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Abstract—We consider the estimation of a Gaussian source by
a Gaussian sensor network where L distributed sensors transmit
noisy observations of the source through a fading Gaussian mul-
tiple access channel (MAC) to a fusion center (FC). Since sensor
power is usually limited, our goal is to characterize the optimal
tradeoff between the transmission cost, i.e., the power vector P =
(P1, P2, ..., PL), and the average estimation distortion, D. We
focus on asymmetric fading sensor networks in which the sensors
have differing signal to noise ratios and transmission powers. We
present necessary and sufficient conditions for the achievability of
(L + 1)−tuples (P1, P2, ..., PL , D). For a symmetric Gaussian
sensor network with deterministic and equal-magnitude fading,
we derive the optimal power-distortion tradeoff. We also provide
an achievable power-distortion region for the asymmetric sensor
network with deterministic fading by analyzing the transmission
of scaled versions of vector-quantized observations. We show that
some of the power-distortion tuples achievable by this scheme are
not achievable via an uncoded system.

I. INTRODUCTION
We consider the estimation of a memoryless Gaussian source

by a Gaussian sensor network where L sensors observe the
source signal X corrupted by additive independent noise. The
overall system is depicted in Fig. 1. The sensors communicate
information about their observations through a fading Gaussian
MAC to a single FC. The fading coefficients are not known
by the encoders but are available at the FC. The encoders
are distributed and cannot cooperate to exploit the correlation
between their inputs. Each encoder is subject to a transmission
cost constraint. The FC aims to reconstruct the main source,
X at the smallest cost in the communication link. Our interest
lies in determining the optimal power-distortion region, with the
fidelity of estimation at the FC measured by the mean squared-
error (MSE) distortion.
In the recent work of Gastpar [1], it is proved that uncoded

transmission is exactly optimal for symmetric Gaussian sensor
networks with a finite number of sensors and no fading.
By uncoded transmission we mean scaling the encoder in-
put subject to the channel power constraint and transmitting
without explicit channel coding. In the case of deterministic
fading, lower and upper bounds on the minimum distortion
are presented in [1], and for random fading, bounds are also
presented in [2]. The optimality of uncoded transmission in
some other multi-user communication systems was recently
shown in [3], [4]. For the sensor network we consider, a
joint source-channel coding (JSCC) approach similar to that
of [3] is presented in [5] where each sensor transmits directly
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Figure 1. A Gaussian sensor network with fading.

a scaled version of the encoder input. In particular, the authors
of [5] compare the minimum total power consumptions of three
transmission schemes: separate source and channel coding,
uncoded and JSCC. They demonstrate that the optimality of
the uncoded scheme in symmetric sensor networks does not
always carry over to asymmetric sensor networks. In [6], Bross
et al. study the optimality of sending a Gaussian source over an
average-power limited additive white Gaussian noise (AWGN)
channel by transmitting a linear combination of the source
sequence and its quantized version using a high dimensional
Gaussian vector quantizer. It is shown that the proposed scheme
is asymptotically optimal as the quantizer’s dimension tends
to infinity. However, at least three important issues remain
unknown: (i) What is the optimal power-distortion tradeoff
in an asymmetric Gaussian sensor network with deterministic
fading? (ii) What is the optimal coding strategy, in the sense
of achieving the optimal power-distortion tradeoff? (iii) In the
presence of random fading, what is the optimal power-distortion
tradeoff and what is the optimal transmission scheme?
In this work, we provide partial answers to the above ques-

tions by establishing a necessary condition for the achievability
of all transmission cost-distortion tuples (P1, P2, ..., PL, D)
in the asymmetric Gaussian sensor network with random
fading. We also analyze the uncoded transmission scheme
and provide a sufficient condition for the achievability of
(P1, P2, ..., PL, D). Finally, by analyzing the transmission of
vector-quantized sequences in an asymmetric sensor network
with deterministic fading [3], an achievable power-distortion
region is provided under deterministic fading. By examining
some asymmetric cases, we show that there are some points in
this achievable region that are not achievable by the uncoded
transmission scheme.
The remainder of this paper is organized as follows. In

Section II, we present the system model and problem state-
ment. Section III provides the necessary and sufficient con-
ditions for the achievability of the power-distortion tuples
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(P1, P2, ..., PL, D). Special cases of the system are also an-
alyzed. Conclusions are presented in Section IV.

