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Abstract

In this thesis, the joint source-channel coding method, channel optimized scalar quantization,

is applied to real-valued, correlated data. The data is sent over the orthogonal multiple access

channel, with non-binary noisy discrete channels with memory as the two sub-channels. Three

different schemes are compared for this system: in the first scheme encoding and decoding

are performed independently, in the second scheme encoding is done independently and joint

decoding is carried out, and the third scheme is with jointly optimized encoders and joint

decoding. The goal is to derive optimality conditions that will result in a lower end-to-end

distortion. To this end, necessary optimality conditions for the two latter schemes are fully

derived and implemented for the bivariate Gaussian and bivariate Laplacian distributions of

varying correlation.

The first and second methods are then further compared, by implementing them for an image

transmission system. Here the images are first processed with the 2 dimensional discrete

cosine transform, and then encoded using channel optimized scalar quantization. At the

decoder, two different methods are used, the independent and joint decoder.

In addition to comparing the different coding methods, various channels characteristics are

exploited. For example, the non-binary noisy discrete channel can be used to model memory

and the 2q-ary output allows for performance improvement via soft-decision decoding. It

is observed that by taking the source correlation into consideration, significant signal-to-

distortion ratio gains can be achieved. For example, the highest gain incurred from the

third scheme is when the bivariate Gaussian is compressed at rate 2, where the gain in

signal-to-distortion ratio due to source correlation is 10.90 dB.
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Chapter 1

Introduction

1.1 Motivation

The transmission of data signals from one location to another over noisy media has become

commonplace in everyday life, and it is important that the transmission of data be efficient

and reliable. The data being sent can take on various forms, such as text, sound (music

or speech), images, or video. The source data is generally modelled as a random process,

either discrete or continuous valued. This data is either stored, or transmitted over a wireless

channel, or a cable. In lossy systems continuous data is discretized and represented as bits

in order to store or transmit it. The process in which data is discretized and prepared for

transmission is called encoding and the process which reconstructs the data is called decoding.

There are multiple coding models and encoding functions designed for various conditions.

One such model used to transmit data is the tandem coding system. In this system, shown in

Figure 2.1, the source coding and channel coding are treated separately. In the source coding

step the data is compressed and redundancy in the source is removed, in order to represent

the data as succinctly as possible. This process makes the information more vulnerable to

errors in the channel so the second step is channel coding, where the compressed data is

protected from the channel noise by adding controlled redundancy. After this two-staged

encoding process, a finite, discrete signal, that represents the data, is sent over the channel.

On the other end, the process is reversed with first the channel decoder and then the source
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Figure 1.1: Tandem Coding System [24]

decoder. The source and channel coder should be designed in such a way that the resulting

message is as close to the input data as possible, given the storage and transmission power

restrictions. The source coder is designed assuming that the channel coder is optimal, and

vice versa. The motivation behind the use of a tandem system is Shannon’s source-channel

separation theorem. Shannon’s separation principles state that with a noisy channel of

capacity C it is possible to obtain a reconstruction signal with distortion D provided that

the capacity is greater than R(D), where R(D) is the rate-distortion function [1]. In practice,

this system is not always ideal as the use of two-stage coding introduces delay and complexity,

and the block lengths are not always sufficiently long [2]. Most importantly, this theorem

cannot be generalized to multi-user systems. Because of this, joint source-channel coding

(JSCC) schemes have been developed. These schemes incorporate elements of both source

and channel coding into a single encoder/decoder pair.

The problem addressed in this thesis is designing a JSCC for two users sending corre-

lated information to a common receiver. The two sources can either be spatially or temporally

distinct. There are existing sensor systems where sensors from two locations send correlated

data to the same receiver, or the same sensor sends information periodically. The goal with

the JSCC in this thesis, is to use the correlation in the data to improve the end-to-end

distortion.

1.2 Literature Review

Multiple studies into JSCC have been made and have shown it to be a viable scheme. There

are a variety of different JSCC schemes and generally they can be categorized as implementing
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either unequal error protection, zero-redundancy channel coding, or combined source-channel

coding [3].

Unequal error protection sorts the bits by importance and prioritizes the bits that hold more

information. These bits are given more protection and the less important bits are given less

protection against channel noise. The bits of the least importance are sometimes given no

protection at all. This method is used in [4] to protect the bits which contribute the most

to the image reconstruction. With most image transform coding techniques the coefficients

being sent across the channel hold varying amounts of energy, thus this method is commonly

employed to obtain the highest quality reconstruction.

Zero-redundancy channel coding uses the redundancy from the source to protect against the

channel noise. This method adds no redundancy for the channel, thus eliminating the use of

channel coding. The complexity at the decoder increases; however the encoding is simpler.

The two previously mentioned methods do not take the channel characteristics into consid-

eration in their design. The combination of source and channel coding, sometimes called

channel-optimized or channel-matched coding, is a more common JSCC scheme, which

combines elements of both source and channel code into a single code. Lloyd and Max [5], [6]

worked on quantization techniques and Kurtenbach and Wintz [7] continued their work by

deriving the necessary conditions for an optimal scalar quantizer for noisy channels. These

conditions have since been applied to various channel models, different types of data, and

Farvardin et al. studied the complexity and design issues related to the scheme [8], [9].

It is known that JSCC reduces the delay in the system as [10] showed that the error exponent

for JSCC is twice that of separate source-channel coding. This implies that only half the

encoding and decoding delay is present when using an optimal JSCC method. This in turn

saves 2 dB in power to achieve the same overall probability of error. Other advantages of the

JSCC scheme are the performance advantages in nonasymptotic regions over the separate

code design [11]. In [12], Shahidi et al. numerically shows that soft-decision decoding results

in gains in signal-to-distortion ratio (SDR) over hard-decision decoding, which supports the
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work in [13], [14], [15], [16] asserting that soft-decision decoding can increase channel capacity

and system performance.

Finally, JSCC has been implemented in the multi-user case in [17]. Here the orthogonal

multiple access channel (MAC) is used to model multiple users sending information. In [18]

two correlated Gaussian memoryless sources are sent across the Gaussian MAC. In [19] the

achievable regions for jointly correlated source side information are considered and source

and channel codes are derived. Finally [20] shows that correlated sources can be sent with

arbitrarily small probability of error over a multiple access channel.

1.3 Contributions

In this thesis, the results from [21], [22], [23] are combined, in that the JSCC conditions

for sending correlated data over the orthogonal MAC with non-binary noisy discrete sub-

channels are derived and implemented. The performance of a jointly optimized decoder is

also investigated for sending correlated images over the same orthogonal MAC.

1.4 Thesis Overview

The second chapter introduces the channel models used, the existing JSCC conditions and

the resulting SDR for a single user scheme. Chapter 3 includes the derivation of two two-user

JSCC methods. The first has independently optimized encoders and a jointly optimized

decoder, while the second has jointly optimized encoders and a jointly optimized decoder.

The schemes are compared in terms of encoding complexity and storage requirements and

implemented in MATLAB to show their performance. Next, the first two-user JSCC scheme

is used in the transmission of correlated images and the results are shown in Chapter 4.

