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Abstract— We study joint quantization and watermarking
of a memoryless Gaussian source under memoryless additive
Gaussian attacks in a private scenario. The achievable region
involving the quantization and the watermarking rate pairs has
been established by Karakos and Papamarcou (2003). In this
paper, we refine the analysis of the watermarking decoding
error probability for given achievable rate pairs by deriving a
computable random coding lower bound to the error exponent.
The random coding exponent is positive within almost the entire
achievable region of Karakos and Papamarcou.

I. INTRODUCTION

In a joint compression and embedding information-hiding
model, the watermarker encodes a watermark and a covertext
jointly to output a (compressed) stegotext. Denoting the quan-
tization rate by RQ and the watermarking rate by RW , the
main goal is to determine the achievable rate pairs (RQ, RW )
under transparency and robustness constraints on the system
(detailed definitions are given in Section II).

Karakos and Papamarcou [1] study the tradeoff between
RQ and RW for Gaussian host data and additive memoryless
Gaussian attacks in a private scenario (where the host data is
available at the decoder). The main result of [1] is a coding
theorem which establishes the achievable region for rate pairs
(RQ, RW ). Maor and Merhav [2], [3] study a similar tradeoff
problem for discrete memoryless sources in a public scenario
(where the host data is not available at the decoder). The work
in [2] focuses on the attack-free problem, while [3] extends the
model in [2] to include stationary memoryless discrete attacks.
In both works, coding theorems are established in which a
single-letter expression involving the maximum achievable
watermarking rate, the compression rate and the distortion
threshold are obtained. Yang and Sun [4] study a similar
private joint compression/watermarking problem with abstract
alphabets. Other related works include [5] and [6].

In this work, we focus on the problem introduced and inves-
tigated in [1], i.e., the joint quantization and watermarking of
memoryless Gaussian sources under additive white Gaussian
noise (AWGN) attacks in a private scenario. We refine the
analysis of the probability of error in decoding the watermarks
for any achievable rate pairs (RQ, RW ). Using a random
coding technique that incorporates Gallager’s method [7], we
obtain a computable random coding lower bound to the error
exponent of watermark decoding. In a sense, our problem can
be described as a joint source-channel coding problem with
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side information at both the encoder and the decoder, and we
study this problem from an error exponent viewpoint.

It is worth pointing out that Merhav [8] and Somekh-Baruch
and Merhav [9] studied the error exponent performance for
systems with finite alphabets in a private scenario. In [8], a
single-letter expression of the Gallager random coding lower
bound to the error exponent is obtained, while in [9], an
asymptotic expression for the exact error exponent is derived.
Note that the results of [8], [9] do not apply to the Gaussian
Karakos-Papamarcou setup studied here, as they depend on
the finiteness of the covertext and attack channel alphabets.
Furthermore in [8], [9], different distortion constraints are
imposed at the encoder.

Throughout, random variables, their realizations and alpha-
bets are denoted by capital letters, lower case letters and
calligraphic letters, respectively, e.g., X , x, and X . Random
vectors and their alphabets are denoted by capital letters and
calligraphic letters superscripted by their lengths, respectively,
e.g., Xn and Xn, and the realizations are denoted by boldface
lower case letters, e.g., x � (x1, x2, ..., xn). E(X) denotes the
expectation of X . All logarithms are in the natural base.

II. PROBLEM DESCRIPTION

A general model for joint compression and watermarking
in a private scenario is given in Fig. 1. Let {Ui}∞i=1 be an
independent and identically distributed (i.i.d.) sequence of
zero mean Gaussian random variables with variance σ2

u. Let
U = Y = R, and d : U × Y → [0,∞) be a single-letter
distortion measure. For u ∈ Un and y ∈ Yn, define d(u, y) =∑n

i=1 d(ui, yi). In this paper, we consider the squared distor-
tion measure, i.e., d(u, y) = ‖u − y‖2 =

∑n
i=1(ui − yi)2. Let

AZ|Y be an AWGN channel with input alphabet Y , output
alphabet Z (Z = Y = R) so that Z = Y + N , where N is
Gaussian with mean zero and variance DA and is independent
of Y .

