; indeed the IMCC and FMCC were originally studied in

light of the observation that failures in semi-conductor chips are better characterized by a Polya

“contagion” distribution [8]. Furthermore, the noise processes of the FMCC and QBC are viable

alternatives (in light of their explicit Markovian structure and low number of parameters) to

the typically used Gilbert-Elliott channel (GEC) [13] error process and other hidden Markov

processes (e.g., see [14]) for capturing the packet loss behavior in data networks, since in practical

networks, packet losses are often time-dependent due to a variety of causes including congestion

and buffer overflow.

The contributions of this work include the following. For general binary codes of block length

n sent over the IMCC or the QBC with memory M ≥ n , we establish both necessary and

sufficient conditions for which minimum distance (MD) and ML decoding are equivalent. We

1For a fixed epsilon between 0 and 1, the epsilon-capacity of a channel is the largest asymptotic rate at which the channel

can be encoded via a sequence of block codes with error probability less than epsilon [9], [10]. Channel capacity is then the

limit of epsilon-capacity as epsilon tends to 0.
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also give sufficient conditions under which classical perfect and quasi-perfect codes are optimal

(under ML decoding). For the QBC with M < n, we restrict our study to two cases: M = 1 (or

equivalently the binary first-order Markov noise channel or the FMCC with M = 1) and M = 2.

In both cases, we determine sufficient conditions for the equivalence of strict MD (SMD) and

ML decoding. We also present sufficient conditions for the optimality of classical perfect codes.

In a previous related work [15], it is proven that SMD and strict ML (SML) decoding are

equivalent for perfect codes of minimum distance 3 over the first-order Markov noise channel

(i.e., the FMCC or QBC with M = 1). In [16], sufficient conditions, under which SMD decoding

of binary linear perfect codes becomes equivalent to SML decoding, are derived for the same

channel. A near equivalence relationship between SMD and SML decoding is also obtained for

binary linear quasi-perfect codes for a range of channel parameters and the codes’ minimum

distance. In this work, we generalize the equivalence conditions of [15], [16] to produce even

tighter sufficient conditions that apply for any binary code (linear or non-linear). We also provide

similar results for the QBC with M = 2. In [17], a sufficient condition on the IMCC is given on

the MD-ML decoding equivalence for linear codes containing the all-one codeword; this result

is herein improved via both necessary and sufficient conditions for general codes.

The rest of this paper is organized as follows. In Section II, we describe the channel models.

In Section III, we introduce a generalized likelihood distance for additive noise channels with

memory. We then generalize the basic notions in coding theory to this new distance and present

two lemmas on the optimality of classical perfect and quasi-perfect codes over channels with

memory. In Section IV, the MD/SMD-ML decoding equivalence results are established for the

considered channel models. In Section V, we briefly discuss the numerical verification of the

derived results and translate them for practical codes with short block lengths and covering radii.

We also highlight how our results apply in the contexts of syndrome source coding with and

without side information at the receiver. Finally, we conclude the paper in Section VI.
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II. CHANNEL MODELS

We consider binary additive noise channels with memory. We use the notation F2 = GF (2)

throughout. The output Yn at time instant n of the channel is given by Yn = Xn ⊕ Zn, n =

1, 2, · · · , where ⊕ denotes modulo-2 addition and Xn and Zn are binary-valued input and noise

(error) symbols, respectively. The input and noise processes are assumed to be independent from

each other. We study several channel models for representing the noise process with memory.

A. Infinite Memory Contagion Channel

The IMCC is a communication channel with stationary non-ergodic additive noise character-

ized by two parameters. It is based on the contagion urn scheme of George Polya, a two-color

ball sampling scheme empirically shown to describe well defects in semiconductor chips [8].

The channel noise propagates and corrupts the transmitted signal by mimicking the spread of

an infectious disease through a population, in the sense that the occurrence of an error (or

”infection”, if we use the contagion interpretation) increases the probability of future errors, and

hence may lead to a clustering or burst of errors (i.e., an ”epidemic” in the population). For the

IMCC, the probability of an n-bit error pattern zn1 = (z1, z2, · · · , zn) can be written as follows

[8]:

P (Zn
1 = zn1 ) =

Γ(1
δ
)Γ(p

δ
+ d)Γ(1−p

δ
+ n− d)

Γ(p
δ
)Γ(1−p

δ
)Γ(1

δ
+ n)

(1)

where p = P(Zi = 1) is the channel bit error rate (BER), δ > 0 is a noise correlation parameter,

d is the Hamming weight of the error pattern, and Γ(·) is the Gamma function. We can see that

the probability distribution of an error pattern depends only on its Hamming weight, and does

not depend on how the errors are clustered. The correlation Cor(·, ·)between any two distinct

noise bits is given by

ε , Cor(Zi, Zj) =
E[ZiZj]− E[Zi]E[Zj]

Var(Zi)
=

δ

1 + δ
∀i 6= j

where Var(Zi) = E[Z2
i ]− E[Zi]

2 is the variance of Zi. It is shown in [8] that, for this channel,

ML decoding reduces to either minimum Hamming distance decoding or maximum Hamming

distance decoding. It is also proven in [8] that the all-zero error word is the most likely among
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all error words of length n generated by the IMCC. When we set δ = 0, the IMCC reduces

to a BSC with crossover probability p (BSC(p)). It is also shown that the IMCC (for δ > 0)

belongs to the class of (non-ergodic) averaged channels with memory and admits a closed-form

expression for its epsilon-capacity.