Finally, Chapter 5 is devoted to conclusions and further work.
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Chapter 2

Preliminaries

2.1 Channel Models

2.1.1 Discrete Memoryless Channels

A communication channel with finite input alphabet X and finite output alphabet Y is called

a discrete channel. The set of transition probabilities from the channel input to the channel

output can be summarized by:

p(y|x) = P (Y = y|X = x), ∀x ∈ X , y ∈ Y ,

which is the probability of observing the output signal Y = y given the input signal X = x. In

practice, the input takes the form of a sequence of n input variables X = (X1, X2, . . . , Xn) and

the output is a corresponding sequence Y = (Y1, Y2, . . . , Yn). The channel is now governed

by the transition probability:

p(y|x) = P (Y = y|X = x), x ∈ X n,y ∈ Yn.

Here X n and Yn are the n-fold cartesian products of X and Y, respectively. A discrete

time channel is classified as memoryless if for a given input at time i, the output yi is

independent of all other channel inputs and outputs at times other than i. Specifically,
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p(yi|x1, . . . , xi, y1, . . . , yi−1) = p(yi|xi). The conditional probability can be written as

p(y|x) =
n∏
i=1

p(yi|xi)

when the channel is used without feedback. The informational channel capacity of a discrete

memoryless channel is given by

C = max
p(x)

I(X;Y )

where the maximum of the mutual information, I(X;Y ), is taken over all possible input

distributions p(x) [24].

Binary Symmetric Channel (BSC)

One example of a discrete memoryless channel is the binary symmetric channel (BSC), shown

in Figure 2.1. This is a binary input, binary output channel with crossover probability p. It

is a simple channel where when an error occurs, 0 is received as a 1 and vice versa. The

Figure 2.1: The Binary Symmetric Channel [24]

transition matrix, for which p(j|i) = Qi,j, of the BSC is given by

Q =

1− ε ε

ε 1− ε

 .
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It can be shown that the mutual information is bounded by:

I(X;Y ) ≤ 1−Hb(p)

where Hb(·) is the binary entropy function [24]. It can be shown the capacity of the BSC

with crossover probability p is 1 −Hb(p). This channel is widely used for analysis, as the

complexity of many problems can be reduced by using the BSC.

2.1.2 Channels with Memory

In practice, channels display characteristics of memory. In fact errors typically occur in bursts

[25]. To capture this behaviour, the non-binary noisy discrete channel is introduced.

Non-Binary Noisy Discrete Channel

The non-binary noisy discrete channel (NBNDC) is a binary input, 2q-ary output communi-

cation channel that incorporates the statistical memory and soft-decision information of a

time-correlated discrete fading channel. The channel output at time j is given by

Yj = (2q − 1)Xj + (−1)XjZj (2.1)

where Yj is the channel output, Zj is the channel noise, and Xj is the channel input.

Yj, Zj ∈ {0, 1, . . . , 2q − 1} for q ≥ 1, and the input Xj ∈ {0, 1} [26]. For j ≥ 0, the channel

noise can be written in terms of the input and output symbols,

Zj =
Yj − (2q − 1)Xj

(−1)Xj
. (2.2)

The advantage of using this channel is that the channel memory can easily be varied without

adding complexity to the system. The non-binary output from the NBNDC makes it feasible

to improve the system’s performance by implementing soft-decision decoding. The complexity
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increases exponentially with q, the soft-decision quantization resolution; however q is typically

not larger than 3.

The distribution of the noise process, {Zi}∞j=1, can be any stochastic process. The distribution

can, for example be a binary stationary memoryless process, with q = 1, and then the

NBNDC reduces to the BSC. The noise distribution investigated in this thesis is that from

[26], a non-binary generalization of the queue-based noise [27]. This channel is referred to

as the queue-based NBNDC, or NBNDC-QB. In this model, the noise is a 2q-ary M th-order

Markovian stationary ergodic process with 2q + 2 independent parameters. At time j, the

noise symbol zj is chosen from one of the following two packages:

• A queue with M cells, Figure 2.2, with balls each representing a noise symbol. Each

cell contains one ball with values from 0 to 2q − 1.

• An urn with many numbered balls, Figure 2.3, also representing noise symbols.

Figure 2.2: Queue of Length M

Figure 2.3: Urn of Numbered Balls with 2q Unique Numbers

8



At each time iteration, the queue is selected with probability ε. When the queue is chosen,

one of the M cells is chosen and the corresponding number of that cell becomes the noise

symbol. The probability of selecting the kth cell in the queue is given by


1

M−1+α , if k = 1, 2, . . . ,M − 1;

α
M−1+α , if k = M

(2.3)

with α ≥ 0. When the urn is selected, with probability 1− ε, a ball is chosen from the urn

and the noise symbol takes on the value of the selected ball. The balls in the urn take on

the probability distribution (ρ0, ρ1, . . . , ρ2q−1) where each ρi is the probability that a ball of

value i is chosen from the urn. Regardless of how the noise symbol was evaluated, a ball with

that value now gets placed at the beginning of the queue, pushing the M th ball out.

This resulting queue-based system is a stationary M th order Markovian system with 2q + 2

independent parameters, the size of the queue M , the probability distribution of the balls in

the urn, the correlation parameter, 0 ≤ ε < 1 and α ≥ 0.

The queue-based noise {Sn}∞−∞, defined by Sn = (Zn, Zn−1, . . . , Zn−M+1) ∈ {0, 1, . . . , 2q−1}M ,

is a homogeneous, first-order Markov state process. Let the noise state transition probability

be defined as

Q(sn|sn−1) = P (Sn = sn|Sn−1 = sn−1),

where sn = (zn, zn−1, . . . , zn−M+1), zn ∈ {0, 1, . . . , 2q − 1}. [26] states that,

Q(sn|sn−1) =

(
M−1∑
l=1

δzn,zn−l
+ αδzn,zn−M

)
ε

M − 1 + α
+ (1− ε)ρzn , (2.4)

where

δi,j =

 1, if i = j

0, if i 6= j.
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Since the noise process is independent of the input, the transition probability can be written

as

P (Ym = ym|Xm = xm) = P (Zm = zm) (2.5)

where Ym = Y1, . . . , Ym, Xm = X1, . . . , Xm, and Zm = z1, . . . , zm. Combining the previous

distributions, the whole system can be summarized with the followingm-fold channel transition

probability P (Zm = zm) = P
(m)
(NBNDC-QB)(z

m) = P(NBNDC-QB)(Z1 = z1, Z2 = z2, . . . , Zm = zm)

[26].

• For m > M

P
(m)
(NBNDC-QB)(z

m) =
∏m

i=M+1

[(∑i−1
l=i−M+1 δzi,zl + αδzi,zi−M

)
ε

M−1+α

+(1− ε)ρzi ] π(z1,z2,...,zM ),
(2.6)

where

π((z1,z2,...,zM ) =

∏2q−1
l=0

∏ξ−1
j=0

(
(1− ε)ρl + j ε

M−1+α

)∏M−1
k=0

(
(1− ε) + k ε

M−1+α

) , (2.7)

where ξl =
∑M

k=1 δzk,l

• For m ≤M

P
(m)
(NBNDC-QB)(z

m) =

∏2q−1
l=0

∏ξ′−1
j=0

(
(1− ε)ρl + j ε

M−1+α

)∏m−1
k=0

(
(1− ε) + k ε

M−1+α

) , (2.8)

where ξ′l =
∑m

k=1 δzk,l.

