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Abstract

Most of the basic concepts of algebraic coding theory are derived for the mem-

oryless binary symmetric channel. These concepts do not necessarily hold for

time-varying channels or for channels with memory. However, errors in real-life

channels seem to occur in bursts rather than independently, suggesting that these

channels exhibit some statistical dependence or memory. Nonetheless, the same

algebraic codes are still commonly used in current communication systems that

employ interleaving to spread channel error bursts over the set of received code-

words to make the channel appear memoryless to the block decoder. This method

suffers from immediate shortcomings as it fails to exploit the channel’s memory

while adding delay to the system.

We study optimal maximum likelihood block decoding of binary codes sent over

several binary additive channels with infinite and finite memory. We derive con-

ditions on general binary codes and channels parameters under which maximum

likelihood and minimum distance decoding are equivalent. The channels consid-

ered in this work are the infinite and finite memory Polya contagion channels [1],

the queue-based channel [29], and the Gilbert-Elliott channel [9, 12]. We also

present results on the optimality of classical perfect and quasi-perfect codes when

used over the aforementioned channels under maximum likelihood decoding.
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Chapter 1

Introduction

1.1 Problem Description and Thesis Contribu-

tion

Before Shannon’s 1948 paper “A Mathematical Theory of Communication” [19],

communication was strictly an engineering discipline with little mathematical the-

ory to support it. It was also widely believed that the only way to reliably transmit

information over a noisy medium was by reducing the data rate (e.g., by retrans-

mitting the message) until the error probability becomes “small enough”. Hence,

sending information over a noisy channel with a negligible probability of error

and at a positive rate was thought to be impossible to achieve. In his paper [19],

Shannon showed that this belief is incorrect by proving that every channel has a

maximum rate for transmitting data reliably known as the channel capacity. He

also proved that this theoretical limit can be achievable by a “more intelligent”

coding of the information without proposing an explicit method to construct such

codes, hence opening the field of coding theory which aims to discover efficient
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codes capable of achieving the channel capacity.

The fundamental results in coding theory are derived under the assumption that

the communication channel is a binary symmetric channel (BSC). In fact, for

this memoryless channel model, coding theorists were able to benefit from the

extensive literature of abstract algebra to develop good codes with rich algebraic

structures. However, these codes are not necessarily good for other channel mod-

els. Moreover, most real life channels have statistical memory which cannot be

modeled by the BSC. Memory has not been efficiently exploited in current commu-

nication systems despite proving that it increases the channel capacity in several

cases. Instead, interleaving is most commonly used to spread channel error bursts

over the set of received codewords so that block decoding can overcome most of

the corrupted codewords (if the number of channel errors within a codeword is

within the code’s error correcting capability). In other words, the use of interleav-

ing makes the channel appear memoryless to the block decoder. This method has

immediate shortcomings as it fails to exploit the channel memory while adding

delay to the system.

It is well known that the maximum likelihood (ML) decoding of binary codes over

the memoryless binary symmetric channel (BSC) with crossover probability p < 1
2

is equivalent to minimum Hamming distance decoding. When the communication

channel has memory, the above equivalence does not necessarily hold. Hence, it is

natural to investigate whether a similar relation exists for channels with memory.

In this work, we derive conditions on codes and on the channel characteristics,

under which the equivalence holds. The channel models considered in this work

are the infinite and finite memory Polya-contagion channels introduced in [1], the

Gilbert-Elliott channel (GEC) introduced in [9, 12] and the queue-based channel
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(QBC) introduced in [29].

The infinite memory contagion channel (IMCC) is a non-ergodic binary additive

channel which can be used in modeling non-ergodic fading channels [8,21]. It has

a closed-form expression for its epsilon-capacity and admits a simple ML decoding

rule. For this channel model, we show both necessary and sufficient conditions

for which minimum distance (MD) and ML decoding are equivalent. We also

give sufficient conditions under which classical perfect and quasi-perfect codes are

optimal under ML decoding over the IMCC.

Alternatively, the finite memory contagion channel (FMCC) and the QBC, its

queue-based extension, both feature stationary and ergodic Markov noise pro-

cesses of order M , and they were shown to accurately model ergodic correlated

Rayleigh and Rician fading channels [16, 29, 30]. Furthermore, it has been re-

cently observed that, in the context of LDPC coding, iterative decoders designed

for these channels can outperform the theoretical limit that is achievable on the

equivalent BSC (realized via ideal interleaving) [17] (see also [7] and [11] for de-

coders designed for Gilbert-Elliott and finite-state Markov channels). Since the

n-fold block transition probability for the QBC admits two different expressions

depending on whether M ≥ n or M < n, we treat these two cases separately.

For the case when M ≥ n, we show both necessary and sufficient conditions for

which minimum distance and ML decoding are equivalent. We also give sufficient

conditions under which classical perfect and quasi-perfect codes are optimal un-

der ML decoding over the QBC. For the case when n > M , we restrict our study

to the QBC with M = 1 (or equivalently the binary first-order Markov noise

channel or the FMCC with M = 1) and M = 2. For both cases, we determine

sufficient conditions on any binary code under which strict minimum Hamming

3



distance decoding is equivalent to strict ML decoding. We also present sufficient

conditions under which classical perfect codes are optimal under ML decoding

over the QBC. We specialize the results derived in the latter case for the FMCC

with M = 2 which is a special case of the QBC with M = 2.

Finally, the GEC is one of the most widely used binary channel models in the lit-

erature (belonging to the class of finite-state Markov channels [10]) for describing

burst error patterns in real communication channels. This channel is governed by

an underlying two-state hidden Markov model where one state, denoted by G, rep-

resents the “good” state of the channel and the other state, denoted by B, repre-

sents its bad state. The GEC noise process is a stationary ergodic hidden Markov

source (of infinite memory). We study separately the case when the state vector

is unknown and known at the decoder. In the former case, we present sufficient

conditions on binary codes under which strict MD decoding and ML decoding are

equivalent. We also determine sufficient conditions under which classical perfect

codes are optimal under ML decoding over the GEC. In the second case (when the

state vector is available at the decoder), we present partial results pertaining to

the equivalence between the Hamming weight and the likelihood of error patterns.

1.2 Literature Review

In related works [?], it was proven that strict minimum Hamming distance decod-

ing is equivalent to strict ML decoding for perfect codes of minimum distance 3

over the first-order Markov channel (finite memory contagion channel withM = 1)

with a positive correlation coefficient. In [2], sufficient conditions, under which

4



strict minimum Hamming distance decoding of binary linear perfect codes be-

comes equivalent to strict ML decoding, are derived for the same channel. A

near equivalence relationship between strict MD and strict ML decoding is also

obtained for binary linear quasi-perfect codes for a range of channel parameters

and the codes’ minimum distance. We extend the provided conditions to obtain

even tighter sufficient conditions that apply for any binary code (linear or non-

linear). We also provide similar results for the finite memory contagion channel

with M = 2. In an another work [5], a sufficient condition on the infinite memory

contagion channel is provided, under which ML block decoding is equivalent to

minimum Hamming distance block decoding for linear codes containing the all-

one codeword. We also improve these results by obtaining necessary and sufficient

conditions for any binary codes used over the same channel.

1.3 Thesis Overview

In Chapter 2, we give a brief introduction of the communication channel models

considered in this work. Specifically, we discuss the binary symmetric channel

(BSC), the binary first-order Markov noise channel (BFMNC), the infinite and

finite memory contagion channel (IMCC and FMCC), and the Gilbert-Elliott

channel (GEC).

In Chapter 3, we provide an overview of the basic concepts in coding theory. We

then specialize these concepts to linear block codes before briefly introducing some

binary codes such as the family of Hamming codes, the Golay code and the Reed-

Muller codes. We also explain a method of generating nonlinear perfect codes

from Hamming codes. Finally, we introduce a generalized likelihood distance

5



that is associated with a wide class of channels that includes all additive noise

channels. We generalize the basic notions in coding theory to this new distance

and we present two lemmas that determine sufficient conditions on error patterns

under which classical perfect and quasi-perfect codes are also generalized perfect

and quasi-perfect codes.

In Chapter 4, we study ML decoding of binary block codes over the IMCC and the

GEC. We derive useful conditions on binary codes under which we obtain some

equivalence between ML and MD decoding.

In Chapter 5, we study ML decoding of binary codes over the BFMNC. We also

derive sufficient conditions on these codes under which SMD and ML decoding

are equivalent.

In Chapter 6, we study separately ML decoding of length-n binary codes over

the QBC with memory M ≥ n and M < n. For the latter case, we restrict our

treatment to the QBC with M = 2. For both cases, we derive useful conditions

on binary codes under which we obtain some equivalent between MD and ML

decoding.

Finally, in Chapter 7, we summarize our results and suggest some possible future

work.
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Chapter 2

Communication Channel Models

By definition, the communication channel is the connection between the trans-

mitter and the receiver in a given communication system. It may take the form

of an optical fiber, data storage device, free space, etc... With all this variety, a

common problem in any communication system is the noise interference which is

usually modeled as an additive process. The noise may arise from internal com-

ponents at the receiver as well as from outside interference from other users of the

channels. Most communication systems use quantizers at the receiver to make

the number of possible received signals finite. In this case, the noise is described

by a probability transition matrix PY|X(Y
n
1 = yn

1 |X
n
1 = xn

1 ) which characterizes

the conditional distribution of the output Y given the input X . Formally, a com-

munication channel can be defined by the sequence
{
X n, PY|X(.|.),Y

n
}∞

n=1
, where

X ,Y are the sets of possible channel input and output symbols, respectively.

PY|X(·|·)✲ ✲
Xn

1 Yn
1

7



In other words, given the n-tuples xn
1 = (x1, ...xn) ∈ X n and yn

1 = (y1, ..., yn) ∈

Yn, then PY|X (Yn
1 = yn

1 |X
n
1 = xn

1 ) denotes the probability that yn
1 will be received

given that xn
1 was transmitted. An additive noise channel is a channel where the

output at time k is given by: yk = xk + zk, where xk ∈ X , zk ∈ Z are the input

and the noise symbols at time k, respectively. The noise process is assumed to

be independent of the input of the channel. Hence, PY|X (Yn
1 = yn

1 |X
n
1 = xn

1 ) =

PY|X (Xn
1 + Zn

1 = yn
1 |X

n
1 = xn

1 ) = P (Zn
1 = yn

1 − xn
1 |X

n
1 = xn

1 ) = P (Zn
1 = yn

1 −

xn
1 ), where the addition and the subtraction of the vectors are respectively the

component-wise addition and subtraction defined for the sets X ,Y . This work

considers only binary additive channels where X = Y = Z =GF(2) = {0, 1} and

addition is modulo-2. For simplicity, we will reserve the notation F = GF(2)

throughout.

2.1 Binary Memoryless Channels

We first consider the simplest mathematical model for communication channels.

A binary additive noise channel is called memoryless iff, for any two vectors yn
1 and

xn
1 ∈ Fn, PY|X(Y

n
1 = yn

1 |X
n
1 = xn

1 ) =
∏n

i=1 PY |X(Yi = yi|Xi = xi) =
∏n

i=1 P (Zi =

yi ⊕ xi), where ⊕ denotes the modulo-2 addition. Let P (Zi = 1) = p = 1 −

P (Zi = 0), this channel is known as the binary symmetric channel with crossover

probability p or BSC(p) shown in Fig. 2.1. In that case, the conditional probability

of the output given the input can be further reduced to:

PY|X(Y
n
1 = yn

1 |X
n
1 = xn

1 ) = pwH(yn
1
⊕xn

1
)(1− p)n−wH(yn

1
⊕xn

1
)

= (1− p)n
(

p

1− p

)wH (yn
1
⊕xn

1
)

, (2.1)

8



❅
❅
❅
❅
❅
❅
❅
❅❘�

�
�
�
�
�
�
�✒
✲

✲

X Y

0 0

1 1

1− p

1− p

p p

Figure 2.1: The binary symmetric channel with cross over probability p (BSC(p)).

where wH(z
n
1 ) denotes the Hamming weight of the binary vector zn1 . If we make

the unrestrictive assumption that p < 1/2, we can see that the likelihood of an

error word is inversely proportional to its Hamming weight. This is one of the

simplest and most studied channel models. In fact, most of the basic concepts of

coding theory are derived for this particular communication channel.

2.2 Binary Channels with Memory

For the memoryless channel discussed in Section 2.1, the likelihood of a future

error event is completely independent of the previous outcomes. Most real-life

channels of interest are far from being memoryless. Memory in channel models is

a result of multipath propagation, intersymbol interference, fading, etc... Errors

in these channels seem to come in bursts rather than independently. We will next

discuss several channel models with memory.

2.2.1 Binary First-Order Markov Noise Channel

The binary first-order Markov noise channel (BFMNC) is one of the simplest

binary additive noise channels with memory. The noise process {Zi}i∈N∗ generated

9



in this channel forms a Markov chain, where N∗ is the set of all natural numbers

excluding 0. In other words, for any k > 1, P (Zk = zk|Zk−1 = zk−1, ..., Z1 = z1) =

P (Zk = zk|Zk−1 = zk−1), for all zk1 ∈ Fk
2. Hence, the probability distribution of

the error word Zn
1 is given by:

P (Zn
1 = zn1 ) = P (Z1 = z1)

n∏

i=2

P (Zi = zi|Zi−1 = zi−1, ..., Z1 = z1)

= P (Z1 = z1)

n∏

i=2

P (Zi = zi|Zi−1 = zi−1).

If the channel noise is stationary, then it can be fully characterized by two pa-

rameters λ and q. We can associate with the channel the following transition

matrix:

P =






1− λ λ

1− q q




 . (2.2)

The (i, j)th entry in P represents the probability that the current noise bit is j

given that the previous noise bit was i, where (i, j) ∈ {0, 1}2. If (λ, q) ∈ (0, 1)2,

then this Markov chain is irreducible and admits a unique stationary distribution

π = [1 − p, p] =
[

1−q

1−q+λ
, λ
1−q+λ

]

, where p = P (Zk = 1) ∈ (0, 1). We also define

the noise correlation coefficient ǫ = Cov(Zk,Zk−1)

Var(Zk)
∈ (−1, 1). We can re-write the

transition matrix P, defined in (2.2), as follows:

P =






ǫ+ (1− ǫ)(1− p) (1− ǫ)p

(1− ǫ)(1− p) ǫ+ (1− ǫ)p




 . (2.3)
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The range of the bit error rate (BER) p can be reduced to (0, 1/2) without loss

of generality. As we mentioned earlier, the channel models with memory attempt

to generate errors in bursts to replicate the trend observed in real-life channels.

Hence, the occurrence of an error should increase the likelihood of future errors.

To capture this effect, we need to have q ≥ λ or ǫ ≥ 0. Hence, we will assume

that ǫ ∈ [0, 1).

2.2.2 Polya Contagion Channels

The binary contagion channel model is introduced in [1]. The errors propagate

in the channel in a way similar to the spread of a contagious disease through a

population in the sense that the event of a bit error increases the probability of a

future bit error. It has been shown in [20] that the distribution of defects in semi-

conductor memory is well modeled by the Polya-Eggenberger distribution which

is a distribution realized by Polya’s contagion model. This family of channels

presents an alternative to the Gilbert-Elliott channel [9, 12] which belongs to the

class of finite-state Markov channels [10] and has some attractive properties. Two

different contagion channel models are proposed in [1], an infinite-memory model

and a finite-memory model. The latter is obtained via a modification of the first.

We study both models separately.

Infinite-Memory Contagion Channel

The infinite-memory contagion channel (IMCC) is a communication channel with

stationary non-ergodic additive noise. The corresponding noise process {Zi}
∞
i=1

is generated by Polya’s contagion urn scheme as follows: consider an urn that

contains R > 0 red balls and S > 0 black balls. We denote by p the proportion of

11



red balls, i.e., p = R
R+S

. We assume without loss of generality that p < 1/2. We

make successive draws with replacement to the urn, adding an additional ∆ > 0

balls of the same color just drawn. When we set ∆ = 0, the draws are independent

and the resulting channel is nothing but the familiar memoryless BSC. We define

δ = ∆
R+S

. We associate with this scheme the noise process {Zi}
∞
i=1 as follows:

Zi =







1, if the ith ball drawn is red

0, otherwise.

The probability of an n-bit error pattern zn1 can be written as follows:

P(Zn
1 = zn1 ) =

p(p+ δ)...(p + (d− 1)δ)(1− p)(1− p + δ)...(1− p+ (n− d− 1)δ)

(1 + δ)(1 + 2δ)...(1 + (n− 1)δ)

=
Γ(1

δ
)Γ(p

δ
+ d)Γ(1−p

δ
+ n− d)

Γ(p
δ
)Γ(1−p

δ
)Γ(1

δ
+ n)

(2.4)

where d is the Hamming weight of the error pattern, and Γ(·) is the Gamma

function given by:

Γ(x) =

∫ ∞

0

tx−1e−tdt, x > 0.

The correlation between any two distinct noise bits is given by:

ǫ = Cor(Zi, Zj) =
Cov(Zi, Zj)

Var(Zi)
=

δ

1 + δ
∀i 6= j.

It is shown in [1] that, for this channel, the maximum likelihood (ML) decoding

reduces to either minimum Hamming distance (MD) decoding or maximum Ham-

ming distance decoding. We will discuss this in more details in later chapters. It
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is also proven in [1] that the all-zero error word 0n is the most likely among all

error words of length n generated by the IMCC.

When we set δ = 0, the IMCC reduces to a BSC with BER p. It is also proven

that the IMCC (for δ > 0) belongs to the class of averaged channels with memory,

has zero capacity and admits a closed-form expression for its epsilon-capacity. We

can see that the probability distribution of an error pattern depends only on its

Hamming weight, and does not depend on how the errors are clustered. The fact

that the first noise sample have the same effect as “more recent” noise samples on

future outcomes poses limitations for modeling real-life communication systems

where errors seem to be more temporally localised.

