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Abstract— We consider the transmission of a bivariate Gaus-
sian source S = (S1, S2) across a power-limited two-user
Gaussian broadcast channel. Useri (i = 1, 2) observes the
transmitted signal corrupted by Gaussian noise with power
σ2

i and wants to estimateSi . We study hybrid digital-analog
(HDA) joint source-channel coding schemes and analyze these
schemes to obtain achievable (squared-error) distortion regions.
Two cases are considered: 1) source and channel bandwidths
are equal, 2) broadcasting with bandwidth compression. We
adapt HDA schemes of Wilsonet al. [1] and Prabhakaran
et al. [2] to provide various achievable distortion regions for
both cases. Using numerical examples, we demonstrate that
for bandwidth compression, a three-layered coding scheme
consisting of analog, superposition, and Costa coding performs
well compared to the other provided HDA schemes. In the case
of matched bandwidth, a three-layered coding scheme with an
analog layer and two layers, each consisting of a Wyner-Ziv
coder followed by a Costa coder, performs best.

I. I NTRODUCTION

This paper considers broadcasting correlated Gaussian
sources and aims to characterize mean squared-error (MSE)
distortion pairs that are simultaneously achievable at twore-
ceivers using hybrid digital-analog (HDA) coding schemes.
It is known that the separate design of source and chan-
nel coding due to Shannon does not in general lead to
the optimal performance theoretically attainable (OPTA) in
networks. On the other hand, for the point-to-point trans-
mission of a single Gaussian source through an additive
white Gaussian noise (AWGN) channel it is well known
that if the channel and source bandwidths are equal, simple
uncoded transmission achieves OPTA. Uncoded (or analog)
transmission in this case (and in the rest of this paper)
means scaling the encoder input subject to the channel
power constraint and transmitting it without explicit channel
coding. In order to exploit the advantages of both analog
transmission and digital techniques, various HDA schemes
have been introduced in the literature, see e.g., [1], [3]–[9].
Broadcasting a single memoryless Gaussian source under
bandwidth mismatch using HDA schemes is considered in
[5], [8]. Brosset al. [10] show that there exists a continuum
of HDA schemes with optimal performance for the trans-
mission of a Gaussian source over an average-power-limited
Gaussian channel with matched bandwidth. Tian and Shamai
[11] generalize this result to the mismatched bandwidth case.
Broadcasting a Gaussian source with memory is analyzed in
[9].
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Fig. 1. Broadcasting a bivariate Gaussian source over a two-user power-
limited Gaussian broadcast channel.

Our system model is illustrated in Fig. 1. We aim to
determine achievable distortion regions using HDA schemes
for two cases; 1) the source bandwidth equals the channel
bandwidth, 2) broadcasting with bandwidth compression.
To our knowledge, apart from [12] in which Brosset al.
analyzed uncoded transmission for broadcasting correlated
Gaussian sources, no explicit distortion-regions have been
established in the literature for broadcasting correlatedGaus-
sian sources. We are also not aware of any prior work on
HDA schemes for broadcasting correlated Gaussians either
when the source and channel bandwidths are equal or when
there is a bandwidth mismatch. Note that the source-channel
separation theorem does not hold in broadcasting correlated
sources. II. PROBLEM STATEMENT

We consider broadcasting a bivariate Gaussian source
across a two-user power-limited Gaussian broadcast channel.
User i (i = 1, 2) receives the transmitted signal corrupted
by Gaussian noise with powerσ2

i and wants to estimate
the ith component of the source. We assumeσ2

1 > σ2
2 and

call user 1 the weak user and user 2 the strong user. Let
S1 and S2 be correlated Gaussian random variables and
let {(S1(t), S2(t))}

∞

t=1 be a stationary Gaussian memoryless
vector source with marginal distribution that of(S1, S2). We
assume thatS1(t) andS2(t) have zero mean and variance
σ2

S1
and σ2

S2
, respectively, and correlation coefficientρ ∈

(−1, 1).
We represent the firstn source samples by the data

sequencesSn
1 = {S1(1), S1(2), · · · , S1(n)} and Sn

2 =
{S2(1), S2(2), · · · , S2(n)}, respectively. The system is
shown in Fig. 1. The source sequencesSn

1 andSn
2 are jointly

encoded toXn = ϕ (Sn
1 , S

n
2 ), where the encoder function is

of the formϕ : R
n × R

n → R
n. The transmitted sequence

Xn is average-power limited toP > 0, i.e.,
1

n

n∑

t=1

E
[
|X(t)|2

]
≤ P. (1)

User i observes the transmitted signalX(t) corrupted by
Gaussian noiseVi(t) with powerσ2

i so that each observation
time t = 1, 2, 3, ... receiveri observes

Yi(t) = X(t) + Vi(t), i = 1, 2 (2)



where theVi(t) ∼ N
(
0, σ2

i

)
are independently distributed

over i and t, and are independent of theX(t). Based on
its channel outputY n

i , user i provides an estimatêSi

n
=

ψi (Y n
i ), where ψi : R

n → R
n is a decoding function.

