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Abstract— We study the decoding problem when a binary
linear quasi-perfect code is transmitted over a binary channel
with additive Markov noise. After examining the properties
of the channel block transition distribution, we show a near
equivalence relationship between strict maximum likelihood and
strict minimum Hamming distance decoding for a range of
channel parameters and the code’s minimum distance. As a
result, an improved minimum distance decoder is proposed and
simulations illustrating its benefits are provided.

I. I NTRODUCTION

Conventional communication systems employ coding
schemes that are designed for memoryless channels. However,
since most real world channels have memory, interleaving is
used in an attempt to spread the channel noise in a uniform
fashion over the set of received words so that the channel
appears memoryless to the decoder. This in fact adds more
complexity and delay to the system, while failing to exploit
the benefits of the channel memory.

Progress has been achieved on the statistical and information
theoretic modeling of channels with memory (e.g., see [1],
[6], [10], [11]), as well as on the design of effective iterative
decoders for such channels (e.g., see [2], [3], [7], [8]). How-
ever, little is known about the structure of optimal maximum
likelihood (ML) decoders for such channels. We herein focus
on one of the simplest models for a channel with memory, the
binary channel with additive Markov noise. Since it is well
known that ML decoding of binary codes over the memoryless
binary symmetric channel (with bit error rate less than 1/2)is
equivalent to minimum Hamming distance decoding, it is nat-
ural to investigate whether a relation exists between thesetwo
decoding methods for the Markov noise channel. We provide
a partial answer to this problem by showing (after elucidating
some properties of the Markov channel distribution) that the
strict ML decoding of a binary linear quasi-perfect code canbe
nearly equivalent to its strict minimum distance decoding.As a
result we propose a (complete) decoder which is an improved
version of the minimum distance decoder, and we illustrate its
performance via simulation results.

In a related work [4], the optimality of the binary per-
fect Hamming codes and the near-optimality of subcodes of
Hamming codes are demonstrated for the same Markov noise
channel.

∗This work was supported in part by NSERC of Canada.

II. SYSTEM DEFINITION AND PROPERTIES

We consider a binary additive noise channel whose output
symbol Yk at time k is described byYk = Xk ⊕ Zk, k =
1, 2, · · · , where⊕ denotes addition modulo-2,Xk ∈ {0, 1}
is the kth input symbol andZk ∈ {0, 1} is the ith noise
symbol. We assume that the input and noise processes are
independent of each other. Furthermore, we assume that the
noise process{Zk}

∞

k=1 is a stationary (first-order) Markov
source with transition probability matrix given by

Q = [Qij ] =

»

ε + (1 − ε)(1 − p) (1 − ε)p
(1 − ε)(1 − p) ε + (1 − ε)p

–

, (1)

where Qij , Pr(Zk = j|Zk−1 = i), i, j ∈ {0, 1}. Here
p = Pr(Zk = 1) is the channel bit error rate (CBER),
and ε , [Pr(Zk = 1, Zk−1 = 1) − p2]/[p(1 − p)] is the
correlation coefficient of the noise process. We assume that
0 < p < 1/2 and that0 ≤ ε < 1, ensuring that the noise
process is irreducible. Whenε = 0, the noise process becomes
independent and identically distributed (i.i.d.) and the resulting
channel reduces to the (memoryless) binary symmetric channel
with crossover probability or CBERp (which we denote by
BSC(p)). Note that this (memory-one) Markov noise channel
is a special case of the Gilbert-Elliott channel [6] (realized
when the probability for causing an error equals zero in the
“good state” and one in the “bad state”).

For xn = (x1, · · · , xn) ∈ {0, 1}n andyn = (y1, · · · , yn) ∈
{0, 1}n, the channel block transition probabilityPr(Y n =
yn|Xn = xn) can be expressed in terms of the channel noise
block distribution as follows

Pr(Y n = y
n|Xn = x

n) = Pr(Zn = z
n)

= L

n
Y

k=2

[zk−1ε + (1 − ε)p]zk

· [(1 − zk−1)ε + (1 − ε)(1 − p)]1−zk

wherezk = xk ⊕ yk, k = 1, · · · , n andL = Pr(Z1 = z1) =
pz1(1−p)1−z1 . Givenzn = (z1, · · · , zn) ∈ {0, 1}n, let tij(zn)
denote the number of times two consecutive bits inzn are equal
to (i, j), wherei, j ∈ {0, 1}; more specifically

t00(z
n) =

n−1
X

k=1

(1 − zk)(1 − zk+1), t11(z
n) =

n−1
X

k=1

zkzk+1,

t10(z
n) =

n−1
X

k=1

zk(1 − zk+1), t01(z
n) =

n−1
X

k=1

(1 − zk)zk+1.



