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Abstract

We study the error exponent, EJ , for reliably transmitting a discrete stationary ergodic Markov

(SEM) source Q over a discrete channel W with additive SEM noise via a joint source-channel (JSC)

code. We first establish an upper bound for EJ in terms of the Rényi entropy rates of the source and

noise processes. We next investigate the analytical computation of EJ by comparing our bound with

Gallager’s lower bound [10] when the latter one is specialized to the SEM source-channel system. We also

note that both bounds can be represented in Csiszár’s form [5], as the minimum of the sum of the source

and channel error exponents. Our results provide us with the tools to systematically compare EJ with

the tandem (separate) coding exponent ET . We show that as in the case of memoryless source-channel

pairs, EJ ≤ 2ET and we provide explicit conditions for which EJ > ET . Numerical results indicate that

EJ ≈ 2ET for many SEM source-channel pairs, hence illustrating a substantial advantage of JSC coding

over tandem coding for systems with Markovian memory.
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1 Introduction

The lossless joint source-channel (JSC) coding error exponent, EJ , for a discrete memoryless source (DMS)

Q and a discrete memoryless channel (DMC) W with transmission rate t was thoroughly studied in [5],

[6], [10], [26]. In [5], [6], Csiszár establishes two lower bounds and an upper bound for EJ based on the

random-coding and expurgated lower bounds and the sphere-packing upper bound for the DMC error

exponent. In [26], we investigate the analytical computation of Csiszár’s lower and upper bounds for EJ

using Fenchel duality, and we provide equivalent expressions for these bounds. As a result, we are able to

systematically compare the JSC coding error exponent with the traditional tandem coding error exponent

ET , the exponent resulting from separately performing and concatenating optimal source and channel

coding. We show that JSC coding can double the error exponent vis-a-vis tandem coding by proving that

EJ ≤ 2ET . Our numerical results also indicate that EJ can be nearly twice as large as ET for many

DMS-DMC pairs, hence illustrating the considerable gain that JSC coding can potentially achieve over

tandem coding. It is also shown in [26] that this gain translates into a power saving larger than 2 dB for

binary DMS sent over binary-input white Gaussian noise and Rayleigh-fading channels with finite output

quantization.

As most real-world data sources (e.g., multimedia sources) and communication channels (e.g., wireless

channels) exhibit statistical dependency or memory, it is of natural interest to study the JSC coding error

exponent for systems with memory. Furthermore, the determination of the JSC coding error exponent

(or its bounds), particularly in terms of computable parametric expressions, may lead to the identification

of important information-theoretic design criteria for the construction of powerful JSC coding techniques

that fully exploit the source-channel memory. In this paper, we investigate the JSC coding error exponent

for a discrete communication system with Markovian memory. Specifically, we establish a (computable)

upper bound for EJ for transmitting a stationary ergodic (irreducible) Markov (SEM) source Q over a

channel W with additive SEM noise PW (for the sake of brevity, we hereafter refer to this channel as the

SEM channel W). Note that Markov sources are widely used to model realistic data sources, and binary

SEM channels can approximate well binary input hard-decision demodulated fading channels with memory

(e.g., see [16], [24], [25]). The proof of the bound, which follows the standard lower bounding technique

for the average probability of error, is based on the judicious construction from the original SEM source-

channel pair (Q,W) of an artificial1 Markov source Q̃α∗ and an artificial channel V with additive Markov

noise P̃Wα∗
, where α∗ is a parameter to be optimized, such that the stationarity and ergodicity properties

are retained by Q̃α∗ and P̃Wα∗
. The proof then employs the strong converse JSC coding Theorem2 for

ergodic sources and channels with ergodic additive noise and the fact that the normalized log-likelihood

ratio between n-tuples of two SEM sources asymptotically converges (as n → ∞) to their Kullback-Leibler

1The notion of artificial (or auxiliary) Markov sources is herein adopted from [21], where Vašek employed it to study the

source coding error exponent for ergodic Markov sources. However, it should be pointed out that the auxiliary source concept

was first introduced by Csiszar and Longo in [4] for the memoryless case.
2The idea of using a strong converse coding theorem for error exponents was first initiated by Haroutunian in [12], where

a strong converse channel coding theorem is used to bound the channel error exponent.
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divergence rate. To the best of our knowledge, this upper bound, which is expressed in terms of the Rényi

entropy rates of the source and noise processes, is new and the analytical computation of the JSC coding

error exponent for systems with Markovian memory has not been addressed before.

We also examine Gallager’s lower bound for EJ [10, Problem 5.16] (which is valid for arbitrary source-

channel pairs with memory), when specialized to the SEM source-channel system. By comparing our upper

bound with Gallager’s lower bound, we provide the condition under which they coincide, hence exactly

determining EJ . We note that this condition holds for a large class of SEM source-channel pairs. Using

a Fenchel-duality based approach as in [26], we provide equivalent representations for these bounds. We

show that our upper bound (respectively Gallager’s lower bound) to EJ , can also be represented by the

minimum of the sum of SEM source error exponent and the upper (respectively lower) bound of SEM

channel error exponent. In this regard, our result is a natural extension of Csiszár’s bounds [5] from the

case of memoryless systems to the case of SEM systems.

Next, we focus our interests on the comparison of the JSC coding error exponent EJ with the tandem

coding error exponent ET under the same transmission rate. As in [26], which considers the JSC coding

error exponent for discrete memoryless systems, we investigate the situation where EJ > ET for the

same SEM source-channel pair. Indeed, as pointed out in [26], this inequality, when it holds, provides a

theoretical underpinning and justification for JSC coding design as opposed to the widely used classical

tandem or separate coding approach, since the former method provides a faster exponential rate of decay

for the error probability, which often translates into improved performance and substantial reductions in

complexity/delay for real world applications. We prove that EJ ≤ 2ET and establish sufficient conditions

for which EJ > ET . We observe via numerical examples that such conditions are satisfied by a wide class

of SEM source-channel pairs. Furthermore, numerical results indicate that EJ is nearly twice as large as

ET for many SEM source-channel pairs.

The rest of the paper is organized as follows. In Section 2, we present preliminaries on the JSC coding

error exponent and information rates for systems with memory. Some relevant results involving Markov

sources and their artificial counterparts are given in Section 3. In Section 4, we derive an upper bound

for EJ for SEM source-channel pairs and study the computation of EJ by comparing our bound with

Gallager’s lower bound. Section 5 is devoted to a systematic comparison of EJ and ET , and sufficient

conditions for which EJ > ET are provided. In Section 6, we extend our results to SEM systems with

arbitrary Markovian orders and we give an example for a system consisting of an SEM source and the

queue-based channel with memory introduced in [24]. We close with concluding remarks in Section 7.

2 System Description and Definitions

2.1 System

We consider throughout this paper a communication system with transmission rate t (source symbols/channel

use) consisting of a discrete source with finite alphabet S described by the sequence of tn-dimensional dis-

tributions Q , {Q(tn) : Stn}∞tn=1, and a discrete channel described by the sequence of n-dimensional
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transition distributions W , {W (n) : X n → Yn}∞n=1 with common input and output alphabets X = Y =

{0, 1, ..., B − 1}. Given a fixed t > 0, a JSC code with blocklength n and transmission rate t is a pair of

mappings: fn : Stn −→ X n and ϕn : Yn −→ Stn.

In this work, we confine our attention to discrete channels with (modulo B) additive noise of n-

dimensional distribution PW , {P
(n)
W : Zn}∞n=1. The channels are described by

Yi = Xi ⊕ Zi (mod B),

where Yi, Xi and Zi are the channel’s output, input and noise symbols at time i, and Zi ∈ Z = {0, 1, ..., B−

1} is independent of Xi, i = 1, 2, ..., n.

