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Abstract

We investigate the joint source-channel coding (JSCC) excess distortion exponent EJ (the exponent

of the probability of exceeding a prescribed distortion level) for some memoryless communication systems

with continuous alphabets. We first establish upper and lower bounds for EJ for systems consisting of

a memoryless Gaussian source under the squared-error distortion fidelity criterion and a memoryless

additive Gaussian noise channel with a quadratic power constraint at the channel input. A necessary

and sufficient condition for which the two bounds coincide is provided, thus exactly determining the

exponent. This condition is observed to hold for a wide range of source-channel parameters. As an

application, we study the advantage in terms of the excess distortion exponent of JSCC over traditional

tandem (separate) coding for Gaussian systems. A formula for the tandem exponent is derived in terms

of the Gaussian source and Gaussian channel exponents, and numerical results show that JSCC often

substantially outperforms tandem coding. The problem of transmitting memoryless Laplacian sources

over the Gaussian channel under the magnitude-error distortion is also carried out. Finally, we establish

a lower bound for EJ for a certain class of continuous source-channel pairs when the distortion measure

is a metric.

Index Terms: Continuous memoryless sources and channels, memoryless Gaussian and Laplacian sources,

memoryless Gaussian channels, joint source-channel coding, tandem separate source and channel coding,

probability of excess distortion, squared/magnitude-error distortion, excess distortion exponent, error ex-

ponent, Fenchel transform, Fenchel duality.
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1 Introduction

In [9], Csiszár studies the joint source-channel coding (JSCC) excess distortion exponent under a fidelity

criterion for discrete memoryless systems – i.e., the largest rate of asymptotic decay of the probability that

the distortion resulting from transmitting the source over the channel via a joint source-channel (JSC)

code exceeds a certain tolerated threshold. Specifically, given a discrete memoryless source (DMS) Q and a

discrete memoryless channel (DMC) W (both with finite alphabets), a transmission rate t and a distortion

measure, Csiszár shows that the lower (respectively upper) bound of the JSCC excess distortion exponent

EJ(Q,W,∆, t) under a distortion threshold ∆ is given by the minimum of the sum of tF (R/t,Q,∆) and

Er(R,W ) (respectively Esp(R,W )) over R, where F (R,Q,∆) is the source excess distortion exponent with

distortion threshold ∆ [18], and Er(R,W ) and Esp(R,W ) are respectively the random-coding and sphere-

packing channel error exponents [13]. If the minimum of the lower (or upper) bound is attained for an R

larger than the critical rate of the channel, then the two bounds coincide and EJ is determined exactly.

The analytical computation of these bounds has been partially addressed in [26], where the authors use

Fenchel duality [17] to provide equivalent bounds for a binary DMS and an arbitrary DMC under the

Hamming distortion measure.

Since many real-world communication systems deal with analog signals, it is important to study the

JSCC excess distortion exponent for the compression and transmission of a continuous alphabet source

over a channel with continuous input/output alphabets. For instance, it is of interest to determine the

best performance (in terms of the excess distortion probability) that a source-channel code can achieve if

a stationary memoryless Gaussian source (MGS) is coded and sent over a stationary memoryless Gaussian

channel (MGC), i.e., an additive white Gaussian noise channel. To the best of our knowledge, the JSCC

excess distortion exponent for continuous-alphabet systems has not been addressed before. In this work, we

study the JSCC excess distortion exponent for the following classes of memoryless communication systems:

1. MGS-MGC systems with squared-error distortion measure;

2. Laplacian-source and MGC systems with magnitude-error distortion measure;

3. A certain class of continuous source-channel systems when the distortion is a metric.

For a Gaussian communication system consisting of an MGS PS with the squared-error distortion

and an MGC W with additive noise PZ and the power input constraint, we show that the JSCC excess

distortion exponent EJ(PS ,W,∆, E , t) with transmission rate t, under a distortion threshold ∆ and power

constraint E , is upper bounded by the minimum of the sum of the Gaussian source excess distortion

exponent tF (R/t, PS ,∆) and the sphere-packing upper bound of the Gaussian channel error exponent

Esp(R,W, E); see Theorem 1. The proof of the upper bound relies on a strong converse JSCC theorem

(Theorem 8) and the judicious construction of an auxiliary MGS and an auxiliary MGC to lower bound the

probability of excess distortion. We also establish a lower bound for EJ(PS ,W,∆, E , t); see Theorem 2. In

fact, we derive the lower bound for MGS’s and general continuous MC’s with an input cost constraint. To

prove the lower bound, we employ a concatenated “quantization – lossless JSCC” scheme as in [2], use the

type covering lemma [10] for the MGS [1], and then bound the probability of error for the lossless JSCC
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part, which involves a memoryless source with a countably infinite alphabet and the memoryless continuous

channel, by using a modified version of Gallager’s random-coding bound for the JSCC error exponent for

DMS-DMC pairs [13, Problem 5.16] (the modification is made to allow for input cost constrained channels

with countably-infinite input alphabets and continuous output alphabets). This lower bound is expressed

by the maximum of the difference of Gallager’s constrained-input channel function E0(W, E , ρ) and the

source function tE(PS ,∆, ρ). Note that when the channel is an MGC with an input power constraint, a

computable but somewhat looser lower bound is obtained by replacing E0(W, E , ρ) by Gallager’s Gaussian-

input channel function Ẽ0(W, E , ρ). Also note that the source function E(PS ,∆, ρ) for the MGS is equal

to the guessing exponent [1] and admits an explicit analytic form.

As in our previous work for discrete systems [26, 27], we derive equivalent expressions for the lower

and upper bounds by applying Fenchel’s Duality Theorem [17]. We show (in Theorem 3) that the upper

bound, though proved in the form of a minimum of the sum of source and channel exponents, can also be

represented as a (dual) maximum of the difference of Gallager’s channel function Ẽ0(W, E , ρ) and the source

function tE(PS ,∆, ρ). Analogously, the lower bound, which is established in Gallager’s form, can also be

represented in Csiszár’s form, as the minimum of the sum of the source exponent and the lower bound of

the channel exponent. In this regard, our upper and lower bounds are natural extensions of Csiszár’s upper

and lower bounds from the case of (finite alphabet) discrete memoryless systems to the case of memoryless

Gaussian systems. We then compare the upper and lower bounds using their equivalent forms and derive

an explicit condition under which the two bounds coincide; see Theorem 4. We observe numerically that

the condition is satisfied for a large class of source-channel parameters. We proceed by investigating the

advantage of JSCC over traditional tandem (separate) coding in terms of the excess distortion exponent.

We first derive a formula for the tandem coding excess distortion exponent when the distortion threshold

is less than 1/4 of the source variance. Numerical results indicate that the JSCC exponent can be strictly

superior to the tandem exponent for many MGS-MGC pairs.

We next observe that Theorems 1 and 2 can also be proved for memoryless Laplacian sources (MLS’s)

under the magnitude-error distortion measure. Using a similar approach, we establish upper and lower

bounds for the JSCC excess distortion exponent for the lossy transmission of MLS’s over MGC’s (see

Theorem 6). Finally, we considerably modify our approach in light of the result of [16] to prove a lower

bound for some continuous source-channel pairs when the distortion measure is a metric. We show that

the lower bound for MGS’s and continuous memoryless channels (given in Theorem 2), expressed by the

maximum of the difference of source and channel functions, still holds for a continuous source-channel pair

if there exists an element so ∈ R with E exp[td(s, so)] < ∞ for all t ∈ (−∞,+∞), where the expectation is

taken over the source distribution defined on R (see Theorem 7). Although this condition does not hold

for both MGS’s with the squared-error distortion and MLS’s with the magnitude-error distortion, it holds

for generalized MGS’s with parameters (α, σ) under the distortion d(x, y) = |x − y|p, p < α, and p ≤ 1.

The rest of the paper is organized as follows. In Section 2, we summarize prior results on the source

excess distortion and the channel error exponents, and we define the JSCC excess distortion exponent. In

Section 3, we establish upper and lower bounds for EJ for Gaussian systems. A sufficient and necessary

condition for which the upper and lower bounds coincide is provided. We also derive the tandem coding
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exponent and numerically compare it with the JSCC exponent for Gaussian systems. In Section 4, we

extend our results for other source-channel pairs. Direct extensions without proof of the bounds for coding

MLS’s over MGC’s are given in Section 4.1. In Section 4.2, we show a lower bound for EJ for a class

of continuous source-channel pairs with a metric distortion measure and satisfying a finiteness condition.

Finally, we draw conclusions in Section 5.

2 Notation and Definitions

All logarithms and exponentials throughout this paper are in the natural base. In the sequel o(n) serves

as a generic notation for a vanishing quantity with respect to n such that limn→∞ o(n)/n = 0. Likewise,

ζ(ǫ) serves as a generic notation for a vanishing quantity with respect to ǫ such that limǫ→0 ζ(ǫ) = 0. The

expectation of the random variable (RV) X is denoted by E(X).

2.1 Source Excess Distortion Exponent

Let PS be a (stationary) memoryless source (MS) with alphabet S. If the source has a continuous alphabet,

PS stands for the probability density function (pdf) of the source (we only consider continuous sources

for which a pdf exists). If an MS PS is a DMS (with a countable alphabet S), then PS denotes the

probability mass function (pmf) of the source. Consequently, the pdf (pmf) of a k-length source sequence

s , (s1, s2, ..., sk) ∈ Sk is hence given by PSk(s) =
∏k

i=1 PS(si). Let d : S × S → [0,∞) be a single-letter

distortion function. The distortion measure on Sk is defined as

d(k)(s, s′) ,
1

k

k∑

i=1

d(si, s
′
i)

for any s , (s1, ..., sk) ∈ Sk, s′ , (s′1, ..., s
′
k) ∈ Sk. Given a distortion threshold ∆ > 0, the rate-distortion

function for the MS PS is given by (e.g., [5])

R(PS ,∆) = inf
PS′|S :Ed(S,S′)≤∆

I(S;S′), (1)

where I(S;S′) is the mutual information between the source input and its representation, and the infimum

is taken over all the conditional distributions PS′|S(·|s) defined on S for any s ∈ S subject to the constraint

Ed(S, S′) ≤ ∆.

A (k,Mk) block source code for an MS PS is a pair of mappings: fsk : Sk −→ {1, 2, ...,Mk} and

ϕsk : {1, 2, ...,Mk} −→ Sk. The code rate is defined by

Rk ,
1

k
ln Mk nats/source symbol.

The probability of exceeding a given distortion threshold ∆ > 0 for the code (fsk, ϕsk,∆) is given by

P
(k)
∆ (PS , Rk) ,

∫

s:d(k)(s,ϕsk(fsk(s)))>∆
PSk(s)ds. (2)

Note that the integral should be replaced with a summation if PS is a DMS. We call P
(k)
∆ (PS , Rk) the

probability of excess distortion for coding the MS PS .
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Definition 1 For any R > 0 and ∆ > 0, the excess distortion exponent F (R,PS ,∆) of the MS PS is

defined as the supremum of the set of all numbers e for which there exists a sequence of (k,Mk) block

codes (fk, ϕk,∆) with

e ≤ lim inf
k→∞

−1

k
ln P

(k)
∆ (PS , Rk)

and

R ≥ lim sup
k→∞

Rk.

It has been shown in [15, 16, 28] that the excess distortion exponent for some particular sources can

be expressed in Marton’s form [18]. In other words, we know that

F (R,PS ,∆) = inf
QS :R(QS ,∆)>R

D(QS ‖ PS), (3)

where D(QS ‖ PS) is the Kullback-Leibler divergence between distributions QS and PS , and the infimum

is taken over all distributions QS defined on S, holds for the following cases:

1. Finite-alphabet DMS’s with arbitrary distortion measures [18];

2. MGS’s with squared-error distortion measure [15];

3. MLS’s with magnitude-error distortion measure [28];

4. (Stationary) MS’s whose alphabets are complete metric spaces with a metric distortion measure

d(·, ·) satisfying the condition that there exists an element so ∈ S with E exp[td(s, so)] < ∞ for all

t ∈ (−∞,+∞) [16].

Note that Cases 2 and 3 are not included in Case 4 (since the squared-error distortion is not a metric,

and the condition in Case 4 on the metric and the source distribution does not hold for both MGS’s

with squared-error distortion measure and MLS’s with magnitude-error distortion measure). When PS is

an MGS (respectively MLS) with a squared-error (respectively magnitude-error) distortion measure, the

explicit analytical form of F (R,PS ,∆) will be given in Section 3 (respectively Section 4.1).

