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Abstract—We study a low delay and low complexity sensor-

communication system based on compressed sensing (CS) and

scalar coding for transmission. The proposed scheme uses a

1 : r channel dimension expansion on the CS measurements

for protection against channel noise. Simulation results show that

optimizing the choice of r and the power allocation between the r
transmissions significantly improve the system performance when

compared to existing CS-communication schemes. Moreover, we

consider the asymptotic behaviour of our CS system as the

channel signal-to-noise ratio grows without bound and show that

the proposed scheme achieves the optimal scaling exponent.

I. INTRODUCTION
Low delay and complexity requirements are becoming more

relevant with the increasing popularity of wireless sensors
networks (WSNs). A wide range of natural and manmade
sensed signals are sparse in appropriate transform domains.
The sensor nodes, conceived as having limited lifetime and
sensing capabilities, communicate their sensed field informa-
tion to a fusion centre (FC) over wireless channels. To meet
these challenges, we use low delay/complexity coding with
compressed sensing (CS) in WSNs.

The sensor inputs are treated as discrete-time analog
sources. The conventional approach for analog source trans-
mission in point-to-point communications systems is to use
separate source and channel coders. This approach, which
is proven to be asymptotically optimal by Shannon, results
in very high encoding/decoding complexity and significant
delays, which are not desirable in WSNs. Low delay joint
source-channel coding (JSCC) schemes have been shown to
achieve a good performance under low delay and complexity
constraints [1]–[9]. In this work, we propose to use a nonlinear
mapping that acts as a joint source-channel encoder on the CS
measurements. In [10], a low delay JSCC system was studied
with distributed compressed sensing over noisy channels; more
precisely a 1:2 expansion system, where each CS measurement
is expanded into two dimensions, was used. In our previous
work [11], we considered a purely-analog 1:2 spiral mapping
within the CS context. In [12], [13], the authors studied JSCC
with CS based on linear coding. Recently, in [14], the authors
used a purely digital approach and studied vector-quantized
transmission of CS measurements over noisy channels. Differ-
ent from our previous work [11], we study a coding scheme,
that is able to achieve any (integer) expansion rate on the
CS measurements and investigate its asymptotic behaviour (as
the channel signal-to-noise ratio goes to infinity) in terms
of the scaling exponent. The functionality of achieving a
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greater expansion ratios in our new scheme is shown to be
useful under certain system settings; in such case, greater
dimension expansion is more gainful than transmitting more
measurements (with less dimension expansion for each). This
coding scheme uses a multi-stage uniform quantizer and a
linear map that scales the quantization error from the last
stage; we refer to such low delay/complexity coding approach
as “scalar coding.” Our contributions are twofold.

First, we adapt and improve a low delay scalar coding
scheme considered in [8] for CS measurements over noisy
channels; this coding scheme is chosen for its low delay and
low complexity characteristics. Simulations show that when
the scheme is optimized over the number of measurements
and the expansion rate, the resulting performance surpasses
(in most cases) several reference CS systems that account for
channel noise. Moreover, we derive a closed form expression
for the optimized power allocation between the channel inputs
to further enhance the performance and reduce the complexity.

Second, using results from [8], we derive an upper bound on
the system’s distortion that is used in the optimization process.
We also show that the proposed scheme achieves the optimal
scaling exponent while having low complexity and delay.

The rest of the paper is organized as follows. In Section II,
we review the theory of compressed sensing. In Section III,
we introduce the system model, derive an upper bound on its
distortion and develop the system optimization. In Section IV,
we show that the proposed scheme achieves the optimal
scaling exponent. We present simulation results in Section V.

II. OVERVIEW OF COMPRESSED SENSING
CS exploits prior knowledge about the sparsity of a signal

x 2 RN in order to provide efficient signal sampling and
reconstruction [15], [16]. The signal x is assumed to be sparse
in some orthonormal basis  2 RN⇥N ; in other words,
x =  u, where u is a sparse vector. The sparsity assumption
means that there are only K (K ⌧ N) nonzero elements in u.

