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Abstract

A model for a binary additive noise communication channel with memory is introduced. The channel noise

process, which is generated according to a ball sampling mechanism involving a queue of finite length M , is a

stationary ergodic Mth order Markov source. The channel properties are analyzed and several of its statistical and

information theoretical quantities (e.g., block transition distribution, autocorrelation function (ACF), capacity,

and error exponent) are derived in either closed or easily computable form in terms of its four parameters. The

capacity of the queue-based channel (QBC) is also analytically and numerically compared for a variety of channel

conditions with the capacity of other binary models, such as the well-known Gilbert-Elliott channel (GEC), the

Fritchman channel and the finite-memory contagion channel. We also investigate the modeling of the traditional

GEC using this queue-based channel (QBC) model. The QBC parameters are estimated by minimizing the

Kullback-Leibler divergence rate between the probability of noise sequences generated by the GEC and the QBC,

while maintaining identical bit error rates and correlation coefficients. The accuracy of fitting the GEC via the

QBC is evaluated in terms of ACF, channel capacity and error exponent. Numerical results indicate that the QBC

provides a good approximation of the GEC for various channel conditions; it thus offers an interesting alternative

to the GEC while remaining mathematically tractable.
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1 Introduction

It is well known that most real-world communication channels have memory and experience noise and fading distor-

tions in a bursty fashion [24]. In order to design effective communication systems for such channels, it is critical to

fully understand their behavior. This is achieved via channel modeling, where the primary objective is to provide a

model whose properties are both complex enough to closely capture the real channel statistical characteristics, and

simple enough to allow mathematically tractable system analysis.

During the past several decades, a variety of channel models with memory have been proposed and studied for

the modeling of wireless channels. The most commonly used models for representing the “discretized” version (under

hard-decision demodulation) of binary-input fading channels with memory [29, 30] are the Gilbert-Elliott channel

(GEC) [19, 14] and the Fritchman channel (FC) [16]. They were for example employed to model high-frequency

channels [37], mobile radio channels [6, 35], low earth orbit satellite channels [7] and magnetic tape recorders [11].

These models, which have been partly adopted for historical reasons (since being introduced in the 1960s, they

were the first available models for channels with memory), are described by binary additive noise sources generated

via finite-state hidden Markov models (HMMs).1 Due to their HMM structure, such channels can be difficult

to mathematically analyze (e.g., they do not admit an exact closed-form expression for their capacity and their

block transition distribution is not transparently expressed in terms of the channel parameters), particularly when

incorporated within an overall source and/or channel coded system. This may partly explain why, to date, few (to the

best of our knowledge) coding techniques that effectively exploit the noise memory have been successfully constructed

for such HMM based channel models and for channels with memory in general (e.g, see [12, 18] where iterative

decoding of low-density parity-check codes (LDPC) over the GEC is studied and it is shown that exploiting the

channel memory at the decoder leads to significant performance gains). Instead, most current wireless communication

systems are designed for memoryless channels and employ channel block interleaving in an attempt to disperse the

channel memory and render the channel “locally memoryless” – i.e., use a long interleaving span to spread the error

bursts over several codewords so that the noise appears random within each codeword [25]. However, the use of

interleaving results in increased complexity and delay. More importantly, the failure to exploit the channel’s memory

leads to a waste of channel capacity since it is well known that memory increases capacity2 for a wide class of channels

(the class of information stable channels [10, 1]). It is therefore vital to construct channel models which can well

represent the behaviour of real-world channels while remaining analytically tractable for design purposes.

1A description of other lesser known, but related, finite or infinite state HMM based channel models is provided in [24].
2In other words, the capacity of the “equivalent” memoryless channel achieved by ideal interleaving (with infinite interleaving span)

is smaller than the capacity of the original channel (e.g., see [25]).
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In [1, Section VI], Alajaji and Fuja proposed a simple binary additive noise channel with memory, referred to as

the finite memory contagion channel (FMCC), where the noise process is generated via a finite-memory version of

Polya’s urn scheme for the spread of a contagious disease through a population [31]. In such a channel, every error

(or “infection”, if we use the contagion interpretation) effectively increases the probability of future errors ([31], [15,

p. 57]), and hence may lead to a clustering or burst of errors (i.e., an “epidemic” in the population). The resulting

channel has a stationary ergodic Mth order Markov noise source and is fully described by only three parameters.

Furthermore, it admits single-letter analytical expressions for its block transition distribution and capacity, which

is an attractive feature for mathematical analysis. The FMCC model was adopted in several joint source-channel

coding studies (e.g., [2, 4, 5, 22, 23, 28, 34] where the channel statistics are incorporated into the system design in

order to exploit the noise memory. The performance of structured LDPC codes for the FMCC was also recently

investigated in [26]. In light of the simple structure of the FMCC, the authors make a detailed density evolution

analysis and provide a complete characterization of the convergence region for iterative decoding within the channel

parameter space.

We introduce a new binary additive noise channel based on a finite queue of length M . The proposed queue-based

channel (QBC) model also features an Mth order Markov noise source that is fully characterized by four parameters,

making it more sophisticated than the FMCC for channel modeling (as it has an additional degree of freedom) while

remaining mathematically tractable. It is also important to point out that Pimentel et. al. recently showed in a

numerical study [30] that the class of binary channel models with additive Mth order Markov noise (to which both

the QBC and FMCC models belong) is a good approximation, in terms of the error autocorrelation function (ACF)

and variational distance, of the family of hard-decision frequency-shift keying demodulated correlated Rayleigh and

Rician fading channels for a good range of fading environments, particularly for medium and fast fading rates.

Note however, that the general Mth order Markov noise channels considered in [30] have a complexity (number

of parameters) that grows exponentially with M , rendering it impractical for the modeling of channels with large

memory such as very slow Rayleigh fading channels (e.g., see [30, Fig. 11]). The QBC model, on the other hand,

does not suffer from this limitation as it is fully described by only four parameters and it can accommodate very

large values of the memory M . Indeed, it was recently shown in [40, 41] that the QBC provides a significantly better

approximation of the correlated Rayleigh and Rician fading channels (in terms of fitting the error ACF) than the

GEC and the Markov models of [30]; this is observed for a wide range of channel conditions, including very slow

fading. The QBC also enjoys a transparent formula for its n-fold statistics and a closed form formula for its capacity,

which are appealing features as they provide powerful analytical tools for code design and system analysis.

We also study the approximation of the GEC via our QBC model. For a given GEC, we construct its “closest”
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QBC peer in the Kullback-Leibler distance sense; i.e., we estimate the QBC parameters by minimizing the Kullback-

Leibler divergence rate (KDLR) between the block transition probabilities of both channels, under the constraint

of maintaining identical bit error rates (BER) and correlation coefficients (Cor) (between two consecutive noise

samples). We then evaluate the accuracy of the fit between the QBC and the GEC in terms of channel capacity,

ACF and channel error exponent (or reliability function). Numerical results show that the QBC provides a good

approximation of the GEC for a broad range of channel conditions, and it thus offers an attractive alternative to the

GEC.

The rest of this paper is organized as follows. Preliminaries on previous channel models are presented in Section 2.

In Section 3, the QBC is introduced and its statistical (noise stationary distribution and block transition probability)

and information theoretic (capacity and reliability function) quantities are investigated. The channel is also studied

in the special case when the queue cells are selected with equal probability; the resulting channel is called the

uniform queue-based channel (UQBC). The QBC is next compared analytically and numerically in terms of channel

capacity with the FMCC, the GEC and a particular class of the Fritchman channel. In Section 4, the problem of

approximating the GEC via the QBC is considered. Finally, concluding remarks are given in Section 5.

Hereafter, a discrete-time binary additive noise communication channel refers to a channel with common input,

noise and output alphabet X = Z = Y = {0, 1} described by Yn = Xn ⊕ Zn, for n = 1, 2, 3, · · ·, where ⊕ denotes

addition modulo 2, and where Xn, Zn, and Yn denote, respectively, the channel’s input, noise, and output at time

n. Hence a transmission error occurs at time n whenever Zn = 1. It is assumed that the input and noise sequences

are independent of each other. In this paper, a given noise process {Zn}
∞
n=1 will be generated according to one of

the following models: the GEC, the FC, the FMCC or the QBC.

2 Preliminaries: Previous Binary Channel Models

2.1 Gilbert-Elliott Channel

The GEC model belongs to the family of finite-state channels, which is thoroughly studied in [17, pp. 97-111]. It

is driven by an underlying stationary ergodic Markov chain with two states: a good state and a bad state, denoted

by G and B, respectively (see Fig. 1). In a fixed state, the channel behaves like a binary symmetric channel (BSC).

The GEC is thus a time-varying BSC, where pG and pB (with pG < pB) are the crossover probabilities in the good

and bad states, respectively (the Gilbert Channel (GC) [19] is obtained when pG = 0, i.e., it behaves like a noiseless

BSC in the good state). After every symbol transmission, the Markov chain makes a state transition according to

the transition probability matrix
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Figure 1: The Gilbert-Elliott channel model.

P =







1 − b b

g 1 − g






,

where 0 < b < 1 and 0 < g < 1. A useful approach for calculating the probability of an error or noise sequence for

the Gilbert-Elliott Channel is discussed in [29]. By the law of total probability, the probability of a noise sequence

of length n, zn = (z1, z2, · · · , zn), may be expressed as

Pr(zn) = πT

(

n
∏

k=1

P (zk)

)

1, (1)

where P(zk) is a 2 × 2 matrix whose (i, j)th entry is the probability that the output symbol is zk when the chain

makes a transition from state sk−1 = i to sk = j. The vector π = [π0 π1]
T indicates the stationary distribution

vector of the GEC, and 1 is the 2-dimensional vector with all ones.

