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Abstract— For a memoryless Gaussian source under the
squared-error distortion fidelity criterion and a memoryless ad-
ditive Gaussian noise channel with a quadratic power constraint
at the channel input, upper and lower bounds for the joint
source-channel coding excess distortion exponent (which is the
exponent of the probability of excess distortion) are established.
A necessary and sufficient condition for which the two bounds
coincide is provided, thus exactly determining the exponent. This
condition is observed to hold for a wide range of source-channel
parameters.

I. INTRODUCTION

In [5], Csiszár studies the joint source-channel coding
(JSCC) excess distortion exponent under a fidelity criterion
for discrete memoryless systems – i.e., the largest rate of
asymptotic decay of the probability that the distortion resulting
from transmitting the source over the channel via a joint
source-channel (JSC) code exceeds a certain tolerated thresh-
old. Specifically, given a discrete memoryless source (DMS)
Q and a discrete memoryless channel (DMC) W (both with
finite alphabets), a transmission rate t and a distortion measure,
Csiszár shows that the lower (respectively upper) bound of
the JSCC excess distortion exponent EJ (Q, W, ∆, t) under a
distortion threshold ∆ is given by the minimum of the sum
of tF (R/t, Q, ∆) and Er(R, W ) (respectively Esp(R, W ))
over R, where F (R, Q, ∆) is the source excess distortion
exponent with distortion threshold ∆ [10], and Er(R, W ) and
Esp(R, W ) are respectively the random-coding and sphere-
packing channel error exponents [7]. If the minimum of the
lower (or upper) bound is attained for an R larger than the
critical rate of the channel, then the two bounds coincide
and EJ is determined exactly. The analytical computation of
these bounds has been partially addressed in [12], where the
authors use Fenchel duality [9] to provide equivalent bounds
for a binary DMS and an arbitrary DMC under the Hamming
distortion measure.

It is important to study the JSCC excess distortion exponent
for the transmission of a continuous alphabet source over a
channel with continuous input/output alphabets, since many
real-world communication systems deal with the compression
and transmission of analog signals. For instance, it is of
interest to determine the best performance (in terms of the
excess distortion probability) that a source-channel code can
achieve if a stationary memoryless Gaussian source (MGS)
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is coded and transmitted through a stationary memoryless
Gaussian channel (MGC), i.e., an additive white Gaussian
noise channel. To the best of our knowledge, the JSCC
excess distortion exponent for continuous-alphabet systems
has not been addressed before. For a general class of stationary
memoryless sources, the exponent of excess distortion was
recently obtained in [8], where the exponent is expressed in
Marton’s form [10] (in terms of a minimized Kullback-Leibler
divergence). The channel coding error probability exponent, on
the other hand, is not yet fully studied even for the Gaussian
channel with a quadratic power constraint. For a continuous
channel with a transition probability density, Gallager [7,
Chapter 7] derives a lower bound based on the random-coding
argument subject to a power constraint. He shows that his
lower bound, when specialized to the Gaussian channel, is
identical to Shannon’s classical sphere-packing upper bound
[11] for high rates. Some recent works significantly improve
Shannon’s upper bound (for the Gaussian channel) at low rates
(e.g., [3], [4]), but the determination of the error exponent
(for all rates below channel capacity) still remains an open
problem.

In this work, we study the JSCC exponent for a Gaus-
sian communication system consisting of an MGS PS with
the squared-error distortion and an MGC W with additive
noise PZ and the quadratic power input constraint. We show
that the JSCC excess distortion exponent EJ (PS , W, ∆, E , t)
with transmission rate t, under a distortion threshold ∆ and
power constraint E , is upper bounded by the minimum of
the sum of the Gaussian source excess distortion exponent
tF (R/t, PS, ∆) and the sphere-packing upper bound of the
Gaussian channel error exponent Esp(R, W, E); see Theo-
rem 2. The proof of the upper bound relies on a strong
converse JSCC theorem (Theorem 1) and the judicious con-
struction of an auxiliary MGS and an auxiliary MGC to lower
bound the probability of excess distortion. We also establish a
lower bound for EJ (PS , W, ∆, E , t); see Theorem 3. To prove
the lower bound, we employ a concatenated “quantization –
lossless JSCC” scheme as in [2], use the type covering lemma
[6] for the MGS [1], and then bound the probability of error for
the lossless JSCC part, which involves a memoryless source
with a countably infinite alphabet and the MGC, by using
a modified version of Gallager’s random-coding bound for
the JSCC error exponent for DMS-DMC pairs [7, Problem
5.16] (the modification is made to allow for input power con-