In terms of thetij(zn)’s Pr(Zn = zn) can be written as

Pr(Zn = zn) = L [ε + (1 − ε)(1 − p)]t00 [(1 − ε)p]t01

· [(1 − ε)(1 − p)]t10 [ε + (1 − ε)p]t11 . (2)

But from the definition of thetij(zn)’s, we have the following.

t10(z
n) = n − 1 − w(zn) − t00(z

n) + z1 (3)

t01(z
n) = w(zn) − z1 − t11(z

n), (4)

where w(zn) =
∑n

k=1 zk is the Hamming weight ofzn.
Substituting (3) and (4) into (2) yields the following expression
for the noise block distribution, which will be instrumental in
our analysis.

Pr(Zn = zn) = (1 − ε)(n−1) (1 − p)n

»

p

1 − p

–w(zn)

»

ε + (1 − ε)(1 − p)

(1 − ε)(1− p)

–t00(zn) »

ε + (1 − ε)p

(1 − ε)p

–t11(zn)

. (5)

The properties oft00(zn) and t11(zn) in terms of onlyn
andw(zn) are as follows.

• If w(zn) = 0, thent00(z
n) = n − 1 and t11(z

n) = 0.
• If 0 < w(zn) = l ≤ n − 1, then

t00(z
n) ≤ n − l − 1

with equality iff all the 0’s inzn occur consecutively, and

t11(z
n) ≤ l − 1

with equality iff all the 1’s inzn occur consecutively.
• If 0 < w(zn) = l ≤ n

2 , then

t00(z
n) ≥ max{n − 2l − 1, 0}

and t11(z
n) ≥ 0.

• if n
2 < w(zn) = l ≤ n − 1, thent00(z

n) ≥ 0 and

t11(z
n) ≥ 2l − n − 1.

• If w(zn) = n, thent11(z
n) = n − 1 and t00(z

n) = 0.

When there is no possibility for confusion, we will write
t00(z

n) and t11(z
n) as t00 and t11, respectively. We also

assume throughout that the blocklengthn ≥ 2.

III. A NALYSIS OF THE NOISE BLOCK DISTRIBUTION

Lemma 1:Let 0n be the all-zero word (of lengthn) and let
zn 6= 0n be any non-zero binary word. Then

Pr(Zn = zn) < Pr(Zn = 0n).

Proof: Using (2), we have

Pr(Zn = zn)

= L [ε + (1 − ε)(1− p)]t00 [(1 − ε)p]t01

· [(1 − ε)(1 − p)]t10 [ε + (1 − ε)p]t11

< (1 − p) [ε + (1 − ε)(1 − p)]t00 [ε + (1 − ε)(1− p)]t01

· [ε + (1 − ε)(1 − p)]t10 [ε + (1 − ε)(1 − p)]t11

= (1 − p) [ε + (1 − ε)(1 − p)]t00+t01+t10+t11

= (1 − p) [ε + (1 − ε)(1 − p)]n−1

= Pr(Zn = 0n),

where the strict inequality holds sinceL = p < 1−p if z1 = 1,
and sincep < 1 − p with t01 > 0 (sincezn 6= 0n) if z1 = 0.

Lemma 2:Let zn
1 6= 0n be a non-zero noise word with

Hamming weightw(zn
1 ) < n, t00 = n − w(zn

1 ) − 1 and
t11 = w(zn

1 ) − 1 (i.e., zn
1 is of the form (11 · · · 100 · · ·0) or

(00 · · ·011 · · ·1) ). Let zn
2 be another non-zero noise word with

w(zn
2 ) = w(zn

1 ) but with different t00 and/or t11. Then, if
ε > 0,

Pr(Zn = zn
1 ) > Pr(Zn = zn

2 ).

Proof: From (5), we note thatPr(Zn = zn) strictly
increases with botht00 and t11 when the weight is kept
constant andε > 0. Sincezn

1 has maximum values for both
t00 andt11 amongst all noise words of weightw(zn

1 ) (but with
differentt00 and/ort11), the strict inequality above follows.

Note that whenε = 0, obviously all noise words with the
same weight have identical distributions (since the channel
reduces to the BSC(p)).