Denote the transmitted source message by s , (s1, s2, ..., stn) ∈ Stn, the corresponding n-length

codeword by fn(s) = x , (x1, x2, ..., xn) ∈ X n and the received codeword at the channel output by

y , (y1, y2, ..., yn) ∈ Yn. Denote Y n , (Y1, Y2, ..., Yn) and Stn , (S1, S2, ..., Stn) as the random vectors

in Yn and Stn, respectively. The probability of receiving y under the conditions that the message s is

transmitted (i.e., the input codeword is fn(s) = x) is given by

Pr(Y n = y|Stn = s) = W (n)(y|fn(s)) = W (n)(y|x) = W (n)(y ⊖ x|x) = P
(n)
W (z),

where the last equality follows by the independence of input codeword x and the additive noise z = y⊖x,

noting that ⊖ is modulo-B subtraction here. The decoding operation ϕn is the rule decoding on a set of

non-intersecting sets of output words As such that
⋃

s As = Yn. If y ∈ As′ , then we conclude that the

source message s′ has been transmitted. If the source message s has been transmitted, the conditional error

probability in decoding is given by Pr(Y n ∈ Ac
s|S

tn = s) ,
∑

y∈Ac
s

W (n)(y|fn(s)), where Ac
s = Yn − As,

and the probability of error of the code (fn, ϕn) is

P (n)
e (Q,W, t) =

∑

s

Q(tn)(s)
∑

y∈Ac
s

W (n)(y|fn(s)). (1)

2.2 Error Exponent and Information Rates

Roughly speaking, the error exponent E is a number with the property that the probability of decoding

error is approximately 2−En for codes of large blocklength n. The formal definition of the JSC coding error

exponent is given by the following.

Definition 1 The JSC coding error exponent EJ(Q,W, t) for source Q and channel W is defined as the

supremum of all numbers E for which there exists a sequence of JSC codes (fn, ϕn) with transmission rate

t blocklength n such that

E ≤ lim inf
n→∞

−
1

n
log2 P (n)

e (Q,W, t).

When there is no possibility of confusion, EJ(Q,W, t) will be written as EJ (as in Section 1). A lower

bound for EJ for arbitrary discrete source-channel pairs with memory was already obtained by Gallager
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[10]. In Section 4, we establish an upper bound for EJ for SEM source-channel pairs. For a discrete source

Q, its (lim sup) entropy rate is defined by

H(Q) , lim sup
k→∞

1

k
H(Q(k)),

where H(Q(k)) is the Shannon entropy of Q(k); H(Q) admits an operational meaning (in the sense of the

lossless fixed length source coding theorem) if Q is information stable [11]. The source Rényi entropy rate

of order α (α ≥ 0) is defined by

Rα(Q) , lim sup
k→∞

1

k
Hα(Q(k)),

where

Hα(Q(k)) ,
1

1 − α
log2

∑

s∈Sk:Q(k)(s)>0

Q(k)(s)
α
,

is the Rényi entropy of Q(k), and the special case of α = 1 should be interpreted as

H1(Q
(k)) , lim

α→1

1

1 − α
log2

∑

s∈Sk:Q(k)(s)>0

Q(k)(s)
α

= H(Q(k)).

The channel capacity for any discrete (information stable [11], [23]) channel W is given by

C(W) = lim inf
n→∞

1

n
sup
PXn

I(W (n);PXn),

where I(·; ·) denotes mutual information. For discrete channels with finite-input finite-output alphabets,

the supremum is achievable and can be replaced by maximum. If the channel W is an additive noise

channel with noise process PW, then

C(W) = log2 B − H(PW),

where H(PW) is the noise entropy rate.

3 Markov Sources and Artificial Markov Sources

Without loss of generality, we consider first-order Markov sources since any L-th order Markov source

can be converted to a first-order Markov source by L-step blocking it (see Section 6). For the sake of

convenience (since we will apply the following results to both the SEM source and the SEM channel), we

use, throughout this section, P ,
{
p(n) : Un

}∞
n=1

to denote a first-order SEM source with finite alphabet

U , {1, 2, ...,M}, initial distribution

pi , Pr{U1 = i}, i ∈ U

and transition distribution

pij , Pr{Uk+1 = j|Uk = i}, i, j ∈ U ,
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so that the n-tuple probability is given by

p(n)(in) , Pr{U1 = i1, ..., Un = in}

= pi1pi1i2 · · · pin−1in , i1, ..., in ∈ U .

Denote the transition (stochastic) matrix by P , [pij]M×M , we then set

P (α) ,
[
pα

ij

]
M×M

, (0 ≤ α ≤ 1)

which is nonnegative and irreducible (here we define 00 = 0). The Perron-Frobenius Theorem [18] asserts

that the matrix P (α) possesses a maximal positive eigenvalue λα(P) with positive (right) eigenvector

v(α) = (v1(α), ..., vM (α))T such that
∑

i vi(α) = 1, where ·T denotes transposition. As in [21], we define

the artificial Markov source P̃α ,

{
p̃
(n)
α : Un

}∞

n=1
with respect to the original source P such that the

transition matrix is P̃ (α) , [p̃ij(α)]M×M , where

p̃ij(α) ,
pα

ijvj(α)

λα(P)vi(α)
. (2)

It can be easily verified that
∑

j p̃ij(α) = 1. We emphasize that the artificial source retains the stochastic

characteristics (irreducibility) of the original source because p̃ij(α) = 0 if and only if pij = 0, and clearly,

for all n, the nth marginal of P̃α is absolutely continuous with respect to the nth marginal of P. The

entropy rate of the artificial Markov process is hence given by

H(P̃α) = −
∑

i

∑

j

πi(α)p̃ij(α) log2 p̃ij(α),

where π(α) , (π(α)1, π(α)2, ..., π(α)M ) is the stationary distribution of the stochastic matrix P̃ (α). We

call the artificial Markov source with initial distribution π(α) the artificial SEM source. It is known [21,

Lemmas 2.1-2.4] that H(P̃α) is a continuous and non-increasing function of α ∈ [0, 1]. In particular,

H(P̃0) = log2 λ0(P) and H(P̃1) = H(P). The following lemma illustrates the relation between H(P̃0) and

the entropy of the DMS with uniform distribution
(

1
M , ..., 1

M

)
.

Lemma 1 H(P̃0) ≤ log2 M with equality if and only if P > [0]M×M , i.e., pij > 0 for all i, j ∈ U .

The following properties regarding the artificial SEM source are important in deriving the upper and

lower bounds for the JSC coding exponent of SEM source-channel pairs.

Lemma 2 Let {Ui}
∞
i=1 be an SEM source under P and P̃α (0 < α ≤ 1), then

1

n
log2

p̃
(n)
α (Un)

p(n)(Un)
−→

1 − α

α
H(P̃α) −

1

α
log2 λα(P),

almost surely under p̃α as n → ∞.
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Lemma 3 [17], [21] For an SEM source P and any ρ ≥ 0, we have

ρR 1
1+ρ

(P) = (1 + ρ) log2 λ 1
1+ρ

(P),

and

H
(
P̃ 1

1+ρ

)
=

∂

∂ρ
(1 + ρ) log2 λ 1

1+ρ
(P).

The proofs of Lemmas 1 and 2 are given in the appendix. Lemma 3 follows directly from [17, Lemma

1] and [21, Lemma 2.3]. Note that there is a slight error in the expression of H(α) in [21, Lemma 2.3],

where a factor α is missing in the second term of the right-hand side of (2.11).

4 Bounds for EJ(Q, W, t)

We first prove a strong converse JSC coding theorem for ergodic sources and channels with additive ergodic

noise; no Markov assumption for either the source or the channel is needed for this result.

Theorem 1 (Strong converse JSC coding Theorem) For a source Q and a channel W with additive

noise PW such that Q and PW are ergodic processes, if C(W) = log2 B − H(PW) < tH(Q), then

limn→∞ P
(n)
e (Q,W, t) = 1.

Proof : Assume C(W) = tH(Q)− ε (ε > 0). We first recall the fact that for additive channels the channel

capacity C(W) is achieved by the uniform input distribution P̂Xn(x) , 1/Bn. Furthermore, this uniform

input distribution yields a uniform distribution at the output

P̂Y n(y) ,
∑

x∈Xn

P̂Xn(x)W (n)(y|x) =
1

Bn
.

Define for some δ (0 < δ < ε)

Âs =

{
y : log2

W (n)(y|fn(s))Q(tn)(s)

P̂Y n(y)
≤ n (C(W) − tH(Q) + δ)

}
.