The quality of the estimate is measured by the average

MSE distortion∆i = 1
n
E[

n∑
t=1

|Si(t)−Ŝi(t)|
2]. LetF (n) (P )

denote all encoder and decoder functions(ϕ,ψ1, ψ2) defined
as above. For a particular coding scheme(ϕ,ψ1, ψ2), the
performance is determined by the channel power constraint
P and the incurred distortions∆1 and∆2 at the receivers .
For any given power constraintP > 0, the distortion region
D is defined as the convex closure of the set of all distortion
pairs (D1, D2) for which (P,D1, D2) is achievable, where
a power-distortion pair(P,D1, D2) is achievable if for any
δ > 0, there existsn0(δ) such that for anyn ≥ n0(δ) there
exists(ϕ,ψ1, ψ2) ∈ F (n) (P ) with distortions∆i ≤ Di + δ

(i = 1, 2).

III. D ISTORTION REGIONS WITH MATCHED BANDWIDTH

A. Uncoded Transmission

In [12] for the above problem an achievable distortion
region is obtained based on analyzing the uncoded trans-
mission in broadcasting a bivariate Gaussian source. In this
approach, a linear combination of both components of a
bivariate Gaussian source is transmitted across a power-
limited Gaussian broadcast channel. The transmitted signal
can be expressed as

Xa(t) = α̃

2∑

i=1

aiSi(t), (3)

whereα̃ =
√

P

Var(
2

P

i=1

aiSi(t))

, ai ≥ 0 andVar(
2∑

i=1

aiSi(t)) =

a2
1σ

2
S1

+a2
2σ

2
S2

+2a1a2ρσS1
σS2

. The scale factor̃α is chosen
such that the channel power constraint is satisfied with
equality. The received signal at receiveri is then given by

Yi(t) = Xa(t) + Vi(t) = α̃

2∑

i=1

aiSi(t) + Vi(t). (4)

By evaluating the resulting MSE distortion, the set of
simultaneously achievable distortion pairs at two users are
as follows:

Di = σ2
Si

−
α̃2(aiσ

2
Si

+ ajρσSi
σSj

)2

P + σ2
i

, i, j = 1, 2, j 6= i

(5)
It is shown in [12] that the uncoded scheme is optimal below
a certain SNR-threshold.

B. Joint Source-Channel Coding Schemes

In our schemes, we will closely follow the notation and
code constructions in [1]. Here we only give a high-level
description and analyses of the schemes without detailed
proofs. In particular, in many steps of the analysis we treat
finite-blocklength coding schemes as idealized systems with
asymptotically large blocklengths.

1) Layering with Analog and Costa Coding: This coding
scheme has three layers and is similar to the scheme in
[1] for broadcasting a single memoryless Gaussian source.
The only difference between the two schemes is that we
use a Wyner-Ziv encoder followed by a Costa encoder in

the second layer, while the second layer of the scheme in
[1] employs an HDA Costa coder (which will be explained
in Section IV-A). Block diagrams of the encoder and the
decoder are shown in Fig. 2. The first layer is the analog

transmission layer. HereXa(t) = α
2∑

i=1

aiSi(t), whereα =
√

Pa

Var(
2

P

i=1

aiSi(t))

. This layer is meant for both strong and

weak users. Now fixP1 andP2 to satisfyP = Pa+P1+P2.
In the second layer, the first component of the source

is first Wyner-Ziv coded at rateR
′

1 = 1
2 log(1 + P1

P2+σ2

1

)

using an estimate ofSn
1 at the receiver as side information.

