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Abstract

The idea of ‘probabilistic distances’ (also called divergences), which in some sense as-

sess how ‘close’ two probability distributions are from one another, has been widely

employed in probability, statistics, information theory, and related fields. Of particular

importance due to their generality and applicability are the Rényi divergence measures.

While the closely related concept of Rényi entropy of a probability distribution has been

studied extensively, and closed-form expressions for the most common univariate and

multivariate continuous distributions have been obtained and compiled [57, 45, 62],

the literature currently lacks the corresponding compilation for continuous Rényi di-

vergences. The present thesis addresses this issue for the analytically tractable cases.

Closed-form expressions for Kullback-Leibler divergences are also derived and com-

piled, as they can be seen as an extension by continuity of the Rényi divergences. Ad-

ditionally, we establish a connection between Rényi divergence and the variance of the

log-likelihood ratio of two distributions, which extends the work of Song [57] on the

relation between Rényi entropy and the log-likelihood function, and which becomes

practically useful in light of the Rényi divergence expressions we have derived. Lastly,

we consider the Rényi divergence rate between two stationary Gaussian processes.
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Chapter 1

Introduction

In this chapter we give an overview of important measures of information and in-

troduce the concept of probabilistic distances1. In Section 1.1 we provide a general

overview of these notions, while the Rényi and Kullback-Leibler divergences are dis-

cussed in more detail in Section 1.2. Finally, a description of the main results of the

present work as well as a literature review of the relevant topics are given in Sec-

tion 1.3.

1.1 Probability Distances and Measures of Information

Claude Shannon’s 1948 paper ‘A Mathematical Theory of Communication’ [56] intro-

duced a powerful mathematical framework to quantify our intuitive notion of informa-

tion, laying the foundations for the field of information theory and originating a major

revolution in communications and related fields. The power of the paradigm intro-

duced by Shannon is reflected in the two results known as the Source Coding Theorem

1Also called statistical distances, probabilistic divergences, or divergence measures.

1



CHAPTER 1. INTRODUCTION 2

and the Channel Coding Theorem.

With the Source Coding Theorem, Shannon demonstrated that all discrete alphabet

random processes possess an irreducible complexity below which a signal cannot be

compressed without loss of information; such amount of complexity is known as the

source’s entropy. In the case of a discrete distribution with probability mass function

(pmf) p(x) over an alphabet X , the entropy is defined as

H(p) =−
∑

x∈X

p(x) log p(x) =−Ep
�

log p(x)
�

.

For a continuous distribution with a density f (x) one considers the differential entropy

h( f ) =−
∫

X
f (x) ln f (x) d x =−E f

�

ln f (x)
�

,

but unlike in the discrete case, the entropy (i.e.,. the irreducible complexity of the

source) is not given by the differential entropy. However, other operational interpreta-

tions similar to those holding in the discrete case do extend to differential entropy.2

Shannon’s axiomatic derivation of the entropy functional as a measure of infor-

mation was ensued by the introduction of a myriad of other information measures

following a similar approach, where the specific axioms to be introduced would have

some commonality with Shannon’s but would be motivated within sometimes very spe-

cialized settings [30]. A survey of axiomatic characterizations of information measures

can be found for example in [18, 2].

In the same way that entropy-like functionals have been widely investigated as

measures of the amount of information intrinsic to a given probability distribution,

it is natural to investigate similarly defined functionals which allow one to somehow
2For example, in the context of the Asymptotic Equipartition Property, the differential entropy also

provides bounds for the size of a typical sets, A(n)ε . See for example [15] for a discussion of this idea as
well as a more detailed introduction to the coding theorems, in particular the Channel Coding Theorem
which we omit here for brevity.
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quantify how much information is shared between two probability distributions. The

extent of this shared information may also be seen as providing a certain measure of

how ‘close’3 two distributions are from one-another. As pointed out by Liese and Vajda

[40], the origins of these ideas go back to the early 1900s literature in the works of

Pearson [47] and Hellinger [31], although research in this area became much more

prolific after the publication of Shannon’s 1948 paper.

Motivated by Shannon’s notion of mutual information [56], Kullback and Leibler

[38] introduced the information measure now known as the Kullback-Leibler Diver-

gence (KLD) within the context of hypothesis testing. The authors consider two proba-

bility spaces (X ,A ,µi), i = 1,2, such that µ1 ≡ µ2
4 and λ a probability measure such

that λ ≡ {µ1,µ2}.5 Denote the corresponding Radon-Nikodym derivatives by fi(x),

and let Hi be the hypothesis that an observation x came from µi. Kullback and Leibler

define the mean information for discrimination between H1 and H2 per observation from

µ1
6 as

I(µ1 : µ2) =

∫

f1(x) log
f1(x)
f2(x)

dλ(x) ,

3It is worth noting that although the terms distance and even sometimes metric are used within
this context in the literature, these functionals do not generally satisfy all the properties required of
a mathematical metric; in particular, symmetry is often not met. For example, according to [20], the
general requirements for a probabilistic distance is that it be ‘positive, zero if the values of the two
functions coincide, and correlated to their absolute difference’.

4Given two measures µ and ν over the same σ−algebraA , ν is said to be absolutely continuous with
respect to µ (or equivalently µ dominates ν) if ∀A ∈ A , µ(A) = 0 ⇒ ν(A) = 0, and this is denoted by
µ� ν . Whenever µ� ν and ν � µ this is denoted by µ≡ ν .

5It is worth noting that these requirements vary slightly from the modern definition given in the
literature (e.g. [34]), which we provide in Section 1.2.

6This original nomenclature now replaced by the more concise ‘Kullback-Leibler divergence’, and the
notation usually replaced by D( f1|| f2) or H(µ1,µ2). Also, although the word between is generally used,
this divergence is directed and not symmetric, so that it would be more correct to say ‘the divergence
from f1 to f2’.
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and it is shown to generalize Shannon’s original notion of mutual information.

Further generalization came about in the 1961 work of Rényi [53], who introduced

an indexed family of generalized information and divergence measures akin to the

Shannon entropy and Kullback-Leibler divergence. Originally considering discrete

probability distributions, Rényi introduced the entropy of order α of a distribution

P = {p1, ..., pn} as

Hα(P) =
1

1−α
log

 

n
∑

k=1

pαk

!

,

and for two discrete distributions P and Q, ‘the information of order α obtained if the

distribution P is replaced by the distribution Q’7 by

Iα(P|Q) =
1

α− 1
log

 

n
∑

k=1

pαk q1−α
k

!

,α > 0 and α 6= 1 .

An important property of this family of information measures is that [53]

lim
α→1

Hα(P) = H(P) , and lim
α→1

Iα(P|Q) = I(P : Q) .

It is worth pointing out that, prior to Rényi’s paper, Chernoff introduced another mea-

sure of divergence which he derived by considering a certain class of hypothesis tests

in his 1952 work [14]. His approach was similar as that of Kullback and Leibler in

defining the information divergence. When considering two probabilities measures µi

and µ j the measure of divergence used by Chernoff was

D =− log

�

inf
0<t<1

∫

[ fi(x)]
t[ f j(x)]

1−t dν

�

,

where fi and f j are the Radon-Nykodim derivatives of µi and µ j with respect to a

dominating measure ν . Some of the literature (e.g. [8, 52, 20]) identifies the Chernoff

7This is now known as the Rényi divergence of order α, and it is usually denoted by Dα(P||Q). We
introduce the general definition for general probability spaces in Section 1.2.
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distance as an indexed family of divergences

DC( fi|| f j;λ) =− ln

∫

X
fi(x)

λ f j(x)
1−λ dν(x) ,

where for a particular choice of λ the above is called the Chernoff distance of order λ.

As a special case, the Bhattacharyya distance, DB( fi|| f j), (also known as Bhattacharyya

coefficient, ρ) [9] is given by

DB( fi|| f j) = DC( fi|| f j;λ= 1/2) .

Chernoff divergences are used in statistics, artificial intelligence, pattern recognition,

and related fields (see for example [4, 20, 52]). We note that a definiton of Rényi

divergence for general probability spaces (see Section 1.2) establishes the following

relationship

DC( fi|| f j;α) = (1−α)Dα( fi|| f j) , α ∈ (0, 1) ,

so that up to scaling the two divergences are measuring the same amount of ‘informa-

tion’ between any two densities fi and f j.

Yet a higher level of generalization in the area of probabilistic divergences was

achieved by the work of Csiszar [16] (and independently also Ali and Silvey [5]),

who introduced the notion of f−divergences of probability distributions, a framework

which encompasses a vast number of information measures used currently in the lit-

erature, including the Kullback divergence, and also divergences which are one-to-one

functions of Rényi divergences. Liese and Vajda [40, 59, 41] have studied this formal-

ism and its applications extensively. We omit a discussion of f−divergences here as it

is not immediately relevant to the results of this work.

To this day a vast number of probability distance measures have been investigated

[2, 6, 8, 42, 20, 24]. In Table 1.1 we present a brief sample of the most common
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probablistic distances, in particular those expressed as integrals of the corresponding

densities. For more comprehensive overviews see the references above. We denote by

X i the support of fi(x), i.e., X i := {x : fi(x) 6= 0}. Note that the Hellinger distance

in [24] is listed as Jeffreys-Matusita distance in [52, 20], and even different still are

what Liese and Vajda [41] identify as the Hellinger divergences. Also, some authors

(including Rényi [53]) restrict α to be a positive real number (not equal to one) in

the definition of the Rényi information measures as a result of information theoretical

considerations, although the definition can be extended mathematically to α ∈ R [40].

Table 1.1: Probabilistic Divergences.

Divergence Name Mathematical Definition

Bhattacharyya DB( fi || f j) =− ln

∫

X i

p

fi(x) f j(x) d x

Chernoff DC( fi || f j) =− ln

∫

X i

fi(x)
λ f j(x)

1−λ d x , λ ∈ (0, 1)

χ2 Dχ2( fi || f j) =

∫

X i ∪X j

( fi(x)− f j(x))2

f j(x)
d x

Jeffreys-Matusita DJ ( fi || f j) =





∫

X i

�
p

fi(x)−
p

f j(x)
�2

d x





1/2

Kullback-Liebler DK( fi || f j) =

∫

X i

fi(x) ln
fi(x)
f j(x)

d x

Generalized Matusita DM ( fi || f j) =





∫

X i

�

� fi(x)
1/r − f j(x)

1/r
�

�

r
d x





1/r

, r > 0

Rényi Dα( fi || f j) =
1

α− 1
ln

∫

X i

fi(x)
α f j(x)

1−αd x , α ∈ R+ \ {1}

Varational V ( fi || f j) =

∫

X i∪X j

| fi(x)− f j(x)| d x .

A natural question is whether probabilistic distances can be generalized to stochas-

tic processes. This leads to the consideration of information measure rates. For example,
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given a process X = {X i}i∈N over a discrete alphabet X , the limit

H(X ) = lim
n→∞

1

n
H(X1, ..., Xn)

is defined as the entropy rate (or just entropy) of X , whenever it exists. For station-

ary processes, the entropy rate always exists [15]. The same idea can be applied to

other information measures, such as the Kullback divergence or the Rényi information

measures. We provide a more extensive discussion of this topic in Chapter 4.

1.2 Rényi and Kullback Divergence

In this section we give the general definitions of Rényi entropy and Rényi divergence,

Shannon differential entropy, and the Kullback-Leibler divergence, and we also present

some of the mathematical properties of the divergence measures.

Throughout this section, let (X ,A ) be a measurable space and P and Q be two

probability measures on A with densities p and q relative to a σ−finite dominating

measure µ (i.e., p � µ and q � µ). In all of the above we use the conventions

pαq1−α = 0 if p = q = 0, x/0 = ∞ for x > 0, and 0 ln0 = 0 ln(0/0) = 0, which are

justified by continuity arguments. Also, from here onwards we denote the nonnegative

real numbers by R+.

1.2.1 Shannon Entropy and Kullback-Leibler Divergence

This material can be found for example in chapter 1 of [34].
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Definition 1.2.1. If P corresponds to a continuous probability distribution over Rn with

density p(x ), the differential (Shannon) entropy of P, denoted h(P)8 is defined by

h(P) =−
∫

Rn

p(x ) log p(x ) dx .

Definition 1.2.2. The Kullback-Leibler Divergence (KLD) between P and Q, denoted

D(P||Q) (or equivalently the Kullback-Leibler divergence between p and q, denoted

D(p||q)) is defined by

D(P||Q) =
∫

X
p(x) ln

p(x)
q(x)

dµ(x) .

Sometimes the literature refers to D(P||Q) as the relative entropy of Q with respect

to P. Since D(p||q) is finite only when supp p ⊆ supp q, D(p||q) is sometimes written

as

D(p||q) =







∫

X
p(x) ln p(x)

q(x)
dµ(x) P �Q

∞ otherwise .

Proposition 1.2.3. D(P||Q)≥ 0 and equality holds iff P =Q.

This follows from the inequality − ln x ≥ 1 − x ,∀x > 0 where equality hold iff

x = 1. Then we have

D(P||Q) =
∫

X
p(x) ln

p(x)
q(x)

dµ(x)

=

∫

X
p(x)

�

− ln
q(x)
p(x)

�

dµ(x)≥
∫

X
p(x)

�

1−
q(x)
p(x)

�

dµ(x) = 0 ,

with equality iff p(x) = q(x) µ−almost everywhere.

8Sometimes called the continuous entropy of P, and also denoted as h(p), or h(X) if X is the continu-
ous random vector having distribution P.
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Remark 1.2.4. If p(x) has finite differential entropy, then

D(P||Q) =
∫

X
p(x) ln p(x) dµ(x)−

∫

X
p(x) ln q(x) dµ(x) =−h(P)− Ep

�

ln q(X )
�

.

If ∆ = {A1, ...,An} is a partition on X , then relative entropy associated with ∆ is

defined as

D∆(P||Q) =
n
∑

i=1

P(Ai) log
P(Ai)
Q(Ai)

.

Theorem 1.2.5. Let P be the set of all finite partitions of X . Then

D(P||Q) = sup
∆∈P

D∆(P||Q) .

Theorem 1.2.6. D(P||Q) is convex in the pair (P,Q), and for any fixed Q, D(P||Q) is

strictly convex in P.

1.2.2 Rényi Information Measures

This material can be found in [53, 60, 41].

Definition 1.2.7. For α ∈ R+ \ {1}9 the Rényi entropy of order α of P, denoted hα(P)10

is defined by

hα(P) =
1

1−α
ln

∫

X
p(x)α dµ(x) .

Definition 1.2.8. For α ∈ R+ \ {1} the Rényi divergence of order α between P and Q,

denoted Dα(P||Q) (or equivalently the Rényi divergence of order α between p and q,

denoted Dα(p||q)) is defined by

Dα(P||Q) =
1

α− 1
ln

∫

X
p(x)αq(x)1−αdµ(x) .

9See comment at the end of Section 1.1 regarding the domain for α in the definition of the Rényi
information measures.

10 Equivalently the Rényi entropy of order α of p, denoted hα(p).



CHAPTER 1. INTRODUCTION 10

By continuity and the following proposition the definition can be extended to α= 1

and α= 0:

Proposition 1.2.9.

D0(P||Q) := lim
α↓0

Dα( fi|| f j) =− logQ(p > 0) ,

D1(P||Q) := lim
α↑1

Dα(P||Q) = D(P||Q) .

Proposition 1.2.10. (Data Processing Inequality) Let Σ be a σ−subalgebra of A 11 and

denote by PΣ and QΣ the restrictions of P and Q to Σ. Then

Dα(PΣ||QΣ)≤ Dα(P||Q) .

Corollary 1.2.11. If we set Σ = {;,X} then PΣ =QΣ and we obtain

Dα(P||Q)≥ 0 ,

and Dα(P||Q) = 0⇔ p = q, µ−almost surely.

Just like the Kullback-Leibler divergence, the Rényi divergence can be approximated

arbitrarily closely by the corresponding divergence over finite partitions.

Theorem 1.2.12. Let P be the set of all finite partitions of X . Then

Dα(P||Q) = sup
∆∈P

Dα(PΣ∆ ||QΣ∆) ,

where Σ∆ is the σ−algebra generated by a finite partition ∆.

Another important property of Rényi divergence is additivity in the following sense.

11A subset ofA which is itself a σ−algebra.
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Proposition 1.2.13. For i = 1, ..., n let (X i,Ai) be a measurable space, Pi and Q i be two

probability measures on X i, and denote the product measure12 on X1 × X2 × ....× Xn by
n
∏

i=1
Pi. Then

Dα

 

n
∏

i=1

Pi

�

�

�

�

�

�

�

�

�

�

n
∏

i=1

Q i

!

=
n
∑

i=1

Dα(Pi||Q i) .

Proposition 1.2.14. (Continuity) Dα(P||Q) is continuous in α on

A= {α : 0≤ α≤ 1 or Dα(P||Q)<∞} .

Proposition 1.2.15. (Joint Convexity) For α ∈ [0,1], Dα(P||Q) is convex in the pair

(P,Q).

While joint convexity is limited to α ∈ [0, 1], the following holds for general α > 0:

Proposition 1.2.16. (Convexity in Q) For all positive α, Dα(P||Q) is convex in Q.

Remark 1.2.17. The integral

Hα(P,Q) =

∫

X
p(x)αq(x)1−αdµ(x) , α > 0

is usually known as the Hellinger integral of order α. Also, the power divergence [60] or

Hellinger divergence [41] is defined as

Hα(P||Q) =
Hα(P,Q)− 1

α− 1
α > 0 ,α 6= 1 .

Since

exp
�

(α− 1)Dα(P||Q)
�

=Hα(P,Q) ⇔ Hα(P||Q) =
exp
�

(α− 1)Dα(P||Q)
�

− 1

α− 1
,

Hα is a strictly increasing function of Dα for α > 0 ,α 6= 1, and also Dα = 0⇔ Hα = 0.
12The unique measure P on the product σ−algebra generated by {E1× E2× ...× En : Ei ∈Ai} satisfying

P(E1 × ...× En) = P1(E1)× ...× Pn(En).
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A more complete study of the mathematical properties of Rényi divergences is be-

yond the scope of this work. See [60, 53] and also [40] for a more in depth treatment.

1.2.3 Rényi Divergence for Natural Exponential Families

In Chapter 2 of their 1987 book Convex Statistical Distances [40], Liese and Vajda derive

a closed-form expression for the Rényi divergence between two members of a canon-

ical exponential family, which is presented below. Note that their definition of Rényi

divergence, here denoted by Rα( fi|| f j), differs by a factor of α from the one considered

in this work, i.e., Dα( fi|| f j) = αRα( fi|| f j).

Consider a natural exponential family (see Definition A.2.2) of probability measures

Pτ on Rn having densities pτ =
1

C(τ)
exp〈τ, T(x )〉, and natural parameter space Θ

(Definition A.2.3).

Proposition 1.2.18. Let D(τ) = ln C(τ). For every τi ,τ j ∈Θ the limit

∆(τ,τ j) := lim
α↓0

1

α

�

αD(τi) + (1−α)D(τ j)− D(ατi + (1−α)τ j)
�

exists in [0,∞].

Proof. See [40].

Theorem 1.2.19. Let Pτ be an exponential family with natural parameters where τi,τ j ∈

Θ, having corresponding densities fi and f j. Then Rα( fi|| f j) is given by the following cases:

1. If α /∈ {0,1} and ατi + (1−α)τ j ∈Θ

Rα( fi|| f j) =
1

α(α− 1)
ln

C(ατi + (1−α)τ j)

C(τi)αC(τ j)1−α
.
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2. If α /∈ {0,1} and ατi + (1−α)τ j /∈Θ

Rα( fi|| f j) = +∞ .

3. If α= 0

Rα( fi|| f j) = ∆(τi ,τ j)

4. If α= 1

Rα( fi|| f j) = ∆(τ j ,τi) ,

with ∆(τi,τ j) defined as in Proposition 1.2.18

Proof. See [40].

Using this result we arrive at the corresponding expression for Dα( fi|| f j), which we

write in a form that facilitates the comparison to the expressions from Appendix B:

Corollary 1.2.20. Let τi ,τ j ∈Θ be the parameter vectors for two densities fi and f j of a

given exponential family. For α ∈ R \ {0, 1} such that ατi + (1−α)τ j ∈Θ,

Dα( fi|| f j) = ln
C(τ j)

C(τi)
+

1

α− 1
ln

C(ατi + (1−α)τ j)

C(τi)
.

Proof.

Dα( fi|| f j) = αRα(Pτi
||Pτ j
)

=
1

α− 1
ln

�

C(ατi + (1−α)τ j)

C(τi)
αC(τ j)

1−α

�

=
1

α− 1
ln

 

�

C(τ j)

C(τi)

�α−1 C(ατi + (1−α)τ j)

C(τi)

!

= ln
C(τ j)

C(τi)
+

1

α− 1
ln

C(ατi + (1−α)τ j)

C(τi)
.
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1.2.4 Applications of Rényi Divergence

As pointed out by Harremoës [30], Rényi entropies and divergences are particularly

important as they possess an operational definition in the following sense

An operational definition of a quantity means that the quantity is the natu-

ral way to answer a natural question and that the quantity can be estimated

by feasible methods combined with a reasonable number of computations.

The operational definition of Rényi divergence given in [30] is that it ‘measures how

much a probabilistic mixture of two codes can be compressed’. This follows the ob-

servation that for any two codelength functions κ1 and κ2 for compact codes13 with

corresponding probability measures P1 and P2, and α ∈ (0, 1)

(1−α)κ1+ακ2−αD1−α(P1 || P2)

is a codelength function of a compact code.

Another important operational definition of Rényi divergence was given by Csiszár

[17] in terms of generalized cutoff rates related to the error exponent in hypothesis

testing for identically distributed independent observations. A generalization of this

result was presented by Alajaji et al. [3] by considering hypothesis testing for general

sources with memory.

Additional applications of Rényi divergences include the derivation of a family of

test statistics for the hypothesis that the coefficients of variation of k normal popula-

tions are equal [46], as well as their use in problems of classification, indexing and

retrieval, for example [32].
13Codes for which Kraft’s inequality is met as equality.
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We close this section by pointing out an operational definition of Rényi entropy in

the context of lossless source coding, which was established by Campbell in his 1965

work [12]. Considering an alphabet of D symbols, the author introduces L(t), the

code length of order t, defined as L(t) = t−1 logD

�
∑

pi D
tni
�

, where t > 0, pi is the

probability of the ith symbol, and ni is the length of code sequence for the ith symbol

in an uniquely decipherable code. The following theorem is then established:

Let α= (1+ t)−1. By encoding sufficiently long sequences of input symbols,

it is possible to make the average code length of order t per input symbol

as close to Hα as desired. It is not possible to find a uniquely decipherable

code whose average length of order t is less than Hα.

For t = 0 (α = 1) the above becomes the standard source-coding theorem since Hα

becomes the Shannon entropy and Lt becomes the (standard) average code length.

1.3 The Results of this Work

1.3.1 Rényi Divergence Expressions for Continuous Distributions

The applicability of Rényi entropy and Rényi divergence (either directly or via its rela-

tionship to the Chernoff and Bhattacharyya distance, and the Hellinger and Kullback-

Leibler divergences), as well as the fact that they possess an operational definition in

the sense given above, suggests the importance of establishing their general mathemati-

cal properties as well as having a compilation of readily available analytical expressions

for commonly used distributions. The mathematical properties of the Rényi informa-

tion measures have been studied both directly [53, 60], and indirectly as part of the

f -divergence formalism [16, 40, 59, 41].
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Closed-form formulas for differential Shannon and Rényi entropies for several uni-

variate continuous distributions are presented in the work by Song [57]. The author

also introduces an ‘intrinsic loglikelihood-based distribution measure’, G f , derived from

the Rényi entropy, which we consider in detail in Chapter 3. Song’s work was followed

by [45] where the differential Shannon and Rényi entropy, as well as Song’s intrinsic

measure for 26 continuous univariate distribution families are presented. The same au-

thors then expanded these results for several multivariate families in [62]. Differential

entropy formulas for several continuous distributions can also be found in [15].

An initial review suggested that the literature was significantly less prolific for the

case of Rényi divergences, and even for the case of Kullback Divergences, with only a

few isolated results presented in separate works: The Rényi and Kullback-Leibler Diver-

gence (KLD) between two univariate Pareto distributions is presented in [7]; the work

[49] presents the KLD for two multivariate normal densities as well as for two univari-

ate Gamma densities; in [58] the KLD between two univariate normal densities is also

presented and numerical integration is used to estimate the KLD between a Gamma

distribution and two approximating models with lognormal and normal distributions;

finally the Rényi divergence for multivariate Dirichlet distributions (via the Chernoff

distance expression) can also be found in [52], while the KLD is given [48].

Following these findings, one of the main objectives of this work was the computa-

tion and compilation of closed-form Rényi (and Kullback) divergences for a wide range

of continuous probability distributions. Since most of the applications revolve around

two distributions of the same family, this was the focus of the calculations as well.

However, an expression for the Rényi divergence between two multivariate Gaussian
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distributions was found in14 [33] (which itself cited [10] and [40]), soon after this ex-

pression (as well as all other results presented in Appendix B) had been independently

derived. The work [40] of Liese and Vajda contains the closed-form expression for the

Rényi divergence for exponential families presented in Section 1.2.3. While not all of

the original derivations are covered by their result, most of what we obtained here

can in fact be derived from this expression. In Chapter 2 we show that applying the

expression given in [40] to the canonical parametrization of the exponential families

yields expressions in agreement with what we obtained originally. Some expressions

for Rényi divergences and/or Kullback divergences for the distributions not covered by

their result are also presented in Chapter 2, namely the Rényi and Kullback divergence

for general univariate Laplacian, general univariate Pareto, Cramér, and uniform distri-

butions, as well as the Kullback divergence for general univariate Gumbel and Weibull

densities. Other commonly used distributions were also originally considered but the

computations appeared to be analytically intractable. For a given distribution having

m parameters, the integrals involved in the divergence calculations carry 2m different

parameters (excluding α itself), which is the main source of difficulty in these calcula-

tions when compared to differential and Rényi entropies; many of the natural variable

transformations or reparametrizations involved in the latter fail in the former.

None of the works presenting Kullback-Leibler or Rényi divergences mentioned

above make reference to the work of Liese and Vajda on divergences, while similar work

by Vajda and Darbellay [19] on differential entropy for exponential families is cited in

some of the works compiling the corresponding expressions. Providing an organized

readily available compilation of Rényi and Kullback divergences is still something the

14Later on also the work [32] was found to contain this expression as well.
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literature would benefit from, especially since the work of Liese and Vajda on Rényi di-

vergences seems to be largely unknown. A summary table with all the collected results

is presented in Section 2.4.

1.3.2 Rényi Information Spectrum and Rényi Divergence

Spectrum

As mentioned above, Song [57] introduced the information measure G f , called ‘the in-

trinsic loglikelihood-based distribution measure’, which relates the derivative of Rényi

divergence with respect to the parameter α to the variance of the log-likelihood func-

tion of the distribution. Following Song’s approach we show that the variance of the

log-likelihood ratio between two densities can be similarly derived from an analytic for-

mula of their Rényi divergence of order α. Both results are discussed in Chapter 3. This

connection between Rényi divergence and the loglikelihood ratio becomes practically

useful in light of the Rényi divergence expressions presented in Section 2.4.

1.3.3 Rényi Divergence Rate between two Stationary

Gaussian Sources

The study of information rates and the computation of expressions for special processes

has been considered in the literature. Shannon proved that the entropy rate exists

for stationary processes in [56]. Kolmogorov derived the differential entropy rate for

stationary Gaussian sources in [37], which can also be found in p. 417 of [15] and

p. 76 of [34]. The Rényi entropy and Rényi divergence rate for time-invariant, finite-

alphabet Markov sources was obtained by Rached et. al in [50]. In [25], Golshani and
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Pasha derive the entropy rate for stationary Gaussian processes, using a definition of

conditional Rényi entropy [26], which is based on the axioms of Jizba and Arimitsu

[35], and which they show to be more suitable than the definition of conditional Rényi

entropy found in [11]. The case of Kullback-Leibler divergence rate for stationary

Gaussian processes is considered in [61], and can also be found in p. 81 of [34]. Prior

to discovering the work of Vajda [40], the literature review did not reveal any work

on the Rényi divergence rate for stationary Gaussian sources. Having a closed-form

expression for the Rényi divergence between two multivariate Gaussian distributions,

it was natural to investigate this problem, and we arrived at the result presented in

Chapter 4. The expression is obtained using the theory of Toeplitz Forms developed

in [29], and presented in [28]. Following the work of Liese and Vajda led also to the

discovery of Vajda’s [59] book ‘Theory of Statistical Inference and Information’, where

the expression of the Rényi divergence rate is presented in p. 23915.

15This result is largely unknown/unreferenced in the literature, just like the expression for Rényi
divergence for exponential families in [40].



Chapter 2

Kullback and Renyi Divergences for

Continuous Distributions

In this chapter we consider commonly used families of continuous distributions and

present Rényi and Kullback divergence expressions between two members of a given

family. The expressions for distributions belonging to exponential families are com-

puted using the result obtained by Liese and Vajda [40] introduced in Section 1.2.3,

and are shown to be in agreement with the original derivations presented in Ap-

pendix B. Note that that our original expressions assumed α ∈ R+ \ {1} while Liese

and Vajda assumed the more general domain α ∈ R \ {0, 1}.

Definitions as well as many properties of the continuous distributions considered

here can be found in any standard continuous distribution references, for example

[36]. The distribution referred to as Cramér is cited in Song [57] 1.