Definition 1: An (RQ, RW , n) joint quantization and water-
marking code consists of an encoder-decoder pair (ϕ(n), ψ(n)):

ϕ(n) : W ×Un → Yn, ψ(n) : Zn × Un → W , (1)

where W = {1, 2, . . . ,MW } is the watermark set and MW �
�enRW �. Given w ∈ W and u ∈ Un, the stegotext y takes
values from a set c of MQ � �enRQ� codevectors, i.e., c �
{y(1), y(2), . . . , y(MQ)}.

Definition 2: Given an (RQ, RW , n) code, the conditional
probability of error in decoding a watermark index w is given
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Fig. 1. A model for joint compression and watermarking in a private scenario.

by P
(n)
e,w = Pr { ŵ �= w|w is embedded} , where ŵ is the

decoded watermark message. Furthermore, if we assume that
all watermark indices are equiprobable, the average probability
of decoding error is given by P (n)

e = 1
MW

∑MW

w=1 P
(n)
e,w .

Definition 3: Given an (RQ, RW , n) joint quantization
and watermarking code, the average distortion between
the host data and the stegotext is given by D(n) �
E

[
1
nd

(
Un, ϕ(n)(W,Un)

)]
.

Definition 4: Given DQ > 0, the transparency and robust-
ness conditions for a sequence of (RQ, RW , n) joint quanti-
zation and watermarking codes require that for any ε > 0 and
δ > 0, D(n) ≤ DQ + δ and P (n)

e ≤ ε for n sufficiently large.
Definition 5: A quadruple (RQ, RW ;DQ, DA) is said to

be achievable if for any ε, δ > 0, there exists a sequence of
(RQ, RW , n) joint quantization and watermarking codes such
that P (n)

e ≤ ε and D(n) ≤ DQ + δ for n sufficiently large.
Given (DQ, DA), denote by RDQ,DA the achievable region
of all rate pairs (RQ, RW ) such that (RQ, RW ;DQ, DA) is
achievable.

The achievable rate region has been derived for memoryless
Gaussian sources and memoryless Gaussian attacks. The main
result is summarized in the following theorem.

Theorem 1: [1] The achievable rate region is given by

RDQ,DA =
{
(RQ, RW ) : RQ ≥

[
1
2

log
( σ2

u

DQ

)]+

,

RW ≤ max
τ∈[max{1,σ2

u/DQ},e2RQ ]

min
[
RQ − 1

2
log(τ),

1
2

log
(
1 +

PW (τ)
DA

)]}
,

where

PW (τ)
�
=
τ(σ2

u +DQ) − 2σ2
u + 2

√
σ2

u(τDQ − σ2
u)(τ − 1)

τ2
.

III. MAIN RESULTS

Given an i.i.d. Gaussian covertext {Ui}∞i=1, a distortion
threshold DQ, and a Gaussian attack variance DA, consider a
rate pair (RQ, RW ) ∈ RDQ,DA (in this paper, we assume that
DQ < σ2

u, which is a reasonable assumption in most practical
applications). Our main result is the following theorem. A
sketch of the proof is provided in Section V.

Theorem 2: Given δ > 0, s ≥ 0, ρ ∈ [0, 1], β2 ∈ (DQ, σ
2
u),

and γ ∈ (σ2
u/DQ, e

2(RQ−RW )), there exists a sequence of
(RQ, RW , n) joint quantization and watermarking codes such
that

D(n) ≤ DQ + δ, (2)

P (n)
e ≤ 4 exp

{
−n[

Λ(γ, β, ρ, s) − o(1)
]}
, (3)

for n sufficiently large, where Λ(γ, β, ρ, s) �
min

{
Λ1(γ, β, ρ, s),Λ2(γ, β)

}
, where

Λ1(γ, β, ρ, s)

=
1
2

log
(

1 + 2sβ2(γ − 1)DQ + 2s(1 + ρ)σ2
uθ

γ

)

+
ρ

2
log

(1 + 2sβ2(γ − 1)DQ + (γ−1)DQ

(1+ρ)DA

γ

)
− ρRW , (4)

with θ = β2 −DQ − 2sβ2(γ − 1)D2
Q, and

Λ2(γ, β) =

min
{

1
2

(β2

σ2
u

− 1 − log
β2

σ2
u

)
,

1
2

(γDQ

σ2
u

− 1 − log
γDQ

σ2
u

)}
,(5)

and o(1) → 0 as n→ ∞.
The error exponent bound in (3) can be tightened by

optimizing it with respect to γ, β, ρ and s. This yields the
following random coding error exponent,

ER(RQ, RW ;DQ, DA)
� sup

γ∈(
σ2

u
DQ

,e2(RQ−RW )), β2∈(DQ,σ2
u), ρ∈[0,1], s≥0

Λ(γ, β, ρ, s).