Considering that

P (n)
e (Q,W, t) = 1 −

∑

s

Q(tn)(s)W (n)(y ∈ As|fn(s)), (3)

we need to show that
∑

s Q(tn)(s)W (n)(y ∈ As|fn(s)) vanishes as n goes to infinity. Note that

∑

s

Q(tn)(s)W (n)(y ∈ As|fn(s)) ≤
∑

s

Q(tn)(s)W (n)(y ∈ As ∩ Âs|fn(s))

+
∑

s

Q(tn)(s)W (n)(y ∈ Âc
s|fn(s)).
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For the first sum, we have

∑

s

Q(tn)(s)W (n)(y ∈ As ∩ Âs|fn(s)) =
∑

s

Q(tn)(s)
∑

y∈As∩ bAs

W (n)(y|fn(s))

≤
∑

s

Q(tn)(s)
∑

y∈As∩ bAs

P̂Y n(y)

Q(tn)(s)
2n(C(W)−tH(Q)+δ)

≤ 2n(C(W)−tH(Q)+δ)
∑

s

∑

y∈As

P̂Y n(y)

= 2−n(ε−δ). (4)

For the second sum, we have

∑

s

Q(tn)(s)W (n)(y ∈ Âc
s|fn(s))

= PQ(tn)W (n)

{
(s,y) :

1

n
log2

W (n)(y|fn(s))Q(tn)(s)

P̂Y n(y)
− (C(W) − tH(Q)) > δ

}

≤ PQ(tn)W (n)

{
(s,y) :

∣∣∣∣∣
1

n
log2

W (n)(y|fn(s))Q(tn)(s)

P̂Y n(y)
− (C(W) − tH(Q))

∣∣∣∣∣ > δ

}

= P
Q(tn)P

(n)
W

{
(s, z) :

∣∣∣∣−
1

n
log2 P

(n)
W (z) −

1

n
log2 Q(tn)(s) − H(PW) − tH(Q)

∣∣∣∣ > δ

}
(5)

≤ PQ(tn)

{
s :

∣∣∣∣−
1

tn
log2 Q(tn)(s) − H(Q)

∣∣∣∣ >
δ

2t

}

+P
P

(n)
W

{
z :

∣∣∣∣−
1

n
log2 P

(n)
W (z) − H(PW)

∣∣∣∣ >
δ

2

}
, (6)

where PQ(tn)W (n) denotes the probability measure under the joint distribution Q(tn)(s)W (n)(y|fn(s)), and

(5) follows from the fact that P
(n)
W (z) = W (n)(y|fn(s)). It follows from the well known Shannon-McMillan-

Breiman Theorem for ergodic processes [1] that the above probabilities converge to 0 as n goes to infinity.

On account of (4), (6) and (3), the proof is complete. �

We next establish an upper bound for EJ for SEM source-channel pairs (Q,W). Before we proceed,

we define the following function for an SEM source-channel pair:

F (ρ) , ρ log2 B − (1 + ρ) log2

[
λt

1
1+ρ

(Q)λ 1
1+ρ

(PW)

]
, ρ ≥ 0. (7)

Lemma 4 F (ρ) has the following properties:

(a) F (0) = 0 and

f(ρ) ,
∂

∂ρ
F (ρ) = log2 B −

(
tH
(
Q̃ 1

1+ρ

)
+ H

(
P̃W 1

1+ρ

))
(8)

is continuous non-increasing in ρ.

(b) F (ρ) is concave in ρ; hence every local maximum (stationary point) of F (·) is the global maximum.

(c) supρ≥0 F (ρ) is positive if and only if tH(Q) < C(W); otherwise supρ≥0 F (ρ) = 0.

(d) supρ≥0 F (ρ) is finite if λt
0(Q)λ0(PW) > B and infinite if λt

0(Q)λ0(PW) < B.
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Remark 1 If λt
0(Q)λ0(PW) ≥ B, then supρ≥0 F (ρ) = limρ→∞ F (ρ), no matter whether the limit is finite

or not.

Proof : We start from (a). F (0) = 0 since the largest eigenvalue for any stochastic matrix is 1. (8) follows

from Lemma 3. f(ρ) is continuous non-increasing function since H
(
Q̃ 1

1+ρ

)
and H

(
P̃W 1

1+ρ

)
are both

continuous nondecreasing functions. (b) follows immediately from (a). (c) follows from the concavity of

F (ρ) and the facts that F (0) = 0 and that f(0) = C(W)− tH(Q). (d) follows from the concavity of F (ρ)

and the facts that F (0) = 0 and that limρ→∞ f(ρ) = log2 B − log2[λ
t
0(Q)λ0(PW)]. �

Theorem 2 For an SEM source Q and a discrete channel W with additive SEM noise PW such that

tH(Q) < C(W) and λt
0(Q)λ0(PW) > B, the JSC coding error exponent EJ(Q,W, t) satisfies

EJ(Q,W, t) ≤ max
ρ≥0

F (ρ). (9)

Remark 2 We point out that the condition λt
0(Q)λ0(PW) > B holds for most cases of interest. First

note that the eigenvalues λ0(Q) and λ0(PW) are no less than 1. By Lemma 1, we have that λ0(PW) = B

if the noise transition matrix PW has positive entries (i.e., PW > [0]B×B); in that case, the condition

λt
0(Q)λ0(PW) > B is satisfied if λt

0(Q) > 1 (i.e., if the source transition matrix Q is not a deterministic

matrix). In fact, when λt
0(Q)λ0(PW) < B, maxρ≥0 F (ρ) = +∞ by Lemma 4 (d), and hence it gives a

trivial upper bound for EJ . When λt
0(Q)λ0(PW) = B, we do not have an upper bound for EJ .

Remark 3 Using the first identity of Lemma 3, the upper bound can be equivalently represented as

EJ(Q,W, t) ≤ max
ρ≥0

{
ρ
[
log2 B − tR 1

1+ρ
(Q) −R 1

1+ρ
(PW)

]}

where R 1
1+ρ

(Q) and R 1
1+ρ

(PW) are the Rényi entropy rates of Q and PW, respectively. Meanwhile, the

upper bound (9) holds for any one of the following source-channel pairs: DMS Q and SEM channel W,

SEM source Q and additive DMC W , and DMS Q and additive DMC W (note that the more general cases

of DMS Q and arbitrary DMC W are investigated in [26]), all with finite alphabets. For example, when

the source is DMS with distribution q , {q1, q2, ..., qM} such that qi > 0 for all i = 1, 2, ...,M , the source

could be regarded as an SEM source Q with transition matrix

Q =




q1 q2 · · · qM

q1 q2 · · · qM

...
...

...
...

q1 q2 · · · qM




and initial distribution q. It is easy to verify that for such a Q, the eigenvalue λ 1
1+ρ

(Q) reduces to

λ 1
1+ρ

(Q) =
∑

i q
1/1+ρ
i , which agrees with the results for memoryless systems given in [26]. Thus, the above

bound is a sphere-packing type upper bound for EJ for SEM source-channel systems.
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Proof of Theorem 2: Under the assumption tH(Q) < C(W) and λt
0(Q)λ0(PW) > B, it follows from

Lemma 4 that f(0) > 0 and limρ→∞ f(ρ) < 0. Since f(ρ) is continuous and non-increasing, there must

exist some ρo ∈ (0,+∞) such that f(ρo) + ε = 0, where ε > 0 is small enough. For the SEM source Q,

we introduce an artificial SEM source Q̃αo (as described in Section 3) such that αo , 1/(1 + ρo) ∈ (0, 1).

For the SEM channel W, we introduce an artificial additive channel V for which the corresponding SEM

noise is P̃Wαo
.

Based on the construction of the artificial SEM source-channel pair (Q̃αo ,V), we define for some δ1

(δ1 > 0) the set

Ãs =

{
y : log2

W (n)(y|fn(s))Q(tn)(s)

V (n)(y|fn(s))Q̃
(tn)
αo (s)

≥ −n

(
1 − αo

αo
(log2 B + ε) −

1

αo
log2

[
λt

αo
(Q)λαo(PW)

]
+ δ1

)}
,

where we set Ãs = ∅ for those s such that W (n)(y|fn(s))Q(tn)(s) = 0 for some y ∈ Yn. We then have a

lower bound for the average probability of error

P (n)
e (Q,W, t) ≥

∑

s

Q(tn)(s)
∑

y∈Ac
s∩ eAs

W (n)(y|fn(s))

≥ 2
−n

“
1−αo

αo
(log2 B+ε)− 1

αo
log2[λt

αo
(Q)λαo (PW)]+δ1

”

×
∑

s

Q̃(tn)
αo

(s)V (n)(y ∈ Ac
s ∩ Ãs|fn(s)), (10)

where the last sum can be lower bounded as follows

∑

s

Q̃(tn)
αo

(s)V (n)(y ∈ Ac
s ∩ Ãs|fn(s)) ≥

∑

s

Q̃(tn)
αo

(s)V (n)(y ∈ Ac
s|fn(s))

−
∑

s

Q̃(tn)
αo

(s)V (n)(y ∈ Ãc
s|fn(s)). (11)

We point out that the first sum in the right-hand side of (11) is exactly the error probability of the JSC

system consisting of the artificial SEM source Q̃αo and the artificial SEM channel V. Since by definition

f(ρo) < 0, which implies

tH(Q̃αo) > log2 B − H(P̃Wαo
) = C(V),

then applying the strong converse JSC coding Theorem (Theorem 1) to Q̃αo and V, the first sum in the

right-hand side of (11) converges to 1 as n goes to infinity. We next show that the second term in the

10



right-hand side of (11) vanishes asymptotically.

