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Abstract— We study the decoding problem when a binary II. SYSTEM DEFINITION AND PROPERTIES
linear quasi-perfect code is transmitted over a binary chamel
with additive Markov noise. After examining the properties
of the channel block transition distribution, we show a near
equivalence relationship between strict maximum likelih@d and
strict minimum Hamming distance decoding for a range of
channel parameters and the code’s minimum distance. As a
result, an improved minimum distance decoder is proposed ah
simulations illustrating its benefits are provided.

We consider a binary additive noise channel whose output
symbol Y}, at time k is described byY, = X, ® Zy, k =
1,2,---, where® denotes addition modulo-2{; € {0, 1}
is the kth input symbol andZ, € {0,1} is the ith noise
symbol. We assume that the input and noise processes are
independent of each other. Furthermore, we assume that the
noise processZ;}7>, is a stationary (first-order) Markov
source with transition probability matrix given by

I. INTRODUCTION 1| e+(Q=e)(1-p) (I-e)p 1
| o 9=l= | aigasy era-ap |0 O
Conventional communication systems employ coding

schemes that are designed for memoryless channels. Howewdiere Q;; = Pr(Z, = j|Zx-1 = i), 4,5 € {0,1}. Here

since most real world channels have memory, interleavingjs = Pr(Z, = 1) is the channel bit error rate (CBER),

used in an attempt to spread the channel noise in a unifoamd ¢ 2 [Pr(Z, = 1,21 = 1) — p?]/[p(1 — p)] is the

fashion over the set of received words so that the chanmglrrelation coefficient of the noise process. We assume that

appears memoryless to the decoder. This in fact adds morec p < 1/2 and that0 < e < 1, ensuring that the noise

complexity and delay to the system, while failing to exploiprocess is irreducible. When= 0, the noise process becomes

the benefits of the channel memory. independent and identically distributed (i.i.d.) and tesulting
Progress has been achieved on the statistical and infamathannel reduces to the (memoryless) binary symmetric ailann

theoretic modeling of channels with memory (e.g., see [Ijith crossover probability or CBER (which we denote by

[6], [10], [11]), as well as on the design of effective itéavat BSC(p)). Note that this (memory-one) Markov noise channel

decoders for such channels (e.g., see [2], [3], [7], [8])wHo is a special case of the Gilbert-Elliott channel [6] (reatiz

ever, little is known about the structure of optimal maximurnwhen the probability for causing an error equals zero in the

likelihood (ML) decoders for such channels. We herein focdgood state” and one in the “bad state”).

on one of the simplest models for a channel with memory, theFor 2™ = (zy,--- ,z,) € {0,1}" andy”™ = (y1,--- ,yn) €

binary channel with additive Markov noise. Since it is well0; 1}, the channel block transition probabilifyr(Y" =

known that ML decoding of binary codes over the memoryle o | X" = 2) can be expressed in terms of the channel noise

. X LT ock distribution as follows

binary symmetric channel (with bit error rate less than 142)

equivalent to minimum Hamming distance decoding, it is nat-Pr(Y"™ = y"| X" = 2") = Pr(Z" = 2")

ural to investigate whether a relation exists between these - :

decoding methods for the Markov noise channel. We provide = L[] lerre+ (1= o))

a partial answer to this problem by showing (after eluciuati h=2 1-2,

some properties of the Markov channel distribution) that th 1= ze-n)e+ =o)L= p)]

strict ML decoding of a binary linear quasi-perfect code ban wherez, = 25 @ Y k=1,--- ,nandL = Pr(Z, = z;) =

nearly equivalent to its strict minimum distance decodikga p* (1—p)'=*1. Givenz® = (21, ,z,) € {0,1}", lett;;(Z")

result we propose a (complete) decoder which is an improvégnote the number of times two consecutive bitg'iare equal

version of the minimum distance decoder, and we illustrate £0 (¢:7), wherei, j € {0, 1}; more specifically

performance via simulation results. n—1 n—1
In a related work [4], the optimality of the binary per- too(Z") = Z (1 —2k)(1 = zx41), t11(Z") = szzk+17
fect Hamming codes and the near-optimality of subcodes of k=1 k=1
Hamming codes are demonstrated for the same Markov noise 1 1
channel. tlo(Zn) = Z Zk(l — Zk+1), t01(2n) = Z (1 — zk)zk+1.
k=1 k=1
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In terms of thet;;(2™)’s Pr(Z" = Z*) can be written as

Pr(Z' =7") = Lle+(1—&)(1—p)] [(1—e)p]"™
A=) (A =p)* e+ (1 —e)p". ()
But from the definition of the;; (=™)’s, we have the following.
tlo(z") = n—1-— w(z") — too(Zn) + 21 (3)
t01(z") = w(z”) —Z1 — tll(Zn), (4)

where w(z") = Y7_, z is the Hamming weight of:".
Substituting (3) and (4) into (2) yields the following expsén
for the noise block distribution, which will be instrumehia
our analysis.

n n (n—1) n p W)

Pr(Z"=7")= (1—¢) (1-p) [Tp}

e+ (1=e)(1=p)]) " [e+ (L=ap] ™™ o

(1-¢)1-p) (1-¢)p '
The properties ofyy(z") andt11(Z") in terms of onlyn
andw(z") are as follows.

o If w(z™) =0, thentoe(z™) =n—1 andty1(z
e If0<w(Z")=1<n-1,then

too(2

") = 0.