strained channels with countably-infinite input alphabets and
continuous output alphabets). This lower bound is expressed
by the maximum of the difference of Gallager’s Gaussian-
input channel function Ẽ0(W, E , ρ) and the MGS guessing
exponent tE(PS , ∆, ρ) introduced by Arikan and Merhav in
[1]. We next derive equivalent expressions (Theorem 4) for
our lower and upper bounds by applying Fenchel’s Duality
Theorem [9] and obtain an explicit condition (Theorem 5) for
which the two bounds coincide. Numerical results indicate that
the exponent is exactly determined for a large class of source-
channel conditions.

II. PRELIMINARIES

All logarithms and exponentials throughout this paper are
in natural base. E(X) denotes the expectation of the random
variable (RV) X .

A. MGS and MGC

We consider throughout this paper a communication system
consisting of an MGS with alphabet S = R and probability
density function (pdf) PS(s) = (1/

√
2πσ2

S) exp
{
− s2

2σ2
S

}
,

s ∈ S, denoted by PS ∼ N (0, σ2
S), and an MGC W with

common input, output, and additive noise alphabets X = Y =
Z = R and described by Yi = Xi + Zi, where Yi, Xi and Zi

are the channel’s output, input and noise symbols at time i.
We assume that Xi and Zi are independent from each other.
The transition pdf of the channel is given by

W (y|x) = PZ(z) =
1√

2πσ2
Z

e
− z2

2σ2
Z , z = y − x ∈ Z ,

denoted by PZ ∼ N (0, σ2
Z) for the noise distribution. We

assume the squared-error distortion measure for the source
given by d(s, s′) , (s − s′)2 for any s, s′ ∈ R and extended
in the usual way for k-tuples as d(k)(s, s′) , 1

k

∑k
i=1(si−s′i)

2

for any s , (s1, ..., sk) ∈ R
k and s′ , (s′1, ..., s

′
k) ∈ R

k. Given
a distortion threshold ∆ > 0, the rate-distortion function for
MGS PS is given by (e.g., [7])

R(PS , ∆) = inf
PS′|S :Ed(S,S′)≤∆

I(S; S′)

=

{
1
2 ln

σ2
S

∆ , 0 < ∆ < σ2
S ,

0, σ2
S ≤ ∆.

where I(S; S′) is the mutual information between the source
input and its representation. Given an input cost function g :
X → R

+ , [0,∞) and a constraint E > 0, the channel
capacity of MGC W is given by

C(W, E) , sup
PX :Eg(X)≤E

I(X ; Y ),

where I(X ; Y ) (also denoted by I(PX ; W )) is the mutual
information between the channel input and channel output.
Throughout this paper we assume that g(x) = x2. Under this
assumption, the above supremum is achieved by the Gaussian
distribution ([7]) and the channel capacity is equal to

C(W, E) =
1

2
ln (1 + SNR) ,

where SNR , E/σ2
Z is the signal-to-noise ratio.

B. JSCC Excess Distortion Exponent

A JSC code (fn, ϕn, ∆, E , t) with blocklength n and trans-
mission rate t (source symbols/channel use) for the MGS
PS with a squared-error distortion measure and a distortion
threshold ∆, and the MGC W with g(x) = x2 is a pair of
mappings: fn : Stn −→ Xn and ϕn : Yn −→ Stn, where fn

is subject to an (arithmetic average) power constraint: fn ∈
FE

n , where FE
n ,

{
fn : 1

n

∑n
i=1 x2

i ≤ E for all x = fn(s)
}

.
Here s , (s1, ..., stn) ∈ Stn is the transmitted source message
and x , fn(s) = (x1, x2, ..., xn) ∈ Xn is the corresponding
n-length codeword. The conditional pdf of receiving y ,

(y1, y2, ..., yn) ∈ Yn at the channel output given that the
message s is transmitted is given by

PY n|Xn(y|fn(s)) =

n∏

i=1

W (yi|xi) =

n∏

i=1

PZ(yi − xi).