B. Finite-Memory Contagion Channel

The FMCC with memory M is a channel model derived from the IMCC (it has one more

parameter than the IMCC, which is its memory order M ). It differs from the IMCC by making

the current noise sample independent of “older” samples given the last M error bits. It is shown in

[8, Section VI] that the generated noise process is stationary, ergodic and M th-order Markovian

yielding a positive channel capacity that increases with the memory M . The FMCC and its

queue-based generalization, which will be described next, were also shown in [11] to model

ergodic Rician fading channels more accurately than the GEC [13].

Note that for a block length n ≤M , the FMCC becomes analytically equivalent to the IMCC

and the probability of an n-bit error word zn1 is given by (1). If n > M , the word error probability

is given by

P (Zn
1 = zn1 ) = L(M)

n∏
i=M+1

[
p+ si−1δ

1 +Mδ

]zi [1− p+ (M − si−1)δ
1 +Mδ

]1−zi
(2)

where

L(M) =

∏sM−1
i=0 (p+ iδ)

∏M−sM−1
j=0 (1− p+ jδ)∏M−1

l=1 (1 + lδ)

and for k ≥M ,

sk =
k∑

i=k−M+1

zi.

The correlation coefficient of the noise process is given by

ε =
E[ZiZj]− E[Zi]E[Zj]

Var(Zi)
=

δ

δ + 1
≥ 0 (3)

for any i, j = 1, 2, · · · ,M and for any j = i + 1 with i ≥ M . As the IMCC, when δ = 0 (or

equivalently ε = 0), the FMCC reduces to the BSC(p).
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C. Queue-Based Channel

Introduced in [7] via a ball sampling mechanism involving a finite queue, the QBC also features

binary additive stationary ergodic M th-order Markov noise. It is a generalization of the FMCC2

(having one additional parameter) while remaining mathematically tractable. Specifically, it has

four parameters: memory order M , bias parameter α, noise correlation coefficient ε and BER p

(see [18, Section 2.2.3]). For this channel, the probability of an n-bit error pattern zn1 is given

by:

• If n ≤M , then

P (Zn
1 = zn1 ) =

∏n−dn1−1
j=0

[
(1− p) + j

ε

1− ε

]∏dn1−1
j=0

(
p+ j

ε

1− ε

)
∏n−1

j=0

(
1 + j

ε

1− ε

) ,

(4)

where dba =
∑b

i=a zi (dba = 0 if a > b).

• If n > M , then

P (Zn
1 = zn1 ) =

L(M)[
1 + (M − 1 + α)

ε

1− ε

]n−M n∏
i=M+1

[
(di−1i−M+1 + αzi−M)ε

1− ε
+ p

]zi
{[

M − 1− di−1i−M+1 + α(1− zi−M)
]
ε

1− ε
+ 1− p

}1−zi

(5)

where

L(M) =

∏M−dM1 −1
j=0

[
(1− p) + j

ε

1− ε

]∏dM1 −1
j=0

(
p+ j

ε

1− ε

)
∏M−1

j=0

(
1 + j

ε

1− ε

) .

Lemma 1: The all-zero error word 0n is the most likely among all error words of length n

generated by the QBC.

Proof: See [18, Lemma 2.2].

2Note that both the FMCC and the QBC are finite-state Markov channels.
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Remark 1: (Summary of the QBC features)

• If M = 1, the QBC reduces to the FMCC with M = 1 (or equivalently, the binary

first-order Markov additive noise channel3) with identical BER p and noise correlation

coefficient ε.

• If ε = 0, the QBC reduces to the BSC(p).

• If α = 1, the QBC reduces to the FMCC with the same memory parameter M , the same

BER p, and with the same correlation coefficient ε, or with δ = ε
1−ε .

• If α = 0, the QBC with parameters (memory M , BER p and correlation coefficient ε)

reduces to the FMCC with parameters (M − 1, p, ε).

III. GENERALIZED CONCEPTS OF CODING THEORY

Consider a general binary additive noise communication channel with a block probability

transition matrix PY|X(·|·)where X = (X1, X2, · · · , Xn) and Y = (Y1, Y2, · · · , Yn) denote the

channel’s input and output vectors of lengths n, respectively. Let Dn be the following generalized

distance:

Dn : Fn
2 × Fn

2 7→ R

Dn(x,y) = − logk
PY|X(y|x)

P (Z = 0n)

= − logk
P (Z = y ⊕ x)

P (Z = 0n)

where k > 1 is a constant, the addition ⊕ is component-wise and Z = (Z1, Z2, · · · , Zn) is the

channel’s noise vector of length n. We denote by K(Dn) the domain of this distance, i.e.

K(Dn) = {t ∈ R : ∃x,y ∈ Fn
2 , Dn(x,y) = t}.

