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Abstract—We consider a public multi-user information embed-
ding (watermarking) system in which two messages (watermarks)
are independently embedded into two correlated covertexts and
are transmitted through a multiple-access attack channel. The
tradeoff between the achievable embedding rates and the average
distortions for the two embedders is studied. For given distortion
levels, inner and outer bounds for the embedding capacity region
are obtained in single-letter form. Tighter bounds are also given
for independent covertexts.

I. INTRODUCTION
In the last decade, the single-user (point-to-point)

information-hiding (information-embedding, watermarking)
model has been thoroughly studied from an information-
theoretic point of view; see [11], [1], [7] and the references
therein. With the rapid development of wired and wireless
communication networks, situations arise where privacy pro-
tection is no longer a point-to-point problem. Therefore, it is
of interest to study information-hiding problems in multi-user
settings.
In this paper, we consider the scenario in which two secret

messages (watermarks) are independently embedded in two
correlated sources (covertexts) and are then jointly decoded
under multiple-access attacks. This scenario is motivated by,
for example, the practical situation where audio and video
frames are watermarked separately, but they are transmitted
in a single bit stream and decoded by one multimedia player
(cf. [9]). The model is depicted in Fig. 1. Assume that two
users separately embed their watermarks W1 and W2 into
two correlated discrete memoryless sources (DMSs), U1 and
U2. Each user can only access one of the two covertexts.
The watermarked messages (stegotexts) Xn

1 and Xn
2 are then

sent through a multiple-access attack channel (MAAC) to a
decoder which attempts to reconstruct the watermarks. For
the two-user information embedding system, we are interested
in determining the embedding capacity region, i.e., the two-
dimensional set of all achievable embedding rate pairs under
constraints on the embedding distortions.
Our first result is an inner bound for the embedding

capacity region (Theorem 1). The proof is based on the
approach of Gelfand and Pinsker [3] and a strong typicality
coding/decoding argument. The encoders first map the wa-
termarks W1 and W2 and the correlated covertexts Un

1 and

∗This work was supported in part by NSERC of Canada.

Un
2 to auxiliary codewords T n

1 and T n
2 , and then generate

two stegotexts Xn
1 and Xn

2 which are jointly typical with
(Un

1 , Un
2 , T n

1 , T n
2 ). The decoder recovers the watermarks by

examining the joint typicality of the received sequence Y n

and all auxiliary codeword pairs (T n
1 , T n

2 ).
One major technical difficulty is the problem of how to

separately construct the typical sequence encoders. In order to
guarantee that the codewords together with the covertexts are
jointly typical with a high probability, we adopt a “Markov”
encoding scheme from [8], which was originally proposed for
Gaussian multi-terminal source coding (see also [10] and [4]).
The Markov encoders can be briefly described as follows.
One of the encoders (embedders), say Encoder 1, first forms
an estimate of the source sequence of the other encoder, and
then generates T n

1 which is jointly typical with the observed
source sequence Un

1 and the estimated source sequence. The
other encoder, Encoder 2, first forms an estimate of the source
sequence as well as the auxiliary codeword of Encoder 1, and
then generates T n

2 which is jointly typical with the source
sequence Un

2 and all the other sequences estimated. For the
resulting scheme, an extended Markov lemma (Lemma 3)
ensures that the auxiliary codewords T n