Lemma 3:Suppose that

t < t
∗

,
ln

h

ε+(1−ε)(1−p)
(1−ε)(1−p)

i

+ ln
h

1−p

p

i

ln
h

ε+(1−ε)(1−p)
(1−ε)(1−p)

i

+ ln
h

ε+(1−ε)p
(1−ε)p

i − 1

and
0 < ε <

1 − 2p

2(1 − p)
.

Let zn be a noise word of weightw(zn) = m such that
0 ≤ m ≤ t + 1 ≤ n

2 . Then Pr(Zn = zn) > Pr(Zn = z̄n)
wherez̄n is any noise word with weightw(̄zn) = l > m.

Proof: First, note that the result directly holds ifm = 0
by Lemma 1. Now letzn be a noise word of nonzero weight
m ≤ t+1, and let̄zn be another noise word withw(z̄n) > m.
Case 1:Assume thatw(̄zn) = m + i wherei ∈ {1, 2, ..., n−
m − 1}. Then by (5), we have

Pr(Zn = z̄n)

Pr(Zn = zn)

≤

»

ε + (1 − ε)(1 − p)

(1 − ε)(1 − p)

–m−i »

ε + (1 − ε)p

(1 − ε)p

–m+i−1 „

p

1 − p

«i

≤

»

ε + (1 − ε)(1 − p)

(1 − ε)(1 − p)

–m−1 »

ε + (1 − ε)p

(1 − ε)p

–m „

p

1 − p

«

, f(m).

Since f(m) is strictly increasing inm (when ε > 0), and
m≤ t + 1 < t∗ + 1, we obtain that

f(m) < f(t∗ + 1) = 1 ⇒
Pr(Zn = z̄n)

Pr(Zn = zn)
< 1.

Case 2:Assume thatw(̄zn) = n. Let ẑn be another noise
word with w(̂zn) = n − 1, t11(̂z

n) = n − 2 and t00(̂z
n) = 0.

Then
Pr(Zn = z̄n)

Pr(Zn = zn)
=

Pr(Zn = ẑn)

Pr(Zn = zn)

Pr(Zn = z̄n)

Pr(Zn = ẑn)

<
Pr(Zn = z̄n)

Pr(Zn = ẑn)

=

»

ε + (1 − ε)p

(1 − ε)p

– „

p

1 − p

«

=

»

ε + (1 − ε)p

(1 − ε)(1 − p)

–

< 1



where the first strict inequality holds sincePr(Zn = ẑn) <
Pr(Zn = zn) by Case 1, and the last strict inequality holds
sinceε < 1−2p

2(1−p) .

IV. D ECODING OFQUASI-PERFECTCODES

We next study the relationship between strict maximum
likelihood (SML) decoding and strict minimum (Hamming)
distance decoding for binary linear quasi-perfect codes sent
over the additive Markov noise channel. Strict maximum
likelihood (SML) decoding is an optimal (incomplete) decoder
in the sense of minimizing the code’s frame error rate (FER) –
i.e., the codeword error probability – when the codewords are
operated on with equal probability (which we herein assume).

Let Fn
2 = {0, 1}n denote the set of all binary words of

lengthn. A non-empty subsetC of Fn
2 is called a binary linear

code if it is a subgroup ofFn
2 . The elements ofC are called

codewords. We usually describeC with the triplet (n, M, d)
to indicate thatn is the blocklength of its codewords,M is
its size andd is its minimum Hamming distance.1

Definition 1: [9], [5] An (n, M, d) binary linear codeC is
said to bequasi-perfect if, for some non-negative integert,
it has all patterns of weightt or less, some of weightt + 1,
and none of greater weight as coset leaders.

An equivalent definition for quasi-perfectness is that, for
some non-negative integert, C has a packing radius equal to
t and a covering radius equal tot + 1; i.e., the spheres with
(Hamming) radiust around the codewords ofC are disjoint,
and the spheres with radiust + 1 around the codewords cover
Fn

2 . Clearly, for such a codet =
⌊

d−1
2

⌋

(i.e., d = 2t + 1
or d = 2t + 2). Examples of quasi-perfect binary linear
codes include the(n, 2, n) repetition codes withn even, the
(2m, 22m

−1−m, 4) extended Hamming codes as well as the
(2m − 2, 22m

−2−m, 3) shortened Hamming codes (m ≥ 2),
the(2m−1, 22m

−1−2m, 5) double-error correcting BCH codes
(m ≥ 3), and the(24, 212, 8) extended Golay code.