Finite-Memory Contagion Channel

The finite-memory contagion channel (FMCC) is a communication channel model

derived from the IMCC. As previously mentioned, the identical contribution of

the “old” noise samples and the “more recent” ones to future samples renders the

IMCC inadequate for modeling real-life channels that behave ergodically. The

FMCC addresses this problem by making the current noise sample independent

of “older” samples given the last M error bits. In fact, the FMCC noise process is

a binary additive M th-order Markov chain that can be generated using a slightly

modified version of the Polya contagion urn scheme. The only difference is that

the added ∆ ≥ 0 balls at the ith draw are removed from the urn at the (i+M)th

draw. Everything else remains the same. It was shown in [1, Section VI] that the

generated noise process is both stationary and ergodic yielding a positive channel

capacity that increases with the memory M . The FMCC and its queue-based

generalization, which will be discussed later, were also shown in [30] to model

13



Rician fading channels more accurately than the Gilbert-Elliott channel.

Note that for a block length n ≤ M , the FMCC becomes analytically equivalent

to the IMCC and the probability of an n-bit error word zn1 is given by (2.4). If

n > M , the probability of the error word is given by:

P (Zn
1 = zn1 ) = L(M)

n∏

i=M+1

[
p + si−1δ

1 +Mδ

]zi [1− p+ (M − si−1)δ

1 +Mδ

]1−zi

(2.5)

where

L(M) =

∏sM−1
i=0 (p+ iδ)

∏M−sM−1
j=0 (1− p+ jδ)

∏M−1
l=1 (1 + lδ)

and for k ≥ M ,

sk =

k∑

i=k−M+1

zi.

The correlation coefficient of the noise process is given by:

ǫ =
E[ZiZi+1]− E[Zi]

2

Var(Zi)

=
δ

δ + 1
≥ 0. (2.6)

As the IMCC, when δ = 0 (or equivalently ǫ = 0), the FMCC reduces to the

BSC(p).
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2.2.3 Queue-Based Channel

Introduced in [29], the queue-based channel (QBC) is another communication

channel model that belongs to the class of channels with binary additiveM th-order

Markov noise. It is a generalization of the FMCC while remaining mathematically

tractable. The corresponding noise process can be generated by a slightly more

complicated scheme than the Polya contagion urn scheme.

✲ ⑥ ♠ ⑥ · · · ♠ ✲

Ai1 Ai2 Ai3 AiM

1 2 3 M

Figure 2.2: A queue of length M .

Consider two parcels:

• Parcel 1 is a queue of length M (see Fig. 2.2) that contains M balls, either

red or black. The random variables Aij (i is a time index, i > 0; j is the

cell index in the queue, 1 ≤ j ≤ M) are defined as follows:

Aij =







1, if the jth cell contains a red ball at time i

0, otherwise.

• Parcel 2 is an urn containing a very large number of balls where the pro-

portion of red balls is p ∈ (0, 1/2), without loss of generality.

For the ith draw, a biased coin with P (H) = ϕ ∈ [0, 1) is tossed. If the outcome

is heads, we select the queue or parcel 1. Otherwise, we select the urn or parcel 2.
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• Case 1: If the queue is selected and if M ≥ 2, a pointer selects the jth cell

with probability 1
M−1+α

if 1 ≤ j ≤ M − 1, and selects the last cell with a

probability α
M−1+α

, where α ≥ 0. If M = 1, then the pointer selects the

only cell with probability 1.

• Case 2: If the urn is selected, a ball is drawn at random from it.

Based on the color of the ball selected by the pointer or drawn from the urn, a

ball of the same color is inserted in the queue shifting its content and forcing out

the ball in the last cell. Finally, the noise process {Zi}
∞
i=1 is generated as follows:

Zi =







1, if the ith experiment selects a red ball

0, otherwise.

Note that for M = 1, the QBC is identical to the FMCC with M = 1 or the

BFMNC.

The probability of an n-bit error pattern zn1 can be written as follows:

• If n ≤ M then:

P (Zn
1 = zn1 ) =

∏n−dn
1
−1

j=0

[

(1− ϕ)(1− p) + j
ϕ

M − 1 + α

]

∏M−1
j=M−n

[

1− (α + j)
ϕ

M − 1 + α

]

×

dn
1
−1
∏

j=0

[

(1− ϕ)p+ j
ϕ

M − 1 + α

]

(2.7)

where dba =
∑b

i=a zi (d
b
a = 0 if a > b).
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• If n > M then:

P (Zn
1 = zn1) = L(M)

n∏

i=M+1

[

(di−1
i−M+1 + αzi−M)

ϕ

M − 1 + α
+ (1− ϕ)p

]zi

{[
M − 1− di−1

i−M+1 + α(1− zi−M)
]
ϕ

M − 1 + α
+ (1− ϕ)(1− p)

}1−zi

(2.8)

where:

L(M) =

∏M−dM
1

−1
j=0

[

(1− ϕ)(1− p) + j
ϕ

M − 1 + α

]

∏M−1
j=0

[

1− (α + j)
ϕ

M − 1 + α

]

×

dM
1

−1
∏

j=0

[

(1− ϕ)p+ j
ϕ

M − 1 + α

]

.

It can be shown that the channel bit error rate is p, and the correlation coefficient

of the noise process is

ǫ =
ϕ

(M − 1 + α)− ϕ(M − 2 + α)
≥ 0. (2.9)

Equations (2.7) and (2.8) can be re-written in terms of p and ǫ as follows:

• If n ≤ M then:

P (Zn
1 = zn1) =

∏n−dn
1
−1

j=0

[

(1− p) + j
ǫ

1− ǫ

]
∏dn

1
−1

j=0

(

p+ j
ǫ

1− ǫ

)

∏n−1
j=0

(

1 + j
ǫ

1− ǫ

) .

(2.10)
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• If n > M then:

P (Zn
1 = zn1) =

L(M)

[

1 + (M − 1 + α)
ǫ

1− ǫ

]n−M

n∏

i=M+1

[

(di−1
i−M+1 + αzi−M)ǫ

1− ǫ
+ p

]zi

{[
M − 1− di−1

i−M+1 + α(1− zi−M)
]
ǫ

1− ǫ
+ 1− p

}1−zi

(2.11)

where:

L(M) =

∏M−dM
1

−1
j=0

[

(1− p) + j
ǫ

1− ǫ

]
∏dM

1
−1

j=0

(

p+ j
ǫ

1− ǫ

)

∏M−1
j=0

(

1 + j
ǫ

1− ǫ

) .

Lemma 2.1. [29, Lemma 2, Theorem 3] When α = 0, the QBC with param-

eters ǫ, p and M reduces to the FMCC with parameters ǫ, p and M − 1.

Lemma 2.2. The all-zero error word 0n is the most likely among all error words

of length n generated by the QBC.

Proof. We consider the cases when n ≤ M and n > M separately.

• Case 1: n ≤ M

P (Zn
1 = zn1 ) =

∏n−dn
1
−1

j=0

[

1− p+ j
ǫ

1− ǫ

]
∏dn

1
−1

j=0

(

p+ j
ǫ

1− ǫ

)

∏n−1
j=0

(

1 + j
ǫ

1− ǫ

)

≤

∏n−dn
1
−1

j=0

[

1− p+ j
ǫ

1− ǫ

]
∏dn

1
−1

j=0

(

1− p+ j
ǫ

1− ǫ

)

∏n−1
j=0

(

1 + j
ǫ

1− ǫ

)
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(2.12)

≤

∏n−1
j=0

[

1− p+ j
ǫ

1− ǫ

]

∏n−1
j=0

(

1 + j
ǫ

1− ǫ

)

= P (Zn
1 = 0n),

where the inequality in (2.12) follows from the assumption that p < 1
2
. Note

that we get equality iff zn1 = 0n.

• Case 2: n > M First, note that L(M) in (2.11) is equal to the probability of

the length M error word zM1 generated by the QBC. We proved in Case 1

that zM1 = 0M (i.e., setting the first M bits to 0 in zn1 ) maximizes L(M). Let

Q(zn1) =
1

[

1 + (M − 1 + α)
ǫ

1− ǫ

]n−M

n∏

i=M+1

[

(di−1
i−M+1 + αzi−M)ǫ

1− ǫ
+ p

]zi

{[
M − 1− di−1

i−M+1 + α(1− zi−M)
]
ǫ

1− ǫ
+ 1− p

}1−zi

.

Then,

P (Zn
1 = zn1) = L(M)Q(zn1 ).

Hence,

Q(zn1 ) ≤
1

[

1 + (M − 1 + α)
ǫ

1− ǫ

]n−M

n∏

i=M+1

[
(M − 1 + α)ǫ

1− ǫ
+ 1− p

]zi
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{
[M − 1 + α] ǫ

1− ǫ
+ 1− p

}1−zi

(2.13)

=

[
(M − 1 + α)ǫ

1− ǫ
+ 1− p

]n−M

[

1 + (M − 1 + α)
ǫ

1− ǫ

]n−M

= Q(0n),

where (2.13) is a result of the following facts:

– p < 1
2

– dji ≤ (j − i+ 1) if j >= i

– 0 ≤ zi ≤ 1.

Equality is achieved iff zn1 = 0n. Therefore, the all-zero error word 0n

maximizes both L(M) and Q(zn1 ) and hence is the most likely error pattern

generated by the QBC.

Remark 2.1. (Summary of the QBC features)

• If M = 1, the QBC reduces to the FMCC with M = 1, or equivalently, the

BFMNC with identical BER p and noise correlation coefficient ǫ.

• If ϕ = 0 (i.e., ǫ = 0), the QBC reduces to a BSC with crossover probability

p.

• If α = 1, the QBC reduces to the FMCC with the same memory parameter

M , the same BER p, and with the same correlation coefficient ǫ, or with

δ = ǫ
1−ǫ

.
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• If α = 0, the QBC with parameters (memory M , BER p and correlation

coefficient ǫ) reduces to the FMCC with parameters (M − 1, p, ǫ).

Remark 2.2. The QBC is shown in [30] to model Rician fading channels more

accurately than the Gilbert-Elliott channel.

2.2.4 Gilbert-Elliott Channel

The Gilbert-Elliott channel (GEC) is one of the most widely used binary channel

models in the literature (belonging to the class of finite-state Markov channels [10])

for describing burst error patterns in real communication channels. This channel

is illustrated in Fig. 2.3 and is governed by an underlying two-state Markov chain

where one state, denoted by G, represents the “good” state of the channel and the

other state, denoted by B, represents its bad state. We set binary values to the two

states: s = 0 for state G and s = 1 for state B. The state process is an irreducible

✖✕
✗✔

✖✕
✗✔

G B

b

g

1− b 1− g

✲

✲

❍❍❍❍❍❍❍❍❍❥✟✟✟✟✟✟✟✟✟✯ ✲

✲

❍❍❍❍❍❍❍❍❍❥✟✟✟✟✟✟✟✟✟✯0

1

0

1

0

1

0

1

1− PG

1− PG

PG

1− PB

1− PB

PB

Figure 2.3: The Gilbert-Elliott channel model.

stationary Markov source with transition probabilities P (G|B) = g ∈ (0, 1) and
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P (B|G) = b ∈ (0, 1). The corresponding state transition matrix is

P =






1− b b

g 1− g




 .

The state process admits a stationary distribution (written as a column vector)

π =






πG

πB




 =






g

b+ g
b

b+ g




 (2.14)

The channel is a BSC with crossover probability PG in the “good” state and PB

in the “bad” state. Conventionally, we choose the states such that: PG < PB. We

define the following two matrices:

P(0) =






(1− b)(1− PG) b(1− PB)

g(1− PG) (1− g)(1− PB)




 (2.15)

and

P(1) =






(1− b)PG bPB

gPG (1− g)PB




 (2.16)

For t ∈ {0, 1}, the ijth entry of P(t) equals P (Zk = t, Sk = j|Sk−1 = i), where

{Zk}
∞
k=1 and {Sk}

∞
k=1 are the noise and state processes associated with the GEC,

respectively. The GEC can be described by Yk = Xk ⊕ Zk, where Yk, Xk and

Zk are the output, input and noise symbols, respectively, at time k. The noise

process {Zk}
∞
k=1, which is independent of the input process, is a stationary ergodic
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hidden Markov source (of infinite memory). Note that the GEC’s BER, which we

denote by p, is given by:

p =
g

b+ g
PG +

b

b+ g
PB.

The probability of an n−bit error pattern zn1 can be given by (in matrix form):

P (Zn
1 = zn1 ) = π

T

(
n∏

i=1

P(zi)

)

1n, (2.17)

where T denotes transposition and 1n is the all-ones column vector of length n.

When the channel state sn1 is known, the probability of zn given the channel states

is:

P (Zn
1 = zn1 |S

n
1 = sn1 ) =

n∏

i=1

[
(1− PB)

1−zipziB
]s

i

[
(1− PG)

1−ziP zi
G

]1−si .

(2.18)
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Chapter 3

Channel Coding

Shannon’s landmark paper on the “Mathematical theory of communication” [19]

marks the emergence of the field of coding theory. In the early 1940s, sending

information at a positive rate was thought to be impossible to achieve with a

negligible probability of error. Shannon’s channel coding theorem disproved the

above claim by showing the existence of some codes, with sufficiently large block

lengths and rates below a theoretical limit characteristic of the communication

channel known as the channel capacity, that allow the probability of error at the

receiver to be made arbitrarily small. However, the original proof was based on

random coding and hence was not constructive. The next logical step was to

try to construct and implement such codes which is the main task of the field of

channel coding theory.

Informally, channel coding is the process of “smartly” adding redundancy to a

message before sending it, in order to be able to protect that message against

channel errors encountered during transmission. The role of the encoder is better

illustrated with an example:
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Consider an imaginary binary communication system where the transmitter is

repeatedly tossing a coin and wants to transmit the outcomes to the receiver

(e.g., 0 for heads, 1 for tails). The binary channel is noisy and it flips every

transmitted bit with a probability p = 0.1 (the channel is a BSC with crossover

probability p). If the message is transmitted as is, i.e., by sending only one bit

to determining the outcome, then it will be received incorrectly with probability

p = 0.1. Now, consider the simplest scheme where the transmitter sends the same

bit three times. If the decoder uses a majority decoding rule, the probability of

error at the receiver is:

Perr = P (2 errors) + P (3 errors)

= 3p2(1− p) + p3

= 0.0280 < 0.1.

Hence, adding only 2 redundant bits reduces the probability of error by a factor of

3. We can easily prove that by sending the same bit 5 times the probability of error

is reduced further to 0.0086. The problem with this approach is that information

is transmitted at a rate of 1/n, where n is total number of transmitted bits. Even

though the probability of error goes to 0 as n goes to infinity, the information

rate goes to 0 as well. Hence, this scheme is rather inefficient since we know from

the channel coding theorem that there exists a scheme that transmits information

at a rate arbitrarily close to the BSC’s capacity C = 1 − Hb(p) = 0.469 with a

negligible probability of error, where Hb(·) denotes the binary entropy function [6].

The field of coding theory considers the problem of finding methods of adding

redundancy in a “smarter” way, in order to maximize the benefit in the error
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correction capability. In what follows, we provide a brief overview of the basic

concepts in coding theory [4, 23].

3.1 Binary Block Codes over Binary Additive

Noise Channels

By definition, “block codes map a block of information bits onto a channel code-

word and there is no dependence on past information bits” [6].

Definition 3.1. An (n,M) binary block code C is an injective mapping:

E : Fk
2 7→ Fn

2 ,

where k = log2(M), assuming M is a power of 2 and n ≥ k. The parameters of

the code are explained below:

• n: is the length (or block length) of a codeword in C, where a codeword is

an element of C = E(Fk
2).

• M : is the code size.

• k: is the dimension of C, or the message length.

• F2 = GF(2): is the input and output alphabet.

The rate of this code is:

R =
log2(M)

n
=

k

n
message bits/code bits.
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In communication systems, a codeword c ∈ C is sent over the communication

channel and yn
1 = (y1, ..., yn) ∈ Fn

2 is received. Over an additive noise channel

yn
1 = c + en1 where en1 = (e1, ..., en) ∈ Fn

2 is the error pattern generated by the

channel.

Definition 3.2. The minimum Hamming distance of an (n,M) code C is:

dmin := min{dH(c, c
′) : (c, c′) ∈ C2 and c 6= c′},

where dH(x
n
1 ,y

n
1 ) is the Hamming distance between the vectors xn

1 and yn
1 , or the

number of indices where these vectors (or n-tuples, or words of length n) differ.

An (n,M) code C with a minimum Hamming distance dmin is described as an

(n,M, dmin) code.

Definition 3.3. (Error set) For a code C, the error set of a received word yn
1 is

defined as:

SC(y
n
1 ) = {en1 ∈ Fn

2 : yn
1 + en1 ∈ C}.

This is the set of all possible error words that could have possibly occurred during

transmission in order to receive yn
1 .

Definition 3.4. A decoder Ddec of a code C is a deterministic function:

Ddec : F
n
2 7→ C ∪ {∅}. (3.1)

The decoder maps every possible n-tuple in Fn
2 to a codeword in C or declares a

decoding failure. If ∃ at least one word y ∈ Fn
2 such that: Ddec(y) = ∅, then the
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decoder is said to be incomplete. A complete decoder maps every word in Fn
2 to a

codeword in C.

For additive noise channels, the output of the decoder can be its estimate of the

error word generated by the channel rather than its estimate of the codeword sent.

Then subtracting this error pattern from the received word yields the decoded

codeword. We denote such a decoder by

D : yn
1 7→ en1 ∈ SC(y

n
1 ).

For example, under minimum Hamming distance decoding, D outputs the error

pattern of smallest Hamming weight in the corresponding error set. Such min-

imum distance (MD) decoder will be examined rigorously. For additive noise

channels, the two decoders Ddec and D are related by:

Ddec : y
n
1 7→ yn

1 −D(yn
1 ).

Thus, we will hereafter use the decoding function D instead of Ddec.

Definition 3.5. The packing radius rpac of a code C is the maximum radius such

that the Hamming spheres about each codeword do not intersect.

It can be shown the packing radius is the guaranteed number of errors that

can be corrected by the code under minimum Hamming distance decoding. For

an (n,M, dmin) code C, the packing radius is

rpac =

⌊
dmin − 1

2

⌋

.
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Definition 3.6. The covering radius rcov of an (n,M, dmin) code C is the minimum

radius of the Hamming spheres centered at each codeword such that every word in

Fn
2 is contained in at least one of the spheres. Formally,

rcov = max
yn
1
∈Fn

2

min
c∈C

dH(y
n
1 , c).

Definition 3.7. (Perfect and quasi-perfect codes) A code C is called perfect

iff its covering and packing radii are equal. In other words, C is a perfect code

iff every yn
1 ∈ Fn

2 is within a Hamming distance of at most rpac from exactly one

codeword c ∈ C.