1 and T n
2 , although

generated by separate encoders, are jointly typical with the
source sequences with a high probability.
We also derive an outer bound for the embedding capacity

region with single-letter characterization (Theorem 2), us-
ing Fano’s inequality and a standard information-theoretical
bounding argument. We next study the embedding capacity
region when the two covertexts are independent of each other,
and obtain inner and outer bounds for this case (Theorem 3).
The inner bound is a consequence of Theorem 1, while in the
converse part we sharpen the bound of Theorem 2 by making
use of the independence condition.
We must point out that the multi-user information embed-

ding problem studied in this paper is related to the works [9]
and [6]. In [9], the authors present an achievable embedding
region for correlated Gaussian covertexts and parallel (inde-
pendent) additive Gaussian attack channels (as opposed to the
MAAC considered here). In a recent work [6], the authors
study the same system as ours and give an inner bound for the
capacity region without a proof, stating that this inner bound
can be easily proved via the coding procedure in [9]. However,
the proof in [9] seems to be incorrect because the encoders
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cannot guarantee the typicality of the output sequences with
respect to the covertext sequences. Our code construction
corrects this problem and in Theorem 1 we show that the main
result in [9] (the achievable region) and the inner bound given
in [6] are both correct; see Remark 3. We also point out that a
similar setup concerning a multi-user reversible information
embedding system was considered in [5] and [6] for two
covertexts and a MAAC. Since in the reversible information
embedding problem the secret messages and the covertexts
are both reconstructed at the decoder, Gelfand and Pinsker
coding is not required and the coding strategy is fundamentally
different from ours.

II. PROBLEM FORMULATION AND RESULTS

Let |X | denote the size of a finite set X . If X is a
random variable (RV) with distribution PX , we denote its
n-dimensional product distribution by P

(n)
X . Similar notation

applies to joint and conditional distributions. For RVs X , Y ,
and Z with joint distribution PXY Z , we use PX , PXY , PY Z|X ,
etc., to denote the corresponding marginal and conditional
probabilities induced by PXY Z . The expectation of the RV X
is denoted by E(X). All alphabets are finite, and all logarithms
and exponentials are in base 2.

Un

2

Un

1

�

� Encoder f(n)
1

Encoder f(n)
2

�

�

W2

W1

� Destination

� Destination

�

�

Xn

1

Xn

2

MAAC
WY |X1X2

�Y n Joint
Decoder
ψ(n)

�(cW1,cW2)

Fig. 1. A multi-user information embedding system with two embedders.

Let U1 and U2 be two discrete memoryless covertexts with
alphabets U1 and U2 and joint distribution QU1U2 . The water-
marks W1 and W2 are independently and uniformly chosen
from the sets W1 � {1, 2, ..., M1} and W2 � {1, 2, ..., M2},
respectively. The attack channel is modeled as a two-sender
one-receiver discrete memoryless MAAC WY |X1X2

having
input alphabets X1 and X2, output alphabet Y , and transition
probability distribution WY |X1X2

(y|x1, x2). The probability
of receiving y ∈ Yn conditioned on sending x1 ∈ Xn

1 and
x2 ∈ Xn

2 is hence given by W
(n)
Y |X1X2

(y|x1, x2).
Let di : Ui × Xi → [0,∞) be single-letter distortion

measures and define dmax
i � max

ui,xi

di(ui, xi) for i = 1, 2. For
ui ∈ Un

i and xi ∈ Xn
i , let di(ui, xi) =

∑n
j=1 di(uij , xij).

A two-sender one-receiver multiple-access embedding
(MAE) code (f

(n)
1 , f

(n)
2 , ψ(n)) with block length n consists of

(see Fig. 1) two encoders (embedders) f (n)
1 : W1×Un

1 −→ Xn
1

and f
(n)
2 : W2 × Un

2 −→ Xn
2 with embedding rates Rf1 =

1
n

log2 M1 and Rf2 = 1
n

log2 M2, respectively, and a decoder
ψ(n) : Yn −→ W1 ×W2.

The system depicts a “public” embedding scenario since the
covertexts are not available at the decoder. The probability of
erroneously decoding the secret messages is given by

P (n)
e = P (n)

e (f
(n)
1 , f

(n)
2 , ψ(n))

� Pr
(
ψ(n)(Y n) �= (W1, W2)

)
.