When m = 1, the marginal noise distribution reduces down to P
(1)
(NBNDC-QB)(z

1) = ρz1 , where

z1 ∈ {0, 1, . . . , 2q − 1}. The correlation coefficient of the system is given by:

cor =
E[ZkZk+1]− E[Zk]

2

Var(Zk)

=
ε

M−1+α

1− (M − 2 + α) ε
M−1+α

(2.9)

This channel model will be used extensively when designing the channel optimized scalar
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quantization algorithm.

2.1.3 Multiple Access Channel

The multiple access channel is a multiple terminal communication channel over which two or

more sources can transmit information to a single receiver. Generally the source symbols from

the multiple users will interfere with one another, so the use of channel coding is necessary

to protect the data. To avoid this interference, the orthogonal MAC is used in practice.

Here the sources do not interfere; however the channel bandwidth must be shared among

Figure 2.4: The Orthogonal MAC

several users. This can be achieved by implementing frequency division multiple access, time

division multiple access or code division multiple access techniques. The orthogonal MAC is

a suitable model for when multiple correlated sources are independently transmitted without

interference, to a common receiver. This model will be used with two NBNDC channels acting

as the orthogonal sub-channels, as shown in Figure 2.4. Figure 2.5 shows the capacity region

for two orthogonal binary symmetric channels. Since there is no interference between the

channels the capacity is simply the region between the capacities from the separate channels.

Recall the capacity of a single BSC is C = 1−Hb(p).
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Figure 2.5: Capacity Region for Independent Binary Symmetric Channels [24]

2.2 Source and Channel Coding, and Quantization

2.2.1 Source Coding and Channel Coding

Source coding, also referred to as data compression, is the process of removing redundant

information from the source with the purpose of reducing the requirement of bandwidth.

Two types of data compression exist, lossless and lossy. In lossless data compression the

reconstructed data is identical to the original source, i.e., no information is lost. The goal

of lossy data compression is to reduce the amount of information stored or transmitted but

keep the reconstructed data similar to the original. Lossy data compression is achieved by

quantization, which will be discussed in a later section.

Channel coding is the process of mitigating the effect of channel noise on the information

being transferred. This is done by adding controlled redundancies into the binary stream.

The bandwidth must be allocated for error protection but the amount of bandwidth allocated

is delicate; too many source bits in the binary stream will result in channel errors destroying

the signal while too few makes the reconstruction quality poor.
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The goal of source coding is to represent the source information as succinctly as possible. The

redundancy of a source can be due to non-uniformity of its marginal probability distribution

or its memory. The redundancy in information can be described using entropy. Entropy is an

integral component of information theory. It is defined as the average number of bits required

to store or communicate one signal in a message (for example a pixel or ASCII character).

Entropy is defined as follows

H(X) = −
∑

x∈X
px(x) log2 px(x) = −EX [log2 px(x)],

where X = {0, 1, . . . , N − 1} is the alphabet, of the source X and px(x) = P (X = x) is the

probability mass function associated.

2.2.2 Scalar Quantization

Quantization is used to compress data by mapping data points to a discrete set of points

called codewords. These codewords make up the codebook. To generate these codewords, a set

of training data is required. Training data can be data points from a probability distribution

or, in the two user case, data generated from a bivariate distribution. To perform quantization

the values to be quantized are mapped to a point in the codebook. This process is a form

of lossy compression since the data points are no longer stored as their true value. Scalar

quantization is used on single-valued data sets. The method assigns each element of a data

set to a unique codeword. Specifically, for a rate n scalar quantizer, q, there are N = 2n

codewords. The scalar quantizer maps the real-line to a set of finite values,

q : R→ C

where

C = {c1, c2, . . . , cN} ⊂ R,
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where ci’s are the codewords, or reproduction levels. In order to map the real-line to these

codewords, the real-line is partitioned into N non-overlapping regions, Si, i = 1, 2, . . . , N.

These are defined as

Si = {x ∈ R : q(x) = ci}, i = 1, 2, . . . , N

where the Si’s satisfy

∪Ni=1Si = R

and

Si ∩ Sj = ∅,

for i 6= j where i, j = 1, 2, . . . , N . For each input x to the quantizer q, the output is obtained

as follows,

q(x) = ci if x ∈ Si.

The quantizer is fully defined by the partition set {Si} and the codebook C. To optimize the

quantizer, in other words, reduce the distortion of the quantization for a given number of

codewords, there are two conditions that must be met. The goal is to minimize the statistical

distortion, measured as the expected distortion,

D = E[d(X, q(X))] =
∑
i

∫
Si

(x− ci)2p(x)dx,

where p(x) is the source probability density function and d(x, y) = |x− y|2 is the squared

error distortion measure, thus D is called the mean-squared error (MSE) distortion. The first

condition is the nearest neighbour condition. This condition requires for a given codebook C

that the data points be mapped to the codeword closest to them. The condition is given as

follows,

Si = {x : |x− ci|2 < |x− cj|2,∀j 6= i} ∀i = 1, . . . , N.
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The centroid condition is the second condition satisfied by an optimal quantizer. Given a

partition set {Si}, the optimal codewords are given by

ci = arg min
c
E[d(X, c)|X ∈ Si], ∀i = 1, 2, ..., N.

Owing to the two above necessary optimality conditions, the optimization of the quantizer

can be done by an iterative algorithm which simplifies the design of the optimal quantizer.

This algorithm is called the Lloyd algorithm. It is an iterative algorithm which starts with

an initial, fixed, codebook. It proceeds to use the nearest neighbour condition to find the

partition set, and then uses the centroid condition to find a new codebook. After each

iteration the distortion will either decrease or stay the same. As a result the algorithm will

always converge. The algorithm can be seen in more detail below. The system requires an

initial codebook which will be introduced in the next section (2.3.2).

Input: pdf f(x), initial codebook C1 = {c11, c12, . . . , c1N}, threshold ε.

m = 1

D0 =∞

D1 = E[d(X, q1(X))]

while Dm−1−Dm

Dm−1
> ε do

m = m+ 1

Smi = {x : d(x, cmi ) ≤ d(x, cmj ), j = 1, 2, . . . , N} i = 1, 2, . . . , N

cmi = arg mincE[d(X, c)|X ∈ Smi ] i = 1, 2, . . . , N

Cm = {cm1 , cm2 , . . . , cmN}

Dm = E[d(X, qm(X))]

end

Output: Cm
Algorithm 1: Lloyd Algorithm for Scalar Quantizer (MSE distortion)

In practice the quantized values, or codewords ci’s, are not sent across the channel, in-
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stead they are assigned indices i = 1, . . . , N which can be sent across the channel. This

means that the codebook needs to be stored at both the encoder and decoder. By considering

the transmission of the coded index, the input data {Vi} can be mapped to a coded index

via encoding function γ and reconstruct the data via a decoding function β, i.e.,

γ(v) = i if v ∈ Si,

β(j) = cj, cj ∈ C,

where cj is the codeword corresponding with output index j = 1, . . . , N . In a noiseless

channel, the received index is identical to the transmitted one; however, when there is noise

present the transmitted indices may become corrupted. In a noiseless channel, the distortion

of the quantizer can be directly calculated. In this scenario, the way in which the indices are

assigned to the codewords has no effect on the final distortion. In the next section the case

where the channel experiences noise will be investigated.