It is natural to associate with the distance Dn a weight function Wn defined as follows:

Wn : Fn
2 7→ R

Wn(e) = − logk
P (Z = e)

P (Z = 0n)
.

3The first-order Markov additive noise channel is simply the Gilbert channel, a special case of the GEC [13] realized by

setting the probability for causing an error to zero in the ”good state” and to one in the ”bad state.”
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Let C ⊂ Fn
2 be an (n,M) binary block code with M codewords, each of length n. If the code

has a minimum Hamming distance dmin, we use the notation (n,M, dmin) to describe the code.

If a codeword from C is sent over the channel and is received as y at the channel output, one

can use one of the following familiar decoding rules to recover the transmitted codeword.

• ML Decoding: y is decoded into codeword c0 ∈ C if PY|X(y|c0) ≥ PY|X(y|c) for all

c ∈ C.

• MD Decoding: y is decoded into codeword c0 ∈ C if wH(c0 ⊕ y) ≤ wH(c ⊕ y) for all

c ∈ C, where wH(·) denotes the Hamming weight.

• SMD Decoding: It is identical to the MD rule with the exception of requiring that the

inequality holds strictly for all c 6= c0; if no codeword c0 satisfies the strict inequality, the

decoder declares a decoding failure.

Recall that the ML and MD decoders are complete decoders (i.e., they always select a

codeword to decode the received word) while the SMD decoder (like bounded distance decoders)

is an incomplete decoder as it declares a decoding failure when there is no unique codeword

of minimal decoding metric [1]. The later decoder is useful for situations where the decoder

can seek retransmission via a feedback link and where ties in the decoding metric are best left

unresolved (unlike complete decoders which typically break ties at random) so that undetected

errors are reduced and the decoder’s reliability in correcting errors is increased.

Definition 1: The generalized minimum distance of an (n,M) code C is:

ρmin , min{Dn(c, c′) : c, c′ ∈ C and c 6= c′}.

Definition 2: The generalized packing radius ρpac of an (n,M) code C with generalized

minimum distance ρmin is:

ρpac , max{t ∈ K(Dn) : ∀y ∈ Fn
2 ,∃ at most one error word z ∈ SC(y)

such that Wn(z) ≤ t},

where

SC(y) , {e ∈ Fn
2 : e⊕ y ∈ C}.
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In other words, ρpac is the maximum generalized weight of an error word that the code C can

correct under minimum generalized distance decoding, which is equivalent to ML decoding [19].

Definition 3: The generalized covering radius ρcov of an (n,M) code C is:

ρcov = max
y∈Fn

2

min
c∈C

Dn(c,y).

In other words, any received word y is within at most ρcov from at least one codeword in C.

Definition 4 (Generalized perfect and quasi-perfect codes): A code C is called a generalized

perfect code iff ρcov = ρpac. For such a code, every received word y is within at most ρcov from

exactly one codeword in C.

A code C is called a generalized quasi-perfect code iff ρpac < ρcov and @t∗ ∈ K(Dn) such that

ρpac < t∗ < ρcov.

Remark 2: The generalized definition of perfect (respectively, quasi-perfect) codes reduces to

the conventional definition when the distance Dn is given by the Hamming distance.

Theorem 1 ( [19, Theorem 1]): Generalized perfect and quasi-perfect codes are optimal (i.e.,

have minimal codeword error probability) under ML decoding among all codes with the same

length and dimension (i.e., number of codewords or size).

We close this section by proving the following two results.

Lemma 2 (Optimality of classical perfect codes over channels with memory): Let C be an

(n,M, dmin) perfect code (in the classical sense) to be used over the general binary additive

noise channel. Define the set

DC =

{
e ∈ Fn

2 : wH(e) ≤ rcov =

⌊
dmin − 1

2

⌋}
where rcov denotes the code’s (classical) covering radius. Now consider the following condition.

Condition (∗): For any e ∈ DC and any e′ ∈ Fn
2 , wH(e) < wH(e′) =⇒ P (Z = e) > P (Z = e′).

If condition (∗) holds, then C is a generalized perfect code and hence is optimal among all

codes of the same length and dimension under minimum generalized distance decoding (which

is equivalent to ML decoding).

Proof: Let C be an (n,M, dmin) perfect code satisfying condition (∗). Its generalized

covering radius satisfies
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ρcov = max
y∈Fn

2

min
c∈C

Dn(c,y)

= max
y∈Fn

2

min
c∈C

Wn(c⊕ y)

= max
y∈Fn

2

min
z∈SC(y)

Wn(z)

= max
y∈Fn

2

Wn (z∗(y)) , (6)

where

z∗(y) = arg min
z∈SC(y)

Wn(z).

Now since C is a perfect code in the classical sense, then ∀y ∈ Fn
2 ,∃ a unique error pattern

ẑ(y) ∈ SC(y) (of minimal Hamming weight) such that wH ((ẑ(y)) ≤ rcov. From condition (∗),

∀z ∈ SC(y) such that z 6= ẑ(y), P (Z = ẑ(y)) > P (Z = z). Hence, z∗(y) = ẑ(y). Since C is a

perfect code, then

{ẑ(y) : y ∈ Fn
2} = {z ∈ Fn

2 : wH(z) ≤ rcov} = DC,

which is the set of all coset leaders for C. Therefore,

ρcov = max
y∈Fn

2

Wn (ẑ(y))

= max
z∈DC

Wn (z)

= max
z∈DC :wH(z)=rcov

Wn (z) .