II. PROBLEM STATEMENT
We consider a simple Gaussian sensor network, illustrated

in Fig. 1, where a team of L sensors observe independent
noisy versions of the memoryless Gaussian source {X(t)}∞t=1,
represented by the sequences {Yi(t)}∞t=1 for i = 1, 2, ..., L. For
each observation time t = 1, 2, 3, ...

Yi(t) = X(t) + Vi(t), i = 1, ..., L (1)
where X(t) ∼ N (0, σ2

X

)
are independent and identically

distributed (i.i.d.) over t, Vi(t) ∼ N (0, Ni), i = 1, ..., L are
independently distributed over i and t, and are independent of
X(t). Thus, the random variables Yi(t) for i = 1, ..., L are
conditionally independent given the source X(t). We represent
the first n instances of {X(t)}∞t=1 and {Yi(t)}∞t=1 by the
data sequences Xn = (X(1), X(2), ..., X(n)) and Y n

i =
(Yi(1), Yi(2), ..., Yi(n)), respectively. The correlated sources
Yi are not co-located and their observers cannot cooperate to
directly exploit their correlation. Instead, the sequences Y n

i

are separately encoded to ϕi (Y n
i ) = Un

i where the encoder
functions are defined as

ϕi : R
n → R

n, i = 1, 2, ..., L (2)
The transmitted sequences U n

i are each average-power limited
to Pi, i.e.,

1
n

n∑
t=1

E
[
|Ui(t)|2

]
≤ Pi , i = 1, 2, ..., L (3)

The sensors communicate the coded sequences to the decoder
through a multiple-access fading channel. In fact, each trans-
mitted signal is multiplied by a real-valued fading random
variable, bi, for i = 1, 2, ..., L which are not known by the
encoders but are available to the decoder. Equivalently, the
channel output consists of the pair (W n, bn) where bn denotes
(bn

1 , bn
2 , · · · , bn

L), and the distribution of bn is known at the
transmitter. The fading coefficients have non-zero mean and
are independent of each other, of the U i random variables and
of the channel noise Z . The time-t output of the channel is
given by

W (t) =
L∑

i=1

bi(t)Ui(t) + Z(t), (4)

where Z(t) ∼ N (0, σ2
Z

)
is i.i.d. over t and is independent

of Ui(t) and Vi(t). Based on the channel output W n ∈ R
n,

the FC makes an estimate of the main source X n as X̂n.
The measure of fidelity between X n and X̂n is the average
distortion criterion, i.e., Δ = 1

nE[
∑n

j=1 d(X(j), X̂(j))] where
d(X(j), X̂(j)) is the MSE distortion measure. The recon-
structed signal can be described by X̂n = ψ (Wn, bn), where
the decoder function is a mapping

ψ : R
n × R

nL → R
n. (5)

Let F (n) (P1, P2, ..., PL) denote all encoder and decoder func-
tions (ϕ1, ..., ϕL, ψ) that satisfy (2)-(5). For a particular coding
scheme (ϕ1, ..., ϕL, ψ), the performance is determined by the
cost vector P = (P1, P2, ..., PL) and the incurred distortion Δ.
For any target distortion D ≥ 0, the power-distortion region is
defined in [7] as

P(D) = {(P1, P2, ..., PL) | (P, D) is achievable} .

where power-distortion pair (P, D) is achievable if for any
δ > 0 and any n ≥ n0(δ) there exists a sequence of
(ϕ1, ..., ϕL, ψ) ∈ F (n) (P1, P2, ..., PL) such that Δ ≤ D + δ.
Our aim is to investigate the power-distortion region of this
fading Gaussian sensor network and present lower and upper
bounds on the minimum achievable distortion,Dmin, for a fixed
P.

III. INFORMATION-THEORETIC BOUNDS ON THE
POWER-DISTORTION TRADEOFF

We present necessary and sufficient conditions for the achiev-
ability of (P1, P2, ..., PL, D). Our necessary condition is based
on analyzing the remote source coding scenario, where the
sensor observations are given to one common encoder. Two suf-
ficient conditions are provided based on analyzing two coding
schemes: 1) uncoded transmission which is the transmission of
scaled versions of the sensors observations and 2) transmission
of scaled versions of vector-quantized observation sequences.
Both schemes are JSCC schemes in which the scaling factors
are used so that the required average transmission powers are
satisfied.