The Wyner-Ziv index,m1 ∈ {1, 2, · · · , 2nR
′

1}, is then en-
coded using Costa’s “dirty paper” coding treating the analog
transmission layer,Xn

a , as an interference. LetU1 be an
auxiliary random variable given byU1 = X1+α1Xa, where
X1 ∼ N (0, P1) is independent ofXa ∼ N (0, Pa) and the
scaling factorα1 is set to be P1

P1+P2+σ2

1

. We generate a length

n i.i.d. Gaussian codebookU1 with 2nI(U1;Y1) codewords,
where each component of the codeword is Gaussian with
zero mean and varianceP1 + α2

1Pa, and each codeword is
then randomly placed into one of2nR

′

1 bins. Let i(Un
1 ) be

the index of the bin containingUn
1 . For a givenm1, we look

for anUn
1 such thati(Un

1 ) = m1 andUn
1 andXn

a are jointly
typical. Then, we transmitXn

1 = Un
1 − α1X

n
a , whereUn

1

is meant to be decoded by the weak user.
In the third layer, which is meant for the strong user,

the second component of the source,Sn
2 , is also Wyner Ziv

coded at rateR
′

2 = 1
2 log(1 + P2

σ2

2

) using the estimate ofSn
2

at the receiver as side information. The Wyner-Ziv index,
m2 ∈ {1, 2, · · · , 2nR

′

2}, is then encoded using digital Costa
coding that treats bothXn

a andXn
1 as interference and uses

power P2. Let U2 be an auxiliary random variable given
by U2 = X2 + α2(Xa + X1), whereX2 ∼ N (0, P2), X1

andXa are independent from each other andα2 = P2

P2+σ2

2

.
Here we also create a lengthn i.i.d. Gaussian codebookU2

with 2nI(U2;Y2) codewords, where each component of the
codeword is Gaussian with zero mean and varianceP2 +
α2

2(Pa + P1) and (randomly) evenly distribute them over
2nR

′

2 bins. Let i(Un
2 ) be the index of the bin containing

Un
2 . For a givenm2, we look for anUn

2 such thati(Un
2 ) =

m2 and(Un
2 , X

n
a , X

n
1 ) are jointly typical. Then, we transmit

Xn
2 = Un

2 −α2(X
n
a +Xn

1 ). As shown in Fig. 2.(a), we merge
all three layers and transmitXn = Xn

a +Xn
1 +Xn

2 .
An achievable distortion-region can be obtained by vary-

ing Pa, P1 and P2 subject toP = Pa + P1 + P2. For a
givenPa, P1 andP2, the achievable distortion pairs can be
computed as follows. At the receiver (Fig. 2.(b)), an estimate
of the first component of the source,Sn

1 , is first obtained
from the analog layer. This estimate acts as side information
that can be used in refining the estimate ofSn

1 for the weak
user using theR

′

1 decoded Wyner-Ziv bits (obtained by
the Costa decoder of the second layer). SinceR

′

1 equals
the capacity of the channel with known interference at the
encoder only,I(U1;Y1) − I(U1;Xa) = 1

2 log(1 + P1

P2+σ2

1

),
the distortion in estimatingSn

1 at the weak user is given
by the Wyner-Ziv distortion-rate function,D∗

12−2R
′

1 , where
D∗

1 = E[(S1 − E[S1|Y1])
2] is the (idealized) MMSE from
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Fig. 2. Broadcasting a bivariate source(Sn

1
, Sn

2
) by adopting the layering

scheme with analog and Costa coding layers in [1].

the receivedY n
1 . So the overall distortion seen at the weak

user can be expressed asD1 = D∗

1

(
1 + P1

P2+σ2

1

)
−1

, where

D∗

1 = σ2
S1

−
α2(a1σ

2
S1

+ a2ρσS1
σS2

)2

Pa + P1 + P2 + σ2
1

. (6)

Then, an estimate ofSn
2 can be determined from the first

and the second layers. This estimate acts as side information
for estimatingSn

2 (for the strong user) from theR
′

2 decoded
Wyner-Ziv bits. Here, again,R

′

2 equals the capacity of the
channel with known interference,Xn

a andXn
1 , at the encoder

only, i.e.,R
′

2 = I(U2;Y2)−I(U2;Xa, X1) = 1
2 log(1+ P2

σ2

2

).
Thus, the distortion in estimatingSn

2 at the strong user is
given by the Wyner-Ziv distortion-rate function,D∗

22−2R
′

2 ,

where D∗

2 is the MMSE from the receivedY n
2 and the

decodedUn
1 . So the overall distortion for the strong user

is given byD2 = D∗

2

(
1 + P2

σ2

2

)
−1

, whereD∗

2 = σ2
S2

−

ΓT
2 Υ−1

2 Γ2,

Γ2 =

[
α(a2σ

2
S2

+ a1ρσS1
σS2

)
α1α(a2σ

2
S2

+ a1ρσS1
σS2

)