The last equality is a result of condition (∗).

We now prove that the generalized packing radius ρpac of C is the same as its generalized

covering radius ρcov. By definition, ρpac ≤ ρcov. Assume ρpac < ρcov, then there exists at least

one word y ∈ Fn
2 with two error patterns z1 and z2 ∈ SC(y) such that Wn(z1) ≤ ρcov and

Wn(z2) ≤ ρcov. Now for any z′ ∈ Fn
2 ,

Wn(z′) ≤ ρcov ⇐⇒ Wn(z′) ≤ max
z∈DC :wH(z)=rcov

Wn(z)

⇐⇒ P (Z = z′) ≥ max
z∈DC :wH(z)=rcov

P (Z = z)

⇐⇒ P (Z = z′) ≥ P (Z = z∗),

where

z∗ = arg max
z∈DC :wH(z)=rcov

P (Z = z).
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Since z∗ ∈ DC , from condition (∗):

P (Z = z′) ≥ P (Z = z∗) ⇐⇒ wH(z′) ≤ wH(z∗) = rcov.

Therefore, both z1 and z2 have a Hamming weight of at most rcov and they both belong to the

error set of y, SC(y). This is a contradiction since C is a perfect code and hence any error set

can contain at most one error word with a Hamming weight less than or equal to the covering

radius of the code. Therefore, ρpac = ρcov and hence C is a generalized perfect code.

Lemma 3 (Optimality of classical quasi-perfect codes over channels with memory): Let C be

an (n,M, dmin) quasi-perfect code (in the classical sense) with covering radius rcov to be used

over the general binary additive noise channel. Consider the set

ΓC =

{
e ∈ Fn

2 : wH(e) ≤ rcov =

⌊
dmin − 1

2

⌋
+ 1

}
and the following condition.

Condition (∗∗): For any e ∈ ΓC and any e′ ∈ Fn
2 ,

wH(e) < wH(e′) ⇐⇒ P (Z = e) > P (Z = e′).

If condition (∗∗) holds, then C is a generalized quasi-perfect code and hence is optimal among

all codes of the same length and dimension under minimum generalized distance decoding (which

is equivalent to ML decoding).

Proof: See [18, Lemma 3.4].

IV. ML DECODING OVER CHANNELS WITH MEMORY

In this section, we study the problem of block ML decoding of length-n binary codes over

the IMCC and the QBC. For the IMCC and the QBC with M ≥ n, we provide necessary

and sufficient conditions for which ML and MD decoding are equivalent. Furthermore, for the

QBC with M = 1, 2, we derive sufficient conditions under which ML and SMD decoding are

equivalent. We first present the results for the IMCC and for the QBC with M ≥ n together and

then we present the results for the QBC with M = 1, 2 (note that for M = 1, the QBC and the

FMCC are identical).
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A. Infinite Memory Contagion Channel and Queue-Based Channel with M ≥ n

Theorem 2: For any (n,M, dmin) code C used over the IMCC or the QBC with M ≥ n, if

the code’s (classical) covering radius satisfies

rcov ≤
1− 2p

δ
,

then the outputs of the MD and ML decoders are identical.

Proof: We only provide the proof for the IMCC (the proof is identical for the QBC with

M ≥ n; see [18, Section 6.1]).

Let yn1 = (y1, y2, · · · , yn) be the received word. Define

dmin(yn1 ) = min
c∈C

dH(c,yn1 )

and

dmax(y
n
1 ) = max

c∈C
dH(yn1 , c).

Then we have that dmin(yn1 ) ≤ rcov from the definition of the covering radius (with equality

achieved for at least one word). On the other hand, dmax(yn1 ) ≤ n. ( Note that there are codes for

which both inequalities can be satisfied with equality for the same word yn1 .) Hence, |dmax(yn1 )−

µ| ≤ n
2
− 1−2p

2δ
and |dmin(yn1 )− µ| ≥ n

2
− 1−2p

2δ
, where

µ =
1− 2p

2δ
+
n

2
(7)

and we have used the assumption that rcov ≤ 1−2p
δ

. Therefore, for any received word yn1 ,

|dmin(yn1 )− µ| ≥ |dmax(yn1 )− µ| which by [8, Section III] (see also [18, Section 4.1]) directly

means that the MD decoding rule is always used.

We illustrate the condition of Theorem 2 in Fig. 1 by plotting, for different values of the

IMCC BER p, the maximum allowable value for a code’s covering radius for which ML and MD

decoding are equivalent. It is noted that as the channel’s noise correlation coefficient decreases,

larger values of rcov are permissible; this is expected, since when the noise correlation is set to

zero, the channel reverts to the memoryless BSC for which the MD-ML decoding equivalence

holds for all block codes. Furthermore, we can tighten the condition in Theorem 2 to obtain a

necessary and sufficient condition on the code C.
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Fig. 1: Plot of the condition in Theorem 2: maximum allowable rcov over the IMCC with respect

to the correlation coefficient ε = δ/(1 + δ) and for different values of the BER p.