Note that a quasi-perfect code satisfies rcov = rpac + 1. For a perfect code C,

∀yn
1 ∈ Fn

2 , ∃ a unique en1 ∈ SC(y
n
1 ) s.t wH(e

n
1 ) ≤ rpac(C), where wH(e

n
1 ) denotes the

Hamming weight of the vector en1 or the number of non-zero entries in the vector.

Definition 3.8. (Decoding set) For a code C, the decoding set of a decoder D

that outputs for every received word its error estimate, is defined as:

DC = {D(yn
1 ) : y

n
1 ∈ Fn

2},

where D(yn
1 ) ∈ SC(y

n
1 ). This is the set of all error patterns that the decoder

outputs.
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3.2 Binary Linear Codes over Binary Additive

Noise Channels

Definition 3.9. An [n, k] binary linear code C is a k-dimensional subspace of Fn
2 ,

where F2 = GF(2). Its rate is R = k
n
. An encoder for C is a bijective map:

E : Fk
2 7→ C.

An [n, k, dmin] binary linear code is an [n, k] binary linear code with minimum

Hamming distance dmin.

Lemma 3.1. For a binary linear code, the minimum Hamming distance is equal

to the minimum Hamming weight of its non-zero codewords.

Definition 3.10. A generator matrix G of an [n, k, dmin] code C is a k × n F2-

valued matrix whose rows generate C, i.e.

C = {aG : a ∈ Fk
2}.

If the generator matrix is written as follows: G = (Ik|P), where Ik is the k-

dimensional identity matrix and P is a k× (n− k) matrix, then we say that G is

in its standard form.

Remark 3.1. Every linear code is equivalent to a code with a standard form G,

where two codes C1 and C2 are called equivalent if both codes have the same set of

codewords but a different linear mapping, or if the they can be obtained from the

other by permuting the bits in their codewords.
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Definition 3.11. A parity-check matrix H of an [n, k, dmin] code C is an (n−k)×n

matrix satisfying GHT = 0, where 0 is the all-zero k × (n− k) matrix and G is

the generator matrix of C. It is immediate to prove that:

c ∈ C ⇐⇒ cHT = 0n−k,

where 0n−k is all-zero word of length n− k.

An important observation is that the minimum Hamming distance dmin of C

is:

dmin = max{d ∈ N : any d− 1 columns of H are linearly independent.}.

Definition 3.12. The syndrome of a received word y ∈ Fn
2 is the vector s = yHT .

The set of all words in Fn
2 that have the same syndrome is called a coset of C.

For a linear code C, the coset associated with a received word yn
1 is the same

as the error set SC(y
n
1 ). In fact, assume c ∈ C is transmitted. The received word

is yn
1 = c + en1 where en1 is a possible error pattern that might have occured, i.e.

en1 ∈ SC(y
n
1 ). The syndrome of yn

1 is:

s(yn
1 ) = yn

1H
T

= (c+ en1 )H
T

= en1H
T

= s(en1 ).

Hence, en1 is in the same coset of yn
1 .
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Definition 3.13. A coset leader is an element of the coset with minimum Ham-

ming weight. It corresponds to the error pattern estimate of a minimum Hamming

distance decoder (defined later in more details).

3.3 Probabilistic Decoding over Binary Additive

Noise Channels

3.3.1 Maximum A-Posteriori (MAP) Decoder

The MAP decoding is the optimal decoding rule, in terms of minimizing the

probability of codeword error. Given a received word y ∈ Fn
2 , the decoder D

outputs the error pattern ê ∈ SC(y) given by:

ê = argmax
e∈Fn

2

PY|X (y + e was transmitted|y is received)

= argmax
e∈Fn

2

PY|X(y + e was transmitted)PY|X (y is received|y + e was transmitted)

= argmax
e∈Fn

2

P (X = y + e)PY|X (Y = y|X = y + e)

= arg max
e∈SC(y)

P (X = y + e)PY|X (Y = y|X = y + e) . (3.2)

3.3.2 Maximum Likelihood (ML) Decoder

Given a received word y ∈ Fn
2 , the ML decoder outputs the error pattern ê such

that:

ê = arg max
e∈SC(y)

PY|X(Y = y|X = y + e).
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If the codewords are equiprobable, the MAP decoding rule reduces to the ML

decoding rule since P (X = y + e) becomes a constant and can be dropped from

(3.2). Typically in communication systems, we can assume that all codewords are

equiprobable.

3.3.3 Minimum Hamming Distance (MD) Decoder

Given a received word y ∈ Fn
2 , the MD decoder outputs the error pattern:

ê = arg min
e∈SC(y)

wH(e).

Remark 3.2. For a BSC(p) with crossover probability p < 1/2, given a received

word y ∈ Fn
2 , the output of the ML decoder is:

ê = arg max
e∈SC(y)

PY|X(Y = y|X = y + e)

= arg max
e∈SC(y)

P (Z = e)

= arg max
e∈SC(y)

(1− p)n
(

p

1− p

)wH(e)

= arg max
e∈SC(y)

(
p

1− p

)wH(e)

= arg min
e∈SC(y)

wH(e).

Hence, we clearly see that the ML decoding rule reduces to MD decoding when

the channel is a BSC with crossover probability p < 1/2. This is the main reason

why the Hamming distance is the metric used in deriving the basic results in

coding theory.

Unlike the above three decoders, the strict minimum Hamming distance (SMD)
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decoder is an incomplete decoder. It has exactly the same decoding rule as the

MD decoder except that it declares a decoding failure if more than one error word

have the same minimum Hamming weight.

Lemma 3.2. [10] A binary perfect or quasi-perfect code are optimal on the

BSC with a crossover probability p < 1/2, in the sense that ML decoding (or MD

decoding since we proved that the two decoding methods are equivalent in this case)

achieves the minimum average probability of codeword error among all codes of

the same length and dimension.

3.4 Hamming Codes

Definition 3.14. [23, p. 38] The [n, n − k] binary Hamming code where n =

(2k − 1) and k ≥ 2 is a code whose parity-check matrix has columns that are

pairwise linearly independent, i.e. the columns are a maximal set of pairwise

linearly independent vectors.

Hamming codes are perfect codes with minimum distance dmin = 3 and rcov =

rpac = 1.

The [7, 4, 3] Hamming code is an example of the family of Hamming codes. Its

generator and parity-check matrices G and H are given by:

G =












1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 0 1












,
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H =









1 0 1 1 1 0 0

1 1 1 0 0 1 0

0 1 1 1 0 0 1









.

A [2k−1, 2k−1−k] Hamming code C can be extended to a [2k, 2k−1−k] code C′

by adding an extra all-one column to the generator matrix G. C′ is a quasi-perfect

code.

3.5 The Binary Golay Code

Another code that we use in our simulations later on is the [23, 12, 7] binary

Golay code G23 and its extended [24, 12, 8] code G24. The Golay code G23 is one

of the most famous binary codes; it is the only non-trivial binary perfect code

other than the binary Hamming codes [22, 24]. The extended Golay G24 is a

quasi-perfect code; the weight of every codeword in G24 is a multiple of 4 and its

minimum distance is dmin = 8. The extended Golay code is also self-dual, i.e., its

generator matrix G24 is also its parity-check matrix matrix (GGT = 0, where 0

is the 12× 12 all-zero matrix).

3.6 Reed-Muller Codes

Reed-Muller codes are some of the oldest linear binary error correcting codes.

They were discovered by Muller and provided with a decoding algorithm by Reed.

There are several ways to describe these codes. For the sake of brevity, we only

give a recursive description. Interested readers are encouraged to read relevant

sections in [23] for alternative descriptions of these codes.
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Given integers m ≥ 1 and 0 ≤ r ≤ m, RM(r,m) denotes the rth-order Reed-

Muller code of length n = 2m. The dimension of this code is

k =

r∑

i=0

(
m

i

)

and its minimum distance is dmin = 2m−r. RM(r,m) can be constructed recur-

sively as follows:

• RM(0, m) is the repetition code of length n = 2m. It consists of two

codewords: the all-zero codeword 0n = (00...0) and the all-one codeword

1n = (11...1).

• RM(m,m) is the entire space of 2m-tuples, Fn
2 where n = 2m.

• For 0 < r < m,

RM(r,m) = {(c1, c1 ⊕ c2) :

c1 ∈ RM(r,m− 1), c2 ∈ RM(r − 1, m− 1)}, (3.3)

where ⊕ is the modulo-2 addition and where (u,v) denotes the concatena-

tion of the vectors u and v.

Example: RM(1, 2)

Note that RM(0, 1) = {00, 11} and RM(1, 1) = {00, 01, 10, 11}. According to

(3.3),

RM(1, 2) = {(c1, c1 ⊕ c2) :
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c1 ∈ RM(1, 1), c2 ∈ RM(0, 1)}

= {(00, 00⊕ 00), (00, 00⊕ 11),

(01, 01⊕ 00), (01, 01⊕ 11),

(10, 10⊕ 00), (10, 10⊕ 11),

(11, 11⊕ 00), (11, 11⊕ 11)}

= {0000, 0011, 0101, 0110, 1010, 1001, 1111, 1100}.

3.7 Construction of Nonlinear Perfect Codes

It is proven in [22,24] that any nontrivial perfect binary code has the parameters

of a Hamming code or a Golay code. In this section, we briefly describe a method

for constructing nonlinear binary perfect codes from linear Hamming codes.

Theorem 3.1. (Vasil’ev code ) [25, 26, Theorem 4.2]Let V be an [n, n − k]

binary Hamming code, where n = (2k−1). Let f : V 7→ F2 = {0, 1} be an arbitrary

nonlinear mapping such that:

• f(0n) = 0, where 0n is the all-zero codeword

• f(u) + f(v) 6= f(u+ v) for some u,v ∈ V.

We define the code C

C = {(x,x⊕ v, pH(x)⊕ f(v)) : x ∈ Fn
2 ,v ∈ V} (3.4)

where ⊕ is the modulo-2 addition, (a,b, c) denotes the concatenation of the vectors
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a,b and c and

pH(x) = wH(x) mod 2,

where wH(·) denotes the Hamming weight. C is a (2n+1, 22n−k, 3) perfect nonlinear

code. Clearly, C has the same parameters as a [n′, n′−k′] Hamming code V ′, where

k′ = k + 1 and n′ = (2k+1 − 1) = 2n+ 1.

Theorem 3.2. Let C be a (2n + 1, 22n−k, 3) nonlinear perfect code constructed

using the method in Theorem 3.1. Then,

(a) C has the all-one codeword 12n+1.

(b) For any codeword c ∈ C, 12n+1 ⊕ c is also a codeword.

Proof. (a) Since 0n ∈ V, consider x = 1n ∈ Fn
2 . From (3.4), C has a codeword

c given by

c = (1n, 1n ⊕ 0n, pH(1
n)⊕ f(0n))

= (1n, 1n, pH(1
n)) (3.5)

=
(
12n, 1

)
(3.6)

= 12n+1,

where the equality in (3.5) comes from the condition f(0n) = 0 and we have

equality in (3.6) because n = 2k−1 is an odd number and hence pH(1
n) = 1.

Hence, c = 12n+1 ∈ C.

(b) Let c be a codeword in C. Hence, from Theorem 3.1, there exists x ∈ Fn
2
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and v ∈ V such that:

c = (x,x⊕ v, pH(x)⊕ f(v)) .

Let x′ = 1n ⊕ x. Then, C has a codeword c′ given by

c′ = (x′,x′ ⊕ v, pH(x
′)⊕ f(v))

= (1n ⊕ x, 1n ⊕ (x⊕ v) , wH(1
n ⊕ x) + f(v) mod 2)

= (1n ⊕ x, 1n ⊕ (x⊕ v) , 1⊕ pH(x)⊕ f(v))

= 12n+1 ⊕ (x,x⊕ v, pH(x)⊕ f(v))

= 12n+1 ⊕ c.

3.8 Generalized Concepts of Coding Theory

As we mentioned before, the basic concepts of coding theory are derived for the

memoryless BSC(p) with p < 1/2. For this channel, the likelihood metric is

equivalent to the Hamming distance. This equivalence does not hold when we

change the channel model. In this section, we extend the basic definitions in

coding theory to a wider class of channels with arbitrary additive noise processes

with memory. The content of this section is discussed in more details in [13].

Consider a general binary additive noise communication channel with a probability
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transition matrix PY|X(.|.). Let Dn be the following generalized distance:

Dn : Fn
2 × Fn

2 7→ R

Dn(x,y) = − logk
PY|X(Y = y|X = x)

P (Z = 0n)

= − logk
P (Z = y + x)

P (Z = 0n)

where k > 1 is a constant. We denote by K(Dn) the domain of this distance, i.e.

K(Dn) = {t ∈ R : ∃x,y ∈ Fn
2 , Dn(x,y) = t}.

It is natural to associate with the distance Dn a weight function Wn defined as

follows:

Wn : Fn
2 7→ R

Wn(e) = − logk
P (Z = e)

P (Z = 0n)
.

Definition 3.15. The generalized minimum distance of an (n,M) code C is:

ρmin := min{Dn(c, c
′) : c, c′ ∈ C and c 6= c′}.

Definition 3.16. The generalized packing radius ρpac of an (n,M) code C with

generalized minimum distance ρmin is:

ρpac := max{t ∈ K(Dn) : ∀y ∈ Fn
2 , ∃ at most one error word z ∈ SC(y)

such that Wn(z) ≤ t}.
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In other words, ρpac is the maximum generalized weight of an error word that

the code C can correct under minimum generalized distance decoding, which is

equivalent to ML decoding [13].

Definition 3.17. The generalized covering radius ρcov of an (n,M) code C is:

ρcov = max
y∈Fn

2

min
c∈C

Dn(c,y).

In other words, any received word y is within at most ρcov from at least one

codeword in C.

Definition 3.18 (Generalized perfect and quasi-perfect codes). A code C

is called a generalized perfect code iff ρcov = ρpac. For such a code, every received

word y is within at most ρcov from exactly one codeword in C.

A code C is called a generalized quasi-perfect code iff ρpac < ρcov and ∄t∗ ∈ K(Dn)

such that ρpac < t∗ < ρcov.

Remark 3.3. The generalized definition of perfect (quasi-perfect) codes reduces

to the conventional definition when the distance Dn is given by the Hamming

distance.

Theorem 3.3. [13, Theorem 1] Generalized perfect and quasi-perfect codes are

optimal (i.e., have minimal codeword error probability) under ML decoding among

all codes with the same lengths and dimensions.

We close this chapter by proving the following two results.

Lemma 3.3. Optimality of classical perfect codes over channels with

memory Let C be an (n,M, dmin) perfect code (in the classical sense) to be used
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over the general binary additive noise channel. Consider the set:

DC =

{

e ∈ Fn
2 : wH(e) ≤ rcov =

⌊
dmin − 1

2

⌋}

.

Note that DC is the MD decoding set of C. Consider the following condition

Condition (∗): For any e ∈ DC and any e′ ∈ Fn
2 , wH(e) < wH(e

′) =⇒ P (Z =

e) > P (Z = e′).

If condition (∗) holds, then C is a generalized perfect code and hence is optimal

among all codes of the same length and dimension under minimum generalized

distance decoding (which is equivalent to ML decoding).

Proof. Let C be an (n,M, dmin) perfect code satisfying condition (∗). Its general-

ized covering radius is:

ρcov = max
y∈Fn

2

min
c∈C

Dn(c,y)

= max
y∈Fn

2

min
c∈C

Wn(c⊕ y)

= max
y∈Fn

2

min
z∈SC(y)

Wn(z)

= max
y∈Fn

2

Wn (z
∗(y)) , (3.7)

where

z∗(y) = arg min
z∈SC(y)

Wn(z)

= arg min
z∈SC(y)

− logk
P (Z = z)

P (Z = 0n)

= arg max
z∈SC(y)

P (Z = z).

Now since C is a perfect code in the classical sense, then ∀y ∈ Fn
2 , ∃ a unique error

42



pattern ẑ(y) ∈ SC(y) (of minimal Hamming weight) such that wH ((ẑ(y)) ≤ rcov.

From condition (∗), ∀z ∈ SC(y) such that z 6= ẑ(y), P (Z = ẑ(y)) > P (Z = z).

Hence, z∗(y) = ẑ(y). Since C is a perfect code, then:

{ẑ(y) : y ∈ Fn
2} = {z ∈ Fn

2 : wH(z) ≤ rcov} = DC,

which is the set of all coset leaders for C. Therefore,

ρcov = max
y∈Fn

2

Wn (ẑ(y))

= max
z∈DC

Wn (z)

= max
z∈DC :wH(z)=rcov

Wn (z) .

The last equality is a result of condition (∗).

We now prove that the generalized packing radius ρpac of C is the same as its

generalized covering radius ρcov. By definition, ρpac ≤ ρcov.

Assume ρpac < ρcov, then there exists at least one word y ∈ Fn
2 with two error

patterns z1 and z2 ∈ SC(y) such that Wn(z1) ≤ ρcov and Wn(z2) ≤ ρcov. Now for

any z′ ∈ Fn
2 ,

Wn(z
′) ≤ ρcov ⇐⇒ Wn(z

′) ≤ max
z∈DC :wH(z)=rcov

Wn(z)

⇐⇒ P (Z = z′) ≥ max
z∈DC :wH(z=rcov)

P (Z = z)

⇐⇒ P (Z = z′) ≥ P (Z = z∗),
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where

z∗ = arg max
z∈DC :wH(z)=rcov

P (Z = z).

Since z∗ ∈ DC, from condition (∗):

P (Z = z′) ≥ P (Z = z∗) ⇐⇒ wH(z
′) ≤ wH(z

∗) = rcov.

Therefore, both z1 and z2 have a Hamming weight of at most rcov and they both

belong to the error set of y, SC(y). This is a contradiction since C is a perfect

code and hence any error set can contain at most one error word with a Hamming

weight less than or equal to the covering radius of the code. Therefore, ρpac = ρcov

and hence C is a generalized perfect code.

Lemma 3.4. (Optimality of classical quasi-perfect codes over channels

with memory) Let C be an (n,M, dmin) quasi-perfect code (in the classical sense)

to be used over the general binary additive noise channel. Consider the set:

ΓC =

{

e ∈ Fn
2 : wH(e) ≤ rcov =

⌊
dmin − 1

2

⌋

+ 1

}

.