2.2 Fritchman Channel

"!
# 
"!
# 

"!
# 

"!
# 
"!
# 

"!
# r r r r r r0 1 K − 1 K K + 1 N − 1

Λ0

Error-Free States

Λ1

Error States

Figure 2: Partitioning of the state space of the Fritchman channel model.
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In 1967, Fritchman proposed a class of models by partitioning the state space Ω = {0, 1, · · · , N −1} of an N -state

stationary ergodic Markov chain into two groups of states Λ0 = {0, 1, · · · , K − 1} and Λ1 = {K, K + 1, · · · , N − 1}

resulting in the so-called (K, N − K) Fritchman channel (FC) [16]. Corresponding to this partition, the state

transition probability matrix P and the stationary vector π can be written in the block form

P =







P 00 P 01

P 10 P 11






,

and π = [π0 π1], where the submatrix P ij contains the transition probabilities from the set Λi to Λj . The noise

process at the nth time interval Zn is generated by a deterministic function of the state Sn at the nth time interval

Zn =











0, for Sn ∈ Λ0,

1, for Sn ∈ Λ1.

In [29], Pimentel and Blake represent the probability of a noise sequence of length n by

Pr(z1, z2, · · · , zn) = πT
z1

(

n−1
∏

l=1

P zlzl+1

)

1. (2)

2.3 Finite-Memory Contagion Channel

The noise process of the FMCC [1] is generated according to the following urn scheme: an urn originally contains

T balls, of which R are red and S are black (T = R + S). At the jth draw, j = 1, 2, · · · , we select a ball from the

urn and replace it with 1 + ∆ balls of the same color (∆ > 0); then M draws later - after the (j + M)th draw - we

retrieve from the urn ∆ balls of the color picked at time j. Let ρ = R/T , σ = 1 − ρ = S/T and δ = ∆/T . Then the

noise process {Zi}
∞
i=1 corresponds to the outcomes of the draws from the urn, where

Zi =











1, if the ith drawn ball is red,

0, if the ith drawn ball is black.

It can be shown that the noise process {Zi}
∞
i=M+1 is a stationary ergodic Markov source of order M [1].

3 Queue-Based Channel with Memory

We first present the queue-based binary channel with memory whose additive noise process is generated according

to a ball sampling involving the following two parcels.

• Parcel 1 is a queue of length M as shown in Fig. 3, that contains initially M balls, either red or black.
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- An1 An2 An3 · · · AnM
-

Figure 3: A queue of length M .

The random variables Ank (n is a time index referring to the nth experiment, n ≥ 1; k represents the position

in the queue, k = 1, 2, · · · , M) are defined by:

Ank =











1, if the kth cell contains a red ball,

0, if the kth cell contains a black ball.

• Parcel 2 is an urn that contains a very large number of balls where the proportion of black balls is 1− p and

the proportion of red balls is p, where p ∈ (0, 1), p ≪ 1/2.

We assume that the probability of selecting parcel 1 (the queue) is ε, while the probability of selecting parcel 2

(the urn) is 1 − ε and ε ∈ [0, 1). Notice that the channel is actually a memoryless binary symmetric channel (BSC)

with crossover probability p when ε = 0, in which case we experiment on the urn only.

The noise process {Zn}
∞
n=1 is generated according to the following procedure. By flipping a biased coin (with

Pr(Head)=ε), we select one of the two parcels (select the queue if Heads and the urn if Tails). If parcel 2 (the

urn) is selected, a pointer randomly points at a ball, and identifies its color. If parcel 1 (the queue) is selected, the

procedure is determined by the length of the queue. If M ≥ 2, a pointer points at the ball in cell k with probability

1/(M − 1 + α), for k = 1, 2, · · · , M − 1 and α ≥ 0, and points at the ball in cell M with probability α/(M − 1 + α),

and identifies its color. If M = 1, a pointer points at the ball in the only cell of the queue with probability 1; in this

case we set α = 1. If the selected ball from either parcel is red (respectively black), we introduce a red (respectively

black) ball in cell 1 of the queue, pushing the last ball in cell M out. The noise process {Zn}
∞
n=1 is then modeled as

follows:

Zn =











1, if the nth experiment points at a red ball,

0, if the nth experiment points at a black ball.

Intuitively, the above procedure, which generates each noise sample Zn, consists of randomly switching between

two sub-experiments: one sub-experiment, chosen with probability ε, involving a queue of length M (Parcel 1);

and one sub-experiment, chosen with probability 1 − ε, involving a large urn (Parcel 2). The noise sample Zn is

then determined by the outcome of the selected sub-experiment. Also, as indicated above, this outcome alters the

composition of the queue (by placing a new ball of the same color as the outcome in the first cell of the queue, thus

moving all the remaining balls by one cell to the right and flushing out the ball in the last cell).

We define the state of the channel to be Sn
△
=(An1, An2, · · · , AnM ), the binary M−tuple in the queue after the

nth experiment is completed. Note that, in terms of the noise process, the channel state at time n can be written as
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Sn = (Zn, Zn−1, · · · , Zn−M+1), for n ≥ M . If ε = 1 (i.e., we always choose the queue), the channel state at time n

can be either all 1s or all 0s for n sufficiently large since the two states are absorbing states. In this case the process

{Sn} is reducible; hence it is non-ergodic.

3.1 Statistical and Information Theoretical Properties of the QBC

We next investigate the properties of the binary noise process {Zn}
∞
n=1. We first observe that, for n ≥ M + 1,

Pr(M)(Zn = 1 | Zn−1 = zn−1, · · · , Z1 = z1)

= ε

(

zn−1 ·
1

M − 1 + α
+ · · · + zn−M+1 ·

1

M − 1 + α
+ zn−M ·

α

M − 1 + α

)

+ (1 − ε)p

= Pr(Zn = 1 | Zn−1 = zn−1, · · · , Zn−M = zn−M ), (3)

where zl ∈ {0, 1}, l = 1, · · · , n− 1. Hence {Zn}
∞
n=1 is a homogeneous (or time-invariant [15]) Markov process of order

M .

3.1.1 Stationary Distribution

Throughout this work, we consider the case where the initial distribution of the channel state {Sn}
∞
n=1 is drawn

according to its stationary distribution; hence the noise process {Zn}
∞
n=1 is stationary. The channel state process

{Sn}
∞
n=1 is a homogeneous Markov process with stationary distribution

π(M) △
= (π

(M)
0 ; π

(M)
1 ; · · · ; π

(M)
i ; · · · ; π

(M)

2M−1
),

where state i gives the decimal representation of the corresponding binary M -tuple.

If p
(M)
ij denotes the transition probability that Sn goes from state i to state j, i, j = 0, 1, · · · , 2M −1, the transition

matrix of the process {Sn}
∞
n=1 can be written as Q

(M)
QBC =

[

p
(M)
ij

]

with

p
(M)
ij =























































(

M − ω
(M)
i − 1 + α

)

ε
M−1+α + (1 − ε)(1 − p), if j = i

2 , and i is even,
(

M − ω
(M)
i

)

ε
M−1+α + (1 − ε)(1 − p), if j = ⌊ i

2⌋, and i is odd,

ω
(M)
i

ε
M−1+α + (1 − ε)p, if j = i+2M

2 , and i is even,
(

ω
(M)
i − 1 + α

)

ε
M−1+α + (1 − ε)p, if j = ⌊ i+2M

2 ⌋, and i is odd,

0, otherwise;

(4)

where ω
(M)
i is the number of “ones” in the M -bit binary representation of the decimal integer i.

We note that any state can reach any other state with positive probability in a finite number of steps; therefore

the process {Sn} is irreducible (and hence ergodic [1]). It can be shown (see Appendix A) that the stationary
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distribution π(M) of the process is given by

π
(M)
i =

∏M−1−ω
(M)
i

j=0

[

j ε
M−1+α + (1 − ε)(1 − p)

]

∏ω
(M)
i

−1
j=0

[

j ε
M−1+α + (1 − ε)p

]

∏M−1
j=0

[

1 − (α + j) ε
M−1+α

] , (5)

for i = 0, 1, 2, · · · , 2M − 1, where
∏a

j=0(·)
△
=1 if a < 0. We note that the stationary distribution (5) is identical to

the stationary distribution of the channel state for the FMCC ([1], Sec.VI) if we set the parameters ρ and δ of the

FMCC to ρ = p and δ = ε/[(1 − ε)(M − 1 + α)]. Thus, the set of possible stationary distributions for the QBC

channel state is the same as that for the FMCC channel state. However, for a given M , bit error rate (BER) and

correlation coefficient (Cor), the parameters of the FMCC are determined while we may still vary the parameters

ε and α for the QBC to obtain different transition probabilities in (4) and hence different noise processes with the

same stationary distribution but different entropies and ACFs.

3.1.2 Block Transition Probability

For a given input block Xn = (X1, · · · , Xn) and a given output block Y n = (Y1, · · · , Yn), where n is the blocklength,

it can be shown using the Markovian property of the noise and state sources that the block transition probability of

the resulting binary channel is

Pr(M)(Y n = yn|Xn = xn) = Pr(M)(Zn = zn),

where zi = xi ⊕ yi, for i = 1, 2, · · · , n, and the noise n-fold distribution is as follows.