∑

s

Q̃(tn)
αo

(s)V (n)(y ∈ Ãc
s|fn(s))

= P eQ(tn)
αo V (n)

{
(s,y) :

1

n
log2

W (n)(y|fn(s))Q(tn)(s)

V (n)(y|fn(s))Q̃
(tn)
αo (s)

+

(
1 − αo

αo
(log2 B + ε) −

1

αo
log2

[
λt

αo
(Q)λαo(PW)

])
< −δ1

}

≤ P eQ(tn)
αo V (n)

{
(s,y) :

∣∣∣∣∣
1

n
log2

W (n)(y|fn(s))Q(tn)(s)

V (n)(y|fn(s))Q̃
(tn)
αo (s)

+

(
1 − αo

αo
(log2 B + ε) −

1

αo
log2

[
λt

αo
(Q)λαo(PW)

])∣∣∣∣ > δ1

}

= P eQ(tn)
αo

eP (n)
Wαo



(s, z) :

∣∣∣∣∣∣
1

n
log2

P̃
(n)
Wαo

(z)

P
(n)
W (z)

+
1

n
log2

Q̃
(tn)
αo (s)

Q(tn)(s)

−

[
t

(
1 − αo

αo
H(Q̃αo) −

1

αo
log2 λαo(Q)

)

+
1 − αo

αo
H(P̃Wαo

) −
1

αo
log2 λαo(PW)

]∣∣∣∣ > δ1

}
(12)

≤ P eQ(tn)
αo

{
s :

∣∣∣∣∣
1

tn
log2

Q̃
(tn)
αo (s)

Q(tn)(s)
−

[
1 − αo

αo
H(Q̃αo) −

1

αo
log2 λαo(Q)

]∣∣∣∣∣ >
δ1

2t

}

+P eP (n)
Wαo



z :

∣∣∣∣∣∣
1

n
log2

P̃
(n)
Wαo

(z)

P
(n)
W (z)

−

[
1 − αo

αo
H(P̃Wαo

) −
1

αo
log2 λαo(PW)

]∣∣∣∣∣∣
>

δ1

2



 , (13)

where P eQ(tn)
αo V (n) denotes the probability measure under the joint distribution Q̃

(tn)
αo (s)V (n)(y|fn(s)), and

(12) follows from the facts that P
(n)
W (z) = W (n)(y|fn(s)) and that P̃

(n)
Wαo

(z) = V (n)(y|fn(s)).

Applying Lemma 2, the above probabilities converge to 0 as n → ∞.3 On account of (10), (11) and

(13) and noting that ε and δ1 are arbitrary, we obtain

lim inf
n→∞

−
1

n
log2 P (n)

e (Q(tn),W (n)) ≤
1 − αo

αo
log2 B −

1

αo
log2

[
λt

αo
(Q)λαo(PW)

]
.

Finally, replacing αo by 1/(1 + ρo) in the above right-hand side terms and taking the maximum over ρo

complete the proof. �

We next introduce Gallager’s lower bound for EJ and specialize it for SEM source-channel pairs by

using Lemma 3.

Proposition 1 [10, Problem 5.16] The JSC coding error exponent EJ(Q,W, t) for a discrete source Q

and a discrete channel W with transmission rate t admits the following lower bound

EJ(Q,W, t) ≥ max
0≤ρ≤1

E(ρ), (14)

3Convergence almost surely implies convergence in probability.
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where E(ρ) , Eo(ρ) − tEs(ρ), in which

Es(ρ) , lim sup
tn→∞

(1 + ρ)

tn
log2

∑

s∈Stn

Q(tn)(s)
1

1+ρ (15)

is Gallager’s source function for Q and

Eo(ρ) , lim inf
n→∞

max
PXn

1

n
Eo(ρ, PXn) (16)

with

Eo(ρ, PXn) , − log2

∑

y∈Yn

(
∑

x∈Xn

PXn(x)W (n)(y|x)
1

1+ρ

)1+ρ

is Gallager’s channel function for W.

We remark that this bound is suitable for arbitrary discrete source-channel pairs with memory. Par-

ticularly, when the channel is symmetric (in the Gallager sense [10]), which directly applies to channels

with additive noise, the maximum in (16) is achieved by the uniform distribution: PXn(x) = 1/|X |n for

all x ∈ X n. Thus for our (modulo B) additive noise channels, Eo(ρ) reduces to

Eo(ρ) = ρ log2 B − lim sup
n→∞

(1 + ρ)

n
log2

(
∑

z∈Zn

P
(n)
W (z)

1
1+ρ

)
. (17)

It immediately follows by Lemma 3 that for our SEM source-channel pair,

E(ρ) = ρ log2 B − ρtR 1
1+ρ

(Q) − ρR 1
1+ρ

(PW ) = F (ρ). (18)

That is, the SEM source-channel function we defined in (7) is exactly the same as the difference of Gallager’s

channel and source function. In light of Theorem 2 and Proposition 1, we obtain the following regarding

the computation of EJ .

Theorem 3 For an SEM source Q and an SEM channel W with noise PW such that tH(Q) < C(W) and

λt
0(Q)λ0(PW) > B, EJ (Q,W, t) is positive and determined exactly by EJ(Q,W, t) = F (ρ∗) if ρ∗ ≤ 1,

where ρ∗ is the smallest positive number satisfying the equation f(ρ∗) = 0. Otherwise (if ρ∗ > 1), the

following bounds hold:

log2 B − 2 log2

[
λt

1
2
(Q)λ 1

2
(PW)

]
≤ EJ(Q,W, t) ≤ F (ρ∗).

Remark 4 If tH(Q) ≥ C(W), i.e., tH(Q) + H(PW) ≥ log2 B, then EJ(Q,W, t) = 0.

Remark 5 According to Lemma 4 (c) and (d), there must exist a positive and finite ρ∗ provided that

tH(Q) < C(W) and λt
0(Q)λ0(PW) > B. Using Lemma 4 (a), such ρ∗ can be numerically determined.

12



The proof of Theorem 3 directly follows from Theorem 2 and Proposition 1 and the use of Lemma

4. The following by-product results regarding the error exponents of SEM sources and SEM channels

immediately follow from Theorems 1 and 2.

Corollary 1 For any rate 0 ≤ R < log2 λ0(Q), the source error exponent e(R,Q) for an SEM source Q

satisfies

e(R,Q) ≤ e(R,Q), (19)

where

e(R,Q) , sup
ρ≥0

[Rρ − (1 + ρ) log2 λ 1
1+ρ

(Q)]. (20)

Particularly, for 0 ≤ R ≤ H(Q), e(R,Q) = 0.

Note that log2 λ0(Q) = log2 |S| when the source reduces to a DMS (with alphabet S). This upper

bound is exactly the same as the one given by Vašek [21]. In fact, he shows that e(R,Q) is the real source

error exponent (also see [3]) for all R ≥ 0. We point out that e(R,Q) can be equivalently expressed in

terms of a constrained minimum of Kullback-Leibler divergence [15], as the error exponent for DMS [22];

also see (35) in Appendix C.

Corollary 2 For any rate log2 (B/λ0(PW)) < R < ∞, the channel error exponent E(R,W) for an SEM

channel W satisfies

E(R,W) ≤ E(R,W), (21)

where

E(R,W) , sup
ρ≥0

{
ρ(log2 B − R) − (1 + ρ) log2 λ 1

1+ρ
(PW)

}
. (22)

Particularly, for C(W) ≤ R < ∞, E(R,W) = 0.

When the SEM channel reduces to an additive noise DMC, log2 (B/λ0(PW)) = R∞ [10, p. 158]. Note

that the usual case (when the transition matrix is positive) is that log2 (B/λ0(PW)) = 0 (see Lemma 1).

It can be shown that E(R,W) is positive, non-increasing and convex, and hence strictly decreasing in

R. Comparing with Gallager’s random-coding lower bound for E(R,W) [10] (when specialized for SEM

channels) given by

Er(R,W) , max
0≤ρ≤1

{
ρ(log2 B − R) − (1 + ρ) log2 λ 1

1+ρ
(PW)

}
, (23)

and applying the results of Section 3, we note that the upper and lower bounds are equal if R ≥ Rcr, where

Rcr , log2 B − H
(
P̃W 1

2

)
is the critical rate of the SEM channel. Thus, the channel error exponent for

SEM channel is determined exactly for R ≥ Rcr.