Consider the following condition, Condition (∗∗): For any e ∈ ΓC and any

e′ ∈ Fn
2 , wH(e) < wH(e

′) ⇐⇒ P (Z = e) > P (Z = e′).

If condition (∗∗) holds, then C is a generalized quasi-perfect code and hence is

optimal among all codes of the same length and dimension under minimum gen-

eralized distance decoding (which is equivalent to ML decoding).

Proof. Let C be an (n,M, dmin) quasi-perfect code that satisfies condition (∗∗).
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Note that condition (∗∗) means that:

∀z1, z2 ∈ ΓC, wH(z1) = wH(z2) ⇐⇒ P (Z = z1) = P (Z = z2)

and wH(z1) < wH(z2) ⇐⇒ P (Z = z1) > P (Z = z2).

Hence, the generalized weightWn of the error words in ΓC is only a function of their

Hamming weight. We will denote by ωn(s) for s ∈ {0, 1, ..., rcov}, the generalized

weight of error words in ΓC having a Hamming weight s. From condition (∗∗),

ωn(s) is strictly increasing in s.

From (3.7),

ρcov = max
y∈Fn

2

Wn (z
∗(y)) ,

where

z∗(y) = arg max
z∈SC(y)

P (Z = z)

= arg min
z∈SC(y)

wH(z),

where the last equality follows from condition (∗∗). Define

dHmin(y) = min
c∈C

dH(y, c),

where dH(·, ·) denotes the Hamming distance. Then,

ρcov = max
y∈Fn

2

ωn

(
dHmin(y)

)

= ωn

(

max
y∈Fn

2

dHmin(y

)

(3.8)
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= ωn(rcov). (3.9)

The equality in (3.8) follows from the fact that ωn(·) is a strictly increasing func-

tion, whereas (3.9) follows immediately from Definition 3.6.

By definition, we know that ρpac ≤ ρcov = ωn(rcov). Hence, from condition (∗∗),

ρpac = ωn(s) for some s ≤ rcov. We want to prove that ρpac = ωn(rpac); i.e., that

the latter s is actually s = rpac.

• Assume ρpac = ωn(s) for some s < rpac, which means that ρpac < ωn(rpac).

Thus, by the definiton of ρpac, there exists at least one word y ∈ Fn
2 with

two error patterns z1 and z2 ∈ SC(y) such that Wn(z1) ≤ ωn(rpac) and

Wn(z2) ≤ ωn(rpac). From condition (∗∗), we deduce that wH(z1) ≤ rpac

and wH(z2) ≤ rpac. This is a contradiction since for any y ∈ Fn
2 , there

exists at most one error word e ∈ SC(y) such that wH(e) ≤ rpac. Therefore,

ρpac = ωn(s) for some rpac ≤ s ≤ rcov = rpac + 1.

• Since ωn(·) is a strictly increasing function over the set S = {0, 1, ..., rcov},

then:

rpac ≤ s ≤ rcov = rpac + 1 ⇐⇒ ωn(rpac) ≤ ρpac = ωn(s) ≤ ρcov = ωn(rcov).

Since ∄i ∈ S such that rpac < i < rcov (since rcov = rpac+1), then ∄t ∈ K(Dn)

such that ωn(rpac) < t < ρcov. Therefore, we have either ρpac = ρcov which

means that C is a generalized perfect code or ρpac = ωn(rpac) which means

that C is a generalized quasi-perfect code.

• Since rcov = rpac + 1 > rpac, ∃ at least one word y ∈ Fn
2 with two error pat-
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terns z1 and z2 ∈ SC(y) such that wH(z1) ≤ rcov and wH(z2) ≤ rcov. From

condition (∗∗), Wn(z1) ≤ ωn(rcov) = ρcov and Wn(z2) ≤ ωn(rcov) = ρcov.

From the definition of the generalized packing radius, ρpac < ωn(rcov).

Therefore, ρpac = ωn(rpac) and hence C is a generalized quasi-perfect code.
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Chapter 4

Optimality of MD Decoding over

Infinite Memory Channels

In this chapter, we study two infinite-memory channel models: the IMCC and the

GEC. We determine necessary and sufficient conditions on binary codes under

which minimum Hamming distance decoding is equivalent to ML decoding over

the IMCC. We start by re-deriving few properties of ML decoding over the Polya

channel that are useful in obtaining the conditions on binary codes. We also

show that under these conditions, classical perfect and quasi-perfect codes are

also generalized perfect and quasi-perfect codes, and hence are optimal for the

IMCC among all codes of the same lengths and dimensions. For the GEC, we

study separately the case when the state vector is unknown and known at the

decoder. In the former case, we present sufficient conditions on binary codes

under which strict MD decoding and ML decoding are equivalent. In the second

case (when the state vector is available at the decoder), we present partial results

pertaining to the equivalence between the Hamming weight and the likelihood of
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error patterns.

4.1 Properties of ML Decoding over the IMCC

The IMCC was introduced in [1]. Let zn1 ∈ Fn be an error word generated by this

channel. The probability of this word is given by (2.4):

P (Z = zn1 ) =
Γ(1

δ
)Γ(p

δ
+ d)Γ(1−p

δ
+ n− d)

Γ(p
δ
)Γ(1−p

δ
)Γ(1

δ
+ n)

where d is the Hamming weight of zn1 , p is the channel BER and δ > 0 is a channel

parameter related to the noise correlation coefficient ǫ as follows:

ǫ =
δ

1 + δ
.

We can clearly see that the probability distribution of error words is only a function

of their Hamming weights. Hence, error patterns with the same Hamming weight

occur with the same probability. Denote by zn1 (t) an error word with Hamming

weight t. For 0 ≤ m ≤ n− 1 and 1 ≤ i ≤ n−m, we define ρ(m, i) as follows:

ρ(m, i) :=
P (Zn

1 = zn1 (m+ i))

P (Zn
1 = zn1(m))

=

Γ
(p

δ
+m+ i

)

Γ

(
1− p

δ
+ n−m− i

)

Γ
(p

δ
+m

)

Γ

(
1− p

δ
+ n−m

)

=

i∏

j=1

(
p

δ
+m+ i− j

1−p

δ
+ n−m− j

)

,
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where the last equality follows from the identity:

Γ(x+ 1) = xΓ(x).

We can easily see that:

ρ(m, i) ≤ 1 ⇐⇒
p

δ
+m+ i ≤

1− p

δ
+ n−m

⇐⇒ m+ i− µ ≤ µ−m

⇐⇒ |m+ i− µ| ≤ |m− µ|, (4.1)

where

µ =
1− 2p

2δ
+

n

2
. (4.2)

Lemma 4.1. Let l, i, k be three integers such that: 1 ≤ k < i ≤ n − l and

0 ≤ l ≤ n − 2, then P (Z = zn1 (l + k)) ≤ P (Z = zn1 (l)) or P (Z = zn1 (l + k)) ≤

P (Z = zn1 (l + i)).

Proof. The above claim is true when:

P (Z = zn1 (l + k)) ≤ P (Z = zn1 (l)) or P (Z = zn1 (l + k)) ≤ P (Z = zn1 (l + i))

⇐⇒ ρ(l, k) ≤ 1 or ρ(l + k, i− k) ≥ 1

⇐⇒ |l + k − µ| ≤ |l − µ| or |l + k − µ| ≤ |l + i− µ|

where the equivalence in the last step follows from (4.1). Finally noting that the

expression in (4.3) always holds concludes the proof.
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Theorem 4.1. ML decoding over the IMCC is equivalent to either minimum

distance decoding or maximum distance decoding.

Proof. Let yn
1 be the received word. We order the error words in the error set

SC(y) in increasing order of their Hamming weights, i.e., we define the ordered

sequence {zn1 [i]}
|C|
i=1 as follows:

{zn1 [i]}
|C|
i=1 = {zn1 [i] ∈ SC(y

n
1 ): wH (zn1 [i]) ≤ wH (zn1 [j]) ∀i, j : 1 ≤ i ≤ j ≤ |C|}.

Define:

dmin(y
n
1 ) = min

zn
1
∈SC(y

n
1
)
wH(z

n
1 )

= wH (zn1 [1]) (4.3)

dmax(y
n
1 ) = max

zn
1
∈SC(y

n
1
)
wH(z

n
1 )

= wH (zn1 [|C|]) . (4.4)

From Lemma 4.1, we conclude that

P (Z = zn1 (i)) ≤ P (Z = zn1 (1)) or P (Z = zn1 (i)) ≤ P (Z = zn1 (|C|)),

for i ∈ {1, ..., |C|}.

Therefore, the most likely error pattern is either the one with the minimum weight

or the one with the maximum weight which concludes the proof.

The decoder chooses zn1 [1] when:

P (Z = zn1 [1]) ≥ P (Z = zn1 [|C|]) ⇐⇒ |dmin(y
n
1 )− µ| ≥ |dmax(y

n
1 )− µ|.
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The result in Theorem 4.1 can also be found in the original paper introducing

the channel model [1]. However, we have provided an alternative proof for the

same result.

4.2 On the Equivalence of MD and ML Decod-

ing over the IMCC

Theorem 4.2. For any (n,M, dmin) code C used over the IMCC, if the (classical)

covering radius of this code

rcov ≤
1− 2p

δ

=
(1− 2p)(1− ǫ)

ǫ
,

then the outputs of the MD and ML decoders are identical.

Proof. Let yn
1 be the received word. We know that dmin(y

n
1 ) ≤ rcov from the

definition of the covering radius (with equality achieved for at least one word).

On the other hand, dmax(y
n
1 ) ≤ n. ( Note that there are codes for which

both inequalities can be satisfied with equality for the same word yn
1 .) Hence,

|dmax(y
n
1 ) − µ| ≤ n

2
− 1−2p

2δ
and |dmin(y

n
1 ) − µ| ≥ n

2
− 1−2p

2δ
, where µ is defined in

(4.2) and we have used the assumption that rcov ≤ 1−2p
δ

. Therefore, for any re-

ceived word y, |dmin(y
n
1 )−µ| ≥ |dmax(y

n
1 )−µ| which means that the MD decoding

rule is always used.
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Figure 4.1: Plot of the condition in Theorem 4.2: maximum allowable rcov over
the IMCC with respect to the correlation coefficient ǫ and for different values of
the BER p.

We illustrate the condition of Theorem 4.2 in Fig. 4.2 by plotting the maximum

allowable value for a code’s covering radius over the IMCC.

We can tighten the condition in Theorem 4.2 to obtain a necessary and sufficient

condition on the code C.

Lemma 4.2. Let yn
1 be the received word, then

dmax(y
n
1 ) = n− dmin(1

n ⊕ yn
1 ),

where dmin and dmax are defined in (4.3) and (4.4), respectively, and where 1n =

(1, ..., 1) is the all-one word of length n.

Proof. First, it is easy to see that dH(y
n
1 , c) = n− dH(1

n ⊕ yn
1 , c). Then,

dmax(y
n
1 ) = max

c∈C
dH(y

n
1 , c)
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= max
c∈C

{n− dH(1
n ⊕ yn

1 , c)}

= n−min
c∈C

dH(1
n ⊕ yn

1 , c)

= n− dmin(1
n ⊕ yn

1 ).

Definition 4.1. Let yn
1 be the received word. We define:

dsum(y
n
1 ) := |dmin(y

n
1 )− dmin(1

n ⊕ yn
1 )|,

and let

dsum(C) := max
yn
1
∈Fn

2

dsum(y
n
1 ).

Theorem 4.3. For any (n,M, dmin) code C used over the IMCC, the outputs of

the MD and ML decoders are identical iff

dsum(C) ≤
1− 2p

δ

=
(1− 2p)(1− ǫ)

ǫ
.

Proof. We start by proving the first direction ( =⇒ ):

Assume dsum(C) ≤
1−2p
δ

, and let yn
1 be the received word. Then:

dmin(y
n
1 ) + dmax(y

n
1 ) = dmin(y

n
1 ) + n− dmin(1

n ⊕ yn
1 )
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≤ n+ dsum(y
n
1 )

≤ n+ dsum(C)

≤ n+
1− 2p

δ

= 2µ.

Hence,

dmin(y
n
1 ) + dmax(y

n
1 ) ≤ 2µ =⇒ |dmin(y

n
1 )− µ| ≥ |dmax(y

n
1 )− µ|,

which means (in light of Theorem 4.1) that for every yn
1 ∈ Fn

2 , the ML decoder

picks the minimum Hamming weight error word and hence reduces to the MD

decoder.

We now prove the other direction (⇐=):

Assume dsum(C) >
1−2p
δ

. From the definition of dsum(C), we know that there exist

at least one word ȳn
1 such that:

dmin(ȳ
n
1 )− dmin(1

n ⊕ ȳn
1 ) >

1− 2p

δ
.

For this received word, we have

dmin(ȳ
n
1 ) + dmax(ȳ

n
1 ) = dmin(ȳ

n
1 ) + n− dmin(1

n ⊕ ȳn
1 )

> n+
1− 2p

δ

= 2µ.
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Hence,

dmin(ȳ
n
1 ) + dmax(ȳ

n
1 ) > 2µ =⇒ |dmin(ȳ

n
1 )− µ| < |dmax(ȳ

n
1 )− µ|.

Which means that for this received word ȳn
1 , the ML decoder picks the maximum

Hamming weight error word and hence the ML decoder is not equivalent to the

MD decoder.

Corollary 4.1. Let C be an (n,M, dmin) perfect (quasi-perfect) code, in the clas-

sical sense, used over the IMCC. If

rcov ≤
1− 2p

δ
(4.5)

=
(1− 2p)(1− ǫ)

ǫ
(4.6)

then C is a generalized perfect (generalized quasi-perfect) code for this channel

and hence is optimal under ML decoding among all codes of the same length and

dimension sent over the same channel.

Proof. Immediate from Lemma 3.3 (3.4) and Theorem 4.2.

Remark 4.1. It is worth noting that Theorem 4.2 implies Theorem 4.3. Indeed,

assume that the condition rcov ≤ 1−2p
δ

holds. This means that for any received

word yn
1 :

0 ≤ dmin(y
n
1 ) ≤ rcov ≤

1− 2p

δ
.
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Therefore,

−
1 − 2p

δ
≤ dmin(y

n
1 )− dmin(1

n ⊕ yn
1 ) ≤

1− 2p

δ

⇐⇒ |dmin(y
n
1 )− dmin(1

n ⊕ yn
1 )| ≤

1− 2p

δ

⇐⇒ dsum(C) ≤
1− 2p

δ
,

which is the condition in Theorem 4.3.

Remark 4.2. The original paper introducing the contagion channel [1] gives a

sufficient condition under which, for any (n,M, d) binary code, the ML decoder

becomes equivalent to the MD decoder. The condition is:

n− 1 <
1− 2p

δ
. (4.7)

Comparing it to the condition that we give in Theorem 4.2, we can clearly see that

the latter is much tighter. In fact, the only time the condition in Theorem 4.2 is

as restrictive as the one given in (4.7) is when the covering radius of the code C

is n− 1, which is almost never the case for most codes of interest.

There is another condition in [5] for binary linear codes under which ML and

MD decoding are equivalent.

Lemma 4.3. [5] For a linear code containing the all-one codeword, if p < 0.5

then ML decoding over the IMCC reduces to MD decoding.

We explain the above result by using our condition in Theorem 4.3.

Let C be an [n, k] binary linear code that contains the all-one codeword 1n and

let yn
1 be the received word.
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Since 1n ∈ C and since C is a linear code, then (1n ⊕ yn
1 ) and yn

1 belong to the

same coset and hence:

dmin(y
n
1 ) = dmin(1

n ⊕ yn
1 ) = wH(z̄

n
1 ),

where z̄n1 is the corresponding coset leader. Hence, for any received word yn
1 :

dsum(y) = |dmin(y
n
1 )− dmin(1

n ⊕ yn
1 )|

= 0.

Therefore, dsum(C) = 0 < 1−2p
δ

iff p < 0.5 which is not a restrictive assumption.

4.3 Numerical Results

We illustrate the condition of Theorem 4.3 by simulating the performance of the

[7, 4, 3] or (7, 24, 3) Hamming code, the [8, 4, 4] Reed-Muller code and a (15, 211, 3)

perfect nonlinear code under ML and MD decoding over the IMCC. The [7, 4, 3]

Hamming code, the [8, 4, 4] Reed-Muller code are both linear codes containing the

all-one codeword. Hence, it follows from Lemma 4.3 that ML decoding and MD

decoding are identical for these two codes over the IMCC. This is indeed shown in

Tables 4.1 and 4.2 where we tabulate the probability of codeword error (PCE) for

both codes under ML and MD decoding over the IMCC with parameters p = 0.1

and for different values of ǫ. We notice as expected that we get exactly the same

performance under MD and ML decoding since they are identical for p < 0.5.

Finally, we simulate the performance of the (15, 211, 3) Vasil’ev nonlinear per-
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ǫ 0.2 0.3 0.4 0.5 0.6 0.7

max dsum(C) 3.2 1.8667 1.2 0.8 0.5333 0.3429

PCE under MD 0.17747 0.18514 0.165086 0.167472 0.149 0.139856

PCE under ML 0.17747 0.18514 0.165086 0.167472 0.149 0.139856

Table 4.1: Verifying Theorem 4.3 and Lemma 4.3 for the [7, 4, 3] Hamming code
over the IMCC with parameters p = 0.1 and ǫ.

ǫ 0.1 0.2 0.25 0.3 0.4 0.5
max dsum(C) 7.2 3.2 2.4 1.8667 1.2 0.8

PCE under MD 0.0717504 0.0895768 0.0914395 0.100567 0.0930972 0.100681
PCE under ML 0.0717504 0.0895768 0.0914395 0.100567 0.0930972 0.100681

Table 4.2: Verifying Theorem 4.3 and Lemma 4.3 for the [8, 4, 4] Reed-Muller code
RM(1, 3) over the IMCC with parameters p = 0.1 and ǫ.

fect code C constructed using the method described in Theorem 3.1 using

f(x7
1) = x1x2x7 ⊕ x2x4x6 ⊕ x1x3x5.

According to Theorem 3.2, if c ∈ C then 115⊕c ∈ C as well. It is easy to generalize

the result in Lemma 4.3 as follows:

Lemma 4.4. Consider any (n,M, d) code C that includes every codeword along

with its complement, i.e., if c ∈ C then (1n⊕ c) ∈ C. If p < 0.5 then ML decoding

over the IMCC reduces to MD decoding.