]
,

and

Υ2 =

[
Pa + P1 + P2 + σ2

2 P1 + α1Pa

P1 + α1Pa P1 + α2
1Pa

]
. (7)

2) Layering with Analog, Superposition and Costa Cod-
ing: This scheme also has three coding layers: analog,
superposition, and Costa coding. In the second layer, we
have two merged streams, similar to the case of broadcasting
a single memoryless source over a broadcast channel [4],
[13]. The first component of the source is broadcasted to
two users. The first source encoder is an optimal Wyner-Ziv
encoder with rateR

′′

1 = 1
2 log(1 + (1−λ)P1

λP1+Pa+P2+σ2

1

), and the
second source encoder is an optimal Wyner-Ziv encoder for
the residual error of the first encoder with rateR

′′

2 −R
′′

1 =
1
2 log(1 + λP1

Pa+P2+σ2

2

). Then, we encode the Wyner-Ziv bits
with capacity-achieving channel codes and transmit with
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Fig. 3. Distortion regions in broadcasting a bivariate source with the
correlation coefficientρ = 0.2.

powers(1−λ)P1 andλP1, respectively. Since we require a
rate of one channel use per source symbol, and the Gaussian
source is successively refinable, by combining the Wyner-Ziv
rate-distortion function with the pair of achievable ratesfor
a broadcast channel(R

′′

1 , R
′′

2 ), the corresponding achievable
distortion pairs are [4]:D∗

12−2R
′′

1 andD∗

12−2R
′′

2 , whereD∗

1

is given in (6). The coding scheme in the third layer is similar
to that in the previous scheme.

The final distortion in estimatingSn
1 at the weak user is

D1 = D∗

12−2R
′′

1 =
D∗

1

1 + (1−λ)P1

λP1+Pa+P2+σ2

1

. (8)

At the strong user, first an estimate of the first component
of the source can be obtained within distortion

D∗

12 = D∗

12−2R
′′

2 =
D∗

12−2R
′′

1

1 + λP1

Pa+P2+σ2

2

=
D1

1 + λP1

Pa+P2+σ2

2

.

Then we obtain an estimate ofSn
2 from the above estimate

of Sn
1 with the following distortion:

D∗

2 = σ2
S2

(
1 − ρ2

(
1 −

D∗

12

σ2
S1

))
. (9)

This estimate ofSn
2 acts as side information in refining

the estimate ofSn
2 (for the strong user) using the decoded

Wyner-Ziv bits. The overall distortion for the strong user in

estimatingSn
2 is thus given byD2 = D∗

2

(
1 + P2

σ2

2

)
−1

.

3) Numerical Example: We transmit n samples of a
bivariate Gaussian source with the covariance matrixΛ =[

1 0.2
0.2 1

]
in n uses of a power-limited broadcast channel

to two users with observation noise variancesσ2
1 = −5 dB

andσ2
2 = 0dB, respectively. The two-user broadcast channel

has the power constraintP = 0dB. The boundaries of the
distortion regions for the schemes presented in this section
are shown in Fig. 3. We observe that the layering with analog
transmission and Costa coding outperforms all other JSCC
schemes, including analog transmission.

IV. D ISTORTION REGIONS WITH BANDWIDTH

COMPRESSION

We next consider the problem of broadcasting a bivariate
Gaussian source with 2:1 bandwidth compression. We want
to transmitk = 2n samples of a bivariate Gaussian source
(Sk

1 , S
k
2 ) in n uses of a power-limited broadcast channel to
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two users. The two-user broadcast channel has the power
constraintP . We split both components of the bivariate
Gaussian source into two equal length parts, i.e., we split
2n samples of each source vectorS2n

i into two vectors of
lengthn: Sn

i,1 andSn
i,2.

A. Layering with Analog, HDA Costa and Costa Coding

This scheme is introduced in [1] for broadcasting a mem-
oryless Gaussian source with bandwidth compression; see
Fig. 4. In the first (analog) transmission layer, a linear combi-
nation of the firstn samples of the bivariate Gaussian source
components are scaled such that the power of the trans-
mitted signal in this layerXn

a becomesPa. HereXa(t) =

α
2∑

i=1

aiSi,1(t) whereα =
√

Pa

a2

1
σ2

S1
+a2

2
σ2

S2
+2a1a2ρσS1

σS2

.