M<n—-1-1

with equality iff all the O’s inz™ occur consecutively, and

tll(Zn) S -1

with equality iff all the 1's inz™ occur consecutively.
o If 0 <w(z")=1<7%, then

too (Z

") > 0.
n) =1<n-1, thentoo(z

tll(Z
n) =n, thentu(z

™) > max{n — 2l — 1,0}

and t11 (Z

o if 5 <w(z ™) >0 and

M >2l-n-—1.
o If w(z

n) =n-—1 andtoo(zn) = 0.

When there is no possibility for confusion, we will write
too(z™) and t11(2™) as too and t11, respectively. We also

assume throughout that the blocklength> 2.

I11. ANALYSIS OF THENOISEBLOCK DISTRIBUTION
Lemma 1:Let 0™ be the all-zero word (of length) and let
Z" # 0" be any non-zero binary word. Then
Pr(Zz" =7") < Pr(Z" =0").
Proof: Using (2), we have
Pr(Z" =7")
= Lle+(1—-e)1-p]™[(1-e)p
A=) =)0 [e + (1 —e)p]™
P+ (L—e)(1—p) e+ (1—e)(1~
et Q-1 -p)" e+ (1 —e)1~

_ p) [5 + (1 _ E)( p)]too+t01 +ti0+t11
]

n—

]t01

Pl
P

< (1=

= (1
(I-p)le+(1-e)(1-p)
= Pr(Z"=0"),

where the strict inequality holds sinde=p < 1—piif z; =1,
and sincep < 1 — p with to; > 0 (sincez™ # 0") if z; = 0.
[ |
Lemma 2:Let ¥ # 0™ be a non-zero noise word with
Hamming weightw(z}) < n, tgo = n — w(zy) — 1 and
ti1 = w(Z}) — 1 (i.e., Z is of the form (1---100---0) or
(00---011---1)). Letz; be another non-zero noise word with
w(zd) = w(z}]) but with differentty, and/ort;;. Then, if
>0,
Pr(Z" =71) > Pr(Z" = 7).

Proof: From (5), we note thaPr(Z" = z*) strictly
increases with bothoy and t;; when the weight is kept
constant and > 0. Sincez; has maximum values for both
too andt;; amongst all noise words of weight(Z") (but with
differenttqy and/ort,), the strict inequality above followsm

Note that where = 0, obviously all noise words with the
same weight have identical distributions (since the chlnne
reduces to the BS@J).

Lemma 3:Suppose that

+(-5)(1-p) 1-
In [Sufs)sufp)p ] +n [Tp]

e+(1—e)(1—p) e+(l—e)p
ln[ a—o0-p ]“n[ a—o)p ]

A

t<t

and 19

2(1-p)

Let z* be a noise word of weightv(z™) = m such that
0<m<t+1< 5. ThenPr(Z" = 2") > Pr(Z" = Z*)
whereZz" is any noise word with weight(z*) =1 > m.

Proof: First, note that the result directly holds»f = 0
by Lemma 1. Now letz* be a noise word of nonzero weight
m < t+1, and letz* be another noise word wittw(z") > m.
Case 1:Assume thatw(zZ") = m + i wherei € {1,2,...,n —

m — 1}. Then by (5), we have
Pr(z* =7%)
Pr(Zz" =z0)

ST T ()

e+(1-e)1-p) )" " [e+Q—2)p]™( P

{ (1-e)(1-p) ] { (I—e)p ] <1—p)
f(m).
Since f(m) is strictly increasing inm (whene > 0), and
m<t+1<t*+1, we obtain that
Pr(Zz" =7")
Pr(Z" = z7)

O0<e<

[1>

fm) < ft"+1)=1= <1.