Suppose that a codeword of a quasi-perfect codeC is
transmitted over the Markov noise channel and thatyn is
received at the decoder. The following are possible decoding
rules one can use to recover the transmitted codeword.

• ML Decoding:yn is decoded into codewordc0 ∈ C if
Pr(Y n = yn|Xn = c0) ≥ Pr(Y n = yn|Xn = c) for
all c ∈ C. If there is more than one codeword for which
the above condition holds, then the decoder picks one of
such codewords at random.

• Strict ML (SML) Decoding:It is identical to the ML rule
with the exception of replacing the inequality with a strict
inequality; if no codewordc0 satisfies the strict inequality,
the decoder declares a decoding failure.

• Minimum Distance (MD) Decoding: yn is decoded into
codeword c0 ∈ C if w(c0 ⊕ y) ≤ w(c ⊕ y) for all
c ∈ C. If there is more than one codeword for which

1In other words,d , minc1,c2∈C:c1 6=c2 d(c1, c2) where d(c1, c2) =
w(c1 ⊕ c2) is the Hamming distance betweenc1 and c2 and the modulo-2
operation is applied component-wise onc1 andc2.

the above condition holds, then the decoder picks one of
such codewords at random.

• Strict Minimum Distance (SMD) Decoding: It is iden-
tical to the MD rule with the exception of replacing
the inequality with a strict inequality; if no codeword
c0 satisfies the strict inequality, the decoder declares a
decoding failure.2

Lemma 4:Let C be an(n, M, d) binary linear quasi-perfect
code to be used over the Markov noise channel. Assume that

—

d − 1

2

�

< t
∗

,
ln

h

ε+(1−ε)p
(1−ε)p

i

+ ln
h

1−p

p

i

ln
h

ε+(1−ε)(1−p)
(1−ε)(1−p)

i

+ ln
h

ε+(1−ε)p
(1−ε)p

i − 1

and
0 < ε <

1 − 2p

2(1 − p)
.

Then, for a given wordyn received at the channel output, the
following hold.

(a) If ∃ ĉ ∈ C such thatw(ĉ⊕yn) < w(c⊕ yn) ∀ c 6= ĉ ∈ C,
then Pr(Y n = yn|Xn = ĉ) > Pr(Y n = yn|Xn = c)
∀ c 6= ĉ ∈ C.

(b) If ∃ ĉ ∈ C such thatPr(Y n = yn|Xn = ĉ) > Pr(Y n =
yn|Xn = c) ∀ c 6= ĉ ∈ C, then w(ĉ ⊕ yn) ≤ w(c ⊕
yn) ∀ c ∈ C.

Proof: (a) Let ĉ ∈ C such thatw(ĉ ⊕ yn) < w(c ⊕
yn) ∀ c 6= ĉ ∈ C. Obviously, ĉ ⊕ yn is a coset leader, thus
w(ĉ ⊕ yn) ≤

⌊

d−1
2

⌋

+ 1 ≤ n
2 since C is quasi-perfect. By

Lemma 3,Pr(Zn = ĉ⊕ yn) > Pr(Zn = c⊕ yn) ∀c ∈ C ⇐⇒
Pr(Y n = yn|Xn = ĉ) > Pr(Y n = yn|Xn = c) ∀ c 6= ĉ ∈ C.

(b) Let ĉ ∈ C such thatPr(Y n = yn|Xn = ĉ) > Pr(Y n =
yn|Xn = c) ∀ c 6= ĉ ∈ C. Assume that∃c̄ 6= ĉ ∈ C such
that w(c̄ ⊕ yn) < w(ĉ ⊕ yn); the existence of̄c is always
guaranteed by choosing it such thatc̄⊕ yn is the coset leader
of C ⊕ yn. Thus, we can assume thatw(c̄⊕yn) ≤ n

2 since the
coset leader has weight less than or equal ton

2 (asC is quasi-
perfect). Then by Lemma 3,Pr(Zn = ĉ ⊕ yn) < Pr(Zn =
c̄⊕yn) ⇐⇒ Pr(Y n = yn|Xn = ĉ) < Pr(Y n = yn|Xn = c̄)
which contradicts our assumption thatĉ maximizesPr(yn|c)
over all codewords. Hence,w(ĉ⊕ yn) ≤ w(c ⊕ yn) ∀ c ∈ C.