2.2 Channel Error Exponent

Let W be a (stationary) MC with continuous input and output alphabets X = R and Y = R and transition

pdf W , PY |X . The conditional pdf of receiving y , (y1, y2, ..., yn) ∈ Yn at the channel output given that

the codeword x , (x1, x2, ..., xn) ∈ X n is transmitted is given by PY n|Xn(y|x) =
∏n

i=1 PY |X(yi|xi).

Given an input cost function g : X → [0,∞) such that g(x) = 0 if and only if x = 0, and a constraint

E > 0, the channel capacity of the MC W is given by

C(W, E) = sup
PX :Eg(X)≤E

I(X;Y ), (4)

where I(X;Y ) is the mutual information between the channel input and channel output, the supremum is

taken over all channel input distributions PX subject to the constraint Eg(X) ≤ E .
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An (n,Mn) block channel code for an MC W with an input cost constraint E is a pair of mappings:

fcn : {1, 2, ...,Mn} −→ X n and ϕcn : Yn −→ {1, 2, ...,Mn}, where fcn is subject to an (arithmetic average)

cost constraint:

fcn ∈ FE
cn ,



fcn :

1

n

n∑

j=1

g(xj) ≤ E for all x = fcn(i), i ∈ {1, 2, ...,Mn}



 .

The code rate is defined as

Rn ,
1

n
lnMn nats/channel use.

The (average) probability of decoding error for the (fcn, ϕcn, E) code is given by

P (n)
ec (W,Rn, E) ,

1

Mn

Mn∑

i=1

Mn∑

j=1,j 6=i

∫

y:ϕcn(y)=j
PY n|Xn(y|fcn(i))dy. (5)

Definition 2 For any R > 0, the channel error exponent E(R,W, E) of the channel W is defined as the

supremum of the set of all numbers E for which there exists a sequence of (n,Mn) block codes (fcn, ϕcn, E)

with

E ≤ lim inf
n→∞

− 1

n
lnP (n)

ec (W,Rn, E)

and

R ≤ lim inf
n→∞

Rn.

In contrast to the source excess distortion exponent, the channel error exponent is not known for general

MC’s (not even for the binary symmetric channels); it is partially determined for high rates for several

families of MC’s, such as DMC’s with no input constraints (E = ∞) and MGC’s with an input quadratic

power constraint. For the continuous MC W with a transition pdf PY |X , only a lower bound for E(R,W, E)

due to Gallager [12], [13, Section 7.3] is known, which we refer to as Gallager’s random-coding lower bound

for the channel error exponent E(R,W, E),

E(R,W, E) ≥ Er(R,W, E) , max
0≤ρ≤1

[−ρR + E0(W, E , ρ)], (6)

where

E0(W, E , ρ) , sup
PX :Eg(X)≤E,Eg(X)3<∞

max
r≥0

E0(ρ, r,W,PX , E) (7)

is Gallager’s constrained channel function with

E0(ρ, r,W,PX , E) , − ln

∫

Y

[∫

X
PX(x)er(g(x)−E)PY |X(y|x)

1
1+ρ dx

]1+ρ

dy,

and where the supremum in (7) is taken over all pdfs PX(x) defined on X subject to Eg(X) ≤ E and

Eg(X)3 < ∞. The constraints are satisfied, for example, when g(x) = x2 and PX is a Gaussian distribution

with mean zero and variance E . The integrals should be replaced with summations if W has discrete

alphabets. Note that in general we do not have an explicit formula for this bound, because it is not known

whether the supremum in (7) is achievable or not, and under what distribution it is achievable.
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2.3 JSCC Excess Distortion Exponent

Given a source distribution measure d(·, ·) and a channel input function g(·), a joint source-channel (JSC)

code (fn, ϕn,∆, E , t) with blocklength n and transmission rate t (source symbols/channel use) for the MS

PS , and the MC W with input cost constraint E is a pair of mappings: fn : Stn −→ X n and ϕn : Yn −→ Stn,

where fn ∈ FE
n , and

FE
n ,

{
fn :

1

n

n∑

i=1

g(xi) ≤ E for all x = fn(s)

}
. (8)

Here s ∈ Stn is the transmitted source message and x = fn(s) ∈ X n is the corresponding n-length codeword.

The conditional pdf of receiving y ∈ Yn at the channel output given that the message s is transmitted is

given by

PY n|Xn(y|fn(s)) =
n∏

i=1

W (yi|xi).

The probability of failing to decode the JSC code (fn, ϕn,∆, E , t) within a prescribed distortion level ∆ > 0

is called the probability of excess distortion and defined by

P
(n)
∆ (PS ,W, E , t) ,

∫

Stn

PStn(s)

∫

y:d(tn)(s,ϕn(y))>∆
PY n|Xn(y|fn(s))dyds.

Definition 3 The JSCC excess distortion exponent EJ(PS ,W,∆, E , t) for the above MS PS and MC W

is defined as the supremum of the set of all numbers E for which there exists a sequence of source-channel

codes (fn, ϕn,∆, E , t) with blocklength n such that

E ≤ lim inf
n→∞

− 1

n
ln P

(n)
∆ (PS ,W, E , t).

When there is no possibility of confusion, throughout the sequel the JSCC excess distortion exponent

EJ(PS ,W,∆, E , t) will be written as EJ .

3 JSCC Excess Distortion Exponent for Gaussian Systems

We now focus on the communication system consisting of an MGS with alphabet S = R, mean zero,

variance σ2
S , and pdf PS(s) = 1√

2πσ2
S

exp
{
− s2

2σ2
S

}
, s ∈ S, denoted by PS ∼ N (0, σ2

S), and an MGC W with

common input, output, and additive noise alphabets X = Y = Z = R and described by Yi = Xi + Zi,

where Yi, Xi and Zi are the channel’s output, input and noise symbols at time i. We assume that Xi and

Zi are independent from each other. The noise admits a zero-mean σ2
Z -variance Gaussian pdf, denoted by

PZ ∼ N (0, σ2
Z) and thus the transition pdf of the channel is given by

W (y|x) = PZ(z) =
1√

2πσ2
Z

exp

{
− z2

2σ2
Z

}
, z = y − x ∈ Z.

Let the distortion measure be squared-error distortion d(s, s′) = (s−s′)2 and let the an input cost function

be a power cost constraint g(x) = x2.
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Given a distortion threshold ∆ > 0, the rate-distortion function for MGS PS is given by (e.g., [13])

R(PS ,∆) = inf
PS′|S :Ed(S,S′)≤∆

I(S;S′) =

{
1
2 ln

σ2
S

∆ 0 < ∆ < σ2
S ,

0 σ2
S ≤ ∆.

(9)

For the MGS PS with a squared-error distortion measure, the explicit analytical form of F (R,PS ,∆) is

given by [16]

F (R,PS ,∆) =





1
2

(
∆β
σ2

S

− ln ∆β
σ2

S

− 1
)

if R > R(PS ,∆),

0 otherwise,
(10)

where β = e2R. Since F (R,PS ,∆) is not meaningful at R = 0, we let

F (0, PS ,∆) , lim
R↓0

F (R,PS ,∆) =





1
2

(
∆
σ2

S

− ln ∆
σ2

S

− 1
)

if R(PS ,∆) = 0,

0 if R(PS ,∆) > 0,

Consequently, F (R,PS ,∆) is convex strictly increasing in R ≥ 0.

Given a power constraint E > 0, the channel capacity of MGC W is given by

C(W, E) = sup
PX :EX2≤E

I(X;Y ) =
1

2
ln (1 + SNR) , (11)

where SNR , E/σ2
Z is the signal-to-noise ratio.

As mentioned before, the error exponent for the MGC E(R,W, E) is only partially known. In the last

fifty years, the error exponent for the MGC was actively studied and several lower and upper bounds were

established (see, e.g., [3, 13, 22]). The most familiar upper bound is obtained by Shannon [22], called the

sphere-packing upper bound and given by

Esp(R,W, E) ,
SNR

4β

[
(β + 1) − (β − 1)

√
1 +

4β

SNR(β − 1)

]

+
1

2
ln

{
β − SNR(β − 1)

2

[√
1 +

4β

SNR(β − 1)
− 1

]}
, (12)

where β = e2R, R ≤ C(W, E). It can be shown (see Appendix A for a direct proof) that Esp(R,W, E) is

convex strictly decreasing in R ≤ C(W, E) and vanishes for R ≥ C(W, E). It can also be easily verified that

Esp(R,W, E) → ∞ as R ↓ 0. For the lower bound, we specialize Gallager’s random-coding lower bound

for the MGC W as follows: choosing the channel input distribution PX(x) as the Gaussian distribution

P ∗
X(x) ∼ N (0, E), and replacing g(x) by our square cost function x2 yield the following lower bound for

E0(W, E , ρ)

E0(W, E , ρ) ≥ Ẽo(W, E , ρ) , max
r≥0

E0(W, E , ρ, r, P ∗
X )

= max
0≤r≤1/2E

{
r(1 + ρ)E +

1

2
ln(1 − 2rE) +

ρ

2
ln

[
1 − 2rE +

E
(1 + ρ)σ2

Z

]}
. (13)

We hereby call Ẽo(W, E , ρ) Gallager’s Gaussian-input channel function. Note also that

Esp(R,W, E) = max
ρ≥0

[−ρR + Ẽo(W, E , ρ)],
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and the inner function is concave in ρ. Thus, the random-coding lower bound Er(R,W, E) can be further

lower bounded by [13, pp. 339–340]

E†(R,W, E) = max
0≤ρ≤1

[−ρR + Ẽo(W, E , ρ)]

=





Esp(R,W, E), Rcr(W ) ≤ R ≤ C(W, E),

1 − γ + SNR
2 + 1

2 ln
(
γ − SNR

2

)
+ 1

2 ln γ − R, 0 ≤ R ≤ Rcr(W ),
(14)

where

γ ,
1

2


1 +

SNR

2
+

√

1 +
SNR2

4


 ,

and

Rcr(W ) ,
1

2
ln


1

2
+

SNR

4
+

1

2

√

1 +
SNR2

4




is the critical rate of the MGC (obtained by solving for the R where the straight-line of slope −1 is tangent

to E†(R,W, E)). It is easy to show that E†(R,W, E) is convex strictly decreasing in 0 < R ≤ C(W, E) with

a straight-line section of slope −1 for R ≤ Rcr(W ). It has to be pointed out [13] that E†(R,W, E) is not

the real random-coding bound (as given in (6)) for R < Rcr(W ), but it admits a computable parametric

form and it coincides with the upper bound Esp(R,W, E) for R ≥ Rcr(W ). Thus, the channel coding error

exponent E(R,W, E) is determined for high rates (R ≥ Rcr(W )).1

In the following we establish an upper and a lower bound for the JSCC excess distortion exponent for

the Gaussian system in Sections 3.1 and 3.2. As will be seen in Section 3.3, the upper bound coincides

with the lower bound for a large class of MGS-MGC pairs, and hence determines the exponent exactly.

3.1 The Upper Bound for EJ

Theorem 1 For an MGS PS and an MGC W such that tR(PS ,∆) < C(W, E), the JSCC excess distortion

exponent satisfies

EJ(PS ,W,∆, E , t) ≤ EJ(PS ,W,∆, E , t), (15)

where

EJ(PS ,W,∆, E , t) , min
tR(PS ,∆)≤R≤C(W,E)

[
tF

(
R

t
, PS ,∆

)
+ Esp(R,W, E)

]
, (16)

where F (R,PS ,∆) is the MGS excess distortion exponent given in (10) and Esp(R,W, E) is the sphere-

packing bound of the MGC channel error exponent given in (12).

Proof: See Appendix B.

Since the MGS excess distortion exponent tF (R/t, PS ,∆) is convex increasing for R ≥ tR(PS ,∆) and

the sphere-packing bound Esp(R,W, E) is convex decreasing in R ≤ C(W, E), their sum is also convex and

1In the recent work of [4], the lower bound E†(R,W, E) is improved and is shown to be tight in a interval slightly below

the critical rate, i.e., it is shown that the error exponent of the MGC is determined by E†(R, W,E) for rates R ≥ R1 and R1

can be less than Rcr(W ).
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there exists a global minimum in the interval [tR(PS ,∆), C(W, E)] for the upper bound given in (15). For

R ∈ [tR(PS ,∆), C(W, E)], setting

t
∂F
(

R
t , PS ,∆

)

∂R
+

∂Esp(R,W, E)

∂R
= 0,

gives (cf. Appendix A)

β
1
t

SDR
=

SNR

2β

(
1 +

√
1 +

4β

SNR(β − 1)

)
, (17)

where SDR , σ2
S/∆ is called the source-to-distortion ratio (i.e., the source variance to distortion threshold

ratio), and β = e2R. Thus, the minimum of the upper bound is achieved by the R which is the (unique)

root of (17).