In CS, the encoder records M < N linear measurements
given by y = �x, where� 2 RM⇥N is a measurement matrix
such that � satisfies the restricted isometry property (RIP).
The matrix � satisfies the RIP of order K if there exists
�

k

2 (0 1] such that, for any K-sparse u, (1 � �

k

)||u||2 
||� u||2  (1 + �

k

)||u||2, where �

k

is the RIP constant
of order K and || · || denotes the `2 norm. This property is
satisfied when the elements of the matrix � are independent
and identically distributed (i.i.d.) Gaussian variables with M

of the order of K log2(N/K). In this case, recovery of x from
y works by solving
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min

x̂

|| T

ˆ

x||
`1 , subject to �ˆ

x = y (1)
where || · ||

`1 denotes the `1 norm (||x||
`1 , P

N

i=1 |xi

|)
and (.)

T is the transpose operator. Several CS reconstruction
methods were developed in [17], [18]. In practice, the collected
measurements are disturbed by noise ˆ

n (i.e., ˆ

y = �x +

ˆ

n).
Using a noise-aware version of (1), the signal is decoded as

min

x̂

|| T

ˆ

x||
`1 , subject to ||�ˆ

x� ˆ

y||  e (2)

where e bounds the total amount of noise in the measurements.
(2) can be expressed using Lagrange multiplier � as

min

x̂

|| T

ˆ

x||
`1 + �||�ˆ

x� ˆ

y||2. (3)

This has the form of a least absolute shrinkage and selection
operator (LASSO) problem where � is used to control the
tradeoff between the sparsity and the approximation error.

III. CS CODING OVER NOISY CHANNELS
A. System Structure

Consider a group of sensors observing a discrete-time
continuous amplitude source signal x 2 RN . This observation
is assumed to be sparse in  . Each sensor encodes its obser-
vation and transmits it to the FC over additive white Gaussian
noise (AWGN) channels. Fig 1 shows the proposed system
structure. Our aim is to reconstruct the sensor observations
under a mean square error (MSE) fidelity criterion given a
constraint on the total transmission power Ptot.

+Φ Scalar MMSE CS

n

DecoderDecoderCoding
x y z ẑ ŷ x̂

N × 1 rM × 1M × 1

Fig. 1. System structure.
At the transmitter side, the M sensors measure the observa-

tion x using a random measurement matrix � 2 RM⇥N . We
draw each element of � from an i.i.d. Gaussian distribution
with variance (1/M)�

2
�. The measurement vector is

y = �x. (4)
Next we map each element of y to an r-dimensional channel
input using 1 : r scalar coding based on a multi-stage scalar
quantizer and a simple analog mapping [8] as described next.

To encode each element y into r dimensions, where r is an
(integer) expansion rate, we first find the pairs (A

i

, B

i

)

A

i

= (�

a

)

iint
�
B

i�1/(�a

)

i

�
, B

i

= (B

i�1 �A

i

) (5)
where i = 1, ..., r�1, B

o

= y, 0 < �

a

< 1 is the quantization
resolution and int(x) is the unique integer j such that x 2 [j�
1
2 , j+

1
2 ). Note that A

i

represents the hierarchical quantization
of y and B

i

is the associated quantization error. To complete
the description of the transmission strategy, A

i

’s and B

r�1

are scaled by a gain factor to satisfy the total power constraint
Ptot/M of the r samples; hence, the corresponding channel
inputs for the sample y can be expressed as follows

z

i

= C

i

A

i

, z

r

=

q
P

r

/�

2
E

B

r�1 (6)

where i = 1, ..., r�1, C
i

=

q
P

i

/�

2
Ai

, �2
Ai

and �

2
E

denotes the
variance of A

i

and B

r�1, respectively. Here, P
i

is the power
for i = 1, ..., r with

P
r

i=1 Pi

= Ptot/M . Different from [8],
we optimize the power allocation between channel samples to
minimize an upper bound on the MSE of the reconstructed
measurements (10).