2.3 Channel Optimized Quantization

2.3.1 Introduction

As seen in the previous section, the indices from the quantization function are vulnerable to

noise in the channel. The channel optimized quantization aims to protect the indices from

this noise by considering the channel transition probabilities with the goal of reducing the

expected distortion. By including these probabilities, the centroid and nearest neighbour

conditions will be modified accordingly. The system is assumed to have perfect a priori

information. In other words, the channel statistics are known to the encoder. There is

a tradeoff between the quantization error and channel error, which avoids the addition of

redundancy to protect against channel error. In addition one can exploit the non-binary

output from the NBNDC to implement soft-decision decoding when q > 1.
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2.3.2 System Description

Consider a real-valued and memoryless input source {Vi}∞i=1 with zero mean and unit variance.

The communication system is depicted in Figure 2.6.

The COSQ-Encoder γ is a mapping that takes the input source value v ∈ R and maps it to

Figure 2.6: Block Diagram of COSQ System

an index x ∈ {0, 1}n with relation

γ(v) = x if v ∈ Sx,

where {Sx : x ∈ {0, 1}n} is a partition of R. The binary n-tuples x are sent across the

NBNDC-QB, resulting in a 2q-ary output. Finally, the COSQ-decoder β(·), takes the 2q-ary,

n-tuple ouput y and maps it to a reconstruction of v via,

β(y) = cy ∈ R,y ∈ {0, 1, . . . , 2q − 1}n.

2.3.3 COSQ Design

The objective of the COSQ training algorithm is to find the codebook C = {cy : y ∈

{0, 1, . . . , 2q − 1}n = Y} and the partition set P = {Sx : x ∈ {0, 1}n = X} such that the

average distortion-per-sample is minimized. This distortion measure is given by:

D(C,P ) =
∑

x∈X
∫
Sx
p(v)

∑
y∈Y P (Y = y|X = x)d(v, cy)dv

=
∑

x∈X
∫
Sx
p(v)

∑
y∈Y P (Y = y|X = x)(v − cy)2dv

=
∑

x∈X
∑

y∈Y P (Y = y|X = x)
∫
Sx
p(v)(v − cy)2dv
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where p(v) is the source probability density function, P (Y = y|X = x) is the channel

transition probability, and X and Y are the alphabets at the input and output respectively.

The encoding rate is n = log2N . As before, with scalar quantization, there are necessary

conditions for optimality. The nearest neighbour and centroid conditions are variations of

the previous conditions. It has been proved that for a noisy system, the necessary optimality

conditions are as follows [7], [8], [9]

• Generalized Nearest Neighbour Condition

S∗i = {v :
∑
y∈J

P (y|x)|v − cy|2 ≤
∑
y∈J

P (y|x̃)|v − cy|2,∀x̃ ∈ I}

where I = {0, 1}n, J = {0, 1, . . . , 2q − 1}n.

• Generalized Centroid Condition

c∗y = arg minv̂∈RE[d(V, v̂)|Y = y], y ∈ J

=
∑

x P (y|x)
∫
Sx

vf(v)dv∑
x P (y|x)

∫
Sx

f(v)dv
.

The channel error represents the probability of a binary value changing from its original value

to a different value between 0 and 2q − 1. Note that the codebook and partition index sets

are not the same size here. The partition set is indexed using binary n-tuples I = {0, 1}n,

while the codebook is indexed with 2q-ary n-tuples J = {0, 1, . . . , 2q − 1}n, where q is the

soft-decision granularity. As before, the Lloyd algorithm can be used to iterate between the

conditions. The algorithm now also requires the channel statistics for the NBNDC-QB. Before

the algorithm can iterate between these two conditions, an initial codebook is required.

2.3.4 Initial Codebook Design and Simulated Annealing

In order to implement the COSQ scheme the COSQ training algorithm needs to first optimize

a codebook and partition set. For this algorithm, the input required is training data,
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an initial codebook and an index assignment. The initial codebook is generated from a

uniform quantizer and the index assignment is a result of simulated annealing. The uniform

quantizer is a variation of scalar quantization which partitions the source space into equal,

non-overlapping, partitions

∪Ni=1Si = R,

Si ∩ Sj = ∅,

for i 6= j where i, j = 1, . . . , N . As the quantization is uniform, an interval ∆ is calculated

∆ = vmax−vmin

n
, where vmax and vmin are the maximum and minimum values of the training

data, respectively. The quantizer is defined as

quniform(v) = ai ∈ {a1, . . . , an}, if v ∈
[
ai −

∆

2
, ai +

∆

2

]

where the ai’s are the partition midpoints. Using this quantizer, one can obtain an initial

codebook that is fed into the noiseless Lloyd algorithm to obtain an optimized initial codebook.

The index assignment needs to be optimized for the given channel conditions. Farvardin in

[9] proposed to use a method known as simulated annealing. This is a form of a randomized

stochastic relaxation algorithm. It is adapted from the process of studying crystal growth,

where the material is heated to the melting point and then the temperature is gradually

decreased, allowing for the material to form a crystal. In mathematics, it is a non-linear

technique used for optimization problems. Specifically for channel coding, simulated annealing

is used to optimize the codeword indices.

The simulated annealing method starts by defining the initial state of the system. To deter-

mine the next state, different configurations are generated in a probabilistic way to allow for

local “hill climbing”. This is done to evade local minima. If the cooling is done sufficiently

slowly, the algorithm can converge to the global minimum in probability; however in practice
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faster cooling is used to find a local minimum. A common cooling schedule is

Tk = αTk − 1,

and 0 < α < 1 where T is the effective temperature of the system [23]. To determine the state

at which the system should change, the energy of different states are calculated and compared.

When the indices are sent across the noisy channel, an error in the binary representation of

the index i = {0, . . . , 2n−1}, where n is the rate of the encoder, causes a discrepancy of 2i

in the codebook index. For example, when n = 4, if 0100, the binary string for index 4 is

received as 1100, the index at the receiver is now 12. To avoid this kind of impact from a

single error, the binary representations of the index values need to be reordered such that a

change in a binary value changes the codebook value as little as possible. To do this simulated

annealing finds a locally optimal state by comparing the energy of different states. This

algorithm is done in the following four steps:

Simulated Annealing Algorithm

Step 1: Set the temperature to the initial high temperature T0 and randomly chose an initial

state b, corresponding to a permutation of the indexing for the codebook.

Step 2: Choose the next state b′ randomly and calculate the change in distortion:

∆ε2 = ε2(b′)− ε2(b)

where ε2 is the expected distortion D(C,P ). If ∆ε2 < 0, replace b with b′, and go to step 3,

otherwise replace b by b′ with probability exp(−∆ε2/T ) and go to step 3.

Step 3: If after a predefined number of perturbations, N , the energy is no longer decreasing,

go to step 4. Otherwise go to step 2.

Step 4: Decrease the temperature using the cooling schedule given. If the temperature falls

below the prescribed freezing temperature Tf or the system appears stable, the algorithm is
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completed and the final state is state b. Otherwise, go to step 2.

The cooling schedule used for the implementation of this algorithm is:

Tk = αTk − 1

for 0 < α < 1. The other constants used for the algorithm are shown in the table below:

T0 10

Tf 0.00025

α 0.97

N 200

These parameters were taken from [23]. Note that T0 is a high temperature relative to ∆ε2.

