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Abstract— We study hybrid digital-analog (HDA) joint source-
channel coding schemes for the transmission of a bivariate Gaus-
sian source S = (S1, S2) across a power-limited two-user Gaussian
broadcast channel. User i (i = 1, 2) observes the transmitted signal
corrupted by Gaussian noise with power σ2

i and wants to estimate
the ith component of the source, Si. We consider HDA coding
schemes with bandwidth expansion and analyze the region of
(squared-error) distortion pairs that are simultaneously achievable.
We first adapt an HDA scheme proposed by Reznic, Feder and
Zamir in [1] for broadcasting a single common source and use
it to provide an achievable distortion region for broadcasting
correlated sources. We also consider a three-layered coding scheme,
which we refer to by the HWZ scheme, and which consists of an
analog layer and two layers each consisting of a Wyner-Ziv coder
followed by a channel coder. We also examine numerical examples
which indicate that the HWZ scheme performs similarly to the
adapted Reznic-Feder-Zamir scheme. For comparison, we adapt
the outer bound for the set of all achievable distortion pairs in
broadcasting correlated Gaussian sources with matched source-
channel bandwidth [2] to the bandwidth expansion case.

I. INTRODUCTION

In this work, we consider broadcasting correlated Gaussian
sources with bandwidth expansion and aim to characterize the
best pair of mean squared-error (MSE) distortion pairs that
are simultaneously achievable at two receivers using hybrid
digital analog (HDA) coding schemes. It is known that the
separate (independent) design of source and channel coding due
to Shannon does not in general lead to the optimal performance
theoretically attainable (OPTA) in networks, see e.g. [3], [4].
On the other hand, for the point-to-point transmission of a
single Gaussian source through an additive white Gaussian
noise (AWGN) channel, it is well known (e.g., see [4], [5])
that if the channel and source bandwidths are equal, simple
uncoded transmission achieves the OPTA. Uncoded (or analog)
transmission in this case (and in the rest of this paper) means
scaling the encoder input subject to the channel power constraint
and transmitting without explicit channel coding. The optimality
of uncoded transmission in some multi-user communication
systems was recently shown in [6]–[8]. In order to exploit the
advantages of both analog transmission and digital techniques,
a family of HDA schemes were introduced in the literature, see
e.g., [1], [9]–[19]. The case of broadcasting a single memoryless
Gaussian source with bandwidth mismatch between the source
and the channel using HDA schemes is considered in [1],
[11]. Bross et al. [20] show that there exists a continuum of
HDA schemes with optimal performance for the transmission
of a Gaussian source over an average-power-limited Gaussian
channel with matched bandwidth. Tian and Shamai generalize
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Fig. 1. Broadcasting a bivariate Gaussian source over a power-limited Gaussian
two-user broadcast channel. Each receiver wants to obtain an estimate of its
corresponding source component to within fidelity Di (i = 1, 2).

this result to the mismatched bandwidth case [21]. Broadcasting
a Gaussian source with memory is analyzed in [16], [17]. In [22]
inner and outer bounds for the distortion region in broadcasting
a Gaussian mixture source are provided.

In this work, we consider the problem of broadcasting a bi-
variate correlated Gaussian source to two receivers subject to fi-
delity criteria. The system model is illustrated in Fig. 1. Related
work on broadcasting correlated sources can be found in [2],
[7], [23]–[29]. Lossless transmission of finite alphabet sources
is considered in [23]–[27], [30], and uncoded transmission for
broadcasting correlated Gaussian sources is evaluated in [7]. The
problem of sending a pair of finite alphabet correlated sources
through a broadcast channel with correlated side information at
the receivers is studied in [27]. A lattice-based hybrid coding is
propsed in [2] for broadcasting independent as well as correlated
sources. The authors in [2] show that their proposed scheme
is optimal for broadcasting independent sources and performs
better than separate source/channel coding for broadcasting
correlated sources below a certain SNR-threshold.

We aim to find achievable distortion regions using HDA
schemes for broadcasting with bandwidth expansion, i.e., broad-
casting with λ channel uses per source sample where λ > 1 (we
specifically concentrate on λ = 2). According to our knowledge,
apart from [7] and [2], in which the problem of broadcasting
correlated Gaussian sources with matched bandwidth is ana-
lyzed, there are no explicit distortion-regions in the literature for
broadcasting correlated Gaussian sources. We are also not aware
of any previous work discussing HDA schemes for broadcasting
correlated Gaussian sources with bandwidth expansion. Note
that the source-channel separation theorem does not hold in this
problem.