Definition 1: Given QU1U2 , WY |X1X2
, a rate pair (R1, R2)

is said to be achievable with respect to distortion lev-
els (D1, D2) if there exists a sequence of MAE codes
(f

(n)
1 , f

(n)
2 , ψ(n)) at embedding rates no smaller than R1

and R2, respectively, such that limn→∞ P
(n)
e = 0 and

lim supn→∞
1
n

E

[
di(U

n
i , f

(n)
i (Wi, U

n
i ))

]
≤ Di, i = 1, 2.

Definition 2: The embedding capacity regionR(D1, D2) is
the closure of the set of all achievable rate pairs (R1, R2).
Remark 1: It can be shown by using a time-sharing argu-

ment [2] that R(D1, D2) is convex.
Definition 3: Given QU1U2 , WY |X1X2

, and a pair of dis-
tortion levels (D1, D2), let SD1,D2 be the set of RVs
(U1, T1, U2, T2, X1, X2, Y ) ∈ U1×T1×U2×T2×X1×X2×Y
for some finite alphabets T1 and T2 such that the joint dis-
tribution PU1T1U2T2X1X2Y satisfies: (1) PU1T1U2T2X1X2Y =
QU1U2PT1X1|U1

PT2X2|U2
WY |X1X2

, (2) I(Ui; Ti) > 0, and (3)
E[di(Ui, Xi)] ≤ Di, for i = 1, 2.

Definition 4: Given QU1U2 , WY |X1X2
, and a pair of dis-

tortion levels (D1, D2), let PD1,D2 be the set of RVs
(U1, T1, U2, T2, X1, X2, Y ) ∈ U1×T1×U2×T2×X1×X2×Y
for some finite alphabets T1 and T2 such that the joint dis-
tribution PU1T1U2T2X1X2Y satisfies: (1) PU1T1U2T2X1X2Y =
QU1U2PT1T2X1X2|U1U2

WY |X1X2
, and (2) E[di(Ui, Xi)] ≤ Di,

for i = 1, 2.

By definition, SD1,D2 ⊆ PD1,D2 . The following are the
main results of the paper.
Theorem 1: Let Rin(D1, D2) be the closure of the convex

hull of all (R1, R2) satisfying

R1 < I(T1; T2, Y ) − I(U1; T1), (1)
R2 < I(T2; T1, Y ) − I(U2; T2), (2)

R1 + R2 < I(T1, T2; Y ) − I(U1, U2; T1, T2), (3)

for some (U1, T1, U2, T2, X1, X2, Y ) ∈ SD1,D2 . Then
Rin(D1, D2) ⊆ R(D1, D2).
Remark 2: The cardinality of the alphabets of the auxiliary

RVs T1 and T2 for Rin(D1, D2) can be bounded as |Ti| ≤
|U1||U2||Xi| + 1, i = 1, 2.
Remark 3: Although we only deal with discrete (finite-

alphabet) sources and channels, it is not hard to see that, with
the appropriate changes in the proof, the achievable region is
also valid for a system that incorporates a pair of correlated
memoryless Gaussian sources and a Gaussian MAAC. In
particular, when the MAAC is a pair of parallel (independent)
additive Gaussian channels, R̂in(D1, D2) is the achievable
region obtained in [9], even though the proof provided in
[9] is not entirely correct. Note also that our inner bound

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

226



Rin(D1, D2) is the same as the one given without proof in
[6, Proposition 1].
Theorem 2: Let Rout(D1, D2) be the closure of all the

set of (R1, R2) satisfying conditions (1)–(3) for some
(U1, T1, U2, T2, X1, X2, Y ) ∈ PD1,D2 . Then R(D1, D2) ⊆
Rout(D1 + δ, D2 + δ) for all δ > 0.
Remark 4: The above theorem, which can be proved using

a standard Fano’s inequality based argument (as in [3], [11]),
states that R(D1, D2) ⊆