2.3.5 Results

To obtain the following results, Algorithm 2 (see p.23) was used. To further optimize the

results, the noise in the channel is gradually increased so that each progressively noisy

channel simulation is initialized using a codebook from an already somewhat noisy channel.

The results in [22] demonstrate that this method can result in up to 2 dB of gain in the

signal-to-distortion ratio (SDR). This method is called increase-decrease and was repeated 5

times to obtain the results shown below. In the results, the value of comparison is the SDR.

This quantity, which, under the assumption that the source has zero mean and unit variance,

is given by

SDRdB = −10 log10((V − V̂ )2).

The larger the SDR the lower the mean-squared error between the reproduction and the

source, and hence the better the performance.
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For the results shown in Tables 2.1 and 2.2, the threshold for the relative decrease in

distortion, ε = 0.0001, and 500,000 training vectors were used. The probability distribution

(ρ0, ρ1, . . . , ρ2q−1) for the NBNDC-QB for soft-decision granularity q = 1, 2, 3 is given in Table

2.3 for a range of channel signal-to-noise ratios (CSNR). The CSNRs used are 15 dB, 10 dB,

5 dB, 2 dB, and 0 dB. To calculate the probability distributions in the channel, based on the

CSNR in dB, refer to equations (1)-(3) in [26]. The results correspond with those from [22],

sometimes performing better as the increase-decrease method introduced in [22] was used for

all results. As expected, the performance increases with rate and soft-decision parameter q,

and the memory in the channel.
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Run uniform quantization and noiseless Lloyd algorithm to obtain initial codebook

C1 = {c11, c12, . . . , c1N}.

for CSNR = [15,10,5,2,0] dB repeated in alternating order 5 times do

Run simulated annealing to obtain index assignment.

Input: pdf f(x), initial codebook C1 = {c11, c12, . . . , c1N}, index assignment,

threshold ε.

m = 1

D0 =∞

D1 = E[d(V, V̂ )]

while Dm−1−Dm

Dm
> ε do

m = m+ 1

Smi = {v :
∑

y∈J P (y|x)d(v, cmy ) ≤
∑

y∈J P (y|x̃)d(v, cmy ), ∀x̃ ∈ I} i =

1, 2, . . . , N

cmy = arg minv̂∈RE[d(V, V̂ )|Y = y] y ∈ J

Cm = {cm1 , cm2 , . . . , cmN}

Dm = E[d(V, V̂ )]

end

Output: Cm

end

Algorithm 2: COSQ Algorithm for optimal training codebook
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Table 2.1: SDR Results for COSQ Training with Gaussian and Laplacian Data,
Channel Correlation cor= 0, α = 1,M = 1

CSNR
q R 15 dB 10 dB 5 dB 2 dB 0 dB

Gaussian Distribution
1 4.16 3.76 2.87 2.20 1.67
2 8.12 6.69 4.66 3.44 2.70
3 11.02 8.50 5.80 4.45 3.57

1 4 13.09 10.39 7.51 5.57 4.32
5 14.79 12.13 8.23 6.22 4.96
6 16.80 14.00 9.83 7.35 5.84
7 19.74 15.86 11.10 8.35 6.51
8 21.25 17.32 12.55 9.166 7.14
1 4.23 3.85 3.10 2.42 1.95
2 8.47 7.00 5.10 4.00 3.26

2 3 11.54 9.21 6.84 5.26 4.32
1 4.24 3.90 3.14 2.48 2.05
2 6.93 5.80 4.07 3.20 2.63

3 3 10.30 7.93 5.66 4.28 3.53
4 12.09 10.47 7.67 5.77 4.55

Laplacian Distribution
1 2.88 2.64 2.08 1.60 1.26

1 2 6.49 5.29 3.62 2.66 2.08
3 9.13 6.97 4.62 3.46 2.76
4 11.24 8.70 5.76 4.22 3.37
1 2.93 2.70 2.23 1.78 1.46

2 2 6.90 5.65 3.99 3.08 2.51
3 10.16 7.46 5.53 4.12 3.35
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Table 2.2: SDR Results for COSQ Training, for Gaussian Data, α = 1

CSNR
q R 15 dB 10 dB 5 dB 2 dB 0 dB

Gaussian Distribution, M = 1, cor = 0.9
1 4.17 3.77 2.88 2.16 1.67

1 2 8.85 8.01 6.70 5.69 5.08
3 13.41 11.85 9.47 8.06 7.24

Gaussian Distribution, M = 1, cor = 0.5
1 4.17 3.77 2.88 2.16 1.67

1 2 8.27 6.83 4.63 3.38 2.68
3 11.28 8.66 5.78 4.18 3.22

Gaussian Distribution, M = 5, cor = 0.9
1 4.17 3.77 2.88 2.16 1.67

1 2 8.88 8.19 6.76 5.96 5.15
3 13.49 11.94 9.68 8.31 7.52

Table 2.3: The ρ Values for Corresponding CSNR for NBNDC-QB with Soft-Decision
Resolution q = 1, 2, 3 [22]

CSNR q ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7
1 0.992 0.008 - - - - - -

15 dB 2 0.972 0.020 0.006 0.001 - - - -
3 0.955 0.018 0.012 0.008 0.004 0.002 0.001 0.000
1 0.977 0.023 - - - - - -

10 dB 2 0.924 0.053 0.019 0.005 - - - -
3 0.865 0.051 0.037 0.024 0.013 0.006 0.003 0.001
1 0.936 0.064 - - - - - -

5 dB 2 0.782 0.154 0.054 0.010 - - - -
3 0.703 0.100 0.078 0.055 0.034 0.018 0.008 0.005
1 0.892 0.108 - - - - - -

2 dB 2 0.695 0.196 0.085 0.024 - - - -
3 0.563 0.132 0.112 0.084 0.054 0.031 0.015 0.009
1 0.854 0.146 - - - - - -

0 dB 2 0.627 0.227 0.110 0.036 - - -
3 0.427 0.145 0.132 0.104 0.071 0.041 0.021 0.013
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Chapter 3

COSQ of Correlated Sources over

Orthogonal MACs

3.1 Derivation of Optimality Conditions

Instead of a single user accessing the channel, consider now two users, with real-valued

messages V1, V2 that have joint probability density f(v1, v2), where (v1, v2) ∈ R2. These

messages are sent from different locations over the orthogonal MAC to a common receiver.