3.2 The Lower Bound for EJ

Given ρ ≥ 0, for the continuous MS PS , define source function

E(PS ,∆, ρ) , sup
QS

[ρR(QS ,∆) − D(QS ‖ PS)], (18)

where the supremum is taken over all the probability distributions QS defined on S such that R(QS ,∆)

and D(QS ‖ PS) are well-defined and finite. We remark that (18) is equal to the guessing exponent for

MGS’s [1] under the squared-error distortion measure and admits an explicit form

E(PS ,∆, ρ) = max

{
0,

1

2

[
ρ ln

σ2
S

∆
+ (1 + ρ) ln(1 + ρ) − ρ

]}
. (19)

Theorem 2 For an MGS PS and a continuous MC W with a cost constraint E at the channel input, the

JSCC excess distortion exponent satisfies

EJ(PS ,W,∆, E , t) ≥ ERC(PS ,W,∆, E , t), (20)

where

ERC(PS ,W,∆, E , t) , max
0≤ρ≤1

[Eo(W, E , ρ) − tE(PS ,∆, ρ)], (21)

where Eo(W, E , ρ) is Gallager’s constrained channel function given by (7) and E(PS ,∆, ρ) is the source

function for the MGS PS given by (19). Furthermore, if W is an MGC, we have

EJ(PS ,W,∆, E , t) ≥ EJ(PS ,W,∆, E , t), (22)

where

EJ(PS ,W,∆, E , t) , max
0≤ρ≤1

[Ẽo(W, E , ρ) − tE(PS ,∆, ρ)], (23)

where Ẽo(W, E , ρ) is Gallager’s Gaussian-input channel function given by (13).

Proof: See Appendix C.
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3.3 Tightness of the Lower and Upper Bounds: When Does EJ = E
J
?

In order to evaluate the upper and lower bounds given in Theorems 1 and 2, we need to briefly review

some concepts about Fenchel transforms. For any function f defined on F ⊂ R, define its convex Fenchel

transform (conjugate function, Legendre transform) f∗ by

f∗(y) , sup
x∈F

[xy − f(x)]

and let F ∗ be the set {y : f∗(y) < ∞}.2 It is easy to see from its definition that f∗ is a convex function

on F ∗. Moreover, if f is convex and continuous, then (f∗)∗ = f . More generally, f∗∗ ≤ f and f∗∗ is the

convex hull of f , i.e. the largest convex function that is bounded above by f [21, Sec. 3], [11, Sec. 7.1].

Similarly, for any function g defined on G ⊂ R, define its concave Fenchel transform g∗ by

g∗(y) , inf
x∈G

[xy − g(x)]

and let G∗ be the set {y : g∗(y) > −∞}. It is easy to see from its definition that g∗ is a concave function

on G∗. Moreover, if g is concave and continuous, then (g∗)∗ = g. More generally, g∗∗ ≥ g and g∗∗ is the

concave hull of g, i.e. the smallest concave function that is bounded below by g.

Lemma 1 E(PS ,∆, ρ) and F (R,PS ,∆) are a pair of convex Fenchel transforms ρ ≥ 0 and R ≥ 0, i.e.,

E(PS ,∆, ρ) = F (R,PS ,∆)∗ for all ρ ≥ 0

and

F (R,PS ,∆) = E(PS ,∆, ρ)∗ for all R ≥ 0.

Proof: See Appendix E.

Lemma 2 −Esp(R,W, E) and Ẽo(W, E , ρ) are a pair of concave Fenchel transforms for ρ ≥ 0 and R > 0,

i.e.,

−Esp(R,W, E) = Ẽ0(W, E , ρ)∗ for all R > 0

and

Ẽ0(W, E , ρ) = (−Esp(R,W, E))∗ for all ρ ≥ 0.

Proof: See Appendix F.

Lemma 3 −E†(R,W, E) and Ẽo(W, E , ρ) are a pair of concave Fenchel transforms for 0 ≤ ρ ≤ 1 and

R ≥ 0, i.e.,

−E†(R,W, E) = Ẽ0(W, E , ρ)∗ for all R ≥ 0

and

Ẽ0(W, E , ρ) = (−E†(R,W, E))∗ for all 0 ≤ ρ ≤ 1.

2With a slight abuse of notation, both f∗(y) and f(y)∗ refer to the Fenchel transform except when indicated otherwise.
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Proof: See Appendix F.

Now assume that f and g are, respectively, convex and concave functions on the non-empty intervals

F and G in R and assume that F ∩G has interior points. Suppose further that µ = infx∈F∩G[f(x)− g(x)]

is finite. Then Fenchel’s Duality Theorem [17] asserts that

µ = inf
x∈F∩G

[f(x) − g(x)] = max
y∈F ∗∩G∗

[g∗(y) − f∗(y)]. (24)

Applying Fenchel’s Duality (24) to our source and channel functions E(PS ,∆, ρ) and Ẽ0(W, E , ρ) with

respect to their Fenchel transforms in Lemmas 1, 2 and 3, we obtain the following equivalent bounds.

Theorem 3 Let tR(PS ,∆) < C(W, E). Then

min
tR(PS ,∆)≤R≤C(W,E)

[
tF

(
R

t
, PS ,∆

)
+ Esp(R,W, E)

]

= max
0≤ρ<∞

[Ẽ0(W, E , ρ) − tE(PS ,∆, ρ)], (25)

min
tR(PS ,∆)≤R≤C(W,E)

[
tF

(
R

t
, PS ,∆

)
+ E†(R,W, E)

]

= max
0≤ρ≤1

[Ẽ0(W, E , ρ) − tE(PS ,∆, ρ)]. (26)

The proof of the theorem follows from the above argument regarding Fenchel transforms and Fenchel’s

Duality Theorem (24); for more details, readers may consult [26]. We next provide a necessary and sufficient

condition under which EJ = EJ for the MGS-MGC pair.

Theorem 4 Let tR(PS ,∆) < C(W, E). The upper and lower bounds for EJ(PS ,W,∆, E , t) given in

Theorem 1 and (22) of Theorem 2 are equal if and only if

2(2SDR)t − 2(2SDR)t

2(2SDR)t − 1
≥ SNR. (27)

Remark 1 For tR(PS ,∆) ≥ C(W, E), EJ(PS ,W,∆, E , t) = 0.

Proof: See Appendix G.

Example 1 In Fig. 1, we partition the SDR-SNR plane into three parts for transmission rate t = 0.5, 1,

1.5 and 2: in region A (including the boundary between A and B) tR(PS ,∆) ≥ C(W, E) and EJ = 0; in

region B (including the boundary between B and C), EJ = EJ and hence EJ is determined exactly; and

in region C, EJ > 0 is bounded by EJ and EJ . Fig. 2 shows the two bounds EJ and EJ for different

SDR-SNR pairs and transmission rate t = 1. We observe from the two figures that the two bounds coincide

for a large class of SDR-SNR pairs.

3.4 JSCC vs Tandem Coding Exponents for Gaussian Systems

We herein study the advantage of JSCC over tandem coding in terms of the excess distortion exponent

for Gaussian systems. A tandem code (f∗
n, ϕ∗

n,∆, E , t) , (fcn ◦ πm ◦ fsn, ϕsn ◦ π−1
m ◦ ϕcn,∆, E , t, P ) with

12



blocklength n and transmission rate t (source symbols/channel use) for the MGS and the MGC W is

composed (see Fig. 3) of two “separately” designed codes: a (tn,Mn) block source code (fsn, ϕsn,∆)

with codebook C , {c1, c2, ..., cMn} ⊆ Stn and source code rate Rs,n = ln Mn/tn source code nats/source

symbol, and an (n,Mn) block channel code (fcn, ϕcn, E) with channel code rate Rc,n = ln Mn/n source

code nats/channel use, where fcn ∈ FE
cn with g(x) = x2, assuming that the limit limn→∞

lnMn

n exists, i.e.,

lim supn→∞
lnMn

n = lim infn→∞
ln Mn

n . Here “separately” means that the source code is designed without

the knowledge of the channel statistics, and the channel code is designed without the knowledge of the source

statistics. However, as long as the source encoder is directly concatenated by a channel encoder, the source

statistics would be automatically brought into the channel coding stage. Thus common randomization

is needed to decouple source and channel coding (e.g., [14]). We assume that the source coding index

i = fsn(s) is mapped to a channel index through a permutation mapping πm : {1, 2, ...,Mn} → {1, 2, ...,Mn}
(the index assignment πm is assumed to be known at both the transmitter and the receiver). Furthermore,

the choice of πm is assumed random and equally likely from all the Mn! different possible index assignments,

so that the indices fed into the channel encoder have a uniform distribution. Hence common randomization

achieves statistical separation between the source and channel coding operations.

The (overall) excess distortion probability of the tandem code (f∗
n, ϕ∗

n,∆, E , t) is given by

P
(n)
∆∗ (PS ,W, E , t) , Pr

(
d(tn)

(
s, ϕsn

{
π−1

m [ϕcn(y)]
})

> ∆
)

In order to facilitate the evaluation of the tandem excess distortion probability P
(n)
∆∗ (PS ,W, E , t), we

simplify the problem by making some (natural) assumptions on the component channel and source codes

(which are statistically decoupled from each other via common randomization).

1. We assume that the channel codes (fcn, ϕcn, E) in the tandem system are “good channel codes (in

the weak sense),” i.e., (fcn, ϕcn, E) ∈ Ξ(W, E), where

Ξ(W, E) ,

{
(fcn, ϕcn, E) : lim sup

n→∞
P (n)

ec (W,Rc,n, E) < γ for all γ > 0

}

and P
(n)
ec (W,Rc,n, E) is the channel coding probability of error given by (5).

2. We assume that the source codes (fsn, ϕsn,∆) in the tandem system are “good source codes (in the

strong sense),” i.e., (fsn, ϕsn,∆) ∈ Ω(PS ,∆), where

Ω(PS ,∆) ,

{
(fsn, ϕsn,∆) : lim inf

n→∞
− 1

tn
ln P

(n)
∆ (PS , Rs,n) ≥ F (R,PS ,∆) > 0, where R = limn→∞ Rs,n

}
,

and P
(n)
∆ (PS , Rs,n) is the source coding excess distortion probability given by (2).

The converse JSCC theorem (Theorem 8) states that the MGS cannot be reliably transmitted over

the MGC if tR(PS ,∆) > C(W, E), and also note that if tR(PS ,∆) > C(W, E) then either Ξ(W, E) = φ

or Ω(PS ,∆) = φ. Thus, we are only interested in the case tR(PS ,∆) < C(W, E) as before. In order to

guarantee the existence of good source and channel codes, we focus on the sequences of tandem codes with

(f∗
n, ϕ∗

n,∆, E , t) ∈ Λ(PS ,W,∆, E , t), where

Λ(PS ,W,∆, E , t) ,

{
(f∗

n, ϕ∗
n,∆, E , t) : tR(PS ,∆) < lim

n→∞

ln Mn

n
< C(W, E)

}
.
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Definition 4 The tandem coding excess distortion exponent ET (PS ,W,∆, E , t) for the MGS PS and the

MGC W is defined as the supremum of the set of all numbers Ê for which there exists a sequence of

tandem codes (f∗
n, ϕ∗

n,∆, E , t) composed by good source and channel codes with blocklength n provided

(f∗
n, ϕ∗

n,∆, E , t) ∈ Λ(PS ,W,∆, E , t), such that

Ê ≤ lim inf
n→∞

− 1

n
ln P

(n)
∆∗ (PS ,W, E , t).

When there is no possibility of confusion, throughout the sequel, the tandem coding excess distortion

exponent ET (PS ,W,∆, E , t) will be written as ET . It can be easily shown by definition that EJ ≥ ET ;

however, we are particularly interested in investigating the situation where a strict inequality holds. Indeed,

this inequality, when it holds, provides a theoretical underpinning and justification for JSCC design as

opposed to the widely used tandem approach, since the former method will yield a faster exponential rate

of decay for the excess distortion probability, which may translate into substantial reductions in complexity

and delay for real-world communication systems.

We obtain the following formula for the tandem excess distortion exponent for SDR ≥ 4(≈ 6dB). Note

that this condition is not too restrictive, since a large distortion threshold is useless in practice.

Theorem 5 For the tandem MGS-MGC system provided tR(PS ,∆) < C(W, E) and SDR ≥ 4,

ET (PS ,W,∆, E , t) = sup
tR(PS ,∆)<R<C(W,E)

min

{
tF

(
R

t
, PS ,∆

)
, E(R,W, E)

}

where F (R,PS ,∆) is the MGS excess distortion exponent given by (10) and E(R,W, E) is the MGC error

exponent.

Proof: See the proof of [29, Theorem 8].