Example 1 We consider a system consisting of a binary SEM source Q and a binary SEM channel W

with transmission rate t = 1, both with symmetric transition matrices given by

Q =

[
q 1 − q

1 − q q

]
and PW =

[
p 1 − p

1 − p p

]
,
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such that 0 < p, q < 1.4 The upper and lower bounds for EJ(Q,W, t) are plotted as a function of

parameters p and q in Fig. 1. It is observed that for this source-channel pair, the bounds are tight for a

large class of (p, q) pairs. Only when p or q is extremely close to 0 or 1, is EJ not exactly known.

One may next ask if the lower and upper bounds for the SEM source-channel pair enjoy a form that

is similar to Csiszár’s bounds for DMS-DMC pairs [5], which are expressed as the minimum of the sum of

the source error exponent and the lower/upper bound of the channel error exponent. The answer is indeed

affirmative, as given in the following theorem.

Theorem 4 Let tH(Q) < C(W) and λt
0(Q)λ0(PW) > B. The following equivalent representations hold

max
ρ≥0

F (ρ) = min
log2(B/λ0(PW))<R<t log2 λ0(Q)

[
te

(
R

t
,Q

)
+ E(R,W)

]
, (24)

max
0≤ρ≤1

F (ρ) = min
0≤R<t log2 λ0(Q)

[
te

(
R

t
,Q

)
+ Er(R,W)

]
. (25)

where F (ρ) is defined in (7), e(R,Q) = e(R,Q) is given by (20), and E(R,W) and Er(R,W) are given by

(22) and (23), respectively.

Note that we write “min” instead of “inf” in (24) and (25) because the optimizations are achievable

due to the convexity of the source and channel exponents. Theorem 4 can be proved via the Lagrange

multiplier method, since the functions log2 λ1/(1+ρ)(Q) and log2 λ1/(1+ρ)(PW) are differentiable functions

of ρ and their derivatives admit closed-form expressions (recall Lemma 3). Alternately and more succinctly,

we can prove (24) and (25) using Fenchel duality [14]; the reader may consult [26, Theorem 1] for details.

When the source Q and channel W are discrete memoryless, the right-hand side of (24) and (25) reduce

to Csiszár’s lower and upper bounds for EJ [5]. In fact, Csiszár establishes the upper bound for EJ for a

DMS-DMC pair (Q,W ) in terms of the exact source and channel exponents e(R,Q) and E(R,W ) [5]:

EJ(Q,W, t) ≤ min
R

[
te

(
R

t
,Q

)
+ E(R,W )

]
. (26)

Meanwhile, he points out that if we replace the channel exponent in (26) by its sphere-packing bound

Esp(R,W ), we can obtain a (possibly) looser but computable upper bound

min
R

[
te

(
R

t
,Q

)
+ Esp(R,W )

]
, (27)

which is called the sphere-packing bound to EJ by the authors in [26]. In Appendix C, we show that the

bound (26) still applies for SEM source-channel pairs, i.e., EJ is upper bounded by the minimum of the

sum of the SEM source exponent e(R,Q) and the SEM channel exponent E(R,W), by which we prove

that the JSC exponent can at most double the tandem coding exponent (see Theorem 5). However, the

bound in terms of e(R,Q) and E(R,W), though tighter than the sphere-packing type bound (24), is not

4Note that PW is not the channel probability transition matrix; it is the transition matrix of SEM channel noise.
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computable in general, since the behavior of the SEM channel error exponent E(R,W) is unknown for

rates smaller than the critical rate Rcr.

We point out that the parametric expressions of these bounds (the left-hand side of (24) and (25))

facilitate the computation of EJ , while the bounds in Csiszár’s form are instrumental for the comparison

of JSC and tandem coding exponents, a subject studied in the next section.

5 JSC vs Tandem Coding Error Exponents

5.1 Tandem Coding Exponent for Systems with Memory

A tandem code (f∗
n, ϕ∗

n) , (fcn ◦ fsn, ϕsn ◦ ϕcn) for a discrete source Q and a discrete channel W is

composed “independently” of a (tn, Ln) block source code (fsn, ϕsn) defined by fsn : Stn −→ {1, 2, ..., Ln}

and ϕsn : {1, 2, ..., Ln} −→ Stn with source code rate

Rs,n ,
log2 Ln

tn
source code bits/source symbol,

and an (n,Ln) block channel code (fcn, ϕcn) defined by fcn : {1, 2, ..., Ln} −→ X n and ϕcn : Yn −→

{1, 2, ..., Ln} with channel code rate

Rc,n ,
log2 Ln

n
source code bits/channel use,

where “◦” denotes composition, and we assume that the limit limn→∞
log2 Ln

n exists, i.e., lim infn→∞
log2 Ln

n =

lim supn→∞
log2 Ln

n . Here “independently” means that the source code is designed without the knowledge

of the channel statistics, and the channel code is designed without the knowledge of the source statistics.

The error probability of the tandem code (f∗
n, ϕ∗

n) is hence given by

P
(n)
e∗ (Q,W, t) , Pr

(
ϕsn [ϕcn(Y n)] 6= Stn

)
. (28)

Definition 2 The tandem coding error exponent ET (Q,W, t) for source Q and channel W is defined as the

supremum of all numbers Ê for which there exists a sequence of tandem codes (f∗
n, ϕ∗

n) , (fcn◦fsn, ϕsn◦ϕcn)

with transmission rate t blocklength n such that

Ê ≤ lim inf
n→∞

−
1

n
log2 P

(n)
e∗ (Q,W, t).

In the sequel we sometimes refer to ET (Q,W, t) by ET when there is no possibility of confusion. Since

tandem coding exponent results from separately performing and concatenating optimal source and channel

coding, it can be shown5 (e.g., [5, 27]) that

ET (Q,W, t) = sup
R

min

{
te

(
R

t
,Q

)
, E(R,W)

}
, (29)

5To prove (29), one needs to assume that the source and channel coding operations are decoupled via common randomization

(by applying a randomly selected permutation map, e.g., see [13]) at their interface in both the transmitter and the receiver.

This is a natural assumption needed to achieve total (statistical) separation between source and channel coding; see [27] for

the details.
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where e(R,Q) and E(R,W) are the source and channel error exponents, respectively. To evaluate ET

for an SEM source-channel pair (Q,W), we recall that e(R,Q) is 0 for R ≤ H(Q), strictly increasing in

H(Q) ≤ R ≤ log2 λ0(Q) and infinity for R > log2 λ0(Q) ([15], [21]), while E(R,W) is non-increasing and

positive in R < C(W), and vanishes at R = C(W).

Therefore, if the graphs of te (R/t,Q) and E(R,W) have an intersection at Ro, then it immediately

follows from (29) that

ET (Q,W, t) = te

(
Ro

t
,Q

)
= E(Ro,W).

If there is no intersection between te (R/t,Q) and E(R,W) then

ET (Q,W, t) = E(t log2 λ0(Q),W)

by (29).

Note that EJ ≥ ET ; meanwhile, EJ = ET = 0 if tH(Q) ≥ C(W) for SEM source-channel pairs. We are

hence interested in determining the conditions for which EJ > ET when tH(Q) < C(W). Although both

EJ and ET are not always determined, we can still provide some sufficient conditions for which EJ > ET .

Before we proceed, we first show that for SEM source-channel pairs, the JSC coding exponent can at most

double the tandem coding exponent. Note that the same result holds for DMS-DMC pairs, as shown in

[26].

Theorem 5 For an SEM source Q and an SEM channel W, the JSC coding exponent is upper bounded

by twice the tandem coding exponent

EJ(Q,W, t) ≤ 2ET (Q,W, t).

To prove this result, we need two steps. The first is to establish another upper bound for EJ , as we

discussed in the end of the last section, in terms of e(R,Q) and E(R,W) by using the technique of Markov

types ([8], [9], [15]), and the second is to justify that the bound is at most equal to twice ET . Although

the approach for the first step is analogous to the one that Csiszár used for DMS-DMC pairs [5], we still

give a self-contained proof in Appendix C for the sake of completeness.