The probability of failing to decode the code (fn, ϕn, ∆, E , t)
within a prescribed distortion level ∆ is called the probability
of excess distortion and defined by

P
(n)
∆ (PS , W, E , t)

,

∫

Stn

PStn(s)
∫

y:d(tn)(s,ϕn(y))>∆

PY n|Xn(y|fn(s))dyds.

Definition 1: The JSCC excess distortion exponent
EJ(PS , W, ∆, E , t) for the above MGS PS and MGC W
is defined as the largest number E for which there exists
a sequence of source-channel codes (fn, ϕn, ∆, E , t) with
blocklength n and transmission rate t such that

E ≤ lim inf
n→∞

−
1

n
ln P

(n)
∆ (PS , W, E , t).

III. UPPER AND LOWER BOUNDS FOR EJ

We first derive a strong converse JSCC theorem under
the probability of excess distortion criterion for the Gaussian
system.

Theorem 1: (Strong Converse JSCC Theorem) For an MGS
PS and an MGC W , if tR(PS , ∆) > C(W, E), then
limn→∞ P

(n)
∆ (PS , W, E , t) = 1 for any sequence of JSC codes

(fn, ϕn, ∆, E , t).
Note that the above theorem also holds for a slightly wider

class of MGCs with scaled inputs, described by Yi = bXi +
Zi (Xi and Zi are independent from each other), and with
transition pdf

W (y|x) = PZ(y − bx) =
1√

2πσ2
Z

e
− (y−bx)2

2σ2
Z ,

where b is a nonzero constant; we will apply this result to
prove the upper bound of EJ (PS , W, ∆, E , t). Meanwhile,
it directly follows from Theorem 1 that the JSCC excess
distortion exponent is 0 if the source rate-distortion function is
larger than the channel capacity, i.e., tR(PS , ∆) > C(W, E).



We thereby confine our attention to the case of tR(PS , ∆) <
C(W, E) in the following theorem.

Theorem 2: For an MGS PS and an MGC W such that
tR(PS , ∆) < C(W, E), the JSCC excess distortion exponent
satisfies

EJ (PS , W, ∆, E , t) ≤ EJ(PS , W, ∆, E , t), (1)

where

EJ(PS , W, ∆, E , t)

, min
tR(PS ,∆)≤R≤C(W,E)

[
tF

(
R

t
, PS , ∆

)
+ Esp(R, W, E)

]
,

in which

F (R, PS , ∆) ,





1
2

(
∆β
σS

2 − ln ∆β
σS

2 − 1
)

if R > R(PS , ∆) = 1
2 ln max{σS

2

∆ , 1},
0 otherwise

is the excess distortion exponent for an MGS PS [8] and

Esp(R, W, E)

,
SNR
4β

[
(β + 1) − (β − 1)

√
1 +

4β

SNR(β − 1)

]

+
1

2
ln

{
β −

SNR(β − 1)

2

[√
1 +

4β

SNR(β − 1)
− 1

]}

is the sphere-packing bound of the channel error exponent for
an MGC W ([7], [11]), where β , e2R.

Sketch of Proof: For any sufficiently small ε > 0, fix an
R ∈ [tR(PS , ∆) + ε, C(W, E)]. Define an auxiliary MGS for
this R with alphabet S = R and distribution P̃S ∼ N (0, σ̃2

S),
where σ̃2

S , ∆e2R/t, so that the rate-distortion function of P̃S

is given by R(P̃S , ∆) = R/t. Also, it can be easily verified
that the Kullback-Leibler divergence between the auxiliary
MGS P̃S and the original source PS is D(P̃S ‖ PS) =
F

(
R
t , PS , ∆

)
.

Next we define for R′ , R − ε an auxiliary MGC with
scaled inputs W̃ associated with the original MGC W with
the alphabets X = Y = R and transition pdf

P̃Y |X(y|x) ,
1√

2πσ̃2
Z

e
− (y+ax)2

2eσ2
Z

where the parameter a is uniquely determined by β ′ (β′ =
e2R′

) and SNR as follows

a ,
−SNR(β′ − 1) −

√
SNR2(β′ − 1)2 + 4SNRβ′

2SNRβ′
< 0,

and σ̃2
Z , a2E/(β′ − 1). It can be verified that the capacity

of the MGC W̃ is given by

C(W̃ , E) = sup
PX :Ex2≤E

I(PX ; W̃ ) =
1

2
ln

(
1 +

a2E

σ̃2
Z

)
= R′,

where the supremum is achieved by the Gaussian distribution,
and under the above choice of a and σ̃2

Z ,

sup
PX :EX2≤E

D(W̃ ‖ W |PX ) = Esp(R
′, W, E),

where the supremum is achieved by any distribution satisfying
EX2 = E . For some δ > 0, define the set

Â ,

{
(s, y) : ln

P̃Stn(s)P̃Y n|Xn(y|fn(s))
PStn(s)PY n|Xn(y|fn(s))

≤ n

(
tF

(
R

t
, PS , ∆

)
+ Esp(R

′, W, E) + δ

)}
.