1 Correspondence with the author indicated that he gave it this name due to the fact it appears to
have first been considered by Cramér.

20



CHAPTER 2. CONTINUOUS KULLBACK AND RENYI DIVERGENCES 21

2.1 Some words on notation

Throughout the calculations below terms of the form αx + (1 − α)y occur very fre-

quently. When considering an expression for Dα( fi|| f j) we use the notation θα :=

αθi + (1− α)θ j, where θi and θ j are parameters of the given family of densities, and

the order corresponds naturally to the direction of the divergence Dα( fi|| f j). In the

cases where the order is reversed we will write θ ∗α = αθ j + (1− α)θi. This notation

is followed for both scalar and vector-valued parameters, in the latter case with the

standard component-wise addition and scalar multiplication. The following properties

are used in the calculations below.

Remark 2.1.1. Let θi, θ j, φi,φ j be scalar parameters. For fixed constants c1, c2, k1, k2

(k1θ + c1)α+ (k2φ + c2)α = k1θα+ k2φα+ (c1+ c2) ,

and if θi,θ j 6= 0

�

1

θ

�

α

=
θ ∗α
θiθ j

.

2.2 Exponential Families

For clarity we restate the result from Corollary 1.2.20 which is used to obtain the

expressions in this section: Given an exponential family in Rn satisfying

Pτ(A) =

∫

A

1

C(τ)
exp (〈τ, T(x )〉) dµ(x ) ,

with natural parameter space Θ, then for τα = ατi + (1−α)τ j ∈Θ and α /∈ {0,1},

Dα( fi|| f j) = ln
C(τ j)

C(τi)
+

1

α− 1
ln

C(τα)
C(τi)

.
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2.2.1 Univariate Gamma Distributions

Throughout this section let fi and f j be two univariate Gamma densities:

fi(x) =
x ki−1e−x/θi

θ
ki
i Γ(ki)

ki,θi > 0; x ∈ R+ .

where Γ(x) is the Gamma Function introduced in Section A.3.1. Let

τi = (ηi,ξi)
T =

�

−
1

θi
, ki − 1

�T

, and T(x) = (x , ln x)T .

We can rewrite the density in terms of its canonical parametrization:

fi(x) =
1

C(τi)
e〈τi ,T(x)〉 ,

where

C(τi) =
Γ(ξi + 1)
(−ηi)ξi+1

= θ ki
i Γ(ki) .

Let α ∈ R \ {0,1}. If τα ∈Θ, then by Corollary 1.2.20 we have

Dα( fi|| f j) = ln
C(τ j)

C(τi)
+

1

α− 1
ln

C(τα)
C(τi)

= ln

�

Γ(ξ j + 1)

(−η j)ξ j+1

(−ηi)ξi+1

Γ(ξi + 1)

�

+
1

α− 1
ln

�

Γ(ξα+ 1)
(−ηα)ξα+1

(−ηi)ξi+1

Γ(ξi + 1)

�

.

Reverting to the original parametrization we note that

ξα+ 1= (ξ+ 1)α = ka and −ηα = (−η)α =
�

1

θ

�

α

=
θ ∗a
θiθ j

,

where we have made use of Remark 2.1.1. Then

Dα( fi|| f j) = ln







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i






+

1

α− 1
ln

 

Γ(kα)
(θ ∗
α
)kα
(θiθ j)kα

θ
ki
i Γ(ki)

!

.

In the notation of the original derivation k0 = kα and θ0 = θ ∗α, so that the expression

above is the same as that obtained in Proposition B.1.6. Finally, note that τα ∈ Θ⇔



CHAPTER 2. CONTINUOUS KULLBACK AND RENYI DIVERGENCES 23

kα, (1/θ)a > 0 and (1/θ)a > 0 ⇔ θ ∗α > 0, and so the constraints for finiteness also

agree with those of Proposition B.1.6. The special cases of exponential and χ2 densities,

as well as the expressions for the case α = 1 (Kullback-Leibler divergence), are both

included in Section B.1 so we omit them here.

2.2.2 Univariate Chi Distributions

Throughout this section let fi and f j be two univariate Chi densities

fi(x) =
21−ki/2 x ki−1e−x2/2σ2

i

σ
ki
i Γ
�

ki

2

� ,σi > 0 , ki ∈ N ; x > 0 .

Let

τi = (ηi,ξi)
T =

�

−
1

2σ2
i

, ki − 1

�T

, and T(x) = (x2, ln x)T .

We can rewrite the density in terms of its canonical parametrization:

fi(x) =
1

C(τi)
e〈τi ,T(x)〉 ,

where

C(τi) =
Γ
�

ξi+1
2

�

2(ξi−1)/2

(−2ηi)(ξi+1)/2
= Γ

�

ki

2

�

σ
ki
i 2ki/2−1 .

Let α ∈ R \ {0, 1}. If τα ∈Θ, then by Corollary 1.2.20 we have

Dα( fi|| f j) = ln
C(τ j)

C(τi)
+

1

α− 1
ln

C(τα)
C(τi)

= ln







Γ
�

ξ j+1

2

�

2(ξ j−1)/2

(−2η j)(ξ j+1)/2

(−2ηi)(ξi+1)/2

Γ
�

ξi+1
2

�

2(ξi−1)/2







+
1

α− 1
ln

 

Γ
�

ξα+1
2

�

2(ξα−1)/2

(−2ηα)(ξα+1)/2

(−2ηi)(ξi+1)/2

Γ
�

ξi+1
2

�

2(ξi−1)/2

!

.
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Next we revert to the original parametrization. Using Remark 2.1.1 it follows that

ξα+ 1= (ξ+ 1)α = ka ,
ξα− 1

2
=

kα
2
− 1 ,

and

−2ηα = (−2η)α =
�

1

σ2

�

α

=
(σ2)∗a
σ2

iσ
2
j

;

hence

Dα( fi|| f j) = ln







Γ
�

k j/2
�

σ
k j

j 2k j/2−1

Γ
�

ki/2
�

σ
ki
i 2ki/2−1







+
1

α− 1
ln







 

σ2
iσ

2
j

(σ2)∗a

!kα/2
Γ(kα/2)2kα/2−1

Γ
�

ki/2
�

σ
ki
i 2ki/2−1







= ln







σ
k j

j Γ
�

k j/2
�

σ
ki
i Γ
�

ki/2
�






+

1

2

�

(k j − ki) +
kα− ki

α− 1

�

ln 2

+
1

α− 1
ln







 

σ2
iσ

2
j

(σ2)∗a

!kα/2
Γ(kα/2)

σ
ki
i Γ
�

ki/2
�






.

Observe that

k j − ki +
kα− ki

α− 1
=

1

α− 1

�

(α− 1)(k j − ki) +αki + (1−α)k j − ki

�

= 0 .

Thus,

Dα( fi|| f j) = ln







σ
k j

j Γ
�

k j/2
�

σ
ki
i Γ
�

ki/2
�






+

1

α− 1
ln







 

σ2
iσ

2
j

(σ2)∗a

!kα/2
Γ(kα/2)

σ
ki
i Γ
�

ki/2
�






.

In the notation of the original derivation k0 = kα and σ0 = (σ2)∗α, so that the ex-

pression above is the same as that obtained in Proposition B.2.6. Finally, note that

τα ∈ Θ⇔ kα, (1/(σ2))a > 0 and (1/σ2)a > 0 ⇔ (σ2)∗α ≥ 0, and so the constraints
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for finiteness also agree with those of Proposition B.2.6. The special cases of half-

normal, Rayleigh, and Maxwell-Boltzmann densities, as well as the expressions for the

case α= 1 (Kullback-Leibler divergence), are included in Section B.2 so we omit them

here.

2.2.3 Dirichlet Distributions

Throughout this section let fi and f j be two Dirichlet densities of order n: 2

fi(x , ai) =
1

B(ai)

n
∏

k=1

x
aik
−1

k ; ai ∈ Rn , ; x ∈ Rn , n≥ 2, n ∈ N ,

where x = (x1, ..., xn) satisfies
n
∑

k=1

xk = 1, ai = (ai1 , ..., ain), ak > 0,

and B(y) is the multinomial beta function defined in Definition A.3.10.

Let τi = (a1 − 1, ..., an − 1)T and T(x ) = (ln x1, ..., ln xn)T . We can rewrite the

density in terms of its canonical parametrization:

fi(x ) =
1

C(τi)
e〈τi ,T(x )〉 ,

where

C(τi) = B(τi + (1, 1, ..., 1)T ) = B(ai) .

Let α ∈ R \ {0,1}. If τα ∈Θ, then by Corollary 1.2.20 we have

Dα( fi|| f j) = ln
C(τ j)

C(τi)
+

1

α− 1
ln

C(τα)
C(τi)

= ln
B(a j)

B(ai)
+

1

α− 1
ln

B(aα)
B(ai)

.

In the notation of the derivation given in Section B.3.2, b0 = bα and a0 = aα, so that

the expression above is the same as that obtained in Proposition B.3.6. Note also that

2It should be noted that the dimension of the underlying space is not n, but n− 1, as the distribution

is over the hyperplane specified by the constraint
n
∑

k=1
xk = 1.
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τα ∈ Θ ⇔ ∀k ak, bk > 0, so that the finiteness constraints are also in agreement.

As mentioned in Section B.3.2, this result is in agreement with the Chernoff distance

between two Dirichlet distributions derived in [52]. The special case of the Beta distri-

butions as well as the expressions for the case α= 1 (Kullback-Leibler divergence), are

included in Section B.3 so we omit them here.

Also, the work [48] presents the KLD expression between two Dirichlet distribu-

tions. In our notation,

D( fi|| f j) = log
Γ(ai t)
Γ(a j t)

+
d
∑

k=1

log
Γ(a jk)

Γ(aik)

+
d
∑

k=1

�

aik − a jk

��

ψ(aik)−ψ(ai t)
�

,

where

ai t =
d
∑

k=1

aik , a j t =
d
∑

k=1

a jk .

This may be rewritten using the multivariate Beta function:

log
Γ(ai t)
Γ(a j t)

+
d
∑

k=1

log
Γ(a jk)

Γ(aik)
= log













Γ

�

d
∑

k=1
aik

�

Γ

�

d
∑

k=1
a jk

�

d
∏

k=1
Γ(a jk)

d
∏

k=1
Γ(aik)













= log
B(a j)

B(ai)
,

hence

D( fi|| f j) = log
B(a j)

B(ai)
+

d
∑

k=1

�

aik − a jk

�



ψ(aik)−ψ

 

d
∑

k=1

aik

!

 .

Taking ai = (ai, bi) and a j = (a j, b j) we can see this agrees with the expression we

have for the KLD of Beta distributions given in Section B.3.
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2.2.4 Multivariate Gaussian Distributions

Throughout this section let fi and f j be two multivariate normal densities over Rn:

fi(x ) =
1

(2π)n/2|Σi|1/2
e−

1
2
(x−µi)

′Σ−1
i (x−µi) , x ∈ Rn ,

where µi ∈ Rn, Σi is a symmetric positive-definite matrix, and (.)′ denotes transposi-

tion.

Obtaining an expression for the Rényi divergence between two multivariate normal

densities has already been considered in the literature, for example [10, 32]. The work

[10]3 presents the following expression:

Rα( fi || f j) =
1

2
(µi −µ j)

′(αΣ j + (1−α)Σi)
−1(µi −µ j)

−
1

2α(α− 1)
ln
|αΣ j + (1−α)Σi|
|Σi|1−α|Σ j|α

.

Note that in [10] Rα( fi|| f j) is denoted as B(i, j). In what follows we show that the

Rényi divergence expression presented in Section B.4 is in agreement with the result

above. The expression we obtained in Proposition B.4.10 is

Dα( fi|| f j) =
1

2
ln

�

|Σ j|
|Σi|

�

+
1

2(α− 1)
ln
�

1

|A||Σi|

�

−
F(α)

2(α− 1)
,

with A= αΣ−1
i + (1−α)Σ

−1
j and

F(α) :=
h

αµ′iΣ
−1
i µi + (1−α)µ

′
jΣ
−1
j µ j

i

−
h

αΣ−1
i µi + (1−α)Σ

−1
j µ j

i′
A−1
h

αΣ−1
i µi + (1−α)Σ

−1
j µ j

i

.

As we noted prior to introducing Corollary 1.2.20, the definitions of Dα and Rα differ

3This was the first explicit formula that we discovered in the literature, which obtains the result for
Rα( fi || f j); hence the discussion below.
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by a factor of α4, i.e.,

Rα( f ||g) =
1

α(α− 1)
ln

∫

X
f (x)αg(x)1−αdµ(x) .

In order to compare the expressions for Dα( fi|| f j) and Rα( fi|| f j)we consider αRα( fi|| f j).

Examining the resulting logarithmic term we have

−
1

2(α− 1)
ln
|αΣ j + (1−α)Σi|
|Σi|1−α|Σ j|α

=
1

2(α− 1)
ln
|Σi|1−α|Σ j|α−1|Σ j|
|αΣ j + (1−α)Σi|

=
1

2
ln
|Σ j|
|Σi|
+

1

2(α− 1)
ln

|Σ j|
|αΣ j + (1−α)Σi|

.

Since A= αΣ−1
i + (1−α)Σ

−1
j , we can write

B := αΣ j + (1−α)Σi = Σi AΣ j = Σ j AΣi ,

and

|Σ j|
|αΣ j + (1−α)Σi|

=
|Σ j|
|B|
=

1

|A||Σi|
,

so that the logarithmic terms for both expressions are in agreement. Examining the last

term of αRα it remains to show that

F(α) = α(1−α)
�

(µi −µ j)
′(αΣ j + (1−α)Σi)

−1(µi −µ j)
�

= α(1−α)
�

(µi −µ j)
′B−1(µi −µ j)

�

.

Note that

F(α) = µ′i
�

αΣ−1
i −α

2Σ−1
i A−1Σ−1

i

�

µi

+µ′j
h

(1−α)Σ−1
j − (1−α)

2Σ−1
j A−1Σ−1

j

i

µ j

−µ′i
h

α(1−α)Σ−1
i A−1Σ−1

j

i

µ j

−µ′j
h

α(1−α)Σ−1
j A−1Σ−1

i

i

µi ,

4The definition of Rényi divergence as given by Rα is also used in other, more recent, works in the
statistical literature, e.g. [46].
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which in turn can be written as

F(α) = α(1−α)
�

(µi −µ j)
′B−1(µi −µ j)

�

−α(1−α)
h

µ′iB
−1µi +µ

′
jB
−1µ j

i

+µ′i
�

αΣ−1
i −α

2Σ−1
i A−1Σ−1

i

�

µi

+µ′j
h

(1−α)Σ−1
j − (1−α)

2Σ−1
j A−1Σ−1

j

i

µ j ,

since

B = Σi AΣ j = Σ j AΣi ⇔ B−1 = Σ−1
j A−1Σ−1

i = Σ
−1
i A−1Σ−1

j .

Collecting like terms,

F(α) = α(1−α)
�

(µi −µ j)
′B−1(µi −µ j)

�

+µ′i
�

αΣ−1
i −α

2Σ−1
i A−1Σ−1

i −α(1−α)B
−1
�

µi

+µ′j
h

(1−α)Σ−1
j − (1−α)

2Σ−1
j A−1Σ−1

j −α(1−α)B
−1
i

µ j .

Finally observe that

αΣ−1
i −α

2Σ−1
i A−1Σ−1

i −α(1−α)B
−1

= αΣ−1
i A−1A−α2Σ−1

i A−1Σ−1
i −α(1−α)Σ

−1
i A−1Σ−1

j

= αΣ−1
i A−1

h

A−αΣ−1
i − (1−α)Σ

−1
j

i

= αΣ−1
i A−1 [A− A]

= 0 .

Similarly,

(1−α)Σ−1
j − (1−α)

2Σ−1
j A−1Σ−1

j −α(1−α)B
−1

= (1−α)Σ−1
j A−1

h

A− (1−α)Σ−1
j −αΣ

−1
i

i

= 0 .
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Thus

F(α) = α(1−α)
�

(µi −µ j)
′B−1(µi −µ j)

�

, and αRα( fi|| f j) = Dα( fi|| f j) .

We also showed in Proposition B.4.10 that above expression for the Rényi divergence

is valid only when A is positive definite, which for α ∈ (0,1) is always the case given

the positive-definiteness of Σi and Σ j. When A is not positive-definite Dα( fi|| f j) =

+∞. Moreover, we derive expressions for the Kullback-Leibler divergence D( fi|| f j) and

demonstrate that the expression for Dα( fi|| f j) does indeed approach D( fi|| f j) as α→ 1.

We also consider the special cases of the Rényi divergence between two univariate

Gaussian densities and the zero-mean, unit-variance bivariate case. We present these

results as a remark below with the full derivation included in Section B.4:

Remark 2.2.1. Special Cases of Dα( fi|| f j):

1. The Kullback Leibler divergence between fi and f j is

D( fi|| f j) =
1

2

�

ln
|Σ j|
|Σi|
+ tr

�

Σ−1
j Σi

�

+
�

µi −µ j

�′
Σ−1

j

�

µi −µ j

�

− n

�

.

2. For n= 1 Dα( fi|| f j) reduces to

Dα( fi|| f j) = ln
σ j

σi
+

1

2(α− 1)
ln

 

σ2
j

ασ2
j + (1−α)σ

2
i

!

+
1

2

α(µi −µ j)2

ασ2
j + (1−α)σ

2
i

,

and D( fi|| f j) reduces to

D( fi|| f j) =
1

2σ2
j

h

(µi −µ j)
2+σ2

i −σ
2
j

i

+ ln
σ j

σi
.
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3. For two zero-mean, unit-variance, bivariate Gaussian densities fi and f j with

correlation coefficients ρi and ρ j,

Dα( fi|| f j) =
1

2
ln

 

1−ρ2
j

1−ρ2
i

!

−
1

2(α− 1)
ln

 

1− (αρ j + (1−α)ρi)2

(1−ρ2
j )

!

.

Proof. See Proposition B.4.8, Proposition B.4.4 and Proposition B.4.3,

and Section B.4.3, respectively.

2.2.5 Univariate Gumbel Distributions with Fixed Scale Parameter

Like Weibull distributions, a general family of univariate Gumbel distributions cannot

be written as an exponential family, but we can again consider a special case, namely

two densities fi and f j with fixed scale parameter βi = β j = β:

fi(x) = β
−1e−(x−µi)/β exp

�

−e−(x−µi)/β
�

= β−1e−x/β eµi/β exp
�

−e−x/β eµi/β
�

, µi ∈ R, β > 0 ; x ∈ R .

Let τi = ηi = −eµi/β and T(x) = T (x) = e−x/β . If we consider a measure ν on X

whose density with respect to the Lebesgue measure is h(x) = T (x)/β we can rewrite

the density above relative to ν in the canonical parametrization (see Definition A.2.2

and the discussion preceding it):

fi(x) =
1

C(τi)
e〈τi ,T(x)〉 ,

where

C(τi) =
1

(−ηi)
=

1

eµi/β
= e−µi/β .

Let α ∈ R \ {0,1}. If τα ∈Θ, then by Corollary 1.2.20 we have

Dα( fi|| f j) = ln
C(τ j)

C(τi)
+

1

α− 1
ln

C(τα)
C(τi)

= ln

�

−ηi

−η j

�

+
1

α− 1
ln
�−ηi

−ηα

�
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where the natural parameter space is in this caseΘ= {η < 0}. Reverting to the original

parametrization,

Dα( fi|| f j) = ln
e−µ j/β

e−µi/β
+

1

α− 1
ln

�

eµi/β

αeµi/β + (1−α)eµ j/β

�

=
µi −µ j

β
+

1

α− 1
ln

�

eµi/β

αeµi/β + (1−α)eµ j/β

�

,

for αeµi/β + (1−α)eµ j/β > 0.

2.2.6 Univariate Laplace Distributions with Location Parameter Equal

to Zero

We consider the special case of two Laplace densities with location parameter θ = 0.

Throughout this section let fi and f j be two such densities:

fi(x) =
1

2λi
e−|x |/λi , λi > 0; x ∈ R .

Let τi = ηi =−1/λi and T(x) = T (x) = |x |. We can rewrite the density in terms of its

canonical parametrization:

fi(x) =
1

C(τi)
e〈τi ,T(x)〉 ,

where

C(τi) =−
2

ηi
= 2λi .

Let α ∈ R \ {0,1}. If τα ∈Θ, then by Corollary 1.2.20 we have

Dα( fi|| f j) = ln
C(τ j)

C(τi)
+

1

α− 1
ln

C(τα)
C(τi)

= ln
ηi

η j
+

1

α− 1
ln
ηi

ηα
.
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Since

ηα =
�

−
1

λ

�

α

=−
λ∗α
λiλ j

then reverting to the original parametrization,

Dα( fi|| f j) = ln
λ j

λi
+

1

α− 1
ln
λiλ j

λ∗α

1

λi
= ln

λ j

λi
+

1

α− 1
ln
λ j

λ∗α
.

We derive the Rényi divergence expression for general Laplacian distributions in

Section 2.3.1, and we show in Remark 2.3.7 that it reduces to the above expression

when θi = θ j = 0.

2.2.7 Univariate Pareto Distributions with Fixed Scale Parameter

We consider the special case of two Pareto densities with equal scale parameter m.

Throughout this section let fi and f j be two such densities:

fi(x) = aim
ai x−(ai+1) , ai, m> 0 ; x > m .

Let τi = ηi = −(ai + 1) and T(x) = T (x) = ln x . We can rewrite the density in terms

of its canonical parametrization:

fi(x) =
1

C(τi)
e〈τi ,T(x)〉 ,

where

C(τi) =
mηi+1

−(ηi + 1)
=

1

aimai
.
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Let α ∈ R \ {0,1}. If τα ∈Θ, then by Corollary 1.2.20 we have

Dα( fi|| f j) = ln
C(τ j)

C(τi)
+

1

α− 1
ln

C(τα)
C(τi)

= ln

�

mη j+1

−(η j + 1)
−(ηi + 1)

mηi+1

�

+
1

α− 1
ln

�

mηα+1

−(ηα+ 1)
−(ηi + 1)

mηi+1

�

= ln

�

m(η j−ηi)
ηi + 1

η j + 1

�

+
1

α− 1
ln
�

m(ηα−ηi)
ηi + 1

ηα+ 1

�

=
�

η j −ηi +
ηα−ηi

α− 1

�

ln m+ ln
ηi + 1

η j + 1
+

1

α− 1
ln
ηi + 1

ηα+ 1
.

But since

η j −ηi +
ηα−ηi

α− 1
=
(α− 1)(η j −ηi) +ηα−ηi

α− 1

=
α− 1

α− 1

�

(η j −ηi) + (ηi −η j)
�

= 0 ,

then

Dα( fi|| f j) = ln
ηi + 1

η j + 1
+

1

α− 1
ln
ηi + 1

ηα+ 1
.

Reverting to the original parametrization,

Dα( fi|| f j) = ln
ai

a j
+

1

α− 1
ln

ai

aα
,

noting that ηa+1= (η+1)α = (−a)α =−aα. In the notation of the original derivation

a0 = aα, so that the expression above is the same as that obtained in Proposition B.5.4.

As before, the constraints for finiteness also agree with those of Proposition B.5.4. As

mentioned in Section B.5, this result is in agreement with that derived in [7].

2.2.8 Univariate Weibull Distributions with Fixed Shape Parameter

While a general family of univariate Weibull distributions cannot be written as an ex-

ponential family, we can consider the special case of Weibull densities fi, f j with fixed



CHAPTER 2. CONTINUOUS KULLBACK AND RENYI DIVERGENCES 35

shape parameter ki = k j = k:

fi(x) = kλ−k
i x k−1e−(x/λi)k , k,λi > 0; x ∈ R+ .

Let τi = ηi = −λ−k
i and T(x) = T (x) = x k. If we consider a measure ν on X whose

density with respect to the Lebesgue measure is h(x) = kx k−1 we can rewrite the

density above relative to ν in the canonical parametrization (see Definition A.2.2 and

the discussion preceding it):

fi(x) =
1

C(τi)
e〈τi ,T(x)〉 ,

where

C(τi) =
1

(−ηi)
=

1

λ−k
i

= λk
i .

Let α ∈ R \ {0,1}. If τα ∈Θ, then by Corollary 1.2.20 we have

Dα( fi|| f j) = ln
C(τ j)

C(τi)
+

1

α− 1
ln

C(τα)
C(τi)

= ln

�

−ηi

−η j

�

+
1

α− 1
ln
�−ηi

−ηα

�

.

Reverting to the original parametrization we note that

−ηα =
�

1

λk

�

α

=
(λk)∗a
λk

i λ
k
j

.

Then

Dα( fi|| f j) = ln

�

λ j

λi

�k

+
1

α− 1
ln

λk
j

(λk)∗a
.

In the notation of the original derivation λ0 = (λk)∗α, so that the expression above is

the same as that obtained in Proposition B.6.1. Finally, note that

τα ∈ Θ⇔ (1/λk)a > 0⇔ (λk)∗a > 0, and so the constraints for finiteness also agree

with those of Proposition B.6.1.
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2.3 Other Distributions

2.3.1 Rényi and Kullback Divergence for General Univariate

Laplace Distributions

Throughout this section let fi and f j be two univariate Laplace densities

fi(x) =
1

2λi
e−|x−θi |/λi , λi > 0; θi ∈ R; x ∈ R .

Proposition 2.3.1.

E fi

�

ln f j

�

=−
�

ln2λ j +
λi

λ j
e−|θi−θ j |/λi +

|θi − θ j|
λ j

�

.

Proof.

E fi

�

ln f j

�

= E fi

�

− ln2λ j −
|X − θ j|
λ j

�

=− ln 2λ j −
1

λ j
E fi

�

|X − θ j|
�

.

Consider E fi

�

|X − θ j|
�

. Let Y = X−θi. Then Y has a zero-mean Laplacian distribution5

and E fi

�

|X − θ j|
�

= E fY
[|Y −Θ|], where Θ= θ j − θi. Then

E fY
[|Y −Θ|] =

∫

R
|y −Θ|

1

2λi
e−|y|/λi d y

=

∫ Θ

−∞
(Θ− y)

1

2λi
e−|y|/λi d y +

∫ ∞

Θ

(y −Θ)
1

2λi
e−|y|/λi d y .

Considering Θ> 0 we can write the above as
∫

R
(Θ− y)

1

2λi
e−|y|/λi d y + 2

∫ ∞

Θ

(y −Θ)
1

2λi
e−y/λi d y .

Note that
∫

R
(Θ− y)

1

2λi
e−|y|/λi d y = EY (Θ− Y ) = Θ− EY [Y ] = Θ ,

5Since the Laplacian family is closed under this transformation and also here we are taking X to have
mean θi .
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and
∫ ∞

Θ

(y −Θ)
1

2λi
e−y/λi d y =

1

2
λie

−Θ/λi

∫ ∞

0

we−wdw , with w =
y −Θ
λi

=
1

2
λie

−Θ/λi ,

since the last integral can be interpreted as a Gamma pdf with k = 2 and θ = 1 over

its support. Thus, for Θ> 0

EY [|Y −Θ|] = Θ+λie
−Θ/λi .

Similarly, considering Θ< 0 we can write
∫ Θ

−∞
(Θ− y)

1

2λi
e−|y|/λi d y +

∫ ∞

Θ

(y −Θ)
1

2λi
e−|y|/λi d y

= 2

∫ Θ

−∞
(Θ− y)

1

2λi
e y/λi d y +

∫

R
(y −Θ)

1

2λi
e−|y|/λi d y

= λie
Θ/λi

∫ ∞

0

we−wdw−Θ

= λie
Θ/λi −Θ .

Putting the two cases together we find

EY [|Y −Θ|] = |Θ|+λie
−|Θ|/λi

= |θi − θ j|+λie
−|θi−θ j |/λi ,

and so

E fi

�

ln f j

�

=− ln2λ j −
1

λ j
E fi

�

|X − θ j|
�

=− ln2λ j −
1

λ j
EY [|Y −Θ|]

=−
�

ln2λ j +
|θi − θ j|
λ j

+
λi

λ j
e−|θi−θ j |/λi

�

.
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Corollary 2.3.2. The differential entropy of fi is

h( fi) = ln 2λie .

Proof. Setting i = j in Proposition 2.3.1 we have

h( fi) =−E fi

�

ln fi
�

= ln 2λi +
λi

λi
e−|θi−θi |/λi +

|θi − θi|
λi

= ln2λie .

Proposition 2.3.3. The Kullback-Liebler divergence between fi and f j is

D( fi|| f j) = ln
λ j

λi
+
|θi − θ j|
λ j

+
λi

λ j
e−|θi−θ j |/λi − 1 .

Proof. Using Proposition 2.3.1 and Remark 1.2.4 we have

D( fi|| f j) = E fi
[ln fi]− E fi

[ln f j]

=− ln2λie+

�

ln 2λ j ++
λi

λ j
e−|θi−θ j |/λi +

|θi − θ j|
λ j

�

= ln
λ j

λi
+
λi

λ j
e−|θi−θ j |/λi +

|θi − θ j|
λ j

− 1 .

Proposition 2.3.4. Let α ∈ R+\{1}. Then the Rényi divergence between fi and f j is given

by the following three cases

1. If α= α0 := λi/(λi +λ j) then

Dα0
( fi|| f j) = ln

λ j

λi
+
|θi − θ j|
λ j

+
λi +λ j

λ j
ln

�

2λi

λi +λ j + |θi − θ j|

�

.