Remark 2 Since tF (R/t, PS ,∆) is a strictly increasing function of R for R ≥ R(PS ,∆) > 0, and

E(R,W, E) is decreasing function of R for 0 < R ≤ C(W, E), the supremum must be achieved at their

intersection3

ET (PS ,W,∆, E , t) = tF

(
Ro

t
, PS ,∆

)
= E(Ro,W, E),

with tR(PS ,∆) < Ro < C(W, E).

We next numerically compare the lower bound of joint exponent EJ and the upper bound of tandem

exponent ET given by

ET (PS ,W,∆, E , t) , sup
tR(PS ,∆)<R<C(W,E)

min

{
tF

(
R

t
, PS ,∆

)
, Esp(R,W, E)

}
.

Example 2 For transmission rate t = 1, we plot the SNR-SDR region for which EJ > ET in Fig. 4

obtained from the inequality EJ > ET . It is seen that EJ > ET for many SNR-SDR pairs. For example,

when SDR = 7 dB, EJ > ET holds for 10 dB ≤ SNR ≤ 24 dB (approximately). We also compute the two

3Unlike the discrete case in [26], the intersection always exists since source exponent is continuous and increasing in R > 0.
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bounds of EJ and ET , and we see from Fig. 5 that when SDR = 8 dB, EJ (or its lower bound) almost

double ET (or its upper bound) for 8dB ≤ SNR ≤ 15dB. It is also observed that for the same exponent

(e.g. 0.2 ∼ 1.1), the gain of JSCC over tandem coding could be as large as 2dB in SNR. Similar results

are observed for other parameters, see Figs. 6 and 7 for t = 1.5. We conclude that JSCC considerably

outperforms tandem coding in terms of excess distortion exponent for a large class of MGS-MGC pairs.

4 Extensions

In this section, we provide extensions of the upper and/or lower bounds for the JSCC excess distortion

exponent for other memoryless continuous source-channel pairs.

4.1 Laplacian Sources with the Magnitude-Error Distortion over MGC’s

In image coding applications, the Laplacian distribution is well known to provide a good model to ap-

proximate the statistics of transform coefficients such as discrete cosine and wavelet transform coefficients

[20, 24]. Thus, it is of interest to study the theoretical performance for the lossy transmission of MLS’s,

say, over an MGC. Due to the striking similarity between the Laplacian source and the Gaussian source,

the results of the previous section (especially regarding the bounds for EJ(PS ,W,∆, E , t)) can be easily

extended to a system composed by an MLS under the magnitude-error distortion measure and an MGC.

Consider an MLS PS with alphabet S = R, mean zero, E|s| = α, and pdf

PS(s) =
1

2α
exp

{
−|s|

α

}
, s ∈ S,

denoted by PS ∽ L(0, α). We assume that the distortion measure is the magnitude-error distortion given

by d(s, s′) , |s − s′| for any s, s′ ∈ R. For the MLS PS ∼ L(0, α) and distortion threshold ∆, the source

excess distortion exponent is given by [28]

F (R,PS ,∆) =

{
eR∆

α − ln eR∆
α − 1 if R > R(PS ,∆) = max{0, ln α

∆},
0 otherwise.

(28)

The upper and lower bounds for EJ can be derived in an analogous method to the one used for the

Gaussian systems.

Theorem 6 For the MLS PS and the MGC W with transmission rate t,

EJ(PS ,W,∆, E , t) ≤ min
R

[
tF

(
R

t
, PS ,∆

)
+ Esp(R,W, E)

]

and

EJ(PS ,W,∆, E , t) ≥ min
R

[
tF

(
R

t
, PS ,∆

)
+ E†(R,W, E)

]
,

where Esp(R,W, E) and E†(R,W, E) are given by (12) and (14) respectively.

Proof: See Appendix H.
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4.2 Memoryless Systems with a Metric Source Distortion

In this section we consider the transmission of a class of continuous MS’s with alphabet S = R over

continuous MC’s when the source distortion function is a metric; i.e., for s, s′ ∈ S (1) d(s, s′) ≥ 0 with

equality if and only if s = s′; (2) d(s, s′) = d(s′, s); (3) the triangle inequality holds, i.e., for any s1, s2, s3 ∈
S, d(s1, s2) + d(s2, s3) ≥ d(s1, s3). We still assume that for any s, s′ ∈ Sk,

d(k)(s, s′) ,
1

k

k∑

i=1

d(si, s
′
i).

Theorem 7 For the continuous MS PS with a distortion being a metric and the continuous MC W with

a cost constraint E at the channel input, if there exists an element so ∈ R with E exp[td(s, so)] < ∞ for all

t ∈ (−∞,+∞), the JSCC excess distortion exponent satisfies

EJ(PS ,W,∆, E , t) ≥ max
0≤ρ<1

[E0(W, E , ρ) − tE(PS ,∆, ρ)], (29)

where Eo(W, E , ρ) is Gallager’s constrained channel function given by (7) and E(PS ,∆, ρ) is the source

function for PS given by (18). Furthermore, if W is an MGC, we have

EJ(PS ,W,∆, E , t) ≥ max
0≤ρ<1

[Ẽ0(W, E , ρ) − tE(PS ,∆, ρ)], (30)

where Ẽ0(W, E , ρ) is Gallager’s Gaussian-input channel function given by (13).

Proof: See Appendix I.

Although Theorem 7 does not apply to MGS’s under the squared-error distortion (which is not a metric)

and MLS’s under the magnitude-error distortion (which does not satisfy the finiteness condition), it applies

to MGS’s under the magnitude-error distortion, and more generally, it applies to generalized MGS’s with

parameters (α, σ) under the distortion function d(s, s′) , |s − s′|p for any s, s′ ∈ R, whenever 0 < p ≤ 1

and p < α; see the following example.

Example 3 The Gaussian and Laplacian distributions belong to the class of generalized Gaussian distri-

butions, which are widely used in image coding applications. It is well known that the distribution of image

subband coefficients is well approximated by the generalized Gaussian distribution [6, 24]. A generalized

MGS PS with parameters (α, σ) has alphabet S = R, mean zero, variance σ2, and pdf

PS(s) =
αη(α, σ)

2Γ(1/α)
exp {−(η(α, σ)|s|)α} , s ∈ S,

where Γ(·) is the Gamma function and

η(α, σ) ,
1

σ

(
Γ(3/α)

Γ(1/α)

)1
2

α > 0.
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Note that the pdf reduces to the Gaussian and Laplacian pdf’s for α = 2 and 1, respectively. When

0 < p ≤ 1, the distortion d(s, s′) , |s − s′|p is a metric. If we choose so = 0, then E exp[td(s, so)] would

have the form

E exp[td(s, so)] =

∫ +∞

−∞
Ae−B|s|p(|s|α−p+Ct)ds = 2

∫ +∞

0
Ae−B|s|p(|s|α−p+Ct)ds

where A > 0, B > 0, and C are independent of s. Clearly, the above integral is finite for any Ct ≥ 0. If

Ct < 0, and α > p is provided, the integral can be bounded by
∫ +∞

0
Ae−B|s|p(|s|α−p+Ct)ds ≤

∫ x

0
Ae−BCt|s|pds +

∫ +∞

x
Ae−B|s|αds

which is also finite, where x > 0 satisfies xα−p + Ct = 0.

5 Conclusion

In this work, we investigate the JSCC excess distortion exponent EJ for some memoryless communication

systems with continuous alphabets. For the Gaussian system with the squared-error source distortion

measure and a power channel input constraint, we derive upper and lower bounds for the excess distortion

exponent. The bounds extend our earlier work for discrete systems [26] in such a way that the lower/upper

bound can be expressed by Csiszár’s form [8] in terms of the sum of source and channel exponents. They

can also be expressed in equivalent parametric forms as differences of source and channel functions. We

then extend these bounds to Laplacian-Gaussian source-channel pairs with the magnitude-error distortion.

By employing a different technique, we also derive a lower bound (of similar parametric form) for EJ for a

class of memoryless source-channel pairs under a metric distortion measure and some finiteness condition.

For the Gaussian system, a sufficient and necessary condition for which the two bounds of EJ coincide

is provided. It is observed that the two bounds are tight in many cases, thus exactly determining EJ .

We also derive an expression for the tandem coding exponent for Gaussian source-channel pairs provided

that SDR ≥ 4 (≈ 6dB). The tandem Gaussian exponent has a similar form as the discrete tandem error

exponent. As in the discrete cases, the JSCC exponent is observed to be considerable larger than the

tandem exponent for a large class of Gaussian source-channel pairs.

A The Properties of Esp(R, W, E)

Proof of Monotonicity: Since Esp(R,W, E) is a differentiable function for R > 0, we have

∂Esp(R,W, E)

∂R
=

β
[
−SNRβ2 − 4SNRβ + SNR2 + (SNR + 2)Ψ

]

Ψ [2β + SNRβ − SNR − Ψ]

=

[
−SNR2β − 4SNRβ + SNR2 + Ψ(SNR + 2)

]
(2β + SNRβ − SNR + Ψ)

4βΨ

=
2SNR2 − 2SNR2β − 8SNRβ + (4β − 2SNR)Ψ

4βΨ

= 1 − SNR

2β

(
1 +

√
1 +

4β

SNR(β − 1)

)
, (31)
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where β = e2R and

Ψ =
√

(SNRβ − SNR + 4β)SNR(β − 1).

Now solving

1 − SNR

2β

(
1 +

√
1 +

4β

SNR(β − 1)

)
≤ 0

yields

R ≤ 1

2
ln(1 + SNR) = C(W, E).

Particularly, we have

lim
R→C(W,E)

∂Esp(R,W, E)

∂R
= 0 and lim

R↓0

∂Esp(R,W, E)

∂R
= −∞.

Hence, Esp(R,W, E) is a strictly decreasing function in R ∈ (0, C(W, E)] with a slope ranging from −∞ to 0.

Proof of Convexity: It follows from (31) that for R ∈ (0, C(W, E)],

∂2Esp(R,W, E)

∂R2
=

SNR

β

[
1 +

√
1 +

4β

SNR(β − 1)

]
+

2

SNR2(β − 1)2
√

1 + 4β

SNR(β−1)

> 0. (32)

This demonstrates the (strict) convexity of Esp(R,W, E). �

B Proof of Theorem 1

We first derive a strong converse JSCC theorem under the probability of excess distortion criterion for the

Gaussian system. We use later this result to obtain an upper bound for the excess distortion exponent EJ .

Theorem 8 (Strong Converse JSCC Theorem) For an MGS PS and an MGC W , if tR(PS ,∆) > C(W, E),

then limn→∞ P
(n)
∆ (PS ,W, E , t) = 1 for any sequence of JSC codes (fn, ϕn,∆, E , t).

Proof: Assume that C(W, E) = tR(PS ,∆) − ε, where ε is a positive number. For some δ (0 < δ < ε),

define

Ã =

{
(s,y) : ln

PY n|Xn(y|fn(s))P ∗
S′tn(ϕn(y))

P ∗
Y n(y)P ∗

S′tn|Stn((ϕn(y))|s) ≤ n (C(W, E) − tR(PS ,∆) + δ)

}
,

where P ∗
S′tn|Stn and P ∗

S′tn are the tn−dimensional product distributions corresponding to

P ∗
S′|S(s′|s) =

1√
2π

∆(σ2
S−∆)

σ2
S

exp




−

(
s′ − σ2

S−∆

σ2
S

s
)2

2∆(σ2
S−∆)

σ2
S





, (33)

and

P ∗
S′(s′) =

∫
PS(s)P ∗

S′|S(s′|s)ds =
1√

2π(σ2
S − ∆)

exp

{
− s′2

2(σ2
S − ∆)

}
, (34)
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respectively, and P ∗
Y n is the n−dimensional product distribution corresponding to

P ∗
Y (y) =

1√
2π(E + σ2

Z)
exp

{
− y2

2(E + σ2
Z)

}
. (35)

Here, note that P ∗
S′|S is the pdf that achieves the infimum of (9) provided that R(PS ,∆) > 0. P ∗

S′ is the

marginal pdf of PSP ∗
S′|S . P ∗

Y is the marginal pdf of P ∗
XPY |X where P ∗

X achieves the channel capacity (11).