Consequently, we can use Â to lower bound the proba-
bility of excess distortion of any sequence of JSC codes
(fn, ϕn, ∆, E , t),

P
(n)
∆ (PS , W, E , t)

≥

∫

{(s,y):d(tn)(s,ϕn(y))>∆)}∩ bA

PStn(s)PY n|Xn(y|fn(s))dsdy

≥ e−n(tF( R
t

,PS ,∆)+Esp(R′,W,E)+δ)
∫

{(s,y):d(tn)(s,ϕn(y))>∆)}∩ bA

P̃Stn(s)P̃Y n|Xn(y|fn(s))dsdy,

and the last integration can be decomposed as
∫

{(s,y):d(tn)(s,ϕn(y))>∆)}∩ bA

P̃Stn(s)P̃Y n|Xn(y|fn(s))dsdy

≥

∫

(s,y):d(tn)(s,ϕn(y))>∆)

P̃Stn(s)P̃Y n|Xn(y|fn(s))dsdy

−

∫

bAc

P̃Stn(s)P̃Y n|Xn(y|fn(s))dsdy

= P
(n)
∆ (P̃S , W̃ , t) − P

(
Âc

)
, (2)

where the probabilities are with respect to the joint distribution
P̃Stn(·)P̃Y n|Xn(·|·). Note that the first term in the right-hand
side of (2) is exactly the probability of excess distortion for
the joint source-channel system consisting of the auxiliary
MGS P̃S and the auxiliary MGC W̃ with transmission t, and,
according to our setting, with

tR(P̃S , ∆) = R > R′ = C(W̃ , E).

Thus, this quantity converges to 1 as n goes to infinity
according to the strong converse JSCC theorem. The proof
is then completed by justifying that P

(
Âc

)
→ 0 as n → 0.

�

Since the MGS excess distortion exponent tF (R/t, PS , ∆)
is convex increasing for R ≥ tR(PS , ∆) and the sphere-
packing bound Esp(R, W, E) is convex decreasing in R ≤
C(W, E), their sum is also convex and there exists a global
minimum in the interval [tR(PS , ∆), C(W, E)] for the upper
bound given in (1).

Theorem 3: For an MGS PS and an MGC W , the JSCC
excess distortion exponent satisfies

EJ (PS , W, ∆, E , t) ≥ EJ (PS , W, ∆, E , t), (3)



where

EJ(PS , W, ∆, E , t) , max
0≤ρ≤1

[Ẽo(W, E , ρ) − tE(PS , ∆, ρ)],

in which

Ẽo(W, E , ρ) , max
r≥0

{
r(1 + ρ)E +

1

2
ln(1 − 2rE)

+
ρ

2
ln

[
1 − 2rE +

E

(1 + ρ)σ2
Z

]}

is Gallager’s Gaussian-input channel function [7] and

E(PS , ∆, ρ) = sup
ePS∼N (0,eσ2

S
)

[ρR(P̃S , ∆) − D(P̃S ‖ PS)]

is the guessing exponent [1] of MGS PS .

Sketch of Proof: Fix t > 0. In the sequel we let k = tn and
assume that k (and hence n) is sufficiently large. We also let
o(k) and ζ(ε) stand for some terms such that o(k)/k → 0 as
n → ∞ and ζ(ε) → 0 as ε → 0. For a given ε > 0 small
enough, we partition the whole source space R

k by a sequence
of Gaussian type classes [1] Ti given by

T0 , {s : sT s ≤ kε}

and
Ti ,

{
s : (2i − 1)kε ≤ sT s ≤ (2i + 1)kε

}
,

for i = 1, 2, · · · . It can be shown that for all types i =
0, 1, 2, · · · , the probability of Ti under the Gaussian distri-
bution PS , denoted by PS(Ti), decays exponentially at the
rate of D(P