Definition 5: Let yn1 be the received word. We define:

dsum(yn1 ) , |dmin(yn1 )− dmin(1n ⊕ yn1 )|,

and let

dsum(C) , max
yn
1∈Fn

2

dsum(yn1 ),

where 1n is the all-one word of length n and dmin(yn1 ) is defined above.

Theorem 3: For any (n,M, dmin) code C used over the IMCC or the QBC with M ≥ n, the

outputs of the MD and ML decoders are identical iff

dsum(C) ≤ 1− 2p

δ
.

Proof: Again, we only provide the proof for the IMCC (as the proof is identical for the

QBC with M ≥ n; see [4, Section 6.1]).

We start by proving the first direction ( =⇒ ):

Assume dsum(C) ≤ 1−2p
δ

, and let yn1 be the received word. Then:

dmin(yn1 ) + dmax(y
n
1 ) = dmin(yn1 ) + n− dmin(1n ⊕ yn1 )
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≤ n+ dsum(yn1 )

≤ n+ dsum(C)

≤ n+
1− 2p

δ

= 2µ

where µ is given in (7). Hence,

dmin(yn1 ) + dmax(y
n
1 ) ≤ 2µ =⇒ |dmin(yn1 )− µ| ≥ |dmax(yn1 )− µ|,

which by [8, Section III] (see also [18, Section 4.1] directly means that for every yn1 ∈ Fn
2 ,

the ML decoder picks the minimum Hamming weight error word and hence reduces to the MD

decoder.

We now prove the other direction (⇐=):

Assume dsum(C) > 1−2p
δ

. From the definition of dsum(C), we know that there exist at least one

word ȳn1 such that:

dmin(ȳn1 )− dmin(1n ⊕ ȳn1 ) >
1− 2p

δ
.

For this received word, we have

dmin(ȳn1 ) + dmax(ȳ
n
1 ) = dmin(ȳn1 ) + n− dmin(1n ⊕ ȳn1 )

> n+
1− 2p

δ

= 2µ.

Hence,

dmin(ȳn1 ) + dmax(ȳ
n
1 ) > 2µ =⇒ |dmin(ȳn1 )− µ| < |dmax(ȳn1 )− µ|.

The above means (by [8, Section III]) that for this received word ȳn1 , the ML decoder picks the

maximum Hamming weight error word and hence the ML decoder is not equivalent to the MD

decoder.

Corollary 1: Let C be an (n,M, dmin) perfect (respectively, quasi-perfect) code, in the classical

sense, used over the IMCC or the QBC with M ≥ n. If

rcov ≤
1− 2p

δ
,



16

then C is a generalized perfect (resp., generalized quasi-perfect) code for this channel and hence

is optimal under ML decoding among all codes of the same length and dimension sent over the

same channel.

Proof: Immediate from Lemma 2 (resp., Lemma 3) and Theorem 2.

Lemma 4: Consider any (n,M, d) code C that includes every codeword along with its com-

plement, i.e., if c ∈ C then (1n ⊕ c) ∈ C. If p < 0.5 then ML decoding over the IMCC or the

QBC with M ≥ n reduces to MD decoding.

Proof: The proof follows directly from Theorem 3 by noting that dsum(C) = 0.

B. Queue Based Channel with M = 1, 2

The following quantities expressed in terms of the QBC parameters and block length will be

needed for the main results (Theorems 4 and 5 and Corollary 2) of this subsection.

Definition 6: For the QBC with parameters (M = 1, ε, p and α) and a block length n > 2 ,

define

m1(ε, p) ,

ln

ε+ (1− ε)(1− p)
(1− ε)p


ln

ε+ (1− ε)p
(1− ε)p

+ ln

ε+ (1− ε)(1− p)
(1− ε)(1− p)


,

,

m2(n, ε, p) ,

(n− 1) ln

ε+ (1− ε)(1− p)
ε+ (1− ε)p

+ ln

1− p
p


2 ln

ε+ (1− ε)(1− p)
(1− ε)(1− p)

+ ln

1− p
p


and

m∗(n, ε, p) , min{m1(ε, p),m2(n, ε, p)}.
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For the QBC with parameters (M = 2, ε, p and α) and a block length n > 2 , define

m̃1(α, ε, p) ,

ln


[

(1 + α)ε

1− ε
+ 1− p

] [
(1 + α)ε

1− ε
+ p

]
p

(
ε

1− ε
+ p

)


ln


[

(1 + α)ε

1− ε
+ p

] [
(1 + α)ε

1− ε
+ 1− p

]2
p(

αε

1− ε
+ 1− p)( ε

1− ε
+ 1− p)


,

m̃2(n, α, ε, p) ,


D + A

C
, if α >

(1− 2p)(1− ε)
ε

− 1

D +B

C
, otherwise,

and

m̃(n, α, ε, p) , min{m̃1(α, ε, p), m̃2(n, α, ε, p)},

where

A , ln


[

(1 + α)ε

1− ε
+ p

]2
(1− p)