Recalling that

P
(n)
∆ (PS ,W, E , t) = 1 − Pr

(
d(tn) (s, ϕn(y)) ≤ ∆

)
, (36)

where the probability is with respect to the joint distribution PStn(·)PY n|Xn(·|·), it suffices to show

that the probability Pr
(
d(tn) (s, ϕn(y)) ≤ ∆

)
approaches 0 asymptotically for any sequence of JSC codes

(fn, ϕn,∆, E , t). We first decompose Pr
(
d(tn) (s, ϕn(y)) ≤ ∆

)
as follows

Pr
(
d(tn) (s, ϕn(y)) ≤ ∆

)

= Pr
({

d(tn) (s, ϕn(y)) ≤ ∆
}⋂

Ã
)

+ Pr
({

d(tn) (s, ϕn(y)) ≤ ∆
}⋂

Ãc
)

, (37)

where Ãc stands for the complement of Ã. For the first probability in (37), we can bound it by using the

property of set Ã

Pr
({

d(tn) (s, ϕn(y)) ≤ ∆
}⋂

Ã
)

=

∫

{(s,y):d(tn)(s,ϕn(y))≤∆}T eA
PStn(s)PY n|Xn(y|fn(s))dsdy

≤
∫

{(s,y):d(tn)(s,ϕn(y))≤∆}T eA
en(C(W,E)−tR(PS ,∆)+δ)PStn(s)

P ∗
Y n(y)P ∗

S′tn|Stn((ϕn(y))|s)
P ∗

S′tn(ϕn(y))
dsdy

≤ e−n(ε−δ)

∫

Yn

P ∗
Y n(y)

P ∗
S′tn(ϕn(y))

∫

s:d(tn)(s,ϕ(y))≤∆
PStn(s)P ∗

S′tn|Stn(ϕn(y)|s)ds
︸ ︷︷ ︸

≤P ∗

S′tn
(ϕn(y))

dy

≤ e−n(ε−δ)

∫

Yn

P ∗
Y n(y)dy

= e−n(ε−δ). (38)

It remains to bound the second probability in (37). Using the expressions of the pdf’s, we have

1

n
ln

PY n|Xn(y|fn(s))P ∗
S′tn(ϕn(y))

P ∗
Y n(y)P ∗

S′tn|Stn((ϕn(y))|s) = C(W, E) +
yTy

2n(E + σ2
Z)

− zTz

2nσ2
Z

− tR(PS ,∆) +
td(tn)(ϕn(y), s)

2∆
− sT s

2nσ2
S

.
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Hence,

Pr
({

d(tn) (s, ϕn(y)) ≤ ∆
}⋂

Ãc
)

= Pr

({
d(tn) (s, ϕn(y)) ≤ ∆

}⋂
{

yTy

2n(E + σ2
Z)

− zTz

2nσ2
Z

+
td(tn)(ϕn(y), s)

2∆
− sT s

2nσ2
S

> δ

})

≤ Pr

(
yTy

2n(E + σ2
Z)

− zTz

2nσ2
Z

+
t

2
− sT s

2nσ2
S

> δ

)

≤ Pr

(
yTy

n(E + σ2
Z)

− 1 >
2δ

3

)
+ Pr

(
zTz

nσ2
Z

− 1 < −2δ

3

)
+ Pr

(
sT s

nσ2
S

− t < −2δ

3

)
. (39)

It suffices to show

lim
n→∞

Pr

(
yTy

n(E + σ2
Z)

− 1 >
2δ

3

)
= 0, (40)

lim
n→∞

Pr

(
zTz

nσ2
Z

− 1 < −2δ

3

)
= 0, (41)

and

lim
n→∞

Pr

(
sT s

nσ2
S

− t < −2δ

3

)
= 0. (42)

Clearly, (41) and (42) follow by the weak law of large numbers (WLLN), noting that s and z are memoryless

sequences. To derive (40), we write, as in the proof of [19, Lemma 4])

Pr

(
yTy

n(E + σ2
Z)

− 1 >
2δ

3

)
= Pr

(
xTx

n
+

zTz

n
+

2xTz

n
− (E + σ2

Z) >
2δ

3
(E + σ2

Z)

)

≤ Pr

(
zTz

n
+

2xTz

n
− σ2

Z >
2δ

3
(E + σ2

Z)

)

≤ Pr

(
zTz

n
− σ2

Z >
δ

3
(E + σ2

Z)

)
+ Pr

(
2xTz

n
>

δ

3
(E + σ2

Z)

)
, (43)

where the first inequality follows from the power constraint (8), the first probability in (43) converges to

zero as n → ∞ by the WLLN and the second probability in (43) converges to zero as n → ∞ by the

WLLN, the fact the z’s have zero mean, and the independence of x and z. Thus, (40), (41) and (42) yield

lim
n→∞

Pr

(
yTy

2n(E + σ2
Z)

− zTz

2nσ2
Z

+
t

2
− sT s

2nσ2
S

> δ

)
= 0. (44)

On account of (38), (44) and (36), we complete the proof. �

Note that the above theorem also holds for a slightly wider class of MGCs with scaled inputs, described

by Yi = bXi + Zi (Xi and Zi are independent from each other), and with transition pdf

W (y|x) = PZ(y − bx) =
1√

2πσ2
Z

e
−

(y−bx)2

2σ2
Z ,

where b is a nonzero constant. We next apply this result to prove the upper bound of EJ . It follows

from Theorem 8 that the JSCC excess distortion exponent is 0 if the source rate-distortion function is
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larger than the channel capacity, i.e., tR(PS ,∆) > C(W, E). We thus confine our attention to the case of

tR(PS ,∆) < C(W, E) in the following proof.

Proof of Theorem 1: For any sufficiently small ε > 0, fix an R ∈ [tR(PS ,∆) + ε,C(W, E)]. Define an

auxiliary MGS for this R with alphabet S = R and distribution P̃S ∼ N (0, σ̃2
S), where σ̃2

S , ∆e2R/t, so

that the rate-distortion function of P̃S is given by

R(P̃S ,∆) =
1

2
ln max

{
σ̃2

S

∆
, 1

}
=

R

t
.

Also, it can be easily verified that the Kullback-Leibler divergence between the auxiliary MGS P̃S and the

original source PS is

D(P̃S ‖ PS) =
1

2

(
σ̃2

S

σ2
S

− ln
σ̃2

S

σ2
S

− 1

)
= F

(
R

t
, PS ,∆

)
.

Next we define for R′ , R− ε
2 > 0 an auxiliary MGC with scaled inputs W̃ associated with the original

MGC W with the alphabets X = Y = R and transition pdf

P̃Y |X(y|x) ,
1√

2πσ̃2
Z

e
−

(y+ax)2

2eσ2
Z

where the parameter a is uniquely determined by β′ (β′ = e2R′
) and SNR as follows

a ,
−SNR(β′ − 1) −

√
SNR2(β′ − 1)2 + 4SNRβ′(β′ − 1)

2SNRβ′
< 0, (45)

and

σ̃2
Z ,

a2E
β′ − 1

. (46)

It can be verified that the capacity of the MGC W̃ is given by

C(W̃ , E) = sup
PX :EX2≤E

I(X;Y ) =
1

2
ln

(
1 +

a2E
σ̃2

Z

)
= R′,

where the supremum is achieved by the Gaussian distribution P ∗
X ∼ N (0, E).

For some δ > 0, define the set

Â ,

{
(s,y) : ln

P̃Stn(s)P̃Y n|Xn(y|fn(s))

PStn(s)PY n|Xn(y|fn(s))
≤ n

(
tF

(
R

t
, PS ,∆

)
+ Esp(R

′,W, E) + δ

)}
.

Consequently, we can use Â to lower bound the probability of excess distortion of any sequence of JSC

codes (fn, ϕn,∆, E , t),

P
(n)
∆ (PS ,W, E , t) ≥

∫

{(s,y):d(tn)(s,ϕn(y))>∆)}∩ bA
PStn(s)PY n|Xn(y|fn(s))dsdy

≥ e−n(tF(R
t

,PS ,∆)+Esp(R′,W,E)+δ)
∫

{(s,y):d(tn)(s,ϕn(y))>∆)}∩ bA
P̃Stn(s)P̃Y n|Xn(y|fn(s))dsdy, (47)
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and the last integration can be decomposed as

∫

{(s,y):d(tn)(s,ϕn(y))>∆)}∩ bA
P̃Stn(s)P̃Y n|Xn(y|fn(s))dsdy

≥
∫

(s,y):d(tn)(s,ϕn(y))>∆)
P̃Stn(s)P̃Y n|Xn(y|fn(s))dsdy −

∫

bAc

P̃Stn(s)P̃Y n|Xn(y|fn(s))dsdy

= P
(n)
∆ (P̃S , W̃ , E , t) − Pr

(
Âc
)

, (48)

where the probabilities are with respect to the joint distribution P̃Stn(·)P̃Y n|Xn(·|·). Note that the first

term in the right-hand side of (48) is exactly the probability of excess distortion for the joint source-channel

system consisting of the auxiliary MGS P̃S and the auxiliary MGC W̃ with transmission t, and, according

to our setting, with

tR(P̃S ,∆) = R > R′ = C(W̃ , E).

Thus, this quantity converges to 1 as n goes to infinity according to the strong converse JSCC theorem.

It remains to show that the second term in the right-hand side of (48) vanishes asymptotically. Note that

Pr
(
Âc
)

≤ Pr

(
1

nt
ln

P̃Stn(s)

PStn(s)
> F

(
R

t
, PS ,∆

)
+

δ

2t

)

+Pr

(
1

n
ln

P̃Y n|Xn(y|x)

PY n|Xn(y|x)
> Esp(R

′,W, E) +
δ

2

)
. (49)

It follows by the WLLN that as n → ∞,

1

nt
ln

P̃Stn(s)

PStn(s)
−→ E ePS

[
ln

P̃S(s)

PS(s)

]
= F

(
R

t
, PS ,∆

)
in Prob.,

which implies that

lim
n→∞

Pr

(
1

nt
ln

P̃Stn(s)

PStn(s)
> F

(
R

t
, PS ,∆

)
+

δ

2t

)
= 0. (50)

For the second term of (49), setting z = y + ax, we can write

1

n
ln

P̃Y n|Xn(y|x)

PY n|Xn(y|x)
=

1

2

[
ln

σ2
Z

σ̃2
Z

− zTz

nσ̃2
Z

+
zTz

nσ2
Z

− 2(a + 1)xTz

nσ2
Z

+
(a + 1)2xTx

nσ2
Z

]
.

On the other hand, recalling that a is given in (45) and σ̃2
Z is given in (46), and noting that

σ̃2
Z

σ2
Z

=
SNR(β′ − 1) + 2β′ +

√
SNR2(β′ − 1)2 + 4SNRβ′(β′ − 1)

2β′2

=
4β′2

2β′2[SNR(β′ − 1) + 2β′ −
√

SNR2(β′ − 1)2 + 4SNRβ′(β′ − 1)]

=
2

2β′ + SNR(β′ − 1)
[
1 −

√
1 + 4β′

SNR(β′−1)

] ,
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where β′ = e2R′
, we see that

1

2

[
σ̃2

Z

σ2
Z

− ln
σ̃2

Z

σ2
Z

+
(a + 1)2

σ2
Z

E − 1

]
(a)
=

SNR

4β′

[
(β′ + 1) − (β′ − 1)

√
1 +

4β′

SNR(β′ − 1)

]

+
1

2
ln

{
β′ − SNR(β′ − 1)

2

[√
1 +

4β′

SNR(β′ − 1)
− 1

]}
,

which is exactly the sphere-packing bound Esp(R
′,W, E), and where the derivation of (a) is provided in

[29, Appendix B]. Therefore, it suffices to show that

Pr

(
1

n
ln

P̃Y n|Xn(y|x)

PY n|Xn(y|x)
>

1

2

[
σ̃2

Z

σ2
Z

− ln
σ̃2

Z

σ2
Z

+
(a + 1)2

σ2
Z

E − 1

]
+

δ

2

)

= Pr

[(
1

σ2
Z

− 1

σ̃2
Z

)(
zTz

n
− σ̃2

Z

)
− 2(a + 1)xTz

nσ2
Z

+
(a + 1)2

σ2
Z

(
xTx

n
− E

)
> δ

]

converges to 0 as n goes to infinity. This is true (as before) since the above probability is less than

Pr

[(
1

σ2
Z

− 1

σ̃2
Z

)(
zTz

n
− σ̃2

Z

)
− 2(a + 1)xTz

nσ2
Z

> δ

]
(51)

by the power constraint (8), and zTz/n → σ̃2
Z and xTz/n → 0 in probability 1. This yields

lim
n→∞

Pr

(
1

n
ln

P̃Y n|Xn(y|x)

PY n|Xn(y|x)
≤ 1

2

[
σ̃2

Z

σ2
Z

− ln
σ̃2

Z

σ2
Z

+
(a + 1)2

σ2
Z

E − 1

]
+

δ

2

)
= 0. (52)

On account of (47), (48), (50) and (52), we obtain

lim inf
n→∞

− 1

n
ln P

(n)
∆ (PS ,W, E , t) ≤ tF

(
R

t
, PS ,∆

)
+ Esp

(
R − ε

2
,W, E

)
+ δ.