Remarks.
• From (5), it is clear that Λ2(γ, β) is always positive by

the choice of γ > σ2
u/DQ and β2 < σ2

u. The condition
γ < e2(RQ−RW ) is equivalent to RW < RQ − 1

2 log γ.
• The term Λ1(γ, β, ρ, s) is similar to the random coding

lower bound derived in [7, pp. 337–343] for AWGN chan-
nels. However, here we deal with a distortion constraint at
the channel input instead of a power constraint. The term
Λ2(γ, β) is somewhat similar to the reliability function
for Gaussian sources with respect to the rate-distortion
pair (RQ −RW , DQ) [10].

• Λ(γ, β, ρ, s) is maximized over s ≥ 0 by1

s∗ =
1 − 2abc+

√
(1 − 2abc)2 + 4ac(ρa+b)(2+ρ)

1+ρ

4ac(2 + ρ)
, (6)

where
a � 1

β2(γ−1)DQ+(1+ρ)σ2
u(β2−DQ) ,

b � 1
β2(γ−1)DQ

+ 1
(1+ρ)β2DA

, c � σ2
uβ

2(γ − 1)D2
Q.

1An analytical derivation of the other three optimizing parameters is not
readily available. However the optimization can be carried numerically (e.g.,
see Section IV).
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Fig. 2. ER(RQ, RW ;DQ,DA) v.s. RW for various values of RQ.

IV. EXAMPLES

We next present some numerical examples to illustrate the
results of the previous section. Figs. 2 and 3 show the random
coding error exponent v.s. the watermarking rate RW for
various quantization rates RQ and channel noise levels DA.
Fig. 4 shows a typical region of rate pairs where the random
coding error exponent is positive, in addition to the overall
achievable region RDQ,DA of Theorem 1 [1]. We note that
ER(RQ, RW ;DQ, DA) > 0 nearly everywhere in RDQ,DA .

Here, point A is given by RQ = 1
2 log( σ2

u

DQ
), RW =

0; B is given by RQ = 1
2 log( σ2

u

DQ
+ σ2

u−DQ

DA
), RW =

1
2 log(1 + DQ−D2

Q/σ2
u

DA
); and C is given by RQ = 1

2 log(1 +
σ2

u

DQ
+ σ2

u+DQ

DA
), RW = 1

2 log(1 + DQ

DA
) [1]. The figure shows

that we can achieve all rates under the segments AB and
BB∞. In fact, for segment AB, i.e., RQ < 1

2 log( σ2
u

DQ
+

σ2
u−DQ

DA
), given any (RQ, RW ) ∈ RRQ,RW , we have that

supρ,s,β2 Λ1(γ, β, ρ, s) > 0 for any given γ. Since Λ2(γ, β) >
0 implies that RW < RQ − 1

2 log γ, we can approach
segment AB by letting γ → σ2

u/DQ. For segment BB∞, if

RW ≥ 1
2 log(1 + DQ−D2

Q/σ2
u

DA
), we will have Λ1(γ, β, ρ, s) ≤

0 for any γ, β, ρ and s, which means Λ(γ, β, ρ, s) ≤ 0.

On the other hand, for RW < 1
2 log(1 +

DQ−D2
Q/σ2

u

DA
), we

have supγ,β2,ρ,s Λ1(γ, β, ρ, s) > 0. Since Λ2(γ, β) is always
positive, we get a positive random coding error exponent. In
this case, when we choose s as in (6), and letting γ → σ2

u/DQ,
β → σ2

u, and ρ → 0, we can approach segment BB∞ with

RW → 1
2 log(1 + DQ−D2

Q/σ2
u

DA
).