We verify Lemma 4.4 in Table 4.3 where we can see that the PCE under ML

is identical to the PCE under MD.
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ǫ 0.2 0.3 0.4 0.5 0.6 0.7

max dsum(C) 3.2 1.8667 1.2 0.8 0.5333 0.3429

PCE under MD 0.2656 0.2308 0,18166 0.2126 0.2002 0.1604

PCE under ML 0.2656 0.2308 0,18166 0.2126 0.2002 0.1604

Table 4.3: Verifying Theorem 4.3 and Lemma 4.4 for the (15, 211, 3) Vasil’ev
nonlinear code over the IMCC with parameters p = 0.1 and ǫ.

4.4 On the Equivalence of MD and ML decoding

over the GEC

The GEC, introduced in [9, 12], is a widely used model of burst-noise binary

channels. It belongs to the class of finite-state Markov channels. Let zn1 be an

error word generated by this channel. The probability of this word is given (as a

matrix product) by (2.17):

P (Zn
1 = zn1 ) = π

T

(
n∏

i=1

P(zi)

)

1n,

where π and P(·) are given by (2.14), (2.15) and (2.16) and 1n is the all-one

column vector of length n. Let sn1 ∈ Fn
2 be a state vector where for convenience

we set binary values to the two states: s = 0 for state G and s = 1 for state B.

The joint distribution of the error word and the state vector is given by:

P (Zn
1 = zn1 ,S

n
1 = sn1 ) = π1−s0

0 πs0
1

n∏

i=1

[
(1− PB)

1−ziP zi
B

]si [(1− PG)
1−ziP zi

G

]1−si

n∏

i=2

(1− b)(1−si−1)(1−si)b(1−si−1)sigsi−1(1−si)(1− g)si−1si

= L(sn1 )
n∏

i=1

[
(1− PB)

1−ziP zi
B

]si [(1− PG)
1−ziP zi

G

]1−si ,
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where

L(sn1 ) = π1−s0
0 πs0

1

n∏

i=2

(1− b)(1−si−1)(1−si)b(1−si−1)sigsi−1(1−si)(1− g)si−1si

depends only on the state vector. We assume throughout that PG < PB < 1
2
.

4.4.1 Case 1: State Vector is Unknown at the Decoder

Theorem 4.4. Define:

m̂(n, PG, PB) :=

log

(
1− PG

PB

)

− n log

(
1− PG

1− PB

)

log

(
PB(1− PB)

PG(1− PG)

) .

For any two error words zn1 and z̄n1 generated by the GEC satisfying

• wH(z
n
1) = m, where 0 ≤ m ≤ n− 1

• wH(z̄
n
1) = m+ i, where 1 ≤ i ≤ n−m

where wH(·) denotes the Hamming weight, we have that

m < m̂(n, PG, PB) =⇒ P (Zn
1 = zn1 ) > P (Zn

1 = z̄n1 ) .

Proof. Let sn1 ∈ Fn
2 be a state vector. Hence,

P (Zn
1 = z̄n1 ,S

n
1 = sn1 )

P (Zn
1 = zn1 ,S

n
1 = sn1 )

=
n∏

j=1

[

(1− PB)
1−z̄jP

z̄j
B

(1− PB)1−zjP
zj
B

]sj [

(1− PG)
1−z̄jP

z̄j
G

(1− PG)1−zjP
zj
G

]1−sj
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=
P

n1(z̄n1 ,s
n
1
)

B P
m+i−n1(z̄n1 ,s

n
1
)

G (1− PB)
n2(z̄n1 ,s

n
1
)

P
n1(zn1 ,s

n
1
)

B P
m−n1(zn1 ,s

n
1
)

G (1− PB)n2(zn1 ,s
n
1
)

(1− PG)
n−m−i−n2(z̄n1 ,s

n
1
)

(1− PG)n−m−n2(zn1 ,s
n
1
)

=
P

n1(z̄n1 ,s
n
1
)

B P
i−n1(z̄n1 ,s

n
1
)

G (1− PB)
n2(z̄n1 ,s

n
1
)

P
n1(zn1 ,s

n
1
)

B P
−n1(zn1 ,s

n
1
)

G (1− PB)n2(zn1 ,s
n
1
)

(1− PG)
−n2(zn1 ,s

n
1
)

(1− PG)i−n2(zn1 ,s
n
1
)
,

where

n1(z
n
1 , s

n
1 ) = |{j ∈ {1, .., n} : zj = 1 and sj = 1}|

n2(z
n
1 , s

n
1 ) = |{j ∈ {1, .., n} : zj = 0 and sj = 1}| .

Clearly,

0 ≤ n1(z
n
1 , s

n
1) ≤ wH(z

n
1) = m

0 ≤ n2(z
n
1 , s

n
1) ≤ n− wH(z

n
1) = n−m.

Since PG < PB < 1
2
,

P (Zn
1 = z̄n1 ,S

n
1 = sn1 )

P (Zn
1 = zn1 ,S

n
1 = sn1 )

≤
Pm+i
B (1− PG)

n−m−i

Pm
G (1− PB)n−m

(4.8)

=

[
(1− PG)

(1− PB)

]n [
PB(1− PB)

PG(1− PG)

]m [
PB

1− PG

]i

≤

[
(1− PG)

(1− PB)

]n [
PB(1− PB)

PG(1− PG)

]m [
PB

1− PG

]

(4.9)

< 1, (4.10)

where (4.8) is obtained by setting n1(z
n
1 , s

n
1 ) = 0, n2(z

n
1 , s

n
1 ) = n−m,n1(z̄

n
1 , s

n
1 ) =
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m + i and n2(z̄
n
1 , s

n
1 ) = 0. Also, (4.9) is obtained by upper-bounding

[
PB

1−PG

]i

by
[

PB

1−PG

]

since PB < 1−PG. Finally, the last inequality is a result of the assumption

that m < m̂(n, PG, PB). Hence, we established that under the condition m <

m̂(n, PG, PB) for any state vector sn1 , P (Zn
1 = z̄n1 ,S

n
1 = sn1 ) < P (Zn

1 = zn1 ,S
n
1 = sn1 ).

Therefore,

P (Zn
1 = z̄n1 )

P (Zn
1 = zn1 )

=

∑

sn
1
∈Fn

2

P (Zn
1 = z̄n1 ,S

n
1 = sn1 )

∑

sn
1
∈Fn

2

P (Zn
1 = zn1 ,S

n
1 = sn1 )

<

∑

sn
1
∈Fn

2

P (Zn
1 = zn1 ,S

n
1 = sn1 )

∑

sn
1
∈Fn

2

P (Zn
1 = zn1 ,S

n
1 = sn1 )

= 1,

which concludes the proof.

Theorem 4.5. Let C be any (n,M, d) code used over the GEC. Denote by rcov

the classical covering radius of this code. If rcov < m̂(n, PG, PB), then the output

of the SMD decoder (when it does not declare a decoding failure) is identical to

the output of the ML decoder for this code.

Proof. Let yn
1 be the received word. Let

m := min
zn
1
∈SC(y

n
1
)
wH(z

n
1 ),

where wH(·) denotes the Hamming weight. Clearly, m ≤ rcov < m̂(n, PG, PB). If

there exists a unique error word ẑn1 ∈ SC(y
n
1 ) such that wH(ẑ

n
1) = m, then the SMD

decoder does not declare a failure and outputs ẑn1 . Since m < m̂(n, PG, PB), it

follows from Theorem 4.4 that ẑn1 is the most likely error word in SC(y
n
1 ) and hence

will also be the output of the ML decoder. Therefore, SMD and ML decoding are
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equivalent.

Corollary 4.2. Let C be an (n,M, dmin) perfect code (in the classical sense) used

over a GEC with parameters PB and PG. If

rcov =

⌊
dmin − 1

2

⌋

< m̂(n, PG, PB),

then C is a generalized perfect code for this channel and hence is optimal among

all codes of the same lengh and dimension sent over the same channel.

Proof. It follows from Lemma 3.3 and Theorem 4.4.

Remark 4.3. Note that we cannot make a statement similar to the one in Corol-

lary 4.2 for quasi-perfect codes, since two error words of the same weight are not

guaranteed to have the same probability.

In Fig. 4.2, we illustrate the condition in Theorem 4.5 by plotting m̂(n, PG, PB)

with respect to PB for PG = 0.001 and different values of n. We notice from

Fig. 4.2 that the sufficient condition in Theorem 4.5 becomes increasingly restric-

tive as the value PB further exceeds that of PG. Indeed, for PG = 0.001 when

PB > 0.03 all codes (with n ≥ 5) stop satisfying the condition. We can also see

that when PB → P+
G (i.e., when the GEC tends to the BSC), unsurprisingly all

codes satisfy the condition. It is worth noting that the condition is independent

of the underlying Markov chain parameters (b and g) which is a factor in it being

stringent.
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Figure 4.2: Plot of m̂(n, PG, PB) for the GEC with respect to PB for different
values of n and for PG = 0.001.

4.4.2 Case 2: State Vector is Known at the Decoder

In this case, the probability of an error pattern zn1 given a state vector sn1 known

at the decoder is given by:

P (Zn
1 = zn1 |S

n
1 = sn1 ) =

n∏

i=1

[
(1− PB)

1−ziP zi
B

]si [(1− PG)
1−ziP zi

G

]1−si

= P
n1(zn1 ,s

n
1
)

B P
m−n1(zn1 ,s

n
1
)

G (1− PB)
t−n1(zn1 ,s

n
1
)

(1− PG)
n−m−t+n1(zn1 ,s

n
1
)

=








PB(1− PG)

PG(1− PB)
︸ ︷︷ ︸

≥1








n1(zn1 ,s
n
1
)

[
PG

1− PG

]m [
1− PB

1− PG

]t

(1− PG)
n ,

where

n1(z
n
1 , s

n
1 ) = |{j ∈ {1, .., n} : zj = 1 and sj = 1}|
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and t and m are the Hamming weights of sn1 and zn1 , respectively. Clearly, given

a state vector sn1 and among all words of Hamming weight m the error pattern

with the smallest n1(z
n
1 , s

n
1 ) is the least likely and the pattern with the largest

n1(z
n
1 , s

n
1 ) is the most likely. It is easy to show that

max{t+m− n, 0} ≤ n1(z
n
1 , s

n
1 ) ≤ min{m, t}.

Let zn1 and z̄n1 be two error words such that:

• wH(z
n
1) = m where 0 ≤ m ≤ n− 1

• wH(z̄
n
1) = m+ i where 1 ≤ i ≤ n−m.

We can write the ratio of error patterns z̄n1 and zn1 given sn1 as follows

P (Zn
1 = z̄n1 |S

n
1 = sn1 )

P (Zn
1 = zn1 |S

n
1 = sn1 )

=

[
PB(1− PG)

PG(1− PB)

]n1(z̄n1 ,s
n
1
)−n1(zn1 ,s

n
1
) [

PG

1− PG

]i

We treat several cases separately and we present, in each case, necessary and

sufficient conditions under which the ratio

P (Zn
1 = z̄n1 |S

n
1 = sn1 )

P (Zn
1 = zn1 |S

n
1 = sn1 )

is less than 1. These cases depend on the Hamming weights of zn1 , z̄
n
1 and sn1 and

hence can only give some partial insight on the relation between SMD and ML

decoding.
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Case 1: 0 ≤ t < min{n−m,m+ i}:

In this case, max{0, t+m−n} = 0 which means that n1(z
n
1 , s

n
1 ) ≥ 0 and min{t,m+

i} = t which means that n1(z̄
n
1 , s

n
1 ) ≤ t. Hence,

P (Zn
1 = z̄n1 |S

n
1 = sn1 )

P (Zn
1 = zn1 |S

n
1 = sn1 )

=

[
PB(1− PG)

PG(1− PB)

]n1(z̄n1 ,s
n
1
)−n1(zn1 ,s

n
1
) [

PG

1− PG

]i

≤

[
PB(1− PG)

PG(1− PB)

]t [
PG

1− PG

]i

≤

[
PB(1− PG)

PG(1− PB)

]t [
PG

1− PG

]

< 1 iff t <

log

(
1− PG

PG

)

log

[
PB(1− PG)

PG(1− PB)

] .

Case 2: min{n−m,m+ i} ≤ t ≤ n :

We consider three subcases:

Subcase 1: n−m ≤ t ≤ m+ i : In this case, max{0, t+m− n} = t+m− n

and min{t,m+ i} = t which means that n1(z
n
1 , s

n
1 ) ≥ t+m−n and n1(z̄

n
1 , s

n
1 ) ≤ t.

Hence,

P (Zn
1 = z̄n1 |S

n
1 = sn1 )

P (Zn
1 = zn1 |S

n
1 = sn1 )

=

[
PB(1− PG)

PG(1− PB)

]n1(z̄n1 ,s
n
1
)−n1(zn1 ,s

n
1
) [

PG

1− PG

]i

≤

[
PB(1− PG)

PG(1− PB)

]n−m [
PG

1− PG

]i

≤

[
PB(1− PG)

PG(1− PB)

]n−m [
PG

1− PG

]

< 1 iff m >

n log

[
PB(1− PG)

PG(1− PB)

]

− log

(
1− PG

PG

)

log

[
PB(1− PG)

PG(1− PB)

] .
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Subcase 2: m+ i ≤ t ≤ n−m : In this case, max{0, t + m − n} = 0 and

min{t,m + i} = m + i which means that n1(z
n
1 , s

n
1) ≥ 0 and n1(z̄

n
1 , s

n
1 ) ≤ m + i.

Hence,

P (Zn
1 = z̄n1 |S

n
1 = sn1 )

P (Zn
1 = zn1 |S

n
1 = sn1 )

=

[
PB(1− PG)

PG(1− PB)

]n1(z̄n1 ,s
n
1
)−n1(zn1 ,s

n
1
) [

PG

1− PG

]i

≤

[
PB(1− PG)

PG(1− PB)

]m+i [
PG

1− PG

]i

=

[
PB(1− PG)

PG(1− PB)

]m [
PB

1− PB

]i

≤

[
PB(1− PG)

PG(1− PB)

]m [
PB

1− PB

]

< 1 iff m <

log

(
1− PB

PB

)

log

[
PB(1− PG)

PG(1− PB)

] .

Subcase 3: t ≥ m+ i and t ≥ n−m : In this case, max{0, t+m− n} = t+

m − n and min{t,m + i} = m + i which means that n1(z
n
1 , s

n
1 ) ≥ t +m − n and

n1(z̄
n
1 , s

n
1 ) ≤ m+ i. Hence,

P (Zn
1 = z̄n1 |S

n
1 = sn1 )

P (Zn
1 = zn1 |S

n
1 = sn1 )

=

[
PB(1− PG)

PG(1− PB)

]n1(z̄n1 ,s
n
1
)−n1(zn1 ,s

n
1
) [

PG

1− PG

]i

≤

[
PB(1− PG)

PG(1− PB)

]n+i−t [
PG

1− PG

]i

=

[
PB(1− PG)

PG(1− PB)

]n−t [
PB

1− PB

]i

≤

[
PB(1− PG)

PG(1− PB)

]n−t [
PB

1− PB

]

< 1 iff t >

n log

[
PB(1− PG)

PG(1− PB)

]

− log

(
1− PB

PB

)

log

[
PB(1− PG)

PG(1− PB)

] .
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Chapter 5

Optimality of MD decoding over

the BFMNC

In this chapter, we determine sufficient conditions on binary codes under which

strict minimum Hamming distance decoding is equivalent to ML decoding over the

BMNC. As we mentioned earlier, we will only treat the case where the correlation

coefficient of this channel, ǫ, is non-. This channel is a special case of the QBC

and the FMCC obtained by setting M = 1. It is also a special case of the

Gilbert-Elliott channel (realized when the error probability is set to zero in the

“good” state and to one in the “bad state”). We start by deriving the noise

block distribution over this channel and then we present necessary and sufficient

conditions on the error words under which the output of the strict minimum

distance (SMD) decoder is identical to that of an ML decoder. From this result,

we can determine tight sufficient conditions on binary codes under which the two

decoders are equivalent.
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5.1 Block Transition Probability for the BFMNC

We have shown in Section 2.2.1 that the transition matrix associated with this

channel can be written in terms of the BER p and the correlation coefficient ǫ as

follows:

P =






ǫ+ (1− ǫ)(1 − p) (1− ǫ)p

(1− ǫ)(1− p) ǫ+ (1− ǫ)p




 . (5.1)

Let zn1 be an error pattern generated by this channel, its probability is given by:

P (Zn
1 = zn1 ) = P (Z1 = z1)

n∏

i=2

P (Zi = zi|Zi−1 = zi−1). (5.2)

We define tij(z
n
1 ) as follows:

tij(z
n
1) :=

n∑

k=2

δ[zk−1, i]δ[zk, j], (5.3)

where i, j ∈ F2 and where

δ[a, b] =







1, if a=b

0, otherwise.

In other words, tij(z
n
1 ) counts the number of times that the pattern ij occurs in

zn1 . When there is no confusion, we will write tij to denote tij(z
n
1). We can now

re-write the probability distribution given in (5.2) as follows:

P (Zn
1 = zn1 ) = P (Z1 = z1)

n∏

i=2

P (Zi = zi|Zi−1 = zi−1)
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= pz1(1− p)1−z1 [ǫ+ (1− ǫ)(1− p)]t00 [(1− ǫ)p]t01

[(1− ǫ)(1− p)]t10 [ǫ+ (1− ǫ)p]t11 .

From the definition of tij , we can obtain the following identities:

t10 = n− wH(z
n
1)− t00 − (1− z1) (5.4)

t01 = wH(z
n
1)− t11 − z1, (5.5)

where wH(·) denotes the Hamming weight. Hence,

P (Zn
1 = zn1 ) = pz1(1− p)1−z1 [ǫ+ (1− ǫ)(1 − p)]t00 [(1− ǫ)p]wH (zn

1
)−t11−z1

[(1− ǫ)(1− p)]n−wH(zn
1
)−t00−(1−z1) [ǫ+ (1− ǫ)p]t11

= (1− ǫ)n−1(1− p)n
(

p

1− p

)wH (zn
1
)[
ǫ+ (1− ǫ)(1− p)

(1− ǫ)(1− p)

]t00

[
ǫ+ (1− ǫ)p

(1− ǫ)p

]t11

.