Since the above inequality holds for any rate R in the region [tR(PS ,∆) + ε,C(W, E)] and δ and ε can be

arbitrarily small, we obtain that

lim inf
n→∞

− 1

n
ln P

(n)
∆ (PS ,W, E , t) ≤ min

tR(PS ,∆)≤R≤C(W,E)

[
tF

(
R

t
, PS ,∆

)
+ Esp(R,W, E)

]
. (53)

�

C Proof of Theorem 2

Before we start to prove Theorem 2, let us introduce the Gaussian-type class and the type covering lemma

for MGS’s [1]. For a DMS with finite alphabet S and a given rational pmf PS , the type-P class of k-length

sequences s , (s1s2 · · · sk) ∈ Sk is the set of sequences that have single-symbol empirical distribution

equal to P . Thus, the probability of a particular event (the probability of error, say) can be obtained by

summing the probabilities of intersections of various type classes which decay exponentially as the length

of sequence approaches infinity [10]. Unfortunately, most of the properties of type classes, as well as the
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bounding technique of types, do not hold any more for sequences with continuous alphabets. When S is

continuous, we need to find a counterpart to the type classes which partition the whole source space Sk,

while keeping an exponentially small probability in the length of sequence.

In [1, Sec. VI. A], a continuous-alphabet analog to the method of types was studied for the MGS by

introducing the notion of Gaussian-type classes. Given σ2 > 0 and ǫ ∈ (0, σ2), the Gaussian-type class,

denoted by T ǫ(σ2), is the set of all k-length sequences s ∈ R
k such that

|sT s − kσ2| ≤ kǫ, (54)

where T is the transpose operation. Based on a sequence of positive parameters {σ2
i }∞i=1, the Euclidean

space R
k can be partitioned using (54), and it can be shown that for the zero-mean MGS, the probability

of each type defined by (54) decays exponentially in k [1]. Specifically, the probability of the type T ǫ(σ̂2
S)

under the Gaussian distribution PS decays exponentially in k at the rate of D(P̂S ‖ PS) within a term that

tends to zero as ǫ → 0, where P̂S ∽ N (0, σ̂2
S), i.e.,

PSk

(
T ǫ(σ̂2

S)
)
≤ exp

{
−k
(
D(P̂S ‖ PS) + ζ1(ǫ)

)}
, (55)

where

D(P̂S ‖ PS) =
1

2

(
σ̂2

S

σ2
S

− ln
σ̂2

S

σ2
S

− 1

)
(56)

is the Kullback-Leibler divergence between the two MGS’s P̂S and PS , and ζ1(ǫ) = −ǫ/σ2
S − ln(1 + ǫ/σ̂2

S).

The following type covering lemma is an important tool which we will later employ to derive the lower

bound for the JSCC excess distortion exponent.

Lemma 4 (Covering Lemma for Gaussian-Type Classes [1]) Given σ2
S > ∆ and µ > 0, for suffi-

ciently small ǫ and for sufficiently large k, there exists a set C ⊂ R
k of size |C| ≤ exp{k[R(PS ,∆)+ζ2(ǫ)]+µ}

with

ζ2(ǫ) =
1

2
ln

∆

(
√

∆ − ǫ)2 − ǫ∆
(
1 + 4

√
∆
σ2

S

) + 2ǫ + 2 ln

[
1 + ǫ

(
1 + 4

√
∆

σ2
S − ∆

)]

if σ2
S > ∆ and ζ2(ǫ) = 0 otherwise, such that every sequence s ∈ T ǫ(σ2

S) is contained, for some c ∈ C, in

the ball of size ∆

B(c,∆) ,

{
s :

1

k

k∑

i=1

(si − ci)
2 ≤ ∆

}
,

where R(PS ,∆) is the rate-distortion function of MGS PS ∼ N (0, σ2
S).

Now we are ready to prove Theorem 2.

Proof of Theorem 2: Fix t > 0. In the sequel we let k = tn and assume that k (and hence n) is

sufficiently large. For a given ǫ ∈ (0,∆) small enough, we construct a sequence of Gaussian-type classes

Ti , T ǫ(σ2(i)) by σ2(i) = ∆ + (2i − 1)ǫ, i = 1, 2, · · · . That is,

Ti ,
{
s :
∣∣sT s− k(∆ + (2i − 1)ǫ)

∣∣ ≤ kǫ
}

=
{
s : k(∆ + (2i − 2)ǫ) ≤ sT s ≤ k(∆ + 2iǫ)

}
, i = 1, 2, · · · . (57)
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Also, we define the set T0 , {s : sT s ≤ k∆} such that all these type classes (T1,T2, · · · ) together with T0

partition the whole space R
k. For this special set T0, we shall use the trivial bound PSk(T0) ≤ 1 and by

definition T0 is covered by the ball B(0,∆); thus, we say that T0 satisfies the type covering lemma in the

sense that there exists a set C , {0} of size |C| = 1 ≤ exp{k[R(P̂S ,∆)]} such that every s ∈ T0 is covered

by the the ball of size ∆, where we let P̂S ∼ N (0,∆) and hence R(P̂S ,∆) = 0.

Based on the above setup, we claim that, first, for all i = 1, 2, · · · , the probability of Ti under the k-

dimensional Gaussian pdf PSk , denoted by PSk(Ti), decays exponentially at the rate of D(P
(i)
S ‖ PS)+ ζ̃1(ǫ)

in k, where P
(i)
S is a zero-mean Gaussian source with variance σ2(i) = ∆ + (2i − 1)ǫ, and

ζ̃1(ǫ) = − ǫ

σ2
S

− ln
(
1 +

ǫ

∆

)
(58)

is a vanishing term independent of i (cf. (55)). Second, the type covering lemma is applicable for all Ti,

i = 1, 2, · · · . Note that when σ2(i) > ∆, ζ2(ǫ) in the type covering lemma can be bounded by

ζ2(ǫ) ≤ ζ̃2(ǫ) ,
1

2
ln

∆

(
√

∆ − ǫ)2 − 5ǫ∆
+ 2ǫ + 2 ln[1 + ǫ + 4

√
∆ǫ] (59)

and is also independent of i. In the sequel, we will denote, without loss of generality, that all these vanishing

terms ζ̃1(ǫ) and ζ̃2(ǫ) by ζ(ǫ).

We next employ a concatenated “quantization – lossless JSCC” scheme [2] to show the existence of a

sequence of JSC codes for the source-channel pair (PS ,W ) such that its probability of excess distortion is

upper bounded by

exp[−nERC(PS ,W,∆, E , t) + o(n)]

for n sufficiently large.

First Stage Coding: ∆-admissible Quantization.

It follows from the above setup and the type covering lemma (Lemma 4) that for each Ti (i = 1, 2, · · · ),
there exists a code Ci = {c(i)} with codebook size |Ci| ≤ exp{k[R(P

(i)
S ,∆) + ζ(ǫ)] + o(k)} that covers Ti.

Recall that we also have, trivially, that a code C0 = {0} with |C0| = 1 which covers T0. Therefore, we can

employ a ∆-admissible quantizer via the sets Ci, i = 0, 1, 2, ... as follows:

f∆,k : R
k −→

∞⋃

i=0

Ci

such that for every s ∈ R
k, the output of f∆,k with respect to s has a distortion less than ∆. We denote

the DMS at the output of f∆,k by P with alphabet
⋃∞

i=0 Ci and pmf

P (c(i)) =

∫

s∈Ti:f∆,k(s)=c(i)

PSk(s)ds, ∀ c(i) ∈ Ci, i = 0, 1, 2, ...

Second Stage Coding and Decoding: Lossless JSCC with Power Constraint E.

For the DMS P and the continuous MC W , a pair of (asymptotically) lossless JSC code

f̃n :

∞⋃

i=0

Ci −→ X n and ϕ̃n : Yn −→
∞⋃

i=0

Ci
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is applied, where the encoder is subject to a cost constraint E , i.e., f̃n ∈ FE
n . Note that the decoder ϕ̃n

creates an approximation ĉ = ϕ̃n(y) of c(i) based upon the sequence y received at the channel output.

According to a modified version of Gallager’s JSCC random-coding bound (which is derived in Appendix

D), there exists a sequence of lossless JSC codes (f̃n, ϕ̃n, E) with bounded probability of error

P (n)
e (P,W, E) , Pr(ĉ 6= c(i))

=

∞∑

i=0

∑

c(i)∈Ci

P (c(i))

∫

y:eϕn(y)6=c(i)

PY n|Xn

(
y

∣∣∣f̃n(c(i))
)

dy

≤ exp

{
−n max

0≤ρ≤1

[
Eo(W, E , ρ) − E(n)

s (ρ, P )
]

+ o(n)

}
,

where E0(W, E , ρ) is Gallager’s constrained channel function given in (7) and E
(n)
s (ρ, P ) is Gallager’s source

function (see Appendix D)) here given by

E(n)
s (ρ, P ) =

1 + ρ

n
ln





∞∑

i=0

∑

c(i)∈Ci

P (c(i))
1

1+ρ



 .

Probability of Excess Distortion.

According to the ∆-admissible quantization rule, if the distortion between the source message s and

the reproduced sequence ĉ is larger than ∆, then we must have ĉ 6= c(i). This implies that

P
(n)
∆ (PS ,W, E , t) = Pr

(
d(k)(ĉ, s) > ∆

)

≤ Pr
(
ĉ 6= c(i)

)

≤ exp

{
−n max

0≤ρ≤1

[
Eo(W, E , ρ) − tE(n)

s (ρ, P )
]

+ o(n)

}
. (60)

Next we bound E
(n)
s (ρ, P ) in terms of PS for k (also n) sufficiently large and when ǫ goes to zero (when N

goes to infinity). Rewrite

E(n)
s (ρ, P ) =

1 + ρ

n
ln





∞∑

i=0

∑

c∈Ci

[
PSk(Ti)P

(i)

Sk (c(i))
] 1

1+ρ





=
1 + ρ

n
ln





∞∑

i=0

PSk(Ti)
1

1+ρ

∑

c∈Ci

P
(i)

Sk (c(i))
1

1+ρ





≤ 1 + ρ

n
ln



1 +

∞∑

i=1

PSk(Ti)
1

1+ρ

∑

c∈Ci

P
(i)

Sk (c(i))
1

1+ρ





where

P
(i)

Sk (c(i)) ,
P (c(i))

PSk(Ti)

is the normalized probability over Ti for each i = 0, 1, .... By Jensen’s inequality [7] and the type covering

lemma, the sum over each Ci (i ≥ 1) can be bounded by

∑

c(i)∈Ci

P
(i)

Sk (c(i))
1

1+ρ ≤ |Ci|
ρ

1+ρ ≤ exp

{
ρ

1 + ρ
[kR(P

(i)
S ,∆) + ζ(ǫ)] + o(k)

}
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for k sufficiently large and ǫ sufficiently small. Recalling that

PSk(Ti) ≤ exp{−k[D(P
(i)
S ‖ PS) + ζ(ǫ)]},

we have

E(n)
s (ρ, P ) ≤ t(1 + ρ)

k
ln

{
1 +

∞∑

i=1

exp

[
k

1 + ρ

(
ρR(P

(i)
S ,∆) − D(P

(i)
S ‖ PS) + ζ(ǫ)

)
+ o(k)

]}
(61)

for k sufficiently large and ǫ sufficiently small, by noting that k = tn. Recall that P
(i)
S denotes the Gaussian

source with mean zero and variance σ2(i) = ∆ + (2i − 1)ǫ. Consequently, using the fact [1] that if the

exponential rate of each term, as a function of i, is of the form Ui = ln(Ai + B) − Ci, where A, B, and

C are positive reals, then the term with the largest exponent dominates the exponential behavior of the

summation, i.e.,

lim
k→∞

1

k
ln

{
1 +

∞∑

i=1

exp [k(ln(Ai + B) − Ci) + o(k)]

}
= max

i≥1
[ln(Ai + B) − Ci], (62)

we obtain

lim
n→∞

E(n)
s (ρ, P ) ≤ t max

i≥1
[ρR(P

(i)
S ,∆) − D(P

(i)
S ‖ PS) + ζ(ǫ)]. (63)

Note also that the sequence
{
ρR(P

(i)
S ,∆) − D(P

(i)
S ‖ PS)

}∞

i=1
is non-increasing after some finite i, which

means the maximum of (63) is achieved for some finite σ2(i). Letting ǫ go to zero, it follows by the

continuity of R(P
(i)
S ,∆) and D(P

(i)
S ‖ PS) as functions of σ2(i) that

lim
ǫ→0

sup
σ2(i)