(i)
S ‖ PS) + ζ(ε) in k, where P

(i)
S is a zero-mean

Gaussian source with variance σ2(i), i.e., P
(i)
S ∼ N(0, σ2(i)),

and σ2(0) = ε and σ2(i) = 2iε for i ≥ 1. The type
covering lemma [1] is applicable for all these types, i.e., for
each type Ti there exists a code Ci ∈ R

k of size |Ci| ≤

exp{k[R(P
(i)
S , ∆) + ζ(ε)] + o(k)} that covers it (in the sense

that every sequence s ∈ Ti is contained, for some c ∈ Ci, in
the sphere B(c, ∆) ,

{
s : d(k)(s, c) ≤ ∆

}
for k sufficiently

large). We next employ a concatenated “quantization – lossless
JSCC” scheme [2], which is described as follows.

First Coding Stage: ∆-admissible Quantization.

For each type Ti (i = 0, 1, 2, · · · ), we set a rate-distortion
encoder γ

(i)
k : Ti → Ci to encode each source message s ∈

Ti into c , γ
(i)
k (s) such that d(k)(s, c) ≤ ∆, where Ci ∈

R
k is the codebook of γ

(i)
k (associated with the type Ti). As

mentioned before, the type-covering lemma asserts that there
exists such an encoder for each Ti with codebook size |Ci| ≤

exp{k[R(P
(i)
S , ∆) + ζ(ε)] + o(k)}. Since the entire Euclidean

space R
k is partitioned by these types {T0, T1, T2, · · · }, the

first stage encoder is regarded as a quantizer on R
k:f (1)

k :
R

k −→
⋃∞

i=0 Ci.

Second Coding Stage: Lossless JSCC with Power Constraint.

In the second stage, a lossless joint source-channel encoder
f

(2)
n :

⋃∞
i=0 Ci −→ Xn is applied on each output of the

quantizer c and we send the codeword x ∈ X n over the
channel. The second stage encoding f

(2)
n is subject to a

power constraint f
(2)
n ∈ FE

n , i.e., for each codeword x ∈ R
n

(recalling that X = R for the MGC), we have 1
n

∑n
j=1 x2

j ≤ E .
Lossless Joint Source-Channel Decoding.

At the channel output, we employ a lossless joint source-
channel decoder ϕn : Yn −→

⋃∞
i=0 Ci to each received

codeword y ∈ Yn and create an approximation ĉ = ϕn(y).

Probability of Excess Distortion.

Under the two-stage coding scheme, the probability of
excess distortion ∆ can be rewritten as

P
(n)
∆ (PS , W, E , t)

=

∞∑

i=0

∫

s∈Ti

PSk(s)
∫

y:d(k)(s,bc)>∆

PY n|Xn (y|fn(s)) dyds,

where fn here is the composition of f
(1)
k and f

(2)
n , denoted

by fn = f
(2)
n ◦ f

(1)
k . With the ∆-admissible quantization, the

event that the distortion between the source message s and the
reproduced sequence ĉ is larger than ∆ implies that ĉ 6= c.
Thus, the above probability can be upper bounded by

P
(n)
∆ (PS , W, E , t)

≤
∞∑

i=0

∫

s∈Ti

PSk (s)
∫

y:bc 6=c
PY n|Xn (y|fn(s)) dyds

=

∞∑

i=0

∑

c∈Ci

PSk(Ti)P
(i)

Sk (c)
︸ ︷︷ ︸

P (c)

∫

y:bc6=c
PY n|Xn (y| c) dy, (4)

where

P
(i)

Sk (c) ,
1

PSk (Ti)

∫

s∈∈Ti:γ
(i)
k

(s)=c
PSk (s)ds.