5.2 On the Equivalence of SMD and ML decod-

ing over the BFMNC

Remark 5.1. Let zn1 ∈ Fn
2 be an error pattern with Hamming weight 0 < wH(z

n
1 ) <

n, then

• t00 ≤ n− wH(z
n
1 )− 1 with equality iff all zeros in zn1 are consecutive.

• t11 ≤ wH − 1 with equality iff all ones in zn1 are consecutive.

Hence, t00 and t11 can be maximized simultaneously iff all zeros and all ones in

zn1 are consecutive.
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Remark 5.2. Let zn1 ∈ Fn
2 be an error pattern with Hamming weight 0 < wH(z

n
1 ) <

n
2
, then t00 ≥ n− 2wH(z

n
1 )− 1 with equality iff z1 = 0 and t10 = wH(z

n
1 ).

Proof. Immediate from (5.4).

Lemma 5.1. The error pattern zn1 with a Hamming weight 0 < m < n where all

zeros and ones are consecutive (e.g., zn1 = 00...011...1) is the most likely among

all other error patterns generated by the BFMNC of the same length and weight.

Proof. Let zn1 be the error pattern with a Hamming weight 0 < m < n having all

zeros and ones consecutive, and let z̃n1 be an error pattern of the same Hamming

weight m. We know that

t00(z̃
n
1 ) ≤ n−m− 1 = t00(z

n
1 )

and that

t11(z̃
n
1 ) ≤ m− 1 = t11(z

n
1).

Then,

P (Zn
1 = zn1)

P (Z̃n
1 = zn1)

=

[
ǫ+ (1− ǫ)(1 − p)

(1− ǫ)(1− p)

]t00(zn1 )−t00(z̃n1 )
[
ǫ+ (1− ǫ)p

(1− ǫ)p

]t11(zn1 )−t11(z̃n1 )

=

[
ǫ+ (1− ǫ)(1 − p)

(1− ǫ)(1− p)

]n−m−1−t00(z̃n1 )
[
ǫ+ (1− ǫ)p

(1− ǫ)p

]m−1−t11(z̃n1 )

≥ 1,

which concludes the proof. The probability of the most likely error pattern of
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Hamming weight m with 0 < m < n is given by:

P (Zn
1 = zn1 ) = (1− ǫ)n−1(1− p)n

(
p

1− p

)m[
ǫ+ (1− ǫ)(1− p)

(1− ǫ)(1 − p)

]n−m−1

[
ǫ+ (1− ǫ)p

(1− ǫ)p

]m−1

. (5.6)

Lemma 5.2. Let zn1 be an error pattern with a Hamming weight 0 < m < n
2
and

with z1 = 0 and let all ones in zn1 be followed each by a zero (e.g., zn1 = 01010...0).

Then zn1 is the least likely error pattern among all error patterns with the same

length and Hamming weight.

Proof. Let z̃n1 be an error word with a Hamming weight 0 < m < n
2
. From

Remark 5.2, we know that

t00(z̃
n
1 ) ≥ n− 2m− 1 = t00(z

n
1 ).

Therefore,

P (Zn
1 = zn1)

P (Z̃n
1 = zn1)

=

[
ǫ+ (1− ǫ)(1 − p)

(1− ǫ)(1− p)

]t00(zn1 )−t00(z̃n1 )
[
ǫ+ (1− ǫ)p

(1− ǫ)p

]t11(zn1 )−t11(z̃n1 )

=

[
ǫ+ (1− ǫ)(1 − p)

(1− ǫ)(1− p)

]n−2m−1−t00(z̃n1 )
[
ǫ+ (1− ǫ)p

(1− ǫ)p

]−t11(z̃n1 )

≤

[
ǫ+ (1− ǫ)p

(1− ǫ)p

]−t11(z̃n1 )

≤ 1,
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which concludes the proof. The probability of this error pattern is given by:

P (Zn
1 = zn1 ) = (1− ǫ)n−1(1− p)n

(
p

1− p

)m[
ǫ+ (1− ǫ)(1− p)

(1− ǫ)(1− p)

]n−2m−1

(5.7)

Theorem 5.1. Define:

m1(ǫ, p) :=

ln

(
ǫ+ (1− ǫ)(1− p)

(1− ǫ)p

)

ln

(
ǫ+ (1− ǫ)p

(1− ǫ)p

)

+ ln

(
ǫ+ (1− ǫ)(1− p)

(1− ǫ)(1− p)

)

and

m2(n, ǫ, p) :=

(n− 1) ln

(
ǫ+ (1− ǫ)(1− p)

ǫ+ (1− ǫ)p

)

+ ln

(
1− p

p

)

2 ln

(
ǫ+ (1− ǫ)(1− p)

(1− ǫ)(1 − p)

)

+ ln

(
1− p

p

) .

For any two BFMNC error words zn1 and z̄n1 satisfying

i. wH(z
n
1) = m, where 0 ≤ m < n

2

ii. wH(z̄
n
1) = m+ i, where 1 ≤ i ≤ n−m

we have that

m < m∗(n, ǫ, p) := min{m1(ǫ, p), m2(n, ǫ, p)} ⇐⇒
P (Zn

1 = zn)

P (Z̄n
1 = zn)

> 1.

Remark 5.3. This theorem is an improvement on [2, Lemma 3] since the provided

conditions are necessary and sufficient, while the conditions of [2, Lemma 3] are

only sufficient.
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Proof. We first prove the first direction ( =⇒ ):

Consider the following three cases:

Case 1: m = 0

In this case, zn1 is the all-zero error pattern. From Lemma 2.2, P (Zn
1 =

0n) > P (Zn
1 = z̄n1).

Case 2: 0 < m < n
2
and 0 < i < n−m

The error pattern z̄n1 is not the all one error word. Hence,

P (Zn
1 = zn1 )

P (Zn
1 = z̄n1 )

≥
minzn

1
∈Fn

2
:wH(zn

1
)=m P (Zn

1 = zn1)

maxz̄n
1
∈Fn

2
:wH(z̄n

1
)=m+i P (Zn

1 = z̄n1)

=
P (Zn

1 = 01010...00)

P (Zn
1 = 00000...11)

(5.8)

=

(
1− p

p

)i[
ǫ+ (1− ǫ)(1− p)

(1− ǫ)(1− p)

](n−2m−1)−(n−m−i−1)

[
ǫ+ (1− ǫ)p

(1− ǫ)p

]−(m+i−1)

(5.9)

=

(
1− p

p

)i[
(1− ǫ)(1− p)

ǫ+ (1− ǫ)(1− p)

]m−i[
(1− ǫ)p

ǫ+ (1− ǫ)p

]m+i−1

=

[
ǫ+ (1− ǫ)(1− p)

ǫ+ (1− ǫ)p

]i[
(1− ǫ)(1− p)

ǫ+ (1− ǫ)(1− p)

]m

[
(1− ǫ)p

ǫ+ (1− ǫ)p

]m−1

≥

[
ǫ+ (1− ǫ)(1− p)

(1− ǫ)p

]

{
(1− ǫ)2(1− p)p

[ǫ+ (1− ǫ)(1− p)][ǫ+ (1− ǫ)p]

}m

(5.10)

> 1.

Here, (5.8) follows from Lemmas 5.1 and 5.2 and (5.9) is obtained by re-
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placing the numerator by (5.7) and the denominator by (5.6). We have an

inequality in (5.10) since we set i = 1 (indeed, the term raised to the power

i is greater than 1 and hence is increasing in i where i ≥ 1). The last strict

inequality is a result of the condition m < m1(ǫ, p).

Case 3: 0 < m < n
2
and i = n−m

In this case, z̄n1 is the all-one codeword, and hence t00(z̄
n
1 ) = 0 and t11(z̄

n
1 ) =

n− 1. Hence,

P (Zn
1 = zn1 )

P (Zn
1 = z̄n1 )

=

(
1− p

p

)n−m[
ǫ+ (1− ǫ)(1− p)

(1− ǫ)(1− p)

]t00(zn1 )

[
ǫ+ (1− ǫ)p

(1− ǫ)p

]t11(zn1 )−n+1

≥

(
1− p

p

)n−m[
ǫ+ (1− ǫ)(1− p)

(1− ǫ)(1− p)

]n−2m−1

[
ǫ+ (1− ǫ)p

(1− ǫ)p

]−n+1

> 1,

where the last strict inequality is a result of the condition m < m2(n, ǫ, p).

We now prove the other direction (⇐=):

• Assume m ≥ m1: In the proof of Case 2, all the inequalities except the

last one can be met with equality by choosing the error patterns as follows:

zn1 = 01010...00 and z̄n1 = 00000...11, and by letting wH(z̄
n
1 ) = m+ 1. As a

result of the assumption that m ≥ m1(ǫ, p), we get

P (Zn
1 = zn1 )

P (Zn
1 = z̄n1 )

≤ 1.
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Therefore, we proved that there exist at least two words zn and z̄n satisfying:

i. w(zn) = m, where 0 < m ≤ n
2

ii. w(z̄n) = m+ i, where 1 ≤ i ≤ n−m

such that:

P (Zn
1 = zn1 )

P (Zn
1 = z̄n)

≤ 1.

• Assume m ≥ m2(n, ǫ, p): The proof follows a similar reasoning as the case

where m ≥ m1(ǫ, p), only this time we choose z̄n1 = 1n (while zn1 is un-

changed).

Theorem 5.2. Let C be any (n,K, d) code used over a BFMNC with parameters

ǫ and p. Denote by rcov the classical covering radius of this code. If rcov <

min
{
m∗(n, ǫ, p), n

2

}
, then the output of the SMD decoder (when it does not declare

a decoding failure) is identical to the output of the ML decoder for this code.

Proof. Let y be the received word. Let m := minc∈C dH(y, c),where dH(·, ·) de-

notes the Hamming distance. Clearly, m ≤ rcov < n
2
(from the definition of the

covering radius). If there exists a unique codeword ĉ such that dH(y, ĉ) = m,

then SMD decoding gives a valid codeword. Since m < m∗(n, ǫ, p), it follows from

Theorem 5.1 that all other error words of larger Hamming weights have a smaller

probability than the error word corresponding to the SMD decision. Hence the

ML decoder will give the same output.

Remark 5.4. Theorem 5.2 improves on [2, Lemma 4] since it applies to any code,

whereas [2, Lemma 4] only applies to linear perfect codes.
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Corollary 5.1. Let C be an (n,M, dmin) perfect code (in the classical sense) used

over a BFMNC with parameters ǫ and p. If

rcov =

⌊
dmin − 1

2

⌋

< min
{

m∗(n, ǫ, p),
n

2

}

,

then C is a generalized perfect code for this channel and hence is optimal (under

ML decoding) among all codes of the same length and dimension sent over the

same channel.

Proof. Immediate from Lemma 3.3 and Theorems 5.1, 5.2.

Remark 5.5. Note that we cannot make a statement similar to the one in Corol-

lary 5.1 for quasi-perfect codes, since two error words of the same weight are not

guaranteed to have the same probability.

5.3 Numerical Results

We illustrate the condition of Theorem 5.2 by simulating the performance of dif-

ferent codes under both SMD and ML decoding over the BFMNC with parameters

ǫ and p. Since Theorem 5.2 does not treat the case when SMD declares a failure

(i.e., when ties occur), we disregard this case in our simulations as well by only

using the ML decoder when the SMD decoder does not declare a failure.

The first code we simulate is the [7, 4, 3] perfect Hamming code. It has a covering

radius rcov = 1. We show the results in Table 5.1.

According to Theorem 5.2, if m∗(n, ǫ, p) > 1 the output of the SMD decoder

(when it does not declare a decoding failure) is identical to the output of the ML

decoder for this code. Indeed, as Table 5.1 shows, the probabilities of codeword
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ǫ 0.2 0.3 0.4 0.5 0.6 0.7
m∗(n, ǫ, p) 1.6305 1.2591 1.0691 0.9362 0.8467 0.7775

PCE under SMD 0.17338 0.18111 0.18366 0.18602 0.18113 0.171275
PCE under ML 0.17338 0.18111 0.18366 0.182835 0.170805 0.153265

Table 5.1: Verifying Theorem 5.2 for the [7, 4, 3] Hamming code over the BFMNC
with parameters p = 0.1 and ǫ.

error for SMD and ML decoding (when SMD does not declare a decoding fail-

ure) over the BFMNC are identical. We start noticing some discrepancy when

m∗(n, ǫ, p) < 1. Similarly, we simulate the performance of the (15, 211, 3) Vasil’ev

nonlinear perfect code constructed using the method described in Theorem 3.1

using

f(x7
1) = x1x2x7 ⊕ x2x4x6 ⊕ x1x3x5.

This code has also a covering radius rcov = 1. We show the results in Table 5.2.

The results are similar to those observed in Table 5.1 for the [7, 4, 3] Hamming

ǫ 0.2 0.3 0.4 0.5 0.6 0.7
m∗(n, ǫ, p) 1.6305 1.2591 1.0691 0.9362 0.8467 0.7775

PCE under SMD 0.4206 0.415 0.3872 0.3718 0.3486 0.3083
PCE under ML 0.4206 0.415 0.3872 0.3669 0.3341 0.2878

Table 5.2: Verifying Theorem 5.2 for the (15, 211, 3) Vasil’ev nonlinear perfect
code over the BFMNC with parameters p = 0.1 and ǫ.

code; i.e., we notice that the probabilities of codeword error for SMD and ML

decoding (when SMD does not declare a decoding failure) over the BFMNC are

identical when m∗(n, ǫ, p) > 1 and they start to differ when m∗(n, ǫ, p) < 1.

Similarly, we simulate the performance of the [8, 4, 4] Reed-Muller code (rcov = 2)

and the [24, 12, 8] extended Golay code (rcov = 3). The results are shown in

Tables 5.3 and 5.4, respectively.
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ǫ 0.08 0.1 0.12 0.6 0.7 0.8
m∗(n, ǫ, p) 3.1889 2.6790 2.3353 0.8467 0.7775 0.6167

PCE under SMD 0.0523871 0.0546158 0.0578775 0.113368 0.11782 0.116573
PCE under ML 0.0523871 0.0546158 0.0578775 0.108908 0.103598 0.0992633

Table 5.3: Verifying Theorem 5.2 for the [8, 4, 4] Reed Muller code RM(1, 3) over
the BFMNC with parameters p = 0.1 and ǫ.

ǫ 0.03 0.04 0.05 0.2 0.3 0.4
m∗(n, ǫ, p) 7.3567 5.5679 4.6990 1.6305 1.2591 1.0691

PCE under SMD 0.0853387 0.0889826 0.0861075 0.101059 0.11657 0.130687
PCE under ML 0.0853387 0.0889826 0.0861075 0.100353 0.110665 0.102962

Table 5.4: Verifying Theorem 5.2 for the [24, 12, 8] extended Golay code over the
BFMNC with parameters p = 0.1 and ǫ.

5.4 A Closer Look at Theorems 5.1 and 5.2

We illustrate the condition of Theorem 5.1 in Figs 5.1-5.3 by plotting m∗(m, ǫ, p)

versus the BFMNC correlation coefficient ǫ for different values of the BER p and

the block length n.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6
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1.8
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2.2

ǫ

m∗
for p =0.001

 

 

n = 5
n = 10
n = 100

Figure 5.1: Plot of m∗(n, ǫ, p) with respect to ǫ for different values of n and for
p = 0.001.
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Figure 5.2: Plot of m∗(n, ǫ, p) with respect to ǫ for different values of n and for
p = 0.01.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

6

7

8

9

10

ǫ

m∗
for p =0.1

 

 

n = 5
n = 10
n = 100

Figure 5.3: Plot of m∗(n, ǫ, p) with respect to ǫ for different values of n and for
p = 0.1.

We notice from the above figures that the condition of Theorem 5.1 is quite

restrictive for channels with ǫ > 0.1. In fact, for these channels, only codes with a

81



covering radius rcov = 1 satisfy the condition (e.g., the family of Hamming codes).

For smaller ǫ, more codes satisfy the condition, and when ǫ = 0 (i.e., when the

BFMNC reduces to the BSC), unsurprisingly all block codes satisfy it.

Corollary 5.2. Every binary (classical) perfect code of minimum Hamming dis-

tance 3 is optimal among all other codes of the same lengths and dimensions over

any BFMNC with ǫ < 1−2p
2(1−p)

.

Proof. The condition

ǫ <
1− 2p

2(1− p)
⇐⇒ m1(ǫ, p) > 1

and it also implies that ∀n ≥ 3, m2(n, ǫ, p) > 1. Hence,

ǫ <
1− 2p

2(1− p)
=⇒ m∗(n, ǫ, p) > 1 (∀n ≥ 3).

Hence, according to Corollary 5.1, any perfect code (linear or non-linear) of min-

imum Hamming distance 3 (rcov = 1) is optimal.

Corollary 5.2 is also proven in [14, Theorem 1]. Next, we generalize the above

result to any (classical) perfect code.

Lemma 5.3. m∗(n, ǫ, p) is strictly decreasing in ǫ.

Proof. The proof is basic but long, and hence will be skipped for conciseness.

We now define ǫi(p, n) ∀p ∈ (0, 1
2
) and n ∈ N∗ as follows:

ǫi(p, n) := sup

{

ǫ ∈ (0, 1) : m∗(n, ǫ, p)) >

⌊
i− 1

2

⌋}

i ∈ N∗ : i ≤ n.
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We know from Lemma 5.4 that ǫi(p, n) exists for any such i, n and p.

Theorem 5.3. For arbitrary, p ∈ (0, 1) , ∀i, n ∈ N∗ such that i < n, and ∀ǫ <

ǫi(p, n), all (classical) perfect length n codes C with minimum distance dmin ≤ i

are optimal on the BFMNC with parameters ǫ and p.

Proof. Perfect codes C satisfy:

rcov =

⌊
dmin − 1

2

⌋

≤

⌊
i− 1

2

⌋

< m∗(n, ǫ, p)),

where the last inequality follows from the definition of ǫi(p, n). From Corollary 5.1,

C is optimal on the BFMNC with parameters ǫ and p; this concludes the proof.
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Chapter 6

Optimality of MD Decoding over

the QBC

In this chapter, we present results similar to those presented in Chapter 5 for

n-block codes transmitted over the QBC. We have shown in Chapter 2 that the

block transition probability over this channel admits two different expressions

depending on whether M ≥ n or M < n. Consequently, those two cases will be

treated separately. For the case when M < n, we restrict our study to the QBC

with M = 2. We assume throughout this chapter that α ≤ 1. This assumption,

while restrictive, is practical since it only does not allow the oldest ball in the

queue to contribute more to the current draw than the more recent balls in the

queue.