[ρR(P
(i)
S ,∆) − D(P

(i)
S ‖ PS) + ζ(ǫ)] = max[ρR(P̃S ,∆) − D(P̃S ‖ PS)]

where the maximum is taken over all the MGS P̃S with mean zero and variance σ2 > ∆. Therefore,

lim
n→∞

E(n)
s (ρ, P ) ≤

{
0,

t

2

[
ρ ln

σ2
S

∆
+ (1 + ρ) ln(1 + ρ) − ρ

]}
= tE(PS ,∆, ρ). (64)

Finally, on account of (60) and (64), we may claim that, there exists a sequence of JSC codes (fn, ϕn,∆, E , t),

where fn = f̃n ◦ f∆,k and ϕn = ϕ̃n, such that for n sufficiently large,

P
(n)
∆ (PS ,W, E , t) ≤ exp

{
−n max

0≤ρ≤1
[Eo(W, E , ρ) − tE(PS ,∆, ρ)] + o(n)

}
,

by which we establish the lower bound EJ(PS ,W,∆, E , t) given in (21). Furthermore, when W is an MGC,

the bound (22) holds trivially since Ẽo(W, E , ρ) is a lower bound of Eo(W, E , ρ). �

D Gallager’s Lower Bound for Lossless JSCC Error Exponent

In this appendix, we modify Gallager’s upper bound for the error probability of JSCC for discrete memo-

ryless systems, so that it is applicable to a JSCC system consisting of a DMS and a continuous MC with

cost constraint E .
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A JSC code (f̃n, ϕ̃n) [26] for a DMS PC and a continuous MC W with transition pdf PY |X is a pair

of mappings f̃n : C −→ X n and ϕ̃n : Yn −→ C, where C ⊆ Stn. That is, each source message s ∈ C with

pmf PC(s) is encoded as blocks x = f̃n(s) of symbols from X of length n, transmitted, received as blocks

y of symbols from Y of length n and decoded as source symbol ϕ̃n(y) ∈ S. Denote the codebook for the

codewords be B , {x = f̃(s)}. The probability of decoding error is

P (n)
e (PC ,W ) = P (n)

e (PC ,W,B) ,
∑

s∈C

PC(s)

∫

y∈Yn

PY n|Xn (y|x)1{ϕ̃n(y) 6= s}dy

where 1{}̇ is the indicator function.

We next recast Gallager’s random-coding bound for the JSCC probability of error [13, Problem 5.16]

for DMS’s and continuous MC’s and we show the following bound.

Proposition 1 For each n ≥ 1, given pdf PXn defined on X n = R
n, there exists a sequence of JSC codes

(f̃n, ϕ̃n) such that for any 0 ≤ ρ ≤ 1 the probability of error is upper bounded by

P (n)
e (PC ,W ) ≤

[
∑

s∈C

PC(s)
1

1+ρ

]1+ρ ∫

y∈Yn

[∫

x∈Xn

PXn(x)PY n|Xn(y|x)
1

1+ρ dx

]1+ρ

dx. (65)

Proof: The proof is very similar to Gallager’s random-coding bound for discrete systems and appears in

[29]. �

Next, we need a small modification of (65) for the DMS PC and the MC W to incorporate the channel

input cost constraint (8). Let P ∗
X be an arbitrary pdf of the channel input on X satisfying Eg(X) ≤ E and

Eg(X)3 < ∞ (these restrictions are made to make the term
[

erη

κ

]1+ρ
in (66) grow sub-exponentially with

respect to n) and let P ∗
Xn be the corresponding n-dimensional pdf on sequences of n channel inputs, i.e.,

the product pdf of P ∗
X . We then adopt the technique of Gallager [13, Chapter 7], by setting PXn(x) =

κ−1Φ(x)P ∗
Xn(x), where

Φ(x) =

{
1 if nE − η ≤∑n

i=1 g(xi) ≤ nE ,

0 otherwise,

in which η > 0 is arbitrary, and κ =
∫
x

P ∗
Xn(x)Φ(x)dx is a normalizing constant. Thus, PXn is a valid

probability density that satisfies the constraint (8). We thus have, for any r ≥ 0,

PXn(x) ≤ κ−1erηP ∗
Xn(x)er[

Pn
i=1 g(xi)−nE].

Substituting the above into (65) for the MC W , changing the summation to integration, and denoting the

probability of error under constraint E by P
(n)
e (PS ,W, E), we have

P (n)
e (PC ,W, E) ≤

[
erη

κ

]1+ρ
[
∑

s∈C

PC(s)
1

1+ρ

]1+ρ

×
∫

y∈Yn

[∫

x∈Xn

P ∗
Xn(x)er[

Pn
i=1 g(xi)−nE]PY n|Xn(y|x)

1
1+ρ dx

]1+ρ

dy. (66)
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We remark that
[

erη

κ

]1+ρ
grows with n as n(1+ρ)/2 and does not affect the exponential dependence of the

bound on n [12], [13, pp. 326–333]. Thus, applying the upper bound for the DMS PC and the MC W with

cost constraint, and noting that P ∗
X is an arbitrary pdf satisfying Eg(X) ≤ E and Eg(X)3 < ∞, we obtain

P (n)
e (PC ,W, E) ≤ exp

{
−n max

0≤ρ≤1

[
Eo(W, E , ρ) − E(n)

s (ρ, PC)
]

+ o(n)

}
, (67)

where Eo(W, E , ρ) is the Gallager’s constraint channel function given by (7), o(n) has the form c1 ln n + c2

for some constants c1 and c2, and E
(n)
s (ρ, PS) is Gallager’s source function

E(n)
s (ρ, PC) ,

1 + ρ

n
ln

[
∑

s∈C

PC(s)
1

1+ρ

]
.

E Proof of Lemma 1

By definition, F (R,PS ,∆)∗ = supR≥0 [ρR − F (R,PS ,∆)] = supR≥R(PS ,∆) f(R), where

f(R) = ρR − 1

2

(
∆e2R

σ2
S

− ln
∆e2R

σ2
S

− 1

)
.

Since
∂f(R)

∂R
= 1 + ρ − ∆e2R

σ2
S

,

it is seen that f(R) is concave and

sup
R≥R(PS ,∆)

f(R) = f

(
1

2
ln

σ2
S(1 + ρ)

∆

)
=

1

2

[
ρ ln

σ2
S

∆
+ (1 + ρ) ln(1 + ρ) − ρ

]
> 0

if ∆
σ2

S

≤ 1 + ρ, and f(R) is concave decreasing with

sup
R≥R(PS ,∆)

f(R) = max
R≥0

f(R) = f(0) = 0 >
1

2

[
ρ ln

σ2
S

∆
+ (1 + ρ) ln(1 + ρ) − ρ

]

if ∆
σ2

S

> 1 + ρ. The above facts imply that E(PS ,∆, ρ) is the convex Fenchel transform of F (R,PS ,∆), i.e.,

F (R,PS ,∆)∗ = E(PS ,∆, ρ) = max

{
0,

1

2

[
ρ ln

σ2
S

∆
+ (1 + ρ) ln(1 + ρ) − ρ

]}
.

Finally, F (R,PS ,∆) is also the convex Fenchel transform of E(PS ,∆, ρ) since F (R,PS ,∆) is convex in R.

�

F Proof of Lemmas 2 and 3

Proof of Lemma 2: Note that

Esp(R,W, E) = max
ρ≥0

[−ρR + Ẽ0(W, E , ρ)] = − inf
ρ≥0

[ρR − Ẽ0(W, E , ρ)],
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which implies that −Esp(R,W, E) is the concave transform of Ẽ0(W, E , ρ) on

{R : −Esp(R,W, E) > −∞} = R
+.

Thus, the transform

(−Esp(R,W, E))∗ = inf
R∈R+

[ρR + Esp(R,W, E)]

is the concave hull of Ẽ0(W, E , ρ) in ρ ∈ [0,∞). We next show (−Esp(R,W, E))∗ = Ẽ0(W, E , ρ) by definition.

Now if we set
∂

∂R
[ρR + Esp(R,W, E)] = 0,

we have (refer to Appendix A)

√
1 +

4β

SNR(β − 1)
=

2β

SNR
(1 + ρ) − 1, (68)

where β = e2R. Substituting (68) back into (−Esp(R,W, E))∗ and using (12) yield

(−Esp(R,W, E))∗ =
1

2

[
ρ ln β∗ + (1 − β∗)(1 + ρ) + SNR + ln

(
β∗ − SNR

1 + ρ

)]
, (69)

where β∗ is determined by (68), which can be equivalently written by

−(1 + ρ) +
1 + ρ

β(1 + ρ) − SNR
+

ρ

β
= 0, (70)

subject to β > SNR/(1 + ρ) according to (69). In this range the left-hand side of (70) is decreasing in β

and ranges from +∞ to the negative number −(1 + ρ), which means there is a unique β∗ satisfying (70).

Solving the function (70) for the stationary point β∗ we obtain

β∗ =
1

2

(
1 +

SNR

1 + ρ

)[
1 +

√
1 − 4SNRρ

(1 + ρ + SNR)2

]
. (71)

On the other hand, we can replace

β̂ = 1 − 2rE +
SNR

1 + ρ

in the expression of Ẽo(W, E , ρ) given by (13) and obtain

Ẽo(W, E , ρ) = max
SNR
1+ρ

<bβ<1+SNR
1+ρ

1

2

[
ρ ln β̂ + (1 − β̂)(1 + ρ) + SNR + ln

(
β̂ − SNR

1 + ρ

)]
.

Maximizing the above over β̂ (see [13, p. 339] for details), we see that Ẽo(W, E , ρ) has the same parametric

form as (69), which implies

(−Esp(R,W, E))∗ = Ẽo(W, E , ρ),

and hence Ẽo(W, E , ρ) is the concave transform of −Esp(R,W, E). �

Proof of Lemma 3: Recall that by Gallager [13, Chapter 7]

E†(R,W, E) = max
0≤ρ≤1

[−ρR + Ẽ0(W, E , ρ)] = − inf
0≤ρ≤1

[ρR − Ẽ0(W, E , ρ)],
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which means that −E†(R,W, E) is the concave transform of Ẽ0(W, E , ρ) on

{R : −E†(R,W, E) > −∞} = R
+.

Thus, the transform

(−E†(R,W, E))∗ = inf
R∈R+

[ρR + E†(R,W, E)]

is the concave hull of Ẽ0(W, E , ρ) in ρ ∈ [0, 1]. Lemma 2 implies that Ẽ0(W, E , ρ) is concave in [0,∞). Thus

we have (−E†(R,W, E))∗ = Ẽ0(W, E , ρ) for all ρ ∈ [0, 1]. �

G Proof of Theorem 4

By comparing (25) and (26) we observe that the two bounds are identical if and only if the minimum of

(25) (or (26)) is achieved at a rate no less than the channel critical rate, i.e.,

Rm ≥ Rcr(W ) =
1

2
ln


1

2
+

SNR

4
+

1

2

√

1 +
SNR2

4




where Rm is the solution of (17). Let

f(R) ,
β

1
t

SDR
− SNR

2β

(
1 +

√
1 +

4β

SNR(β − 1)

)
,

which is a strictly increasing function of R (refer to (32)), where β = e2R. In order to ensure that the root

of f(R), Rm, is no less than Rcr(W ), we only need f(Rcr(W )) ≤ 0. This reduces to the condition (27).

�

H Proof of Theorem 6

The upper bound can be established as in a similar manner as the proof of Theorem 1 and is hence omitted.

To establish the lower bound, we need to extend the Gaussian type classes and the type covering lemma to

MLS’s. For given α > 0 and 0 < ǫ < α, a Laplacian-type class T ǫ(α) is defined as the set of all k-vectors

s ∈ R
k such that

∣∣∣
∑k

i=1 |si| − kα
∣∣∣ ≤ kǫ, i.e.,

T ǫ(α) ,

{
s :

∣∣∣∣∣

k∑

i=1

|si| − kα

∣∣∣∣∣ ≤ kǫ

}
.

It can also be shown that the probability of the type class T ǫ(α̃), for α̃ > 0, under the Laplacian

distribution PS ∽ L(0, α) is bounded by the exponential function

PSk(T ǫ(α̃)) ≤ exp

{
−k

(
α̃

α
− ln

α̃

α
− 1 + ζ(ǫ)

)}

where ζ3(ǫ) = −ǫ/α− ln(1 + ǫ/α̃). We next introduce the type covering lemma for Laplacian-type classes.
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Lemma 5 (Covering Lemma for Laplacian-Type Classes [28]) Given α > ∆ and µ > 0, for suffi-

ciently small ǫ and for sufficiently large k, there exists a set C ⊂ R
k of size |C| ≤ exp{k[R(PS ,∆)+ζ4(ǫ)]+µ}

with

ζ4(ǫ) = ln
∆

∆ − ǫ
+ ln

(
1 +

ǫ

α − ∆ + ǫ

)
+

2αǫ

(α − ∆ + ǫ)(∆ − ǫ)

such that every sequence in T ǫ(α) is contained, for some c ∈ C, in the ball (cube)

B(c,∆) ,

{
s :

1

k

k∑

i=1

|si − ci| ≤ ∆

}

of size ∆, where R(PS ,∆) is the rate distortion function of Laplacian source PS ∽ L(0, α).