(
ε

1− ε
+ 1− p

)
p

(
ε

1− ε
+ p

)[
(1 + α)ε

1− ε
+ 1− p

]2
 ,

B , ln


[

(1 + α)ε

1− ε
+ p

]3(
ε

1− ε
+ 1− p

)
p

(
ε

1− ε
+ p

)[
(1 + α)ε

1− ε
+ 1− p

]2
 ,

C , ln


(

(1 + α)ε

1− ε
+ 1− p

)3

p

(
αε

1− ε
+ 1− p

)(
ε

1− ε
+ 1− p

)
 ,

D , n ln


(1 + α)ε

1− ε
+ 1− p

(1 + α)ε

1− ε
+ p

 .
Theorem 4: For any two error words zn1 and z̄n1 generated by the QBC with M = 1 (resp.,

M = 2) satisfying

i. wH(zn1 ) = m, where 0 ≤ m < n
2

(resp., 0 ≤ m < n
3
),

ii. wH(z̄n1 ) = m+ i, where 1 ≤ i ≤ n−m
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we have that

m < m∗(n, ε, p) (resp., m < m̃(n, α, ε, p)) ⇐⇒ P (Zn
1 = zn1 )

P (Zn
1 = z̄n1 )

> 1.

Proof: See the Appendix.

Theorem 5: Let C be any (n,K, d) code used over the QBC with M = 1 (resp., M = 2) and

parameters α, ε and p. If the code’s classical covering radius rcov satisfies

rcov < min
{
m∗(n, ε, p),

n

2

}
(resp., rcov < min

{
m̃(n, α, ε, p),

n

3

}
),

then the output of the SMD decoder (when it does not declare a decoding failure) is identical

to the output of the ML decoder for this code.

Proof: We only prove the result for M = 2 (the proof for M = 1 is identical). Let y be

the received word. Let m , minc∈C dH(y, c). Clearly, m ≤ rcov <
n
3

(from the definition of the

covering radius). If there exists a unique codeword ĉ such that dH(y, ĉ) = m, then the SMD

decoding gives a valid codeword. Since m < m̃(n, α, ε, p), it follows from Theorem 4 that all

other error words of larger Hamming weights have a smaller probability than the error word

corresponding to the SMD decision. Hence the ML decoder will give the same output.

In Figs. 2 and 3, we plot m∗(n, ε, p) and m̃(n, α, ε, p) versus the channel correlation coefficient

ε (ranging from 0.03 to 1) of the QBC with parameter α = 1 (hence the QBC reduces to the

FMCC) and for M = 1 and M = 2, respectively, for different values of the BER p and the

block length n. We notice from these figures that the condition of Theorem 5 is restrictive for

channels with ε > 0.1. In fact, for these channels, only codes with a covering radius rcov = 1

satisfy the condition (e.g., the family of Hamming codes). For smaller ε, more codes satisfy the

condition, and when ε = 0 (i.e., when the QBC becomes memoryless and reduces to the BSC),

unsurprisingly all block codes satisfy it.

Corollary 2: Let C be an (n,K, dmin) perfect code (in the classical sense) used over the QBC

with M = 1 or M = 2 and parameters α, ε and p. If

rcov =

⌊
dmin − 1

2

⌋
< min

{
m∗(n, ε, p),

n

2

}
for M = 1,
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Fig. 2: Plot of m∗(n, ε, p) with respect to ε for different values of n and for p = 0.001, 0.01,

QBC with α = 1 and M = 1.
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Fig. 3: Plot of m̃(n, α, ε, p) with respect to ε for different values of n and for p = 0.001, 0.01,

QBC with α = 1, M = 2.

rcov =

⌊
dmin − 1

2

⌋
< min

{
m̃(n, α, ε, p),

n

3

}
for M = 2,

then C is a generalized perfect code for the corresponding channel and hence is optimal (under

ML decoding) among all codes of the same length and dimension sent over the same channel.

Proof: Immediate from Lemma 2 and Theorems 4 and 5.
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Remark 3: Note that we can not make a similar statement to the one in Corollary 2 for quasi-

perfect codes, since two error words of the same weight are not guaranteed to have the same

probability.

Remark 4: It should be pointed out that Corollary 2 directly implies the result of [15, The-

orem 1] stating that every binary (classical) perfect of minimum Hamming distance three is

optimal among all other codes of the same block length and dimension over any binary first-

order Markov additive noise channel (which is identical to the QBC and FMCC with M = 1)

with BER p and noise correlation coefficient

ε <
1− 2p

2(1− p)
.

V. DISCUSSION

A. Numerical Validation and Listing of Short-Length Codes

We have verified the conditions of Theorems 3 and 5 established in the previous section

by simulating over the IMCC and the QBC the performance of several short-length codes,

including Hamming, Golay and Reed-Muller codes, as well as a perfect nonlinear code due to

Vasil’ev [20], [21]. As expected, we observed that the probabilities of codeword error agree under

the different decoding regimes within the parameters of the decoding equivalence conditions.

Detailed numerical results can be found in [18].