• For blocklength n ≤ M ,

Pr(M)(Zn = zn) =

∏n−dn
1−1

j=0

[

j ε
M−1+α + (1 − ε)(1 − p)

]

∏dn
1 −1

j=0

[

j ε
M−1+α + (1 − ε)p

]

∏M−1
j=M−n

[

1 − (α + j) ε
M−1+α

] , (6)

where db
a = zb + zb−1 + · · · + za (db

a = 0 if a > b), and
∏a

j=0(·)
△
=1 if a < 0.

• For blocklength n ≥ M + 1,

Pr(M)(Zn = zn) = L(M)
n
∏

i=M+1

[

(

di−1
i−M+1 + αzi−M

) ε

M − 1 + α
+ (1 − ε)p

]zi

{

[(

M − 1 − di−1
i−M+1

)

+ α(1 − zi−M )
] ε

M − 1 + α
+ (1 − ε)(1 − p)

}1−zi

, (7)

where

L(M) =

∏M−1−dM
1

j=0

[

j ε
M−1+α + (1 − ε)(1 − p)

]

∏dM
1 −1

j=0

[

j ε
M−1+α + (1 − ε)p

]

∏M−1
j=0

[

1 − (α + j) ε
M−1+α

] .
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The QBC noise process is stationary; hence it is identically distributed. The channel BER and Cor are next

determined.

BER = Pr(Zi = 1) = Pr(Z1 = 1) = p, (8)

and

Cor =
Cov(Zi, Zi+1)

√

V ar(Zi)V ar(Zi+1)
=

Cov(Z2, Z1)

V ar(Z1)
, (9)

where Cov(Z2, Z1) = E[Z2Z1] − E[Z2]E[Z1] = Pr(Z2 = 1, Z1 = 1) − p2 and V ar(Z1) = E[Z2
1 ] − E[Z1]

2 = Pr[Z1 =

1] − p2 = p − p2. To obtain Cov(Z2, Z1), we use (7) if M = 1 (with n = 2 and α = 1):

Pr(Z2 = 1, Z1 = 1) =
(1 − ε)p

1 − ε
[ε + (1 − ε)p] = p [ε + (1 − ε)p] .

Thus, for M = 1, we get

Cov(Z2, Z1) = p [ε + (1 − ε)p] − p2 = p(1 − p)ε.

When M ≥ 2, we use (6) (with n = 2) to obtain

Pr(Z2 = 1, Z1 = 1) =
p
[

ε
M−1+α + (1 − ε)p

]

1 − (M − 2 + α) ε
M−1+α

.

Thus, for M ≥ 2, we obtain

Cov(Z2, Z1) = p
ε

M−1+α + (1 − ε)p

1 − (M − 2 + α) ε
M−1+α

− p2 = p(1 − p)
ε

M−1+α

1 − (M − 2 + α) ε
M−1+α

. (10)

Note that, since α = 1 when M = 1, (10) also holds for M = 1. Thus, for M ≥ 1 we have

Cor =
Cov(Z2, Z1)

V ar(Z1)
=

ε
M−1+α

1 − (M − 2 + α) ε
M−1+α

. (11)

From (8) and (11), the parameters p and ε can be expressed in terms of BER, Cor, M and α as follows:

p = BER, (12)

and

ε =
(M − 1 + α)Cor

1 + (M − 2 + α)Cor
. (13)

Similarly, since ε
1−ε = (M−1+α)Cor

1−Cor , (6) and (7) can be written in terms of BER, Cor, M and α as follows:

• For blocklength n ≤ M ,

Pr(M)(Zn = zn) =

∏n−dn
1−1

j=0

[

j Cor
1−Cor + (1 − BER)

]

∏dn
1−1

j=0

(

j Cor
1−Cor + BER

)

∏n−1
j=0

(

1 + j Cor
1−Cor

) . (14)
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• For blocklength n ≥ M + 1,

Pr(M)(Zn = zn) = L(M)
n
∏

i=M+1





(

di−1
i−M+1 + αzi−M

) Cor
1−Cor + BER

1 + (M − 1 + α) Cor
1−Cor





zi







[

M − 1 − di−1
i−M+1 + α(1 − zi−M )

] Cor
1−Cor + (1 − BER)

1 + (M − 1 + α) Cor
1−Cor







1−zi

, (15)

where

L(M) =

∏M−1−dM
1

j=0

[

j Cor
1−Cor + (1 − BER)

]

∏dM
1 −1

j=0

(

j Cor
1−Cor + BER

)

∏M−1
j=0

(

1 + j Cor
1−Cor

) . (16)

The stationary distribution (5) can be expressed in terms of M , BER and Cor as follows.

π
(M)
i =

∏M−ω
(M)
i −1

j=0

[

j Cor
1−Cor + (1 − BER)

]

∏ω
(M)
i −1

j=0

(

j Cor
1−Cor + BER

)

∏M−1
j=0

(

1 + j Cor
1−Cor

) , (17)

for i = 0, 1, 2, · · · , 2M − 1.

In [23], the authors study the joint source-channel coding problem of designing an index assignment based on the

Hadamard transform for the robust transmission of vector quantization indices over the FMCC. It is noted that the

block distribution of the FMCC noise obeys well structured recursions, hence simplifying the Hadamard transform

analysis and the evaluation of the channel distortion. As a result an efficient index assignment method with appealing

robustness properties is constructed. We herein present a simple recursion property on the stationary distribution

of the QBC.

Lemma 1 For fixed BER and Cor, the stationary distribution π
(M)
i obeys the following recursion:

π
(M)
i = π

(M+1)
2i + π

(M+1)
2i+1 , for i = 0, 1, 2, · · · , 2M − 1. (18)

Proof We notice that

ω(M+1)
s =











ω
(M)
i , if s = 2i,

ω
(M)
i + 1, if s = 2i + 1,

for s = 0, 1, · · · , 2M+1 − 1, where ω
(M+1)
s is the number of “ones” in the (M + 1)-bit binary representation of the

decimal integer s. Thus, from (17),

π
(M+1)
2i =

∏M−ω
(M)
i

j=0

[

j Cor
1−Cor + (1 − BER)

]

∏ω
(M)
i

−1
j=0

(

j Cor
1−Cor + BER

)

∏M
j=0

(

1 + j Cor
1−Cor

) , (19)

and

π
(M+1)
2i+1 =

∏M−ω
(M)
i

−1
j=0

[

j Cor
1−Cor + (1 − BER)

]

∏ω
(M)
i

j=0

(

j Cor
1−Cor + BER

)

∏M
j=0

(

1 + j Cor
1−Cor

) . (20)
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Summing (19) and (20) we get

π
(M+1)
2i + π

(M+1)
2i+1 =

∏M−ω
(M)
i

−1
j=0

[

j Cor
1−Cor + (1 − BER)

]

∏ω
(M)
i

−1
j=0

(

j Cor
1−Cor + BER

)

∏M
j=0

(

1 + j Cor
1−Cor

)

×

[

(

M − ω
(M)
i

) Cor

1 − Cor
+ (1 − BER) + ω

(M)
i

Cor

1 − Cor
+ BER

]

=

∏M−ω
(M)
i

−1
j=0

[

j Cor
1−Cor + (1 − BER)

]

∏ω
(M)
i

−1
j=0

(

j Cor
1−Cor + BER

)

∏M−1
j=0

(

1 + j Cor
1−Cor

) . (21)

By comparing (21) and (17), we get

π
(M)
i = π

(M+1)
2i + π

(M+1)
2i+1 . (22)

�

3.1.3 Autocorrelation Function

The autocorrelation function (ACF) of a binary stationary process {Zn}
∞
n=1 is defined by R[m] = E{ZiZi+m} =

Pr(Zi = 1, Zi+m = 1). It can be shown that the ACF of the QBC satisfies the following.

R[m] =



























p if m = 0;

ε
M−1+α

+(1−ε)p

1−M−2+α
M−1+α

ε
p if 1 ≤ m ≤ M − 1;

(1 − ε)p2 + ε
M−1+α

(

∑m−1
i=m−M+1 R[i] + αR[m − M ]

)

if m ≥ M.

It can also be shown that R[m] is strictly decreasing for m > M and that limm→∞ R[m] = p2; thus, Zi and Zi+m

are asymptotically independent.

3.1.4 Channel Capacity

The information capacity for channels with memory is defined by Shannon’s familiar expression [20, p. 287], [38]

C = lim
n→∞

sup
Xn

1

n
I(Xn; Y n), (23)

where I(Xn; Y n) denotes the block mutual information [8, p. 18] between input Xn = (X1, · · · , Xn) and output

Y n = (Y1, · · · , Yn) and where the supremum is taken over all possible inputs Xn. For the wide class of channels

with memory that are information stable [38] (e.g., the input process that maximizes the block mutual information

and its corresponding output process form a stationary ergodic joint input-output process) the information capacity

shown above has an important operational meaning as established by Shannon [33], since it represents the largest

rate at which information can be transmitted over the channel via a channel code and recovered at the receiver with

12



asymptotically vanishing probability of error (as the code blocklength approaches infinity). It is thus clear that C is

a key quantity in the investigation of communication channels.