Consequently, using Lemma 5, the lower bound can be deduced by employing a similar proof of Theorem

2 and using Fenchel Duality Theorem. �

I Proof of Theorem 7

For general continuous MS’s, unfortunately, we do not have counterparts to the type class and the type

covering results of Lemmas 4 and 5 (for MGS’s and MLS’s, respectively). Hence, to establish the lower

bound for the JSCC excess distortion exponent, we need to modify the proof of Theorem 2. We will use

a different approach based on the technique introduced in [16] and the type covering lemma [10] for finite

alphabet DMS’s.

Since the lower bound (30) immediately follows from (29), we only show the existence of a sequence

of JSC codes for the source-channel pair (PS ,W ) such that its probability of excess distortion is upper

bounded by

exp

{
−n max

0≤ρ<1
[E0(W, E , ρ) − tE(PS ,∆, ρ)] + o(n)

}

for n sufficiently large. We shall employ a concatenated “scalar discretization - vector quantization - loss-

less JSCC” scheme as shown in Fig. 8. Throughout the proof, we let k = tn, where t > 0 is finite, and set

0 < ǫ < ∆ and 0 < δ < ∆ − ǫ.

First Stage Coding: ǫ-Neighborhood Scalar Quantization.

As in [16], we approximate the continuous MS PS by a DMS P̃eS with countably infinite alphabet S̃ via an

ǫ-neighborhood scalar quantization scheme. In particular, for any given 0 < ǫ < ∆, there exists a countable

set S̃ = {si, i = 1, 2, ...} ⊆ R with corresponding mutually disjoint subsets Si ⊆ {s ∈ R : d(si, s) ≤ ǫ},
i = 1, 2, ..., such that

⋃∞
i=1 Si = R. Specifically, the subsets {Si} partition R; for example, a specific

partition could be S1 = {s ∈ R : d(s1, s) ≤ ǫ} and

Si = {s ∈ R : d(si, s) ≤ ǫ and d(sj, s) > ǫ for any j < i}

for i ≥ 2. Consequently, we can employ a scalar quantizer fǫ : S −→ S̃ to discretize the original MS PS ,

such that fǫ(s) = si if s ∈ Si. Therefore, the first stage coding can be described as a mapping:

fǫ,k : Sk −→ S̃k
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where fǫ,k(s) = (fǫ(s1), fǫ(s2), ..., fǫ(sk)). We denote the source obtained at the output of fǫ,k by P̃eS with

alphabet S̃ and pmf

P̃eS(si) =

∫

s∈Si

PS(s)ds, si ∈ S̃.

Lemma 6 For any ǫ > 0 and ρ > 0, E
(
P̃eS ,∆ + ǫ, ρ

)
≤ E(PS ,∆, ρ).

Proof: see [29, Appendix E]. �

Second Stage Coding: Truncating Source Alphabet.

We next truncate the alphabet S̃ to obtain a finite-alphabet source. Without loss of generality, assuming

that S̃ = {s1, s2, ...} such that P̃eS(s1) ≥ P̃eS(s2) ≥ P̃eS(s3) ≥ · · · , then for M sufficiently large, we take Ŝ
be the set of the first M elements, i.e., Ŝ = {s1, s2, ..., sM}. For s ∈ S̃ = {s1, s2, ...} define function

fM(s) =

{
s if s ∈ Ŝ,

s1 otherwise.

Then the second stage coding is a mapping fM,k : S̃k −→ Ŝk, where fM,k(s) = (fM (s1), fM (s2), ..., fM (sk)).

We denote the finite-alphabet DMS at the output of fM,k by P̂bS with alphabet Ŝ and pmf

P̂bS(s) =
∑

si∈ eS:fM(si)=s

P̃eS(si) s ∈ Ŝ.

We now have the following results (Lemma 7 is proved in a similar manner as Lemma 6 and Lemma 8

is proved in [16]).

Lemma 7 For any δ > 0 and ρ > 0, E
(
P̂bS ,∆ + δ, ρ

)
≤ E(P̃eS ,∆, ρ) for M large enough.

Lemma 8 [16, Lemma 1] For any δ such that Ed [fǫ(s), fM (fǫ(s))] < δ < sup{d [fǫ(s), fM (fǫ(s))] : s ∈ R},
if there exists an element so ∈ R with E exp[td(s, so)] < ∞ for all t ∈ (−∞,+∞), then

lim
k→∞

−1

k
ln Pr

{
d(k) [fǫ,k(s), fM,k(fǫ,k(s))] > δ

}
= r(M)

such that r(M) → ∞ as M → ∞, where the expectations are taken under PS , and the probability is taken

under PSk .

Remark 3 Note also that Ed [fǫ(s), fM (fǫ(s))] → 0 as M → ∞. Equivalently, Lemma 8 states that for

any 0 < δ < sup{d [fǫ(s), fM (fǫ(s))] : s ∈ R} and r > 0,

lim
k→∞

−1

k
lnPr

{
d(k) [fǫ,k(s), fM,k(fǫ,k(s))] > δ

}
≥ r

for M sufficiently large.

Third Stage Coding: (∆ − ǫ − δ)-Admissible Quantization.

Consider transmitting the DMS P̂bS over the continuous MC W . Since P̂bS has a finite alphabet

{s1, s2, ..., sM}, we now can employ a similar method as used in the proof of Theorem 2. In the sequel we

need to introduce the notation of types and the type covering lemma for DMS’s with finite alphabets [10].
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Let the set of all probability distributions on Ŝ be P(Ŝ). We say that the type of a k-length sequence

s ∈ Ŝk is PbS ∈ Pk(Ŝ) ⊆ P(Ŝ) in the sense that the empirical distribution of s is equal to PbS , where Pk(Ŝ)

is the collection of all types of sequences in Ŝk. For any PbS ∈ Pk(Ŝ), the set of all s ∈ Ŝk with type PbS is

denoted by TP bS
, called type class TP bS

.

Now we partition the k-dimensional source space Ŝk by a sequence of type classes
{
TP bS

: PbS ∈ Pk(Ŝ)
}

.

Lemma 9 (Covering Lemma for Discrete Type Classes [10]) Given µ > 0, for each sufficiently

large k depending only on d(·, ·) and µ, for every type class TP bS
there exists a set CP bS

⊂ Sk of size

|CP bS
| ≤ exp{k[R(PbS ,∆′) + µ]} such that every sequence s ∈ TP bS

is contained, for some cP bS
∈ CP bS

, in the

ball of size ∆′

B(cP bS
,∆′) ,

{
s : d(k)(s, cP bS

) ≤ ∆′
}

,

where R(PbS ,∆′) is the rate-distortion function of the DMS PbS .

Let δ be a number satisfying 0 < δ < sup{d [fǫ(s), fM (fǫ(s))] : s ∈ R}. Setting ∆′ = ∆ − ǫ − δ in the

type covering lemma, we can employ a (∆ − ǫ − δ)-admissible quantizer via the sets CP bS
as follows:

f∆−ǫ−δ,k : Ŝk −→
⋃

P bS
∈Pk( bS)

CP bS

such that for every s ∈ Ŝk, the output of f∆−ǫ−δ,k with respect to s has a distortion less that ∆ − ǫ − δ

and each |CP bS
| is bounded by exp{k[R(PbS ,∆ − ǫ − δ) + µ]} for sufficiently large k. We denote the finite

DMS at the output of f∆−ǫ−δ,k by P with alphabet
⋃

P bS
∈Pk( bS) CP bS

and pmf

P (cP bS
) =

∑

s∈TP
bS
:f∆−ǫ−δ,k(s)=cP

bS

P̂bSk(s), cP bS
∈ CP bS

, PbS ∈ Pk(Ŝ).

Fourth Stage Coding and Decoding: Lossless JSCC with Cost Constraint E.

For the DMS P and the continuous MC W , a pair of (asymptotically) lossless JSC code

f̃n :
⋃

P bS
∈Pk( bS)

CP bS
−→ X n and ϕ̃n : Yn −→

⋃

P bS
∈Pk( bS)

CP bS

is applied, where the encoder is subject to a cost constraint E , i.e., fn ∈ FE
n . Note that the decoder ϕn

creates an approximation ĉ = ϕn(y) of cP bS
based on the sequence y. According to a modified version

of Gallager’s JSCC random-coding bound (which is derived in Appendix D), there exists a sequence of

lossless JSC codes (f̃n, ϕ̃n, E) with bounded probability of error

P (n)
e (P,W, E) , Pr(ĉ 6= cP bS

) ≤ exp

{
−n max

0≤ρ≤1

[
Eo(W, E , ρ) − E(n)

s (ρ, P )
]

+ o(n)

}
.

Analysis of the Probability of Excess Distortion.

For the sake of simplicity, let (see Fig. 8)

s̃ = fǫ,k(s), ŝ = fM,k (̃s) ∈ TP bS
, cP bS

= f∆−ǫ−δ,k(̂s), x = fn(cP bS
), ĉ = ϕn(y).
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Since d(k)(s, ĉ) ≤ d(k)(s, s̃) + d(k)(̃s, ŝ) + d(k)(̂s, ĉ) ≤ ǫ + d(k)(̃s, ŝ) + d(k)(̂s, ĉ), we have

Pr(d(k)(s, ĉ) > ∆) ≤ Pr(d(k)(̃s, ŝ) + d(k)(̂s, ĉ) > ∆ − ǫ)

≤ Pr
(
d(k)(̃s, ŝ) + d(k)(̂s, ĉ) > ∆ − ǫ, d(k)(̃s, ŝ) < δ

)
+ Pr(d(k)(̃s, ŝ) ≥ δ)

≤ Pr
(
d(k)(̂s, ĉ) > ∆ − ǫ − δ

)
+ Pr(d(k) (̃s, ŝ) ≥ δ),

where the probabilities are taken under the joint distribution PSk(·)PY n|Xn(·|·). According to the (∆−ǫ−δ)-

admissible quantization rule, d(k)(̂s, ĉ) > ∆ − ǫ − δ implies that cP bS
6= ĉ, therefore, we can further bound

Pr(d(k)(s, ĉ) > ∆) < Pr(cP bS
6= ĉ) + Pr(d(k)(̃s, ŝ) ≥ δ)

≤ exp

{
−n

[
max

0≤ρ≤1

[
Eo(W, E , ρ) − E(n)

s (ρ, P )
]

+ o(n)

]}
+ Pr(d(k)(̃s, ŝ) ≥ δ)

for k sufficiently large. It follows from Lemma 8 (also see the remark after it) that

lim
k→∞

−1

k
ln Pr(d(k)(̃s, ŝ) ≥ δ) → ∞

as M → ∞. When we take the sum of two exponential functions that both converge to 0, the one with a

smaller convergence rate would dominate the exponential behavior of the sum. Therefore, for sufficiently

large M which only depends on δ, noting that k = tn, we have

lim inf
n→∞

− 1

n
ln Pr(d(k)(s, ĉ) > ∆) ≥ lim inf

n→∞
max

0≤ρ≤1

[
Eo(W, E , ρ) − E(n)

s (ρ, P )
]
. (72)

Consequently, it can be shown by using the method of types (in a similar manner as the proof of Theorem

2) that for M sufficiently large

lim
n→∞

E(n)
s (ρ, P ) ≤ tE(P̂bS ,∆ − ǫ − δ, ρ).

Using Lemmas 7 and 6 successively, we can approximate E(P̂bS ,∆ − ǫ − δ, ρ) by

lim
n→∞

E(n)
s (ρ, P ) ≤ tE(P̃eS ,∆ − ǫ − 2δ, ρ)

≤ tE(PS ,∆ − 2ǫ − 2δ, ρ). (73)

Finally, substituting (73) back into (72), and letting ǫ → 0 and δ → 0, we complete the proof of Theorem 7.

�
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Figure 1: MGS-MGC source-channel pair: the regions for SNR and SDR pairs (both in dB) for different

t. In region A (including the boundary between A and B) EJ = 0; in region B (including the boundary

between B and C), EJ is determined exactly; and in region C, EJ > 0 is bounded by EJ and EJ .
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Figure 2: MGS-MGC source-channel pair: the upper and lower bounds for EJ with t = 1.
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include the boundary.
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Figure 7: MGS-MGC source-channel pair: EJ vs ET for t = 1.5.
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Figure 8: “Quantization plus lossless JSCC” scheme used in the proof of Theorem 7.
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