5.2 Sufficient Conditions for which EJ > ET

When the entropy rate of the SEM source is equal to log2 λ0(Q), the source error exponent would be zero

for R ≤ log2 λ0(Q) and infinity otherwise. In this case, the source is incompressible and only channel

coding is performed in both JSC coding and tandem coding; as a result, EJ(Q,W, t) = ET (Q,W, t) =

E(t log2 λ0(Q),W) by (24), (25) and (29). Note that log2 λ0(Q) might not be equal to log2 |S| by Lemma

1, as compared with the DMS. Thus, we assume in the rest of the section that H(Q) < log2 λ0(Q) (such

that the source is compressible ) and that tH(Q) < C(W) (such that both EJ and ET are positive). We

also assume in the sequel that all the sources and channels are SEM.
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Theorem 6 Let f be defined by (8). If f(1) ≤ 0, i.e., tH
(
Q̃ 1

2

)
+H

(
P̃W 1

2

)
≥ log2 B, then EJ(Q,W, t) >

ET (Q,W, t).

Proof : Since we assumed that tH(Q) < C(W) or equivalently f(0) > 0 (see Lemma 4), if now f(1) ≤ 0,

then there exists some ρ (0 < ρ ≤ 1) such that f(ρ) = 0 by the continuity of f(·). Let ρ∗ be the smallest

one satisfying f(ρ∗) = 0. According to Theorem 3, the JSC coding error exponent is determined exactly

by EJ(Q,W, t) = F (ρ∗). On the other hand, we know from (24) that

F (ρ∗) = min
log2(B/λ0(PW))<R<t log2 λ0(Q)

[
te

(
R

t
,Q

)
+ E(R,W)

]
.

Suppose the above minimum is achieved by some Rm, i.e.,

F (ρ∗) = te

(
Rm

t
,Q

)
+ E(Rm,W).

It can be shown (cf. [26]) that Rm is related to ρ∗ as follows

Rm = tH
(
Q̃ 1

1+ρ∗

)
= log2 B − H

(
P̃W 1

1+ρ∗

)
.

Since ρ∗ is positive, from the above we know tH(Q) ≤ Rm ≤ C(W) by the monotonicity of H
(
Q̃ 1

1+ρ

)

and H

(
P̃W 1

1+ρ

)
. In the following we first assume that te(R/t,Q) and E(R,W) intersect at Ro, i.e., there

exists an Ro ∈ (tH(Q), C(W)) such that

ET (Q,W, t) = te

(
Ro

t
,Q

)
= E(Ro,W) > 0.

If Rm > Ro, then

EJ(Q,W, t) ≥ te

(
Rm

t
,Q

)
> te

(
Ro

t
,Q

)
= ET (Q,W, t).

If Rm = Ro, then

EJ(Q,W, t) = 2ET (Q,W, t) > ET (Q,W, t).

If Rm < Ro, then

EJ(Q,W, t) ≥ E(Rm,W) > E(Ro,W) = ET (Q,W, t).

We next assume that there is no intersection between te(R/t,Q) and E(R,W), i.e., te(R/t,Q) < E(R,W)

for all R < t log2 λ0(Q). If Rm = tH(Q), then

EJ (Q,W, t) = E(Rm,W) > E(t log2 λ0(Q),Q) = ET (Q,W, t)

since H(Q) < log2 λ0(Q) is assumed. If Rm > tH(Q), then

EJ(Q,W, t) ≥ te

(
Rm

t
,Q

)
+ E(t log2 λ0(Q),Q) > E(t log2 λ0(Q),Q) = ET (Q,W, t)
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since the source error exponent is positive at Rm > tH(Q). �

Theorem 6 states that if EJ is determined exactly (i.e., its upper and lower bounds coincide), no matter

whether ET is known or not, then the JSC coding exponent is larger than the tandem exponent. Conversely,

if ET is determined exactly, irrespective of whether EJ is determined or not, the strict inequality between

EJ and ET also holds, as shown by the following results.

Theorem 7

(a) If tH(Q) ≥ Rcr, then EJ(Q,W, t) > ET (Q,W, t).

(b) Otherwise, if tH(Q) < Rcr and t log2 λ0(Q) > Rcr, there must exist some ρ satisfying tH(Q̃ 1
1+ρ

) = Rcr.

Let ρm be the smallest one satisfying such equation. If

(1 + ρm)t[H(Q̃ 1
1+ρm

) − log2 λ 1
1+ρm

(Q)] ≤ log2 B − 2 log2 λ 1
2
(PW),

then EJ(Q,W, t) > ET (Q,W, t).

Remark 6 By the monotonicity of H(Q̃ 1
1+ρ

), ρm can be solved numerically.

Proof : Recall that Rcr = log2 B − H
(
P̃W 1

2

)
is the critical rate of the channel W such that the channel

exponent is determined for R ≥ Rcr, i.e., E(R,W) = Er(R,W) = E(R,W) if R ≥ Rcr. We first show

that EJ > ET if te(Rcr/t,Q) ≤ E(Rcr,W), and then we show that te(Rcr/t,Q) ≤ E(Rcr,W) if and only

if (a) or (b) holds.

Now if te(Rcr/t,Q) ≤ E(Rcr,W), then ET (Q,W, t) is determined exactly. There are two cases to

consider:

1.) If te(R/t,Q) and E(R,W) intersect at Ro such that Rcr ≤ Ro < C(W), then

ET (Q,W, t) = te

(
Ro

t
,Q

)
= Er(Ro,W) > 0.

On the other hand, (17) and (18) yield

EJ(Q,W, t) ≥ max
0≤ρ≤1

F (ρ) = F (ρ∗),

where ρ∗ = min(1, ρ∗) > 0 and recall that ρ∗ is the smallest positive number satisfying f(ρ∗) = 0. It

follows from (25) that

F (ρ∗) = min
0≤R<t log2 λ0(Q)

[
te

(
R

t
,Q

)
+ Er(R,W)

]
.

Similar to Rm in the last proof, it can be shown (cf. [26]) that the above minimum is achieved by

some Rm such that

Rm = tH
(
Q̃ 1

1+ρ∗

)
≥ tH(Q).
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If Rm > Ro, then

EJ(Q,W, t) ≥ te

(
Rm

t
,Q

)
> te

(
Ro

t
,Q

)
= ET (Q,W, t).

If Rm = Ro, then

EJ(Q,W, t) = 2ET (Q,W, t) > ET (Q,W, t).

If Rm < Ro, likewise, we have

EJ(Q,W, t) ≥ Er(Rm,W) > Er(Ro,W) = ET (Q,W, t).

2.) If te(R/t,Q) and E(R,W) have no intersection, we still have, as in the last proof, if Rm = tH(Q),

then

EJ(Q,W, t) ≥ Er(Rm,W) > Er(t log2 λ0(Q),Q) = ET (Q,W, t);

otherwise if Rm > tH(Q), then

EJ(Q,W, t) > Er(Rm,W) ≥ Er(t log2 λ0(Q),W) = ET (Q,W, t).

Finally, we point out that the sufficient and necessary conditions for te(Rcr/t,Q) ≤ E(Rcr,W) is that (a)

tH(Q) ≥ Rcr such that te(Rcr/t,Q) = 0; or (b) te(Rcr/t,Q) > 0 but te(Rcr/t,Q) ≤ E(Rcr,W). Using

the fact that

E(Rcr,W) = H(P̃W 1
2

) − 2 log2 λ 1
2
(PW),

we obtain Condition (b) and complete the proof. �

Example 2 We next examine Theorems 6 and 7 for the following simple example. Consider a ternary

SEM source Q and a binary SEM channel W, both with symmetric transition matrices given by

Q =




q (1 − q)/2 (1 − q)/2

(1 − q)/2 q (1 − q)/2

(1 − q)/2 (1 − q)/2 q


 and PW =

[
p 1 − p

1 − p p

]

such that 0 < p, q < 0.5. Suppose now the transmission rate t = 0.5. If (q, p) satisfies any one of the

conditions of Theorems 6 and 7, then EJ(Q,W, t) > ET (Q,W, t). The range for which the inequality

holds is summarized in Fig. 2. For the channel with p = 0.025 and p = 0.05, we plot the JSC coding

and tandem coding error exponents against the source parameter q whenever they are exactly determined,

see Fig. 3. We note that for these source-channel pairs, EJ(Q,W) substantially outperforms ET (Q,W)

(indeed EJ(Q,W) ≈ 2ET (Q,W)) for a large class of (q, p) pairs. We then plot the two exponents under

the transmission rate t = 0.75 whenever they are determined exactly, and obtain similar results, see Fig.

4. In fact, for many other SEM source-channel pairs (not necessarily binary SEM sources or ternary SEM

channels) with other transmission rates, we observe similar results; this indicates that the JSC coding

exponent is strictly better than the tandem coding exponent for a wide class of SEM systems.