2. If α 6= λi/(λi +λ j) and αλ j + (1−α)λi > 0 then

Dα( fi|| f j) = ln
λ j

λi
+

1

α− 1
ln

 

λiλ
2
j

α2λ2
j − (1−α)2λ

2
i

!

+
1

α− 1
ln

�

α

λi
exp

�

−
(1−α)|θi − θ j|

λ j

�

−
1−α
λ j

exp

�

−α|θi − θ j|
λi

��

.
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3. If αλ j + (1−α)λi ≤ 0

Dα( fi|| f j) = +∞ .

Proof. We have

f αi f 1−α
j =

�

1

2λi

�α

e−(α/λi)|x−θi |

�

1

2λ j

�1−α

e−(1−α)/λ j |x−θ j |

=

�

λ j

λi

�α−1
1

2λi
e−[(α/λi)|x−θi |+(1−α)/λ j |x−θ j |] .

Let θM =max{θi,θ j} and θm =min{θi,θ j}. Then

I :=

∫

R
e−[α/λi |x−θi |+(1−α)/λ j |x−θ j |] d x

=

∫ θm

−∞
eα(x−θi)/λi+(1−α)(x−θ j)/λ j d x

+

∫ θM

θm

exp

�

−
α(x − θi)
λi

sgn(θ j − θi) +
(1−α)(x − θ j)

λ j
sgn(θ j − θi)

�

d x

+

∫ ∞

θM

e−[α(x−θi)/λi+(1−α)(x−θ j)/λ j] d x .

Note that,

I1 :=

∫ θm

−∞
eα(x−θi)/λi+(1−α)(x−θ j)/λ j d x = e−θ0

∫ θm

−∞
eλ0 x d x

where

θ0 =
αλ jθi + (1−α)λiθ j

λiλ j
, and λ0 =

αλ j + (1−α)λi

λiλ j
,

hence

I1 =











∞ if λ0 ≤ 0 ,

exp
�

λ0θm− θ0

�

λ0
if λ0 > 0 .
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Similarly,

I3 :=

∫ ∞

θM

e−[α(x−θi)/λi+(1−α)(x−θ j)/λ j] d x =











∞ if λ0 ≤ 0 ,

exp
�

θ0−λ0θM
�

λ0
if λ0 > 0 ,

Since

λ0θm− θ0 =
αλ j + (1−α)λi

λiλ j
θm−

αλ jθi + (1−α)λiθ j

λiλ j

=
αλ j(θm− θi) + (1−α)λi(θm− θ j)

λiλ j

and

θ0−λ0θM =−
αλ j(θM − θi) + (1−α)λi(θM − θ j)

λiλ j
.

Then for θi = θm we have

exp
�

λ0θm− θ0

�

+ exp
�

θ0−λ0θM
�

= exp

�

(1−α)(θi − θ j)

λ j

�

+ exp

�

−α(θ j − θi)

λi

�

= exp

�

(1−α)(θi − θ j)

λ j

�

+ exp

�

α(θi − θ j)

λi

�

,

while for θi = θM we have

exp
�

λ0θm− θ0

�

+ exp
�

θ0−λ0θM
�

= exp

�

α(θ j − θi)

λi

�

+ exp

�

−
(1−α)(θi − θ j)

λ j

�

= exp

�

−α(θi − θ j)

λi

�

+ exp

�

−
(1−α)(θi − θ j)

λ j

�

,

which together imply that

exp
�

λ0θm− θ0

�

+ exp
�

θ0−λ0θM
�

= exp

�

−α
|θi − θ j|
λi

�

+ exp

�

−(1−α)
|θi − θ j|
λ j

�

.
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Thus, for λ0 > 0, we have

I1+ I3 =
exp
�

λ0θm− θ0

�

+ exp
�

θ0−λ0θM
�

λ0

=
λiλ j

αλ j + (1−α)λi

�

exp

�

−α
|θi − θ j|
λi

�

+ exp

�

−(1−α)
|θi − θ j|
λ j

��

.

Now,

I2 =

∫ θM

θm

exp

�

−
α(x − θi)
λi

sgn(θ j − θi) +
(1−α)(x − θ j)

λ j
sgn(θ j − θi)

�

d x

=

∫ θM

θm

exp

�

α(x − θi)
λi

sgn(θi − θ j)−
(1−α)(x − θ j)

λ j
sgn(θi − θ j)

�

d x

=

∫ θM

θm

exp

�

sgn(θi − θ j)

�

α(x − θi)
λi

−
(1−α)(x − θ j)

λ j

��

d x

=

∫ θM

θm

exp
�

sgn(θi − θ j)
�

λ̃x − θ̃
��

d x ,

where

θ̃ =
αλ jθi + (α− 1)λiθ j

λiλ j
, and λ̃=

αλ j + (α− 1)λi

λiλ j
,

and so

I2 = exp
�

−sgn(θi − θ j)θ̃
�

·











exp
�

sgn(θi − θ j)λ̃θM

�

− exp
�

sgn(θi − θ j)λ̃θm

�

sgn(θi − θ j)λ̃
λ̃ 6= 0

(θM − θm) λ̃= 0

=











exp
�

sgn(θi − θ j)(λ̃θM − θ̃)
�

− exp
�

sgn(θi − θ j)(λ̃θm− θ̃)
�

sgn(θi − θ j)λ̃
λ̃ 6= 0

|θi − θ j|exp
�

−sgn(θi − θ j)θ̃
�

λ̃= 0

with the obvious assumption of θi 6= θ j.
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• Consider first the case λ̃= 0. Note that

λ̃= 0⇔ αλ j + (α− 1)λi = 0⇔ α= α0 :=
λi

λi +λ j
,

and we see that λ̃ = 0 occurs only for α ∈ (0, 1) since λi,λ j > 0. Thus λ̃ = 0⇒

λ0 > 0 (being in this case the convex combination of two positive numbers) and

all of I1, I2 and I3 assume finite values. Hence

I =

∫

R
e−[α/λi |x−θi |+(1−α)/λ j |x−θ j |] d x

= I1+ I3+ I2

=
λiλ j

αλ j + (1−α)λi

�

exp

�

−α
|θi − θ j|
λi

�

+ exp

�

−(1−α)
|θi − θ j|
λ j

��

+ |θi − θ j|exp
�

−sgn(θi − θ j)θ̃
�

.

Since

α=
λi

λi +λ j
⇔ 1−α=

λ j

λi +λ j
,

θ̃ =
αλ jθi + (α− 1)λiθ j

λiλ j
=

1

λiλ j

�

λiλ jθi

λi +λ j
−
λiλ jθ j

λi +λ j

�

=
θi − θ j

λi +λ j
,

αλ j + (1−α)λi =
λiλ j

λi +λ j
+
λiλ j

λi +λ j
=

2λiλ j

λi +λ j
,

and

α

λi
=

1

λi +λ j
=

1−α
λ j

,

we have

I =
λi +λ j

2
2exp

�

−
|θi − θ j|
λi +λ j

�

+ |θi − θ j|exp

�

−sgn(θi − θ j)
θi − θ j

λi +λ j

�

= exp

�

−
|θi − θ j|
λi +λ j

�

�

λi +λ j + |θi − θ j|
�

.
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Finally,

Dα0
( fi|| f j)

=
1

α0− 1
ln

∫

R
f α0
i f 1−α0

j d x

=
1

α0− 1
ln

 

�

λ j

λi

�α0−1
1

2λi

∫

R
e−[(α0/λi)|x−θi |+(1−α0)/λ j |x−θ j |] d x

!

= ln
λ j

λi
+

1

α0− 1
ln

I

2λi

= ln
λ j

λi
−
λi +λ j

λ j
ln

�

1

2λi
exp

�

−
|θi − θ j|
λi +λ j

�

�

λi +λ j + |θi − θ j|
�

�

= ln
λ j

λi
−
λi +λ j

λ j

�

−
|θi − θ j|
λi +λ j

+ ln

�

λi +λ j + |θi − θ j|
2λi

��

= ln
λ j

λi
+
|θi − θ j|
λ j

+
λi +λ j

λ j
ln

�

2λi

λi +λ j + |θi − θ j|

�

.

• If λ̃ 6= 0 and λ0 > 0 then

I2 =
exp
�

sgn(θi − θ j)(λ̃θM − θ̃)
�

− exp
�

sgn(θi − θ j)(λ̃θm− θ̃)
�

sgn(θi − θ j)λ̃
.

Since

λ̃θM − θ̃ =
αλ j + (α− 1)λi

λiλ j
θM −

αλ jθi + (α− 1)λiθ j

λiλ j

=
αλ j(θM − θi) + (α− 1)λi(θM − θ j)

λiλ j

and

λ̃θm− θ̃ =
αλ j(θm− θi) + (α− 1)λi(θm− θ j)

λiλ j

then by considering the two cases θi = θM and θ j = θM as before we see that

I2 =
1

λ̃

�

exp

�

−
(1−α)|θi − θ j|

λ j

�

− exp

�

−α|θi − θ j|
λi

��

.
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Thus

I = I1+ I3+ I2

=
1

λ0

�

exp

�

−α
|θi − θ j|
λi

�

+ exp

�

−(1−α)
|θi − θ j|
λ j

��

+
1

λ̃

�

exp

�

−
(1−α)|θi − θ j|

λ j

�

− exp

�

−α|θi − θ j|
λi

��

= exp

�

−α
|θi − θ j|
λi

�

�

1

λ0
−

1

λ̃

�

+ exp

�

−(1−α)
|θi − θ j|
λ j

�

�

1

λ0
+

1

λ̃

�

,

where

1

λ0
+

1

λ̃
= λiλ j

�

1

αλ j + (1−α)λi
+

1

αλ j + (α− 1)λi

�

= λiλ j





2αλ j

α2λ2
j − (1−α)2λ

2
i





=
2λ2

i λ
2
j

α2λ2
j − (1−α)2λ

2
i

α

λi

and

1

λ0
−

1

λ̃
= λiλ j





2(1−α)λi

(1−α)2λ2
i − a2λ2

j





=−
2λ2

i λ
2
j

α2λ2
j − (1−α)2λ

2
i

1−α
λ j

.

Hence

I =
2λ2

i λ
2
j

α2λ2
j − (1−α)2λ

2
i

�

α

λi
exp

�

−
(1−α)|θi − θ j|

λ j

�

−
1−α
λ j

exp

�

−α|θi − θ j|
λi

��

.
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Finally,

Dα( fi|| f j)

=
1

α− 1
ln

∫

R
f αi f 1−α

j d x

=
1

α− 1
ln

 

�

λ j

λi

�α−1
1

2λi

∫

R
e−[(α/λi)|x−θi |+(1−α)/λ j |x−θ j |] d x

!

= ln
λ j

λi
+

1

α− 1
ln

I

2λi

= ln
λ j

λi
+

1

α− 1
ln

 

λiλ
2
j

α2λ2
j − (1−α)2λ

2
i

!

+
1

α− 1
ln

�

α

λi
exp

�

−
(1−α)|θi − θ j|

λ j

�

−
1−α
λ j

exp

�

−α|θi − θ j|
λi

��

.

• If λ0 ≤ 0 then I1 = I3 =∞, and since this case can only happen for α > 1 (given

λi and λ j are positive numbers), then

Dα( fi|| f j) =
1

α− 1
ln

∫

R
f αi f 1−α

j d x =∞ .

Remark 2.3.5.

lim
α↑1

Dα( fi|| f j) = D( fi|| f j) .

Proof. Note that the term

λiλ
2
j

α2λ2
j − (1−α)2λ

2
i

�

α

λi
exp

�

−(1−α)
|θi − θ j|
λ j

�

−
(1−α)
λ j

exp

�

−α
|θi − θ j|
λi

��

approaches 1 as α → 1. Grouping the second and third logarithms in the expression

for Dα above we see this attains an indeterminate limit. Applying l’Hospital’s rule we
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can rewrite the limit as

lim
α↑1



−
2αλ2

j + 2(1−α)λ2
i

α2λ2
j − (1−α)2λ

2
i

+
g ′(α)
g(α)



 ,

where

g(α) :=
α

λi
exp

�

−(1−α)
|θi − θ j|
λ j

�

−
(1−α)
λ j

exp

�

−α
|θi − θ j|
λi

�

and

g ′(α) = exp

�

−(1−α)
|θi − θ j|
λ j

��

1

λi
+
α|θi − θ j|
λiλ j

�

+ exp

�

−α
|θi − θ j|
λi

��

1

λ j
+
(1−α)|θi − θ j|

λiλ j

�

.

Then, with α→ 1 we have g(α)→ 1/λi and

g ′(α)→
1

λi
+
|θi − θ j|
λiλ j

+
1

λ j
exp

�

−
|θi − θ j|
λi

�

Finally,

lim
α↑1

Dα( fi|| f j) = ln
λ j

λi
− 2

+λi

�

1

λi
+
|θi − θ j|
λiλ j

+
1

λ j
exp

�

−
|θi − θ j|
λi

��

= ln
λ j

λi
+
|θi − θ j|
λ j

+
λi

λ j
exp

�

−
|θi − θ j|
λi

�

− 1

as given by Proposition 2.3.3.

Proposition 2.3.6. Dα( fi|| f j) is continuous at α= λi/(λi +λ j).

Proof. Let α0 = λi/(λi +λ j). Since

α0

λi
=

1−α0

λ j
=

1

λi +λ j
,
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we see that both the terms

α0

λi
exp

�

−(1−α0)
|θi − θ j|
λ j

�

−
(1−α0)
λ j

exp

�

−α0

|θi − θ j|
λi

�

and α2λ2
j − (1−α)

2λ2
i approach 0 as α→ α0, the limit

lim
α→α0

 

λiλ
2
j

α2λ2
j − (1−α)2λ

2
i

·
�

α

λi
exp

�

−(1−α)
|θi − θ j|
λ j

�

−
(1−α)
λ j

exp

�

−α
|θi − θ j|
λi

���

has an indeterminate form. Applying l’Hospital’s this limit becomes

lim
α→α0





λiλ
2
j g ′(α)

2αλ2
j + 2(1−α)λ2

i



 ,

where

g ′(α) = exp

�

−(1−α)
|θi − θ j|
λ j

��

1

λi
+
α|θi − θ j|
λiλ j

�

+ exp

�

−α
|θi − θ j|
λi

��

1

λ j
+
(1−α)|θi − θ j|

λiλ j

�

,

(defining g(α) as in the proof of Remark 2.3.5). But

lim
α→α0

g ′(α) = exp

�

−
|θi − θ j|
λi +λ j

��

1

λi
+

1

λ j

��

1+
|θi − θ j|
λi +λ j

�

=
1

λiλ j
exp

�

−|θi − θ j|
λi +λ j

�

�

λi +λ j + |θi − θ j|
�

,

and

lim
α→α0

αλ2
j + (1−α)λ

2
i = 2

λiλ
2
j +λ

2
i λ j

λi +λ j
= 2λiλ j .
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Thus,

lim
α→α0

 

λiλ
2
j

α2λ2
j − (1−α)2λ

2
i

·
�

α

λi
exp

�

−(1−α)
|θi − θ j|
λ j

�

−
(1−α)
λ j

exp

�

−α
|θi − θ j|
λi

���

=
λiλ

2
j

2λiλ j

1

λiλ j
exp

�

−
|θi − θ j|
λi +λ j

�

�

λi +λ j + |θi − θ j|
�

=
1

2λi
exp

�

−
|θi − θ j|
λi +λ j

�

�

λi +λ j + |θi − θ j|
�

.

Finally, by the continuity of the logarithm on (0,∞),

lim
α→a0

Dα( fi|| f j)

= ln
λ j

λi
+

1

α0− 1
ln

�

1

2λi
exp

�

−
|θi − θ j|
λi +λ j

�

�

λi +λ j + |θi − θ j|
�

�

= ln
λ j

λi
−
λi +λ j

λ j
ln

�

1

2λi
exp

�

−
|θi − θ j|
λi +λ j

�

�

λi +λ j + |θi − θ j|
�

�

= ln
λ j

λi
+
|θi − θ j|
λ j

+
λi +λ j

λ j
ln

�

2λi

λi +λ j + |θi − θ j|

�

,

which was indeed the value we obtained for Dα( fi|| f j) when α = λi/(λi + λ j) in Case

1 of Proposition 2.3.4, as expected from the continuity of Dα.

Remark 2.3.7. If we set θi = θ j = 0 in Proposition 2.3.4 we obtain

Dα( fi|| f j) = ln
λ j

λi
+

1

α− 1
ln

 

λiλ
2
j

α2λ2
j − (1−α)2λ

2
i

!

+
1

α− 1
ln

�

α

λi
−

1−α
λ j

�

= ln
λ j

λi
+

1

α− 1
ln

 

λiλ
2
j

α2λ2
j − (1−α)2λ

2
i

αλ j − (1−α)λi

λ jλi

!

= ln
λ j

λi
+

1

α− 1
ln

�

λ j

αλ j + (1−α)λi

�

= ln
λ j

λi
+

1

α− 1
ln
λ j

λ∗
α

,
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since λ∗
α

:= αλ j+(1−α)λi (see Section 2.1), which is consistent with the result derived

in Section 2.2.6 using the expression for exponential Families.

2.3.2 Rényi and Kullback Divergence for Cramér Distributions

We consider here the distributions identified by Song [57] as Cramér6. Let fi and f j be

two Cramér densities:

fi(x) =
θi

2(1+ θi|x |)2
θi > 0; x ∈ R .

Proposition 2.3.8.

E fi
[ln f j] =











ln
θ j

2
−

2θ j

θ j − θi
ln
θ j

θi
if θi 6= θ j

ln
θ

2
− 2 if θi = θ j = θ

Proof.

E fi
[ln f j] = E fi

�

ln
θ j

2
− 2 ln(1+ θ j|X |)

�

= ln
θ j

2
− 2E fi

�

ln(1+ θ j|X |)
�

,

where

E fi

�

ln(1+ θ j|X |)
�

=

∫

R

θi ln(1+ θ j|x |)
2(1+ θi|x |)2

d x =

∫

R+

θi ln(1+ θ j x)

(1+ θi x)2
d x .

If θi = θ j = θ then
∫

R+

θi ln(1+ θ j x)

(1+ θi x)2
d x =

∫

R+
we−w dw = 1 ,

we w = ln(1+ θ x), and the above corresponds to the integration of an exponenetial

pdf over its support. Now let θi 6= θ j. Then
∫

R+

θi ln(1+ θ j x)

(1+ θi x)2
d x =

∫ ∞

1

ln(a(u− 1) + 1)
u2 du , a = θ j/θi , u= 1+ θi x

=

�

−
1

u
ln(au− a+ 1) + a

∫

1

u(au− a+ 1)
du

�∞

1

,

6See footnote 1 in Chapter 2
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where we have used integration by parts. The first term vanishes at both limits and for

the second term we can use the partial fraction decomposition

1

u(au− a+ 1)
=

1

1− a

�

1

u
−

a

au− a+ 1

�

.

Then
∫

R+

θi ln(1+ θ j x)

(1+ θi x)2
=

a

1− a

∫ ∞

1

�

1

u
−

a

au− a+ 1

�

du

=
a

1− a
ln
� u

au− a+ 1

�∞

1

=
a

1− a

�

lim
u→∞

ln
� u

au− a+ 1

�

− 0
�

=
a

1− a
ln

1

a

=
θ j

θi

θi

θi − θ j
ln
θi

θ j

=
θ j

θi − θ j
ln
θi

θ j
,

where l’Hospital’s rule has been used to evaluate the limit. Thus

E fi
[ln f j] = ln

θ j

2
− 2E fi

�

ln(1+ θ j|X |)
�

=











ln
θ j

2
−

2θ j

θi − θ j
ln
θi

θ j
if θi 6= θ j

ln
θ

2
− 2 if θi = θ j = θ .

Corollary 2.3.9. The differential entropy of fi is

h( fi) = 2− ln
θi

2
.

Proof.

h( fi) =−E fi
(ln fi) =−

�

ln
θi

2
− 2
�

= 2− ln
θi

2
.
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Proposition 2.3.10. The Kullback-Liebler divergence from fi to f j is

D( fi|| f j) =
θi + θ j

θi − θ j
ln
θi

θ j
− 2 .

Proof. Using Proposition 2.3.8 and Remark 1.2.4 we have

D( fi|| f j) = E fi
[ln fi]− E fi

[ln f j]

= ln
θi

2
− 2−

�

ln
θ j

2
−

2θ j

θi − θ j
ln
θi

θ j

�

=

�

1+
2θ j

θi − θ j

�

ln
θi

2
− 2

=
θi + θ j

θi − θ j
ln
θi

θ j
− 2 .

Remark 2.3.11. Note that

lim
θi→θ j

D( fi|| f j) = lim
θi→θ j







(θi + θ j) ln
θi

θ j

θi − θ j
− 2






= lim
θi→θ j

�

θi + θ j

θi
+ ln

θi

θ j

�

− 2= 0 ,

as expected.

Proposition 2.3.12. Let α ∈ R+ \ {1}. Then the Rényi divergence between fi and f j is

given by the following cases

1. If α= 1/2 then

D1/2( fi|| f j) = ln
θi

θ j
+ 2 ln

�

θi

θi − θ j
ln
θi

θ j

�

.

2. If α 6= 1/2 then

Dα( fi|| f j) = ln
θi

θ j
+

1

α− 1
ln

 

θi

(2α− 1)(θi − θ j)



1−
�

θ j

θi

�2α−1




!

.
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Proof.

f αi f 1−α
j =

�

θi

2(1+ θi|x |)2

�α
�

θ j

2(1+ θ j|x |)2

�1−α

= θαi θ
1−α
j

1

2(1+ θi|x |)2α
1

(1+ θ j|x |)2−2α

=

�

θi

θ j

�α−1
θi

2(1+ θi|x |)2α(1+ θ j|x |)2−2α .

Now
∫

R

θi

2(1+ θi|x |)2α(1+ θ j|x |)2−2α d x

= 2

∫

R+

θi

2(1+ θi x)2α(1+ θ j x)2−2α d x

=

∫ ∞

1

�

1

u

�2α� 1

1+ a(u− 1)

�2−2α

du , u= 1+ θi x , a = θ j/θi

=

∫ 0

1

v2α

�

v

v(1− a) + a

�2−2α

v−2 dv , v =
1

u

=

∫ 1

0

[v(1− a) + a]2α−2 dv .

Since we exclude the case α = 1 the exponent in the integrand above is nonzero.

Suppose α= 1/2. Then
∫ 1

0

[v(1− a) + a]2α−2 dv =

∫ 1

0

1

v(1− a) + a
dv

=
1

1− a
ln(v(1− a) + a)

�

�

�

�

1

0

=
ln a

a− 1

=
θi

θ j − θi
ln
θ j

θi

=
θi

θi − θ j
ln
θi

θ j
.
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Thus

D1/2( fi|| f j)

=
1

α− 1
ln

 

�

θi

θ j

�α−1 ∫

R

θi

2(1+ θi|x |)2α(1+ θ j|x |)2−2α d x

!
�

�

�

�

�

α=1/2

= ln
θi

θ j
+ 2 ln

�

θi

θi − θ j
ln
θi

θ j

�

.

If α 6= 1/2
∫ 1

0

[v(1− a) + a]2α−2 dv =
1

(1− a)(2α− 1)
(v(1− a) + a)2α−1

�

�

�

�

1

0

=
1

(1− a)(2α− 1)

�

1− a2α−1
�

=
θi

(2α− 1)(θi − θ j)



1−
�

θ j

θi

�2α−1


 ,

and

Dα( fi|| f j) = ln
θi

θ j
+

1

α− 1
ln

 

θi

(2α− 1)(θi − θ j)



1−
�

θ j

θi

�2α−1




!

.

Remark 2.3.13.

lim
a↑1

Dα( fi|| f j) = D( fi|| f j) .

Proof. Since the term

θi

(2α− 1)(θi − θ j)



1−
�

θ j

θi

�2α−1




approaches 1 as α → 1, we see that the second term in Dα( fi|| f j) is of indeterminate

form. Applying l’Hospitals rule

lim
a↑1

Dα( fi|| f j) = ln
θi

θ j
+ lim
α↑1

�

−
2

2α− 1
+

g ′(α)
g(α)

�

,
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where

g(α) := 1−
�

θ j

θi

�2α−1

, and so g ′(α) =−2

�

θ j

θi

�2α−1

ln
θ j

θi
.

Then

lim
a↑1

g ′(α)
g(α)

=−2
θi

θi − θ j

θ j

θi
ln
θ j

θi
= 2

θ j

θi − θ j
ln
θi

θ j
,

and

lim
a↑1

Dα( fi|| f j) = ln
θi

θ j
+ 2

θ j

θi − θ j
ln
θi

θ j
− 2

= ln
θi

θ j

�

θi − θ j + 2θ j

θi − θ j

�

− 2

=
θi + θ j

θi − θ j
ln
θi

θ j
− 2 ,

which is the expression for D( fi|| f j) obtained in Proposition 2.3.10, as expected.

Remark 2.3.14. The Rényi divergence is continuous at α= 1/2.

Proof. For α= 1/2 the term

θi

(2α− 1)(θi − θ j)



1−
�

θ j

θi

�2α−1




is of indeterminate form. We proceed to evaluate the limit with l’Hospital’s rule:

lim
α→1/2

 

θi

(2α− 1)(θi − θ j)



1−
�

θ j

θi

�2α−1




!

=
θi

θi − θ j
lim
α→1/2

�

g ′(α)
2

�

=
θi

θi − θ j

�

−
2

2
ln
θ j

θi

�

=
θi

θi − θ j
ln
θi

θ j
,
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with g(α) defined as in Remark 2.3.13. Thus by the continuity of the logarithm function

lim
α→1/2

Dα( fi|| f j) = ln
θi

θ j
+ 2 ln

�

θi

θi − θ j
ln
θi

θ j

�

,

which is indeed the value of D1/2( fi|| f j) given in Proposition 2.3.12.

2.3.3 Rényi and Kullback Divergence for General Univariate Pareto

Distributions

In this section we take fi and f j to be two Pareto densities with generally different

supports:

fi(x) = aim
ai
i x−(ai+1) , ai, mi > 0 ; x > mi .

Proposition 2.3.15. The Kullback-Leibler Divergence berween fi and f j is

ln

�

mi

m j

�a j

+ ln
ai

a j
+

a j − ai

ai

if mi ≥ m j, and∞ otherwise.

Proof. If mi < m j then D( fi|| f j) =∞ by the definition of the KLD. Suppose from now

on that mi ≥ m j. We have

E fi

�

ln f j

�

= E fi

�

ln
�

a jm
a j

j

�

− (a j + 1) ln X
�

= ln
�

a jm
a j

j

�

− (a j + 1)E fi
[ln X ] .
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Now

E fi
[ln X ] =

∫ ∞

mi

aim
ai
i x−(ai+1) ln x d x

= aim
ai
i



−
1

ai
x−ai ln x

�

�

�

�

∞

mi

+
1

ai

∫ ∞

mi

x−(ai+1)d x





=
aim

ai
i m−ai

i ln mi

ai
+

1

ai

∫ ∞

mi

aim
ai
i x−(ai+1)d x

= ln mi +
1

ai
.

Thus

E fi

�

ln f j

�

= ln
�

a jm
a j

j

�

− (a j + 1)
�

ln mi +
1

ai

�

= ln
�m j

mi

�a j

+ ln
a j

mi
−

a j + 1

ai
,

and

D( fi|| f j) = E fi
[ln fi]− E fi

[ln f j]

=−
�

ln
mi

ai
+
(ai + 1)

ai

�

−
�

ln
�m j

mi

�a j

+ ln
a j

mi
−

a j + 1

ai

�

= ln

�

mi

m j

�a j

+ ln
ai

a j
+

a j − ai

ai
.

Next consider we the Rényi divergence.
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Proposition 2.3.16. Let aα = αai + (1− α)a j and M = max{mi, m j}. The Rényi diver-

gence between fi and f j is

Dα( fi|| f j) =























































ln
mai

i

m
a j

j

+ ln
ai

a j
+

1

α− 1
ln

aim
ai
i

aαM aα
for α ∈ (0,1)

ln

�

mi

m j

�a j

+ ln
ai

a j
+

1

α− 1
ln

ai

aα
α > 1, mi ≥ m j, and aα > 0

∞ otherwise

Proof. Note that if α > 1 then the integral

∫

f αi f 1−α
j d x

is∞ (and also Dα( fi|| f j)) for mi < m j. Also, for α < 1 the integrand is nonzero only if

x >max
¦

mi, m j

©

:= M . Let’s suppose that α > 1 and mi ≥ m j. Now

f αi f 1−α
j =

�

aim
ai
i x−(ai+1)

�α�

a jm
a j

j x−(a j+1)
�1−α

=

�

ai

a j

�α−1

aim
αai
i m

(1−α)a j

j x aα−1 , x > mi

where aα = αai + (1−α)a j. If aα ≤ 0 then

∫ ∞

mi

f αi f 1−a
j d x = A

∫ ∞

mi

x a0−1d x =∞ , (A> 0)

and since nonpositive aα only occurs for α > 1 we have Dα( fi|| f j) =∞ as well. Now, if
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aα > 0 then

∫

f αi f 1−α
j d x =

�

ai

a j

�α−1

aim
αai
i m

(1−α)a j

j

∫ ∞

mi

x aα−1d x

=

�

ai

a j

�α−1

mαai
i m

(1−α)a j

j

ai

aαmaα
i

∫ ∞

mi

aαmaα
i x aα−1d x

=

�

ai

a j

�α−1

mαai−aα
i m

(1−α)a j

j

ai

aα

=

�

ai

a j

�α−1

m
(α−1)a j

i m
(1−α)a j

j

ai

aα

=

�

ai

a j

�α−1�
mi

m j

�(α−1)a j ai

aα
.