The received symbol, that is the (rM ⇥ 1) expanded
measurement vector z disturbed by noise, is ˆ

z = z+n, where
n ⇠ N (0,�

2
n

I

rM

) is AWGN and I

rM

is the identity matrix
of size rM . At the receiver, we use the symbol-by-symbol
minimum mean square error (MMSE) estimator to recover the
measurement vector

ŷ

i

=

R
y

i

p(ẑ(i�1)r+1, ..., ẑir|yi)p(yi)dyiR
p(ẑ(i�1)r+1, ..., ẑir|yi)p(yi)dyi

(7)

for i = 1, ...,M , p(·) and p(·|·) denote the probability density
function (pdf) and the conditional pdf, respectively. To recover
the original signal, we solve the LASSO problem in (3), where
� is chosen to minimize E[||x� ˆ

x||2] over a training set. For
a given number of measurements M and expansion rate r,
�

a

and the power allocation {P
i

}r
i=1 are the only parameters

that need to be optimized. Since CS measurements are equally
important [19], the power has to be equally allocated between
them; this explains the constraint

P
r

i=1 Pi

= Ptot/M (where
we divide the total power by M ). Note that the same system
parameters are used for each measurement.
B. Upper Bound on the System Distortion

To find a tractable upper bound on the system’s distortion,
we will assume a suboptimal decoder for estimating the mea-
surement vector ˆy. We follow a similar approach to [8]. Instead
of using MMSE estimation as in (7), we use a maximum
likelihood (ML) estimator to analytically obtain an estimate
for each A

i

and a linear MMSE (LMMSE) estimator to decode
B

r�1. These estimators can be expressed as follows

ˆ

A

i

= �

i

a

argmin

j2Z

�����

s
P

i

�

2
Ai

�

i

a

j � ẑ

i

����� (8)

ˆ

B

r�1 =

E[B
r�1ẑrM ]

E[ẑ2
r

]

ẑ

r

=

p
P

r

�

2
E

P

r

+ �

2
n

ẑ

r

. (9)

Each sample in the measurement matrix is then given by ŷ =P
r�1
i=1

ˆ

A

i

+

ˆ

B

r�1. The MSE in each sample of measurement
vector E[(y � ŷ)

2
] can be decomposed as follows

E[(y� ŷ)

2
] =

r�1X

i=1

E[(A
i

� ˆ

A

i

)

2
] +E[(B

r�1 � ˆ

B

r�1)
2
] (10)

due to the fact that the error terms A
i

� ˆ

A

i

depend only on the
channel noise and hence are independent of each other and of
the quantization error. The distortion E[(A

i

� ˆ

A

i

)

2
] is

�

i

a

X

j2Z
j

2
Pr(ẑ

i

2 I
j

) = 2�

i

a

1X

j=1

j

2
Pr(ẑ

i

2 I
j

) (11)

where the above equality follows from the symmetry
of the distribution of ẑ

i

, the interval I
j

=h
(j � 1

2 )

q
P

i

/�

2
Ai
�

i

a

, (j +

1
2 )

q
P

i

/�

2
Ai
�

i

a

i
, the transition

probability Pr(ẑ

i

2 I
j

) = Q
⇣
(j � 1

2 )

q
P

i

/�

2
Ai
�

i

a

/�

n

⌘
�

Q
⇣
(j +

1
2 )

q
P

i

/�

2
Ai
�

i

a

/�

n

⌘
and Q(·) is the Gaussian Q-

function. Note that the ML decoder described in (8) gives j�i

a

whenever ẑ

i

2 I
j

. By using the fact that Q(x)  0.5e

�x

2
/2,

dropping the second term in Pr(ẑ

i

2 I
j

), and noting that
(j � 1/2)

2
> j for j � 2, the distortion E[(A

i

� ˆ

A

i

)

2
] in

(11) is upper bounded as follows

�

i

a

exp

✓
� P

i

�

2i
a

8�

2
n

�

2
Ai

◆
+�

i

a

1X

j=2

j

2
exp

✓
� jP

i

�

2i
a

2�

2
n

�

2
Ai

◆
(12)
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where the infinite sum can be written as
P1

j=1 j
2
p

j � p =

p

2+p

(1�p)3 � p with p = exp

�
�P

i

�

2i
a

/(2�

2
n

�

2
Ai
)

�
. The first term

in (12) dominates for high values of P

i

/�

2
n

. From LMMSE
theory, the distortion in the quantization error is

E[(B
r�1 � ˆ

B

r�1)
2
]