Since the QBC is a channel with additive stationary ergodic noise, it is information stable, and its (operational)

capacity, C
(M)
QBC , is hence given by (23). Due to the channel’s symmetry, it can be shown that input n-tuples Xn that

are uniformly distributed over {0, 1}n maximize I(Xn; Y n) in (23). Thus,

C
(M)
QBC = 1 −H(M)(Z), (24)

where H(M)(Z) is the entropy rate of the Mth order Markov noise process. It can be obtained using (4) and (5), as

follows.

H(M)(Z)
△
= lim

n→∞

1

n
H(M)(Z1, · · · , Zn)

= H(M)(ZM+1 | ZM , ZM−1, · · · , Z1)

= H(M)(S2 | S1)

= −

2M−1
∑

i,j=0

π
(M)
i p

(M)
ij log2 p

(M)
ij

=

M−1
∑

ω=0

(

M − 1

ω

)

L(M)
ω hb

[

ω
ε

M − 1 + α
+ (1 − ε)p

]

+
M
∑

ω=1

(

M − 1

ω − 1

)

L(M)
ω hb

[

(ω − 1 + α)
ε

M − 1 + α
+ (1 − ε)p

]

, (25)

where

L(M)
ω =

∏M−1−ω
j=0

[

j ε
M−1+α + (1 − ε)(1 − p)

]

∏ω−1
j=0

[

j ε
M−1+α + (1 − ε)p

]

∏M−1
j=0

[

1 − (α + j) ε
M−1+α

] ,

∏a
j=0(·)

△
=1, if a < 0, and hb(·) is the binary entropy function: hb(g) = −g log2 g − (1− g) log2(1− g). It is clear that

C
(M)

QBC is positive since H(M)(Z) < 1 for fixed M , ε, p and α. Using (24) and (25), we obtain the following expression

for C
(M)

QBC.

C
(M)

QBC = 1 −

M−1
∑

ω=0

(

M − 1

ω

)

L(M)
ω hb

[

ω
ε

M − 1 + α
+ (1 − ε)p

]

−

M
∑

ω=1

(

M − 1

ω − 1

)

L(M)
ω hb

[

(ω + α − 1)
ε

M − 1 + α
+ (1 − ε)p

]

. (26)

In terms of the channel parameters M , BER, Cor and α, the capacity in (26) can be written as

C
(M)

QBC = 1 −

M−1
∑

ω=0

(

M − 1

ω

)

L(M)
ω hb





ω Cor
1−Cor + BER

1 + (M − 1 + α) Cor
1−Cor





−

M
∑

ω=1

(

M − 1

ω − 1

)

L(M)
ω hb





(ω − 1 + α) Cor
1−Cor + BER

1 + (M − 1 + α) Cor
1−Cor



 , (27)
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where

L(M)
ω =

∏M−1−ω
j=0

[

j Cor
1−Cor + (1 − BER)

]

∏ω−1
j=0

(

j Cor
1−Cor + BER

)

∏M−1
j=0

(

1 + j Cor
1−Cor

) , (28)

which is not a function of α .

When ε = 0 (or Cor= 0), the channel is a BSC and the channel capacity is

C
(M)

QBC = 1 − hb(p) = 1 − hb(BER). (29)

Theorem 1 The capacity C
(M)

QBC of the QBC strictly increases with α for fixed M ≥ 2, BER and Cor ∈

(0, 1).

Proof Notice that for various α, ε has to change to keep Cor fixed from (11). Rewriting (27), we get

C
(M)

QBC = 1 −

M−1
∑

ω=0

(

M − 1

ω

)

(

L(M)
ω hb [f(α)] + L

(M)
ω+1hb [g(α)]

)

, (30)

where L
(M)
ω is expressed in (28), hb(·) is the binary entropy function,

f(α) =
ω Cor

1−Cor + BER

1 + (M − 1 + α) Cor
1−Cor

,

and

g(α) =
(ω + α) Cor

1−Cor + BER

1 + (M − 1 + α) Cor
1−Cor

.

Differentiating C
(M)

QBC over α for fixed M , BER and Cor yields

dC
(M)

QBC

dα
= −

M−1
∑

ω=0

(

M − 1

ω

)[

L(M)
ω

d hb (f)

d f

d f

dα
+ L

(M)
ω+1

d hb (g)

d g

d g

dα

]

. (31)

Since

d f

dα
= −

(

ω Cor
1−Cor + BER

)

Cor
1−Cor

[

1 + (M − 1 + α) Cor
1−Cor

]2 ,

d g

dα
=

[

(M − ω − 1) Cor
1−Cor + (1 − BER)

]

Cor
1−Cor

[

1 + (M − 1 + α) Cor
1−Cor

]2 ,

and d hb(f)
d f = log2

(

1−f
f

)

, we obtain that

dC
(M)

QBC

dα
= −V (M)

M−1
∑

ω=0

{

(

M − 1

ω

)

L(M)
ω

[

−

(

ω
Cor

1 − Cor
+ BER

)]

14



× log2





(M − 1 + α − ω) Cor
1−Cor + (1 − BER)

ω Cor
1−Cor + BER





+L
(M)
ω+1

[

(M − ω − 1)
Cor

1 − Cor
+ (1 − BER)

]

× log2





(M − ω − 1) Cor
1−Cor + (1 − BER)

(ω + α) Cor
1−Cor + BER











(32)

where

V (M) =

Cor
1−Cor

[

1 + (M − 1 + α) Cor
1−Cor

]2 .

Notice, from (28), that

Wω
△
=L(M)

ω ×

(

ω
Cor

1 − Cor
+ BER

)

= L
(M)
ω+1 ×

[

(M − ω − 1)
Cor

1 − Cor
+ (1 − BER)

]

. (33)

Hence, (32) can be rewritten as

dC
(M)

QBC

dα
= −V (M)

M−1
∑

ω=0

{

(

M − 1

ω

)

Wω

log2





ω Cor
1−Cor + BER

(ω + α) Cor
1−Cor + BER

×
(M − ω − 1) Cor

1−Cor + (1 − BER)

(M − 1 + α − ω) Cor
1−Cor + (1 − BER)











. (34)

Since ω < (ω + α) and (M − ω − 1) < (M − 1 + α − ω) ∀ α > 0, we get

log2





ω Cor
1−Cor + BER

(ω + α) Cor
1−Cor + BER

×
(M − ω − 1) Cor

1−Cor + (1 − BER)

(M − 1 + α − ω) Cor
1−Cor + (1 − BER)



 < 0.

Since V (M) > 0 and Wω > 0 for ω ∈ {0, 1, · · · , M − 1}, we obtain that
d C

(M)
QBC

d α > 0 for α > 0; i.e., the capacity of the

QBC strictly increases with α for fixed M ≥ 2, BER and Cor ∈ (0, 1). �

Observation: When α → ∞ we have from (27) that

hb





ω Cor
1−Cor + BER

1 + (M − 1 + α) Cor
1−Cor



→ hb(0) = 0, for ω ∈ {0, · · · , M − 1},

and

hb





(ω + α − 1) Cor
1−Cor + BER

1 + (M − 1 + α) Cor
1−Cor



→ hb(1) = 0, for ω ∈ {1, · · · , M}.

Therefore, C
(M)

QBC → 1 when α → ∞ for M ≥ 2, BER ∈ (0, 1) and Cor ∈ (0, 1). Note that ε → 1 as α → ∞ from

(13) for a fixed Cor. When ε = 1, however, the experiments always choose the queue; this results in a queue with all

0s or all 1s when the number of experiments is sufficiently large. Thus, the channel is non-ergodic when ε = 1, and

is not the same as the limiting channel as ε → 1.
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3.1.5 Error Exponent

The channel error exponent or reliability function E(R) is defined as the asymptotic exponent of the minimum error

probability P ∗
e (R, n) over all codes with blocklength n and rate R (e.g., see [3, 17]). In other words, it is the rate of

(asymptotic) exponential decay of P ∗
e (R, n):

E(R)
△
= lim

n→∞
−

1

n
log2 P ∗

e (R, n),

assuming the limit exists. If not, then the established lower bounds are claimed for lim infn→∞ − 1
n log P ∗

e (R, n) and

the upper bounds are claimed for lim supn→∞ − 1
n log P ∗

e (R, n). E(R) is a non-negative and non-increasing function

of R for all 0 ≤ R < C, and E(R) = 0 for R ≥ C, where C is the channel capacity. E(R) is indeed a more

comprehensive tool than channel capacity, although it is considerably more difficult to study for general channels

with memory (including the GEC).3

For our binary channels with additive noise, we can apply the following random coding lower bound (RCLB) [17]

for E(R).4

Proposition 1 (Random coding lower bound (RCLB) [17]) For a binary channel with additive noise described by

{p(n)(zn)},

E(R) ≥ Er(R) (35)

where

Er(R)
△
= sup

0≤ρ≤1

[

−ρR + lim inf
n→∞

E
(n)
0 (ρ)

]

,

and

E
(n)
0 (ρ) = ρ −

1 + ρ

n
log2





∑

zn∈{0,1}n

p(n)(zn)
1

1+ρ



 . (36)

If the additive noise is a stationary ergodic Markov source, then a sphere-packing upper bound (SPUB) for E(R)

also holds (e.g., see [13] or [42]). Furthermore, E
(∞)
0 (ρ)

△
= limn→∞ E

(n)
0 (ρ) exists and admits a computable expression

[17, 32]. This is summarized in the following proposition.