Then

Dα( fi|| f j) = ln

�

mi

m j

�a j

+ ln
ai

a j
+

1

α− 1
ln

ai

aα
.

Note that setting mi = m j we get the earlier result for equal supports given in Sec-

tion 2.2.7. Lastly, consider the case α ∈ (0, 1). In this case aα is automatically positive,

and we have

∫

f αi f 1−α
j d x =

�

ai

a j

�α−1

aim
αai
i m

(1−α)a j

j

∫ ∞

M

x aα−1d x

=

�

ai

a j

�α−1

mαai
i m

(1−α)a j

j

ai

aαM aα

=

 

ai

a j

mai
i

m
a j

j

!α−1
aim

ai
i

aαM aα
,

where M =max{mi, m j}. Hence

Dα( fi|| f j) = ln
mai

i

m
a j

j

+ ln
ai

a j
+

1

α− 1
ln

aim
ai
i

aαM aα
,
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which agrees with the above result for mi ≥ m j. In summary we have

Dα( fi|| f j) =







































































ln
mai

i

m
a j

j

+ ln
ai

a j
+

1

α− 1
ln

aim
ai
i

aαM aα
, α ∈ (0, 1)

M =max{mi, m j}

ln

�

mi

m j

�a j

+ ln
ai

a j
+

1

α− 1
ln

ai

aα
α > 1, mi ≥ m j, and aα > 0

∞ otherwise

Remark 2.3.17. To verify that we do obtain D( fi|| f j) as α ↑ 1 observe that for M = mi

the expression for Dα( fi|| f j) is the same for all α > 0 (α 6= 1). Then, by l’Hospitals rule,

lim
α↑1

1

α− 1
ln

ai

aα
=

a j − ai

ai
.

Moreover, note that for mi < m j,

lim
α↑1

aim
ai
i

aαmaα
j

=

�

mi

m j

�ai

< 1 ,

hence

lim
α↑1

1

α− 1
ln

aim
ai
i

aαmaα
j

=∞ .

2.3.4 Rényi and Kullback Divergence for Uniform Distributions

We consider two uniform densities fi and f j

fi =
1

bi − ai
, ai < x < bi .
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Proposition 2.3.18. The Kullback-Leibler divergence between fi and f j is

D( fi|| f j) = ln
b j − a j

bi − ai
.

for (ai, bi)⊆ (a j, b j), and∞ otherwise.

Proof. Assume that (ai, bi)⊆ (a j, b j) since, by definition, the KLD is∞ otherwise. Then

D( fi|| f j) = E fi

�

ln( fi/ f j)
�

= ln
b j − a j

bi − ai
.

Proposition 2.3.19. Let bm = min{bi, b j} and aM = max{ai, a j}. Then the Rényi di-

vergnce between fi and f j is

Dα( fi|| f j) =























































ln
b j − a j

bi − ai
+

1

α− 1
ln

bm− aM

bi − ai
, α ∈ (0,1) , bm > aM

ln
b j − a j

bi − ai
α > 1 , (ai, bi)⊂ (a j, b j).

∞ otherwise

Proof. We calculate the Rényi divergence using the same line of argument as in the

Pareto case. For α ∈ (0,1) we need to look at two cases. If bm = min{bi, b j} ≤ aM =

max{ai, a j}, then
∫

f αi f 1−α
j d x = 0 ,

hence

Dα( fi|| f j) =
1

α− 1
ln

∫

f αi f 1−α
j d x =∞ .
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Suppose then that bm > aM . In this case,
∫

f αi f 1−α
j d x =

∫ bm

aM

�

1

bi − ai

�α
�

1

b j − a j

�1−α

d x

=

�

b j − a j

bi − ai

�α−1
bm− aM

bi − ai
,

For α > 1 the integral above is finite only when (ai, bi)⊂ (a j, b j)7. In this case
∫

f αi f 1−α
j d x =

∫ bi

ai

�

1

bi − ai

�α
�

1

b j − a j

�1−α

d x

=

�

b j − a j

bi − ai

�α−1

.

Thus,

Dα( fi|| f j) =



































































ln
b j − a j

bi − ai
+

1

α− 1
ln

bm− aM

bi − ai
, α ∈ (0, 1) , bm > aM

bm =min{bi, b j} , aM =max{ai, a j} ,

ln
b j − a j

bi − ai
α > 1 , (ai, bi)⊂ (a j, b j).

∞ otherwise

Remark 2.3.20. Note that Dα( fi|| f j) = D( fi|| f j) for α > 1. To verify that Dα( fi|| f j)

approaches D( fi|| f j) as α ↑ 1, note first that (ai, bi) ⊂ (a j, b j)⇔ aM = ai and bm = bi,

in which case the expression for α ∈ (0,1) is the same as D( fi|| f j). Suppose then that

(ai, bi) 6= (aM , bm). If bm > aM then

0<
bm− aM

bi − ai
<

bi − ai

bi − ai
= 1 ,

7Inclusion here is strict since it is tacitly assumed that (ai , bi) 6= (a j , b j)
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hence

lim
α↑1

Dα( fi|| f j) =∞ ;

and if bm ≤ aM then Dα( fi|| f j) =∞ for all α ∈ (0, 1). Thus the limit is verified.

2.3.5 Kullback-Liebler Divergence for General Univariate

Gumbel Distributions

It is possible to derive the Kullback-Leibler divergence (Rényi divergence for α = 1)

without the assumption of a fixed β value made in Section 2.2.5. Throughout this

section let fi and f j be two Gumbel densities

fi(x) = β
−1
i e−(x−µi)/βi exp

�

−e−(x−µi)/βi
�

= β−1
i wie

−wi , wi = e−(x−µi)/βi µi ∈ R, βi > 0 ; x ∈ R .

Proposition 2.3.21.

E fi

�

ln f j

�

=− lnβ j +
µ j −µi

β j
−
βi

β j
γ− e(µ j−µi)/β jΓ

�

βi

β j
+ 1

�

.

Proof.

E fi

�

ln f j

�

= E fi

�

− lnβ j + ln Wj −Wj

�

=− lnβ j + E fi

�

ln Wj

�

− E fi

�

Wj

�

.

Let r >−β j/βi. Then

E fi

h

W r
j

i

=

∫

R
β−1

i wi(x)e
−wi(x)w j(x)

r d x .

Note that

wi(x) = e−(x−µ)/βi ⇒ x =−βi ln wi +µi ⇒ d x =−
βi

wi
dwi ,
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and

w j = e−(x−µ j)/β j

= exp

 

−

�

−βi ln wi +µi −µ j

�

β j

!

= exp

�

βi

β j
ln wi +

µ j −µi

β j

�

= w
(βi/β j)
i e(µ j−µi)/β j .

Also, x →∞⇒ wi → 0 and x →−∞⇒ wi →∞ since βi > 0. Thus

E fi

h

W r
j

i

=

∫ 0

∞
β−1

i wie
−wi

�

w
(βi/β j)
i e(µ j−µi)/β j

�r
�

−
βi

wi

�

dwi

= er(µ j−µi)/β j

∫

R+
e−wi w

(rβi/β j)
i dwi

= er(µ j−µi)/β jΓ

�

rβi

β j
+ 1

�

.

Then,

E fi

�

Wj

�

= e(µ j−µi)/β jΓ

�

βi

β j
+ 1

�

.

Also,

E fi

�

ln Wj

�

=
d

dr
E fi

h

W r
j

i

�

�

�

�

r=0

=
d

dr

�

er(µ j−µi)/β jΓ

�

rβi

β j
+ 1

��

r=0

=

�

er(µ j−µi)/β j

�

µ j −µi

β j
Γ

�

rβi

β j
+ 1

�

+Γ′
�

rβi

β j
+ 1

�

βi

β j

��

r=0

=
µ j −µi

β j
+
βi

β j
Γ′(1)

=
µ j −µi

β j
−
βi

β j
γ ,
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where γ is the Euler-Mascheroni constant introduced in Section A.3.1. Finally,

E fi

�

ln f j

�

=− lnβ j + E fi

�

ln Wj

�

− E fi

�

Wj

�

=− lnβ j +
µ j −µi

β j
−
βi

β j
γ− e(µ j−µi)/β jΓ

�

βi

β j
+ 1

�

.

Corollary 2.3.22. The differential entropy of fi is

h( fi) = lnβi + γ+ 1.

Proof. Setting i = j in Proposition 2.3.21 we have

h( fi) =−E fi

�

ln fi
�

=−
�

− lnβi +
µi −µi

βi
−
βi

βi
γ− e(µi−µi)/βiΓ

�

βi

βi
+ 1
��

= lnβi + γ+Γ(2)

= lnβi + γ+ 1 .

Proposition 2.3.23. The Kullback-Liebler divergence between fi and f j is

D( fi|| f j) = ln
β j

βi
+ γ

�

βi

β j
− 1

�

+ e(µ j−µi)/β jΓ

�

βi

β j
+ 1

�

− 1 .

Proof. Using Proposition 2.3.21 and Remark 1.2.4 we have

D( fi|| f j) = E fi
[ln fi]− E fi

[ln f j]

=−
�

lnβi + γ+ 1
�

−
�

− lnβ j +
µ j −µi

β j
−
βi

β j
γ− e(µ j−µi)/β jΓ

�

βi

β j
+ 1

��

= ln
β j

βi
+ γ

�

βi

β j
− 1

�

+ e(µ j−µi)/β jΓ

�

βi

β j
+ 1

�

− 1 .
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Remark 2.3.24. If we consider the expression for Dα( fi|| f j) in the case βi = β j = β ,

which we derived in Section 2.2.5, then we find

lim
α→1

Dα( fi|| f j) =−lim
α→1

eµi/β − eµ j/β

αeµi/β + (1−α)eµ j/β
=

eµ j/β − eµi/β

eµi/β
= e(µ j−µi)/β − 1 ,

where we have used l’Hospital’s rule to evaluate the indeterminate limit. As expected,

this is also the expression obtained by setting βi = β j = β in the Proposition 2.3.23.

2.3.6 Kullback-Liebler Divergence for General Univariate

Weibull Distributions

It is possible to derive the Kullback-Leibler divergence (Rényi divergence for α = 1)

without the assumption of a fixed k value made in Section 2.2.8. Throughout this

section let fi and f j be two univariate Weibull densities

fi(x) = kiλ
−ki
i x ki−1e−(x/λi)ki , ki,λi > 0; x ∈ R+ .

Proposition 2.3.25.

E fi

�

ln f j

�

= (k j − 1) ln
λi

λ j
+ ln

k j

λ j
−
�

k j − 1
� γ

ki
−
�

λi

λ j

�k j

Γ

�

1+
k j

ki

�

.

Proof.

E fi

�

ln f j

�

= E fi



ln
�

k jλ
−k j

j

�

+
�

k j − 1
�

ln X −
�

X

λ j

�k j




= ln
�

k jλ
−k j

j

�

+
�

k j − 1
�

E fi
[ln X ]−λ−k j

j E fi

�

X k j
�

.
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Let r ≥−ki. Then

E fi
[X r] =

∫

R+
x r kiλ

−ki
i x ki−1e−(x/λi)ki d x

= λr
i

∫

R+
y r/ki e−y d y , y =

�

x

λi

�ki

= λr
i Γ
�

1+
r

ki

�

.

Also

d

dr
E fi
[X r] = E

�

d

dr
X r

�

= E [X r ln X ] .

Thus

E [X ln X ] =
d

dr
E fi
[X r]

�

�

�

�

r=0

=
�

λr
i lnλi Γ

�

1+
r

ki

�

+λr
i

d

dr
Γ
�

1+
r

ki

��
�

�

�

�

r=0

= Γ(1) lnλi +
Γ′(1)

ki

= lnλi −
γ

ki
,

where γ is the Euler-Mascheroni constant introduced in Definition A.3.3 and by

Proposition A.3.4, Γ′(1) =−γ. Thus,

E fi

�

ln f j

�

= ln
�

k jλ
−k j

j

�

+
�

k j − 1
�

E fi
[ln X ]−λ−k j

j E fi

�

X k j
�

= ln
�

k jλ
−k j

j

�

+
�

k j − 1
�

�

lnλi −
γ

ki

�

−λ−k j

j λ
k j

i Γ

�

1+
k j

ki

�

= ln k j − k j lnλ j +
�

k j − 1
�

lnλi −
�

k j − 1
� γ

ki
−
�

λi

λ j

�k j

Γ

�

1+
k j

ki

�

= (k j − 1) ln
λi

λ j
+ ln

k j

λ j
−
�

k j − 1
� γ

ki
−
�

λi

λ j

�k j

Γ

�

1+
k j

ki

�

.
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Corollary 2.3.26. The differential entropy of fi is

h( fi) = ln
λi

ki
+
�

1−
1

ki

�

γ+ 1 .

Proof. Setting i = j in Proposition 2.3.25 we have

h( fi) =−E fi

�

ln fi
�

=−
�

(ki − 1) ln
λi

λi
+ ln

ki

λi
−
�

ki − 1
� γ

ki
−
�

λi

λi

�ki

Γ
�

1+
ki

ki

�

�

=−
�

ln
ki

λi
−
�

ki − 1
� γ

ki
−Γ(2)

�

= ln
λi

ki
+
�

1−
1

ki

�

γ+ 1 .

Proposition 2.3.27. The Kullback-Liebler divergence between fi and f j is

D( fi|| f j) = ln

 

ki

k j

�

λ j

λi

�k j
!

+ γ
k j − ki

ki
+

�

λi

λ j

�k j

Γ

�

1+
k j

ki

�

− 1 .

Proof. Using Proposition 2.3.25 and Remark 1.2.4 we have

D( fi|| f j) = E fi
[ln fi]− E fi

[ln f j]

= ln
ki

λi
−
�

ki − 1
� γ

ki
− 1

−



(k j − 1) ln
λi

λ j
+ ln

k j

λ j
−
�

k j − 1
� γ

ki
−
�

λi

λ j

�k j

Γ

�

1+
k j

ki

�





= ln

�

kiλ j

k jλi

�

+
γ

ki
(k j − 1− ki + 1) + (k j − 1) ln

λ j

λi
+

�

λi

λ j

�k j

Γ

�

1+
k j

ki

�

− 1

= ln

 

ki

k j

�

λ j

λi

�k j
!

+ γ
k j − ki

ki
+

�

λi

λ j

�k j

Γ

�

1+
k j

ki

�

− 1 .
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2.4 Tables for Continuous Rényi and Kullback

Divergences

We summarize the results of this chapter in Table 2.2 and Table 2.3, where we present

the expressions for Rényi and Kullback divergences, respectively. The densities asso-

ciated with the distributions are given in Table 2.1. The table of Rényi divergences

includes a finiteness constraint for which the given expression is valid. For all other

cases (and α > 0), Dα( fi|| f j) = ∞. In the cases where the closed-form expression

is a piece-wise function the conditions for each case are presented alongside the cor-

responding formula, and it is implied that for all other cases Dα( fi|| f j) = ∞. The

expressions for the Rényi divergence of Laplace and Cramer distributions are still con-

tinuous at α = λi/(λi + λ j) and α = 1/2, respectively (as shown in the corresponding

sections of this work).

One important property of Rényi divergence is that Dα(T (X )||T (Y )) = Dα(X ||Y )

for any invertible transformation T . This follows from the more general data process

inequality (see [60]). For example, the Rényi divergence between two lognormal den-

sities is the same as that between two normal densities, hence the absence of the former

in the tables.

Table 2.1: Continuous Distributions

Name Density Restrictions

Beta
x a−1(1− x)b−1

B(a, b)
a , b > 0 ; x ∈ (0, 1)

Chi
21−k/2 x k−1e−x2/2σ2

σkΓ
�

k
2

� σ > 0 , k ∈ N ; x > 0
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Name Density Restrictions

χ2
x d/2−1e−x/2

2d/2Γ(d/2)
d ∈ N ; x > 0

Cramér
θ

2(1+ θ |x |)2
θ > 0 ; x ∈ R

Dirichlet
1

B(a)

d
∏

k=1

x ak−1
k a ∈ Rd , ak > 0, d ≥ 2 ;

x ∈ Rd ,
∑

xk = 1

Exponential λe−λx λ > 0 ; x > 0

Gamma
x k−1e−x/θ

θ kΓ(k)
σ > 0 , k > 0 ; x > 0

Multivariate Gaussian
e−

1
2
(x−µ)′Σ−1(x−µ)

(2π)n/2|Σ|1/2
µ ∈ Rn ; x ∈ Rn

Σ symmetric positive definite

Univariate Gaussian
e−(x−µ)

2/2σ2

p
2πσ2

σ > 0 ,µ ∈ R ; x ∈ R

Special Bivariate
e−

1
2

x ′Φ−1x

2π(1−ρ2)1/2
ρ ∈ (−1,1) ,Φ =















1 ρ

ρ 1















;

Gaussian x ∈ R2

Gumbel
e−(x−µ)/β e−e−(x−µ)/β

β
µ ∈ R, β > 0 ; x ∈ R

Half-Normal

r

2

πσ2 e−x2/(2σ2) σ > 0 ; x > 0

Laplace
1

2λ
e−|x−θ |/λ λ > 0 ,θ ∈ R ; x ∈ R

Maxwell-Boltzmann

r

2

π

x2e−
x2

2σ2

σ3 σ > 0 ; x > 0
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Name Density Restrictions

Pareto ama x−(a+1) a , m> 0 ; x > m

Rayleigh
x

σ2 e−x2/(2σ2) σ > 0 ; x > 0

Uniform
1

b− a
a < x < b

Weibull kλ−k x k−1e−(x/λ)
k

k ,λ > 0 ; x ∈ R+

Table 2.2: Rényi Divergences for Continuous Distributions

Name Dα( fi || f j) Finiteness

Condition

Beta ln
B(a j , b j)

B(ai , bi)
+

1

α− 1
ln

B(aα, bα)
B(ai , bi)

aα, bα ≥ 0

aα = αai + (1−α)a j , bα = αbi + (1−α)b j

Chi ln







σ
k j

j Γ(k j/2)

σ
ki
i Γ(ki/2)







+
1

α− 1
ln







Γ(kα/2)

σ
ki
i Γ(ki/2)

 

σ2
i σ

2
j

(σ2)∗α

!kα/2





(σ2)∗α > 0, kα > 0

(σ2)∗α = ασ
2
j + (1−α)σ

2
i , kα = αki + (1−α)k j

χ2 ln

�

Γ(d j/2)

Γ(di/2)

�

+
1

α− 1
ln
�

Γ(dα/2)
Γ(di/2)

�

dα > 0

dα = αdi + (1−α)d j
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Name Dα( fi || f j) Finiteness

Condition

Cramér For α= 1/2

ln
θi

θ j
+ 2 ln

�

θi

θi − θ j
ln
θi

θ j

�

For α 6= 1/2

ln
θi

θ j
+

1

α− 1
ln







θi

h

1−
�

θ j/θi

�2α−1
i

(θi − θ j)(2α− 1)







Dirichlet ln
B(a j)

B(ai)
+

1

α− 1
ln
�

B(aα)
B(ai)

�

aαk
> 0 ∀k

aα = αai + (1− a)a j

Exponential ln
λi

λ j
+

1

α− 1
ln
λi

λα
λα > 0

λα = αλi + (1−α)λ j

Gamma ln







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i







+
1

α− 1
ln

 

Γ(kα)

θ
ki
i Γ(ki)

�

θiθ j

θ ∗α

�kα
!

θ ∗α > 0 and kα > 0

θ ∗α = αθ j + (1− a)θi , kα = αki + (1−α)k j

Multivariate

Gaussian

α

2
(µi −µ j)

′(Σα)
∗(µi −µ j)

−
1

2(α− 1)
ln

|(Σα)∗|
|Σi|1−α|Σ j|α

αΣ−1
i + (1−α)Σ

−1
j

positive definite

(Σα)∗ = αΣ j + (1−α)Σi
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Name Dα( fi || f j) Finiteness

Condition

Univariate

Gaussian
ln
σ j

σi
+

1

2(α− 1)
ln

 

σ2
j

(σ2)∗α

!

+
1

2

α(µi −µ j)2

(σ2)∗α
(σ2)∗α > 0

(σ2)∗α = ασ
2
j + (1−α)σ

2
i

Special

Bivariate

Gaussian

1

2
ln

 

1−ρ2
j

1−ρ2
i

!

−
1

2(α− 1)
ln

 

1− (ρ∗α)
2

(1−ρ2
j )

!

αΦ−1
i + (1−α)Φ

−1
j

positive definite

ρ∗α = αρ j + (1−α)ρi

Gumbel

Fixed Scale

(βi = β j)

µi −µ j

β
+

1

α− 1
ln

eµi/β

�

eµi/β
�

α

�

eµi/β
�

α
> 0

�

eµi/β
�

α
= αeµi/β + (1−α)eµ j/β

Half-Normal ln
σ j

σi
+

1

α− 1
ln

 

σ2
j

(σ2)∗α

!1/2

(σ2)∗α > 0

(σ2)∗α = ασ
2
j + (1−α)σ

2
i

Laplace For α= λi/(λi +λ j)

ln
λ j

λi
+
|θi − θ j|
λ j

+
λi +λ j

λ j
ln

�

2λi

λi +λ j + |θi − θ j|

�

For α 6= λi/(λi +λ j) and αλ j + (1−α)λi > 0

ln
λ j

λi
+

1

α− 1
ln

 

λiλ
2
j g(α)

α2λ2
j − (1−α)

2λ2
i

!

where g(α) =
α

λi
exp

�

−
(1−α)|θi − θ j|

λ j

�

−
1−α
λ j

exp

�

−α|θi − θ j|
λi

�
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Name Dα( fi || f j) Finiteness

Condition

Maxwell

Boltzmann
3 ln

σ j

σi
+

1

α− 1
ln

 

σ2
j

(σ2)∗α

!3/2

(σ2)∗α > 0

(σ2)∗α = ασ
2
j + (1−α)σ

2
i

Pareto For α ∈ (0, 1)

ln
mai

i

m
a j

j

+ ln
ai

a j
+

1

α− 1
ln

aim
ai
i

aαM aα
,

M =max{mi , m j}

For α > 1, mi ≥ m j , and aα = αai + (1−α)a j > 0

ln

�

mi

m j

�a j

+ ln
ai

a j
+

1

α− 1
ln

ai

aα

Rayleigh 2 ln
σ j

σi
+

1

α− 1
ln

 

σ2
j

(σ2)∗α

!

(σ2)∗α > 0

(σ2)∗α = ασ
2
j + (1−α)σ

2
i

Uniform For α ∈ (0, 1) and

bm =min{bi , b j}> aM =max{ai , a j}

ln
b j − a j

bi − ai
+

1

α− 1
ln

bm− aM

bi − ai
,

For α > 1 , (ai , bi)⊂ (a j , b j)

ln
b j − a j

bi − ai

Weibull

Fixed Shape

(ki = k j)

ln

�

λ j

λi

�k

+
1

α− 1
ln

λk
j

(λk)∗α
(λk)∗α > 0

(λk)∗α = αλ
k
j + (1−α)λ

k
i
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Table 2.3: Kullback Divergences for Continuous Distributions

Name D( fi || f j)

Beta ln
B(a j , b j)

B(ai , bi)
+ψ(ai)(ai − a j) +ψ(bi)(bi − b j)

+[a j + b j − (ai + bi)]ψ(ai + bi)

Chi
1

2
ψ(ki/2)

�

ki − k j

�

+ ln

�

�

σ j

σi

�k j Γ(k j/2)

Γ(ki/2)

�

+
ki

2σ2
j

�

σ2
i −σ

2
j

�

χ2 ln
Γ(d j/2)

Γ(di/2)
+

di − d j

2
ψ(di/2)

Cramér
θi + θ j

θi − θ j
ln
θi

θ j
− 2

Dirichlet log
B(a j )

B(ai)
+

d
∑

k=1

�

aik − a jk

�



ψ(aik)−ψ

 

d
∑

k=1

aik

!



Exponential ln
λi

λ j
+
λ j −λi

λi

Gamma

�

θi − θ j

θ j

�

ki + ln







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i






+
�

ki − k j

�

�

lnθi +ψ(ki)
�

Multivariate

Gaussian

1

2

�

ln
|Σ j|
|Σi|
+ tr

�

Σ−1
j Σi

�

�

+
1

2

h

�

µi −µ j

�′
Σ−1

j

�

µi −µ j

�

− n
i

Univariate

Gaussian

1

2σ2
j

h

(µi −µ j)
2+σ2

i −σ
2
j

i

+ ln
σ j

σi

Special

Bivariate

Gaussian

1

2
ln

 

1−ρ2
j

1−ρ2
i

!

+
ρ2

j −ρ jρi

1−ρ2
j

General

Gumbel
ln
β j

βi
+ γ

�

βi

β j
− 1

�

+ e(µ j−µi)/β jΓ

�

βi

β j
+ 1

�

− 1
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Name D( fi || f j)

Half-Normal ln
�

σ j

σi

�

+
σ2

i −σ
2
j

2σ2
j

Laplace ln
λ j

λi
+
|θi − θ j|
λ j

+
λi

λ j
exp
�

−|θi − θ j|/λi

�

− 1

Maxwell

Boltzmann
3 ln
�

σ j

σi

�

+
3(σ2

i −σ
2
j )

2σ2
j

Pareto ln

�

mi

m j

�a j

+ ln
ai

a j
+

a j − ai

ai
, for mi ≥ m j and∞ otherwise.

Rayleigh 2 ln
�

σ j

σi

�

+
σ2

i −σ
2
j

σ2
j

Uniform ln
b j − a j

bi − ai
for (ai , bi)⊆ (a j , b j) and∞ otherwise.

General

Weibull
ln

 

ki

k j

�

λ j

λi

�k j
!

+ γ
k j − ki

ki
+

�

λi

λ j

�k j

Γ

�

1+
k j

ki

�

− 1



Chapter 3

Rényi Divergence and the

Log-likelihood Ratio

3.1 Rényi entropy and the log-likelihood function

In his 2001 paper [57] Song established the following connection between the variance

of the log-likelihood function and the differential Rényi entropy of order α, hα, which

we present in the proposition below. We provide a proof with additional steps and

more detail than as it was originally presented by Song.

Proposition 3.1.1. Let f be a probability density, then

lim
α→1

d

dα
hα( f ) =−

1

2
Var(ln f (X )) ,

assuming the integrals involved are well-defined and differentiation operations are legiti-

mate.

76



CHAPTER 3. RÉNYI DIVERGENCE AND THE LOG-LIKELIHOOD RATIO 77

Proof. For α ∈ R+ \ {1}, let

F(α) :=

∫

f (x)α d x .

Sufficient conditions to exchange differentiation and integration in this context are pro-

vided for example by Theorem A.1.4. We suppose that the differentiability assumptions

carry over up to the nth derivative for some n≥ 2. Then

d n

dαn F(α) =

∫

d n

dαn f (x)α d x =

∫

f α(x)
�

ln f (x)
�n d x .

Also,

lim
α→1

F(α) =

∫

f (x) d x = 1 , and

lim
α→1

d n

dαn F(α) =

∫

f (x)
�

ln f (x)
�n d x = E f

�

�

ln f (X )
�n� ,

where the continuity follows from the stronger assumptions on differentiability. For

α ∈ R+ \ {1},

d

dα
hα( f ) =

d

dα

�

1

1−α
ln F(α)

�

=
1

(1−α)2

�

(1−α)F(α)−1 dF

dα
+ ln F(α)

�

,

and as α→ 1 this becomes an indeterminate limit. Note that

d

dα

�

(1−α)F(α)−1 dα

dF
+ ln F(α)

�

= (1−α)
�

(−1)F(α)−2

�

dF

dα

�2

+ F(α)−1 d2F

dα2

�

− F(α)−1 dF

dα
+ F−1(α)

dF

dα

= (1−α)
�

(−1)F(α)−2

�

dF

dα

�2

+ F(α)−1 d2F

dα2

�
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Hence, by l’Hospital’s rule,

lim
α→1

d

dα
hα( f ) = lim

α→1

(1−α)
−2(1−α)

�

(−1)F(α)−2

�

dF

dα

�2

+ F(α)−1 d2F

dα2

�

=−
1

2
lim
α→1

�

(−1)F(α)−2

�

dF

dα

�2

+ F(α)−1 d2F

dα2

�

=−
1

2

�

−E f [ln f (X )]2+ E[(ln f (X ))2]
�

=−
1

2
Var
�

ln f (X )
�

.

When taking hα as a function of α, Song [57] calls this function the spectrum of

Rényi information.

3.2 Rényi divergence and the log-likelihood ratio

Motivated by the result above, we derive a similar expression involving the Rényi di-

vergence and the log-likelihood ratio between two densities fi and f j.

Proposition 3.2.1. Let fi and f j be two probability densities such that the integral defini-

tion of Dα( fi || f j) can be differentiated n times with respect to α (n≥ 2) by interchanging

differentiation and integration, then

lim
α→1

d

dα
Dα( fi|| f j) =

1

2
Var fi

�

ln
fi(X )
f j(X )

�

.