We first adapt the proposed HDA scheme for broadcasting
a common source by Reznic, Feder and Zamir [1], which we
refer to as the RFZ scheme, to the problem of broadcasting
correlated sources and provide an achievable distortion region.
Motivated by the three-layered coding scheme in [14] for broad-
casting a single Gaussian source with bandwidth compression,
we introduce a three-layered coding scheme for broadcasting
correlated Gaussian sources with bandwidth expansion. This
scheme, which we call the HWZ scheme, consists of an analog
layer and two layers each consisting of a Wyner-Ziv coder
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followed by a channel coder. We numerically evaluate and
compare the achievable distortion regions for the two schemes.
We find that, at least in the examples we consider, the HWZ
scheme performs similarly to the RFZ scheme for broadcasting
correlated Gaussian sources with bandwidth expansion.

The remainder of this paper is organized as follows. In
Section II, we present the system model and problem statement.
Section III introduces the two HDA schemes and presents the
achievable distortion regions associated with them. The two
regions are compared using numerical examples. Conclusions
are given in Section IV.

II. PROBLEM STATEMENT

We consider broadcasting a bivariate Gaussian source (or
equivalently two correlated Gaussian sources) across a two-user
power-limited Gaussian broadcast channel. User 1 receives the
transmitted signal corrupted by a Gaussian noise with power σ2

1

and wants to estimate the first component of the source. User 2
observes the transmitted signal in a Gaussian noise with smaller
power σ2

2 and wants to estimate the second component of the
source. Since we assume that σ2

1 > σ2
2 , user 1 is referred to

as the weak user and user 2 is referred to as the strong user.
Let S1 and S2 be correlated Gaussian random variables such
that {(S1(t), S2(t))}

∞
t=1 is a joint stationary and memoryless

Gaussian source. For each observation time t = 1, 2, 3, ..., the
random pair (S1(t), S2(t)) has a probability density function
(pdf) pS1,S2

(s1, s2) ∼ N (0,Λ) where the covariance matrix Λ
is given by

Λ =

[
σ2

S1
ρσS1

σS2

ρσS1
σS2

σ2
S2

]
, −1 < ρ < 1. (1)

We represent the first k instances of the first and
second source components by the data sequences
Sk

1 = {S1(1), S1(2), · · · , S1(k)} and Sk
2 =

{S2(1), S2(2), · · · , S2(k)}, respectively. The two-user Gaussian
broadcast channel with receivers estimating the bivariate source
components is shown in Fig. 1. Data sequences Sk

1 and Sk
2

are jointly encoded to Xn = ϕ
(
Sk

1 , Sk
2

)
, where the encoder

function is of the form
ϕ : R

k × R
k → R

n. (2)
The bandwidth expansion ratio is defined by λ = n

k
. In [31]

we have considered HDA coding schemes for broadcasting
correlated Gaussian sources under both matched bandwidth
(λ = 1) and bandwidth compression (λ < 1) assumptions.
In this paper, we will focus on the case where λ > 1, and
in particular we set λ = 2. The transmitted sequence Xn is
average-power limited to P > 0, i.e.,

1

n

n∑

t=1

E
[
|X(t)|2

]
≤ P. (3)

Each user i observes the transmitted signal X(t) corrupted by
a Gaussian noise Vi(t) with power σ2

i , so that at time t the
receiver observes

Yi(t) = X(t) + Vi(t), i = 1, 2 (4)
where Vi(t) ∼ N

(
0,σ2

i

)
are independently distributed over i

and t, and are independent of X(t). Based on the channel output
Y n

i , receiver i provides an estimate Ŝi

k
of the ith component

of the source, Sk
i . We consider the average MSE distortion,

i.e., ∆i = 1
k
E[

k∑

t=1
|Si(t) − Ŝi(t)|2]. The reconstructed signal at

receiver i can be described by Ŝi

k
= ψi (Y n

i ), where decoder
functions are mappings

ψi : R
n → R

k, i = 1, 2. (5)
Let F (k,n) (P ) denote all encoder and decoder functions
(ϕ,ψ1,ψ2) that satisfy (2)–(5). For a particular coding scheme
(ϕ,ψ1,ψ2), the performance is determined by the channel power
constraint P and incurred distortion pairs ∆1 and ∆2 at both
receivers. For any given power constraint P > 0, the distortion
region D is defined as the closure of the set of all distortion
pairs (D1, D2) for which (P,D1, D2) is achievable, where a
power-distortion pair (P,D1, D2) is achievable if for any δ > 0,
there exist sufficiently large integers k and n = λk, encoding
and decoding functions (ϕ,ψ1,ψ2) ∈ F (k,n) (P ), such that
∆i ≤ Di + δ (i = 1, 2).