Case 2:Assume thatw(z") = n. Let 2* be another noise
)

word with w(2") = n — 1, t11(2") = n — 2 andto(2") = 0.
Then
Pr(Z" =7")  Pr(Z"=72")Pr(Z" =7")
Pr(Zn=2z0) =~ Pr(Zn=2z) Pr(Zn =7%)
_ Pr(zn=2)
Pr(Zn =7)




where the first strict inequality holds sind& (2" = 2") < the above condition holds, then the decoder picks one of
Pr(Z™ = Z*) by Case 1, and the last strict inequality holds  sych codewords at random.

sincee < %. « Strict Minimum Distance (SMD) Decodindt is iden-
u tical to the MD rule with the exception of replacing
the inequality with a strict inequality; if no codeword
IV. DECODING OFQUASI-PERFECTCODES co satisfies the strict inequality, the decoder declares a

We next study the relationship between strict maximum decoding failure?
likelihood (SML) decoding and strict minimum (Hamming) Lemma 4:LetC be an(n, M, d) binary linear quasi-perfect
distance decoding for binary linear quasi_perfect coded S@Ode to be used over the Markov noise channel. Assume that
over the additive Markov noise channel. Strict maximum 1n[6+‘1’6)"} +1n [1;;3}
likelihood (SML) decoding is an optimal (incomplete) deeod {uJ <t A (1=<)p P
in the sense of minimizing the code’s frame error rate (FER) — 2 In [W] +1In [Eﬁ(:fp)p}
i.e., the codeword error probability — when the codewords ar
operated on with equal probability (which we herein assume

Let 72 = {0,1}™ denote the set of all binary words of
lengthn. A non-empty subset of 73 is called a binary linear
code if it is a subgroup of%. The elements of are called
codewords. We usually descriliewith the triplet (n, M, d)
to indicate thatn is the blocklength of its codewordd/ is
its size andd is its minimum Hamming distance.

Definition 1: [9], [5] An (n, M, d) binary linear code’ is )
said to bequasi-perfect if, for some non-negative integer o lvm R 7
it has all patterns of weight or less, some of weight+ 1, yn|X =0 Ve# el thenuwCdy) < wCce
and none of greater weight as coset leaders. y)Veec.

An equivalent definition for quasi-perfectness is that, for Proof: (a) Let¢ € C such thatw(¢ ® y*) < w(c @
some non-negative integérC has a packing radius equal toy™) V ¢ # ¢ € C. Obviously,¢ @ y" is a coset leader, thus
t and a covering radius equal tot 1; i.e., the spheres with w(¢ @ y"*) < {%J +1 < 4 sinceC is quasi-perfect. By
(Hamming) radiug around the codewords @f are disjoint, Lemma 3,Pr(Z" =¢ay") > Pr(Z" =cay") VceC <—
and the spheres with radius- 1 around the codewords coverPr(Y" =y*| X" =¢) > Pr(Y" =y*| X" =c)Vc# ¢ eC.

F3. Clearly, for such a code = |432] (ie., d = 2t + 1 (b) Let e € C such thatPr(y™ = y"[X" = ¢) > Pr(Y" =

2 . . .
or d = 2t + 2). Examples of quasi-perfect binary I|neayn|Xn — Q) Vc+éc (. Assume thatc £ ¢ € C such
that w(T ® y") < w(t ® y"); the existence of is always

-1

1-2p
2(1-p)’

Then, for a given word,™ received at the channel output, the

following hold.

(@) If3 ¢ e suchthatw(Edy”) < w(chy™)Vc#éel,
thenPr(Y"” = y*| X" =¢) > Pr(Y"” = y*|X" = ¢)
Ve#c¢eC.

(b) If 3 € € C such thatPr(Y” = y*| X" > Pr(Y" =

<

O0<e<

codes include thén, 2,n) repetition codes witth even, the

m 92" —1—-m H
gm’z 9 22””*ﬁ)me;,(')[egr?grc:e:eag]m;nrgnfiagesoﬁzg\;v(e ! g)s thSuaranteed by choosing it such tlab y" is the coset leader

m . ", cay") < 2sj
o1 15 e arrconecing S s TS Ve cn assume o)< sce
(m > 3), and the(24,2'2,8) extended Golay code. 9 qua q

Suppose that a codeword of a quasi-perfect cGdés ggfi(;t)ge;rtgml'imr:&?i(i) jpi(eifx )_<n|P;,(LZ_C:)
transmitted over the Markov noise channel and thatis Y —y » — .

received at the decoder. The following are possible deg)d|\r/1Vh|Ch contradicts our assumption thiamaximizesPr(y"|c)

rules one can use to recover the transmitted codeword. over all codewords. Hencey(C©y") < w(C®y") ¥ ¢ € C.