It is also worth pointing out that the above (Hamming, Golay and Vasil’ev) perfect codes and

other perfect codes satisfying Theorems 3 and 5 will perform optimally (in terms of yielding a

minimal codeword error probability) among all binary block codes of identical size and block

length when operated on the IMCC or the QBC under ML decoding.

We next determine in Table I the largest possible covering radii permitted by Theorems 2

and 5 for replacing ML decoding by MD decoding over the IMCC and by SMD decoding

over the QBC with M = 1 (i.e., FMCC with M = 1) and QBC with M = 2 and α = 1 for

typical values of the channel parameters p and ε. It is observed that as the noise correlation

coefficient ε increases, the class of codes for which the decoding equivalence holds gets smaller

(becoming empty when ε = 0, 9). In Table II, we list examples of codes with short block lengths
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and covering radii that can be handily chosen according to the channel parameters of Table I.

These codes can hence be useful for practical delay and complexity constrained systems, such as

wireless sensor networks, when the systems’ end-to-end binary channels are better approximated

via the above channel models than the BSC.

BER ε

p 0.1 0.2 0.5 0.9

0.1 (7,2,2) (3,1,1) (0,0,1) (0,0,0)

0.01 (8,1,1) (3,1,1) (0,0,1) (0,0,0)

0.001 (8,1,1) (3,1,1) (0,0,1) (0,0,0)

TABLE I: Largest possible covering radius values as specified by Theorems 2 and 5 for the

IMCC, the QBC with M = 1 (i.e., the FMCC with M = 1) and the QBC with M = 2 and

α = 1 displayed as a triplet (rcov(IMCC), rcov(FMCC with M = 1), rcov(QBC with M = 2)) for different

values of the channel BER p and noise correlation coefficient ε.

rcov List of codes

1 Family of Hamming codes, Vasil’ev nonlinear perfect code.

2 (23, 212, 7) Golay code, family of extended Hamming codes, (8, 24, 4) Reed-Muller code.

3 (24, 212, 8) extended Golay code, (23, 214, 5) Wagner code, (15, 27, 5) BCH code.

> 3 (31, 211, 11) BCH code (rcov = 7), (16, 25, 8) Reed-Muller code (rcov = 6).

TABLE II: Example of codes with small covering radii.

B. Application to Syndrome Source Coding

In light of the duality between source and channel coding (e.g., see [22]–[25] and other works),

the results that we derived in this work can be directly applied to syndrome source coding with

or without side information at the receiver. Our results extend similar work in [24].
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The syndrome source coding scheme without side information uses an (n, 2k, dmin) linear

code C. The source encoder computes the syndrome sn−k1 of the source output en1 and sends

it over a noiseless communication channel. The source decoder outputs its estimate ên
1 of the

source output from its syndrome. If the n-bit source output is identically distributed to the n-

bit error pattern generated by one of the channels that we considered in this work and if the

linear code C satisfies the conditions we presented for that channel, then we obtain the same

equivalence relation between the ML and the MD (or SMD) decoders.

Alternatively, in the syndrome source coding scheme with side information at the decoder,

the source gives two outputs Yi and Xi, where the latter is only available at the decoder. Let

Ui = Xi⊕Yi. In this scheme, the source encoder computes the syndrome zn−k1 of the n-bit source

output yn1 and transmits it over a noiseless communication channel. The source decoder computes

the syndrome of the second n-bit source output xn1 and adds it bitwise to zn−k1 (modulo-2). It can

be easily proven that the result is the syndrome of un1 = xn1 ⊕yn1 . Hence, the decoder computes

its estimate ûn1 of un1 from its syndrome and outputs ŷn1 = ûn1 ⊕ xn1 . Similarly, if the Un
1 is

identically distributed to the n-bit error pattern of one of the channels that we considered in

this work and if the linear code C satisfies the condition we presented for that channel, then we

obtain the same equivalence relation between the ML and the MD (or SMD) decoders.

VI. CONCLUSION

In this work, we presented sufficient conditions on general binary codes under which SMD

and ML are equivalent over the QBC with M = 1, 2. We also established sufficient conditions

under which classical perfect codes are optimal under ML decoding over these channels with

memory. For the IMCC and the QBC with M ≥ n, we provided both necessary and sufficient

conditions on binary codes for which ML and MD are equivalent. As intuition suggests, it is

generally observed that the class of block codes for which the MD-ML decoding equivalence

holds gets larger as the channels’ noise correlation decreases. Furthermore, we determined

sufficient conditions under which classical perfect and quasi-perfect codes are optimal under

ML decoding over these channels; these codes can hence be beneficial to deploy in delay and

complexity constrained applications where the underlying binary-input binary-output end-to-end
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channel is better represented by the above channel models than the traditional memoryless BSC.
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APPENDIX

Proof of Theorem 4: For the sake of brevity, we only include a proof for the case of the

QBC with M = 2. Interested readers can find the full proof in [18, Theorems 5.1 and 6.4]. We

present the following two lemmas without their proofs which can be found in [18, Lemmas 6.1

and 6.2].

Lemma 5: The error pattern zn1 of Hamming weight 0 < m < n where all zeros and ones

are consecutive (e.g., zn1 = 00...011...1) is the most likely among all other error patterns of the

same length and weight generated by the QBC with M = 2.