We will first briefly present the results for the case when M > n. The treatment

for the QBC with M = 2 will be organized similarly to the treatment of the

BFMNC. We will start by deriving the noise block distribution over this channel

in order to eventually obtain sufficient conditions on binary codes under which
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the strict MD decoder and the ML decoder produce the same output.

6.1 On the equivalence of MD and ML Decoding

of n-block codes over the QBC with M ≥ n

Let zn1 be an error word generated by this channel. Its probability is given by

(2.7):

P (Zn
1 = zn1 ) =

∏n−dn
1
−1

j=0

[

(1− p) + j
ǫ

1− ǫ

]
∏dn

1
−1

j=0

(

p+ j
ǫ

1− ǫ

)

∏n−1
j=0

(

1 + j
ǫ

1− ǫ

)

where d is the Hamming weight of zn1 . We clearly notice that the probability of

error patterns depends only on their Hamming weight. In other words, two error

patterns have the same probability if their Hamming weight is the same. We

denote by zn1 (t) an error word with Hamming weight t. For 0 ≤ m ≤ n−m and

1 ≤ i ≤ n−m, we define p(m, i) as follows:

ρ(m, i) :=
P (Zn

1 = zn1 (m+ i))

P (Zn
1 = zn1 (m))

=

∏m+i−1
j=m

[

p+ j
ǫ

1− ǫ

]

∏n−m−1
j=n−m−i

[

(1− p) + j
ǫ

1− ǫ

]

=
i−1∏

j=0

p+ (m+ j)
ǫ

1− ǫ

(1− p) + (n−m− i+ j)
ǫ

1− ǫ

.
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Hence,

ρ(m, i) ≤ 1 ⇐⇒ (1− p) + (n−m− i)
ǫ

1− ǫ
≥ p+m

ǫ

1− ǫ

⇐⇒ m+ i− µ ≤ µ−m

⇐⇒ |m+ i− µ| ≤ |m− µ|,

where

µ =
(1− 2p)(1− ǫ)

2ǫ
+

n

2
.

It is clear that this case is very similar to what we saw in Chapter 4 for the IMCC.

To avoid redundancy, we will only list the theorems that apply to this without

proof.

Theorem 6.1. ML decoding over the QBC with M ≥ n is equivalent to either

minimum Hamming distance decoding or maximum Hamming distance decoding.

The output of the ML decoder is given by:

êML = arg max
e∈{emin,emax}

|wH(e)− µ|,

where emin and emax are the outputs of the minimum and the maximum Hamming

distance decoders, respectively.

Theorem 6.2. For any (n,M, dmin) code C used over the QBC with M ≥ n, if

the (classical) covering radius of this code satisfies

rcov ≤
(1− 2p)(1− ǫ)

ǫ
,
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then the outputs of the MD and ML decoders are the same.

Remark 6.1. A plot of this condition is already given in Chapter 4 (see Fig. 4.2).

Theorem 6.3. For any (n,M, dmin) code C used over the QBC with M ≥ n, the

outputs of the MD and ML decoders are the same iff

dsum(C) ≤
(1− 2p)(1− ǫ)

ǫ
,

where dsum(C) is defined in Definition 4.1.

Corollary 6.1. For a linear code containing the all-one codeword, if p < 0.5 and

ǫ > 0 then ML decoding over the QBC with M > n reduces to minimum Hamming

distance decoding.

6.2 Block Transition Probability for the QBC

with M = 2

Let zn1 be an error word generated by the QBC with M < n, its probability is

given by (2.11) as follows:

P (Zn
1 = zn1) =

L(M)

[

1 + (M − 1 + α)
ǫ

1− ǫ

]n−M

n∏

i=M+1

[

(di−1
i−M+1 + αzi−M)ǫ

1− ǫ
+ p

]zi

{[
M − 1− di−1

i−M+1 + α(1− zi−M)
]
ǫ

1− ǫ
+ 1− p

}1−zi
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where:

L(M) =

∏M−dM
1

−1
j=0

[

(1− p) + j
ǫ

1− ǫ

]
∏dM

1
−1

j=0

(

p+ j
ǫ

1− ǫ

)

∏M−1
j=0

(

1 + j
ǫ

1− ǫ

) .

For M=2,

P (Zn
1 = zn1 ) =

[

(1− p)pz2
(

1− p+
ǫ

1− ǫ

)1−z2
]1−z1 [

p(1− p)1−z2

(

p+
ǫ

1− ǫ

)z2
]z1

1 +
ǫ

1− ǫ

×

∏n

i=3

[
(zi−1 + αzi−2)ǫ

1− ǫ
+ p

]zi { [(1− zi−1) + α(1− zi−2)] ǫ

1− ǫ
+ 1− p

}1−zi

[

1 + (1 + α)
ǫ

1− ǫ

]n−2 .

(6.1)

We define tijk(z
n
1 ) as follows:

tijk(z
n
1 ) :=

n∑

l=3

δ[zl−2, i]δ[zl−1, j]δ[zl, k],

where i, j, k ∈ F2 and where

δ[a, b] =







1, if a = b

0, otherwise.

In other words, tijk(z
n
1 ) counts the number of times the pattern ijk occurs in zn1 .

When there is no confusion, we will write tijk to denote tijk(z
n
1). We now re-write
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(6.1) as follows:

P (zn1) =

(1− p)

(
ǫ

1− ǫ
+ 1− p

)

[

1 + (1 + α)
ǫ

1− ǫ

]n−2 [

1 +
ǫ

1− ǫ

]







(
ǫ

1− ǫ
+ 1− p

)(
ǫ

1− ǫ
+ p

)

p(1− p)







z1z2






p
ǫ

1− ǫ
+ 1− p






z1+z2
[

(1 + α)
ǫ

1− ǫ
+ 1− p

]t000

pt001
[

α
ǫ

1− ǫ
+ 1− p

]t010

[
ǫ

1− ǫ
+ p

]t011 [ ǫ

1− ǫ
+ 1− p

]t100 [

α
ǫ

1− ǫ
+ p

]t101

(1− p)t110

[

(1 + α)
ǫ

1− ǫ
+ p)

]t111

. (6.2)

From the definition of tijk, we obtain the following identities:

t001 + t101 = t01 − (1− z1)z2 (6.3)

t011 + t111 = t11 − z1z2 (6.4)

t100 + t000 = t00 − (1− z1)(1− z2) (6.5)

t110 + t010 = t10 − z1(1− z2), (6.6)

where tij are defined in (5.3). Hence,

P (Zn
1 = zn1 ) =

(1− p)

(
ǫ

1− ǫ
+ 1− p

)

[

1 + (1 + α)
ǫ

1− ǫ

]n−2 [

1 +
ǫ

1− ǫ

]







(
ǫ

1− ǫ
+ 1− p

)(
ǫ

1− ǫ
+ p

)

p(1− p)







z1z2






p
ǫ

1− ǫ
+ 1− p






z1+z2
[

(1 + α)
ǫ

1− ǫ
+ 1− p

]t000

pt01−t101−z2+z1z2
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[

α
ǫ

1− ǫ
+ 1− p

]t010 [ ǫ

1− ǫ
+ p

]t11−t111−z1z2
[

α
ǫ

1− ǫ
+ p

]t101

[
ǫ

1− ǫ
+ 1− p

]t00−t000−1−z1z2+z1+z2
[

(1 + α)
ǫ

1− ǫ
+ p)

]t111

(1− p)t10−z1+z1z2−t010

=
(1− p)

[

1 + (1 + α)
ǫ

1− ǫ

]n−2 [

1 +
ǫ

1− ǫ

]

[
p

1− p

]z1

pt01(1− p)t10






(1 + α)
ǫ

1− ǫ
+ 1− p

ǫ

1− ǫ
+ 1− p






t000





α
ǫ

1− ǫ
+ 1− p

1− p






t010





α
ǫ

1− ǫ
+ p

p






t101






(1 + α)
ǫ

1− ǫ
+ p)

ǫ

1− ǫ
+ p






t111
[

ǫ

1− ǫ
+ 1− p

]t00 [ ǫ

1− ǫ
+ p

]t11

. (6.7)

Equation (6.7) can be further simplified by using the identities in (5.4) and (5.5).

After some algebraic manipulations, we obtain this final expression of the proba-

bility:

P (Zn
1 = zn1 ) =

(1− p)n
[

1 + (1 + α)
ǫ

1− ǫ

]n−2 [

1 +
ǫ

1− ǫ

]

[
p

1− p

]m






α
ǫ

1− ǫ
+ 1− p

1− p






t010






α
ǫ

1− ǫ
+ p

p






t101





(1 + α)
ǫ

1− ǫ
+ p)

ǫ

1− ǫ
+ p






t111





ǫ

1− ǫ
+ 1− p

1− p






t00






ǫ

1− ǫ
+ p

p






t11





(1 + α)
ǫ

1− ǫ
+ 1− p

ǫ

1− ǫ
+ 1− p






t000

, (6.8)

where m is the Hamming weight of zn1 .
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6.3 On the Equivalence of SMD and ML Decod-

ing over the QBC with M = 2

Remark 6.2. Let zn1 ∈ Fn
2 be an error word with Hamming weight m = wH(z

n
1),

then:

t000 ≤ n−m− 2 if m < n− 1 (6.9)

t111 ≤ m− 2 if m > 1 (6.10)

t101 + t11 ≤ m− 1 if m > 0 (6.11)

t010 + t00 ≤ n−m− 1 if m < n (6.12)

Proof. The inequalities in (6.9) and (6.10) are trivial.

From the definition of tijk and tij :

t101 + t11 =

n∑

i=3

zi−2(1− zi−1)zi +

n∑

i=2

zi−1zi

= z1z2 +
n∑

i=3

zi−2(1− zi−1)zi + zi−1zi

= z1z2 +

n∑

i=3;zi=1

zi−2(1− zi−1) + zi−1

= z1z2 +
n∑

i=3;zi=1

si,

where si = zi−2(1− zi−1) + zi−1 ≤ 1. Hence, the sum can increase by at most one

every time there is a one in zn1 .

• Case 1: z1 = 0, z2 = 0

Let i0 be the index of the first non-zero entry in zn3 . Then si0 = 0 since
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zi0−1 = zi0−2 = 0. For the other m − 1 ones in zn1 , si can be at most one.

Hence, t101 + t11 ≤ m− 1.

• Case 2: z1 = 0, z2 = 1

In that case, z1z2 = 0 and there are m − 1 summands in the sum. Hence,

t101 + t11 ≤ m− 1.

• Case 3: z1 = 1, z2 = 0

Similar to case 2.

• Case 4: z1 = 1, z2 = 1

In that case, z1z2 = 1, but there are m − 2 summands in the sum. Hence,

t101 + t11 ≤ 1 +m− 2 = m− 1.

Indeed, t101 + t11 ≤ m− 1. By symmetry, the inequality in (6.12) holds.

Remark 6.3. Let zn1 ∈ Fn
2 be an error word with Hamming weight m = wH(z

n
1 ) <

n
3
, then

t000 ≥ n− 3m− 2. (6.13)

Proof. The proof is immediate from (6.5) and Remark 5.2. The pattern

(001001....000),

for example, achieves the above inequality with equality.

Lemma 6.1. The error pattern zn1 of Hamming weight 0 < m < n where all zeros

and ones are consecutive (e.g., zn1 = 00...011...1) is the most likely among all other

error patterns of the same length and weight generated by the QBC with M = 2.
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Proof. Let zn1 be an error word with Hamming weight 0 < m < n.

max
t101,t11






αǫ

1− ǫ
+ p

p






t101





ǫ

1− ǫ
+ p

p






t11

≤ max
(i,j):i+j=m−1






αǫ

1− ǫ
+ p

p






i 




ǫ

1− ǫ
+ p

p






j

(6.14)

=






ǫ

1− ǫ
+ p

p






m−1

, (6.15)

where the inequality in (6.14) comes from (6.11), and (6.15) follows from the

assumption that α ≤ 1. We have equality when all ones are consecutive.

Similarly, using (6.12) we can prove that:

max
t010,t00






αǫ

1− ǫ
+ 1− p

1− p






t010





ǫ

1− ǫ
+ 1− p

1− p






t00

=






ǫ

1− ǫ
+ 1− p

1− p






n−m−1

,

where the maximum is achieved when all zeros are consecutive.

When all zeros and all ones are consecutive, t000 and t111 are also maximized and

hence the expression of the probability of zn1 given by (6.8) is maximized.

Lemma 6.2. Consider the error words of length n having a Hamming weight

0 < m < n
3
. The pattern bn

1 = (001001....00) is the least likely among all patterns

of the same length and weight generated by the QBC with M = 2.

Proof. For the pattern bn
1 :

• t000 = n − 3m − 2 which is the minimum possible value of t000 among all

other error patterns of length n and Hamming weight 0 < m < n
3
.

• t00 = n−2m−1 which is also the minimum value of t00 among all other error
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patterns of length n and Hamming weight 0 < m < n
2
(see Remark 5.1).

• t101 = t111 = t11 = 0 are all minimized.

• t010 = m is maximized.

The only way to minimize further the probability given by (6.8) is by reducing

t010 since all the other terms are already minimized. We can reduce t010 by having

successive ones in the error pattern. This means that every time t010 is reduced

by one, at least t11 is increased by one. Assuming all the other terms keep their

minimal values, the probability of new error pattern changes by a factor of at

least:






ǫ

1− ǫ
+ p

p











1− p

α
ǫ

1− ǫ
+ 1− p




 =







ǫ+ p(1− ǫ)

1− ǫ
p













1− p

αǫ+ (1− p)(1− ǫ)

1− ǫ







=
ǫ(1 − p) + p(1− p)(1− ǫ)

αpǫ+ p(1− p)(1− ǫ)

> 1 iff α <
1− p

p
.

Since we already assume that α ≤ 1 < 1−p

p
, then the new error pattern is more

likely than bn
1 , which concludes the proof.
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Theorem 6.4. Define:

m1(α, ǫ, p) :=

log







[
(1 + α)ǫ

1− ǫ
+ 1− p

] [
(1 + α)ǫ

1− ǫ
+ p

]

p

(
ǫ

1− ǫ
+ p

)







log







[
(1 + α)ǫ

1− ǫ
+ p

] [
(1 + α)ǫ

1− ǫ
+ 1− p

]2

p(
αǫ

1− ǫ
+ 1− p)(

ǫ

1− ǫ
+ 1− p)







m2(n, α, ǫ, p) :=







n log







(1 + α)ǫ

1− ǫ
+ 1− p

(1 + α)ǫ

1− ǫ
+ p






+ A

C
, if α >

(1− 2p)(1− ǫ)

ǫ
− 1

n log







(1 + α)ǫ

1− ǫ
+ 1− p

(1 + α)ǫ

1− ǫ
+ p






+B

C
, otherwise,

where

A := log








[
(1 + α)ǫ

1− ǫ
+ p

]2

(1− p)

(
ǫ

1− ǫ
+ 1− p

)

p

(
ǫ

1− ǫ
+ p

)[
(1 + α)ǫ

1− ǫ
+ 1− p

]2







,

B := log








[
(1 + α)ǫ

1− ǫ
+ p

]3(
ǫ

1− ǫ
+ 1− p

)

p

(
ǫ

1− ǫ
+ p

)[
(1 + α)ǫ

1− ǫ
+ 1− p

]2








C := log








(
(1 + α)ǫ

1− ǫ
+ 1− p

)3

p

(
αǫ

1− ǫ
+ 1− p

)(
ǫ

1− ǫ
+ 1− p

)







.

For any two words zn1 and z̄n1 generated by the QBC with M = 2 satisfying
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i. wH(z
n
1) = m, where 0 ≥ m < n

3
,

ii. wH(z̄
n
1) = m+ i, where 1 ≤ i ≤ n−m

we have that

m < m̃(n, α, ǫ, p) := min{m1(α, ǫ, p), m2(n, α, ǫ, p)} ⇐⇒
P (Zn

1 = zn1 )

P (Zn
1 = z̄n1 )

> 1.

Proof. Define an
1 (t) and bn

1 (t) be the following n-bit patterns of Hamming weight

t:

an
1 (t) = (000...111) For 0 < t < n

bn
1 (t) = (001001...000) For 0 < t <

n

3

We first prove the first direction ( =⇒ ): Consider the following two cases:

Case 1: m = 0

In this case, zn1 is the all-zero error pattern. From Lemma 2.2, P (Zn
1 =

0n) > P (Zn
1 = z̄n1).

• Case 2: 0 < m < n
3
and 1 ≤ i < n−m− 1

P (Zn
1 = zn1)

P (Zn
1 = z̄n1)

≥
minzn

1
∈Fn

2
:wH(zn

1
)=m P (Zn

1 = zn1 )

maxzn
1
∈Fn

2
:wH(zn

1
)=m+i P (Zn

1 = zn1 )

=
P (Zn

1 = bn
1 (m))

P (Zn
1 = an

1 (m+ i))

=

[
1− p

p

]i






(1 + α)
ǫ

1− ǫ
+ 1− p

ǫ

1− ǫ
+ 1− p






(n−3m−2)−(n−m−i−2)
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




α
ǫ

1− ǫ
+ 1− p

1− p






m 




(1 + α)
ǫ

1− ǫ
+ p

ǫ

1− ǫ
+ p






−(m+i−2)






ǫ

1− ǫ
+ 1− p

1− p






(n−2m−1)−(n−m−i−1) 




ǫ

1− ǫ
+ p

p






−(m+i−1)

=






αǫ

1− ǫ
+ 1− p

1− p






m






(1 + α)ǫ

1− ǫ
+ p

ǫ

1− ǫ
+ p







−(m+i−2) 




ǫ

1− ǫ
+ p

p






−(m+i−1)

[
1− p

p

]i







(1 + α)ǫ

1− ǫ
+ 1− p

ǫ

1− ǫ
+ 1− p







i−2m 




ǫ

1− ǫ
+ 1− p

1− p






i−m

where the first equality follows from Lemmas 6.1 and 6.2. Thus,

P (Zn
1 = zn1 )

P (Zn
1 = z̄n1 )

≥







p(
αǫ

1− ǫ
+ 1− p)(

ǫ

1− ǫ
+ 1− p)

[
(1 + α)ǫ

1− ǫ
+ p

] [
(1 + α)ǫ

1− ǫ
+ 1− p

]2







m







(1 + α)ǫ

1− ǫ
+ 1− p

(1 + α)ǫ

1− ǫ
+ p







i
[
(1 + α)ǫ

1− ǫ
+ p

]2

p

(
ǫ

1− ǫ
+ p

)

≥







p(
αǫ

1− ǫ
+ 1− p)(

ǫ

1− ǫ
+ 1− p)

[
(1 + α)ǫ

1− ǫ
+ p

] [
(1 + α)ǫ

1− ǫ
+ 1− p

]2

︸ ︷︷ ︸

≤1







m

[
(1 + α)ǫ

1− ǫ
+ 1− p

] [
(1 + α)ǫ

1− ǫ
+ p

]

p

(
ǫ

1− ǫ
+ p

) (6.16)
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> 1. (6.17)

We have inequality in (6.16) since we set i = 1 (indeed, the term raised to

the power i is greater than 1 and hence is increasing in i where i ≥ 1). The

last strict inequality is a result of the condition m < m1(α, ǫ, p).