The objective is to send both messages across separate, noisy channels and decode them

simultaneously. This means the two encoders cannot communicate with one another; however

the decoding can be done jointly. The motivation behind developing a new method for this

scenario is that there are existing systems in which correlated data is sent either concurrently,

or periodically. Instead of the decoder working with only the information sent from one

transmission, it can use the second transmission to improve the end-to-end distortion. In

the following sections, two schemes will be introduced. The first scheme uses the same

encoding as the previously described COSQ algorithm, but decodes two sources jointly. The

second scheme uses an optimized encoder that predicts the other user’s values based on the

correlation of the sources and a jointly optimized decoder. Both methods are described more

explicitly below.
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3.1.1 COSQ II: Individually Optimized Encoders, Jointly Opti-

mized Decoder

When considering two users sending messages across independent channels and received

at the same location, a natural solution is to optimize the decoder to take both received

signals in consideration. This method does not require any changes to the encoder and is

therefore simple to implement in existing systems; however there is an increase in complexity

at the receiver. For this scheme the nearest neighbour condition previously derived is used

as the encoder remains the same. At the output however, the two outputs have a new,

joint codebook, with size |Cu| = 2q(n1+n2) per user u ∈ {1, 2}, where n1 and n2 are the rates

corresponding to users 1 and 2 and q is the soft-decision granularity of the NBNDC. The

new codebooks have codewords cy1,y2 ∈ C1 and c̃y1,y2 ∈ C2

(cy1,y2 , c̃y1,y2) = arg min
(v̂1,v̂2)∈R2

E[d(V1, v̂1) + d(V2, v̂2)|Y1 = y1,Y2 = y2] y1 ∈ J1,y2 ∈ J2

(3.1)

where y1 ∈ J1 = {0, 1, . . . , 2q − 1}n1 ,y2 ∈ J2 = {0, 1, . . . , 2q − 1}n2 . Here, V1, V2 are the two

correlated sources, v̂1, v̂2 are the outputs of the corresponding source samples, Y1, Y2 are the

2q-ary output samples from the channel, where nu = log2Nu, u = 1, 2. This equation will be

explicitly derived in the next section.

To implement this method a new codebook needs to be trained for the decoder. The final,

optimized, codebook from the previously described, one user scheme is used as the initial

codebook at each encoder. Correlated data is encoded using these codebooks and then at the

decoder, the new codebook is calculated using the centroid condition in equation 3.1. The

codewords reflect values which minimize the expected distortion between the reconstruction

values and the data points in the partitions. As the encoding function and the codebook at

the encoder remains the same, the algorithm is only iterated through once, as repeating it

would result in no change.
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Some interesting results were discovered when implementing this method. For one, when

the correlation between the two Gaussian users ρ = 0, i.e. the sources are independent, the

scheme is equivalent to the one user scheme. This is because the joint codebook condition

can be reduced to the single user codebook. It was observed that as source correlation ρ

increases, the distortion decreases; however when the two users are identical, and there is

no noise in the system, the scheme is also equivalent to the one user scheme. This result is

explicitly proven for rate one below; however the behaviour was also noticed at higher rates.

Lemma 1: When the bivariate Gaussian source is encoded with the rate one individu-

ally optimized COSQ encoder for a single user and the decoder is jointly optimized, the

expected distortion D = E[(X1 − X̂1)
2 + (X2 − X̂2)

2] = 2E[(X − X̂)2] when the sources

X1 and X2 are independent, where E[(X − X̂)2] is the expected distortion for a single user

system. Furthermore, for a noiseless channel, the expected distortion is equal to the case

when the sources are independent.

Proof: The case where the sources are independent is easily shown to be equivalent to the

single user case as there is no gain from the source correlation and the optimality conditions

simply reduce down to the single user case.

When the sources are identical, the proof that the performance is equivalent to the indepen-

dent method is a little more interesting. (X1, X2) ∼ N([0, 0], 1, 1, ρ), are two jointly Gaussian

sources, both mean 0, variance 1, and correlation ρ. The marginal distributions of this jointly

Gaussian source is also Gaussian, X1, X2 ∼ N(0, 1).

The encoding codebook is constant in this scenario and can be shown to be, (X̂1, X̂2) ∈[(√
2
π
,
√

2
π

)
,
(
−
√

2
π
,
√

2
π

)
,
(√

2
π
,−
√

2
π

)
,
(
−
√

2
π
,−
√

2
π

)]
. For simplicity, let

√
2
π

= x+
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and −
√

2
π

= x− then the expected distortion can be written as:

D = E[(X1 − X̂1)
2 + (X2 − X̂2)

2]

= E[(X1 − x+)2 + (X2 − x+)2|X1 > 0, X2 > 0]P (X1 > 0, X2 > 0)

+E[(X1 − x−)2 + (X2 − x+)2|X1 < 0, X2 > 0]P (X1 < 0, X2 > 0)

+E[(X1 − x+)2 + (X2 − x−)2|X1 > 0, X2 < 0]P (X1 > 0, X2 < 0)

+E[(X1 − x−)2 + (X2 − x−)2|X1 < 0, X2 < 0]P (X1 < 0, X2 < 0).

When the two sources are not correlated so that ρ = 0, they are independent, and the

distortion becomes:

Dρ=0 = (E[(X1 − x+)2|X1 > 0] + E[(X2 − x+)2|X2 > 0])P (X1 > 0)P (X2 > 0)

+(E[(X1 − x−)2|X1 < 0] + E[(X2 − x+)2|X2 > 0])P (X1 < 0)P (X2 > 0)

+(E[(X1 − x+)2|X1 > 0] + E[(X2 − x−)2|X2 < 0])P (X1 > 0)P (X2 < 0)

+(E[(X1 − x−)2|X1 < 0] + E[(X2 − x−)2|X2 < 0])P (X1 < 0)P (X2 < 0).

Since the marginals of both sources are normally distributed with X1, X2 ∼ N(0, 1), the

generic notation can be used, X ∼ N(0, 1).

Dρ=0 = 2E[(X − x+)2|X > 0]P (X > 0)2

+2(E[(X − x+)2|X > 0] + E[(X − x−)2|X < 0])P (X > 0)P (X < 0)

+2E[(X − x−)2|X < 0]P (X < 0)2.

The distribution is symmetric about 0 and hence the distortion can be written as:

Dρ=0 = 8E[(X − x+)2|X > 0]P (X > 0)2

= 8(1
2
)2E[(X − x+)2|X > 0]

= 2E[(X − x+)2|X > 0].
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Similarly, for a single source the expected distortion is,

E[(X − X̂)2] = E[(X − x+)2|X > 0]P (X > 0) + E[(X − x−)2|X < 0]P (X < 0)

= 2E[(X − x+)2|X > 0]P (X > 0)

= E[(X − x+)2|X > 0]

per user.

When the sources are identical implying X1 = X2, and ρ = 1 then following similar steps,

and writing X1 = X2 = X ∼ N(0, 1), the distortion becomes:

Dρ=1 = E[(X1 − X̂1)
2 + (X2 − X̂2)

2]

= 2E[(X − X̂)2]

= 2E[(X − x+)2|X > 0]P (X > 0) + 2E[(X − x−)2|X < 0]P (X < 0)

= 4
2
E[(X − x+)2|X > 0]

= 2E[(X − x+)2|X > 0].

As shown, these values for the expected distortion are all equal. The expected distortion can

be explicitly calculated as,

D = 2E[(X − x+)2|X > 0] = 2

(
E[X2|X > 0]− 2E[X|X > 0]

√
2

π
+

2

π

)
= 2

(
1− 2

π

)
.

This corresponds to a distortion of 1− 2
π

per user, or −10 log10(1− 2
π
) = 4.396 dB.

This result can be extended to non-Gaussian bivariate distributions assuming the distribution

has identical marginal distributions and the encoders are the same for both sources.

3.1.2 COSQ III: Jointly Optimized Encoders, Joint Optimized

Decoder

The previous method did not make any changes to the encoder; however it is possible to alter

the encoder to take into consideration the other user when choosing the index to send across
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the channel. This is done by deriving the nearest neighbour condition using the end-to-end

distortion of the two-user system.

