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Abstract—We consider the problem of sending a Gaussian
source over an additive white Gaussian noise channel with
Gaussian correlated interference known to the transmitter. We
study both low-delay and asymptotically high-delay (in the sense
of infinite source and coding block lengths) joint source-channel
coding schemes based on purely analog and hybrid-digital analog
(HDA) schemes with bandwidth expansion, respectively. The
achievable (square error) distortion region of these schemes
under matched and mismatched noise power is analyzed. The
low-delay scheme uses a non-parametric analog mapping that is
designed using a joint optimization of the encoder and the de-
coder. Numerical results show that the non-parametric approach
adapts better to the interference than the classical linear scheme.
For the high-delay regime, we establish a lower bound on the
system’s distortion and propose a layered HDA scheme based on
Wyner-Ziv and HDA Costa coding. The proposed HDA scheme is
shown to perform close to the derived bound and to be resilient
under noise mismatch.

I. INTRODUCTION

The traditional approach for analog source transmission is
to use separate source and channel coders. This separation is
optimal given unlimited delay and complexity in the coders.
On the other hand, joint source-channel coding (JSCC) can
lead to a better performance when delay and complexity are
constrained and in the case of mismatched noise level between
transmitter and receiver. It is well known that for the case of
a Gaussian source sent over a Gaussian channel with matched
bandwidth, uncoded (linear) transmission is optimal. However,
when there is a bandwidth mismatch between source and
channel or in the presence of interference known only at the
transmitter, this result does not hold anymore. A tandem digital
Costa coding scheme which comprises an optimal quantizer
followed by a Costa’s dirty paper coding [1] is optimal in the
absence of correlation between the source and the interference.
This scheme, however, suffers from the threshold effect and
the levelling-off effect in the high and low noise power
regimes, respectively [2]. A family of hybrid digital-analog
(HDA) schemes are introduced in [3], [4] that overcome the
threshold and the levelling-off effect. In [5], an HDA Costa
coding scheme is proposed for the case of matched bandwidth
between source and channel over the additive white Gaussian
noise (AWGN) channel with uncorrelated interference. In [6],
the authors study the HDA schemes proposed in [5] for
broadcasting correlated sources. In [7], the authors adapt the
schemes of [5] for bandwidth reduction. Recently, the authors
in [8] consider the transmission of Gaussian sources over
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AWGN channels with correlated interference, and propose
a scheme based on HDA Costa coding [5] under matched-
bandwidth. All these schemes require high delay and com-
plexity due to the use of long block codes.

With the increasing popularity of wireless sensor networks
(WSNs), reliable transmission with delay and complexity
constraints has become an important practical objective. A
sensor node, often conceived as having limited lifetime and
processing power, communicates its sensed information to a
fusion centre over a noisy wireless channel. Low-delay as well
as analog coding comport with low power implementation.
In [9]–[14], the authors present low-delay JSCC schemes
based on purely analog mappings over noisy channels with
no interference. In [15], the authors consider lossless cod-
ing of a uniformly distributed finite-alphabet source that is
uncorrelated with the interference and propose a symbol-by-
symbol modulation technique that minimizes the symbol error
probability.

In this work, we study the reliable transmission of a
memoryless Gaussian source over the AWGN channel with
correlated interference known non-causally [1] at the transmit-
ter. More precisely, we consider both low-delay and high-delay
schemes with bandwidth expansion. We analyze the achievable
distortion region under matched and mismatched noise levels.
One application of low-delay JSCC with correlated interfer-
ence can be found in WSNs where two sensors interfere with
each other. One sensor transmits directly its sensed signal;
the other, however, is able to detect its neighbour sensor
transmission and treat it as a correlated interference. The rest

Fig. 1. A K : N system structure (with K < N ) over the AWGN channel
with interference known at the transmitter. The interference SN is assumed
to be the output of a noisy side channel with input V N . V K represents the
first K samples of V N . Note that the first K pairs (V, S) are correlated.

of the paper is organized as follows. Section II presents the
problem formulation. Section III describes the lower bound on
system’s distortion and some reference schemes. In Section IV,
a low-delay scheme is considered. Section V presents the
achievable distortion region for a high-delay HDA scheme
under both matched and mismatched noise levels. Finally,



conclusions are drawn in Section VI.