Proposition 2 (Sphere-packing upper bound (SPUB) for Markov noise channels) For a binary channel with sta-

tionary ergodic additive Markov noise with transition matrix [pij ] and n-fold distribution p(n)(zn),

E(R) ≤ Es(R),

3Recall that even for discrete memoryless channels, E(R) is not exactly known at low rates; so only upper and lower bounds to E(R)

can be examined (see for example [3, 9, 17, 39]).
4This bound (with the appropriate modifications) actually holds for more general (non-additive) discrete channels with memory (see

[17, Theorem 5.6.1]).
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where

Es(R)
△
= sup

ρ≥0

[

−ρR + E
(∞)
0 (ρ)

]

,

and

E
(∞)
0 (ρ) = ρ − ρ lim

n→∞

1

n
H 1

1+ρ
(p(n)) = ρ − (1 + ρ) log2 λ(ρ),

where limn→∞(1/n)Hα(p(n)) is the Rényi entropy rate [32] of the Markov noise with parameter α (α > 0 and α 6= 1),

Hα(p(n))
△
=

1

1 − α
log2

[

∑

zn

(

p(n)(zn)
)α
]

,

and λ(ρ) is the largest (positive) eigenvalue of the matrix [p
1/(1+ρ)
ij ].

It directly follows that for binary channels with additive stationary ergodic Markov noise, the above RCLB and

SPUB for E(R) are tight when R ≥ Rcr, where Rcr is the critical rate given by

Rcr
△
=

∂E
(∞)
0 (ρ)

∂ρ

∣

∣

∣

∣

∣

ρ=1

.

The above results also directly hold for Markov noise sources of order M (c.f., [32]). Hence, for the QBC (whose

noise process is of memory M), the RCLB and SPUB bounds on E(R) can be readily obtained and calculated using

Propositions 1 and 2.

3.2 Uniform Queue-Based Channel with Memory

We next study a particular case of the QBC, the uniform queue-based channel (UQBC), by fixing α = 1; i.e., we

operate on the queue cells with equal probability 1/M .

The UQBC block transition or noise probability Pr(M)(Y n = yn|Xn = xn) = Pr(M)(Zn = zn), where zi = xi⊕yi,

of the UQBC can be expressed in terms of M , BER and Cor from (14) and (15) as follows.

• For blocklength n ≤ M ,

Pr(M)(Zn = zn) =

∏n−dn
1−1

j=0

(

j Cor
1−Cor + (1 − BER)

)

∏dn
1 −1

j=0

(

j Cor
1−Cor + BER

)

∏n−1
j=0

(

1 + j Cor
1−Cor

) . (37)

• For blocklength n ≥ M + 1,

Pr(M)(Zn = zn) = L(M)
n
∏

i=M+1





di−1
i−M

Cor
1−Cor + BER

1 + M Cor
1−Cor





zi




(

M − di−1
i−M

) Cor
1−Cor + (1 − BER)

1 + M Cor
1−Cor





1−zi

(38)

where L(M) is given by (16).

17



Similarly, from (27), the capacity of the UQBC in terms of M , BER, and Cor is given by

C
(M)

UQBC = 1 −

M
∑

ω=0

(

M

ω

)

L(M)
ω hb





ω Cor
1−Cor + BER

1 + M Cor
1−Cor



 , (39)

where L
(M)
ω is given by (28).

Lemma 2 The UQBC with memory order M and the QBC with memory order M + 1 and α = 0 have

identical block transition probability for fixed BER and Cor; therefore the two channels have identical

capacity under the above conditions.

Proof When α = 0, we obtain, from (14) and (15),

• For blocklength n ≤ M ,

Pr(M+1)(Zn = zn) =

∏n−dn
1−1

j=0

(

j Cor
1−Cor + (1 − BER)

)

∏dn
1 −1

j=0

(

j Cor
1−Cor + BER

)

∏n−1
j=0

(

1 + j Cor
1−Cor

) . (40)

• For blocklength n = M + 1,

Pr(M+1)(Zn = zn)
△
= L(M+1)

=

∏M+1−dM+1
1 −1

j=0

[

j Cor
1−Cor + (1 − BER)

]

∏dM+1
1 −1

j=0

(

j Cor
1−Cor + BER

)

∏M
j=0

(

1 + j Cor
1−Cor

)

= L(M)





dM
1

Cor
1−Cor + BER

1 + M Cor
1−Cor





zM+1




(

M − dM
1

) Cor
1−Cor + (1 − BER)

1 + M Cor
1−Cor





1−zM+1

. (41)

• For blocklength n ≥ M + 2,

Pr(M+1)(Zn = zn)

= L(M+1)
n
∏

i=M+2





di−1
i−M

Cor
1−Cor + BER

1 + M Cor
1−Cor





zi




(

M − di−1
i−M

) Cor
1−Cor + (1 − BER)

1 + M Cor
1−Cor





1−zi

= L(M)
n
∏

i=M+1





di−1
i−M

Cor
1−Cor + BER

1 + M Cor
1−Cor





zi




(

M − di−1
i−M

) Cor
1−Cor + (1 − BER)

1 + M Cor
1−Cor





1−zi

. (42)

By comparing (40) with (37), and comparing (41) and (42) with (38), we conclude that the UQBC with memory

order M and the QBC with memory order M +1 and α = 0 have identical block transition probabilities for the same

BER and Cor. Thus, the two channels have identical capacity under the above conditions. �

Theorem 2 The capacity C
(M)

QBC of the QBC is strictly increasing in M for fixed BER, Cor and 0 ≤ α ≤ 1.
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Proof For fixed BER and Cor, the capacity of the QBC is a function of memory order M and parameter α. Let

C
(M)

QBC(α) denote the capacity of the QBC. Thus, for 0 < α < 1, we have

C
(M)

QBC(α) < C
(M)

QBC(1) (by Theorem 1)

= C
(M+1)

QBC (0) (by Lemma 2)

< C
(M+1)

QBC (α) (by Theorem 1). (43)

When α = 0, we have

C
(M)

QBC(0) < C
(M)

QBC(1) = C
(M+1)

QBC (0). (44)

When α = 1, we have

C
(M)

QBC(1) = C
(M+1)

QBC (0) < C
(M+1)

QBC (1). (45)

Thus, the capacity C
(M)

QBC of the QBC is strictly increasing in M for fixed BER, Cor and 0 ≤ α ≤ 1. �

Observation: Note that for α > 1, capacity may not increase with M (see Fig. 4). An interesting open problem is

the question of how does increasing memory affect the capacity of a channel model in a given class of models with

memory (e.g., the class of unrestricted Mth order Markov channels) and for providing sufficient conditions so that

increasing memory increases capacity, when comparing two models within the class. Theorem 2 does address this

problem by providing such sufficient conditions for the class of QBC models.

3.3 QBC Capacity versus Capacity of Other Channels with Memory

In this section, we compare in terms of capacity the QBC with the FMCC [1], the GEC [25] and a particular

symmetric class of the Fritchman channel [16] under identical channel parameters.

3.3.1 Comparison with the Finite-Memory Contagion Channel

The noise process of the FMCC is stationary and hence identically distributed [1]; the channel’s BER and Cor are

as follows: BER= ρ and Cor= δ/(1 + δ). By comparing the UQBC with the FMCC in terms of block transition

probability, we obtain the following result.

Theorem 3 The UQBC and the FMCC are identical; i.e., they have the same block transition probability

for the same memory order M , BER and Cor. Therefore the two channels have identical capacity under

the above conditions.
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Proof In terms of M , BER and Cor, the FMCC block transition probability

Pr(Y n = yn | Xn = xn) = Pr(Zn = zn),

where zi = yi ⊕ xi for i = 1, · · · , n, can expressed as follows [1]:

• For blocklength n ≤ M ,

Pr(Zn = zn) =

∏d−1
j=0

(

BER + j Cor
1−Cor

)

∏n−1−d
j=0

[

(1 − BER) + j Cor
1−Cor

]

∏n−1
j=1

(

1 + j Cor
1−Cor

) , (46)

where
∏a

j=0(·)
△
=1 if a < 0 and d = d(yn, xn)= weight(zn).

• For blocklength n ≥ M + 1,

Pr(Zn = zn) = L

n
∏

i=M+1





BER + λi−1
Cor

1−Cor

1 + M Cor
1−Cor





zi




(1 − BER) + (M − λi−1)
Cor

1−Cor

1 + M Cor
1−Cor





1−zi

, (47)

where

L =

∏λM−1
j=0

(

BER + j Cor
1−Cor

)

∏M−1−λM

j=0

[

(1 − BER) + j Cor
1−Cor

]

∏M−1
j=1

(

1 + j Cor
1−Cor

) ,

∏a
j=0(·)

△
=1 if a < 0, zi = xi ⊕ yi, and λi−1 = zi−1 + · · · + zi−M for i = M + 1, · · · , n.

Comparing (37) with (46) and (38) with (47), we observe that the FMCC and the UQBC have identical block

transition probability for the same memory order M , BER and Cor. Thus, the two channels have identical capacity

under the above conditions. �

Observation: The above result appears at first somewhat surprising since the same Markov noise process seems

to have been generated by two different experiments: the Polya contagion urn scheme and the finite queue scheme.

However, upon further reflection, the equivalence of the two experiments becomes transparent when we equate the

original T = R+B balls in the FMCC urn scheme with the urn (with proportion p of red balls) in the UQBC scheme

and the balls which are added and later removed in the FMCC urn scheme with the queue in the UQBC scheme.