19



6 Systems with Arbitrary Markovian Orders

Suppose that the SEM source {Ui}
∞
n=1 with alphabet U has a Markovian order Ks ≥ 1. Define process

{Si}
∞
n=1 obtained by Ks-step blocking the Markov source P; i.e.,

Sn , (Un, Un+1, ..., Un+Ks−1).

Then

Pr(Sn = jn|Sn−1 = jn−1, ..., S1 = j1) = Pr(Sn = jn|Sn−1 = jn−1), j1, ..., jn ∈ S = UKs

and the source Q is a first order SEM source with |U|Ks states. Therefore, all the results in this paper

can be readily extended to SEM systems with arbitrary order by converting the Ks-th order SEM source

to a first order SEM source of larger alphabet. Also, if the additive SEM noise PW of the channel has

Markovian order Kc ≥ 1, we can similarly convert it to a first order SEM noise with expanded alphabet. In

the following we present an example for the system consisting of an SEM source (of order Ks = 1) and the

queue based channel (QBC) [24] with memory Kc = 2, as the QBC approximates well for a certain range

of channel conditions the Gilbert-Elliott channel [24] and hard decision demodulated correlated fading

channels [25].

Example 3 (Transmission of an SEM source over the QBC [24]) A QBC is a binary additive

channel whose noise process PW =
{
p
(n)
W : Zn

}∞

n=1
(where Z = {0, 1}) is generated according to a mixture

mechanism of a finite queue and a Bernoulli process [24]. At time i, the noise symbol Zi is chosen either

from the queue described by a sequence of random variables (Qi,1, ..., Qi,Kc) (Qi,j ∈ {0, 1}, j = 1, 2, ...,Kc)

with probability ε or from a Bernoulli process with probability 1 − ε such that

• If Zi is chosen from the queue process, then

Pr(Zi = Qi,j) =

{
1/(Kc − 1 + α), j = 1, 2, ...,Kc − 1,

α/(Kc − 1 + α), j = Kc

if Kc > 1 and α ≥ 0 is arbitrary; otherwise Pr(Zi = Qi,1) = 1 if Kc = 1.

• If Zi is chosen from the Bernoulli process, then Pr(Zi = 1) = p (p ≪ 1/2) and Pr(Zi = 0) = 1 − p.

At time i + 1, we first shift the queue from left to right by the following rule

(Qi+1,1, ..., Qi+1,Kc) = (Zi, Qi,1, ..., Qi,Kc−1),

then we generate the noise symbol Zi+1 according to the same mechanism. It can be shown [24] that the

QBC is actually an Kc-th order SEM channel characterized only by four parameters ε, α, p and Kc.

Now we consider transmitting the first order SEM source Q with transition matrix

Q =




0.1 0.5 0.4

0.4 0.4 0.2

0.05 0.15 0.8



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under transmission rate t = 1 over the QBC with Kc = 2 such that the noise process PW is a second order

SEM process. After 2-step blocking PW, we obtain a first order SEM process PKc

W with transition matrix

PKc

W =




ε + (1 − ε)(1 − p) 0 (1 − ε)p 0
ε

1+α + (1 − ε)(1 − p) 0 εα
1+α + (1 − ε)p 0

0 εα
1+α + (1 − ε)(1 − p) 0 ε

1+α + (1 − ε)p

0 (1 − ε)(1 − p) 0 ε + (1 − ε)p




.

We next compute EJ and ET for the ternary SEM source and the QBC given above. When p = 0.05,

α = 1, EJ and ET are both determined exactly if ε ∈ [0.001, 0.992]. We plot the two exponents by varying

ε. We see from Fig. 5 that EJ ≈ 2ET for all the ε ∈ [0.001, 0.992]. When we choose p = 0.05, α = 0.1

for which EJ and ET are both determined exactly if ε ∈ [0.001, 0.968], we have similar results, see Fig.

5. It is interesting to note that when ε gets smaller, EJ and ET approach the exponents resulting from

the SEM source Q and the binary symmetric channel (BSC) with crossover probability p = 0.05. This is

indeed expected since the QBC reduces to the BSC when ε = 0 [24].

7 Concluding Remarks

In this work, we establish a computable upper bound for the JSC coding error exponent EJ of SEM source-

channel systems. We also examine Gallager’s lower bound for EJ for the same systems. It is shown that

EJ can be exactly determined by the two bounds for a large class of SEM source-channel pairs.

As a result, we can systematically compare the JSC coding exponent with the tandem exponent for

such systems with memory and study the advantages of JSC coding over the traditional tandem coding.

We first show EJ ≤ 2ET by deriving an upper bound for EJ in terms of the source and channel exponents.

We then provide sufficient (computable) conditions for which EJ > ET . Numerical results indicate that

the inequality holds for most SEM source-channel pairs, and that EJ ≈ 2ET in many cases even though

EJ is upper bounded by twice ET , which means that for the same error probability Pe, JSC coding would

require around half the delay of tandem coding, that is,

Pe ≈ 2−nET (Q,W,t) = 2−
n
2
EJ(Q,W,t)

for n sufficiently large. Finally, we note that our results directly carry over for SEM source-channel pairs

of arbitrary Markovian order.

Appendices

A Proof of Lemma 1

Let H be the M × M matrix with all components equal to 1, i.e., H , [1]M×M . Clearly, u , [ 1
M , ..., 1

M ]

is the unique normalized positive eigenvector (Perron vector) of H with associated positive eigenvalue M ;
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thus when P > [0]M×M , λ0(P) = M . We next show by contradiction that λ0(P) < M if there are zero

components in matrix P . We assume that there exist some pij = 0 and λ0(P) ≥ M . Then

λ0(P)u ≥ Mu = Hu = Hv(0),

where the last equality holds since u and v(0) are both normalized vectors. We thus have

(H− P (0))v(0) ≤ λ0(P)(u − v(0)).

Now summing all the components of the vectors on both sides, we obtain

∑

i,j

aijvj(0) ≤ 0,

where aij is the (i, j)th component of the matrix H − P (0) such that aij = 0 if pij > 0 and aij = 1 if

pij = 0. This contradicts with the fact that all vj(0)’s are positive and thus λ0(P) < M if P has zero

components. We also conclude that P > [0]M×M is the sufficient and necessary condition for λ0(P) = M .

�

B Proof of Lemma 2

Since {Ui}
∞
i=1 is SEM source under P and P̃α, it follows by the Ergodic Theorem [1] that the normalized

log-likelihood ratio between P and P̃α converges to their Kullback-Leibler divergence rate almost surely,

i.e.,

1

n
log2

p̃
(n)
α (Un)

p(n)(Un)
−→ D(P̃α ‖ P)

almost surely under p̃α as n → ∞, where

D(P̃α ‖ P) , lim
n→∞

1

n
D(p̃(n)

α ‖ p(n)).

Note that for any n we can write

1

n
D(p̃(n)

α ‖ p(n)) = −
1

n
H(p̃(n)

α ) −
1

n

∑

in

p̃(n)
α (in) log2 p(n)(in), in = (i1 · · · in) ∈ Un. (30)

Recalling that P is described by the initial stationary distribution π = {π1, π2, ..., πM} and transition matrix

P = [pij]M×M , and that P̃α is described by the initial stationary distribution π(α) = (π(α)1, π(α)2, ..., π(α)M )

and transition matrix P̃ (α) , [p̃ij(α)]M×M given by (2), we have

p̃(n)
α (in) = π(α)i1

pα
i1i2

· · · pα
in−1in

λα(P)n−1

vin(α)

vi1(α)

=
p(n)(in)α

λα(P)n−1

π(α)i1vin(α)

πα
i1

vi1(α)
(31)
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for all in ∈ Un. Consequently, using (30) and (31), we have

1

n
D(p̃(n)

α ‖ p(n)) =
1 − α

α

1

n
H(p̃(n)

α ) −
1

α

n − 1

n
log2 λα(P)

−
1

n

1

α

∑

i1,in

p̃α(i1, in) log2

(
πα

i1
vi1(α)

π(α)i1vin(α)

)
. (32)

Taking the limit on both sides of (32), and noting that the last term approaches 0 since
∣∣∣∣∣∣
1

α

∑

i1,in

p̃α(i1, in) log2

(
πα

i1
vi1(α)

π(α)i1vin(α)

)∣∣∣∣∣∣
≤

M2

α
max
i1,in

∣∣∣∣log2

(
πα

i1
vi1(α)

π(α)i1vin(α)

)∣∣∣∣ < +∞,

where π, π(α), and v(α) are all positive for SEM sources (according to the Perron-Frobenius Theorem

[18]). We hence obtain

D(P̃α ‖ P) =
1 − α

α
H(P̃α) −

1

α
log2 λα(P).