(a)
= �

2
E

� P

r

�

2
E

P

r

+ �

2
n

(b)
 �

2
E

�

2
n

P

r

. (13)

Adding (12) and (13)-(a) gives an upper bound on the distor-
tion E[(y�ŷ)2]. Assuming enough measurements are available
to satisfy the RIP condition, the distortion from reconstructing
the source signal using the CS decoder depends on the amount
of noise affecting the measurements [16]. In particular, the
distortion from recovering the source is upper bounded by the
noise in the measurement vector up to a scaling factor

||x� ˆ

x||2  c

2||y � ˆ

y||2 (14)
where the constant c depends on the CS decoder and is related
to the RIP constant �

k

. E[||x�ˆx||2] can be expressed similarly.

C. System Design and Optimization
From (14), we can notice that the upper bound on the

distortion E[||x � ˆ

x||2] assumes that the RIP condition is
satisfied, i.e., there is a sufficient number of measurements M .
The behaviour of a CS system is not understood well when
not enough measurements are collected. Hence, we will use a
semi-analytical approach to optimize our scheme.

The end-to-end MSE distortion E[||x � ˆ

x||2] of the pro-
posed scheme comprises two sources of distortion: DCS from
compressed sensing and Dexp from the use of dimension
expansion over the AWGN channel. Given a total power
constraint Ptot and a maximum expansion rate rmax, we aim
to minimize the end-to-end distortion with no constraint on
the number of measurements. From CS theory, it is known
that the distortion DCS decreases with increasing number of
measurements. However, due to the total power constraint,
the average power per channel (use) will decrease; this will
increase the distortion Dexp. Hence, we need to determine
the optimal number of measurements and expansion rate that
should be used to minimize the overall distortion.

Distortion Dexp from channel noise is minimized by opti-
mizing the quantization resolution�

a

and the power allocation
between channel samples (see Sec. III-B). However, in the CS
literature, there is not yet an explicit equation that relates DCS
to the number of measurements M . Thus optimization is done
numerically by searching for the number of measurements
that minimizes E[||x � ˆ

x||2]. This is achieved by forming a
set X of T realizations of the source x. Each source vector
is synthesized as x =  u, where  is the sparsity basis
and u is a K sparse vector where each nonzero element
is drawn from an i.i.d. Gaussian distribution with variance
�

2
u

. There are
�
N

K

�
possible sparsity patterns for u (i.e.,

the sets of indices of the nonzero components of u). Each
realization is drawn uniformly from these patterns. The set X
will be used in order to evaluate (numerically) the end-to-
end performance. For a given noise level �

2
n

, we optimize
the system parameters �

a

and {P
i

}r
i=1. Power is allocated

to minimize the upper bound on the distortion E[(y � ŷ)

2
].

To find a closed form expression for the power allocation,
we approximate the distortion E[(A

i

� ˆ

A

i

)

2
] by the first term

of (12) (this is accurate for low noise levels). Adding the first
term of (12) with (13)-(a), we obtain a good approximation of
the bound on E[(y � ŷ)

2
], denoted by ˜

D

y

. The problem now
is to find {P

i

}r
i=1 that minimize ˜

D

y

under the constraintsP
r

i=1 Pi

= Ptot/M and P

i

� 0. Using the Karush-Kuhn-
Tucker (KKT) conditions [20], we can find a closed form
expression for the power allocation of the first r � 1 stages
(i.e., {P

i

}r�1
i=1 ) as follows (see the Appendix for the proof)