We can describe the FMCC urn scheme as a two stage experiment. In the first stage we decide to pick from the

original balls (with probability T/(M∆+ T )) or from the “transient” balls (with probability M∆/(M∆+ T )). This

is equivalent to the first stage of the UQBC experiment where we choose either the urn (with probability 1 − ε) or

the queue (with probability ε). Indeed, the FMCC parameter ∆ no longer serves a purpose once the first stage is

completed. In the second stage we choose a ball at random from the set we have chosen in the first stage. For the

purposes of picking a color at random, we can view the transient balls (of which there are M∆) as just M balls,

with each red ball representing ∆ red balls and each black ball representing ∆ black balls. Thus, if we have decided
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to choose from the transient balls in the first stage, we pick one of the M balls (each with “weight” ∆) at random

(equivalent to picking a cell at random in the UQBC scheme), then add a ball of that color and remove the ball that

was added M draws ago (equivalent to pushing a ball of the chosen color into the front of the UQBC queue and

pushing the last ball in the queue out).

We note that the correlation coefficient of the FMCC does not depend on memory order M (Cor= δ/(1 + δ))

while that of the UQBC depends on memory order M (see (11)). Therefore, the two channel models are different in

their parameterizations although their block transition probabilities and capacities are identical under the same M ,

BER and Cor.

From Theorem 3 and [1], the following asymptotic expression for C
(M)

UQBC can be established as M approaches

infinity while keeping BER and Cor fixed:

lim
M→∞

C
(M)

UQBC = 1 −

∫ 1

0

hb(z)fZ(z)dz, (48)

where hb(·) is the binary entropy function and fZ(z) is the beta probability density function (pdf) βu,v(z) [31], [15,

p. 50] with parameters u = BER(1−Cor)/Cor and v = (1−BER)(1−Cor)/Cor; i.e.,

fZ(z) = βu,v(z) =
Γ (u + v)

Γ (u) Γ (v)
(1 − z)

(u−1)
z(v−1)I[0,1](z),

where I[0,1](z) denotes the indicator function on the set [0, 1].

From Theorem 2, we note that (48) is an upper bound of the capacity of the UQBC for a given M .

Corollary 1 For the same M , BER and Cor,

C
(M)

QBC < C
(M)

FMCC (when 0 ≤ α < 1), (49)

and

C
(M)

QBC > C
(M)

FMCC (when α > 1). (50)

Proof (49) and (50) can be obtained directly from Theorems 1 and 3. �

3.3.2 Comparison with the Gilbert-Elliott Channel

The noise process of the GEC has infinite memory in the sense that it has an infinite dependency structure since

it is a hidden Markov chain. Therefore, knowledge of the infinite past is necessary for the calculations of the GEC

noise entropy rate and capacity. In practice, a finite past is used to approximate such calculations; a scheme for such

calculation is proposed by Mushkin and Bar-David [25] based on increasingly tight upper and lower bounds (c.f., also

the theoretical study in [21]). In particular, it is shown in [25] that the GEC capacity can be obtained by CGEC =

21



liml→∞ Cl, where Cl is defined as Cl
△
=1−E[hb(ql)]. The random variable ql(Z

l−1), for l ≥ 2, denotes the probability

of a channel error at the lth use, conditioned on the previous noise samples, i.e., ql(Z
l−1)

△
= Pr[Zl = 1 | Z l−1], where

Z l−1 = (Zl−1, . . . , Z1). {Cl}
∞
l=1 is monotonically increasing with l since the binary entropy function hb(q) is concave

and continuous over [pG, pB]. Thus, for l ≥ 1, Cl can be computed to provide a lower bound to the capacity CGEC;

i.e., CGEC ≥ Cl; as l increases, the bound becomes sharper. The following recursion holds for ql [25]:

ql+1(Z
l) = ν(Zl, ql(Z

l−1)), (51)

where the recursion function ν(·, ·) is defined by

ν(0, q)
△
=











pG + b(pB − pG) + µ(q − pG)[(1 − pB)/(1 − q)], pB 6= 1,

(1 − b)pG + b, pB = 1, q 6= 1,

(52)

and

ν(1, q)
△
=











pG + b(pB − pG) + µ(q − pG)(pB/q), pG 6= 0,

(1 − g)pB, pG = 0, q 6= 0,

(53)

for pG ≤ q ≤ pB, where µ
△
=1 − g − b. The initial value for the recursion is

q1
△
=Pr[Z1 = 1] = (ρpG + pB)(ρ + 1)−1, (54)

where ρ
△
=g/b. The random sequence {ql}

∞
l=1 is a Markov process with initial value q1 and transition probabilities

Pr[ql+1 = α | ql = β] =











1 − β, α = ν(0, β),

β, α = ν(1, β).

(55)

By comparing C2 with the capacity of the UQBC with M = 1, C
(M=1)

UQBC , we arrive at the following result.5

Theorem 4 For M = 1, and for the same BER and Cor, CGEC ≥ C
(M=1)

UQBC .

Proof In terms of BER and Cor, the initial value for the random sequence ql (54) is

q1 = (ρpG + pB)(ρ + 1)−1 = BER. (56)

From the recursion (51), the function ν(·, ·) in (52) and (53), and the transition probability (55), we obtain

ν(1, q1) = BER + (1 − BER) · Cor, with Pr[q2 = ν(1, q1)] = BER,

and

ν(0, q1) = BER · (1 − Cor), with Pr[q2 = ν(0, q1)] = 1 − BER,

5Note that the UQBC with M = 1 is indeed a special case of the GEC, realized by setting pG = 0 and pB = 1.
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where the GEC Cor is given by

Cor =
µ(BER − pG)(pB − BER)

BER(1 − BER)
. (57)

Thus,

C2 = 1 − E[hb(q2)]

= 1 − (BER · hb[BER + (1 − BER) · Cor] + (1 − BER) · hb[BER · (1 − Cor)]) . (58)

With memory order M = 1 in the UQBC, from (39) it follows that

C
(M=1)

UQBC = 1 −

1
∑

ω=0

L(1)
ω hb[ω · Cor + (1 − Cor) · BER]

= 1 − (BER · hb[Cor + (1 − Cor) · BER] + (1 − BER) · hb[BER · (1 − Cor)]) . (59)

Comparing (58) with (59), we observe that C2 = C
(M=1)

UQBC . Since C2 ≤ CGEC, we conclude that CGEC ≥ C
(M=1)

UQBC for

the same BER and Cor. �

Finally, it should be noted that when M ≥ 2, C
(M)

QBC can be either smaller or bigger than CGEC, depending on

the values of BER, Cor, M and α.

3.3.3 Comparison with the Symmetric Fritchman Channel (K, 1)-SFC

We define the symmetric Fritchman channel with K good states and one bad state ((K, 1)-SFC) by the following

transition matrix on its states

P (K,1)-SFC =





























p00 (1 − p00)/K · · · (1 − p00)/K

(1 − p00)/K p00 · · · (1 − p00)/K

...

(1 − p00)/K · · · p00 (1 − p00)/K

(1 − p11)/K · · · (1 − p11)/K p11





























, (60)

where p00 is the probability of staying in the current good state and p11 is the probability of staying in the bad

state. By comparing the UQBC with memory 1 to the (K, 1)-SFC in terms of the probability of an arbitrary noise

sequence, we obtain the following.

Lemma 3 For the same BER and Cor, and for any K = 1, 2, · · ·, the (K, 1)-SFC is statistically identical to the

UQBC with M = 1. Hence C(K, 1)-SFC = C
(M=1)

UQBC ≤ C
(M)

UQBC ≤ C
(M)

QBC, ∀ M ≥ 1 and α ≥ 1.

Proof We observe that the good states all have the same stationary probability (1−BER)/K and they have the

same transition pattern. Hence the good states can be combined into one big good state with stationary probability
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(1−BER); this makes the (K, 1)-SFC statistically the same as a 2-state Markov chain (the (1, 1)-FC or UQBC with

memory 1). Hence C(K, 1)-SFC = C
(M=1)

UQBC and since memory increases capacity (Theorem 2) and α increases capacity

(Theorem 1), we have

C(K, 1)-SFC = C
(M=1)

UQBC ≤ C
(M)

UQBC ≤ C
(M)

QBC

∀ M ≥ 1 and α ≥ 1. �

3.4 Capacity Numerical Results

We next compare numerically the capacities of the QBC, the GEC and the FC. For all these models, the capacities

are calculated in terms of BER and Cor. Since the GEC is described by four parameters, we fix pG = 0.00002 and

pB = 0.92 (since they allow for Cor to range from 0.1 to 0.9) and calculate the upper and lower bounds [25] for the

capacity in terms of BER and Cor. Also, with pG = 0.00002 and pB = 0.92, the upper and lower bounds to the noise

entropy rate (and hence to CGEC) converge quickly.

In [16], a general expression for the capacity of Fritchman channels with a single error-state and K good states

((K, 1)-FC) is provided:

C(K,1)-FC = 1 −

[

−Pr(1)
1
∑

zn=0

Pr(zn | 1) log2 Pr(zn | 1)

−

∞
∑

m=1

[

Pr(10m)

1
∑

zn=0

Pr(zn | 10m) log2 Pr(zn | 10m)

]]

, (61)

where 10m denotes the binary sequence with a single 1 and m 0s, and the probabilities and the conditional probabilities

of error sequences can be calculated via (2). We employ the above expression to compute the capacity of the (2,

1)-FC with the transition probability matrix

P (2, 1)-FC =













p00 (1 − p00)/2 (1 − p00)/2

0.1 0.5 0.4

(1 − p11)/2 (1 − p11)/2 p11













.

where p00 and p11 vary as BER and Cor vary.