Note the above lemma implies that if a quasi-perfect code
has no decoding failures in its SMD decoder, then its SMD and
SML decoders are equivalent under the stated conditions on
the Markov channel parameters(p, ǫ) and the code’s minimum
distance.3 In light of the above result and Lemma 2, we
next propose the following complete decoder that improves
over MD decoding. It includes SMD decoding and exploits

2Recall that the ML and MD decoders are complete decoders – i.e., they
always select a codeword to decode the received word – while the SML and
SMD decoders are incomplete decoders as they declare a decoding failure
when there are more than one codeword with minimal decoding metric.

3In contrast, recall that for the BSC(p) with p < 1/2, SML and SMD
decoding are equivalent for all binary codes (the same equivalence also holds
between ML and MD decoding). Note also that whenε ↓ 0, the conditions
in the above lemma reduce to

j

d−1
2

k

< ∞, andp < 1
2

(which is consistent
with what was just mentioned).



p ε1 ε2 ε3

1 × 10−3 0.3172 0.02843 0.08801
5 × 10−3 0.3152 0.05628 0.02277
1 × 10−2 0.3126 0.07297 0.03308
5 × 10−2 0.2918 0.11492 0.06644
1 × 10−1 0.2645 0.12367 0.07995

TABLE I

VALUES OFǫt FOR DIFFERENTp AND t. LEMMA 4 HOLDS FOR ALL ε ≤ ǫt .

the knowledge oft00 and t11 to resolve ties (which occur
when there are more than one codeword that are closest to the
received word).

MD+ Decoding:Assume thatyn is received at the channel
output. Suppose the decoder outputs the codewordc0 satis-
fying the MD decoding condition. If there is more than one
such codeword, then the decoder choosesc0 that maximizes
t00(c0 ⊕ yn) + t11(c0 ⊕ yn). If there is still a tie, then the
decoder choosesc0 that maximizest11(c0 ⊕ yn). Finally, if
there is still a tie, then the codewordc0 is picked at random.4

V. SIMULATION RESULTS

Given an(n, M, d) quasi-perfect code and a fixed CBER
p, we let ǫt be the largestε for which both conditions of
Lemma 4 hold, wheret , ⌊(d−1)/2⌋. In Table I, we provide
the values ofǫt for t = 1, 2, 3 and different values ofp.

We herein present simulation results for decoding the binary
(8, 24, 4) extended Hamming code and the(15, 27, 5) BCH
code over the additive Markov noise channel. A large sequence
of a uniformly distributed binary i.i.d. source was generated,
encoded via one of these codes and sent over the channel.
For the Hamming code,t = 1; thus the values forǫ1 in
Table I provide the largest values ofǫ for which Lemma 4
holds for different CBERsp. As a result, we simulated the
Hamming system for the 5 values ofp listed in Table I and
ε ∈ {0.05, 0.1, 0.2, 0.25}. Similarly, since t = 2 for the
BCH code, the values forǫ2 apply, and the BCH system
was simulated forǫ = 0.05 and all values ofp in Table I
exceptp = 10−3. A typical Hamming code simulation result is
presented in Fig. 1 forε = 0.25, and the BCH code simulation
is shown in Fig. 2 forǫ = 0.05. The results indicate that
MD+ performs nearly identically to ML decoding and provides
significant gain over MD decoding. By comparing the two
figures, we also note that the performance gap between MD
and ML decoding decreases withǫ (which is consistent with
the fact that MD and ML decoding are equivalent whenǫ = 0).

Finally, note that one limitation of Lemma 4 is that its con-
ditions are too stringent to accommodate quasi-perfect codes
with large minimum distance, unless if the channel correlation
ǫ is substantially decreased towards 0, thus rendering the
Markov channel nearly memoryless (e.g, see howǫt decreases
as t increases in Table I). The determination of less stringent
conditions is an interesting topic for future work.

4Clearly, MD+ and MD decoding are equivalent for the BSC, since for this
channel, it does not matter what codeword the decoder selects when there is
a tie (as long as it is one of the codewords closest to the received word).
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Fig. 1. FER vs CBERp under different decoding schemes for the Hamming
(8, 24, 4) code over the Markov channel with noise correlationǫ = 0.25.
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Fig. 2. FER vs CBERp under different decoding schemes for the BCH
(15, 27, 5) code over the Markov channel with noise correlationǫ = 0.05.