II. PROBLEM FORMULATION
We consider the transmission of a Gaussian source V

K

=

(V1, ..., VK

)

T 2 RK over an AWGN channel in the presence
of Gaussian interference S

N

= (S1, ..., SN

)

T 2 RN known at
the transmitter, where (.)

T denotes the transpose operator and
N > K. As shown in Fig. 1, the source vector V

K , which
is composed of independent and identically distributed (i.i.d.)
samples, is transformed into an N dimensional channel input
X

N 2 RN using a nonlinear mapping function, in general,
↵(·): RK ⇥ RN ! RN . The received symbol is

Y

N

= X

N

+ S

N

+W

N (1)
where addition is component-wise, XN

= ↵(V

K

, S

N

), SN is
an i.i.d. Gaussian interference (S

i

⇠ N (0,�

2
S

), i = 1, ..., N)

and considered to be the output of a side channel with input
V

N as shown in Fig. 1, and each sample in the additive noise
W

N is drawn from a Gaussian distribution (W ⇠ N (0,�

2
W

))

independently from both S and V . Unlike the typical dirty
paper problem, V K and S

N are correlated and have a joint
probability density function denoted by p(V

K

, S

N

). In this
work, we assume that V

i

and S

i

, i = 1, ...,K, are correlated
with the following covariance matrix
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where �

2
V

, �

2
S

are, respectively, the variance of the source
and the interference, and ⇢ is the correlation coefficient. The
system operates under an average power constraint P

E[||↵(V K

, S

N

)||2]/N  P (3)
where E[(·)] denotes the expectation operator. The recon-
structed signal is given by ˆ

V

K

= �(Y

N

), where the decoder is
a mapping from RN ! RK . We aim to find a source mapping
↵ and receiver � that minimize the mean square error (MSE)
distortion D = E[||V K � ˆ

V

K ||2]/K under the average power
constraint in (3). The system rate is given by r =

N

K

channel
use/source symbol. In this work, we are interested in analyzing
the achievable distortion for bandwidth expansion (r > 1)
under both low-delay (where both K and N take on small
values above unity) and high-delay regimes (where both N

and K tend to infinity such that N

K

= r is constant).
• Low-delay regime: This regime uses a non-parametric

source-channel analog mapping1 based on a joint op-
timization between the encoder and the decoder side
through an iterative process.

• High-delay regime: A layered coding scheme based on
HDA Costa [5], [8] and Wyner-Ziv coding is proposed for
bandwidth expansion. The achievable distortion region is
analyzed under matched and mismatched noise levels.
Moreover, a lower bound on the system’s distortion is
derived.

III. LOWER BOUND AND REFERENCE SYSTEMS

A. Lower Bound
In [8], [16], several lower bounds on the system distortion

for the case of matched-bandwidth are derived by assuming

1For efficient implementation purposes, our mappings are not purely analog;
rather, they are discretized close-to-analog maps.

full/partial knowledge of the interference at the decoder side.
Since SK and V

K are correlated and Gaussian, we have SK

=

S
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+ S
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D

, with S

K
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To derive a distortion lower bound, we assume knowledge of
˜

S

K and S

N�K (the last N�K samples in S

N ) at the decoder
side, where ˜

S

K

= �1S
K

I

+�2S
K

D

. The knowledge of the linear
combination ˜

S is motivated by [16]. This lower bound can be
written as follows
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W

)

r
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and MSE(Y ;

˜

S)

is the distortion from estimating Y based on ˜

S using a linear
minimum MSE estimator. This distortion is a function of
�1, �2, E[XS

I

] and E[XS

D

]. By Cauchy-Schwartz, we have
|E[XS

I

]| 
p

E[X2
]E[S2

I

] and |E[XS

D

]| 
p
E[X2

]E[S2
D

].
For a given �1 and �2, the maximum value of MSE(Y ;

˜

S) has
to be used in (4). Note that we need to maximize D over the
parameters �1 and �2. This bound reduces to the ones derived
in [16] for the matched case (r = 1).