In the second and the third layers, we work on the
remainingn samples of the source components, i.e.,Sn

1,2

and Sn
2,2, respectively. In the second layer, we apply the

HDA Costa coding, presented in [1], toSn
1,2 in order to

produceXn
1 with powerP1. Here, the source is not explicitly

quantized and it appears in an analog form in the transmitted
signal [1]. Let U1 be an auxiliary random variable given
by U1 = X1 + α1Xa + K1S1,2, whereX1 ∼ N (0, P1),
Xa ∼ N (0, Pa), and S1,2 are independent of each other,

α1 = P1

P1+P2+σ2

1

, andK2
1 =

P 2

1

(P1+P2+σ2

1)σ2

S1

. As in [1], we

generate a random i.i.d. codebookU1 with 2nR1 codewords,
where each component of each codeword is Gaussian with
zero mean and varianceP1 + α2

1Pa + K2
1σ

2
S1

and R1 =

1
2 log(

P1+α2

1
Pa+K2

1
σ2

S1

P1

). For givenSn
1,2 andXn

a , we find a
Un

1 such that(Un
1 , S

n
1,2, X

n
a ) is jointly typical and transmit

Xn
1 = Un

1 − α1X
n
a −K1S

n
1,2.

In the third layer,n samples of the second component
of the source,Sn

2,2 are Wyner Ziv coded at rateR
′

2 =
1
2 log(1 + P2

σ2

2

) using the estimate ofSn
1,2 at the receiver as

side information. The Wyner-Ziv index is then encoded using
Costa coding that treats bothXn

a andXn
1 as interference and

uses powerP2 = P−Pa−P1. The code construction as well
as the encoding and decoding procedures are analogous to
the ones described in Section III-B.1. Therefore, we transmit
Xn

2 = Un
2 − α2(X

n
a +Xn

1 ). We merge all three layers and
transmitXn = Xn

a +Xn
1 +Xn

2 .
At the decoder, we look for anUn

1 that is jointly typical
with Y n

1 . The weak user estimatesSk
1 = (Sn

1,1S
n
1,2) by

MMSE estimation from the received signalY n
1 and the

decodedUn
1 . Thus, the overall distortion seen at the weak

user is [1]:

D1 =
n

k
D11 + (1 −

n

k
)D12 =

1

2
D11 +

1

2
D12, (10)

whereD1j (j = 1, 2), the MMSE distortion in estimating
Sn

1,j from Y n
1 andUn

1 , is given by

D1j = σ2
S1

− ΓT
1jΥ

−1
1HDAΓ1j ,

where

Γ11 =

[
α(a1σ

2
S1

+ a2ρσS1
σS2

)
α1α(a1σ

2
S1

+ a2ρσS1
σS2

)

]
, Γ12 =

[
0

K1σ
2
S1

]
,

(11)
and

Υ1HDA =

[
Pa + P1 + P2 + σ2

1 P1 + α1Pa

P1 + α1Pa P1 + α2
1Pa +K2

1σ
2
S1

]
.

Then, an estimate ofSk
2 is obtained from the first and the

second layers. This estimate acts as side information for
estimatingS2 (for the strong user) using the decoded Wyner-
Ziv bits. The strong user estimates the second component
of the sourceSk

2 = (Sn
2,1S

n
2,2) from Y n

2 , the decodedUn
1

andUn
2 . Hence the overall distortion for the strong user is

given byD2 = 1
2D21 + 1

2D22, whereD2j (j = 1, 2), the
distortion in estimatingSn

2,j , is determined via the Wyner-
Ziv distortion-rate function:

D2j =
(
σ2

S2
− ΓT

2jΥ
−1
2HDAΓ2j

) (
1 +

P2

σ2
2

)1−j

,

where

Γ21 =

[
α(a2σ

2
S2

+ a1ρσS1
σS2

)
α1α(a2σ

2
S2

+ a1ρσS1
σS2

)

]
,Γ22 =

[
0

K1ρσS1
σS2

]
,

(12)
and

Υ2HDA =

[
Pa + P1 + P2 + σ2

2 P1 + α1Pa

P1 + α1Pa P1 + α2
1Pa +K2

1σ
2
S1

]
.

B. Layering with Analog and Costa Coding

Here, we also use three coding layers and they are the
same as the ones in Section IV-A, except for the second
layer. In the second layer, then samples of the second half
of the first component of the source,Sn

1,2, are quantized at
rateR

′

1 = 1
2 log(1 + P1

P2+σ2

1

). The quantization index is then
encoded using Costa coding that treatsXn

a as interference
and uses powerP1. Therefore, we transmitXn

1 = Un
1 −

α1X
n
a , whereα1 = P1

P1+P2+σ2

1

. We merge all three layers
and transmitXn = Xn

a +Xn
1 +Xn

2 .