Proof. The proof follows the same approach as above. If one considers the integral

G(α) :=

∫

fi(x)
α f 1−α

j (x) d x
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for α ∈ R+ \ {1}, then under the differentiability assumptions

d

dα
G(α) =

∫

fi(x)
α f 1−α

j

�

ln fi(x)− ln f j(x)
�

d x =

∫

fi(x)
α f 1−α

j ln
fi(x)
f j(x)

d x ,

and similarly

d n

dαn G(α) =

∫

fi(x)
α f 1−α

j ln

�

fi(x)
f j(x)

�n

d x ,

hence

lim
α→1

d n

dαn G(α) = E fi

��

ln
fi(X )
f j(X )

�n�

.

The expression

d

dα
Dα( fi|| f j) =

d

dα

1

α− 1
ln G(α) =

1

(α− 1)2

�

(α− 1)G(α)−1 dG(α)
dα

− ln G(α)
�

becomes an indeterminate limit as α→ 1, since G(α)→ 1. Evaluating it with

l’Hospital’s rule yields

lim
α→1

d

dα
Dα( fi|| f j) =

1

2
lim
α→1

�

(−1)G(α)−2

�

dG(α)
dα

�2

+ G(α)−1 d 2

dα2 G(α)

�

=
1

2

 

−E fi

��

ln
fi(X )
f j(X )

��2

+ E fi





�

ln
fi(X )
f j(X )

�2




!

=
1

2
Var fi

�

ln
fi(X )
f j(X )

�

.

As an example we consider the case where fi and f j are two univariate Gaussian

densities. From Proposition B.4.4 we see that

2
d

dα
Dα( fi|| f j) =

d

dα





1

(α− 1)
ln

 

σ2
j

σ0

!

+
αµ0

σ0




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where σ0 = ασ2
j + (1−α)σ

2
i and µ0 = (µi −µ j)2, hence

dσ0

dα
= σ2

j −σ
2
i , lim

α→1
σ0 = σ

2
j , and lim

α→1

d

dα

�

αµ0

σ0

�

=
(µi −µ j)2σ2

i

σ4
j

.

Thus

lim
α→1

d

dα

1

(α− 1)
ln

 

σ2
j

σ0

!

= lim
α→1









− 1
σ0

dσ0

dα
(α− 1)− ln

�

σ2
j

σ0

�

(α− 1)2









=









lim
α→1

(α− 1)
�

1
σ0

dσ0

dα

�2
− 1
σ0

dσ0

dα
+ 1
σ0

dσ0

dα

2(α− 1)









=
1

2

 

σ2
j −σ

2
i

σ2
j

!2

,

where we have used l’Hospital’s rule to evaluate the limit and the fact that
d2σ0

dα2 = 0.

Thus, by Proposition 3.2.1

Var fi

�

ln
fi(X )
f j(X )

�

= 2 lim
α→1

d

dα
Dα( fi|| f j)

= lim
α→1

d

dα





1

(α− 1)
ln

 

σ2
j

σ0

!

+
αµ0

σ0





=
1

2

 

σ2
j −σ

2
i

σ2
j

!2

+
(µi −µ j)2σ2

i

σ4
j

.



Chapter 4

Rényi Divergence Rate for Stationary

Gaussian Processes

In this chapter we consider information measure rates for Stationary Gaussian pro-

cesses, in particular differential entropy rate, Rényi entropy rate, Kullback divergence

rate, and Rényi divergence rate.

4.1 Toeplitz Matrices and Toeplitz Forms

We first introduce some results from the theory of Toeplitz matrices, which constitutes

the main tool used in the calculation.

81
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A Toeplitz matrix is an n× n matrix Tn =
�

Tk j

�

s.t. Tk j = Tk−1 j−1 = tk− j, i.e., :


























t0 t−1 t−2 ... t−(n−1)

t1 t0 t−1

t2 t1 t0
...

...
. . .

tn−1 · · · t0



























A lot of applications in signal analysis and information theory assume the covari-

ance matrix of the given process is Toeplitz, and that it has a constant mean function

[28]. These processes are called weakly stationary. For Toeplitz covariance matrices,

the autocorrelation function satisfies KX (k, j) = KX (k− j).

Let f (x) be a real-valued function in L1(−π,π) with Fourier series

f (x)∼
∞
∑

n=−∞
cneinx ,

where

cn =
1

2π

∫ π

−π
e−inx f (x) d x .

Then the Hermitian form

Tn =
n
∑

i, j=0

ci− juiu j ,

is called the (finite) Toeplitz form associated with f (x). The asymptotic properties

of the eigenvalues of Hermitian Toeplitz forms have been studied by Grenander and

Szegö [29].

Note that

ck =
1

2π

∫ 2π

0

f (λ)e−ikλ d x =
1

2π

∫ 2π

0

f (λ)eikλ d x = c−k



CHAPTER 4. RÉNYI DIVERGENCE RATE FOR STATIONARY GAUSSIAN PROCESSES83

since f is real. Thus the Toeplitz form above can be represented by an (n+1)× (n+1)

Toeplitz matrix with coefficients ci− j via T (u) = u ′Au. To emphasize the relationship to

the function f , Tn is denoted as Tn( f ).

A very important property of Toeplitz forms is the following theorem regarding the

asymptotic distribution of eigenvalues, which can be found in Chapter 5, p.65 of [29].

Denote the eigenvalues of Tn( f ), by τ(n)1 ,τ(n)2 , ...,τ(n)n+1. Then the following holds

Theorem 4.1.1. Let f (λ) be a real-valued function in L1(−π,π), and denote by m and

M the essential lower and upper bound of f , respectively, and assume that m and M are

finite. If F(τ) is any continuous function defined on [m, M], we have

lim
n→∞

F
�

τ
(n)
1

�

+ F
�

τ
(n)
2

�

+ ...+ F
�

τ
(n)
n+1

�

n+ 1
=

1

2π

∫ π

−π
F[ f (λ)] dλ .

4.2 Differential Entropy Rate for Gaussian Processes

The results of [29] can be used to evaluate limits of Toeplitz covariance matrix determi-

nants, which becomes specially useful in the context of information rates for stationary

Gaussian processes. The following specialized version is given by Gray [28]:

Theorem 4.2.1. Let Tn( f ) be a sequence of Hermitian Toeplitz matrices with absolutely

summable entries such that ln f (λ) is Riemann integrable and f (λ)≥ m f > 0. Then

lim
n→∞

�

det
�

Tn( f )
��1/n = exp

 

1

2π

∫ 2π

0

ln f (λ) dλ

!

.

which is equivalent to

lim
n→∞

1

n
ln
�

det
�

Tn( f )
��

=
1

2π

∫ 2π

0

ln f (λ) dλ .
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While a complete development of these results is beyond the scope of this work, we

note that the main idea linking the two results is that for Hermitian matrices Tn we can

always express the determinant as the product of the eigenvalues τi of Tn, and so

ln |Tn|= ln

 

n
∏

i=1

τi

!

=
n
∑

i=1

lnτi .

Using the above result, Gray shows how to arrive at the differential entropy rate

for Gaussian processes, a result originally obtained by Kolmogorov [37]. Consider a

stationary zero mean Gaussian process {X n} determined by its mean autocorrelation

function σk, j = σk− j = E
�

Xk X j

�

, that is

f (λ) =
∞
∑

k=∞

σkeikλ , σl =
1

2π

∫ 2π

0

f (λ)e−iλl dλ .

For a fixed n the pdf of X n = (X1, .., Xn) is

pX n(x ) =
exp
�

−1
2
x ′Σ−1

n x
�

(2π)n/2|Σn|1/2
,

where Σn is the n× n covariance matrix with entries σk− j. Since the process is station-

ary, the determinant |Σn| is Toeplitz, and so

lim
n→∞

1

n
ln |Σn|=

1

2π

∫ 2π

0

ln f (λ) dλ .

Using the the expression for differential entropy derived in Corollary B.4.7 we then

have

lim
n→∞

1

n
h(X n) = lim

n→∞

1

n

�

1

2
ln(2πe)n+

1

2
ln |Σn|

�

=
1

2
ln(2πe) +

1

4π

∫ 2π

0

ln f (λ) dλ .

This expression was originally derive by Kolmogorov [37] and can also be found in

p. 417 of [15], and in p. 76 of [34].
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4.3 Divergence Rate for Stationary Gaussian Processes

A similar expression for the Kullback-Leibler divergence between two stationary Gaus-

sian processes can be derived. We present below the expression given in p. 81 of [34].

The problem has also been considered in [61].

Theorem 4.3.1. Let X = {Xn : n ∈ Z} and Y = {Yn : n ∈ Z} be purely nondeterminis-

tic stationary Gaussian processes with spectral densities f and g, respectively. Then the

relative entropy rate (Kullback divergence rate) is given by

H( f ; g) =
1

4π

∫ π

−π

�

f (λ)
g(λ)

− 1− ln
f (λ)
g(λ)

�

dλ ,

provided that at least one of the following conditions is satisfied:

a) f (λ)/g(λ) is bounded.

b) g(λ)> a > 0 ,∀λ ∈ [−π,π], and f ∈ L2[−π,π].

Proof. See [34].

4.4 Rényi Entropy Rate for Stationary

Gaussian Processes

In [25], Golshani and Pasha derive the entropy rate for stationary Gaussian processes,

starting from the following definition of conditional Rényi entropy between two con-

tinuous random variables X and Y having joint density f (x , y):

hα(Y |X ) =
1

1−α
ln

∫

R2 f α(x , y) d xd y
∫

R
f (x)αd x

, α > 0 , α 6= 1 .
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The above definition, based on the axioms of Jizba and Arimitsu [35], is studied by

Golshani et. al in [26] and it is shown to be more suitable than the definition of

conditional Rényi entropy found in [11]. Considering a stationary process X = {Xn}n∈Z,

they show that the Rényi entropy rate, hα(X ), exists and can be found via

hα(X ) = lim
n→∞

hα(Xn|Xn−1, ..., X1) ,

which is used to arrive at the following theorem:

Theorem 4.4.1. For a stationary Gaussian process, the rate of Rényi entropy is equal to

hα(X ) =
1

2
ln 2πα

1
α−1 +

1

4π

∫ π

−π
ln2π f (λ) dλ .

It is worth noting that while the Rényi information measures for distributions ap-

proach their Shannon counterparts as α ↑ 1, this does not in general hold for infor-

mation rates. The work [3] provides some counterexamples to this. However, in this

particular case, we can see that since

lim
α→1

lnα

α− 1
= 1 ,

the Rényi entropy rate approaches the differential entropy rate as α → 1. As shown

below, this convergence is also seen for Rényi divergences.

4.5 Rényi Divergence Rate for Stationary

Gaussian Processes

We now consider the Rényi divergence rate between two zero-mean stationary Gaus-

sian processes X = {Xk : k ∈ N} and Y = {Yk : k ∈ N}, so that for a given n the vectors
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X n = (X1, ..., Xn) and Y n = (Y1, ..., Yn) have multivariate normal densities with covari-

ance matrices ΣX n and ΣY n . Assume X and Y have power spectral densities f (λ) and

g(λ), respectively; i.e.,

f (λ) =
∞
∑

n=−∞
rneinλ , rk =

1

2π

∫ 2π

0

f (λ)e−iλk dλ ,

and,

g(λ) =
∞
∑

n=−∞
lneinλ , lk =

1

2π

∫ 2π

0

g(λ)e−iλk dλ ,

where f (λ) and g(λ) are assumed to have finite essential lower and upper bounds.

For α ∈ (0, 1) define h(λ) := αg(λ) + (1−α) f (λ) and sk := αlk + (1−α)rk. Then the

Fourier series

N
∑

n=−N

sneinλ = α
N
∑

n=−N

lneinλ+ (1−α)
N
∑

n=−N

rneinλ

converges to h(λ) as N →∞, where the kind of convergence is inherited via the trian-

gle inequality from the convergence of the individual series involving rn and ln, whether

it is meant as point-wise, uniform, in Lp, or in any other metric. Thus,

h(λ) =
∞
∑

n=−∞
sneinλ , sk =

1

2π

∫ 2π

0

h(λ)e−iλk dλ .

Note also that since ΣX n and ΣY n are Toeplitz matrices, so is the matrix defined as

Sn := αΣY n + (1−α)ΣX n . We are interested in finding the limit1

lim
n→∞

1

n
Dα(X

n||Y n) =− lim
n→∞

1

2(α− 1)
1

n
ln
|αΣY n + (1−α)ΣX n |
|ΣX n |1−α|ΣY n |α

=
1

2(1−α)
lim
n→∞

�

1

n
�

ln |S| − (1−α) ln |ΣX n | −α ln |ΣY n |
�

�

,

1We perform the calculation using the significantly simpler expression for the Rényi divergence be-
tween two multivariate Gaussian distributions given in Section 2.2.4, as opposed to the originally derived
(and equivalent) expression from Section B.4. Also, since we are considering zero-mean processes, one
of the terms vanishes and we are left with the expression above.
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where αΣ−1
X n + (1−α)Σ−1

Y n is a positive-definite matrix so that the expression for

Dα(X n||Y n) remains valid. Note also that all the determinants in the right hand side

are Toeplitz, and h(λ) satisfies the required assumptions of Theorem 4.1.1. Hence the

limit in question can be computed as follows:

lim
n→∞

1

n
Dα(X

n||Y n)

=
1

2(1−α)

�

lim
n→∞

1

n
ln |S| − (1−α) lim

n→∞

1

n
ln |ΣX n | −α lim

n→∞

1

n
ln |ΣY n |

�

=
1

2(1−α)





1

2π

∫ 2π

0

ln h(λ)dλ−
(1−α)

2π

∫

ln f (λ)dλ−
α

2π

∫

ln g(λ)dλ





=
1

4π(1−α)

∫ 2π

0

ln

�

h(λ)

f (λ)1−αg(λ)α

�

dλ

=
1

4π(1−α)

∫ 2π

0

ln

�

αg(λ) + (1−α) f (λ)
f (λ)1−αg(λ)α

�

dλ .

We can rearrange this result as

Dα(X ||Y ) =
1

2(1−α)





1

2π

∫ 2π

0

ln
�

αg(λ) + (1−α) f (λ)
�

dλ

−
(1−α)

2π

∫ 2π

0

ln f (λ)dλ−
α

2π

∫ 2π

0

ln g(λ)dλ





=−
1

2(α− 1)

�

1

2π

∫ π

−π
ln
��

1−α+α
g(λ)
f (λ)

�

f (λ)
�

−
(1−α)

2π

∫ π

−π
ln f (λ)dλ−

α

2π

∫ π

−π
ln g(λ)dλ

�

=−
1

2(α− 1)

�

1

2π

∫ π

−π
ln
�

1−α+α
g(λ)
f (λ)

�

−
α

2π

∫ π

−π
ln

g(λ)
f (λ)

dλ

�

.

Proposition 8.29 in Vajda’s book [59] asserts that if f and g are bounded above by

a positive constant, then there exists ε > 0 such that for every −ε < α < 1+ ε, the

Rényi divergence rate is given by the above expression2. The parameter α in their case
2Strictly speaking, their expression is in terms of Rα so there is the α factor discrepancy we have
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is allowed to take on negative values, and the constraint above ensures that positive-

definiteness is maintained for the original expression of D(X n||Y n) to hold [59]. The

proof is also based on Theorem 4.1.1 from [29].

As a very special case we may consider zero-mean stationary Gauss-Markov pro-

cesses X and Y with equal time constant β−1 and power spectral densities

fX (λ) =
2σ2

Xβ

β2−λ2 , and fY (λ) =
2σ2

Yβ

β2−λ2 ,

where β > π. Then

α fY (λ) + (1−α) fX (λ)

fX (λ)
1−α fY (λ)

α
=

2β
�

ασ2
Y + (1−α)σ

2
X

�

β2−λ2

�

β2−λ2

2σ2
Xβ

�1−α�
β2−λ2

2σ2
Yβ

�α

=
ασ2

Y + (1−α)σ
2
X

�

σ2
X

�1−α �
σ2

Y

�α

and

Dα(X ||Y ) =
1

4π(1−α)

∫ 2π

0

ln

�

αg(λ) + (1−α) f (λ)
f (λ)1−αg(λ)α

�

dλ

=
1

2(1−α)
ln
ασ2

Y + (1−α)σ
2
X

�

σ2
X

�1−α �
σ2

Y

�α
.

mentioned before.
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As a final remark, note that if the integral expression above is continuously differen-

tiable in α by exchanging integration and differentiation, then

lim
α→1

Dα(X
n||Y n)

= lim
α→1

1

4π(1−α)

∫ 2π

0

ln

�

αg(λ) + (1−α) f (λ)
f (λ)1−αg(λ)α

�

dλ

=−
1

4π

∫ 2π

0

lim
α→1

d

dα
�

ln
�

αg(λ) + (1−α) f (λ)
�

+ (α− 1) ln f (λ)−α ln g(λ)
�

dλ

=−
1

4π

∫ 2π

0

lim
α→1

�

g(λ)− f (λ)
αg(λ) + (1−α) f (λ)

+ ln f (λ)− ln g(λ)
�

dλ

=−
1

4π

∫ 2π

0

g(λ)− f (λ)
g(λ)

+ ln
f (λ)
g(λ)

dλ

=
1

4π

∫ π

−π

�

f (λ)
g(λ)

− 1− ln
f (λ)
g(λ)

�

dλ ,

where the limit was evaluated using l’Hospital’s rule. This last expression corresponds

to the Kullback divergence rate given in Theorem 4.3.1. In Table 4.1 we present the

information rate expressions for stationary processes considered in this chapter.

Table 4.1: Information Rates for Stationary Gaussian Processes

Information Measure Rate

Differential Entropy
1

2
ln(2πe) +

1

4π

∫ 2π

0

ln f (λ) dλ

Rényi Entropy
1

2
ln2πα

1
α−1 +

1

4π

∫ π

−π
ln2π f (λ) dλ

Kullback Divergence
1

4π

∫ π

−π

�

f (λ)
g(λ)

− 1− ln
f (λ)
g(λ)

�

dλ

Rényi Divergence
1

4π(1−α)

∫ 2π

0

ln

�

αg(λ) + (1−α) f (λ)
f (λ)1−αg(λ)α

�

dλ



Chapter 5

Conclusion

In this thesis we derived closed-form expressions for Rényi and Kullback-Leibler di-

vergences for several commonly used continuous distributions, and presented these

results in a summarized form in Table 2.2 and Table 2.3. We demonstrated that the

expressions corresponding to Exponential Families are in agreement with the results

obtained by Liese and Vajda [40]. This compilation constitutes a useful addition to

the literature, given that these measures are widely used in statistical and information

theoretical applications, possess operational definitions in the sense of [30], and are re-

lated in simple manner to other probabilistic distances like the Chernoff and Hellinger

divergences1

We also established a connection between the log-likelihood ratio between two dis-

tributions and their Rényi divergence, extending the work of Song [57], who consider

the log-likelihood function and its relation to Rényi entopy. Given the compilation for

Rényi divergence expressions we have provided, this result also becomes practically

relevant.
1As given by Liese and Vajda [41] and introduced in Chapter 1.
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Lastly, we investigated information rates for stationary Gaussian Sources, and de-

rived an expression for the Rényi divergence rate using the asymptotic theory of Toeplitz

matrices presented in [29] and [28]. This result was also shown to be in agreement

with a later discovered expression presented in [59].

Natural extensions of this work are the expansion of the compilation with additional

univariate and multivariate distributions, as well as considering information rates for

more general Gaussian processes, beginning with the consideration on nonzero mean

stationary Gaussian processes.
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Appendix A

Miscellaneous Background Results

A.1 Some Integration Results

Standard references for this material include for example [22] and [55].

Theorem A.1.1. Dominated Convergence Theorem: Let { fn} be a sequence in L1(µ) such

that fn → f and there exists a nonnegative g ∈ L1(µ) such that | fn| ≤ g for all n. Then

f ∈ L1(µ) and

∫

f dµ(x) = lim
n→∞

∫

fn dµ(x) .

Theorem A.1.2. Let f be a bounded real-valued function on [a, b].

1. If f is Riemann integrable, then f is Lebesgue integrable on [a, b] and

∫ b

a

f (x) d x =

∫

[a,b]

f (x) dµ(x) .

2. f is Riemann integrable iff {x ∈ [a.b] : f (x) is discontinuous at x} has Lebesgue

measure zero.
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Remark A.1.3. (See page 56 in [22]) If f is Riemann integrable on [0, b] for all b > 0

and Lebesgue integrable on [0,∞) then

∫

[0,∞)
f dµ= lim

b→∞

∫ b

0

f (x) d x

by the dominated convergence theorem. In particular, this observation allows us to use

standard Riemann improper integration tests for Lebesgue integrals of positive, a.s.

Riemann integrable functions.

The following theorem (2.27 in [22]) provides conditions to exchange the order of

integration and differentiation, a method we employ in several instances throughout

the calculations of this work.

Theorem A.1.4. Suppose f : X × [a, b]→ C (−∞ < a < b <∞) and f (·, t) : X → C is

integrable for each t ∈ [a, b]. Let

F(t) =

∫

X

f (x , t) dµ(x) .

1. Suppose there exists g ∈ L1(µ) such that | f (x , t)| ≤ g(x) for all x , t. If

lim
t→t0

f (x , t) = f (x , t0) for every x, then lim
t→t0

F(t) = F(t0); in particular if f (·, x) is

continuous for each x, then F is continuous.

2. Let ε > 0 and V = (t0 − ε, t0 + ε) ⊆ [a, b]1. Suppose
∂ f

∂ t0
exists and there is

a g ∈ L1(µ) such that

�

�

�

�

∂ f

∂ t
(x , t)

�

�

�

�

≤ g(x) for all x ∈ X and t ∈ V . Then F is

differentiable at t0 and

F ′(t0) =

∫

∂ f

∂ t
(x , t0)dµ(x) .

1This part was adapted to obtain diffetentiability at a particular point t0 as opposed to the whole interval.
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A.2 Exponential Families

This material is based mainly on [39]. Let X be an n-dimensional Euclidean space and

letB be the Borel algebra on X .

Definition A.2.1. Let µ be a σ−finite measure on B . A family of distributions Pθ

is said to be an exponential family if the corresponding probability densities pθ with

respect to µ are of the form

pθ (x ) = K(θ )exp





k
∑

j=1

Q j(θ )T j(x )



h(x ) ,

where θ is parameter vector and T j(x ) and Q(θ ) are real-valued measurable functions.

As seen above, in an exponential family the probability densities are of the form

pθ (x ) = gθ (T (x ))h(x ) ,

hence by the factorization criterion2 the vector T(x ) is a k−dimensional sufficient

statistic for a sample (X1, ..., Xn) drawn from the corresponding distribution.

The parametrization in Definition A.2.1 can be turned into the natural parametriza-

tion by replacing the original measure µ by a new measure ν , so as to include the factor

of h(x ) and taking the functions Q j(θ ) → τ j as the new parameters; i.e., h(x ) is the

density of ν with respect to µ,

dν

dµ
= h(x ) ,

and
∫

A

K(θ )exp





k
∑

j=1

Q j(θ )T j(x )



h(x )dµ(x )

=

∫

A

1

C(τ)
exp





k
∑

j=1

τ j T j(x )



 dν(x ) ,

2For a discussion of statistical sufficiency see for example [39, 13].
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where τ = (τ1, ...,τk) and C(τ)3 is a normalization factor. Hence the definition below

Definition A.2.2. A family of distributions Pτ is a natural exponential family if it is an

exponential family (as defined in Definition A.2.1) with respect to a measure ν on X

where the corresponding densities have the form

dPτ
dν
= pτ =

1

C(τ)
exp





k
∑

j=1

τ j T j(x )





=
1

C(τ)
exp〈τ, T(x)〉 ,

where 〈·, ·〉 denotes the standard inner product in Rk.

Definition A.2.3. The set Θ = {τ ∈ Rk : C(τ) < ∞} is called the natural parameter

space.

A.3 Special Functions

These results can be found in standard Mathematical Methods and Special Functions

literature, such as [1, 54, 51]. For brevity we include here only the definitions and

results that are immediately relevant to this work and leave out many of the interesting

properties of these functions.

A.3.1 Gamma Function

There are several equivalent definitions of the Gamma function, but we consider only

the integral representation.

3The density above written in this form to be consistent with the notation of the rest of this work.
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Definition A.3.1. The Gamma Function is defined as the integral:

Γ(x) =

∫ ∞

0

t x−1e−t d t , x > 0 .

Proposition A.3.2.

• For r > 0, Γ(r + 1) = rΓ(r).

• Special Values:

(1) Γ(1) = 1.

(2) Γ(n) = (n− 1)! for n ∈ N;

(3) Γ(1/2) =
p
π.

Definition A.3.3. The Euler-Mascheroni constant, γ is defined as

γ= lim
n→∞

 

n
∑

k=1

1

k
− log(n)

!

≈ 0.5772 .

Proposition A.3.4. Γ′(1) =−γ .

A.3.2 The Digamma Function

Definition A.3.5. The Digamma function ψ(z) is defined as

ψ(z) =
d

dz
lnΓ(z) .

Remark A.3.6.

ψ(x) =
d

d x
lnΓ(x) =

Γ′(x)
Γ(x)

=
1

Γ(x)

∫ ∞

0

t x−1e−t ln t d t .
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A.3.3 The Beta Function

Definition A.3.7. The Beta function is defined by

B(x , y) =

∫ 1

0

t x−1(1− t)y−1 d t , x , y > 0 .

The general integral is sometimes referred to as the Beta integral.

Remark A.3.8. For real x , y ≤ 0, we can see the Beta integral becomes +∞, by the limit

comparison test for integrals (see for example [21]).

An important and useful identity relating the Gamma and Beta functions is the

following result:

Proposition A.3.9. For x , y > 0,

B(x , y) =
Γ(x)Γ(y)
Γ(x + y)

.

Definition A.3.10. The above result can be used to define the Beta function for a vector

argument x = (x1, ...xn)

B(x ) =

n
∏

k=1
Γ(xk)

Γ

�

n
∑

k=1
xk

� , x i > 0 , i = 1, ..n .

Remark A.3.11. Using Proposition A.3.9 we can express the partial derivatives of B(x , y)

in terms of the Digamma function and the Beta function itself:

∂

∂ x
B(x , y) =

∂

∂ x

Γ(x)Γ(y)
Γ(x + y)

= Γ(y)

�

Γ′(x)Γ(x + y)−Γ(x)Γ′(x + y)
Γ2(x + y)

�

=
Γ(x)Γ(y)
Γ(x + y)

�

Γ′(x)
Γ(x)

−
Γ′(x + y)
Γ(x + y)

�

= B(x , y)
�

ψ(x)−ψ(x + y)
�

,
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and by symmetry,

∂

∂ y
B(x , y) =

�

ψ(y)−ψ(x + y)
�

.

A.3.4 Signum Function

Definition A.3.12. The signum function, denoted, sgn(x), is defined by

sgn(x) =























1 x > 0

0 x = 0

−1 x < 0

Remark A.3.13. For nonzero x , sgn(x) =
x

|x |
.

A.4 Some Results from Matrix Algebra

and Matrix Calculus

Many of results presented here can be found in standard linear algebra references such

as [23], so we omit the proofs for such standard results here. The material on matrix

derivatives can be found for example in [43, 44, 27].

A.4.1 Matrix Algebra

Definition A.4.1. An n × n real symmetric matrix A is said to be positive definite if

x ′Ax > 0 for all nonzero vectors x ∈ Rn, where (.)′ denotes transposition.

Proposition A.4.2. Two important properties of positive-definite matrices:
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• A matrix A is positive-definite iff all of its eigenvalues are positive.

• A positive-definite matrix is invertible and its inverse is also positive definite.

Proposition A.4.3. Let A and B be two invertible n×n matrices and define a matrix C as

C = αA+ (1−α)B , α ∈ R .

Then

(1) If A and B are symmetric so is C.

(2) If A and B are positive-definite and α ∈ (0,1), then C is also positive-definite and

hence invertible as well.

Proof. The first claim is obvious. Let x ∈ Rn, x 6= 0, α ∈ (0,1) and A and B be positive-

definite. Then

x ′C x = αx ′Ax + (1−α)x ′Bx > 0 ,

since all the terms are positive; which is also clear geometrically since this is just the

convex combination of the two positive numbers x ′Ax and x ′Bx .

Proposition A.4.4. Let x , b ∈ Rn be n-dimensional column vectors, c be a scalar, and let

A be an invertible, symmetric, n× n matrix. Then

x ′Ax − 2x ′b+ c = (x − ν)′A(x − ν) + d ,

where

ν = A−1b and d = c− bA−1b .
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Proof. Since A is invertible, we can write

x ′Ax − x ′b− b′x + c =
�

x ′− b′A−1
�

A
�

x − A−1b
�

− b′A−1b+ c .

By the symmetry of A we have

�

A−1b
�′
= b′

�

A−1
�′
= b′A−1 ,

and so

�

x ′− b′A−1
�

=
�

x ′−
�

A−1b
�′�

=
�

x − A−1b
�′

.

Thus

x ′Ax − x ′b− b′x + c =
�

x − A−1b
�′

A
�

x − A−1b
�

− b′A−1b+ c.

Remark A.4.5. For n= 1 this is just the method of ‘completing the square’.

Definition A.4.6. A matrix A is orthogonally equivalent to another matrix B if there

exists an orthogonal matrix P s.t. B = PAP ′

Theorem A.4.7. Let A be a real n× n matrix. Then A is symmetric iff A is orthogonally

equivalent to a real diagonal matrix.

Remark A.4.8. Given a real symmetric matrix, the diagonal matrix above consists of the

eigenvalues of A and the orthogonal matrix is constructed from the eigenvectors of A.