�

C Proof of Theorem 5

Step 1: We first set up some notations and basic facts regarding Markov types adopted from [8] and [15].

Given a source sequence s = (s1, s2, ..., sk) ∈ Sk (|S| = M), let kij(s) be the number of transitions from

i ∈ S to j ∈ S in s with the cyclic convention that s1 follows sk. We denote the matrix
[
kij(s)

k

]

M×M

by Φ(k)(s) and call it the Markov type (empirical matrix) of s, where
∑

i,j kij(s) = k and it is easily seen

that
∑

j kij =
∑

j kji for all i. In other words, the (k-length) sequence s of type P has the empirical matrix

Φ(k)(s) which is equal to P . The set of all types of k-length sequences will be denoted by Ek. Next we

introduce a class of matrices that includes Ek for all k as a dense subset. Let

E =



P : P = [pij]M×M ,

∑

i,j

pij = 1, and pij ≥ 0,
∑

j

pij =
∑

j

pji for all i



 .

Note that Ek → E as k → ∞ in the sense that for any P ∈ E , there exists a sequence of {Φ(k)} ∈ Ek, such

that Φ(k) → P uniformly.

For P ∈ E and any M × M transition (stochastic) matrix Q = [qij]M×M (such that
∑

j qij = 1 for all

i), define

Hc(P ) , −
∑

i,j

pij log2
pij∑
j pij

be the conditional entropy of P and

Dc(P ‖ Q) ,
∑

i,j

pij log2
pij

qij
∑

j pij
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be the conditional divergence of P over Q. Let P ∈ Ek be a Markov type, and let TP =
{
s ∈ Sk : Φ(k)(s) = P

}

be a Markov type class. We define MP (i, j) , {s = (s1, s2, ..., sk) ∈ TP : s1 = i, sk = j}. Clearly, MP (i, j)

partitions the entire type class TP over (i, j) ∈ S×S, and all sequences in MP (i, j) are equiprobable under

Q(k)(·).

Lemma 5 [8] Let Q be a first-order finite-alphabet irreducible Markov source with transition matrix

Q = [qij]M×M and arbitrary initial distribution q > 0. Let α , mini qi. Then we have the following

bounds.

(1) For any i, j ∈ S and P ∈ Ek such that MP (i, j) 6= ∅, |MP (i, j)| ≥ k−M (k + 1)−M2
2kHc(P ).

(2) Q(k)(TP ) ≥ k−M (k + 1)−M2
α2−kDc(P‖Q).

Remark 7 Remark that in [8], the authors assume both irreducibility and aperiodicity for the Markov

source Q and also derive an upper bound for the probability of type classes Q(k)(TP ). Here we only need

the lower bound above for Q(k)(TP ); thus the aperiodicity assumption is not required.

Note also that M and α are quantities independent of k, and that for SEM sources, the stationary

distribution (which is the initial distribution) is unique and positive.

Step 2: Set k = tn. Rewrite the probability of error given in (1) as a sum of probabilities of types and

lower bound it by

P (n)
e (Q,W, t)

=
∑

P∈Ek

∑

s∈TP

Q(k)(s)
∑

y∈Ac
s

W (n)(y|fn(s))

≥ max
P∈Ek

∑

s∈TP

Q(k)(s)
∑

y∈Ac
s

W (n)(y|fn(s))

= max
P∈Ek

∑

(i,j)∈S×S:MP (i,j)6=∅

∑

s∈MP (i,j)

Q(k)(s)
∑

y∈Ac
s

W (n)(y|fn(s))

= max
P∈Ek

∑

(i,j)∈S×S:MP (i,j)6=∅




∑

s′∈MP (i,j)

Q(k)(s′)




∑

s∈M(i,j)

Q(k)(s)∑
s′∈MP (i,j) Q(k)(s′)

∑

y∈Ac
s

W (n)(y|fn(s))

= max
P∈Ek

∑

(i,j)∈S×S:MP (i,j)6=∅

∑

s′∈MP (i,j)

Q(k)(s′)Pe(MP (i, j)) (33)

where

Pe(MP (i, j)) ,
1

|MP (i, j)|

∑

s∈MP (i,j)

∑

y∈Ac
s

W (n)(y|fn(s)).

We note that Pe(MP (i, j)) is actually the (average) probability of error of the n-block channel code (fn, ϕn)

with message set (source) MP (i, j) and channel W. Recall that the channel error exponent E(R,W) is

the largest exponential rate such that the probability of error decays to zero [7] over all channel codes of

rate no larger than R. Then Pe(MP (i, j)) is lower bounded by

Pe(MP (i, j)) ≥ 2−nE( 1
n

log2 |MP (i,j)|,W)+o(n) ≥ 2
−nE

“
tHc(P )−M

n
log2 k−M2

n
log2(k+1),W

”
+o(n)

,
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where the second inequality follows from the monotonicity of E(R,W) and Lemma 5 (1), and o(n) is a

term that tends to zero as n goes to infinity. It then follows from (33) and Lemma 5 (2) that

P (n)
e (Q,W, t)

≥ max
P∈Ek

Q(k)(TP )2
−nE

“
tHc(P )−M

n
log2 k−M2

n
log2(k+1),W

”
+o(n)

≥ max
P∈Ek

k−M (k + 1)−M2
απ2−kDc(P‖Q)2

−nE
“
tHc(P )−M

n
log2 k−M2

n
log2(k+1),W

”
+o(n)

holds for any source-channel codes (fn, ϕn), where απ > 0 denotes the smallest component in the stationary

distribution, which is independent of k. Since when n → ∞, Ek → E (recalling that k = tn and t is a

constant). By the definition of JSC coding error exponent, we obtain

EJ(Q,W, t) ≤ min
P∈E

[tDc(P ‖ Q) + E(tHc(P ),W)]

≤ min
P∈E:tHc(P )=R∈[tH(Q),t log2 λ0(Q)]

[tDc(P ‖ Q) + E(R,W)]

= min
tH(Q)≤R≤t log2 λ0(Q)

[
min

P∈E:tHc(P )=R
tDc(P ‖ Q) + E(R,W)

]

= min
tH(Q)≤R≤t log2 λ0(Q)

[
te

(
R

t
,Q

)
+ E(R,W)

]
. (34)

In (34) we used the facts that

min
P∈E:Hc(P )≥R/t

Dc(P ‖ Q) = min
P∈E:Hc(P )=R/t

Dc(P ‖ Q) (35)

is an equivalent representation of e(R,Q) given in Corollary 1 (cf. [15]), and that e(R,Q) actually de-

termines the source error exponent e(R,Q), where the second equality of (35) follows from the strict

monotonicity of e(R/t,Q) in [tH(Q), t log2 λ0(Q)].

Step 3: We recall that te (R/t,Q) is a strictly increasing function when tH(Q) ≤ R ≤ t log2 λ0(Q) and

is infinity when R > t log2 λ0(Q), and E(R,W) is a non-increasing function of R. We thereby denote Ro

to be the rate satisfying te(Ro/t,Q) = E(Ro,W) if any; otherwise we just let Ro be t log2 λ0(Q). Thus

according to (29) we can always write that ET (Q,W, t) = E(Ro,W) and Ro is a rate in the interval

[tH(Q), t log2 λ0(Q)]. To avoid triviality, we assume that ET (Q,W, t) (or E(Ro,W)) is finite, which also

implies that EJ(Q,W, t) is finite by (34). Suppose now the minimum of (34) is attained at Rm. We then

have

EJ(Q,W, t) ≤ te

(
Rm

t
,Q

)
+ E(Rm,W)

≤ te

(
Ro

t
,Q

)
+ E(Ro,W)

≤ 2E(Ro,W)

= 2ET (Q,W, t).

�
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Figure 1: The lower and upper bounds of EJ for the binary SEM source and the binary SEM channel of

Example 1 with t = 1.

28



0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p

q

E
J
=E

T
=0

(tH(Q) ≥C(W))

E
J
>E

T
>0

E
J
≥E

T
>0

Figure 2: The regions for the ternary SEM source and the binary SEM channel of Example 2 with t = 0.5.
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Figure 3: Comparison of EJ and ET for the ternary SEM source and the binary SEM channel of Example

2 with t = 0.5.
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Figure 4: Comparison of EJ and ET for the ternary SEM source and the binary SEM channel of Example

2 with t = 0.75.
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Figure 5: Comparison of EJ and ET for the SEM source and the QBC of Example 3 with t = 1.
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