⋂
δ>0 Rout(D1 + δ, D2 + δ). If we

could upper bound the cardinality of the alphabet sizes of the
auxiliary RVs T1 and T2 in the definition of Rout(D1, D2),
it would be easy to show that

⋂
δ>0 Rout(D1 + δ, D2 +

δ) = Rout(D1, D2), so that R(D1, D2) ⊆ Rout(D1, D2).
However, without such an upper bound, we can only state the
theorem in the present weaker form. The same remark applies
to the outer bound in the next theorem.
We next consider the special case when the covertexts

are independent, i.e., QU1U2 = QU1QU2 . We then have the
following inner and outer bounds.
Theorem 3: Let QU1U2 = QU1QU2 . Let R∗

in(D1, D2) be
the closure of the convex hull of all (R1, R2) satisfying

R1 < I(T1; Y |T2) − I(U1; T1) (4)
R2 < I(T2; Y |T1) − I(U2; T2) (5)

R1 + R2 < I(T1, T2; Y ) − I(U1; T1) − I(U2; T2) (6)

for some (U1, T1, U2, T2, X1, X2, Y ) ∈ SD1,D2 , and let
R∗

out(D1, D2) be the closure of all (R1, R2) satisfying (4)–(6)
for some (U1, T1, U2, T2, X1, X2, Y ) ∈ PD1,D2 . Then

R∗
in(D1, D2) ⊆ R(D1, D2) ⊆ R∗

out(D1 + δ, D2 + δ)

for all δ > 0.
Remark 5: The cardinality of the alphabets of the auxiliary

RVs T1 and T2 for R∗
in(D1, D2) can be bounded as |Ti| ≤

|Ui||Xi| + 1, i = 1, 2.
Remark 6: In the simple case of independent covertexts

QU1U2 = QU1QU2 and parallel MAAC WY |X1X2
=

WY1|X1
WY2|X2

(where Y = Y2 × Y2), the inner and outer
bounds of Theorem 3 coincide and reduce to the capacity
formula of two parallel single-user watermarking systems [7],
[11].

III. PROOF OF THEOREM 1
We first recall some notation and facts regarding strongly

ε-typicality.
Let V � (X1, X2, ..., Xm) be a superletter (a collection of

RVs) taking values in a finite set V � X1×X2×· · ·×Xm and
having joint distribution PV (x1, ..., xm), which for simplicity
we also denote by PV (v). Denote by T

(n)
ε (V ) or T

(n)
ε the

set of all strongly ε-typical sequences [2, p. 326] with respect
to the joint distribution PV (v). Let IV � {1, 2, ..., m}, and
IG ⊆ IV . We then let G = (Xg1 , Xg2 , ..., Xg|IG|

) ∈ G
be a “sub-superletter” corresponding to IG such that gi ∈
IG. Let G, K , and L be sub-superletters of V such that
IG, IK , IL are disjoint, and let PG, PK and PG|K be
the marginal and conditional distributions induced by PV ,

respectively. Denote by T
(n)
ε (G) the projection of T

(n)
ε (V ) to

the coordinates of G. Given any k ∈ Kn, denote T
(n)
ε (G|k) �{

(Gn, k) ∈ T
(n)
ε (G, K)

}
. Clearly T

(n)
ε (G|k) = ∅ if k /∈

T
(n)
ε (K). The following lemma (see, e.g., [2, pp. 342–343])
restates the well known exponential bounds for the cardinality
of strongly typical sets. In the lemma η = η(ε, n) is a generic
positive term such that limε→0 limn→∞ η(ε, n) = 0.
Lemma 1: [2]
i) 2n(H(K)−η) ≤

∣∣∣T (n)
ε (K)

∣∣∣ ≤ 2n(H(K)+η).

ii) For any k ∈ T
(n)

ε (K), 2n(H(G|K)−η) ≤
∣∣∣T (n)

ε (G|k)
∣∣∣ ≤

2n(H(G|K)+η).
Finally, we recall the Markov lemma for joint strong ε-

typicality.
Lemma 2: (Markov Lemma [2, p. 579]) Let G → K → L

form a Markov chain in this order. For any 0 < ε0 < 1 and
(g, k) ∈ T

(n)
ε (G, K),

P
(n)
L|K

(
(g, k, Ln) ∈ T (n)

ε (G, K, L)
∣∣∣ k) > 1 − ε0

for n sufficiently large, independently of (g, k).