Consider two real-valued, stationary, and ergodic sources {(V1, V2)t}∞t=1 with zero mean,

unit variance, and correlation, ρ. The communication system is depicted in Figure 3.1.

They are independently encoded with a mapping γu(·), u = 1, 2. γu maps the input source

Figure 3.1: Block Diagram of Two User COSQ System

vu ∈ R, to binary string xu = {0, 1}n, where n is the rate used to encode the source samples.

Note that for simplicity n is used as the rate for both users; however the two sources can be

encoded with non-equal rates. For u = 1, 2, the source vu is encoded by

γu(vu) = xu if vu ∈ Sxu ,

where Sxu is the partition of R corresponding with the xth
u binary string, {Sxu : xu ∈ {0, 1}n}.

These binary messages are sent across the channel. The channel outputs make a 2q-ary

message pair {(y1,y2) : yu ∈ {0, 1, . . . , 2q − 1}n = Y}. The two output streams are jointly

decoded with the following function:

β : Y × Y → R2.
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The decoding function maps each pair of 2q-ary outputs to an unique codebook pair,

{(y1,y2)} → {(cy1,y2 , c̃y1,y2)} ∈ R2.

As before, the channel optimized scalar quantization algorithm aims to find the optimal

codebook and partition set. Here C = {(cy1,y2 ∈ C1, c̃y1,y2 ∈ C2)} is the codebook and

P = {(Sxj
1
∈ P1, Sxk

2
∈ P2) : j, k ∈ {1, . . . , N}} is the partition set for the quantization

function. Since the encoder function is one-to-one, the partition is defined in terms of xju

instead of only the index set, {1, . . . , N}. The end-to-end distortion of the system can be

written as

D(C,P ) = E[(V1 − V̂1)2 + (V2 − V̂2)2].

This can be expanded as

D(C,P ) =
∑

x1∈X

∑
x2∈X

∑
y1∈Y

∑
y2∈Y

E[(V1 − cy1,y2)
2 + (V2 − c̃y1,y2)

2|V1 ∈ Sx1 , V2 ∈ Sx2 ]

P (Y1 = y1,Y2 = y2|X1 = x1,X2 = x2)P (V1 ∈ Sx1 , V2 ∈ Sx2)

=
∑

x1∈X

∑
x2∈X

∫
Sx1

∫
Sx2

f(v1, v2)
∑

y1∈Y

∑
y2∈Y

P (Y1 = y1,Y2 = y2|X1 = x1,X2 = x2)

(|v1 − cy1,y2|2 + |v2 − c̃y1,y2|2)dv1dv2
(3.2)

where f(v1, v2) is the joint density function of the two sources.

Nearest Neighbour Condition

First the optimal partition set is derived. For the derivation, the first user’s conditions will

be considered, and similarly the second user will have equivalent conditions. To find these

partitions, the distortion is minimized for a given codebook. Considering that V1 = v1 ∈ Sxj
1
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where j = {1, . . . , N}, the nearest neighbour can be derived as follows

D(C,P ) =
∑

x2∈X

∑
y1∈Y

∑
y2∈Y

((v1 − cy1,y2)
2 + E[(V2 − c̃y1,y2)

2|V1 = v1, V2 ∈ Sx2 ])

P (Y1 = y1,Y2 = y2|X1 = xj1,X2 = x2)P (V2 ∈ Sx2|V1 = v1)

≥ min
xj
1

∑
x2∈X

∑
y1∈Y

∑
y2∈Y

((v1 − cy1,y2)
2 + E[(V2 − c̃y1,y2)

2|V1 = v1, V2 ∈ Sx2 ])

P (Y1 = y1,Y2 = y2|X1 = xj1,X2 = x2)P (V2 ∈ Sx2|V1 = v1)

(3.3)

To realize the minimization in (3.3) the partition sets can be defined to include all source

values for which the D(C,P ) is minimized. This means the optimal partition set can be

defined as follows:

Sxj
u

= {vu : dvu(vu,x
j
u) ≤ dvu(vu,x

k
u),∀k 6= j}, ∀j ∈ I, u ∈ {1, 2}

where I = {1, . . . , N}. Here, dvu(vu,x
j
u), measures the distortion between the source vu and

the jth binary string. For user 1, this distortion is given by

dv1(v1,x
j
1) =

∑
x2∈X

∑
y1∈Y

∑
y2∈Y

((v1 − cy1,y2)
2 + E[(V2 − c̃y1,y2)

2|V1 = v1, V2 ∈ Sx2 ])

P (V2 ∈ Sx2|V1 = v1)P (Y1 = y1,Y2 = y2|X1 = xj1,X2 = x2)

(3.4)

and for V2:

dv2(v2,x
j
2) =

∑
x1∈X

∑
y2∈Y

∑
y1∈Y

((v2 − c̃y1,y2)
2 + E[(V1 − cy1,y2)

2|V2 = v2, V1 ∈ Sx1 ])

P (V1 ∈ Sx1|V2 = v2)P (Y1 = y1,Y2 = y2|X1 = x1,X2 = xj2)

(3.5)

Centroid Condition

To find the optimal codebook value, for a fixed partition region, the derivative of the distortion

is taken with respect to the codebook value and set to zero. Again this is only shown for
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user 1. The same derivation is applied to the second user.

∂D(C,P )
∂c

y
j
1,y

k
2

=
∑

x1∈X

∑
x2∈X

P (Y1 = yj1,Y2 = yk2 |X1 = x1,X2 = x2)∫
Sx1

∫
Sx2

2f(v1, v2)(v1 − cyj
1,y

k
2
)dv1dv2.

(3.6)

Setting this to zero and isolating the codebook term results in

cyj
1,y

k
2

=

∑
x1∈X

P (Y1 = yj1|X1 = x1)
∑

x2∈X
P (Y2 = yk2 |X2 = x2)

∫
Sx1

∫
Sx2

v1f(v1, v2)dv1dv2∑
x1∈X

P (Y1 = yj1|X1 = x1)
∑

x2∈X
P (Y2 = yk2 |X2 = x2)

∫
Sx1

∫
Sx2

f(v1, v2)dv1dv2

(3.7)

for user 1. Also,

cyj
1,y

k
2

=

∑
x2∈X

P (Y2 = yj2|X2 = x2)
∑

x1∈X
P (Y1 = yk1 |X1 = x1)

∫
Sx2

∫
Sx1

v2f(v1, v1)dv2dv1∑
x2∈X

P (Y2 = yj2|X2 = x2)
∑

x1∈X
P (Y1 = yk1 |X1 = x1)

∫
Sx2

∫
Sx1

f(v1, v2)dv2dv1

(3.8)

for user 2.

Implementation of Encoding Condition

The encoding function derived above cannot be directly implemented as in the one user case.

To implement the nearest neighbour condition, equations 3.4 and 3.5 need to be expanded

and evaluated. Since the probability distributions of the sources used are known, the integrals

can be explicitly solved. The source distributions used are Gaussian and Laplacian, so the

bivariate probability distributions are required. The data used from these distributions will

always be normalized to have unit variance and 0 mean. The bivariate Gaussian density, for

correlation ρ and unit variance, 0 mean, is given by:

fG(v1, v2) =
1

2π
√

1− ρ2
exp

(
−1

1− ρ2
(
v21 + v22 − 2ρv1v2

))
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and the bivariate Laplacian:

fL(v1, v2) =
1

π
√

(1− ρ2)
K0

√2(v21 − 2ρv1v2 + v22)

1− ρ2

 ,

where K0(u) is the third Bessel function given by K0(u) = 1
2

∫∞
0
s−1exp(−s− u2

4s
)ds, u > 0 [28].