A.4.2 Matrix Calculus

Throughout this section, all matrices considered, unless otherwise specified, are as-

sumed to have entries which are differentiable functions of a parameter α.
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Definition A.4.9. Let M be the matrix [Mi j] = [M(α)i j]. Then the derivative of M

with respect to α is the matrix given by
�

dM

dα

�

i j
:=

dM(α)i j

dα
.

Proposition A.4.10. Some differentiation results:

(1) Given two constant matrices A and B, let C = f (α)A+ g(α)B, where f (α) and g(α)

are differentiable. Then

dC

dα
=

d f

dα
A+

d g

dα
B .

(2) If A and B are of conforming dimensions then

d

dα
(AB) =

dA

dα
B+ A

dB

dα
.

(3) If B′AB is a well defined product, then

d

dα
�

B′AB
�

=
dB′

dα
AB+ B′

dA

dα
B+ B′A

dB

dα

(4) If A is invertible, then

dA−1

dα
=−A−1 dA

dα
A−1 .

Proof. (1) is obvious; for (2) observe that

�

d

dα
(AB)

�

i j
=

d

dα





∑

k

AikBk j



=
∑

k

dAik

dα
Bk j +

∑

k

Aik

dBk j

da
;

(3) follows by applying the product rule twice; finally, we see that the (4) holds since

0=
dI

dα
=

dAA−1

dα
=

dA

dα
A−1+ A

dA−1

dα
⇒

dA−1

dα
=−A−1 dA

dα
A−1 .
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Proposition A.4.11. If A is an invertible matrix, then

d|A|
dα
= |A|tr

�

A−1 dA

dα

�

,

Proof. See [43].



Appendix B

Original Derivations for Exponential

Families

This chapter contains the original calculations for the Rényi divergence expressions

presented in Chapter 2, which are there derived in the framework of the results from

[40]. The integration calculations presented in this chapter make use of the following

techniques:

1. Single-variable integration techniques such as substitution and the method of

integration by parts.

2. Reparametrization of some of the integrals so as to express the integrand as a

known probability distribution scaled by some factor. Thus, if f (x) can be written

as f (x) = K(θ )g(x) where g(x) is a pdf over a suport X ⊆ Rn and θ is a

parameter vector, then

∫

X
f (x)d x = K(θ ) .

105
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3. Applying integral representations of special functions, in particular the Gamma

and related functions.

As mentioned in Section 1.2 we follow the convention 0 ln0 = 0, which is justified

by continuity. Lastly, observe that these original calculations were not originally per-

formed using the (θ)α notation we introduced in Chapter 2, and instead there appear

parameters denoted as θ0 which sometimes are equal to θa but sometimes are equal

to θ ∗α. However, as we show in the each section of Chapter 2, the parameters are in

agreement in all the derivations.

B.1 Gamma Distributions

Throughout this section let fi and f j be two univariate Gamma densities

fi(x) =
x ki−1e−x/θi

θ
ki
i Γ(ki)

ki,θi > 0; x ∈ R+ .

where Γ(x) is the Gamma function.

Proposition B.1.1.

E fi

�

ln f j

�

=− ln
�

θ
k j

j Γ(k j)
�

+
�

k j − 1
�

�

lnθi +ψ(ki)
�

−
θiki

θ j
,

where ψ(x) is the Digamma function.

Proof.

E fi

�

ln f j

�

= E fi

�

− ln
�

θ
k j

j Γ(k j)
�

+
�

k j − 1
�

ln X −
X

θ j

�

=− ln
�

θ
k j

j Γ(k j)
�

+
�

k j − 1
�

E fi
[ln X ]−

1

θ j
E fi
[X ] .
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For r ≥−ki

E fi
[X r] =

∫

R+
x r x ki−1e−x/θi

θ
ki
i Γ(ki)

d x

= θ r
i

Γ(ki + r)
Γ(ki)

∫

R+

x ki+r−1e−x/θi

θ
ki+r
i Γ(ki + r)

d x

= θ r
i

Γ(ki + r)
Γ(ki)

,

since the integrand corresponds to a reparametrized Gamma density with ki 7→ ki + r.

Hence

E fi
[X ] = θi

Γ(ki + 1)
Γ(ki)

= θi

kiΓ(ki)
Γ(ki)

= θiki ,

where we have used the recursive relation for the Gamma function given in

Proposition A.3.2. Consider now E fi
[ln X ]:

E fi
[ln X ] =

∫

R+
ln x

x ki−1e−x/θi

θ
ki
i Γ(ki)

d x

=

∫

R+
ln(θi y)

(θi y)ki−1e−y

θ
ki
i Γ(ki)

θi d y ,

( where y = x/θi, and θi > 0⇒ y ∈ R+)

=
1

Γ(ki)

∫

R+

�

lnθi + ln y
�

yki−1e−y d y

=
1

Γ(ki)
lnθiΓ(ki) +

1

Γ(ki)

∫

R+
ln y yki−1e−y d y

= lnθi +
Γ′(ki)
Γ(ki)

= lnθi +ψ(ki) ,
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where we have used Remark A.3.6. Then

E fi

�

ln f j

�

=− ln
�

θ
k j

j Γ(k j)
�

+
�

k j − 1
�

E fi
[ln X ]−

1

θ j
E fi
[X ]

=− ln
�

θ
k j

j Γ(k j)
�

+
�

k j − 1
�

�

lnθi +ψ(ki)
�

−
θiki

θ j
.

Corollary B.1.2. The differential entropy of fi is

h( fi) = lnθi + lnΓ(ki) +
�

1− ki
�

ψ(ki) + ki .

Proof. Setting i = j in Proposition B.1.1 we have

h( fi) =−E fi

�

ln fi
�

=−
�

− ln
�

θ
ki
i Γ(ki)

�

+
�

ki − 1
��

lnθi +ψ(ki)
�

−
θiki

θi

�

=−
�

−ki lnθi − lnΓ(ki) +
�

ki − 1
�

lnθi +
�

ki − 1
�

ψ(ki)− ki
�

= lnθi + lnΓ(ki) +
�

1− ki
�

ψ(ki) + ki .

Proposition B.1.3. The Kullback-Liebler divergence between fi and f j is

D( fi|| f j) =

�

θi − θ j

θ j

�

ki + ln







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i






+
�

ki − k j

�

�

lnθi +ψ(ki)
�

.
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Proof. Using Proposition B.1.1 and Remark 1.2.4 we have

D( fi|| f j) = E fi
[ln fi]− E fi

[ln f j]

=−
�

lnθi + lnΓ(ki) +
�

1− ki
�

ψ(ki) + ki
�

−
�

− ln
�

θ
k j

j Γ(k j)
�

+
�

k j − 1
�

�

lnθi +ψ(ki)
�

−
θiki

θ j

�

= ki

�

θi

θ j
− 1

�

+ lnθi

�

1− k j − 1
�

+ ln
Γ(k j)

Γ(ki)

+ψ(ki)
�

1− k j + ki − 1
�

+ k j lnθ j

=

�

θi − θ j

θ j

�

ki − k j lnθi + ln
Γ(k j)

Γ(ki)
+ψ(ki)

�

ki − k j

�

+ k j lnθ j

=

�

θi − θ j

θ j

�

ki + k j lnθ j + (ki lnθi − ki lnθi)− k j lnθi

+ ln
Γ(k j)

Γ(ki)
+ψ(ki)

�

ki − k j

�

=

�

θi − θ j

θ j

�

ki + ln







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i






+
�

ki − k j

�

�

lnθi +ψ(ki)
�

.

Corollary B.1.4. Let gi and g j be two exponential densities

fi = λie
−λi x , λi > 0; x > 0 ,

then the Kullback-Leibler divergence between gi and g j is

D(gi||g j) = ln
λi

λ j
+
λ j −λi

λi
.

Proof. Note that the exponential densities gi and g j are obtained from the Gamma

densities by setting θn = 1/λn and kn = 1, n= i, j. Then

D(gi||g j) =







1
λi
− 1
λ j

1
λ j






+ ln

�

Γ(1)λi

Γ(1)λ j

�

=
λ j −λi

λi
+ ln

λi

λ j
.
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Corollary B.1.5. Let hi and h j be two χ2 densities

hi =
x di/2−1e−x/2

2di/2Γ(di/2)
, di ∈ N; x ∈ R+ .

Then the Kullback-Leibler divergence between gi and g j is

D(hi||h j) = ln
Γ(d j/2)

Γ(di/2)
+

di − d j

2
ψ(di/2) .

Proof. Note that the χ2 densities gi and g j are obtained from the Gamma densities by

setting θn = 2 and kn = dn/2, n= i, j. Then

D(hi||h j) = ln

�

Γ(d j/2)

Γ(di/2)
2(d j−di)/2

�

+

�

di − d j

2

�

�

ln2+ψ(di/2)
�

= ln
Γ(d j/2)

Γ(di/2)
+

di − d j

2
ψ(di/2) .

Proposition B.1.6. For α ∈ R+ \ {1} let k0 = αki + (1−α)k j and

θ0 = αθ j + (1− a)θi. Then the Rényi divergence between fi and f j is given by

Dα( fi|| f j) = ln







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i






+

1

α− 1
ln

 

Γ(k0)

θ
ki
i Γ(ki)

�

θiθ j

θ0

�k0
!

for k0 > 0,θ0 > 0, and

Dα( fi|| f j) = +∞

otherwise.
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Proof. We have

f αi f 1−α
j =





x ki−1e−x/θi

θ
ki
i Γ(ki)





α






x k j−1e−x/θ j

θ
k j

j Γ(k j)







1−α

= x k0−1e−
x
ξ

θ
−αki
i θ

k j(α−1)
j

Γ(ki)αΓ(k j)1−α

= x k0−1e−
x
ξ

θ
ki(1−α)
i θ

k j(α−1)
j θ

−ki
i

Γ(ki)α−1Γ(k j)1−αΓ(ki)

= x k0−1e−
x
ξ







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i







α−1

1

θ
ki
i Γ(ki)

,

where

k0 = αki + (1−α)k j ,
1

ξ
=
αθ j + (1− a)θi

θiθ j
=
θ0

θiθ j
.

• If k0 > 0 and θ0 > 0, then

∫

R+
f αi f 1−α

j d x

=

∫

R+









x k0−1e−
x
ξ







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i







α−1

1

θ
ki
i Γ(ki)









d x

=







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i







α−1

Γ(k0)ξk0

θ
ki
i Γ(ki)

∫

R+

x k0−1e−
x
ξ

ξk0Γ(k0)
d x

=







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i







α−1

Γ(k0)ξk0

θ
ki
i Γ(ki)

,
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since the integrand is Gamma density with parameters k0 and ξ. Then

Dα( fi|| f j) =
1

α− 1
ln

∫

R+
f αi f 1−α

j d x

=
1

α− 1
ln















Γ(k j)θ
k j

j

Γ(ki)θ
ki
i







α−1

Γ(k0)ξk0

θ
ki
i Γ(ki)









= ln







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i






+

1

α− 1
ln

 

Γ(k0)ξk0

θ
ki
i Γ(ki)

!

= ln







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i






+

1

α− 1
ln

 

Γ(k0)

θ
ki
i Γ(ki)

�

θiθ j

θ0

�k0
!

.

Note that for α ∈ (0,1) we always have k0 > 0 and θ0 > 0 given the positivity of

ki, k j,θi and θ j.

• If θ0 ≤ 0 then (1/ξ)≤ 0 1 Then
∫

R+
f αi f 1−a

j d x = A

∫

R+
x k0−1eK x d x , K , A≥ 0

≥ A

∫

R+
x k0−1 =∞,

for all real values of k0.

• If θ0 > 0 but k0 < 0 then
∫

R+
f αi f 1−α

j d x = A1

∫

R+
x k0−1e−|θ0|x d x , A1 > 0

= A2

∫

R+
yk0−1e−y d y, A2 > 0

> A2

∫ 1

0

yk0−1e−y d y .

1Here we use the parentheses to emphasize that 1/ξ is just the symbol defined above as opposed
to the reciprocal of some ξ ∈ R, so that it can in fact equal 0. When (1/ξ) 6= 0 then ξ, defined as its
reciprocal, is indeed a real number.
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Since e−y → 1 as y → 0, then
∫ 1

0

yk0−1e−y d y =∞ , since

∫ 1

0

y pd y =∞

for p <−1. Finally, since nonpositive k0 and θ0 only occur for α > 1 we have

Dα( fi|| f j) =
1

α− 1
ln

∫

R+
f αi f 1−α

j d x =+∞

for these cases.

Corollary B.1.7. Let gi and g j be two exponential densities

gi = λie
−λi x , λi > 0; x ∈ R+ .

For α ∈ R+ \ {1}, let λ0 = αλi + (1−α)λ j. Then the Rényi divergence between gi and g j

is given by

Dα(gi||g j) = ln
λi

λ j
+

1

α− 1
ln
λi

λ0

for λ0 > 0, and

Dα(gi||g j) = +∞

otherwise.

Proof. Setting θn = 1/λn and kn = 1, n= i, j we have

k0 = αki + (1−α)k j = 1 , λ0 = αλi + (1−α)λ j =
θ0

θiθ j

so that k0 > 0, and θ0 > 0⇔ λ0 > 0. Then it follows from Proposition B.1.6 that

Dα(gi||g j) = ln

�

Γ(1)λi

Γ(1)λ j

�

+
1

α− 1
ln
�

λiΓ(1)
Γ(1)

1

λ0

�

= ln
λi

λ j
+

1

α− 1
ln
λi

λ0
.
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Corollary B.1.8. Let hi and h j be two χ2 densities

hi =
x di/2−1e−x/2

2di/2Γ(di/2)
, di ∈ N; x ∈ R+ .

For α ∈ R+ \ {1}, let d0 = αdi + (1−α)d j. Then the Rényi divergence between hi and h j

is given by

Dα(hi||h j) = ln

�

Γ(d j/2)

Γ(di/2)

�

+
1

α− 1
ln
�

Γ(d0/2)
Γ(di/2)

�

.

for d0 > 0 and

Dα(hi||h j) = +∞

otherwise.

Proof. Setting θn = 2 and kn = di/2, n= i, j, we have

k0 = αki + (1−α)k j =
d0

2
, θ0 = α2+ (1−α)2= 2 ,

so that k0 > 0⇔ d0 > 0, and θ0 > 0. Then by Proposition B.1.6

Dα(hi||h j) = ln

�

Γ(d j/2)2d j/2

Γ(di/2)2di/2

�

+
1

α− 1
ln

�

Γ(d0/2)2d0/2

2di/2Γ(di/2)

�

= ln

�

Γ(d j/2)

Γ(di/2)

�

+
1

α− 1
ln
�

Γ(d0/2)
Γ(di/2)

�

+
ln2

2

�

d j − di +
d0− di

α− 1

�

.

But

d j − di +
d0− di

α− 1
=

1

α− 1

�

(α− 1)(d j − di) + (αdi + (1−α)d j)− di

�

= 0 .

Thus,

Dα(hi||h j) = ln

�

Γ(d j/2)

Γ(di/2)

�

+
1

α− 1
ln
�

Γ(d0/2)
Γ(di/2)

�

.



APPENDIX B. ORIGINAL DERIVATIONS FOR EXPONENTIAL FAMILIES 115

Remark B.1.9.

lim
α↑1

Dα( fi|| f j) = D( fi|| f j) .

Proof.

lim
α↑1

Dα( fi|| f j) = ln







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i






+ lim

α↑1

1

α− 1
ln

 

Γ(k0)

θ
ki
i Γ(ki)

�

θiθ j

θ0

�k0
!

Note that

lim
α→1

k0 = lim
α→1

�

αki + (1−α)k j

�

= ki , and

lim
α→1
θ0 = lim

α→1

�

αθ j + (1−α)θi

�

= θ j

so that the second limit is of indeterminate form. Applying l’Hospital’s rule

lim
α↑1





1

α− 1
ln

 

Γ(k0)

θ
ki
i Γ(ki)

�

θiθ j

θ0

�k0
!



= lim
α↑1

d

dα

�

lnΓ(k0) + k0 ln(θiθ j)− k0 lnθ0

�

= lim
α↑1

�

dk0

dα

�

d

dk0
lnΓ(k0) + ln(θiθ j)− lnθ0

�

−
k0

θ0

dθ0

dα

�

= lim
α↑1

�

(ki − k j)

�

ψ(k0) + ln
θiθ j

θ0

�

−
k0

θ0
(θ j − θi)

�

= (ki − k j)
�

ψ(ki) + lnθi
�

−
ki

θ j
(θ j − θi)

=

�

θi − θ j

θ j

�

ki + (ki − k j)
�

ψ(ki) + lnθi
�

.

Hence,

lim
α↑1

Dα( fi|| f j) = ln







Γ(k j)θ
k j

j

Γ(ki)θ
ki
i






+

�

θi − θ j

θ j

�

ki + (ki − k j)
�

ψ(ki) + lnθi
�

which equals the expression for D( fi|| f j) given in Proposition B.1.3, as expected.
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B.2 Chi Distributions

Throughout this section let fi and f j be two Chi densities

fi(x) =
21−ki/2 x ki−1e−x2/2σ2

i

σ
ki
i Γ
�

ki

2

� ,σi > 0 , ki ∈ N ; x ∈ R+ .

Proposition B.2.1.

E fi

�

ln f j

�

=
1

2
(k j − 1)ψ(ki/2) + ln







p
2σ

k j−1
i

σ
k j

j Γ
�

k j

2

�






−
σ2

i

2σ2
j

ki .

Proof.

E fi

�

ln f j

�

= E fi



(1− k j/2) ln 2+ (k j − 1) ln X −
X 2

2σ2
j

− ln

�

σ
k j

j Γ

�

k j

2

��





= (1− k j/2) ln 2− ln

�

σ
k j

j Γ

�

k j

2

��

+ (k j − 1)E fi
[ln X ]−

1

2σ2
j

E fi

�

X 2
�

Let r >−ki. Note that

E fi
[X r] =

∫

R+
x r 21−ki/2 x ki−1e−x2/2σ2

i

σ
ki
i Γ
�

ki

2

� d x

= 2r/2 σr
i

Γ
�

ki+r
2

�

Γ
�

ki

2

�

∫

R+

21−(ki+r)/2 x ki+r−1e−x2/2σ2
i

σ
ki+r
i Γ

�

ki+r
2

� d x

=
�

21/2σi

�r Γ
�

ki+r
2

�

Γ
�

ki

2

� ,

since the last integrand corresponds to a reparametrized Chi density with ki 7→ ki+ r >

0. Then

E fi

�

X 2
�

= 2σ2
i

Γ
�

ki

2
+ 1
�

Γ
�

ki

2

� = σ2
i ki ,
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where we have used the recursion relation for the Gamma function (Proposition A.3.2).

Also,

E fi
[ln X ] =

d

dr
E fi
[X r]

�

�

�

�

r=0

=
d

dr





�

21/2σi

�r Γ
�

ki+r
2

�

Γ
�

ki

2

�





r=0

=

�

21/2σi

�r
ln
�

21/2σi

�

Γ
�

ki+r
2

�

+
�

21/2σi

�r
Γ′
�

ki+r
2

�

1
2

Γ
�

ki

2

�

�

�

�

�

�

r=0

=
1

Γ
�

ki

2

�

�

ln
�

21/2σi

�

Γ
�

ki

2

�

+Γ′
�

ki

2

�

1

2

�

=
1

2

�

ln
�

2σ2
i

�

+ψ(ki/2)
�

.

Finally,

E fi

�

ln f j

�

= (1− k j/2) ln 2− ln

�

σ
k j

j Γ

�

k j

2

��

+ (k j − 1)E fi
[ln X ]−

1

2σ2
j

E fi

�

X 2
�

= (1− k j/2) ln 2− ln

�

σ
k j

j Γ

�

k j

2

��

+ (k j − 1)
1

2

�

ln
�

2σ2
i

�

+ψ(ki/2)
�

−
σ2

i

2σ2
j

ki

=
1

2
(k j − 1)ψ(ki/2) + (k j − 1) lnσi

+ ln2
�

1

2
(k j − 1) + (1− k j/2)

�

−
σ2

i

2σ2
j

ki − ln

�

σ
k j

j Γ

�

k j

2

��

=
1

2
(k j − 1)ψ(ki/2) + ln

�

σ
k j−1
i

�

+
1

2
ln2−

σ2
i

2σ2
j

ki − ln

�

σ
k j

j Γ

�

k j

2

��

=
1

2
(k j − 1)ψ(ki/2) + ln







p
2σ

k j−1
i

σ
k j

j Γ
�

k j

2

�






−
σ2

i

2σ2
j

ki .
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Corollary B.2.2. The differential entropy of fi is

h( fi) =
1

2
(1− ki)ψ

�

ki/2
�

+ ln





σiΓ
�

ki

2

�

p
2



+
ki

2
.

Proof. Setting i = j in Proposition B.2.1 we have

h( fi) =−E fi

�

ln fi
�

=−





1

2
(ki − 1)ψ(ki/2) + ln





p
2σki−1

i

σ
ki
i Γ
�

ki

2

�



−
σ2

i

2σ2
i

ki





=
1

2
(1− ki)ψ

�

ki/2
�

+ ln





σiΓ
�

ki

2

�

p
2



+
ki

2
.

Proposition B.2.3. The Kullback-Liebler divergence between fi and f j is

D( fi|| f j) =
1

2
ψ(ki/2)

�

ki − k j

�

+ ln

�

�

σ j

σi

�k j Γ(k j/2)

Γ(ki/2)

�

+
ki

2σ2
j

�

σ2
i −σ

2
j

�

.

Proof. Using Proposition B.2.1 and Remark 1.2.4 we have

D( fi|| f j) = E fi
[ln fi]− E fi

[ln f j]

=−





1

2
(1− ki)ψ

�

ki/2
�

+ ln





σiΓ
�

ki

2

�

p
2



+
ki

2





−







1

2
(k j − 1)ψ(ki/2) + ln







p
2σ

k j−1
i

σ
k j

j Γ
�

k j

2

�






−
σ2

i

2σ2
j

ki







=
1

2
ψ(ki/2)

�

ki − 1+ 1− k j

�

− ln





�

σi

σ j

�k j Γ(ki/2)
Γ(k j/2)



+
ki

2

 

σ2
i

σ2
j

− 1

!

=
1

2
ψ(ki/2)

�

ki − k j

�

+ ln

�

�

σ j

σi

�k j Γ(k j/2)

Γ(ki/2)

�

+
ki

2σ2
j

�

σ2
i −σ

2
j

�

.
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Remark B.2.4. For ki = kn = k, we have

D( fi(x; k,σi)|| f j(x; k,σ j))

=
1

2
ψ(k/2) (k− k) + ln

�

�

σ j

σi

�k Γ(k/2)
Γ(k/2)

�

+
k

2σ2
j

�

σ2
i −σ

2
j

�

= k



ln
�

σ j

σi

�

+
σ2

i −σ
2
j

2σ2
j



 .

Corollary B.2.5. Special Cases:

1. Let hi and h j be two half-normal densities

hi =

r

2

π

e
− x2

2σ2
i

σi
, σi > 0; x ∈ R+ .

Then the Kullback-Leibler divergence between hi and h j is

D(hi||h j) = ln
�

σ j

σi

�

+
σ2

i −σ
2
j

2σ2
j

.

2. Let ri and r j be two Rayleigh densities

ri =
x

σ2
i

e
− x2

2σ2
i , σi > 0; x ∈ R+ .

Then the Kullback-Leibler divergence between ri and r j is

D(ri||r j) = 2 ln
�

σ j

σi

�

+
σ2

i −σ
2
j

σ2
j

.

3. Let mi and m j be two Maxwell-Boltzmann densities

mi =

r

2

π

x2e
− x2

2σ2
i

σ3
i

, σi > 0; x ∈ R+ .

Then the Kullback-Leibler divergence between mi and m j is

D(mi||m j) = 3 ln
�

σ j

σi

�

+
3(σ2

i −σ
2
j )

2σ2
j

.
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Proof.

1. The half-normal densities hi and h j are obtained from the Chi densities by setting

kn = 1, n= i, j:

fi(x; ki = 1) =
21−1/2 x1−1e

− x2

2σ2
i

σ1
i Γ
�

1
2

� =

r

2

π

e
− x2

2σ2
i

σi
,

where Γ(1/2) =
p
π.

2. The Rayleigh densities ri and r j are obtained from the Chi densities by setting

kn = 2, n= i, j:

fi(x; ki = 1) =
21−2/2 x2−1e

− x2

2σ2
i

σ2
i Γ
�

2
2

� =
x

σ2
i

e
− x2

2σ2
i .

3. The Maxwell-Boltzmann densities mi and m j are obtained from the Chi densities

by setting kn = 3, n= i, j:

fi(x; ki = 1) =
21−3/2 x3−1e

− x2

2σ2
i

σ3
i Γ
�

3
2

� =

r

2

π

x2 e
− x2

2σ2
i

σ3
i

,

where Γ(3/2) = Γ(1+ 1/2) = 1
2
Γ(1/2) = 1

2

p
π.

The corresponding expressions follow from substituting the values k = 1, 2,3 in the

expression given in Remark B.2.4.

Proposition B.2.6. For α ∈ R+ \ {1} let σ0 = ασ2
j + (1−α)σ

2
i and

k0 = αki + (1−α)k j . Then the Rényi divergence between fi and f j is given by

Dα( fi|| f j) = ln







σ
k j

j Γ(k j/2)

σ
ki
i Γ(ki/2)






+

1

α− 1
ln







 

σ2
iσ

2
j

σ0

!k0/2
Γ(k0/2)

σ
ki
i Γ(ki/2)






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for k0 > 0,σ0 > 0 and

Dα( fi|| f j) = +∞

otherwise.

Proof.

f αi f 1−α
j =





21−ki/2 x ki−1e−x2/2σ2
i

σ
ki
i Γ
�

ki

2

�





α






21−k j/2 x k j−1e−x2/2σ2
j

σ
k j

j Γ
�

k j

2

�







1−α

=







σ
k j

j Γ(k j/2)

σ
ki
i Γ(ki/2)







α−1

21−k0/2 x k0−1e−x2/2ξ

σ
ki
i Γ(ki/2)

,

where

k0 = αki + (1−α)k j ,

and

1

ξ
=
α

σ2
i

+
(1−α)
σ2

j

=
ασ2

j + (1−α)σ
2
i

σ2
iσ

2
j

=
σ0

σ2
iσ

2
j

.

• If k0 > 0 and σ0 > 0, then

∫

R+
f αi f 1−α

j d x

=







σ
k j

j Γ(k j/2)

σ
ki
i Γ(ki/2)







α−1

ξk0/2Γ(k0/2)

σ
ki
i Γ(ki/2)

∫

R+

21−k0/2 x k0−1e−x2/2ξ

ξk0/2Γ(k0/2)
d x

=







σ
k j

j Γ(k j/2)

σ
ki
i Γ(ki/2)







α−1

ξk0/2Γ(k0/2)

σ
ki
i Γ(ki/2)

,
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since the integrand corresponds to a Chi density (k = k0 and σ2 = ξ). Then

Dα( fi|| f j) =
1

α− 1
ln

∫

R+
f αi f 1−α

j d x

=
1

α− 1
ln















σ
k j

j Γ(k j/2)

σ
ki
i Γ(ki/2)







α−1

ξk0/2Γ(k0/2)

σ
ki
i Γ(ki/2)









= ln







σ
k j

j Γ(k j/2)

σ
ki
i Γ(ki/2)






+

1

α− 1
ln

 

ξk0/2Γ(k0/2)

σ
ki
i Γ(ki/2)

!

= ln







σ
k j

j Γ(k j/2)

σ
ki
i Γ(ki/2)






+

1

α− 1
ln







 

σ2
iσ

2
j

σ0

!k0/2
Γ(k0/2)

σ
ki
i Γ(ki/2)






.

Note that for α ∈ (0,1) we always have k0 > 0 and σ0 > 0 given the positivity of

ki, k j,σ
2
i and σ2

j .

• If σ0 ≤ 0 then (1/ξ)≤ 02 and

∫

R+
f αi f 1−a

j d x = A

∫

R+
x k0−1eK x2

d x , K , A≥ 0

≥ A

∫

R+
x k0−1 d x =∞

for all real values of k0.

• If σ0 > 0 but k0 < 0 then

∫

R+
f αi f 1−α

j d x = A1

∫

R+
x k0−1e−

x2

2|ξ| d x , A1 > 0

= A2

∫

R+
yk0/2−1e−y d y, A2 > 0

> A2

∫ 1

0

yk0/2−1e−y d y .

2see footnote 1
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Since e−y → 1 as y → 0, then

∫ 1

0

yk0/2−1e−y d y =∞ , since

∫ 1

0

y pd y =∞

for p <−1. Finally, since nonpositive k0 and σ0 only occur for α > 1 we have

Dα( fi|| f j) =
1

α− 1
ln

∫

R+
f αi f 1−α

j d x =∞

for these cases.

Remark B.2.7. For ki = k j = k we have k0 = k and

Dα( fi(x; k,σ2
i )|| f j(x; k,σ2

j ))

= ln

 

σk
jΓ(k/2)

σk
i Γ(k/2)

!

+
1

α− 1
ln







 

σ2
iσ

2
j

σ0

!k/2
Γ(k/2)

σk
i Γ(k/2)







= k ln
σ j

σi
+

1

α− 1
ln

 

σ2
j

σ0

!k/2

.