A. Outline of Proof

We need to show that for given QU1U2 , WY |X1X2
, and any

(R1, R2) ∈ Rin(D1, D2), there exists a sequence of codes
(f

(n)
1 , f

(n)
2 , ψ(n)) such that P

(n)
e → 0 as n → ∞ and for any

δ > 0, 1
n

E[di(U
n
i , f

(n)
i (Wi, U

n
i ))] ≤ Di + δ, i = 1, 2, for n

sufficiently large.
Fix (PT1|U1

, PX1|U1T1
, PT2|U2

, PX2|U2T2
) such that

I(Ui; Ti) > 0 and the following are satisfied for some ε′ > 0,

R1 < I(T1; T2, Y ) − I(U1; T1) − ε′, (7)
R2 < I(T2; T1, Y ) − I(U2; T2) − ε′, (8)
R1 + R2 < I(T1, T2; Y ) − I(U1, U2; T1, T2) − ε′, (9)
E[di(Ui, Xi)] ≤ Di, i = 1, 2. (10)

The encoders f
(n)
1 and f

(n)
2 are chosen in a random manner.

For ε < δ
2 max{dmax

1 ,dmax

2 } , define

P
(n)
i � Pr

( 1

n
di

(
Un

i , f
(n)
i (Wi, U

n
i )

)
> Di+εdmax

i

)
, i = 1, 2.

We will prove that for any 0 < ε1 ≤ δ
6 max{dmax

1 ,dmax

2 } ,
the probabilities P

(n)
e , P

(n)
1 , and P

(n)
2 , when averaged over

the random choice of f
(n)
1 and f

(n)
2 , satisfy E[P

(n)
e ] ≤ ε1,

E[P
(n)
1 ] ≤ ε1, E[P

(n)
2 ] ≤ ε1 for n sufficiently large. Then

E{P
(n)
e + P

(n)
1 + P

(n)
2 } ≤ 3ε1, which guarantees that there

exists at least one pair of codes (f (n)
1 , f

(n)
2 ) such that P

(n)
e +

P
(n)
1 + P

(n)
2 ≤ 3ε1 and hence P

(n)
e ≤ 3ε1, P

(n)
1 ≤ 3ε1,

P
(n)
2 ≤ 3ε1 are simultaneously satisfied for n sufficiently
large. Finally, it can be easily shown that P

(n)
i ≤ 3ε1 implies

for n sufficiently large that

1

n
E

[
di(U

n
i , f

(n)
i (Wi, U

n
i )

]
≤ Di+εdmax

i +P
(n)
i dmax

i ≤ Di+δ.
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B. Random Code Design
In what follows, the strongly ε-typical set T (n)

ε is defined
under the joint distribution PU1U2T1T2X1X2Y which can be fac-
torized as QU1U2PT1|U1

PX1|U1T1
PT2|U2

PX2|U2T2
WY |X1X2

.
The parameter ε, which is chosen to be sufficiently small, will
be specified later in the proof.

Generation of codebooks. For i = 1, 2 and every wi ∈ Wi,
generate a codebook

Cwi
= {ti(wi, 1), ti(wi, 2), ..., ti(wi, Li)}

with Li = 
2n[I(Ui;Ti)+4ε]� codewords such that each ti(wi, li)
is independently selected with uniform distribution from the
typical set T (n)

ε (Ti). Denote the entire codebook for Encoder
i by C(i) = {Cwi

}Mi

wi=1, where we recall that Mi = 
2nRi�.
For each ui and codeword ti(wi, li) (1 ≤ wi ≤ Mi, 1 ≤ li ≤

Li), generate a codeword xi according to P
(n)
Xi|UiTi

(xi|ui, ti).
Denote the codebook of all the codewords xi by B(i).