P

i

=

8�

2
n

�

2
Ai

�

2i
a

 
Ptot/M � P

r

� 8�

2
n

logF

8�

2
n

P
r�1
i=1 �

2
Ai
/�

2i
a

+ log

�

3i
a

8�

2
n

�

2
Ai

!+

(15)

where i = 1, ..., r � 1, F =

Q
r�1
i=1

✓
�3i

a

8�2
n�

2
Ai

◆�2
Ai

�2i
a

and

(x)

+
= max(0, x). It is hard to find a closed form expression

for P

r

; instead we perform a numerical search to find the
“best” P

r

. Note that {P
i

}r�1
i=1 are calculated using (15). The

design (offline) optimization (Algorithm 1) is shown below.
Data Input: Input data set X = {x1, . . . ,xT

}, channel
noise variance �

2
n

, total transmission power constraint Ptot and
maximum expansion rate rmax.
Initialization: Set the incremental step Inc for the number of
measurements, the overall distortion D = 10

20T.
for M = K : Inc : Mmax

1: Create a random Gaussian CS matrix � and D

y

= 10

19T.
2: Obtain y for each observation in X using (4).

for r = 2 : rmax
3: Search over a discrete set for �

a

and P

r

with {P
i

}r�1
i=1

as given in (15) so that the upper bound on E[(y � ŷ)

2
]

(Sec. III-B) is minimized.
if D

y

> E[(y � ŷ)

2
]

4: Set D

y

= E[(y � ŷ)

2
], r

b

= r, (�

a

)

b

 �

a

and
({P

i

}r
i=1)

b

 {P
i

}r
i=1.

end if

end for

5: Apply (1 : ropt) scalar coding on y using (5) and (6).
6: Estimate ˆ

y using (7), and ˆ

x using (3).
7: Evaluate E[||x� ˆ

x||2] over the data set X .
if D > E[||x� ˆ

x||2]
8: Set D = E[||x� ˆ

x||2], Mopt  M , ropt = r

b

, (�
a

)opt  
(�

a

)

b

and ({P
i

}r
i=1)opt  ({P

i

}r
i=1)b.

end if

end for

Return

�
Mopt, D, (�

a

)opt, ropt, ({Pi

}r
i=1)opt

�
.

In simulations, we used T = 3⇥104, Mmax =

N

2 and Inc = 4.

IV. SCALING EXPONENT FOR THE CS SYSTEM
In this section, we assume equal power allocation between

channel inputs denoted by P = Ptot/(rM). We refer to a CS
system to be in the large system regime if N , M and K tend to
infinity under the constraint that K/N and K/M converge to a
constant. In such a large system regime, the CS measurement
y converges to an i.i.d. Gaussian distribution with variance
�

2
y

= (K/M)�

2
u

�

2
�. This can be proved using the central limit

theorem following similar approach as in [21]. Since  is an
orthonormal matrix, G = � is a random matrix with i.i.d.
entries drawn from N (0, (1/M)�

2
�). Using the fact that G

and u are independent and that there are only K nonzero
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elements in u, each sample in the vector y converges to a
Gaussian distribution with variance (K/M)�

2
u

�

2
�.

A. Optimal Scaling Exponent
Considering the CS system (in the large system regime) over

an AWGN channel, and using the lossy joint source channel
coding theorem on the measurement vector y, we have

�

2
y

/E[(y � ŷ)

2
] = (1 + P/�

2
n

)

r (16)

where we equate the rate distortion function R(D) =

M

2 log (�

2
y

/E[(y � ŷ)

2
]) of an i.i.d. Gaussian vector y to the

capacity of an AWGN channel C(P ) =

rM

2 log (1 + P/�

2
n

).
Now assuming knowledge of the sparsity pattern S of u at the
receiver, the MMSE estimator is linear and the reconstruction
(for the nonzero elements in u), denoted by ˆ

u

S

, is given by

ˆ

u

S

= ⌃

U

G

T

S

(G

S

⌃

U

G

T

S

+ �

2
n

I

M

)

�1
ˆ

y (17)

where ⌃
U

= �

2
u

I

K

and G

S

is a sub-matrix of G formed by
the columns of G with indices s 2 S. The estimated signal is
then found as ˆ

x =  

ˆ

u. Denoting the smallest singular value
of the matrix ⌃

U

G

T

S

(G

S

⌃

U

G

T

S

+ �

2
n

I

M

)