We illustrate the effect of the cell parameters M and α on the capacity of the QBC in Figs. 4 and 5. As expected

from Theorems 1 and 2, the capacity increases with α for the same BER, Cor and memory order M , and the capacity

increases with memory order M for the same BER and Cor when 0 ≤ α ≤ 1. However, this latter pattern does

not generally hold for the QBC model as it depends on the condition that α < 1 (c.f. Theorem 2). For example

in Fig. 4, when α ≥ 10, the situation reverses and capacity decreases with the memory order. We also illustrate in

Fig. 5 the adage “memory increases capacity” (for information stable channels [1]) by noting the large capacity gain
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of the QBC over the BSC for identical BER. Note that the BSC can indeed be looked at as the channel resulting

when ideal interleaving is employed on the QBC; this indicates that effectively exploiting the noise memory in the

system design is significantly better than ignoring it via interleaving.

The capacity of the QBC, the GEC and the (2, 1)-FC increase with Cor. As shown in Fig. 6, the QBC with

M = 2 and α = 10 has the biggest capacity, whereas the UQBC with M = 1 (or (1, 1)-FC) has the smallest capacity.

C
(M=1)

UQBC is smaller than CGEC as predicted by Theorem 4. When Cor=0.1, the GEC and the UQBC with M = 1

have nearly equal capacities, indicating that in this case we can replace the GEC with the less complex UQBC if our

target is to achieve a capacity which is close to that of the GEC. For the same BER, the capacity of the QBC can be

either smaller or bigger than that of the GEC and (2, 1)-FC, depending on the values of Cor, M and α (see Fig. 6).

4 Approximating the GEC via the QBC

We next consider the problem of fitting the GEC model via the QBC model. In other words for a given GEC, we

construct a QBC that best approximates it.

4.1 Estimation of QBC Parameters

For a given GEC (the GC is a special case of the GEC if pG = 0), we construct a QBC whose noise process is

statistically “close” in the Kullback-Leibler sense to the noise process generated by the GEC. Specifically, given a

GEC with fixed parameters b, g, pB and pG resulting in bit error rate BERGEC and correlation coefficient CorGEC,

we estimate the QBC parameters M , p, ε, and α that minimize the KLDR

lim
n→∞

1

n
Dn(PGEC ‖ P(M)

QBC),

subject to the constraints

BERQBC = BERGEC

and

CorQBC = CorGEC,

where (1/n)Dn(PGEC ‖ P(M)
QBC

) is the normalized nth order Kullback-Leibler divergence between the n-fold GEC and

QBC noise distributions, PGEC and P(M)
QBC

, respectively:

Dn(PGEC ‖ P(M)
QBC) =

∑

zn∈{0,1}n

PGEC(zn) log2

PGEC(zn)

P(M)
QBC

(zn)
,
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where PGEC(zn) is given by (1) and P(M)
QBC

(zn) is given by (6)-(7). It can be shown (e.g., see [20]) that the Kullback-

Leibler divergence rate between a stationary source and a Markov source does exist and can be expressed as

lim
n→∞

1

n
Dn(PGEC ‖ P(M)

QBC
) = − lim

n→∞

1

n
HGEC(Zn) −

∑

z1,···,zM+1

PGEC(z1, · · · , zM+1) log2 P(M)
QBC

(zM+1|zM , · · · , z1)

= −HGEC(Z) − EPGEC
[log2 P(M)

QBC
(ZM+1|Z

M )],

where H(·) denotes the entropy rate and P(M)
QBC

(zM+1|z
M ) is the QBC conditional error probability of symbol M + 1

given the previous M symbols. Then the minimization reduces to maximizing the second term

EPGEC
[log2 P(M)

QBC
(ZM+1|Z

M )]

(which is independent of n) over the QBC parameters. Note that in our approximation, we match the bit error rates

and noise correlation coefficients of both channels to guarantee identical noise marginal distributions and identical

probabilities of two consecutive errors (ones). Hence, given these constraints, the above optimization problem reduces

to an optimization over only two QBC parameters.

4.2 Modeling Results

We evaluate how well the QBC model (obtained via the above KDLR minimization) fits or approximates the GEC

according to three criteria: channel capacity, ACF,6 and the RCLB bound for the error exponent. The QBC capacity

and ACF expressions are provided in Section 3. Although the capacity of the GEC does not have an analytical

expression, it can be determined accurately via the algorithm of [25]. The ACF of the GEC can also be computed

[30].

We employ Propositions 1 and 2 to obtain both the RCLB and SPUB on E(R) for the QBC. For the GEC, we

compute the RCLB bound using Proposition 1. However, with the exception of the special GC case, E
(∞)
0 (ρ) is not

known to exist (to our knowledge) for the general GEC since the channel state is not a deterministic function of the

previous state and noise letter. For the GC, if zi = 1, the corresponding state is certainly B and thus the errors

are completely defined by the conditional probability p(k) of a run of k − 1 zeros followed by a one subject to this

sequence being preceded by a one, i.e., p(k) = P (0k−11 | 1). Therefore, we can use the following result (e.g., [13])

along with Proposition 1 to determine the RCLB on E(R) for the GC.

Proposition 3 For a channel with errors fully defined by p(k) (such as the GC), E
(∞)
0 (ρ) exists and is given by

E
(∞)
0 (ρ) = ρ + (1 + ρ)γ, (62)

6It is indeed observed in [36, 30] that the ACF is an effective tool to measure the agreement between models for channels with memory,

including between finite-state channel models and discretized correlated fading channels.
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where γ is the solution of

τ
∑

i=1

p(i)
1

1+ρ 2iγ = 1, (63)

where τ is a positive integer such that p(k) = 0 is assumed for k > τ .

In our results for the RCLB on the error exponent of the GC, we set the value τ to be as large as 70,000. Since

for the more general GEC, the lim inf of E
(n)
0 (ρ) does not admit a computable expression, we approximate it by

calculating E
(n)
0 (ρ) for large n (we used n = 21 and noted that larger values of n result in only a minor change in

E
(n)
0 (ρ)), and we employ Proposition 1 to evaluate the GEC RCLB. Similarly, the GEC critical rate is estimated by

computing R
(n)
cr for large n, where R

(n)
cr

△
=

∂E
(n)
0 (ρ)
∂ρ

∣

∣

∣

∣

ρ=1

.

A wide range of GEC/GC channel parameters is investigated with 0.01 ≤ Cor ≤ 0.9 and 0.3% ≤ BER ≤ 10%. In

Table 1 and Figs. 7-20, we present typical evaluation results for the approximation of the GEC/GC models via the

QBC. In all, fitting results for eight values of Cor are shown (four for the GEC and four for the GC). To illustrate a

realistic setting, the values of the pair (Cor,BER) for Cases A and C in Table 1 were chosen to match the conditions

of the correlated Rayleigh fading channel studied in [30, Fig. 6.(b)] with normalized Doppler frequencies of 0.1 (fast

fading) and 0.001 (slow fading), respectively.

We first observe in Figs. 7 and 8 that (1/n)Dn(PGEC ‖ P(M)
QBC

) monotonically increases in n before asymptotically

converging to the KLDR. Hence by choosing to minimize the KLDR to fit the GEC via the QBC, we are indeed

addressing the worst-case scenario, as for finite n, the normalized nth order Kullback-Leibler distance is smaller than

the KLDR and thus yields a closer statistical match between the two channels. We next notice that the values of the

minimum KLDR in Figs. 7-8 are less than 0.01 for all cases, except for Case G (see (c) in Fig. 8). As a result, we

observe a strong agreement in ACF, capacity and error exponents in Figs. 9-20 (this behaviour was indeed observed

for all computations). In particular, the value of the KLDR for Case A with Cor=0.0131 is less than 10−5 which

indicates excellent matching of the two models, although in this case both channels behave like a BSC since they

have a small correlation coefficient (see (a) in Fig. 7). In Figs. 9 and 10, we note that the ACF curves of the two

channels are nearly identical, except for Cases C and F where the ACF curves for the GEC take a longer span of m

before eventually converging.

Modeling results in terms of capacity are shown in Figs. 11-18, where the capacity of the GEC and its QBC

approximation are shown for different BER values and for fixed Cor values. It is worth mentioning that in the

capacity comparison figures, the QBC parameters are optimized for each value of BER. We clearly observe from

the figures that the capacity curves of both channels match quite well and the capacity curves in Figs. 11-13 are

almost identical. Note from the capacity figures that the largest Markovian memory M for the QBC model that
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best fits the GEC is 15 (see Fig. 13). Overall, we remark a strong match in capacity between the GEC and its QBC

approximation - indeed, even in Fig. 18 where the fit is weakest for Cor = 0.9, the difference between the capacity

curves is less than 1%.

We observe an excellent matching between the two channels in terms of error exponents for low Cor values (see

Fig. 19), while the agreement is weaker but still good for high values of Cor (see Fig. 20). Although we do not have

an exact RCLB expression for the GEC, the curves of Er(R) for n = 21 are close to the QBC exponents, particularly

for Cases A, C and D. We also note a good fit between the critical rates of the channels.

Overall, our results indicate that the QBC provides a good fit for the GEC and GC channels for a wide range of

channel conditions.