Encoder f
(n)
1 : Encoder f

(n)
1 is the concatenation of a pre-

encoder ϕ
(n)
1 : W1 × Un

1 −→ T n
1 and a mapping g

(n)
1 : Un

1 ×
T n

1 −→ Xn
1 .

To define ϕ
(n)
1 , we need the following notation adopted from

[8]. We let

A(n)(u1, t1)

� P
(n)
U2T2|U1T1

(
(Un

2 , T n
2 ) ∈ T (n)

ε (U2T2|u1, t1)
∣∣∣u1, t1

)
,

and for μ ∈ (0, 1) define

F (n)
μ,ε (U1, T1) �

{
(u1, t1) : A(n)(u1, t1) ≥ 1 − μ

}
.

By definition, we have F (n)
μ,ε (U1, T1) ⊆ T

(n)
ε (U1, T1).

We now describe the pre-encoding function ϕ
(n)
1 =

ϕ
(n)
1 (w1, u1) which maps every pair (w1, u1) to a codeword
in C(1) ⊆ T n

1 . Given w1 ∈ {1, 2, ..., M1} and u1, ϕ
(n)
1

seeks the first codeword t1(w1, l1) (if any) in Cw1 such that
(u1, t1(w1, l1)) ∈ F

(n)
μ,ε (U1, T1). If there is no such codeword,

ϕ
(n)
1 outputs t1(w1, 1). Next, for each output t1(w1, l1) and
u1, g

(n)
1 sends out the associated codeword x1(w1, u1) to the

channel. Thus, f (n)
1 (w1, u1) = g

(n)
1

(
u1, ϕ

(n)
1 (w1, u1)

)
.

Encoder f
(n)
2 : Encoder f

(n)
2 is the concatenation of a pre-

encoder ϕ
(n)
2 : W2 × Un

2 −→ T n
2 and a mapping g

(n)
2 : Un

2 ×
T n

2 −→ Xn
2 .

To define ϕ
(n)
2 , let

B(n)
ϕ1

(u2, t2) �
1

2nR1

M1∑
w1=1

P
(n)
U1|U2T2

(
(Un

1 , ϕ
(n)
1 (w1, U

n
1 ))

∈ T (n)
ε (U1T1|u2, t2)

∣∣∣ u2, t2
)

,

and for ν ∈ (0, 1) define

F (n)
ϕ1,ν,ε(U2, T2) �

{
(u2, t2) : B(n)

ϕ1
(u2, t2) ≥ 1 − ν

}
.

By definition, F (n)
ϕ1,ν,ε(U2, T2) ⊆ T

(n)
ε (U2, T2).

The pre-encoding function ϕ
(n)
2 = ϕ

(n)
2 (w2, u2) which

maps every pair (w2, u2) to a codeword in C(2) ⊆ T n
2 is

defined as below. Given w2 ∈ {1, 2, ..., M2} and u2, ϕ
(n)
2

seeks the first codeword t2(w2, l2) (if any) in Cw2 such that
(u2, t2(w2, l2)) ∈ F

(n)
ϕ1,ν,ε(U2, T2). If there is no such code-

word, ϕ(n)
2 outputs t2(w2, 1). Next, for each output t2(w2, l2),

g
(n)
2 sends out the associated codeword x2(w2, u2) to the
channel. Thus, f (n)

2 (w2, u2) = g
(n)
2

(
u2, ϕ

(n)
2 (w2, u2)

)
.

Decoder ψ(n): Given y, ψ(n) seeks t1(ŵ1, l̂1) ∈ C(1) and
t2(ŵ2, l̂2) ∈ C(2) such that

(t1(ŵ1, l̂1), t2(ŵ2, l̂2), y) ∈ T (n)
ε (T1, T2, Y ).