III. DISTORTION REGIONS WITH BANDWIDTH EXPANSION

We consider the problem of broadcasting a bivariate Gaussian
source with 1:2 bandwidth expansion. Joint source-channel
coding schemes for broadcasting a single memoryless Gaussian
source over a power-limited broadcast channel are investigated,
e.g., [1], [11], [14], [16], [32], but to our knowledge no results
are available for bivariate Gaussian sources other than the
uncoded scheme of [7] and the lattice-based scheme of [2]
which are for the matched bandwidth case. In our schemes,
we will closely follow the notation and code constructions in
[14]. When describing the schemes and deriving the achievable
distortions, we only give high-level descriptions and analyses
without detailed proofs. In particular, for brevity we treat finite-
blocklength coding schemes as idealized systems with asymp-
totically large blocklengths. The proofs can be made rigorous
by much longer arguments and by possibly assuming that the
encoder and decoder have access to common randomization.

We want to transmit k samples of a bivariate Gaussian source
Sk = (Sk

1 , Sk
2 ) in n = λk uses of a power-limited broadcast

channel to two users where λ = 2. The two-user broadcast
channel has the power constraint P .

A. Reznic-Feder-Zamir (RFZ) Scheme

This scheme is introduced in [1] for broadcasting a mem-
oryless Gaussian source with bandwidth expansion. As it is
mentioned in [1], Shamai et al.’s scheme [9] and one of the
Mittal-Phamdo schemes [11] for broadcasting with bandwidth
expansion are special cases of this scheme. This scheme, which
provides the largest known achievable distortion region, reduces
to the one proposed in [16] when specialized to the case of
an independent and identically distributed (i.i.d) source and
bandwidth compression. We adapt this scheme for sending
correlated Gaussian sources over a Gaussian broadcast channel
with bandwidth expansion. Block diagrams of the encoder and
the decoder are shown in Fig. 2.

Fix P1 and P2 to satisfy P = P1 + P2. We first quantize the
first component of the source, Sk

1 , using an optimal quantizer to
produce an index m1 ∈

{
1, 2, · · · , 2kR1

}
where R1 = 1

2 log(1+
P1

P2+σ2

1

) . This index is aimed to be sent to both users losslessly,
i.e., it is supposed to be decoded at both users without error;
thus, it is given to an optimal channel encoder. This message is
also referred to as the common message [1]. Since this message
must be decoded by the weak user, it is imposed that
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k

2
log

(
σ2

S1

Dq

)
=

n − k

2
log

(
1 +

P1

P2 + σ2
1

)
(6)

where Dq is the average distortion of the quantizer. We denote
the reproduction point (i.e., output of the source decoder) by
Ŝk

1d. In the analog layer, the quantization error Sk
1 − Ŝk

1d is
scaled so that the power of the signal, Xk

a , in this layer is
P . Specifically, at each time t, Xa(t) = β(S1(t) − Ŝ1d(t))

where β =
√

P
Dq

. This codeword is transmitted as the first
k component of Xn. For the remaining n − k components,
two coded streams are merged together. First, the quantization
index m1 is encoded treating the third layer message as a noise
and the codeword Xn−k

1d with power P1 is transmitted. The
second component of the source Sk

2 is then Wyner-Ziv source
coded at rate R2 = 1

2 log(1 + P2

σ2

2

) using an estimate of Sk
1 at

the receiver as side information. The Wyner-Ziv index, m2 ∈
{1, 2, · · · , 2kR2} is then encoded and the resulting codeword
Xn−k

2d is superimposed with power P2 such that P1 + P2 = P .
The transmitted sequence is obtained by multiplexing (in time)
the codeword of the analog layer Xk

a with the codeword of the
digital layer, Xn−k

d = Xn−k
1d + Xn−k

2d . Thus, the transmitted
sequence can be represented as Xn = [Xk

a , Xn−k
d ].