A. Necessary Condition

Theorem 1: A necessary condition for the achievability of
(P1, P2, ..., PL, D) is that

D ≥ Dl, (6)
where

Dl = D∗0

(
1 +

σ2
Xσ2

Z

∑L
i=1

1
Ni

σ2
Z + Ωr

)
, D∗0 =

(
1

σ2
X

+
L∑

i=1

1
Ni

)−1

,

Ωr =
L∑

i=1

PiE[|bi|2]

+2σ2
X

L∑
i=1

L∑
j>i

E [bi] E [bj]

√
PiPj

(σ2
X + Ni) (σ2

X + Nj)
, (7)

and the expectations are taken with respect to the distribution
of the fading random variables bi.

Proof: By considering a (P, D) achievable code
(ϕ1, ..., ϕL, ψ), this necessary condition follows from two
information-theoretic concepts: the data processing inequality
and remote source coding. By using the data processing in-
equality, the mutual information between the observation vector
and the vector of the source estimate, I(Y n

1 , Y n
2 , ..., Y n

L ; X̂n) =
I(Yn; X̂n), can be upper bounded by the mutual information
between the transmitted waveforms and the received waveform,
I(Un

1 , Un
2 , ..., Un

L ; Wn) = I(Un; Wn). Specifically, since the
decoder knows the fading coefficients, the channel output is
the pair (W n, bn), and thus

I(Un; (Wn, bn)) = I(Un; Wn | bn)
= Eb [I(Un; Wn | bn = bn)] . (8)

The conditional mutual information can be obtained as
1
nI(Un; Wn | bn = bn))

(a)
= 1

nh(Wn | bn = bn) − 1
nh(Zn),

(9)
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where (a) follows from the fact that U n
i (i = 1, ..., L) are

independent of Zn and h(·) denotes differential entropy. Let
b(k) denotes the L-tuple (b1(k), b2(k), · · · , bL(k)). We will
upper bound 1

nh(Wn | bn = bn) using the bound

Var (W (k) | b(k)) = Var

(
L∑

i=1

bi(k)Ui(k) + Z(k)

)
(c)

≤
⎧⎨⎩

L∑
i=1

|bi|2 σ2
i,k + 2

L∑
i=1

L∑
j>i

bibjρYi(k)Yj (k)

√
σ2

i,kσ2
j,k + σ2

Z

⎫⎬⎭
(10)

where Ui(k) is the k-th component of U n
i = ϕi (Y n

i ),
σ2

i,k = E[|Ui(k)|2] and ρ
XY

denotes the correlation coef-
ficient between X and Y . Inequality (c) follows from two
known results in the literature: 1) The maximum correlation
coefficient between any two finite-variance functions of two
jointly Gaussian random variables is equal to the correlation
coefficient between the original random variables [8]. 2) The
correlation coefficient between any two finite-variance func-
tions of the correlated data sequences (with i.i.d. elements)
cannot be greater than the maximum correlation coefficient
between any two elements of both sequences [9], [10]. From
(1), we have ρYiYj

= σ2
X�

(σ2
X+Ni)(σ2

X+Nj)
. Substituting this

correlation coefficient in (10) and using the power constraints
of (3) for the transmitted coded sequences U n

i , and also using
the Cauchy-Schwarz inequality, we obtain

1
n

n∑
k=1

Var (W (k) | b(k)) ≤ Ωr|b + σ2
Z ,

where

Ωr|b = 2σ2
X

L∑
i=1

L∑
j>i

bibj

√
PiPj

(σ2
X + Ni) (σ2

X + Nj)
+

L∑
i=1

Pi |bi|2 .