V. SKETCH OF THE PROOF OF THEOREM 2

A. Code Construction

Given an i.i.d. Gaussian covertext {Ui}∞i=1 with mean zero
and variance σ2

u, a distortion threshold DQ, and a Gaussian
attack variance DA, assume that (RQ, RW ) ∈ RDQ,DA . Let

M � �en(RQ−RW )�, choose γ ∈ ( σ2
u

DQ
, e2(RQ−RW )) and β2 ∈

(DQ, σ
2
u). Now consider a code c described as follows.

Random Code Generation. The code c contains MW =
�enRW � “subcodes”, where c � {c1, c2, . . . , cMW } is assigned
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of Theorem 1 and the region where the exponent

ER(RQ, RW ;DQ, DA) > 0.

a product density function q(c) =
∏MW

i=1 q(ci). Each ci con-
tains M codewords, i.e., ci = {y(i, 1), . . . , y(i,M)}, where
each codeword y(i, j) is i.i.d. drawn according to q(y) =∏n

k=1 q(yk). Here q(yk) is the Gaussian density with mean
zero and variance σ2

y = (γ−1)DQ. Thus for each ci, we have
q(ci) =

∏M
j=1 q(y(i, j)). Given the watermark index w, the

subcode cw will be used for quantizing the covertext u ∈ Un.
Encoding. Given a watermarking index w and a covertext

u, the encoder chooses the first codeword y(w, t) in cw such
that ‖u − y(w, t)‖2 ≤ nDQ, i.e.,

‖u − y(w, i)‖2
> nDQ, i = 1, . . . , t− 1,

‖u − y(w, t)‖2 ≤ nDQ, t ≤M. (7)

Denote the chosen codevector by y(cw, u). If no such y(w, t)
exists, an error is declared and y(cw, u) = 0 will be sent.

Decoding. The decoder has full knowledge of u, and thus
can generate all possible watermarked versions {y(ci, u)}MW

i=1 .
Upon receiving the “forgery” z = y(cw, u) + v, the de-
coder compares it with all {y(ci, u)}i∈I , where I � {i ∈
W : ‖u − y(ci, u)‖2 ≤ nDQ}, and chooses an output
ŵ using the maximum-likelihood decoding criterion: ŵ =
argmax

i∈I
f
(
z|y(ci, u)

)
, where f(z|y) =

∏n
j=1 f(zj|yj) =∏n

j=1
1√

2πDA
exp

(− (zj−yj)
2

2DA

)
.



B. Analysis for the Average Distortion

Define the event E1(u) � {cw : embedding w into u with
cw is failed}. Then, the distortion averaged over the random
choice of c can be written as

D
(n) ≤ DQ +

1
M

M∑
w=1

1
n

∫
Un

p(u)‖u‖2

∫
E1(u)

q(cw) dcw du (8)

where dcw = dy(w, 1) . . . dy(w,M). Define ΦDQ(y; u) = 1
for d(y, u) ≤ nDQ; ΦDQ(y; u) = 0 for d(y, u) > nDQ, and
let Pex(u, Y n) �

∫
Yn q(y)

[
1−ΦDQ(y; u)

]
dy. Then we have∫

E1(u) q(cw) dcw =
[
Pex(u, Y n)

]M
.

We need the following lemma.
Lemma 1: [10] Let {Xi} be an i.i.d. Gaussian source with

distribution X ∼ N (0, σ2). For any ∆ > 0,
(a) if a2 = σ2 + ∆, we have

lim
n→∞

1
n

log Pr
( 1
n

n∑
i=1

|Xi − a|2 ≤ ∆
)

= −1
2

log
a2

∆
;

(b) if 0 < β < σ, then

lim
n→∞

1
n

log Pr
( 1
n
‖Xn‖2

< β2
)

= −1
2

(β2

σ2
− 1 − log

β2

σ2

)
;

(c) if α > σ, then

lim
n→∞

1
n

log Pr
( 1
n
‖Xn‖2

> α2
)

= −1
2

(α2

σ2
− 1 − log

α2

σ2

)
.