B. Linear Scheme

In this scheme, the encoder transforms the K-dimensional
signal V K into an N -dimensional channel input XN using a
linear transformation according to

X

N

= ↵(V

K

, S

N

) = AV

K

+BS

N (5)
where A is a N ⇥K matrix and B is a N ⇥N matrix. At the
receiver side, we use a linear decoder that minimizes the MSE
distortion. The estimated source is ˆ

V

K

= FE

�1
Y

N , where
F is the correlation vector between V

K and Y

N , and E is the
covariance matrix of Y N . By setting B to be the zero matrix,
the system reduces to the uncoded scheme which do not use
the interference knowledge. Note that A and B are found by
minimizing the MSE distortion while satisfying (3).

C. Tandem Digital Costa Scheme

This scheme is based on the concatenation of an optimal
source code and Costa (dirty paper) [1]. The optimal source
code quantizes the analog source with a rate close to the
channel capacity, and the Costa coder achieves a rate equal
to the case when there is no interference. Hence, from the
lossy JSCC theorem, the distortion for a K:N system is

DCosta = �

2
V

/(1 + P/�

2
W

)

r

. (6)

Note that this scheme achieves the theoretical limit for un-
correlated interference (⇢ = 0). Moreover, its performance
does not improve when the noise level decreases (levelling-
off effect) or in the presence of correlation between V and S

(⇢ 6= 0).

IV. LOW-DELAY MAPPINGS

A. Non-Parametric Mappings

Using the Lagrange multiplier method, the constrained opti-
mization problem of minimizing the MSE E[||V K� ˆ

V

K ||2]/K
distortion subject to (3) can be recast into an unconstrained
minimization problem via the Lagrange cost function L(↵, �)

L(↵, �) = E[||V K� ˆ

V

K ||2]/K+�E[||↵(V K

, S

N

)||2]/N (7)



where the Lagrange multiplier � is used to control the average
power. However, this unconstrained minimization is still hard
to solve due to the interdependencies between the optimized
components, and since the encoder/decoder mappings are, in
general, nonlinear functions. To overcome these challenges,
we proceed in a similar way to classical design problems
(e.g., channel optimized vector quantizer design [17]) by
formulating the necessary conditions for optimality. This is
done by finding the optimal encoder ↵ given the decoder �,
and vice versa.

1) Necessary Conditions for Optimality: The problem of
finding the optimal source mapping ↵ (while � is fixed) is

↵

⇤
= argmin

↵

(
E[||V K � ˆ

V

K ||2]
K

+ �

E[||↵(V K

, S

N

)||2]
N

)
.

(8)
Using Bayes’ rule, the distortion D =

E[||V K�V̂

K ||2]
K

is

D =

ZZZ
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n

)p(y

n|↵(vk, sn), sn) ||v
k � v̂

k||2

K

dv

k
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n

dy

n

(9)
where p(.) and p(.|.) denote, respectively, a probability density
function (pdf) and a conditional pdf. The average power is

P =

1

N

ZZ
p(v

k

, s

n

)||↵(vk, sn)||2dvkdsn. (10)

Since p(v

k

, s

n

) in (9)–(10) is nonnegative, the optimal source
mapping ↵ can be optimized for each v

k and s

n according to

↵

⇤
(v

k

, s

n

) = arg min

x

n2Rn

⇢
1

K

Z
p(y

n|xn

, s

n

)

||vk � �(y

n

)||2dyn +

�

N

||xn||2
�
. (11)

Hence, (11) is a necessary condition to find the optimal ↵.
On the receiver side, the optimal decoder in the MSE sense

(assuming ↵ is fixed) is given by

�

⇤
(y

N

) = E[V K |yn] =
RR

v

k

p(y

n|vk, sn)p(vk, sn)dvkdsnRR
p(y

n|vk, sn)p(vk, sn)dvkdsn
.