Lemma 6: Consider the error words of length n having a Hamming weight 0 < m < n
3
. The

pattern bn1 = (001001....00) is the least likely among all patterns of the same length and weight

generated by the QBC with M = 2.

Define an1 (t) and bn1 (t) to be the following n-bit patterns of Hamming weight t:

an1 (t) = (000...111) for 0 < t < n,

bn1 (t) = (001001...000) for 0 < t <
n

3
.

In other words, an1 (t) contains t consecutive ones at the end of its sequence (with 0 < t < n) and

bn1 (t) consists of the pattern 001 repeated t times followed by n− t zeros (with 0 < t < n/3).

We first prove the first direction ( =⇒ ): Consider the following three cases:

• Case 1: m = 0

In this case, zn1 is the all-zero error pattern. From Lemma 1, P (Zn
1 = 0n) > P (Zn

1 = z̄n1 ).

• Case 2: 0 < m < n
3

and 1 ≤ i < n−m− 1

P (Zn
1 = zn1 )

P (Zn
1 = z̄n1 )

≥
minzn1∈Fn

2 :wH(zn1 )=m
P (Zn

1 = zn1 )

maxzn1∈Fn
2 :wH(zn1 )=m+i P (Zn

1 = zn1 )
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=
P (Zn

1 = bn1 (m))

P (Zn
1 = an1 (m+ i))

=


αε

1− ε
+ 1− p

1− p


m


(1 + α)ε

1− ε
+ p

ε

1− ε
+ p


−(m+i−2) 

ε

1− ε
+ p

p


−(m+i−1)

[
1− p
p

]i 
(1 + α)ε

1− ε
+ 1− p

ε

1− ε
+ 1− p


i−2m 

ε

1− ε
+ 1− p

1− p


i−m

where the first equality follows from Lemmas 5 and 6. Thus,

P (Zn
1 = zn1 )

P (Zn
1 = z̄n1 )

≥


p(

αε

1− ε
+ 1− p)( ε

1− ε
+ 1− p)[

(1 + α)ε

1− ε
+ p

] [
(1 + α)ε

1− ε
+ 1− p

]2

m


(1 + α)ε

1− ε
+ 1− p

(1 + α)ε

1− ε
+ p


i
[

(1 + α)ε

1− ε
+ p

]2
p

(
ε

1− ε
+ p

)

≥


p(

αε

1− ε
+ 1− p)( ε

1− ε
+ 1− p)[

(1 + α)ε

1− ε
+ p

] [
(1 + α)ε

1− ε
+ 1− p

]2
︸ ︷︷ ︸

≤1



m

[
(1 + α)ε

1− ε
+ 1− p

] [
(1 + α)ε

1− ε
+ p

]
p

(
ε

1− ε
+ p

) (8)

> 1. (9)

We have inequality in (8) since we set i = 1 (indeed, the term raised to the power i is

greater than 1 and hence is increasing in i where i ≥ 1). Inequality (9) is a result of the

condition m < m̃1(α, ε, p).

• Case 3: 0 < m < n
3

and n−m− 1 ≤ i ≤ n−m

In this case, t000(z̄n1 ) = t00(z̄
n
1 ) = 0. We have

P (Zn
1 = zn1 )

P (Zn
1 = z̄n1 )

≥ P (Zn
1 = bn1 (m))

P (Zn
1 = an1 (m+ i))



25

=

(1 + α)
ε

1− ε
+ 1− p

1− p


n  1− p

(1 + α)
ε

1− ε
+ p


i


p

(
ε

1− ε
+ 1− p

)(
αε

1− ε
+ 1− p

)
(1− p)(

(1 + α)ε

1− ε
+ 1− p

)3 [
(1 + α)ε

1− ε
+ p

]

m

[
(1 + α)ε

1− ε
+ p

]2
(1− p)

(
ε

1− ε
+ 1− p

)
p

(
ε

1− ε
+ p

)[
(1 + α)ε

1− ε
+ 1− p

]2
> 1.

The last inequality is a result of the condition m < m̃2(n, α, ε, p).

We now prove the other direction (⇐=):

• Assume m ≥ m̃1(α, ε, p) : In the proof of Case 2, all the inequalities except the last

one can be met with equality by choosing the error patterns as follows: zn1 = bn1 (m) and

z̄n1 = an1 (m+ 1). Under the assumption that m ≥ m̃1(α, ε, p), we get:

P (Zn
1 = zn1 )

P (Zn
1 = z̄n1 )

≤ 1.

Therefore, we proved that there exist at least two words zn1 and z̄n1 satisfying:

i. wH(zn1 ) = m, where 0 < m ≤ n
2

ii. wH(z̄n1 ) = m+ i, where 1 ≤ i ≤ n−m

such that:

P (Zn
1 = zn1 )

P (Zn
1 = z̄n1 )

≤ 1.

• Assume m ≥ m̃2(n, α, ε, p) : The proof follows a similar reasoning as above, only this

time we choose z̄n1 to be the all-one error word (while zn1 is unchanged).
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