Corollary B.2.8. Let α ∈ R+ \ {1} and σ0 = ασ2
i + (1−α)σ

2
j . If σ0 > 0, then

1. If hi and h j are two half-normal densities

hn =

r

2

π

1

σn
e
− x2

2σ2
n , σn > 0; x > 0 , n= i, j ,

the Rényi divergence between hi and h j is

Dα(hi||h j) = ln
σ j

σi
+

1

α− 1
ln

 

σ2
j

σ0

!1/2
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2. If ri and r j are two Rayleigh densities

rn =
x

σ2
n

e
− x2

2σ2
n , σn > 0; x > 0 , n= i, j ,

the Rényi divergence between ri and r j is

Dα(ri||r j) = 2 ln
σ j

σi
+

1

α− 1
ln

 

σ2
j

σ0

!

.

3. If mi and m j are two Maxwell-Boltzmann densities

mn =

r

2

π

x2e
− x2

2σ2
n

σ3
n

, σn > 0; x > 0 , n= i, j ,

the Rényi divergence between mi and m j is

Dα(mi||m j) = 3 ln
σ j

σi
+

1

α− 1
ln

 

σ2
j

σ0

!3/2

.

For all cases above, if σ0 ≤ 0 then Dα(·||·) =∞.

Proof. Just as in Corollary B.2.5, the expressions follow from setting k = 1,2, 3 in the

expression given in Remark B.2.7.

Remark B.2.9.

lim
α↑1

Dα( fi|| f j) = D( fi|| f j) .

Proof. Since

lim
α→1

k0 = lim
α→1
αki + (1−α)k j = ki , and

lim
α→1
σ0 = lim

α→1
ασ2

j + (1−α)σ
2
i = σ

2
j ,

the limit of the second term in the Rényi divergence (Proposition B.2.6) is of indeter-

minate form. Applying l’Hospital’s rule we have
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lim
α↑1







1

α− 1
ln







 

σ2
iσ

2
j

σ0

!k0/2
Γ(k0/2)

σ
ki
i Γ(ki/2)













= lim
α↑1

d

dα

�

k0 ln(σiσ j) + lnΓ(k0/2)−
k0

2
lnσ0

�

= lim
α↑1

�

dk0

dα

�

ln(σiσ j) +
1

2
ψ(k0/2)−

1

2
lnσ0

�

−
k0

2σ0

dσ0

dα

�

= lim
α↑1

�

(ki − k j)
�

ln(σiσ j) +
1

2
ψ(k0/2)−

1

2
lnσ0

�

−
k0

2σ0
(σ2

j −σ
2
i )
�

= (ki − k j)
�

ln(σiσ j) +
1

2
ψ(ki/2)−

1

2
lnσ2

j

�

+
ki

2σ2
j

(σ2
i −σ

2
j )

=
1

2
ψ(ki/2)(ki − k j) + lnσ

(ki−k j)
i +

ki

2σ2
j

(σ2
i −σ

2
j )

and so

lim
α↑1

Dα( fi|| f j)

= ln







σ
k j

j Γ(k j/2)

σ
ki
i Γ(ki/2)






+

1

2
ψ(ki/2)(ki − k j) + lnσ

(ki−k j)
i +

ki

2σ2
j

(σ2
i −σ

2
j )

=
1

2
ψ(ki/2)(ki − k j) + ln

�

�

σ j

σi

�k j Γ(k j/2)

Γ(ki/2)

�

+
ki

2σ2
j

(σ2
i −σ

2
j ) .

which was the expression obtained in Proposition B.2.3, as expected.

B.3 Beta and Dirichlet Distributions

B.3.1 Beta distributions

Throughout this section let fi and f j be two Beta densities

fi(x) =
x ai−1(1− x)bi−1

B(ai, bi)
, ai, bi > 0; x ∈ (0, 1) ,

where B(x , y) is the Beta function introduced in Section A.3.3.
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Proposition B.3.1.

E fi

�

ln f j

�

=− ln B(a j, b j) + (a j − 1)ψ(ai) + (b j − 1)ψ(bi)

+ (2− a j − b j)ψ(ai + bi) .

Proof.

E fi

�

ln f j

�

= E fi

�

− ln B(a j, b j) + (a j − 1) ln X + (b j − 1) ln(1− X )
�

=− ln B(a j, b j) + (a j − 1)E fi
[ln X ] + (b j − 1)E fi

[ln(1− X )] .

Let r >−ai. Then

E fi
[X r] =

∫ 1

0

x r x ai−1(1− x)bi−1

B(ai, bi)
d x

=

∫ 1

0

x ai+r−1(1− x)bi−1

B(ai, bi)
d x

=
B(ai + r, bi)

B(ai, bi)

∫ 1

0

x ai+r−1(1− x)bi−1

B(ai + r, bi)

=
B(ai + r, bi)

B(ai, bi)
,

since the last integrand corresponds to a reparametrized Beta distribution with ai 7→

ai + r > 0. Then

E fi
[ln X ] =

d

dr
E fi
[X r]

�

�

�

�

r=0

=
d

dr

B(ai + r, bi)
B(ai, bi)

�

�

�

�

r=0

=
B(ai + r, bi)

�

ψ(ai + r)−ψ(ai + bi + r)
�

B(ai, bi)

�

�

�

�

r=0

=ψ(ai)−ψ(ai + bi) ,
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where we have used the expression given in Remark A.3.11 for the partial derivatives

of the Beta function. Similarly,

E fi
[(1− X )r] =

B(ai, bi + r)
B(ai, bi)

,

and

E fi
[ln(1− X )] =

d

dr
E fi
[(1− X )r]

�

�

�

�

r=0

=ψ(bi)−ψ(ai + bi) .

Finally,

E fi

�

ln f j

�

=− ln B(a j, b j) + (a j − 1)E fi
[ln X ] + (b j − 1)E fi

[ln(1− X )]

=− ln B(a j, b j) + (a j − 1)
�

ψ(ai)−ψ(ai + bi)
�

+ (b j − 1)
�

ψ(bi)−ψ(ai + bi)
�

=− ln B(a j, b j) + (a j − 1)ψ(ai) + (b j − 1)ψ(bi)

+ (2− a j − b j)ψ(ai + bi) .

Corollary B.3.2. The differential entropy of fi is

h( fi) = ln B(ai, bi) + (1− ai)ψ(ai) + (1− bi)ψ(bi)

+ (ai + bi − 2)ψ(ai + bi) .

Proof. Setting i = j in Proposition B.3.1 we have

h( fi) =−E fi

�

ln fi
�

=−
�

− ln B(ai, bi) + (ai − 1)ψ(ai) + (bi − 1)ψ(bi)

+ (2− ai − bi)ψ(ai + bi) .
�

= ln B(ai, bi) + (1− ai)ψ(ai) + (1− bi)ψ(bi)

+ (ai + bi − 2)ψ(ai + bi) .
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Proposition B.3.3. The Kullback-Liebler divergence between fi and f j is

D( fi|| f j) = ln
B(a j, b j)

B(ai, bi)
+ψ(ai)(ai − a j) +ψ(bi)(bi − b j)

+ψ(ai + bi)(a j + b j − (ai + bi)) .

Proof. Using Proposition B.3.1 and Remark 1.2.4 we have

D( fi|| f j)

= E fi
[ln fi]− E fi

[ln f j]

=−
�

ln B(ai, bi) + (1− ai)ψ(ai) + (1− bi)ψ(bi)

+ (ai + bi − 2)ψ(ai + bi)
�

−
�

− ln B(a j, b j) + (a j − 1)ψ(ai) + (b j − 1)ψ(bi)

+(2− a j − b j)ψ(ai + bi) .
�

= ln B(a j, b j)− ln B(ai, bi) +ψ(ai)(ai − 1+ 1− a j) +ψ(bi)(bi − 1+ 1− b j)

ψ(ai + bi)(2− ai − bi + a j + b j − 2)

= ln
B(a j, b j)

B(ai, bi)
+ψ(ai)(ai − a j) +ψ(bi)(bi − b j)

+ψ(ai + bi)(a j + b j − (ai + bi)) .

Proposition B.3.4. For α ∈ R+ \ {1} let a0 = αai + (1−α)a j and

b0 = αbi + (1−α)b j . Then the Rényi divergence between fi and f j is given by

Dα( fi|| f j) = ln
B(a j, b j)

B(ai, bi)
+

1

α− 1
ln

B(a0, b0)
B(ai, bi)

for a0, b0 ≥ 0, and

Dα( fi|| f j) = +∞
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otherwise.

Proof.

f αi f 1−α
j =

�

x ai−1(1− x)bi−1

B(ai, bi)

�α�

x a j−1(1− x)b j−1

B(a j, b j)

�1−α

=
�

B(ai, bi)
�−α�B(a j, b j)

�α−1
x a0−1(1− x)b0−1

=

�

B(a j, b j)

B(ai, bi)

�α−1
1

B(ai, bi)
x a0−1(1− x)b0−1 ,

where

a0 = αai + (1−α)a j , and b0 = αbi + (1−α)b j .

• If a0, b0 > 0, then B(a0, b0) is defined and
∫ 1

0

f αi f 1−α
j d x =

�

B(a j, b j)

B(ai, bi)

�α−1
1

B(ai, bi)

∫ 1

0

x a0−1(1− x)b0−1 d x

=

�

B(a j, b j)

B(ai, bi)

�α−1
B(a0, b0)
B(ai, bi)

∫ 1

0

x a0−1(1− x)b0−1

B(a0, b0)
d x

=

�

B(a j, b j)

B(ai, bi)

�α−1
B(a0, b0)
B(ai, bi)

,

since the integrand is a Beta distribution with parameters a0 > 0 and b0 > 0.

Then,

Dα( fi|| f j) =
1

α− 1
ln

∫ 1

0

f αi f 1−α
j d x

=
1

α− 1
ln





�

B(a j, b j)

B(ai, bi)

�α−1
B(a0, b0)
B(ai, bi)





= ln
B(a j, b j)

B(ai, bi)
+

1

α− 1
ln

B(a0, b0)
B(ai, bi)

.

Note that for α ∈ (0, 1) we always have a0 > 0 and b0 > 0 given the positivity of

ai, bi, a j and b j.
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• If a0 ≤ 0 or b0 ≤ 0 then

∫ 1

0

x a0−1(1− x)b0−1 d x =∞

as pointed out in Remark A.3.8. Since this can only happen for α > 1, then

Dα( fi|| f j) =
1

α− 1
ln

∫ 1

0

f αi f 1−α
j d x →+∞ .

Remark B.3.5.

lim
α↑1

Dα( fi|| f j) = D( fi|| f j) .

Proof. Comparing the expressions for the Rényi and Kullback divergence

(Proposition B.3.4 and Proposition B.3.3, respectively), we need to show that

lim
α↑1

1

α− 1
ln

B(a0, b0)
B(ai, bi)

=ψ(ai)(ai − a j) +ψ(bi)(bi − b j) +ψ(ai + bi)(a j + b j − (ai + bi)) .

Note that

lim
α→1

a0 = lim
α→1
αai + (1−α)a j = ai , lim

α→1
b0 = lim

α→1
αbi + (1−α)b j = bi ,
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so the limit in question is of indeterminate form. Applying l’Hospital’s rule we have

lim
α↑1

1

α− 1
ln

B(a0, b0)
B(ai, bi)

= lim
α↑1

1

B(a0, b0)
d

dα
B(a0, b0)

= lim
α↑1

1

B(a0, b0)

�

∂

∂ a0
B(a0, b0)

da0

dα
+
∂

∂ b0
B(a0, b0)

d b0

dα

�

= lim
α↑1

1

B(a0, b0)

¦

B(a0, b0)
�

ψ(a0)−ψ(a0+ b0)
�

(ai − a j)

+B(a0, b0)
�

ψ(b0)−ψ(a0+ b0)
�

(bi − b j)
©

.

=ψ(ai + bi)(a j + b j − (ai + bi)) + (ai − a j)ψ(ai)

+ (bi − b j)ψ(bi) ,

where we have used Proposition B.3.4 to express the partial derivatives of B(x , y) in

terms of the Digamma function ψ(...).

B.3.2 Dirichlet Distributions

The expression for Rényi divergence given in Proposition B.3.4 can be readily gener-

alized to Dirichlet distributions by the same reparametrization argument. The corre-

sponding expression for the finite case was also derived in in [52] in the form of the

Chernoff distance of order λ ∈ (0, 1).

Let fi and f j be two Dirichlet densities of order d:

fi(x , ai) =
1

B(ai)

d
∏

k=1

x
aik
−1

k ; ai ∈ Rd , ; x ∈ Rd , d ≥ 2, ,

where x = (x1, ..., xd) satisfies
d
∑

k=1

xk = 1, ai = (ai1 , ..., aid ), ak > 0, and B(y) is the beta

function of vector argument defined in Definition A.3.10.
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Proposition B.3.6. For α ∈ R+ \{1} let a0 = αai+(1−α)a j . Then the Rényi divergence

between fi and f j is given by

Dα( fi|| f j) = ln
B(a j)

B(ai)
+

1

α− 1
ln

�

B(αai + (1−α)a j)

B(ai)

�

if ∀k , a0k
, and

Dα( fi|| f j) = +∞

otherwise.

Proof. The proof for the finite case follows the same reparametrization argument as in

Proposition B.3.4, so we omit it here. If some ai fails to be positive, then

∫ 1

0

x ai−1
i d x i =∞ ,

and since fk = x ak−1 are positive functions on [0, 1], Fubini’s theorem applies (see p.

164 in [55]) and we have

∫

[0,1]d

d
∏

k=1

x ak−1dx =

∫

[0,1]

x ai−1d x i ·
∫

[0,1]d−1

d
∏

k 6=i

x ak−1dx =∞ .

The Chernoff distance between fi and f j is given in [52] as

DC( fi|| f j;α) =− ln

�

B(αai + (1−α)a j)

[B(ai)]
α[B(a j)]

1−α

�

.

We mentioned in Section 1.1 that the Rényi divergence and the Chernoff distance are

related via

Dα( fi|| f j) =−
1

(α− 1)
DC( fi|| f j;α) .
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Thus we can verify the consistency between the two expressions above by noting that

−
1

(α− 1)
JC( fi, f j) =

1

α− 1

�

ln

�

B(αai + (1−α)a j)

[B(ai)]
α[B(a j)]

1−α

��

=
1

α− 1
ln





B(αai + (1−α)a j)

B(ai)

�

[B(a j)]

[B(ai)]

�α−1




= ln
B(a j)

B(ai)
+

1

α− 1
ln

�

B(αai + (1−α)a j)

B(ai)

�

.

Also, the case α ∈ (0,1) (assumed for the Chernoff distance expression) is a subset of

the finiteness constraint given in terms of a0, b0 above.

B.4 Gaussian Distributions

B.4.1 Univariate Gaussian Distributions

Throughout this section let fi and f j be two univariate normal densities

fi(x) =

�

1

2πσ2
i

�
1
2

exp

�

−
1

2σ2
i

(x −µi)
2

�

, σi > 0 ,µi ∈ R ; x ∈ R .

Proposition B.4.1.

E fi
[ln f j] =−

1

2
ln
�

2πσ2
j

�

−
1

2σ2
j

�

σ2
i + (µi −µ j)

2
�

.

Proof.

E fi
[ln f j] = E fi



−
1

2
ln
�

2πσ2
j

�

−
1

2σ2
j

(X −µ j)
2





=−
1

2
ln
�

2πσ2
j

�

−
1

2σ2
j

E fi
[(X −µ j)

2] ,
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where

E fi
[(X −µ j)

2] = E fi

h

�

(X −µi) + (µi −µ j)
�2
i

= E fi
[(X −µi)

2] + 2(µi −µ j)E fi
[X −µi] + (µi −µ j)

2

= σ2
i + (µi −µ j)

2 .

Thus

E fi
[ln f j] =−

1

2
ln
�

2πσ2
j

�

−
1

2σ2
j

�

σ2
i + (µi −µ j)

2
�

.

Corollary B.4.2. The differential entropy of fi is

h( fi) =
1

2
ln
�

2πeσ2
i

�

.

Proof. Setting i = j in Proposition B.4.1 we have

h( fi) =−E fi
[ln fi] =−

�

−
1

2
ln
�

2πσ2
i

�

−
1

2σ2
i

�

σ2
i + (µi −µi)

2
�

�

=
1

2
ln
�

2πσ2
i

�

+
1

2

=
1

2
ln
�

2πeσ2
i

�

.

Proposition B.4.3. The Kullback-Liebler divergence between fi and f j is

D( fi|| f j) =
1

2σ2
j

h

(µi −µ j)
2+σ2

i −σ
2
j

i

+ ln
σ j

σi
.
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Proof. Using Proposition B.4.1 and Remark 1.2.4 we have

D( fi|| f j) = E fi
[ln fi]− E fi

[ln f j]

=−
1

2
ln
�

2πeσ2
i

�

+
1

2
ln
�

2πσ2
j

�

+
1

2σ2
j

�

σ2
i + (µi −µ j)

2
�

=
1

2
ln
σ2

j

σ2
i

−
1

2
ln e+

1

2σ2
j

�

σ2
i + (µi −µ j)

2
�

= ln
σ j

σi
−
σ2

j

2σ2
j

+
1

2σ2
j

�

σ2
i + (µi −µ j)

2
�

=
1

2σ2
j

h

(µi −µ j)
2+σ2

i −σ
2
j

i

+ ln
σ j

σi
.

Proposition B.4.4. For α ∈ R+\{1} let σ0 = ασ2
j +(1−α)σ

2
i . Then the Rényi divergence

between fi and f j is given by

Dα( fi|| f j) = ln
σ j

σi
+

1

2(α− 1)
ln

 

σ2
j

σ0

!

+
1

2

α(µi −µ j)2

σ0

if σ0 > 0, and

Dα( fi|| f j) = +∞

otherwise.
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Proof.

f αi f 1−α
j =





�

1

2πσ2
i

�1/2

exp

�

−
1

2σ2
i

(x −µi)
2

�





α

·







 

1

2πσ2
j

!1/2

exp

 

−
1

2σ2
j

(x −µ j)
2

!







1−α

=

�

1

2πσ2
i

�(α−1)/2�
1

2πσ2
i

�1/2 

1

2πσ2
j

!(1−α)/2

· exp

 

−
1

2





α

σ2
i

(x −µi)
2+
(1−α)
σ2

j

(x −µ j)
2





!

=

 

σ2
j

σ2
i

!
α−1

2
�

1

2πσ2
i

�1/2

· exp

 

−
1

2σ2
iσ

2
j

h

ασ2
j (x −µi)

2+ (1−α)σ2
i (x −µ j)

2
i

!

.

Consider the argument of the exponential above. Note that

h

ασ2
j (x −µi)

2+ (1−α)σ2
i (x −µ j)

2
i

= ax2− 2bx + c

where

a = σ0 := ασ2
j + (1−α)σ

2
i , b = ασ2

jµi + (1−α)σ2
i µ j ,

and

c = ασ2
jµ

2
i + (1−α)σ

2
i µ

2
j .

• If a = 0 then

ασ2
j + (1−α)σ

2
i = 0⇔ α=

σ2
i

σ2
i −σ

2
j

.
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Note that this case is only possible if σ2
i > σ

2
j since by assumption α > 0. Fur-

thermore, this also implies that α > 1; which can also be seen by noting that for

α ∈ (0,1), ασ2
j + (1− α)σ

2
i is the convex combination of two positive numbers,

which is clearly positive (and by assumption α 6= 1). So we have

f αi f 1−α
j =

 

σ2
j

σ2
i

!
α−1

2
�

1

2πσ2
i

�1/2

exp (−2bx + c) ,

and the integral
∫

R
f αi f 1−α

j d x

is of the form

K

∫

R
es y d y , K > 0

which equals +∞ for all real values of s. Hence

Dα( fi|| f j) =
1

α− 1
ln

∫

R
f αi f α−1

j d x =+∞ ,

since α > 1 for this case, as noted above.

• If a 6= 0, we can write

ax2− 2bx + c = a

�

x2−
2b

a
x +

�

b

a

�2

−
�

b

a

�2
�

+ c

= a
�

x −
b

a

�2

+ c−
b2

a
,

so we can express the exponential above as

exp

 

−
1

2σ2
iσ

2
j

�

a
�

x −
b

a

�2

+ c−
b2

a

�

!

= exp

 

−
a

2σ2
iσ

2
j

�

x −
b

a

�2
!

· exp

 

−
1

2σ2
iσ

2
j

�

c−
b2

a

�

!

.
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Thus

∫

R
f αi f 1−α

j d x =

 

σ2
j

σ2
i

!
α−1

2
�

1

2πσ2
i

�1/2

exp

 

−
1

2σ2
iσ

2
j

�

c−
b2

a

�

!

·
∫

R
exp

 

−
a

2σ2
iσ

2
j

�

x −
b

a

�2
!

d x .

◦ a < 0 : In this case the integral above is of the form

K

∫

R
es y2

d y , s, K > 0 ,

which equals +∞, so that

Dα( fi|| f j) =
1

α− 1
ln

∫

R
f αi f 1−α

j d x →+∞ ;

since, as before, this case must be a subset of the cases α > 1.

◦ a > 0 :

∫

R
f αi f 1−α

j d x

=

 

σ2
j

σ2
i

!
α−1

2
�

1

σ2
i

�1/2 σ2
iσ

2
j

a

!1/2

exp

 

−
1

2σ2
iσ

2
j

�

c−
b2

a

�

!

·
∫

R

 

a

2πσ2
iσ

2
j

!1/2

exp

 

−
a

2σ2
iσ

2
j

�

x −
b

a

�2
!

d x

=

 

σ2
j

σ2
i

!
α−1

2
�

1

σ2
i

�1/2 σ2
iσ

2
j

a

!1/2

exp

 

−
1

2σ2
iσ

2
j

�

c−
b2

a

�

!

,

since in this case the integrand is proportional to the pdf of a Gaussian
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distribution with mean b/a and variance σ2
iσ

2
j /a. Note that

ac− b2 =
�

ασ2
j + (1−α)σ

2
i

��

ασ2
jµ

2
i + (1−α)σ

2
i µ

2
j

�

−
�

ασ2
jµi + (1−α)σ2

i µ j

�2

= α2σ4
jµ

2
i + (1− a)2σ4

i µ
2
j +α(1−α)σ

2
iσ

2
j

�

µ2
j +µ

2
i

�

−
�

ασ2
jµi + (1−α)σ2

i µ j

�2

= α(1−α)σ2
iσ

2
j

�

µ2
j +µ

2
i

�

− 2α(1−α)σ2
iσ

2
jµiµ j

= α(1−α)σ2
iσ

2
j (µi −µ j)

2 ,

hence

−
1

2σ2
iσ

2
j

�

c−
b2

a

�

=−
1

2σ2
iσ

2
j

�

ac− b2

a

�

=−
1

2

α(1−α)(µi −µ j)2

ασ2
j + (1−α)σ

2
i

,

∫

R
f αi f 1−α

j d x

=
�

σ j

σi

�α−1
 

σ2
j

ασ2
j + (1−α)σ

2
i

!1/2

exp

 

−
1

2

α(1−α)(µi −µ j)2

ασ2
j + (1−α)σ

2
i

!

,

and

Dα( fi|| f j) = ln
σ j

σi
+

1

2(α− 1)
ln

 

σ2
j

ασ2
j + (1−α)σ

2
i

!

+
1

2

α(µi −µ j)2

ασ2
j + (1−α)σ

2
i

.
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Remark B.4.5.

lim
α↑1

Dα( fi|| f j) = D( fi|| f j) .

Proof. Note that the limit

lim
α↑1

1

2(α− 1)
ln

 

σ2
j

ασ2
j + (1−α)σ

2
i

!

,

has an indeterminate form. Applying l’Hospital’s rule we find

lim
α↑1

1

2(α− 1)
ln

 

σ2
j

ασ2
j + (1−α)σ

2
i

!

= lim
α↑1
−

1

2

σ2
j −σ

2
i

ασ2
j + (1−α)σ

2
i

=
1

2

σ2
i −σ

2
j

σ2
j

,

and so

lim
α↑1

Dα( fi|| f j) = ln
σ j

σi
+

1

2

σ2
i −σ

2
j

σ2
j

+
1

2

(µi −µ j)2

σ2
j

=
1

2σ2
j

h

(µi −µ j)
2+σ2

i −σ
2
j

i

+ ln
σ j

σi
,

as given by Proposition B.4.3.

B.4.2 Multivariate Gaussian Distributions

Throughout this section let fi and f j be two multivariate normal densities over Rn:

fi(x ) =
1

(2π)n/2|Σi|1/2
e−

1
2
(x−µi)

′Σ−1
i (x−µi) , x ∈ Rn ,

where µi ∈ Rn, Σi is a symmetric positive-definite matrix, and (·)′ denotes transposi-

tion.

Proposition B.4.6.

E fi

�

ln f j

�

=−
1

2

h

ln
�

(2π)n|Σ j|
�

+ tr
�

Σ−1
j Σi

�

+
�

µi −µ j

�′
Σ−1

j

�

µi −µ j

�

i

.
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Proof.

E fi

�

ln f j

�

= E fi

�

− ln
�

(2π)n/2|Σ j|1/2
�

−
1

2
(X −µ j)

′Σ−1
j (X −µ j)

�

=−
1

2
ln
�

(2π)n|Σ j|
�

−
1

2
E fi

h

(X −µ j)
′Σ−1

j (X −µ j)
i

,

where

E fi

h

(X −µ j)
′Σ−1

j (X −µ j)
i

=
n
∑

k,l=1

Σ−1
jkl

E fi

�

(Xk −µ jk)(X l −µ jl )
�

,

and

E fi

�

(Xk −µ jk)(X l −µ jl )
�

= E fi

��

Xk −µik +µik −µ jk

��

X l −µil +µil −µ jl

��

= E fi

��

Xk −µik

��

X l −µil

��

+ E fi

��

µik −µ jk

��

µil −µ jl

��

+ E fi

��

Xk −µik

��

µil −µ jl

��

+ E fi

��

X l −µil

��

µil −µ jl

��

=
�

Σi

�

kl
+
�

µik −µ jk

��

µil −µ jl

�

,

since the last two expectations above are 0. Also, since
�

Σi
�

kl =
�

Σi
�

lk, then

n
∑

k,l=1

�

Σ−1
j

�

kl

h

�

Σi

�

kl
+
�

µik −µ jk

��

µil −µ jl

�

i

=
n
∑

k,l=1

�

Σ−1
j

�

kl

�

Σi

�

lk
+

n
∑

k,l=1

�

Σ−1
j

�

kl

�

µik −µ jk

��

µil −µ jl

�

= tr
�

Σ−1
j Σi

�

+
�

µi −µ j

�′
Σ−1

j

�

µi −µ j

�

.

Thus,

E fi

�

ln f j

�

=−
1

2

h

ln
�

(2π)n|Σ j|
�

+ tr
�

Σ−1
j Σi

�

+
�

µi −µ j

�′
Σ−1

j

�

µi −µ j

�

i

.
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Corollary B.4.7. The differential entropy of fi is

h( fi) =
1

2
ln
�

(2πe)n|Σi|
�

.

Proof. Setting i = j in Proposition B.4.6 we have

h( fi) =−E fi

�

ln fi
�

=
1

2

�

ln
�

(2π)n|Σi|
�

+ tr
�

Σ−1
i Σi

�

+
�

µi −µi

�′Σ−1
i

�

µi −µi

�

�

=
1

2

�

ln
�

(2π)n|Σi|
�

+ tr(I)
�

=
1

2
ln
�

(2πe)n|Σi|
�

.

Proposition B.4.8. The Kullback-Liebler divergence between fi and f j is

D( fi|| f j) =
1

2

�

ln
|Σ j|
|Σi|
+ tr

�

Σ−1
j Σi

�

+
�

µi −µ j

�′
Σ−1

j

�

µi −µ j

�

− n

�

.

Proof. Using Proposition B.4.6 and Remark 1.2.4 we have

D( fi|| f j) = E fi
[ln fi]− E fi

[ln f j]

=−
1

2
ln
�

(2πe)n|Σi|
�

+
1

2

h

ln
�

(2π)n|Σ j|
�

+ tr
�

Σ−1
j Σi

�

+
�

µi −µ j

�′
Σ−1

j

�

µi −µ j

�

i

=
1

2

�

ln
|Σ j|
|Σi|
+ tr

�

Σ−1
j Σi

�

+
�

µi −µ j

�′
Σ−1

j

�

µi −µ j

�

− n

�

.

Remark B.4.9. If we set n= 1 in Proposition B.4.8 we get

D( fi|| f j) =
1

2



ln
σ2

j

σ2
i

+
σ2

i

σ2
j

+
�

µi −µ j

� 1

σ2
j

�

µi −µ j

�

− 1





=
1

2σ2
j

h

(µi −µ j)
2+σ2

i −σ
2
j

i

+ ln
σ j

σi
,
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which is the expression for the Kullback divergence between two univariate Gaussian

distributions obtained in Proposition B.4.3 (as expected).

Proposition B.4.10. For α ∈ R+ \ {1} let A be the matrix A := αΣ−1
i +(1−α)Σ

−1
j . Then

if A is positive definite the Rényi divergence between fi and f j is given by

Dα( fi|| f j) =
1

2
ln

�

|Σ j|
|Σi|

�

+
1

2(α− 1)
ln
�

1

|A||Σi|

�

−
F(α)

2(α− 1)
,

where

F(α) :=
h

αµ′iΣ
−1
i µi + (1−α)µ

′
jΣ
−1
j µ j

i

−
h

αΣ−1
i µi + (1−α)Σ

−1
j µ j

i′
A−1
h

αΣ−1
i µi + (1−α)Σ

−1
j µ j

i

.

If A is not positive-definite then

Dα( fi|| f j) =∞ .