• Case 3: 0 < m < n
3
and n−m− 1 ≤ i ≤ n−m

In this case, t000(z̄
n
1) = t00(z̄

n
1 ) = 0. We have

P (Zn
1 = zn1)

P (Zn
1 = z̄n1)

≥
P (Zn

1 = bn
1 (m))

P (Zn
1 = an

1 (m+ i))

=

[
1− p

p

]i






(1 + α)
ǫ

1− ǫ
+ 1− p

ǫ

1− ǫ
+ 1− p






(n−3m−2)






α
ǫ

1− ǫ
+ 1− p

1− p






m 




(1 + α)
ǫ

1− ǫ
+ p

ǫ

1− ǫ
+ p






−(m+i−2)






ǫ

1− ǫ
+ 1− p

1− p






(n−2m−1) 




ǫ

1− ǫ
+ p

p






−(m+i−1)

=






(1 + α)
ǫ

1− ǫ
+ 1− p

1− p






n 




1− p

(1 + α)
ǫ

1− ǫ
+ p






i








p

(
ǫ

1− ǫ
+ 1− p

)(
αǫ

1− ǫ
+ 1− p

)

(1− p)

(
(1 + α)ǫ

1− ǫ
+ 1− p

)3 [
(1 + α)ǫ

1− ǫ
+ p

]








m

[
(1 + α)ǫ

1− ǫ
+ p

]2

(1− p)

(
ǫ

1− ǫ
+ 1− p

)

p

(
ǫ

1− ǫ
+ p

)[
(1 + α)ǫ

1− ǫ
+ 1− p

]2

> 1.
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The last inequality is a result of the condition m < m2(n, α, ǫ, p).

We now prove the other direction (⇐=):

• Assume m ≥ m1(α, ǫ, p) : In the proof of Case 2, all the inequalities except

the last one can be met with equality by choosing the error patterns as

follows: zn1 = bn
1 (m) and z̄n1 = an

1 (m + 1). Under the assumption that

m ≥ m1(α, ǫ, p), we get:

P (Zn
1 = zn1 )

P (Zn
1 = z̄n1 )

≤ 1.

Therefore, we proved that there exist at least two words zn1 and z̄n1 satisfying:

i. wH(z
n
1 ) = m, where 0 < m ≤ n

2

ii. wH(z̄
n
1 ) = m+ i, where 1 ≤ i ≤ n−m

such that:

P (Zn
1 = zn1 )

P (Zn
1 = z̄n1 )

≤ 1.

• Assume m ≥ m2(n, α, ǫ, p) : The proof follows a similar reasoning as above,

only this time we choose z̄n1 to be the all-one error word (while zn1 is un-

changed).

Theorem 6.5. Let C be any (n,K, d) code used over the QBC with M = 2 and

parameters α, ǫ and p. Denote by rcov the classical covering radius of this code.

If rcov < min
{
m̃(n, α, ǫ, p), n

3

}
, then the output of the SMD decoder (when it does
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not declare a decoding failure) is identical to the output of the ML decoder for this

code.

Proof. Let y be the received word. Let m := minc∈C dH(y, c),where dH denotes

the Hamming distance. Clearly, m ≤ rcov <
n
3
(from the definition of the covering

radius). If there exists a unique codeword ĉ such that dH(y, ĉ) = m, then the

SMD decoding gives a valid codeword. Since m < m̃(n, α, ǫ, p), it follows from

Theorem 6.4 that all other error words of larger Hamming weights have a smaller

probability than the error word corresponding to the SMD decision. Hence the

ML decoder will give the same output.

Corollary 6.2. Let C be an (n,M, dmin) perfect code (in the classical sense) used

over the QBC with parameters α, ǫ and p. If

rcov =

⌊
dmin − 1

2

⌋

< min
{

m̃(n, α, ǫ, p),
n

3

}

,

then C is a generalized perfect code for this channel and hence is optimal (under

ML decoding) among all codes of the same length and dimension sent over the

same channel.

Proof. Immediate from Lemma 3.3 and Theorems 6.4 and 6.5.

Remark 6.4. Note that we can not make a similar statement to the one in Corol-

lary 6.2 for quasi-perfect codes, since two error words of the same weight are not

guaranteed to have the same probability.

Remark 6.5. When α = 0, the QBC with M = 2 reduces to the BFMNC (or QBC

with M = 1) for the same BER p and correlation coefficient ǫ (see Remark 2.1)
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and, unsurprisingly, we can prove that Theorem 6.4 implies Theorem 5.1 and

consequently Theorem 6.5 implies Theorem 5.2.

Corollary 6.3. The results in Theorems 6.4 and 6.5 and in Corollary 6.2 can

be specialized to the FMCC with M = 2 by setting α = 1. The expressions

of m1(α, ǫ, p), m2(n, α, ǫ, p) and m̃(n, α, ǫ, p) reduce in this case to the following

form:

m1(ǫ, p) =

log







[
2ǫ

1− ǫ
+ 1− p

] [
2ǫ

1− ǫ
+ p

]

p

(
ǫ

1− ǫ
+ p

)







log







[
2ǫ

1− ǫ
+ p

] [
2ǫ

1− ǫ
+ 1− p

]2

p

(
ǫ

1− ǫ
+ 1− p

)2







m2(n, ǫ, p) =







n log






2ǫ

1− ǫ
+ 1− p

2ǫ

1− ǫ
+ p




+ A

C
, if

(1− 2p)(1− ǫ)

ǫ
< 2

n log






2ǫ

1− ǫ
+ 1− p

2ǫ

1− ǫ
+ p




+B

C
, otherwise,

where

A = log








[
2ǫ

1− ǫ
+ p

]2

(1− p)

(
ǫ

1− ǫ
+ 1− p

)

p

(
ǫ

1− ǫ
+ p

)[
2ǫ

1− ǫ
+ 1− p

]2







,
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B = log








[
2ǫ

1− ǫ
+ p

]3(
ǫ

1− ǫ
+ 1− p

)

p

(
ǫ

1− ǫ
+ p

)[
2ǫ

1− ǫ
+ 1− p

]2








C = log








(
2ǫ

1− ǫ
+ 1− p

)3

p

(
ǫ

1− ǫ
+ 1− p

)2







.

and finally

m̃(n, ǫ, p) := min{m1(ǫ, p), m2(n, ǫ, p)}.

In Figs. 6.1-6.3, we plot m̃(n, ǫ, p) from Corollary 6.3 versus the FMCC with

M = 2 channel correlation coefficient ǫ for different values of the BER p and the

block length n.
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m̃ for p =0.001

 

 

n = 5
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n = 100

Figure 6.1: Plot of m̃(n, ǫ, p) with respect to ǫ for different values of n and for
p = 0.001, FMCC with M = 2.
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Figure 6.2: Plot of m̃(n, ǫ, p) with respect to ǫ for different values of n and for
p = 0.01, FMCC with M = 2.
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Figure 6.3: Plot of m̃(n, ǫ, p) with respect to ǫ for different values of n and for
p = 0.1, FMCC with M = 2.

We notice from the above figures that the condition of Corollary 6.2 is re-

strictive for channels with ǫ > 0.1. In fact, for these channels, only codes with a
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covering radius rcov = 1 satisfy the condition (e.g., the family of Hamming codes).

The result is unsurprisingly similar to the results we obtained for the BFMNC.

For smaller ǫ, more codes satisfy the condition, and when ǫ = 0 (i.e., when the

QBC reduces to the BSC), unsurprisingly all block codes satisfy it.

In Figs. 6.4-6.6, we plot m̃(n, α, ǫ, p) from Theorem 6.4 versus the QBC with

M = 2 channel correlation coefficient ǫ for different values of the BER p and

different values of α and for a block length n = 10.
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α = 0.1
α = 0.5
α = 1

Figure 6.4: Plot of m̃(n, α, ǫ, p) with respect to ǫ for different values of α, for
p = 0.001 and n = 10, QBC with M = 2.

We notice from the above figures that reducing α, while fixing the values of

n, ǫ and p, results most of the time in increasing m̃(n, α, ǫ, p). However, the gain

is not significant.
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Figure 6.5: Plot of m̃(n, α, ǫ, p) with respect to ǫ for different values of α, for
p = 0.01 and n = 10, QBC with M = 2.
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Figure 6.6: Plot of m̃(n, α, ǫ, p) with respect to ǫ for different values of α, for
p = 0.1 and n = 10, QBC with M = 2.

6.4 Numerical Results

We illustrate the condition of Theorem 6.5 by simulating the performance of dif-

ferent codes under both SMD and ML decoding over the FMCC with parameters
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M = 2, ǫ and p. Since Theorem 6.5 does not treat the case when SMD declares

a failure, we disregard this case in our simulations as well by only using the ML

decoder when the SMD decoder does not declare a failure.

The first code we simulate is the [7, 4, 3] perfect Hamming code. It has a covering

radius rcov = 1. We show the results in Table 6.1.

ǫ 0.1 0.2 0.3 0.6 0.7 0.8
m̃(n, ǫ, p) 2.0606 1.4544 1.2279 0.4853 0.3529 0.2542

PCE under SMD 0.13799 0.12767 0.11344 0.07217 0.0604 0.03941
PCE under ML 0.13799 0.12767 0.11344 0.06831 0.05267 0.03511

Table 6.1: Verifying Theorem 6.5 for the [7, 4, 3] Hamming code over the FMCC
with parameters M = 2, p = 0.1 and ǫ.

According to Theorem 6.5, if m̃(n, ǫ, p) > 1 the output of the SMD decoder

(when it does not declare a decoding failure) is identical to the output of the ML

decoder for this code. Indeed, as Table 6.1 shows, the probabilities of codeword

error for SMD and ML decoding (when SMD does not declare a decoding failure)

over the FMCC with M = 2 are identical. We start noticing some discrepancy

when m̃(n, ǫ, p) < 1. Similarly, we simulate the performance of the (15, 211, 3)

Vasil’ev nonlinear perfect code constructed using the method described in Theo-

rem 3.1 using

f(x7
1) = x1x2x7 ⊕ x2x4x6 ⊕ x1x3x5.

. This code has also a covering radius rcov = 1. We show the results in Table 6.2.

The results are similar to those observed in Table 6.1 for the [7, 4, 3] Hamming

code, i.e., we notice that the probabilities of codeword error for SMD and ML

decoding (when SMD does not declare a decoding failure) over the FMCC with

M = 2 are identical when m̃(n, ǫ, p) > 1 and they start to differ when m̃(n, ǫ, p) <

106



ǫ 0.1 0.2 0.3 0.6 0.7 0.8
m̃(n, ǫ, p) 2.0606 1.4544 1.2279 0.7230 0.4873 0.3215

PCE under SMD 0.3875 0.3343 0.2841 0.1573 0.1184 0.0908
PCE under ML 0.3875 0.3343 0.2841 0.15 0.1124 0.0789

Table 6.2: Verifying Theorem 6.5 for the (15, 211, 3) Vasil’ev nonlinear perfect
code over the FMCC with parameters M = 2, p = 0.1 and ǫ.

1. Similarly, we simulate the performance of the [8, 4, 4] Reed-Muller code (rcov =

2) and the [24, 12, 8] extended Golay code (rcov = 3). The results are shown in

Tables 6.3 and 6.4, respectively.

ǫ 0.05 0.075 0.1 0.6 0.7 0.8
m̃(n, ǫ, p) 2.6667 2.4344 2.0606 0.5150 0.3697 0.2626

PCE under SMD 0.0413811 0.0419236 0.0437669 0.0274721 0.0344286 0.0214617
PCE under ML 0.0413811 0.0419236 0.0437669 0.0274721 0.0218041 0.0142804

Table 6.3: Verifying Theorem 6.5 for the [8, 4, 4] Reed Muller code RM(1, 3) over
the FMCC with parameters M = 2, p = 0.1 and ǫ.

ǫ 0.02 0.025 0.03 0.2 0.3 0.4
m̃(n, ǫ, p) 6.2104 5.2032 4.5269 1.4544 1.2279 1.1068

PCE under SMD 0.0791618 0.0570431 0.0742459 0.061086 0.0588235 0.0536481
PCE under ML 0.0791618 0.0570431 0.0742459 0.0554299 0.0374332 0.0482833

Table 6.4: Verifying Theorem 6.5 for the [24, 12, 8] extended Golay code over the
FMCC with parameters M = 2, p = 0.1 and ǫ.
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Chapter 7

Conclusion and Future Work

7.1 Concluding Remarks

In this work, we presented sufficient conditions on general binary codes under

which SMD and ML are equivalent over the QBC with M = 1 (or the BFMNC),

the QBC with M = 2, and the GEC (when the state vector is not available at the

decoder). We also determined sufficient conditions under which classical perfect

codes are optimal under ML decoding over these channels. For the IMCC and

the QBC with M ≥ n, we provided both necessary and sufficient conditions on

binary codes for which ML and MD are equivalent. We also determined sufficient

conditions under which classical perfect and quasi-perfect codes are optimal under

ML decoding over these channels. For the GEC when the state vector is available

at the decoder, we gave partial results pertaining to equivalence between the

Hamming metric and the likelihood of error patterns generated by this channel.
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7.2 Application to Syndrome Source Coding

The results that we derived in this work can be applied to syndrome source coding

with or without side information [3, 28]. Similar work has been done to Markov

sources in [27]. The syndrome source coding scheme without side information is

shown in Fig. 7.1.

Source ✲ Syndrome
Former

✲ Channel ✲ Error-Pattern
Estimator

✲en
1 s

n−k

1
s
n−k

1
ên
1

Figure 7.1: Syndrome source coding method of using error correcting codes for
data compression

The scheme uses an [n, k, dmin] linear code C. The source encoder computes the

syndrome sn−k
1 of the source output en1 and sends it over a noiseless communication

channel. The source decoder outputs its estimate ên1 of the source output from its

syndrome. If the n-bit source output is identically distributed to the n-bit error

pattern generated by one of the channels that we considered in this work and

if the linear code C satisfies the conditions we presented for that channel, then

we obtain the same equivalence relation between the ML and the MD (or SMD)

decoders.

Alternatively, the syndrome source coding scheme with side information at the

decoder is shown in Fig. 7.2.

The source gives two outputs Yi and Xi, where the latter is only available at

the decoder. Let Ui = Xi ⊕ Yi. In this scheme, the source encoder computes

the syndrome zn−k
1 of the n-bit source output yn

1 and transmits it over a noiseless
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✲ Channel ✲ Source
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n−k

1
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n−k

1
ŷn
1

✻
xn
1

Figure 7.2: Source encoder with side information at the receiver

communication channel. The source decoder computes the syndrome of the second

n-bit source output xn
1 and adds it bitwise to zn−k

1 (modulo-2). It can be easily

proven that the result is the syndrome of un
1 = xn

1 ⊕ yn
1 . Hence, the decoder

computes its estimate ûn
1 of un

1 from its syndrome and outputs ŷn
1 = ûn

1 ⊕ xn
1 .

Similarly, if the Un
1 is identically distributed to the n-bit error pattern of one of

the channels that we considered in this work and if the linear code C satisfies

the condition we presented for that channel, then we obtain the same equivalence

relation between the ML and the MD (or SMD) decoders.

7.3 Future Work

Future work may include extending the results to other channel models with

memory, and particularly the M th-order QBC and the GEC when the state vector

is available at the decoder. By noticing a pattern on the most and least likely error

patterns generated by the QBC with M = 1 and M = 2, we make a conjecture

about the most and least likely error patterns for the general M th-order QBC.

Conjecture 7.1. We make the following two conjectures:

• The error patter an
1 of Hamming weight 0 < m < n where all zeros and ones
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are consecutive (e.g., zn1 = 00...011...11) is the most likely among all other

error patterns of the same length and weight generated by the M th-order

QBC.

• Consider the error words of length n having a Hamming weight 0 < m <

n
M+1

. The pattern

bn
1 =









00...0
︸ ︷︷ ︸

M

1 00...0
︸ ︷︷ ︸

M

... 00...0
︸ ︷︷ ︸

M

1

︸ ︷︷ ︸

m

00...00









is the least likely among all patterns of the same length and weight generated

by the M th-order QBC.

Conjecture 7.1 might prove very useful in deriving conditions on error patterns

similar to the ones given in Theorems 5.1 and 6.4 and hence in deriving conditions

on binary block codes under which SMD and ML decoding are equivalent and for

which classical perfect codes are optimal under ML decoding over the M th-order

QBC.

Another interesting direction is to study optimal or sub-optimal structures of

binary block codes over channels with memory as we have established that the

Hamming distance is not necessarily the most important parameter in the code

design.

There is also room for improvement in the results obtained for the GEC when the

state vector is not available at the decoder. In fact, the derived condition for this

case might be too loose and can be potentially tightened to include a wider class

of block linear codes.
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Finally, the construction of decoders that exploit the memory between blocks via

the use of estimates of the previous channel noise samples is a worthwhile future

direction. Such endeavour will improve the system’s error performance vis-a-vis

the (memoryless) block-by-block decoding considered in this work for a cost of

increased complexity and delay.
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