An achievable distortion-region can be obtained by varying
P1 and P2 subject to P = P1 + P2. For a given P1 and P2,
the achievable distortion pairs can be computed as follows. At
the receiver (see Fig. 2.(b)), using the first k components of the
received sequence from the analog layer, the minimum mean
squared error (MMSE) estimate of the quantization error from
Y k

1a = Xk
a + V k

1 can be obtained. Also, the common message
m1 is decoded with average distortion

Dq = σ2
S1

(
1 +

P1

P2 + σ2
1

)1−λ

. (7)

Therefore, the overall average distortion at the weak user can
be expressed as

D1 =
Dq

1 + P
σ2

1

=
σ2

S1

1 + P
σ2

1

(
1 +

P1

P2 + σ2
1

)1−λ

. (8)

At the strong user, first the MMSE estimate of the quantiza-
tion error from Y k

2a = Xk
a + V k

2 is obtained. Then, an estimate
of the first component of the source can be obtained within
distortion

D∗
1 =

Dq

1 + P
σ2

2

=
σ2

S1

1 + P
σ2

2

(
1 +

P1

P2 + σ2
1

)1−λ

.

From this estimate, we obtain an estimate of Sk
2 with distortion:

D∗
2 = σ2

S2

(
1 − ρ2

(
1 −

D∗
1

σ2
S1

))
. (9)

This estimate acts as side information that can be used in
obtaining the estimate of Sn

2 for the strong user using the
decoded Wyner-Ziv bits. The strong user can decode Xn−k

1d and
subtract it from the received sequence to decode Xn−k

2d . Using
the decoding condition for the Wyner-Ziv index m2, the overall
distortion for the strong user in estimating Sk

2 can be obtained
as

D2 = D∗
2

(
1 +

P2

σ2
2

)1−λ

. (10)

Note: If we set ρ = 1 and σ2
S1

= σ2
S2

, then the results of
[1], which currently appear to be the best known results for
broadcasting a Gaussian source with bandwidth expansion, are
obtained. Setting P1 = P reduces this scheme to one of the
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expansion: the RFZ scheme.

Mittal-Phamdo schemes [11]. This results in

D1 =
σ2

S1

(1 + P
σ2

1

)λ
,

D2 = D∗
2 = σ2

S2

(
1 − ρ2 + ρ2

(
1 +

P

σ2
2

)−1

(1 +
P

σ2
1

)1−λ

)
.

Here, the optimum distortion for the weak user is achieved.
If we let P2 = P, the scheme of [9] is obtained, giving

D1 =
σ2

S1

1 + P
σ2

1

,

D2 = σ2
S2

(

1 − ρ2

(

1 −
1

1 + P
σ2

2

))(
1 +

P

σ2
2

)1−λ

.

In this scheme, if we also set ρ = 1, the optimum distortion for
the strong user is achieved.

B. HWZ Scheme (Layering with Analog and Wyner-Ziv Coding)

This scheme comprises three layers, an analog layer and
two layers each consisting of a Wyner-Ziv coder followed by
a channel coder. The scheme is similar to the one proposed
in [14] for broadcasting a single memoryless Gaussian source
with bandwidth compression except for the following: 1) Here
we consider broadcasting correlated Gaussian sources. 2) The
second layer in the scheme of [14] is an HDA Costa coding
while here it is a Wyner-Ziv coder followed by a channel coder.
3) Since we consider broadcasting with bandwidth expansion,
only the codewords of the second layer and the third layer
(digital layers) are merged together, and then the transmitted
sequence is obtained by multiplexing the codeword of the analog
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layer with the codeword of the digital layer, while in [14]
the codewords of all three layers are merged as bandwidth
compression is examined.

Block diagrams of the encoder and the decoder are shown
in Fig. 3. In the first layer, the analog transmission layer, a
linear combination of the k samples of the bivariate Gaus-
sian source components are scaled such that the power of
the transmitted signal, Xk

a , in this layer is P . Thus at

each time t we have Xa(t) = α
2∑

i=1
aiSi(t) where α =

√
P

a2

1
σ2

S1
+a2

2
σ2

S2
+2a1a2ρσS1

σS2

. In the second layer, n − k = k

samples of the first component of the source, Sk
1 are Wyner Ziv

coded at rate R
′

1 = 1
2 log(1 + P1

P2+σ2

1

) using an estimate of Sk
1

at the receiver as side information. The Wyner-Ziv index, m
′

1 ∈

{1, 2, · · · , 2kR
′

1} is then encoded treating the third layer message
as a noise and the codeword Xn−k

1d with power P1 is transmitted.
In the third layer, which is meant for the strong user, the second
component of the source, Sn

2 , is also Wyner Ziv coded at rate
R

′

2 = 1
2 log(1 + P2

σ2

2

) using the estimate of Sn
2 at the receiver as

side information. The Wyner-Ziv index, m
′

2 ∈ {1, 2, · · · , 2kR
′

2},
is then encoded that treats Xn−k

1d as interference and uses power
P2 such that P1 + P2 = P . As shown in Fig. 3, the transmitted
sequence is obtained by multiplexing (in time) the codeword
of the analog layer Xk

a with the codeword of the digital layer,
Xn−k

d = Xn−k
1d +Xn−k

2d . Thus, the transmitted sequence can be
represented as Xn = [Xk

a , Xn−k
d ].