« ML Decoding:y" is decoded into codeword, € C if Note the above lemma implies that if a quasi-perfect code
Pr(Y" = y"|X" = ¢o) = Pr(Y" = y"|[X" = ¢) for has no decoding failures in its SMD decoder, then its SMD and
all c € C. If there is more than one codeword for whichsmL decoders are equivalent under the stated conditions on
the above condition holds, then the decoder picks one e Markov channel parametds ¢) and the code’s minimum
such codewords at random. distance® In light of the above result and Lemma 2, we

» Strict ML (SML) Decodinglt is identical to the ML rule next propose the following complete decoder that improves
with the exception of replacing the inequality with a strichyer MD decoding. It includes SMD decoding and exploits
inequality; if no codeword satisfies the strict inequality,
the decoder declares a decoding failure. 2Recall that the ML and MD decoders are complete decoders. ~they

ini i i n i ; always select a codeword to decode the received word — wigleSML and
« Minimum Distance (MD) Decoding™ is decoded into SMD decoders are incomplete decoders as they declare aidgcfadure

codewordcy € C if w(co @y) < w(c ®y) for all  \when there are more than one codeword with minimal decodieien
¢ € C. If there is more than one codeword for which 2In contrast, recall that for the BSgY with p < 1/2, SML and SMD
decoding are equivalent for all binary codes (the same atprice also holds
1n other words,d 2 MiNg, oy eCic) ey d(c1,c2) Where d(cr, cp) = petween ML and MD decoding).1 Note also that wheg 0-, thg condi-tions
w(c1 @ c2) is the Hamming distance between and cz and the modulo-2 in the above lemma reduce tdi%J < oo, andp < % (which is consistent
operation is applied component-wise on and ca. with what was just mentioned).



p €1 €2 €3
1x10-3 | 0.3172] 0.02843| 0.08801
5 x 10~3 | 0.3152 | 0.05628 | 0.02277 [1]
1x10-2 | 0.3126 | 0.07297 | 0.03308
5 x 10~2 | 0.2918 | 0.11492 | 0.06644 [21
1x10-T | 0.2645] 0.12367 | 0.07995
TABLE | [3]
VALUES OF ¢4 FOR DIFFERENTp AND t. LEMMA 4 HOLDS FOR ALLe < €. [4]

the knowledge oftqy and ¢;; to resolve ties (which occur [l
when there are more than one codeword that are closest to thg
received word). -
MD+ Decoding: Assume thay™ is received at the channel

output. Suppose the decoder outputs the codewgrdatis-  [©
fying the MD decoding condition. If there is more than one[g
such codeword, then the decoder choosgethat maximizes 19
too(co ® Y") + t11(co ® y*). If there is still a tie, then the [y
decoder chooses, that maximizest;1(co ® y*). Finally, if

there is still a tie, then the codeword is picked at randorf.

V. SIMULATION RESULTS

Given an(n, M, d) quasi-perfect code and a fixed CBER
p, we let ¢, be the largest for which both conditions of
Lemma 4 hold, where £ | (d—1)/2]. In Table |, we provide
the values ok, for ¢t = 1,2, 3 and different values op.

We herein present simulation results for decoding the inas
(8,2%,4) extended Hamming code and tli&5,27,5) BCH
code over the additive Markov noise channel. A large seqaienc
of a uniformly distributed binary i.i.d. source was genetht
encoded via one of these codes and sent over the channel.
For the Hamming codet = 1; thus the values fok; in
Table | provide the largest values effor which Lemma 4
holds for different CBERg. As a result, we simulated the
Hamming system for the 5 values pflisted in Table | and
e € {0.05,0.1,0.2,0.25}. Similarly, sincet 2 for the Fig.
BCH code, the values foe; apply, and the BCH system (g2
was simulated for = 0.05 and all values ofp in Table |
exceptp = 1073, A typical Hamming code simulation result is
presented in Fig. 1 far = 0.25, and the BCH code simulation
is shown in Fig. 2 fore = 0.05. The results indicate that
MD+ performs nearly identically to ML decoding and provides
significant gain over MD decoding. By comparing the two
figures, we also note that the performance gap between MD
and ML decoding decreases with(which is consistent with
the fact that MD and ML decoding are equivalent whes 0). i

Finally, note that one limitation of Lemma 4 is that its con-
ditions are too stringent to accommodate quasi-perfecesod
with large minimum distance, unless if the channel coretat
e is substantially decreased towards 0O, thus rendering the
Markov channel nearly memoryless (e.g, see hip@ecreases
ast increases in Table I). The determination of less stringent

0
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1. FER vs CBER under different decoding schemes for the Hamming
4,4) code over the Markov channel with noise correlatios- 0.25.
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conditions is an interesting topic for future work.
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4Clearly, MD+ and MD decoding are equivalent for the BSC, eifar this  Fig. 2. FER vs CBERp under different decoding schemes for the BCH

channel, it does not matter what codeword the decoder sefduen there is  (15,27,5) code over the Markov channel with noise correlatios 0.05.
a tie (as long as it is one of the codewords closest to thevettaiord).