(11)
Since i.i.d. random variables with normal distribution max-
imize the differential entropy subject to the sum of
the variances [11], we obtain that 1

nh(Wn | bn =
bn) ≤ 1

2 log
{
2πe
(
Ωr|b + σ2

Z

)}
. Thus, (9) yields the bound

1
nI(Un; Wn | bn = bn) ≤ 1

2 log2

(
1 + Ωr|b

σ2
Z

)
, and then using

(8), we obtain
1
n

I(Un; (Wn, bn)) = Eb

[
1
2

log2

(
1 +

Ωr|b
σ2

Z

)]
. (12)

By Jensen’s inequality [11], (12) is upper bounded by
1
2 log2

(
1 +

Eb[Ωr|b]
σ2

Z

)
. Using the data processing inequality,

1
n

I(Yn; X̂n) ≤ 1
2

log2

(
1 +

Ωr

σ2
Z

)
, (13)

where Ωr = Eb

[
Ωr|b

]
which is given in (7) using the fact that

the bi are independent.
On the other hand, a lower bound on 1

nI(Yn; X̂n) can be
obtained by considering the “remote source coding problem”
introduced in [12], where the sensors are allowed to collaborate,
i.e., the L-tuple Y = (Y1, ..., YL) is observed by one common
encoder. For any coding system that attains an average distor-
tion D, applying the converse of the rate-distortion theorem
yields that 1

nI(Yn; X̂n) ≥ min 1
nI(Yn; X̂n) where the mini-

mum is over all conditional distributions p(x̂ | y1, ..., yL) sat-
isfying E[(X − X̂)2] ≤ D. We can calculate min 1

nI(Yn; X̂n)
[13], [14] and obtain the following rate-distortion function:

Rrem
X (D) =

1
2

log2

(
σ2

X

D

∑L
i=1

1
Ni

1
D∗

0
− 1

D

)
, D∗0 < D < σ2

X .

Combining this lower bound on 1
nI(Yn; X̂n) with the upper

bound of (13) (which is the capacity of the AWGN channel
with a power constraint of Ωr) yields the following result:

Rrem
X (D) ≤ 1

n
I(Yn; X̂n) ≤ 1

n
I(Un; Wn) ≤ 1

2
log2

(
1 +

Ωr

σ2
Z

)
.

Therefore, using any transmission scheme, the incurred dis-
tortion must satisfy (6). As a result, the LHS of (6) provides
a lower bound for the minimum achievable distortion, i.e.,
Dmin. Comparing our general lower bound for the estimation
distortion with the bound presented in [2], we can show in the
following that our bound is tighter. The lower bound presented
in [2], which is for the case where the sensors observations have
the same noise level N1 = · · · = NL = N , can be expressed
as

Dlower(L, Ptot) = D∗0

(
1 +

σ2
Xσ2

Z
L
N

σ2
Z + Ptot

∑L
i=1 E[|bi|2]

)
,

(14)
where it is assumed that there is a total power
constraint in the communication channel, i.e.,
1
n

∑n
t=1

∑L
i=1 E[|Ui(t)|2] ≤ Ptot, and Ptot denotes the

average total sensor power available per observation
vector (U1, U2, ..., UL). Let us denote σ2

1 = σ2
Z +∑L

i=1 PiE[|bi|2] + 2 σ2
X

σ2
X+N

∑L
i=1

∑L
j>i E [bi] E [bj ]

√
PiPj

and σ2
2 = σ2

Z + Ptot

∑L
i=1 E[|bi|2]. By comparing (6) and

(14), we observe that the only difference is in the denominator,
i.e., our lower bound is in the form D l = D∗0

(
1 + σ2

Xσ2
Z

L
N

σ2
1

)
and Dlower(L, Ptot) = D∗0

(
1 + σ2

Xσ2
Z

L
N

σ2
2

)
. We can show that

the maximum of the denominator in (6), i.e., σ 2
1 , is strictly

less than the denominator in (14), σ2
2 , and therefore it is a

tighter lower bound. Specifically, for a given total power, σ 2
1

is maximized when P1 = P2 = · · · = PL = Ptot

L . Thus, the
maximum of σ2

1 can be expressed as

σ2
Z +

Ptot

L

L∑
i=1

E[|bi|2] + Ptot(L − 1)
σ2

X

σ2
X + N

b
2
,

where E[bi] = b. It can be shown that σ2
2 − σ2

1 is equal to

Ptot

(
1 − 1

L

)
σ2

X + N

(
N

L∑
i=1

E[|bi|2] + σ2
X

L∑
i=1

Var(bi)

)
,

which is strictly greater than zero. Therefore, our lower bound
in (6) on Dmin is tighter than (14); the improvement is mainly
due to the maximization of the correlation coefficients as
explained in the discussion following (10).