�1 by c

lb

, hence
||x� ˆ

x||2 � c

2
lb

||y � ˆ

y||2. The average distortion is then

E[(x� ˆ

x)

2
] � c

2
lb

M�

2
y

/(1 + CSNR)r (18)

where the channel signal-to-noise ratio CSNR =

P

�

2
n

. Follow-
ing the definition of [8], the scaling exponent is

E

sc

, lim

CSNR!1

log SDR
logCSNR

 r (19)

where the signal-to-distortion ratio SDR =

E[||x||2]
E[||x�x̂||2] . The

optimal E

sc

is then r. We refer to the large regime system,
which has high delay/complexity and uses the sparsity patterns
as side information, by “CS-Oracle.”

Remark 1 Numerical results show that the large system
regime (i.e., y converges to a Gaussian distribution) is valid
for dimension values (K, M , N ) of practical interest.

B. Scaling Exponent for the Proposed Scheme
Assuming equal power allocation P per channel input, the

result in Sec. III-B can be still used and an upper bound on
the MSE distortion can be found by replacing P

i

and P

r

in
E[(A

i

� ˆ

A

i

)

2
] and E[(B

r�1� ˆ

B

r�1)
2
] with P . Note that as �

a

goes to zero, the quantization error B
i

is uniformly distributed
over the interval [��i

a

/2,�

i

a

/2]. Hence, the variance of B
r�1

from the last quantization stage is �

2
E

= �

2(r�1)
a

/12.
From (12), we can see that the distortion E[(A

i

� ˆ

A

i

)

2
]

decreases exponentially when CSNR�2
a

tends to 1. This
happens for increasing CSNR when �2

a

= 1/CSNR(1�✏), for
some ✏ > 0. Hence, the distortion E[(y � ŷ)

2
] is dominated

by the error from decoding B

r�1. Using (13)-(b) and the fact
that �2

E

= �

2(r�1)
a

/12, we have the following

E[(y � ŷ)

2
]  aCSNR�(r�✏

0) (20)

where ✏

0
= (r � 1)✏ and a > 0. Now, using (14) with (20),

the scaling exponent of the proposed scheme is

lim

CSNR!1

log SDR
logCSNR

� r � ✏

0 (21)

and ✏ can be chosen so that the scaling exponent is optimal
(i.e., r) as in [8]. While the limiting exponent is optimal, the

SDR of the proposed scheme is always inferior to that of the
CS-Oracle (for any CSNR). This is due to the fact that the
latter scheme knows the true sparsity pattern (at the receiver).

V. NUMERICAL RESULTS AND DISCUSSION
In this section, we consider x to be sparse in the discrete

cosine transform basis  with signal length N = 350. The
signal is generated as  u, where u has K = 5 nonzero
elements. The nonzero elements in u are chosen to be i.i.d.
zero-mean Gaussian with unit variance and the sparsity pattern
is uniformly distributed. Fig. 2 shows the SDR performance
against the TSNR = Ptot/�

2
n

. Note that all schemes in Fig. 2
are optimized in terms of the number of measurements as in
Algorithm 1 for rmax = 3. We can notice that the proposed
CS-Scalar scheme outperforms CS-Spiral of [11] for moderate
to high TSNR levels and CS-LASSO (described at the end
of Section II) for all levels. Note that for low TSNRs, the
proposed scheme underperforms the CS-Spiral scheme due
to the fact that we restrict the quantizer to be uniform in
our scheme. Moreover, the use of optimized power allocation
gives a few dBs gain in SDR over the one with equal power
allocation. When optimizing the power allocation, the best
expansion rate for all TSNRs is r = 3; for equal power
allocation, the optimized expansion rate is r = 2 for low to
moderate TSNR levels ( 45 dB), and r = 3 for high TSNRs.
The new degree of freedom r improves the performance
of the CS system. We have also verified that the derived
power allocation provides the same performance as exhaustive
(discrete) search for the optimized power allocation. Note
that as TSNR increases, using higher expansion rate is more
beneficial than using more measurements (which behaves as a
linear mapping after certain threshold M