We note that (4) is exactly the lossless JSCC probability
of error for the system consisting of a memoryless source
with countable alphabet

⋃∞
i=0 Ci and distribution P (c) =

PSk(Ti)P
(i)

Sk (c) (the distribution of the output of the ∆-
admissible quantizer) and the MGC W with power con-
straint. Thus, there exists a sequence of lossless JSC codes(
f

(2)
n , ϕn, E

)
such that P

(n)
∆ (PS , W, ∆, E , t) is upper bounded

by a modified version of Gallager’s JSSC random-coding
bound [7, Problem 5.24] for the discrete source {P :

⋃∞
i=0 Ci}

and the MGC W . Using the type covering lemma for each type
Ti and the fact that PS(Ti) decays exponentially in k at rate
D(P

(i)
S ‖ PS)+ζ(ε), it can be shown that the excess distortion

exponent is lower bounded by EJ(PS , W, ∆, E , t). Thus, we
have demonstrated the existence of a sequence of concatenated
JSC codes

(
f

(2)
n ◦ f (1), ϕn, ∆, E , t

)
such that

P
(n)
∆ (PS , W, E , t) ≤ exp [−nEJ(PS , W, ∆, E , t) + o(n)] .

for n sufficiently large. �

It can be shown that the lower bound is positive if
tR(PS , ∆) < C(W, E); it is 0 otherwise. Since the lower
bound is expressed by a maximum of a function of ρ over
the closed interval [0, 1], the maximum and the maximizing ρ
can be numerically obtained.



IV. WHEN DOES EJ = EJ ?

The following theorem illustrates the relation between the
upper and lower bounds to EJ .

Theorem 4: Let tR(PS , ∆) < C(W, E). Then

min
tR(PS ,∆)≤R≤C(W,E)

[
tF

(
R

t
, PS , ∆

)
+ Esp(R, W, E)

]

= max
0≤ρ<∞

[Ẽ0(W, E , ρ) − tE(PS , ∆, ρ)], (5)

min
tR(PS ,∆)≤R≤C(W,E)

[
tF

(
R

t
, PS , ∆

)
+ E†(R, W, E)

]

= max
0≤ρ<1

[Ẽ0(W, E , ρ) − tE(PS , ∆, ρ)], (6)

where

E†(R, W, E) = max
0≤ρ≤1

[−ρR + Ẽo(W, E , ρ)]

=





Esp(R, W, E),
Rcr(W ) ≤ R ≤ C(W, E),

1 − β + SNR
2 + 1

2 ln
(
β − SNR

2

)
+ 1

2 ln β − R,

0 ≤ R ≤ Rcr(W ),

is convex strictly decreasing in 0 < R ≤ C(W, E) with a
straight-line section of slope −1 for R ≤ Rcr(W ), where

Rcr(W ) ,
1

2
ln


1

2
+

SNR
4

+
1

2

√

1 +
SNR2

4




is the critical rate of the MGC.
The proof follows from the Fenchel’s Duality Theorem and

a convexity argument as in [12]. Indeed we observe that the
upper bound, though proved in the form of a minimum of the
sum of source and channel exponents, can also be represented
as a (dual) maximum of the difference of Gallager’s channel
function and the source guessing exponent. Symmetrically,
the lower bound, which is established in Gallager’s form,
can also be represented in Csiszár’s form, as the minimum
of the sum of the source exponent and the lower bound of
the channel exponent. In this regard, our result is a natural
extension of Csiszár’s upper and lower bounds from the case
of (finite alphabet) discrete memoryless systems to the case of
memoryless Gaussian systems.

Setting STR , σ2
S/∆ to be the source-to-threshold ratio

(i.e., the source variance to distortion threshold ratio), then
the upper bound EJ(PS , W, ∆, E , t) and the lower bound
EJ(PS , W, ∆, E , t) are only functions of STR and SNR.
We then compare the upper and lower bounds using their
equivalent forms and derive an explicit necessary and sufficient
analytical condition for which the two bounds coincide.

Theorem 5: Let tR(PS , ∆) < C(W, E). The upper and
lower bounds for EJ(PS , W, ∆, E , t) given in Theorems 2 and
3 are equal iff

2(2STR)t −
2(2STR)t

2(2STR)t − 1
≥ SNR. (7)

Remark: For tR(PS , ∆) ≥ C(W, E), EJ (PS , W, ∆, E , t) = 0.

In Fig. 1 we plot the two bounds according to the formulas
given in Theorems 2 and 3 for different STR-SNR pairs and
transmission rate t = 1 (in the figure, the SNR and the STR
are expressed in dB). We note that the two bounds coincide
for a large class of (STR, SNR) pairs. For example, when
STR = 9 dB, the two bounds are observed to coincide for
SNR ≤ 14.88 dB, as predicted by (7).
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Fig. 1. The upper and lower bounds for EJ (PS , W,∆,E , t) with t = 1.
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