Proof.

f αi f 1−α
j =





e−
1
2
(x−µi)

′Σ−1
i (x−µi)

(2π)n/2|Σi|1/2





α



e−
1
2
(x−µ j)

′Σ−1
j (x−µ j)

(2π)n/2|Σ j|1/2





1−α

=
�

(2π)n|Σi|
�− α

2
�

(2π)n|Σ j|
�
α−1

2

· exp
�

−
1

2

h

α(x −µi)
′Σ−1

i (x −µi) + (1−α)(x −µ j)
′Σ−1

j (x −µ j)
i

�

.
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Consider the argument in the exponential:

α(x −µi)
′Σ−1

i (x −µi) + (1−α)(x −µ j)
′Σ−1

j (x −µ j)

= αx ′Σ−1
i (x −µi)−αµ

′
iΣ
−1
i (x −µi) + (1−α)x

′Σ−1
j (x −µ j)

− (1−α)µ′jΣ
−1
j (x −µ j)

= αx ′Σ−1
i x −αx ′Σ−1

i µi −αµ
′
iΣ
−1
i x +αµ′iΣ

−1
i µi

+ (1−α)x ′Σ−1
j x − (1−α)x ′Σ−1

j µ j − (1−α)µ
′
jΣ
−1
j x + (1−α)µ′jΣ

−1
j µ j

= x ′(αΣ−1
i + (1−α)Σ

−1
j )x − x ′(αΣ−1

i µi + (1−α)Σ
−1
j µ j)

− (αµ′iΣ
−1
i + (1−α)µ

′
jΣ
−1
j )x + [αµ

′
iΣ
−1
i µi + (1−α)µ

′
jΣ
−1
j µ j] .

Note that

h

αΣ−1
i µi + (1−α)Σ

−1
j µ j

i′
= αµ′iΣ

−1
i + (1−α)µ

′
jΣ
−1
j ,

since Σi and Σ j are symmetric (hence also their inverses). Then

α(x −µi)
′Σ−1

i (x −µi) + (1−α)(x −µ j)
′Σ−1

j (x −µ j)

is of the form x ′Ax − 2x ′b+ c, with

A= αΣ−1
i + (1−α)Σ

−1
j , b = αΣ−1

i µi + (1−α)Σ
−1
j µ j , and

c = αµ′iΣ
−1
i µi + (1−α)µ

′
jΣ
−1
j µ j .

• If A is a symmetric matrix, positive-definite, then it is invertible and applying

Proposition A.4.4 we can write

x ′Ax − 2x ′b+ c = (x − ν)′A(x − ν) + d ,

where

ν = A−1 b and d = c− b′A−1 b .
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Then

f αi f 1−α
j

=
�

(2π)n|Σi|
�− α

2
�

(2π)n|Σ j|
�
α−1

2

· exp
�

−
1

2

h

α(x −µi)
′Σ−1

i (x −µi) + (1−α)(x −µ j)
′Σ−1

j (x −µ j)
i

�

=
�

(2π)n|Σi|
�− α

2
�

(2π)n|Σ j|
�
α−1

2 exp
�

−
1

2

�

(x − ν)′A(x − ν) + d
�

�

=
�

(2π)n|Σi|
�− α

2
�

(2π)n|Σ j|
�
α−1

2 e−
d
2 exp

�

−
1

2

�

(x − ν)′A(x − ν)
�

�

.

Letting B = A−1 ⇔ A = B−1 we recognize the above as being proportional to

the pdf of a multivariate normal distribution with mean ν and covariance matrix

B. As shown in Proposition A.4.3, A will always be symmetric, and it will be

positive-definite for any α ∈ (0,1), given that Σi and Σ j are positive-definite and

symmetric by assumption. The invertibility of B = A−1 also ensures that |B| 6= 0,

so we may write

∫

Rn

f αi f α−1
j dx =

�

|Σ j|
|Σi|

�
α−1

2
� |B|
|Σi|

�1/2

e−
d
2

∫

Rn

((2π)n|B|)−
1
2 exp

�

−
1

2

�

(x − ν)′B−1(x − ν)
�

�

dx

=

�

|Σ j|
|Σi|

�
α−1

2
� |B|
|Σi|

�1/2

e−
d
2 ,

hence

Dα( fi|| f j) =
1

α− 1
ln







�

|Σ j|
|Σi|

�
α−1

2
� |B|
|Σi|

�1/2

e−
d
2







=
1

2
ln

�

|Σ j|
|Σi|

�

+
1

2(α− 1)
ln
� |B|
|Σi|

�

−
d

2(α− 1)
.
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But

d = c− b′A−1 b

=
h

αµ′iΣ
−1
i µi + (1−α)µ

′
jΣ
−1
j µ j

i

−
h

αΣ−1
i µi + (1−α)Σ

−1
j µ j

i′
A−1
h

αΣ−1
i µi + (1−α)Σ

−1
j µ j

i

,

and

|B|= |A−1|=
1

|A|
.

Thus,

Dα( fi|| f j) =
1

2
ln

�

|Σ j|
|Σi|

�

+
1

2(α− 1)
ln
�

1

|A||Σi|

�

−
F(α)

2(α− 1)
,

where

A= αΣ−1
i + (1−α)Σ

−1
j

and

F(α) :=
h

αµ′iΣ
−1
i µi + (1−α)µ

′
jΣ
−1
j µ j

i

−
h

αΣ−1
i µi + (1−α)Σ

−1
j µ j

i′
A−1
h

αΣ−1
i µi + (1−α)Σ

−1
j µ j

i

.

• Suppose now that A is not positive definite. Since A is always symmetric, we

can always find a Q and Λ such that Λ = Q′AQ, where Λ is the diagonal matrix

Λ = diag(λ1, ...λn) with the eigenvalues of A, and Q is an orthogonal matrix of

eigenvectors of A. Let u = Q′x . Then x = Qu since Q′ = Q−1 and x ′Ax =

u ′Q′AQu = u ′Λu. Thus

x ′Ax − 2x ′b = u ′Λu − 2u ′Q′b =
n
∑

i=1

λiu
2
i − 2

n
∑

i, j=1

Q jiui b j .
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Moreover, for some k ∈ {1, ..., n}, there exists an eigenvalue λk ≤ 0. With this in

mind, we rewrite the above as

n
∑

i=1

λiu
2
i − 2

n
∑

i, j=1

Q jiui b j =

 

λku2
k − 2

n
∑

j=1

Q jkuk b j

!

+
n
∑

i=1,i 6=k

λiu
2
i − 2

n
∑

i, j=1;i 6=k

Q jiui b j .

Observe also that

∫

R
exp

 

−
1

2



λku2
k − 2

n
∑

j=1

Q i juk b j





!

duk

=

∫

R
exp

 

1

2



|λk|u2
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2
n
∑

j=1

Q i j b j

!

uk





!

duk

=

∫

R
exp
�

s y2+ t y
�

d y , s ≥ 0 , t ∈ R

=∞ ,

since the matrix Q and the vector b are fixed. Also, Q′(Rn) = Rn and for u(x ) =

Q′x the Jacobian determinant of the transformation x (u) = Qu is simply |J | =

|Q|= 1 since Q is orthogonal. Thus,

∫

Rn

f αi f α−1
j dx = K

∫

Rn

exp
�

−
1

2

�

x ′Ax − 2x ′b
�

�

dx , K > 0 ,

= K

∫

Rn

exp
�

−
1

2

�

u ′Λu − 2u ′Q′b
�

�

du

= K

∫

R
exp

 

−
1

2



λku2
k − 2

n
∑

j=1

Q i juk b j





!

duk

·
∫

Rn−1

exp



−
1

2





n
∑

i=1,i 6=k

λiu
2
i − 2

n
∑

i, j=1;i 6=k

Q jiui b j







 du ,

where we have used Fubini’s Theorem3 as the integrand is always positive. Hence,

by the observation above, the whole expression equals +∞ as a result of the first

3See for example [55], p.164
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integral. Finally, since the case of A not being positive-definite requires

α > 1 (see Proposition A.4.3) then

Da( fi|| f f ) =
1

α− 1

∫

Rn

f αi f 1−α
j =∞ .

Remark B.4.11. If we set n= 1 in Proposition B.4.10 Then

F(α) =
αµ2

i

σ2
i

+
(1− a)µ2

j

σ2
j

−

 

αµi

σ2
i

+
(1− a)µ j

σ2
j

!2 

α

σ2
i

+
(1− a)
σ2

j

!−1

=
1

σ2
iσ

2
j

�

ασ2
jµ

2
i + (1−α)σ

2
jµ

2
j

�

−
1

σ4
iσ

4
j

�

ασ2
jµi + (1−α)σ2

i µ j

�2 σ2
iσ

2
j

ασ2
j + (1−α)σ

2
i

=
1

σ2
iσ

2
j

�

ασ2
j + (1−α)σ

2
i

�

·
h�

ασ2
jµ

2
i + (1−α)σ

2
jµ

2
j

��

ασ2
j + (1−α)σ

2
i

�

−
�

ασ2
jµi + (1−α)σ2

i µ j

�2�

As shown in the proof of Proposition B.4.4,

�

ασ2
j + (1−α)σ

2
i

��

ασ2
jµ

2
i + (1−α)σ

2
i µ

2
j

�

−
�

ασ2
jµi + (1−α)σ2

i µ j

�2

= α(1−α)σ2
iσ

2
j (µi −µ j)

2 ,

So

F(α) =
α(1−α)(µi −µ j)2

ασ2
j + (1−α)σ

2
i

.

Also,

|A||Σi|=

 

α

σ2
i

+
(1−α)
σ2

j

!

σ2
i =

ασ2
j + (1−α)σ

2
i

σ2
j

.
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Thus,

Dα( fi|| f j) =
1

2
ln

 

σ2
j

σ2
i

!

+
1

2(α− 1)
ln

 

σ2
j

ασ2
j + (1−α)σ

2
i

!

−
α(1−α)(µi −µ j)2

ασ2
j + (1−α)σ

2
i

1

2(α− 1)

= ln
�

σ j

σi

�

+
1

2(α− 1)
ln

 

σ2
j

ασ2
j + (1−α)σ

2
i

!

+
1

2

α(µi −µ j)2

ασ2
j + (1−α)σ

2
i

,

which is the expression for the Rényi divergence between two univariate Gaussian

distributions obtained in Proposition B.4.4 (for ασ2
j + (1 − α)σ

2
i > 0), as expected.

Moreover note that for n = 1 the positive-definiteness constraint in Proposition B.4.10

in this case becomes
 

α

σ2
i

+
(1−α)
σ2

j

!

x2 > 0 , ∀x ∈ R \ {0} ⇔ ασ2
j + (1−α)σ

2
i > 0 ,

which was the corresponding constraint in Proposition B.4.4.

Remark B.4.12.

lim
α↑1

Dα( fi|| f j) = D( fi|| f j) .

Proof. First observe the following:

lim
α↑1

A= lim
α↑1

h

αΣ−1
i + (1−α)Σ

−1
j

i

= Σ−1
i ⇒ lim

α↑1
|A||Σi|= |Σ−1

i Σi|= |I |= 1 .
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Also,

lim
α↑1

F(α) = lim
α↑1

�h

αµ′iΣ
−1
i µi + (1−α)µ′jΣ

−1
j µ j

i

−
h

αΣ−1
i µi + (1−α)Σ−1

j µ j

i′
A−1
h

αΣ−1
i µi + (1−α)Σ−1

j µ j

i
�

= µ′Σ−1
i µi −

�

Σ−1
i µi

�′
ΣiΣ

−1
i µi

= µ′Σ−1
i µi −µ′iΣ

−1
i ΣiΣ

−1
i µ

= 0 .

Then we see that

lim
α↑1

�

1

2(α− 1)
ln
�

1

|A||Σi|

�

−
F(α)

2(α− 1)

�

has an indeterminate form. From Proposition A.4.11,

d|A|
dα
= |A|tr

�

A−1 dA

dα

�

,

and so

lim
α↑1

1

|A|
d|A|
dα
= tr

�

lim
α↑1

�

A−1 dA

dα

��

= tr
�

�

Σ−1
i

�−1
�

Σ−1
i −Σ

−1
j

��

= n− tr
�

Σ−1
j Σi

�

,

where we have used Proposition A.4.10, as well as the linearity, symmetry, and conti-

nuity of the trace operator. Thus, applying l’Hospital’s rule,

lim
α↑1

1

2(α− 1)
ln
�

1

|A||Σi|

�

=−
1

2
lim
α↑1

1

|A|
d|A|
dα
=

1

2

h

tr
�

Σ−1
j Σi

�

− n
i

.

Now, also from Proposition A.4.10

d

dα
�

x ′Ax
�

=
d x ′

dα
(Ax) + x ′

dA

dα
x + x ′A

d x

dα
,
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and so

d

dα
F(α) =

d

dα

�h

αµ′iΣ
−1
i µi + (1−α)µ′jΣ

−1
j µ j

i

−
h

αΣ−1
i µi + (1−α)Σ−1

j µ j

i′
A−1
h

αΣ−1
i µi + (1−α)Σ−1

j µ j

i
�

= µ′iΣ
−1
i µi −µ′jΣ

−1
j µ j

−
h

Σ−1
i µi −Σ−1

j µ j

i′�

A−1
h

αΣ−1
i µi + (1−α)Σ−1

j µ j

i�

−
h

αΣ−1
i µi + (1−α)Σ−1

j µ j

i′ dA−1

dα

h

αΣ−1
i µi + (1−α)Σ−1

j µ j

i

−
h

αΣ−1
i µi + (1−α)Σ−1

j µ j

i′
A−1
h

Σ−1
i µi −Σ−1

j µ j

i

,

and also

dA−1

dα
=−A−1 dA

dα
A−1 .

Since lim
α↑1

A= Σ−1
i , then lim

α↑1
A−1 = Σi and

lim
α↑1

dA−1

dα
=−Σi

h

Σ−1
i −Σ

−1
j

i

Σi =−Σi +ΣiΣ
−1
j Σi .

Hence

lim
α↑1

d

dα
F(α) = µ′iΣ

−1
i µi −µ′jΣ

−1
j µ j −

h

Σ−1
i µi −Σ−1

j µ j

i′
ΣiΣ

−1
i µi

−
�

Σ−1
i µi

�′�

−Σi +ΣiΣ
−1
j Σi

�

�

Σ−1
i µi

�

−
�

Σ−1
i µi

�′
Σi

h

Σ−1
i µi −Σ−1

j µ j

i

=
h

µ′iΣ
−1
i µi −µ′jΣ

−1
j µ j

i

−µ′iΣ
−1
i µi +µ

′
jΣ
−1
j µi

−µ′iΣ
−1
i

�

ΣiΣ
−1
j µi − Iµi

�

−µ′iΣ
−1
i µi +µ

′
iΣ
−1
j µ j

=−µ′jΣ
−1
j µ j +µ

′
jΣ
−1
j µi −µ′iΣ

−1
j µi +µ

′
iΣ
−1
j µ j

=−
h

µ′iΣ
−1
j µi −µ′iΣ

−1
j µ j −µ′jΣ

−1
j µi +µ

′
jΣ
−1
j µ j

i

=−(µi −µ j)
′Σ−1

j (µi −µ j) ,
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and from l’Hospital’s rule

lim
α↑1

�

−
F(α)

2(α− 1)

�

=
1

2
(µi −µ j)

′Σ−1
j (µi −µ j) .

Finally,

lim
α↑1

Dα( fi|| f j) = lim
α↑1

�

1

2
ln

�

|Σ j|
|Σi|

�

+
1

2(α− 1)
ln
�

1

|A||Σi|

�

−
F(α)

2(α− 1)

�

=
1

2

�

ln

�

|Σ j|
|Σi|

�

+ tr
�

Σ−1
j Σi

�

+ (µi −µ j)
′Σ−1

j (µi −µ j)− n

�

,

which is the expression for the Kullback divergence between two multivariate Gaussian

distributions obtained in Proposition B.4.8, as expected.

B.4.3 A Special Bivariate Case

Consider the expression for Dα( fi|| f j) for the zero-mean, unit-variance, bivariate case:

fi(x ) =
e−

1
2

x ′Φ−1
i x

2π(1−ρ2
i )

1/2
, x ∈ R2 ,

where

Σk =









1 ρk

ρk 1









, k = i, j .

We have

Σ−1
k =

1

1−ρ2
k









1 −ρk

−ρk 1









, k = i, j ,

and

A= αΣ−1
i + (1−α)Σ

−1
j

=
α

1−ρ2
i









1 −ρi

−ρi 1









+
(1−α)
1−ρ2

j









1 −ρ j

−ρ j 1









.
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Writing the above as a single matrix and taking the determinant we find

|A|=





1

(1−ρ2
i )(1−ρ

2
j )





2
�
h

α(1−ρ2
j ) + (1−α)(1−ρ

2
i )
i2

−
h

α(1−ρ2
j )ρi + (1−α)(1−ρ2

i )ρ j

i2�

=





1

(1−ρ2
i )(1−ρ

2
j )





2
�

α2(1−ρ2
j )

2(1−ρ2
i )

+(1−α)2(1−ρ2
i )

2(1−ρ2
j ) + 2α(1−α)(1−ρ2

i )(1−ρ
2
j )(1−ρiρ j)

�

=
α2(1−ρ2

j ) + (1−α)
2(1−ρ2

i ) + 2α(1−α)(1−ρiρ j)

(1−ρ2
i )(1−ρ

2
j )

=
(α2+ (1−α)2+ 2α(1−α))−α2ρ2

j − (1−α)
2ρ2

i − 2α(1−α)ρiρ j

(1−ρ2
i )(1−ρ

2
j )

=
1− (αρ j + (1−α)ρi)2

(1−ρ2
i )(1−ρ

2
j )

.

Thus

|A||Σi|=
1− (αρ j + (1−α)ρi)2

(1−ρ2
j )

.

Also, since µi = µ j = (0, 0)′ then F(α) = 0. Thus when A is positive definite (e.g. when

α ∈ (0,1)) we have

Dα( fi|| f j) =
1

2
ln

 

1−ρ2
j

1−ρ2
i

!

−
1

2(α− 1)
ln

 

1− (αρ j + (1−α)ρi)2

(1−ρ2
j )

!

.

Now consider the KLD case. The multivariate Gaussian KLD

D( fi|| f j) =
1

2

�

ln
|Σ j|
|Σi|
+ tr

�

Σ−1
j Σi

�

�

+
1

2

h

�

µi −µ j

�′
Σ−1

j

�

µi −µ j

�

− n
i

becomes

D( fi|| f j) =
1

2

 

ln
1−ρ2

j

1−ρ2
i

+ tr
�

Σ−1
j Σi

�

− 2

!

.
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We have

Σ−1
j Σi =

1

1−ρ2
j









1 −ρ j

−ρ j 1

















1 ρi

ρi 1









,

hence

tr(Σ−1
j Σi) =

2(1−ρ jρi)

1−ρ2
j

,

and

D( fi|| f j) =
1

2
ln

 

1−ρ2
j

1−ρ2
i

!

+
1−ρ jρi

1−ρ2
j

− 1

=
1

2
ln

 

1−ρ2
j

1−ρ2
i

!

+
ρ2

j −ρ jρi

1−ρ2
j

.

We can see that taking the limit α → 1 of the second term for the Rényi expression

above we have

−
1

2
lim
α→1

−2ρ∗α(ρ j −ρi)

1− (ρ∗
α
)2

=
ρ2

j −ρ jρi

1−ρ2
j

,

so that the expressions agree in the limit α→ 1, as expected.
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B.5 Pareto Distributions

Throughout this section let fi and f j be two Pareto densities (over the same support)

fi(x) = aim
ai x−(ai+1) , ai, m> 0 ; x > m .

Proposition B.5.1.

E fi

�

ln f j

�

= ln
a j

m
−
(a j + 1)

ai
.

Proof.

E fi

�

ln f j

�

= E fi

�

ln
�

a jm
a j
�

− (a j + 1) ln X
�

= ln
�

a jm
a j
�

− (a j + 1)E fi
[ln X ] .

Now

E fi
[ln X ] =

∫ ∞

m

aim
ai x−(ai+1) ln x d x

= aim
ai

�

−
1

ai
x−ai ln x

�

�

�

�

∞

m

+
1

ai

∫ ∞

m

x−(ai+1)d x

�

=
aim

ai m−ai ln m

ai
+

1

ai

∫ ∞

m

aim
ai x−(ai+1)d x

= ln m+
1

ai
,

where we have used integration by parts, and the last term integrates to 1 since it

corresponds to integrating the original density over its support. Thus

E fi

�

ln f j

�

= ln
�

a jm
a j
�

− (a j + 1)
�

ln m+
1

ai

�

= ln
a j

m
−
(a j + 1)

ai
.
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Corollary B.5.2. The differential entropy of fi is

h( fi) = ln
m

ai
+
(ai + 1)

ai
.

Proof. Setting i = j in Proposition B.5.1 we have

h( fi) =−E fi

�

ln fi
�

=−
�

ln
ai

m
−
(ai + 1)

ai

�

= ln
m

ai
+
(ai + 1)

ai
.

Proposition B.5.3. The Kullback-Liebler divergence between fi and f j is

D( fi|| f j) = ln
ai

a j
+

a j − ai

ai
.

Proof. Using Proposition B.5.1 and Remark 1.2.4 we have

D( fi|| f j) = E fi
[ln fi]− E fi

[ln f j]

=−
�

ln
m

ai
+
(ai + 1)

ai

�

−
�

ln
a j

m
−
(a j + 1)

ai

�

= ln
ai

a j
+

a j − ai

ai
.

Proposition B.5.4. For α ∈ R+ \ {1} let a0 = αai +(1−α)a j. Then the Rényi divergence

between fi and f j is given by

Dα( fi|| f j) = ln
ai

a j
+

1

α− 1
ln

ai

a0

for a0 > 0 and

Dα( fi|| f j) = +∞

otherwise.
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Proof.

f αi f 1−α
j =

�

aim
ai x−(ai+1)

�α�

a jm
a j x−(a j+1)

�1−α
=

�

ai

a j

�α−1

aim
a0 x a0−1 ,

where a0 = αai + (1−α)a j.

• If a0 > 0 then

∫ ∞

m

f αi f 1−α
j d x =

�

ai

a j

�α−1
ai

a0

∫ ∞

m

a0ma0 x a0−1 d x =

�

ai

a j

�α−1
ai

a0
,

since the integrand is Pareto density with parameters m and a0. Then

Dα( fi|| f j) =
1

α− 1
ln





�

ai

a j

�α−1
ai

a0



= ln
ai

a j
+

1

α− 1
ln

ai

a0
.

Note that for α ∈ (0,1) we always have a0 > 0 given the positivity of ai and a j.

• If a0 ≤ 0 then
∫ ∞

m

f αi f 1−a
j d x = A

∫ ∞

m

x a0−1d x , A≥ 0

=∞ .

Finally, since nonpositive a0 only occurs for α > 1 we have

Dα( fi|| f j) =
1

α− 1
ln

∫ ∞

m

f αi f 1−α
j d x =∞

for these cases.

Remark B.5.5.

lim
α↑1

Dα( fi|| f j) = D( fi|| f j) .
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Proof.

lim
α↑1

Dα( fi|| f j) = ln
ai

a j
+ lim
α↑1

�

1

α− 1
ln

ai

a0

�

Since

lim
α↑1

a0 = lim
α↑1

�

αai + (1−α)a j

�

= ai,

the limit of the second term is of indeterminate form. Applying l’Hospital’s rule

lim
α↑1

�

1

α− 1
ln

ai

a0

�

=−lim
α↑1

ai − a j

a0
=

a j − ai

ai
.

Therefore,

lim
α↑1

Dα( fi|| f j) = ln
ai

a j
+

a j − ai

ai
= D( fi|| f j) ,

as given by Proposition B.5.3.

Information measures for univariate Pareto distributions are also considered in [7].

Introduced as “The Pareto distribution with survival function

F̄β(x) = (x + 1)−β , x > 0, β > 0 ” ,

denoted by Pβ . The authors denote the Shannon entropy, Rényi entropy, Kullback-

Leibler divergence, and Rényi divergence by H(Pi), Hα(Pi),

K(Pi :P j), and Kα(Pi :P j), respectively. Thus, they present

K(Pβ1
:Pβ2

) = ρ− logρ− 1 ,

H(Pβ) = 1+
1

β
− logβ ,

Kα(Pβ1
:Pβ2

) =
1

1−α
log
�

αρα−1+ (1−α)ρα
�

, α+ (1−α)ρ > 0 and

Hα(Pb) =
1

1−α
log

βα

α(β + 1)− 1
, α >

1

β + 1
,
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where ρ = β2/β1. Since the survival function is defined as 1− F(x), where F(x) is the

distribution function of X , then the corresponding density is

f (x) = β(x + 1)−(β+1) , x > 0 ≡ β y−(β+1) , y > 1 .

In our notation this corresponds to the case a = β and m= 1. Substituting these values

into Corollary B.5.2, Proposition B.5.3 and Proposition B.5.4 we obtain

h( f ) = ln
1

β
+
β + 1

β
= 1+

1

β
− logβ ,

D( fi|| f j) = ln
βi

β j
+
β j − βi

βi
= ρ− logρ− 1 , and

Dα( fi|| f j) = ln
βi

β j
+

1

α− 1
ln
βi

β0

= ln
βi

β j
+

1

α− 1
ln

βi

αβi + (1−α)β j

=− lnρ+
1

1−α
ln
αβi + (1−α)β j

βi

=
1

1−α
lnρα−1+

1

1−α
ln(α+ (1−α)ρ)

=
1

1−α
ln(αρα−1+ (1−α)ρα) ,

where ρ = β j/βi. Moreover,

β0 > 0⇔ αβi + (1−α)β j > 0

⇔ α+ (1−α)
β j

βi
> 0

⇔ α+ (1−α)ρ > 0 ,

and we see the two sets of expressions are in agreement.
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B.6 Weibull Distributions

Throughout this section let fi and f j be two univariate Weibull densities

fi(x) = kiλ
−ki
i x ki−1e−(x/λi)ki , ki,λi > 0; x ∈ R+ .

Proposition B.6.1. For α ∈ R+ \{1} let ki = k j = k and λ0 = αλk
j +(1−α)λ

k
i . Then the

Rényi divergence between fi and f j is given by

Dα( fi|| f j) = ln

�

λ j

λi

�k

+
1

α− 1
ln
λk

j

λ0
,

for λ0 > 0 and

Dα( fi|| f j) = +∞

otherwise.

Proof.

f αi f 1−α
j =

h

kiλ
−ki
i x ki−1e−(x/λi)ki

iαh

k jλ
−k j

j x k j−1e−(x/λ j)
k j
i1−α

=
h

kλ−k
i x k−1e−(x/λi)k

iαh

kλ−k
j x k−1e−(x/λ j)k

i1−α

= kλ−αk
i λ

−(1−α)k
j x k−1 exp

�

−ξx k
�

=

�

λ j

λi

�k(α−1)

λ−k
i kx k−1 exp

�

−ξx k
�

,

where

ξ=
α

λk
i

+
1−α
λk

j

=
αλk

j + (1−α)λ
k
i

�

λiλ j

�k =
λ0

�

λiλ j

�k .



APPENDIX B. ORIGINAL DERIVATIONS FOR EXPONENTIAL FAMILIES 161

• If λ0 > 0 then ξ > 0 and

∫

R+
f αi f 1−α

j d x =

�

λ j

λi

�k(α−1)

λ−k
i

∫

R+
kx k−1 exp

�

−ξx k
�

d x

=

�

λ j

λi

�k(α−1)
λ−k

i

ξ

∫

R+
e−y d y , y = ξx k

=

�

λ j

λi

�k(α−1)
λ−k

i

ξ

=

�

λ j

λi

�k(α−1)

λ−k
i

�

λiλ j

�k

λ0
.

Then,

Dα( fi|| f j) =
1

α− 1
ln





�

λ j

λi

�k(α−1) λk
j

λ0



= ln

�

λ j

λi

�k

+
1

α− 1
ln
λk

j

λ0
.

Note that for α ∈ (0,1) we always have λ0 > 0 given the positivity of λi and λ j.

• If λ0 ≤ 0 then ξ≤ 0 and
∫

R+
f αi f 1−α

j d x = A1

∫

R+
x k−1e|ξ|x

k
d x , A1 > 0

> A1

∫

R+
x k−1d x =∞ ,

for all values of k. Finally, since nonpositive λ0 only occurs for α > 1 we have

Dα( fi|| f j) =
1

α− 1
ln

∫

R+
f αi f 1−α

j d x =+∞

for this case.

Remark B.6.2. For ki = k j = k,

lim
α↑1

Dα( fi|| f j) = D( fi|| f j) .
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Proof. Note that setting ki = k j = k in the expression for the Kullback divergence,

D( fi|| f j) (Proposition 2.3.27), we obtain

D( fi|| f j) = ln

�

λ j

λi

�k

+

�

λi

λ j

�k

− 1 .

Comparing this to the expression for the corresponding Rényi divergence

(Proposition B.6.1), it remains to show that

lim
α↑1

1

α− 1
ln

 

λk
j

λ0

!

=

�

λi

λ j

�k

− 1 .

Since

lim
α↑1
λ0 = lim

α↑1
αλk

j + (1−α)λ
k
i = λ

k
j

we see the limit in question is of indeterminate form. Applying l’Hospital’s rule,

lim
α↑1

1

α− 1
ln

 

λk
j

λ0

!

=−lim
α↑1

1

λ0

�

λk
j −λ

k
i

�

=
λk

i −λ
k
j

λk
j

=
�

λi

λi

�k

− 1 .
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