Examples:

We assume that E[|b1|2] = E[|b2|2] = 4, E[b1] = E[b2] = 1.
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Figure 2. The estimation distortion v.s. the transmission power, P1 = P2 =
P . We assume that N1 = N2 = 10, σ2

X = 100 and σ2
Z = 10.
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Figure 3. The estimation distortion v.s. the value of γ = N2 − N1. We
assume that P1 = P2 = 20, N1 = 10, σ2

X = 100 and σ2
Z = 15.

• We consider a symmetric sensor network consisting of
two sensors and evaluate the resulting lower bounds nu-
merically. The estimation distortion bound is plotted as a
function of the power level P1 = P2 = P in Fig. 2. We
observe that the distortion is a decreasing function of P
and that our lower bound is tighter than the lower bound
presented in [2].

• We next consider an asymmetric sensor network. We
assume that N2 = N1 + γ and P1 = P2 = 20, and plot
the estimation distortion bounds as a function of γ in Fig.
3. There is almost a fixed gap between our lower bound
and the lower bound presented in [2].

B. Sufficient Condition: Uncoded Transmission

By analyzing the uncoded transmission in Gaussian sensor
network, we next present a sufficient condition for the achiev-
ability of (P1, P2, ..., PL, D). In this approach, each sensor
transmits the scaled version of its observation, scaled to its
power constraint, i.e., Ui(t) =

√
Pi

σ2
X+Ni

Yi(t). The received
signal at the FC is then given by

W (t) =
L∑

i=1

{√
Pi

σ2
X + Ni

bi(t) (X(t) + Vi(t))

}
+ Z(t).

Since the encoding is memoryless, the optimal estimator is the
minimum mean squared error (MMSE) estimator of X(t) from
the received signal W (t) . By evaluating the resulting MSE
distortion, we obtain a sufficient condition for the achievability
of (P1, P2, ..., PL, D), which is summarized in the next lemma.

Lemma 1: For the (L + 1)-tuple (P1, P2, ..., PL, D) to be
achievable it suffices that D ≥ Duncoded where

Duncoded = σ2
XE

⎛⎝σ2
Z +

∑L
i=1

PiNi|bi|2
σ2

X+Ni

σ2
Z + Ωr|b

⎞⎠ , (15)

Ωr|b is given in (11) and the expectation is with respect to
fading random variables, bi.
Since Duncoded in (15) is the achievable distortion by uncoded
transmission, it is an upper bound on Dmin; thus Dmin ≤
Duncoded.
Using some algebraic manipulations, it is not hard to show

that if Var (bi) = 0, the lower bound in (6) and the upper
bound in (15) agree. This means that we can obtain the optimal
performance if the fading coefficients stay constant over the
duration of transmission. This may apply to situations where
the network conditions change very slowly. We next investigate
the Gaussian sensor network with such deterministic channel
gains.

C. Deterministic Fading System

Assume that the fading coefficients bi are fixed known
constants. Our lower and upper bounds can be expressed as
follows:

Dmin ≥ Dl = D∗0

(
1 +

σ2
Xσ2

Z

∑L
i=1

1
Ni

σ2
Z + Ωr

)
, (16)

Dmin ≤ Duncoded =
(

σ2
X

σ2
Z + Ωr

)(
σ2

Z +
L∑

i=1

PiNi |bi|2
σ2

X + Ni

)
,

(17)
where Ωr =

∑L
i=1

PiNi|bi|2
σ2

X+Ni
+
(∑L

i=1 bi

√
Piσ2

X

σ2
X+Ni

)2

. In the
symmetric case, where N1 = N2 = · · · = NL = N and
P1 = P2 = · · · = PL = P , the lower bound (16) and the upper
bound (17) coincide if b1 = b2 = · · · = bL = b. Hence, we
obtain the “optimal performance theoretically achievable” for
the symmetric Gaussian sensor network under deterministic and
identical fading. This is the same result as recently established
by Gastpar in [1] where b1 = b2 = · · · = bL = 1.

D. Sufficient Condition with Deterministic Fading: Transmis-
sion of Vector-Quantized Observation Sequences

Another sufficient condition can be obtained by studying a
JSCC scheme for the system with deterministic fading where
the encoding functions are independent vector quantizers [3],
[5]. We herein assume that L = 2 for the sake of simplicity.