(12)
2) Design Algorithm: Based on the above necessary con-

ditions for optimality, it is possible to optimize the transmitter
mapping ↵ and the receiver mapping � using an iterative
process. This is done by fixing one part while optimizing
the other. The update equations (11) and (12) yield lower
distortion at each iteration step. One common problem with
such iterative technique is that the final solution will depend
on the initialization of the algorithm and does not guarantee
convergence to the global optimum solution.The design (of-
fline) algorithm is as follows

1) Choose some initial mapping for the encoder ↵.
2) Find the optimal receiver � according to (12).
3) Set the iteration index i = 0 and the cost L(0)

= 1.
4) Set i = i+ 1.
5) Find the optimal mapping ↵ according to (11).
6) Find the optimal receiver � according to (12).
7) Evaluate the cost function L

(i). If the relative improve-
ment of L

(i) compared to L

(i�1) is less than some
positive threshold ", stop iterating. Else go to step 4.

In our simulations, we used " = 10

�4, an uncoded mapping
for initializing the encoder ↵, and � is chosen so that the
average power constraint is satisfied. Note that the � value

to use in the operational phase (i.e., when the encoder is
deployed) is obtained from the design phase; that is the �

values found in the search for a given power constraint and
noise levels are tabulated for implementing (11) online.

3) Implementation Aspects: For the actual implementation
of (11) and (12), some modifications are required. By the fact
that it is impossible to evaluate the formulas for all (V K

, S

N

),
we form as in [18] a pair of sets (V,S) composed of Monte-
Carlo samples drawn from the joint distribution of V

K and
S

N . In our simulations, we use 10

4 sample pairs to define
(V,S). Since the channel input and output spaces are real
valued, we discretize each coordinate of these spaces using a
pulse amplitude modulation (PAM) alphabet X

X =

⇢
�e

`� 1

2

,�e

`� 3

2

, ..., e

`� 3

2

, e

`� 1

2

�
(13)

where e and ` determine the resolution and the cardinality of
the discrete set X , respectively. This set provides a good ap-
proximation by taking e to be small in relation to the standard
deviation of the noise and by choosing a sufficiently large `

to cover the largest signal amplitude. In our simulations, we
set e = 12/(`� 1), and ` to 500 for 1:2 expansion system.2

Since complexity is a major concern for the low-delay
scheme, it is important to note that the encoder side can be
approximated with a table-lookup, thereby avoiding having to
compute a numerical integration for each (V, S).

The discretized versions of (11) and (12), that are used in
the implementation of the design algorithm, are

↵

⇤
(v

k

, s

n

) = arg min

x

n2Xn

8
<

:
X

y

n2Xn

1

K

Q(y

n|xn

, s

n

)

||vk � �(y

n

)||2 + �

N

||xn||2
�

(14)

�

⇤
(y

n

) =

P
(vk

,s

n)2(V,S) v
k

Q(y

n|↵(vk, sn), sn)
P

(vk
,s

n)2(V,S) Q(y

n|↵(vk, sn), sn) ,(15)

respectively, where Q(·) and Q(·|·) denote a probability mass
function (pmf) and a conditional pmf, respectively.