At the decoder, from the received first k components of Y n
1 =

[Y k
1a, Y n−k

1d ], an MMSE estimate of Sk
1 as Ŝk

1a can be obtained
with an average distortion

D11 = σ2
S1|S1a

= σ2
S1

−
α2(a1σ

2
S1

+ a2ρσS1
σS2

)2

P + σ2
1

.

Since the Wyner-Ziv index m
′

1 must be decoded by the weak
user, it is imposed that

k

2
log

(
D11

D1

)
=

n − k

2
log

(
1 +

P1

P2 + σ2
1

)
(11)

Therefore, the overall average distortion at the weak user can
be expressed as

D1 = D11

(
1 +

P1

P2 + σ2
1

)1−λ

. (12)

From the analog layer, the strong user forms an estimate of the
first component of the source, Sk

1 with MMSE distortion

D∗
11 = σ2

S1
−

α2(a1σ
2
S1

+ a2ρσS1
σS2

)2

P + σ2
2

. (13)

Then, an estimate of the first component of the source can be
obtained within distortion

D∗
1 = D∗

11

(
1 +

P1

P2 + σ2
1

)1−λ

. (14)

From this estimate, we obtain an estimate of Sk
2 with distortion:

D∗
2 = σ2

S2

(
1 − ρ2

(
1 −

D∗
1

σ2
S1

))
. (15)

This estimate acts as side information that can be used in
obtaining the estimate of Sn

2 for the strong user using the
decoded Wyner-Ziv bits. Using the decoding condition for the
Wyner-Ziv index m

′

2, the overall distortion for the strong user
in estimating Sk

2 can be obtained as

D2 = D∗
2

(
1 +

P2

σ2
2

)1−λ

. (16)

In [2], [7] by assuming the knowledge of Sk
1 at the receiver of

the strong user, outer bound regions for broadcasting correlated
Gaussian sources with matched bandwidth are provided. By
making minor modifications to the proof of Theorem 1 in [2],
the following result can be obtained:
Lemma 1: The distortion region for broadcasting correlated

Gaussian sources with bandwidth mismatch ratio λ consists of
all pairs (D1, D2) such that

D1 ≥ σ2
S1

(
1 + (1−α)P

αP+σ2

1

)−λ

D2 ≥ σ2
S2

(
1 − ρ2

) (
1 + αP

σ2

2

)−λ (17)

where α ∈ [0, 1].

C. Numerical Results
We want to transmit k samples of a bivariate Gaussian source

Sk = (Sk
1 , Sk

2 ) with the covariance matrix Λ =

[
1 ρ
ρ 1

]
in

n = 2k uses of a power-limited broadcast channel to two users
(weak and strong) with observation noise variances σ2

1 = −5 dB
and σ2

2 = 0dB, respectively. The two-user broadcast channel
has the power constraint P = 3dB. The boundaries of the
outer bound in Lemma 1 and of the distortion regions for both
schemes are shown in Fig. 4.(a),(b) for two different values of
the correlation coefficient, ρ = 0.2 and ρ = 0.8. We observe
that, at least in this example, the HWZ scheme has the same
performance as the adapted RFZ coding scheme.
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Fig. 4. Distortion regions of the different HDA coding schemes. System
parameters are Λ =

1 ρ
ρ 1

, P = 3dB, σ2
1

= −5 dB and σ2
2

= 0dB.

IV. CONCLUSIONS

We considered HDA coding schemes for the transmission of a
bivariate correlated Gaussian source over a power-limited two-
user Gaussian broadcast channel. In particular, layered JSCC
schemes for this problem were analyzed under bandwidth ex-
pansion assumption. We provided achievable distortion regions
for two different three-layered HDA coding schemes: RFZ
coding and HWZ coding. The RFZ scheme has previously
been used in the literature for the broadcasting problem with
a single memoryless Gaussian source. Numerical examples
indicate that the scheme with analog and Wyner-Ziv coding
performs similarly to the RFZ scheme in the case of bandwidth
expansion. We are working on the achievable schemes to close
the gap between the achievable distortion region and the outer
region.
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