If such a pair (t1(ŵ1, l̂1), t2(ŵ2, l̂2)) exists for a unique
(ŵ1, ŵ2), then ψ(n) outputs ŵ1 and ŵ2 as the decoded mes-
sages. If there is no such pair (ŵ1, ŵ2), or it is not unique, a
decoding error is declared. Letting ti(wi, li) = ϕ

(n)
i (wi, ui),

it is easy to see that if there is a decoding error, then at least
one of the following events occurs:
i) E1: (t1(w1, l1), t2(w2, l2), y) /∈ T

(n)
ε (T1, T2, Y ),

ii) E2: there exist l′1 and w′
1 �= w1 and l′2 (l′2 may or may

not be equal to l2) such that (t1(w′
1, l

′
1), t2(w2, l

′
2), y) ∈

T
(n)

ε (T1, T2, Y ),
iii) E3: there exist l′2 and w′

2 �= w2 and l′1 (l′1 may or may
not be equal to l1) such that (t1(w1, l

′
1), t2(w′

2, l
′
2), y) ∈

T
(n)

ε (T1, T2, Y ),
iv) E4: there exist l′1 and w′

1 �= w1 and l′2 and w′
2 �= w2

such that (t1(w′
1, l

′
1), t2(w′

2, l
′
2), y) ∈ T

(n)
ε (T1, T2, Y ).

In the following, we will bound the probabilities P (n)
e , P (n)

1 ,
and P

(n)
2 averaged over the random choice of the codes C(1),

and C(2). To simplify the notation we abbreviate EC(1),C(2) [ · ]
to EΩ[ · ].

C. Bounding EΩ[P
(n)
e ]

To analyze the average probability of error, we need the
following lemma.
Lemma 3: For any w1 ∈ W1, w2 ∈ W2, and any ε0, ε ∈

(0, 1), one can choose μ, ν ∈ (0, 1) small enough such that

EC(1),C(2)

[
P

(n)
U1U2

(
(ϕ

(n)
1 (w1, U

n
1 ), Un

1 , Un
2 , ϕ

(n)
2 (w2, U

n
2 ))

∈ T (n)
ε (T1, U1, U2, T2)

)]
≥ 1 − ε0

for n sufficiently large, where the expectation is taken with
respect to the random codes C(1) and C(2).
The proof is very similar to the proof of the extended

Markov lemma in [8, Lemma 3] for correlated Gaussian
sources and is hence omitted.
Since the watermarks are independently and uniformly

distributed, and by the symmetry of the code construction,
we can assume without the loss of generality that some fixed
w1 ∈ W1 and w2 ∈ W2 are the transmitted watermarks. Thus
we bound the probability of error as

P (n)
e = Pr

({
ψ(n)(Y n) �= (w1, w2)

})

≤ Pr(A1) + Pr
({

ψ(n)(Y n) �= (w1, w2)
}∣∣∣ Ac

1

)
(11)
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where A1 is the event that

(t1(w1, l1), u1, u2, t2(w2, l2), x1, x2)
/∈ T (n)

ε (T1, U1, U2, T2, X1, X2).

Recall that ti(wi, li) = ϕ
(n)
i (wi, ui), i = 1, 2. We also let

ti(wi, l
′
i) and ti(w′

i, l
′
i) be the l′i-th codeword in the codebook

Cwi
and Cw′

i
, respectively. We then introduce the event

A0 : (t1(w1, l1), u1, u2, t2(w2, l2)) /∈ T (n)
ε (T1, U1, U2, T2).