At the receiver, the weak user estimatesS2n
1 = (Sn

1,1S
n
1,2)

by MMSE estimation from the received signalY n
1 and the

decodedUn
1 . Thus the overall distortion seen at the weak

user is given by

D1 =
1

2

(
σ2

S1
− ΓT

11Υ
−1
1 Γ11

)
+

1

2

σ2
S1

1 + P1

P2+σ2

1

, (13)

whereΓ11 is given in (11) and

Υ1 =

[
Pa + P1 + P2 + σ2

1 P1 + α1Pa

P1 + α1Pa P1 + α2
1Pa

]
.

The strong user estimates the second component of the



sourceS2n
2 = (Sn

2,1S
n
2,2) within the overall distortion

D2 =
1

2

(
σ2

S2
− ΓT

21Υ
−1
2 Γ21

)

+
1

2
σ2

S2

(
1 − ρ2

(
1 −

D∗

12

σ2
S1

)) (
1 +

P2

σ2
2

)
−1

(14)

whereΓ21 is given in (12),Υ2 is provided in (7) and

D∗

12 =
σ2

S1

1 + P1

Pa+P2+σ2

2

.

C. Layering with Analog, Superposition and Costa Coding

Analogously to the previous coding schemes, this scheme
is three-layered with its layers identical to the ones pre-
sented in Section IV-A, except for the second layer. In the
second layer, as in Section III-B.2, we use two merged
streams. The second part of the first component of the
source,Sn

1,2, is broadcasted to two users. The first source
encoder is an optimal source encoder with rateR

′′

1 =
1
2 log(1+ (1−λ)P1

λP1+Pa+P2+σ2

1

), and the second source encoder is
an optimal encoder for the residual error of the first encoder
with rateR

′′

2 −R
′′

1 = 1
2 log(1+ λP1

Pa+P2+σ2

2

). Then, we encode
the quantization bits with capacity-achieving channel codes
and transmit the resulting streams under powers(1 − λ)P1

andλP1, respectively.
The weak user forms an MMSE estimate ofS2n

1 with the
following distortion:

D1 =
1

2

(
σ2

S1
−
α2(a1σ

2
S1

+ a2ρσS1
σS2

)2

λP1 + Pa + P2 + σ2
1

)

+
1

2

σ2
S1

1 + (1−λ)P1

λP1+Pa+P2+σ2

1

. (15)

At the strong user, first an estimate ofSn
1,2 can be obtained

within distortion

D∗

12 =
1

1 + λP1

Pa+P2+σ2

2

×
σ2

S1

1 + (1−λ)P1

λP1+Pa+P2+σ2

1

.

This estimate acts as side information for obtaining the
estimate ofSn

2,2 using the decoded Wyner-Ziv bits. The
resulting distortion for the strong user is thus given by
D2 =

1

2

(
σ2

S2
− ΓT

21Υ
−1
2 Γ21

)

+
1

2
σ2

S2

(
1 − ρ2

(
1 −

D∗

12

σ2
S1

)) (
1 +

P2

σ2
2

)
−1

(16)

Finally, note that if we setρ = 1 and σ2
S1

= σ2
S2

, then
the results of [1], [9], which currently appear to be the
best known results for broadcasting a Gaussian source with
bandwidth compression, are obtained.

D. Numerical Results

We transmitk = 2n samples of a bivariate Gaussian

source(Sk
1 , S

k
2 ) with the covariance matrixΛ =

[
1 ρ

ρ 1

]

in n uses of a power-limited broadcast channel to two
users with observation noise variancesσ2

1 = −5 dB and
σ2

2 = 0dB, respectively. The distortion regions for the
schemes presented in this section are shown in Fig. 5 for
two different correlation coefficients,ρ = 0.2 andρ = 0.8.

We observe that the layering with analog, superposition
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Fig. 5. Distortion regions of different HDA coding schemes. System
parameters areP = 0dB, σ2

1
= −5 dB andσ2

2
= 0 dB.

and Costa coding of Section IV-C outperforms all other
schemes in both cases. When the source components are
highly correlated, layering with analog, HDA Costa, and
Costa coding scheme performs better than the layering with
analog and Costa coding scheme; however, the two two
schemes perform similarly for small values of the correlation
coefficient.
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