B. Numerical Results
In this section, we assume an i.i.d. zero-mean Gaussian

source with unitary variance that is transmitted over an AWGN
channel with Gaussian interference S. The interference power
is �

2
S

= 1 and the power constraint is P = 1. To evaluate the
performance, we show plots of the signal-to-distortion ratio
(SDR, E[||V K ||2]/E[||V K� ˆ

V

K ||2]) versus CSNR, P/�

2
W

.
Fig 2 shows the performance of non-parametric mappings
for the 1:2 bandwidth expansion system and ⇢ = 0.3. We
can notice that the non-parametric mappings outperform the
uncoded and the linear schemes for all CSNR levels. The gain
from using the non-parametric mapping is due to the fact that
it has a higher degree of freedom in placing points in space.
Other numerical results show that the system performance
increases with the correlation between the source and the
interference which is not true for the digital Costa scheme.
It should be emphasized that the performance of the tandem
Costa scheme is an asymptotic result in the sense of infinite

2Note that ` depends on the noise levels; for high noise levels, ` can be
made smaller with no loss in performance.



source and coding block lengths (but keeping N/K = r

constant). The gap between the digital Costa and our low-
delay schemes is therefore not surprising.
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Fig. 2. Performance of the non-parametric mapping for 1:2 bandwidth
expansion. Tandem Costa, uncoded, and linear schemes are also plotted. The
graph is made for �2

V = 1, P = 1, ⇢ = 0.3, and �2
S = 1.

V. DISTORTION REGION FOR HIGH-DELAY SCHEMES

A. HDA Scheme for Bandwidth Expansion
As shown in Fig. 3, this scheme comprises two layers,

a hybrid layer (lower part) outputs X

K

1 , and a purely dig-
ital layer (upper part) that outputs X

N�K

2 . The transmitted
sequence is obtained by multiplexing the output codeword
of both layers. In the purely digital layer, the K source
samples V

K are first encoded using a Wyner-Ziv encoder that
produces an index m. Then, the index is transmitted using
Costa coding that treats S

N�K

(S

N

= [S

K

, S

N�K

]) as an
interference. The output of this layer is denoted by X

N�K

2 .
The other (hybrid) layer consists of two sublayers as illustrated
in Fig. 3. The first sublayer has an average power P

a

and
outputs X

K

a

=

p
a(�1V

K

+ �2S
K

), where �1, �2 2 [�1 1],
and a = P

a

/(�1�
2
V

+ �

2
2�

2
S

+ 2�1�2⇢�V

�

S

) is a gain factor
related to power constraint P

a

. The second sublayer encodes
V

K using the HDA Costa coder [5], [8] with an average power
P

h

= P � P

a

, and treats S

0K
= S

K

+ X

K

a

as a known
interference. The auxiliary random variable of the HDA Costa
encoder is

U

K

= X

K

h

+ ↵

h

S

0K
+ 

h

V

K (16)
where X

h

is Gaussian (N (0, P

h

)), ↵
h

=

Ph

Ph+�

2
W

, and 

2
h

=

P

2
h

(Ph+�

2
W )DSI

, with DSI defined later. The HDA Costa encoder
forms a codebook U with codeword length K and 2

KRh

codewords (R
h

is defined later). Every codeword is generated
following the random variable U

K . The codebook is revealed
to both the encoder and decoder. The encoder searches for a
U

K 2 U such that (V K

, S

0K
, U

K

) are jointly typical.
At the receiver side, as shown in Fig. 4, from the first

K components of the received noisy sequence Y

N

=

[Y

K

1 , Y

N�K

2 ] = X

N

+ S

N

+ W

N we get a linear MMSE
estimate V

0K
a

that is used as a side information by the Wyner-
Ziv decoder to get a better estimate V

0K . This requires

Fig. 3. HDA encoder structure.

that R(DUpper) = (r � 1)C(P ), where the rate distortion
function of a Gaussian source is R(DUpper) =

1
2 log

⇣
D

⇤

DUpper

⌘
,

D

⇤
= E[||V K � V

0K
a

||2]/K, and C(P ) =

1
2 log

⇣
1 +

P

�

2
W

⌘
is

the capacity of the AWGN channel. Therefore, the distortion
in V

0K is
DUpper = D

⇤
✓
1 +

P

�

2
W

◆(1�r)

(17)

where D

⇤ is given by

D

⇤
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2
V
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p
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2
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2
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a�2 + 1)⇢�
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�
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)

2
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2
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p
a�2 + 1)�

2
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+ 2

p
a�1⇢�V

�

S

.