Taking expectation in (11) and using the union bound, we have

EΩ[P (n)
e ] ≤ EΩPr (A0) + EΩPr (A1|A

c
0)

+EΩPr (E1|A
c
1) +

4∑
k=2

EΩPr (Ek|A
c
1) .(12)

It immediately follows from Lemma 3 that

EΩPr (A0) = EC(1),C(2)Pr (A0) ≤ ε0 (13)

for n sufficiently large, where we set ε0 = ε1/7 for a given
ε1 ≥ 0 throughout the proof. Since Xn

1 and Xn
2 are drawn ac-

cording to the conditional probabilities P
(n)
X1|U1T1

(·|u1, t1) and
P

(n)
X2|U2T2

(·|u2, t2), respectively, and Y n is drawn according
to the conditional distribution W

(n)
Y |X1X2

(·|x1, x2), it follows
from two successive applications of Lemma 2 that

EΩPr (A1|A
c
0) ≤ EΩ[ε0] = ε0 (14)

and
EΩPr (E1|A

c
1) ≤ EΩ[ε0] = ε0 (15)

for n sufficiently large. It remains to bound EΩPr {Ek|Ac
1}

for k = 2, 3, 4. Applying the union bound, Lemma 1, and
assumption (7), we can obtain the upper bound

EΩPr (E2|A
c
1) ≤ 2n[R1+I(U1;T1)+4ε−I(T1;T2,Y )+2η]

≤ 2n[R1+I(U1;T1)−I(T1;T2,Y )+ε′]

≤ ε0 (16)

for ε sufficiently small and n sufficiently large. Similarly, using
the union bound, Lemma 1, and assumption (8) yields

EΩPr (E3|A
c
1) ≤ ε0 (17)

for ε small enough and n sufficiently large. Next, applying the
union bound, Lemma 1, and assumption (9), we have

EΩPr (E4|A
c
1)

≤ 2n[R1+R2+I(U1;T1)+I(U2;T2)−I(T1,T2;Y )−I(T1;T2)+8ε+3η]

≤ 2n[R1+I(U1,U2;T1,T2)−I(T1,T2;Y )+ε′]

≤ ε0 (18)

for n sufficiently large and ε small enough (such that 8ε+3η <
ε′). Here the second inequality holds by the Markov chain
relation T1 → U1 → U2 → T2. Finally, substituting (13)–(15),
(16), (17) and (18) into (12) yields EΩ[P

(n)
e ] ≤ 7ε0 = ε1 for

ε sufficiently small and n sufficiently large.

D. Bounding EΩ[P
(n)
i ]

We only bound EΩ[P
(n)
i ] for i = 1, since the case

i = 2 can be dealt with similarly. When (u1, x1(w1, u1)) ∈

T
(n)

ε (U1, X1),
1

n
d1

(
u1, x1(w1, u1)

)
≤ E[d1(U1, X1)]+εdmax

1 ≤ D1+εdmax
1

for n sufficiently large, where the first inequality follows from
the definition of strong typicality and the second inequality fol-
lows from (10). This means that if 1

n
d1

(
Un

1 , f
(n)
1 (W1, U

n
1 )

)
>

D1 + εdmax
1 , then we must have

(
Un

1 , f
(n)
1 (W1, U

n
1 )

)
/∈

T
(n)

ε (U1, X1) for n sufficiently large. Thus, applying Lemmas
3 and 2 we can bound

EΩ[P
(n)
1 ] ≤ Pr

((
Un

1 , f
(n)
1 (W1, U

n
1 )

)
/∈ T (n)

ε (U1, X1)
)
≤ ε1

for n sufficiently large. �

IV. CONCLUSION
We study a multi-user information embedding system con-

sisting of two information embedders and one joint decoder.
We obtain an inner bound for the capacity region in a com-
putable single-letter form. We also derive an outer bound for
the capacity region in a single-letter form, but it is not clear
how to explicitly calculate the resulting region since we are
not able to bound the cardinality of its auxiliary RVs. We also
address the special case when the covertexts are independent
of each other and inner and outer bounds for the capacity
region of this simplified system are provided.
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