Theorem 2: The triple (P1, P2, D) is achievable if there exist
rates R1 > 0 and R2 > 0 such that the following conditions
hold:

R1 ≤ 1
2 log2

(
P1|b1|2(1−�ρ2)+σ2

Z

σ2
Z (1−�ρ2)

)
R2 ≤ 1

2 log2

(
P2|b2|2(1−�ρ2)+σ2

Z

σ2
Z (1−�ρ2)

)
R1 + R2 ≤ 1

2 log2

(
P1|b1|2+P2|b2|2+2�ρb1b2

√
P1P2+σ2

Z

σ2
Z (1−�ρ2)

)
D ≥ D

′
1D

′
2

σ2
X (1−�ρ2)

(18)
where
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Figure 4. The estimation distortion versus the transmission power of the
second sensor. We assume that P1 = 1, b1 = 10, b2 = 1, N1 = 0.1, N2 =
50, σ2

X = 100, and σ2
Z = 10.

ρ̃ = σ2
X

√
(1 − 2−2R1) (1 − 2−2R2)
(σ2

X + N1) (σ2
X + N2)

, (19)

and

D
′
i =

σ2
X

σ2
X + Ni

(
Ni + σ2

X2−2Ri
)
, i = 1, 2. (20)

We only give a sketch of the proof, which is based on a scheme
analyzed in [3]. The ith encoder is a rate-Ri Gaussian vector
quantizer with 2nRi codewords that lie on the sphere of ap-
proximate radius

√
n (σ2

X + Ni) (1 − 2−2Ri). Encoder i uses
nearest neighbor encoding and scales the resulting vector U ∗

i so
that the power constraint Pi is satisfied. It is shown in [3] that
the decoder can recover the pair (U∗1, U∗2) with asymptotically
vanishing error probability by using typicality decoding if R 1

and R2 satisfy the conditions in (18). As a second step in
reconstruction, the optimal linear estimator X̂ = β1U∗1+β2U∗2 is
formed. It is only a matter of some calculations to show that the
resulting distortion can be arbitrarily close to D

′
1D

′
2

σ2
X (1−�ρ2)

where
ρ̃ and D

′
i are given in (19) and (20), respectively.

Remark 1: It is possible to show that power-distortion region
of Theorem 2 contains points that are not achievable by the
uncoded scheme. For example, consider a Gaussian sensor net-
work with the parameters σ2

X = 10, σ2
Z = 1, N1 = 8, N2 = 1.

The power-distortion triple (P1, P2, D) = (20, 1, 3.188) is
achievable by VQ-based JSCC. However, for these P1 and P2,
the best distortion that can be achieved by the uncoded scheme
is 3.519. As another example, consider an asymmetric sensor
network with fixed transmission power P1 = 1 for the first
sensor. The estimation distortion bounds are plotted against P2

in Fig. 4. We observe that for small values of P2, uncoded
transmission performs better than VQ-based transmission. In
fact, since P1 is fixed to 1, it is expected that uncoded scheme
performs optimally in the symmetric case, where P1 = P2, and
near optimally where P2−P1 is small. But for larger values of
P2, the VQ-based scheme achieves a lower estimation distortion
at the decoder.
Consequently, uncoded transmission is not optimal for large
values of P2. Since uncoded transmission is optimal in the
symmetric network, we conjecture that the transmission of a
linear combination of coded and uncoded sequences [6] is a
close-to-optimal strategy in the asymmetric sensor network.

IV. CONCLUSIONS
In this paper, we considered distributed sensor networks,

where L noisy observations of a memoryless Gaussian source
are transmitted through a fading MAC to a decoder. The
decoder wants to reconstruct the main source with an average
distortion D at the smallest possible power consumption in
the communication link. Our goal was to characterize the
power-distortion region achievable by any coding strategy re-
gardless of delay and complexity. We obtained a necessary
condition for achievability of a given power-distortion tuple
(P1, P2, ..., PL, D). Also, by analyzing the uncoded transmis-
sion scheme we provided a sufficient condition for achiev-
ability of (P1, P2, ..., PL, D). When specialized to the sym-
metric network with identical deterministic fading, we derived
the optimal power-distortion tradeoff. We also provided an
achievable power distortion region for the asymmetric network
with deterministic fading by analyzing transmission of scaled
versions of vector-quantized observations.
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