(18)
The HDA Costa decoder then searches for a U

K that is
jointly typical with the received sequence Y

K

1 and the side
information V

0K . After decoding U

K , an estimate ˆ

V

K from
Y

K

1 , UK , and the Wyner-Ziv codeword T

K is obtained. This
is done using a symbol-by-symbol linear MMSE estimator.
Hence the achievable distortion can be written as follows

D = inf

Pa,�1,�2

�
�

2
V

� �

T

⇤

�1
�

�
(19)

where ⇤ is the covariance matrix of [U Y1 T ], and � is the
correlation vector between V and [U Y1 T ]. Note that TK is
given by T

K

= ↵

wz

V

K

+ B

K , with ↵

wz

=

q
1� DUpper

D

⇤

and B ⇠ N (0, DUpper). In the above distortion analysis,
we assume that the encoding failure and decoding error
probability of the HDA Costa codeword U

K are arbitrarily
small. This requires that I(U ;S

0
, V ) < R

h

< I(U ;Y1, V
0
);

this condition is satisfied by choosing DSI in 

h

to be
DSI =

�

2
V

D

⇤ (�
2
V

� 1)(1� DUpper
D

⇤ ) +DUpper.

Fig. 4. HDA receiver structure. Note that KR1 denotes the linear MMSE
estimator.

Next, we study the distortion of the proposed scheme in the
presence of noise mismatch between the transmitter and the
receiver. The actual channel noise power �2

Wa
is assumed to be

lower than the design one �

2
W

(i.e., �2
Wa

< �

2
W

). Under such
assumption, HDA Costa and Wyner-Ziv decoders are still able
to find, with low probability of error, the codewords U

K and
T

K , respectively. After decoding U

K , TK , a linear MMSE



estimator of V

K based on Y

K

1 , UK , and T

K is calculated.
Hence the achievable distortion under noise mismatch is
Dmis = �

2
V

� �

T

⇤

�1
�, where �

2
W

is replaced by �

2
Wa

in
the covariance matrix ⇤. Note that all parameters (P

a

,�1,�2)

are found from (19).

B. Numerical Results
Fig. 5 shows the performance of the proposed HDA scheme

for 1:2 bandwidth expansion under matched noise level. We
can notice that the proposed scheme performs close to our best
derived SDR upper bound (based on (4)) and outperforms the
tandem digital Costa scheme. In contrast to the digital Costa
scheme, the performance of the HDA scheme increases with
the correlation coefficient ⇢. Moreover, the scheme is shown
to achieve the theoretical limit for ⇢ = 0 and 1. Next, we
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Fig. 5. Performance of 1:2 bandwidth expansion under matched noise level.
Digital Costa scheme and two upper bounds on SDR are plotted. The graph
is made for P=10, �2

S=1 and CSNR=10 dB.

design the system for CSNR=10 dB, while the actual CSNR
varies between 10 dB and 30 dB. As shown in Fig. 6, we can
notice that the proposed scheme is shown to be resilient under
noise mismatch.

VI. SUMMARY AND CONCLUSIONS
In this paper, we considered low/high-delay schemes for

reliably transmitting Gaussian sources over AWGN channels
with correlated interference under bandwidth expansion. For
the low-delay regime, a non-parametric approach based on
a joint optimization of the encoder and decoder was pre-
sented. Numerical results have shown that the non-parametric
approach outperforms the linear scheme. The performance
of a high-delay HDA scheme was analyzed under matched
and mismatched noise levels between transmitter and receiver.
Moreover, a lower bound on the system’s distortion was
derived for bandwidth expansion and the used correlation
model. Future work includes the analysis of our correlated
interference system under bandwidth compression.
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