5 Conclusion

In this paper, we introduced a binary burst-noise channel based on a finite queue of length M . The resulting channel

noise process is a stationary ergodic Markov source of order M . We derived the stationary noise distribution, the

block transition probability and the capacity of the channel in terms of the QBC parameters M , ε, p and α. The

capacity is positive, and strictly increasing in α for fixed M , BER and Cor. When 0 ≤ α ≤ 1, the memory order M

strictly increases capacity for fixed α, BER and Cor. We also examined a particular case, the UQBC, by choosing

α = 1. The capacity of the UQBC is positive, increases with M and so is upper bounded by C
(M→∞)

UQBC .

We compared analytically the QBC with the FMCC, the GEC and the (K, 1)-SFC. The UQBC and the FMCC

were shown to have identical block transition probabilities for the same memory, BER and Cor; hence they have

identical capacity under the above conditions. Therefore, CFMCC < C
(M)

QBC with α > 1, and CFMCC > C
(M)

QBC with

0 ≤ α < 1 for the same M , BER and Cor. Furthermore, when M = 1, the UQBC capacity (C
(M=1)

UQBC) is smaller than

that of the GEC (CGEC) for the same BER and Cor, and the (K, 1)-SFC is statistically identical to the UQBC with

memory order 1. Thus, the capacity of the (K, 1)-SFC is not larger than that of the QBC with α ≥ 1 for the same

BER, Cor and any M . It was observed via numerical computations that, for the set of considered parameters, the

QBC with M = 2 and α = 10 has the biggest capacity, whereas the UQBC with M = 1 has the smallest capacity.

The queue-based model can span a broad range of capacities by adjusting its parameters.

We also studied the problem of fitting the GEC via the QBC. Numerical results lead us to conclude that, for various

channel conditions, the QBC provides a good approximation of the GEC in terms of KLDR, channel capacity, ACF,

and error exponent. It hence offers an attractive alternative to the GEC by virtue of its tractability for mathematical

analysis as it admits a closed form expression for its capacity and a transparent formula for its n-fold statistics.
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An important problem for future work is the judicious construction of practical capacity-achieving channel codes

for the QBC that directly operate on the channel (without the use of channel interleaving) and fully exploit the noise

memory structure. Initial progress in this direction is achieved in [27], where a belief propagation decoder is designed

for the decoding of (regular) LDPC codes over the QBC. It is noted that considerable performance improvement is

achievable over the standard decoding strategy for the equivalent memoryless channel (resulting from ideal channel

interleaving) which does not exploit the channel memory. The decoder studied in [27] is an extension of the sum-

product algorithm (originally designed for memoryless channels) and is similar to the decoding algorithm developed

for the GEC (e.g., see [12, 18]).

The next step for future work is to further close the gap vis-à-vis the Shannon limit by constructing LDPC codes

optimized for the QBC and analyzing their performance using density evolution. We expect that such study will

be substantially facilitated by the QBC’s simple statistical structure and information-theoretic properties – such as

the closed form expression for channel capacity and its monotonicity with respect to two channel parameters (cf.

Theorems 1 and 2). Finally, in light of the demonstrated capability for the QBC to accurately model correlated

fading channels [40, 41], once capacity-achieving LDPC codes are successfully designed for the QBC, they can also

directly be applied to the fading channels (as fitted by the QBC), thus achieving important performance gains over

the current coding methods for fading channels.

A Derivation of the Stationary Distribution of the QBC

If two states have the same binary representation except in the last bit, then the weights of the two states are

different by 1 (suppose one is ω
(M)
i , which is the number of “ones” in state i (the weight of state i), the other is

ω
(M)
i+1 = ω

(M)
i +1 when i is even). Solving π(M) = π(M)Q

(M)

QBC is equivalent to verifying that (5) satisfies the following:

π
(M)
i
2

= π
(M)
i





(

M − ω
(M)
i − 1 + α

)

ε

M − 1 + α
+ (1 − ε)(1 − p)



+ π
(M)
i+1





(

M − ω
(M)
i − 1

)

ε

M − 1 + α
+ (1 − ε)(1 − p)



 , (64)

and

π
(M)
i+2M

2

= π
(M)
i

[

ω
(M)
i ε

M − 1 + α
+ (1 − ε)p

]

+ π
(M)
i+1





(

ω
(M)
i + α

)

ε

M − 1 + α
+ (1 − ε)p



 , (65)

which are directly obtained from the transition probabilities (4). First we show that (64) is satisfied. State i
2 is

reached from state i or state i + 1 by transmitting a 0; thus π
(M)
i
2

= π
(M)
i . Moreover,

π
(M)
i+1 = π

(M)
i

ω
(M)
i

ε
M−1+α + (1 − ε)p

(M − ω
(M)
i − 1) ε

M−1+α + (1 − ε)(1 − p)
. (66)
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Therefore, (64) is equivalent to

1 =

(

M − ω
(M)
i − 1 + α

)

ε

M − 1 + α
+ (1 − ε)(1 − p) + ω

(M)
i

ε

M − 1 + α
+ (1 − ε)p,

which is easily seen to hold. Next, we show that (65) is satisfied. State i+2M

2 is reached from state i or state i + 1

by transmitting a 1; thus π
(M)
i+2M

2

= π
(M)
i+1 . Using (66), we see that (65) is equivalent to

1 = (M − ω
(M)
i − 1)

ε

M − 1 + α
+ (1 − ε)(1 − p) +

(

ω
(M)
i + α

)

ε

M − 1 + α
+ (1 − ε)p,

which again is easily seen to hold. It is evident that
∑2M−1

i=0 π
(M)
i = 1 is satisfied, as (5) has the same form as

the stationary distribution of the FMCC channel state given in [1]. Thus, it is verified that (5) is the stationary

distribution of the QBC.
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Cases Cor BER GEC/GC parameters QBC parameters

A 0.0131 0.00314 GEC: pG = 0.00259, pB = 0.4523 M = 2, ε = 0.0145, p = 0.00314, α = 0.1054

B 0.2227 0.03 GC: b = 0.02, g = 0.18 M = 4, ε = 0.4948, p = 0.03, α = 0.4189

C 0.248 0.012 GEC: pG = 0.00741, pB = 0.6555 M = 4, ε = 0.5279, p = 0.012, α = 0.3907

D 0.341 0.1178 GEC: pG = 0.01, pB = 0.5 M = 4, ε = 0.6397, p = 0.1178, α = 0.4319

E 0.5 0.03 GC: b = 0.00367, g = 0.0636 M = 6, ε = 0.841, p = 0.03, α = 0.2893

F 0.7 0.03 GC: b = 0.00228, g = 0.0547 M = 4, ε = 0.8864, p = 0.03, α = 0.3441

G 0.8 0.1 GEC: pG = 0.0101, pB = 0.909 M = 4, ε = 0.9294, p = 0.1, α = 0.2911

H 0.9 0.03 GC: b = 0.00161, g = 0.0495 M = 2, ε = 0.9251, p = 0.03, α = 0.3723

Table 1: GEC fitting via the QBC: GEC and QBC parameters. For the GEC, b and g are determined using (56)

and (57); for the GC, pG = 0 and pB is determined using either (56) or (57).
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Figure 14: GEC fitting via the QBC: Capacity vs BER for Cor = 0.341. For the GEC, b and g are determined using

(56) and (57).
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Figure 15: GC fitting via the QBC: Capacity vs BER for Cor = 0.5. For the GC, pG = 0 and pB is determined using

either (56) or (57).
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Figure 16: GC fitting via the QBC: Capacity vs BER for Cor = 0.7. For the GC, pG = 0 and pB is determined using

either (56) or (57).
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Figure 17: GEC fitting via the QBC: Capacity vs BER for Cor = 0.8. For the GEC, b and g are determined using

(56) and (57).
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Figure 18: GC fitting via the QBC: Capacity vs BER for Cor = 0.9. For the GC, pG = 0 and pB is determined using

either (56) or (57).
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Figure 19: GEC fitting via the QBC: Bounds to E(R) vs R. (a) Cor = 0.0131 and BER = 0.00314 (Case A in

Table 1) with R
(21)
cr = 0.66 for the GEC and Rcr = 0.67 for the QBC; (b) Cor = 0.2227 and BER = 0.03 (Case B in

Table 1) with Rcr = 0.06 for the GC and Rcr = 0.05 for the QBC; (c) Cor = 0.248 and BER = 0.012 (Case C in

Table 1) with R
(21)
cr = 0.03 for the GEC and Rcr = 0.04 for the QBC; (d) Cor = 0.341 and BER = 0.1178 (Case D

in Table 1) with R
(21)
cr = 0.02 for the GEC and Rcr = 0.03 for the QBC.
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Figure 20: GEC fitting via the QBC: Bounds to E(R) vs R. (a) Cor = 0.5 and BER = 0.03 (Case E in Table 1)

with Rcr = 0.0026 for the GC and Rcr = 0.02 for the QBC; (b) Cor = 0.7 and BER = 0.03 (Case F in Table 1)

with Rcr = 0.04 for the GC and Rcr = 0.06 for the QBC; (c) Cor = 0.8 and BER = 0.1 (Case G in Table 1) with

R
(21)
cr = 0.18 for the GEC and Rcr = 0.06 for the QBC; (d) Cor = 0.9 and BER = 0.03 (Case H in Table 1) with

Rcr = 0.25 for the GC and Rcr = 0.31 for the QBC.
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