th

); this explains the
downward trend of M with TSNR levels in Fig. 2.
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Fig. 2. Performance of the proposed scheme over AWGN channel for
N = 350, K = 5 and Ptot = 250. The number of measurements (for
all schemes) and the rate (r  3) are optimized using Algorithm 1. The
number of measurements (for increasing TSNR) used at the plus marks are
[97, 69, 73, 81, 65, 61], at the square marks are [97, 81, 65, 73, 65, 65]. The
TSNR levels used in this graph correspond to CSNRs between 9 and 35 dB.

Having chosen the optimal �
a

in Fig. 2, we next shed some
light on the importance of �

a

to both the SDR and the scaling
exponent. Fig. 3 shows the SDR against CSNR =

P

�

2
n

for
different �

a

. For small �
a

, the error from the quantization
parts vanishes slowly but the scaling exponent in the limit
is larger. For larger �

a

, the error due to the discrete parts
vanishes quickly but the resulting exponent is smaller. If �

a

is
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chosen optimally in terms of CSNR, the resulting performance
is the upper hull of the collection of all curves in Fig. 3.

Remark 2 The proposed scheme exhibits a similar trend as
in Fig. 2 when decreasing Ptot to 100. In this case, using a rate
threshold rmax = 4 in Algorithm 1 is shown to be beneficial for
TSNR � 45 dB. With no constraint on the number of channel
inputs, it is always beneficial to use higher rates for moderate
to high CSNR = TSNR/(rmaxM) levels.
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Fig. 3. Performance of CS-Scalar system over AWGN channel for different
�a: P = 1, N = 350, K = 5, M = 90.

APPENDIX

In this section, we aim to derive a closed form expression
for the power allocation {P

i

}r
i=1. Recall, the problem is

to minimize ˜

D

y

= �

i

a

exp

✓
� Pi�

2i
a

8�2
n�

2
Ai

◆
+

�

2
E�

2
n

Pr+�

2
n

such that
P

r

k=1 Pk

= Ptot/M and P

i

� 0. This constrained optimiza-
tion can be recast into an unconstrained minimization problem
via the Lagrange cost function

J(P

i

, µ,�

i

) = �

i

a

exp

✓
� P

i

�

2i
a

8�

2
n

�

2
Ai

◆
+

�

2
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2
n
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2
n

+µ

 
rX

i=1

P

i

� Ptot

M

!
�

rX

i=1

�

i

P

i

(22)

where µ and �

i

denote the Lagrangian multipliers. Using the
KKT conditions [20], we can write the following

@J

@P

i

= 0, P

i

�

i

= 0, for i = 1, .., r, (23)

and
rX

i=1

P

i

= Ptot/M. (24)

For all those P

i

6= 0, we have �

i

= 0; solving the partial
derivative in (23) we obtain

P

i
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2
n
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2
Ai
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+ log
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2
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(25)

P
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2
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�

2
n

µ

� �

2
n

1

A
+

(26)

where i = 1, ..., r � 1 and (x)

+
= max (0, x). Next, we need

to substitute (25) and (26) into (24) and solve for µ. Obtaining
a closed form expression for µ is intractable in this case. To
overcome this problem, we assume a given 0 < P

r

< Ptot/M

and solve for {P
i

}r�1
i=1 . The new constraint is now given byP

r�1
i=1 P

i

= Ptot/M � P

r

. Substituting (25) into the new
constraint and solving for µ, we have the following

µ̄ , log

1

µ

=

Ptot/M � P

r

� 8�

2
n

logF

8�

2
n

P
r�1
i=1 �

2
Ai
/�

2i
a

(27)

where F =

Q
r�1
i=1

✓
�3i

a

8�2
n�

2
Ai

◆�2
Ai

�2i
a

. The optimized {P
i

}r�1
i=1

now can be easily found as given in (15) by inserting µ̄

into (25). Note that P
r

has to be found numerically.
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