Let α2 � σ2
y + DQ = γDQ (recall that γ > σ2

u/DQ

implies α2 > σ2
u), β2

1 ∈ (DQ, σ
2
u), δ0 � σ2

u − β2
1 , and define

Bn(α, β1) = {u ∈ Un : nβ2
1 ≤ ‖u‖2 ≤ nα2}. Given any

0 < ε
(n)
1 < ε

(n)
0 such that RQ − RW ≥ 1

2 log γ + ε
(n)
0 (here

γ < e2(RQ−RW ) guarantees the existence of such ε
(n)
0 ) and

applying Lemma 1, we obtain that for n ≥ N1 and u ∈
Bn(α, β1) that [Pex(u, Y n)]M ≤ exp

{− exp
(
n(ε(n)

0 −ε(n)
1 )

)}
.

For u ∈ (Bn(α, β1))c, by Lemma 1, there exists ε(n)
2 > 0 and

n ≥ N2 such that

1
n

∫
(Bn(α,β1))c

p(u)‖u‖2
[
Pex(u, Y n)

]M
du

≤ δ0 + σ2
u

(
exp

{
−n

[1
2

(β2
1

σ2
u

− 1 − log
β2

1

σ2
u

)
− ε

(n)
2

]}
+ exp

{
−n

[1
2

(α2

σ2
u

− 1 − log
α2

σ2
u

)
− ε

(n)
2

]})
. (9)

Now choosing n ≥ max{N1, N2} we obtain D
(n) ≤ DQ +

δ̄(n), where δ̄(n) can be made arbitrarily small by choosing
σ2

u − β2
1 sufficiently small and n sufficiently large.

C. Analysis for the Average Probability of Error

Given a random codebook c = {c1, . . . , cMW }, denote
by Pr

(
error|w, y(cw, u), z

)
the probability of decoding error

conditioned, first, on w and u entering the encoder, second, on
the selection of a codeword y(w, j) ∈ cw, denoted as y(cw, u),
and on the channel output z. Then the probability of decoding
error given that watermark index w was embedded, averaged
over the random choice of c, satisfies

P
(n)

e,w ≤
∫
Bn(α,β)

p(u)
∫

(E1(u))c

q(cw)
∫
Zn

f
(
z|y(cw, u)

)×
Pr

(
error|w, y(cw, u), z

)
dz dcw du +

∫
(Bn(α,β))c

p(u) du

+
∫
Bn(α,β)

p(u)
∫
E1(u)

q(cw) dcw du. (10)

Using Gallager’s technique for deriving the random coding
lower bound for the channel error exponent [7], and applying
Lemma 1 and the inequality ΦDQ(y, u) ≤ exp

{
s
[
nDQ −

d(y, u)
] ‖u‖2

n

}
for s ≥ 0, we can upper bound the above

integrals. Define Λ1(γ, β, ρ, s) and Λ2(γ, β) by (4) and (5),

respectively. For ∀ n ≥ max{N1, N2}, we obtain P
(n)

e,w ≤
4 exp{−n(min

[
Λ1(γ, β, ρ, s),Λ2(γ, β)

]
)} � ε̄(n). Since the

above bound is independent of the watermark index w, we
then obtain a random coding upper bound for P

(n)

e .

D. The Existence of A Sequence of (RQ, RW , n) Codes

Let A be the set of all the codes with P
(n)
e (c) ≤

(ε̄(n))1−
1√
n , i.e., A � {c : P (n)

e (c) ≤ (ε̄(n))1−
1√
n }. Clearly,

since P (n)
e (c) is a random variable (a function of the random

code c), it follows from Markov’s inequality that Pr(A) ≥
1 − (ε̄(n))

1√
n for n sufficiently large. Thus, we have∫

A

q(c)D(n)(c)
Pr(A)

dc ≤ 1
Pr(A)

∫
q(c)D(n)(c) dc ≤ DQ + δ̄(n)

1 − (ε̄(n))
1√
n

.

Since (ε̄(n))
1√
n ≤ 4

1√
n exp {−√

nΛ(γ, β, ρ, s)}, which goes
to 0 as n → ∞, there exists at least one sequence of
codes {c̃} satisfying P

(n)
e (̃c) < (ε̄(n))1−

1√
n and D(n)(̃c) ≤

DQ+δ̄(n)

1−(ε̄(n))
1√
n

≤ DQ + δ simultaneously for n sufficiently large.
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