When implementing the NNC, the partition sets and codebooks change between each iteration,

denoted by t, and the NNC is calculated using the partition sets and codebooks from the

previous iteration, t− 1. Expanding the NNC (showing only for user 1, but process for user

2 is equivalent):

dtv1(v1,x
j
1)

=
∑

x2∈X

∫
St−1
x2

∑
y1∈Y

∑
y2∈Y

(|v1 − cy1,y2|2 + |v2 − c̃y1,y2 |2)f(v1, v2)

P (Y1 = y1,Y2 = y2|X1 = xj1,X2 = x2)dv2

=
∑

x2∈X

∑
y1∈Y

∑
y2∈Y

(v1 − cy1,y2)
2P (V1 = v1, V2 ∈ St−1x2

)P (Y1 = y1,Y2 = y2|X1 = xj1,X2 = x2)

+
∑

x2∈X

∫
St−1
x2

∑
y1∈Y

∑
y2∈Y
|v2 − c̃y1,y2|2f(v1, v2)P (Y1 = y1,Y2 = y2|X1 = xj1,X2 = x2)dv2.

To calculate this value, the second term needs to be examined. It can be broken down into

the following integrals:

∫
St−1
x2
|v2 − c̃y1,y2|2f(v1, v2)dv2

=
∫
St−1
x2

(
v22 − 2v2c̃y1,y2 + c̃2y1,y2

)
f(v1, v2)dv2

=
∫
St−1
x2

v22f(v1, v2)dv2 − 2c̃y1,y2

∫
St−1
x2

v2f(v1, v2)dv2 + c̃2y1,y2
P (V1 = v1, V2 ∈ St−1x2

).
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The first integral can be calculated for the bivariate Gaussian as follows; WLOG St−1x2
=

(a, b) ∈ R,

∫
St−1
x2

v22f(v1, v2)dv2

= 1√
2π(1−ρ2)

∫
St−1
x2

v22exp
{
−v21+2ρv1v2−v22

2(1−ρ2)

}
dv2

= 1
2

[
exp

{
v21−v22
2(1−ρ2)

}
(ρ2v21 + 1− ρ2) erf

{
v2−ρv1√
2(1−ρ2)

}
exp

{
ρ2v21+v

2
2

2(1−ρ2)

}
−2(1−ρ2)(ρv1+v2)√

2π(1−ρ2)
exp

{
ρv1v2
1−ρ2

}]a
v2=b

where erf(x) = 1√
π

∫ x
−x e

−t2dt.

The second term is similarly calculated; WLOG St−1x2
= (a, b) ∈ R,

∫
St−1
x2

v2f(v1, v2)dv2

= 1√
2π(1−ρ2)

∫
St−1
x2

v2exp
{
−v21+2ρv1v2−v22

2(1−ρ2)

}
dv2

= 1
2

[
exp

{
v21−v22
2(1−ρ2)

}
ρv1erf

{
v2−ρv1√
2(1−ρ2)

}
exp

{
ρ2v21+v

2
2

2(1−ρ2)

}
− 2(1−ρ2)√

2π(1−ρ2)
exp

{
ρv1v2
1−ρ2

}]a
v2=b

Finally, the last term; WLOG St−1x2
= (a, b) ∈ R,

P (V1 = v1, v2 ∈ St−1x2
)

=
∫
v2∈St−1

x2
fv1,v2(v1, v2)dv2

=
∫
v2∈St−1

x2

1√
2π(1−ρ2)

exp
{
−v21+2ρv1v2−v22

2(1−ρ2)

}
dv2

= 1√
2π(1−ρ2)

[
1
2

√
2π(1− ρ2)erf

{
v2−ρv1√
2(1−ρ2)

}
exp

{
−v21
2

}]a
v2=b

= 1
2

[
erf

{
v2−ρv1√
2(1−ρ2)

}
exp

{
−v21
2

}]a
v2=b

The NNC terms for the Laplacian distribution can also be calculated. These integrals

have no definite solutions; however MATLAB can obtain numerical solutions. The indefinite
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integrals required are

∫
St−1
x2
|v2 − c̃y1,y2|2f(v1, v2)dv2

=
∫
St−1
x2

(v22 − 2v2c̃y1,y2 + c̃2y1,y2
)f(v1, v2)dv2

=
∫
St−1
x2

v22f(v1, v2)dv2 − 2c̃y1,y2

∫
St−1
x2

v2f(v1, v2)dv2 + c̃2y1,y2P (V1 = v1, V2 ∈ St−1x2
)

The integrals are calculated on MATLAB and to generate the Laplacian data required to

train the COSQ system, the following generator was implemented in MATLAB [28]

• Generate a bivariate normal variable (X1, X2) with mean zero, and covariance matrix

Σ.

• Generate a standard exponential variable W.

• Set (Y1, Y2)←
√
W (X1, X2).

• Return (Y1, Y2).

3.1.3 Encoding Complexity and Storage Requirements

As a method of comparison, the encoding complexity and storage requirements of the schemes

introduced are evaluated. The encoding complexity gives an indication of the work required

for the sensor to encode the source information. The storage requirements on the other hand

combines the memory required for the entire system, in the form of pre-evaluated codebooks,

or channel statistics. More formally, the values are defined as:

• Encoding complexity: Defined as the total number of multiplications required to

encode a source sample.

• Storage Requirements: Total number of scalar values stored at the encoder and

decoder in order to implement the quantizer.
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The methods that will be compared, are the single user scheme, the two user scheme with a

independently optimized encoder, jointly optimized decoder, and the two user scheme with

a jointly optimized encoder and jointly optimized decoder. For the remainder of the thesis

these schemes will be referred to as COSQ I, II, and III, respectively.

COSQ I: Single User COSQ

Encoding Complexity In order to implement the COSQ, the nearest neighbour condition

with channel statistics used. For this method, the codebook is stored at both the encoder and

decoder. The calculation at the encoder, the NNC, can be reduced to the following equation:

argmini∈I
∑N

j=1 PY |X(j|i)|x− cj|2

= argmini∈I
∑N

j=1 PY |X(j|i){x2 − 2xcj + c2j}

= argmini∈I{
∑N

j=1 PY |X(j|i)c2j − 2
∑N

j=1 PY |X(j|i)xcj}

= argmini∈I{
∑N

j=1 PY |X(j|i)c2j − 2x
∑N

j=1 PY |X(j|i)cj}.

(3.9)

The two sums are constant, therefore can be computed beforehand and stored at the encoder.

Thus the multiplications that need to be done at the encoder, for each source, is equal to the

number of codewords being used.

COSQ I Complexity = 2n,

where n is the rate of the encoder.

Storage Requirements For the NNC from above to by implemented, the two sums need

to be stored at the encoder. The size of both of these is that of the codebook, 2n. For the

decoder the codebook is required to map the output message back into real values. Thus

the overall storage requirements for both encoder and decoder are 3 times the size of the

codebook.

COSQ I Storage = 3 · 2n.
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COSQ II: Individually Optimized Encoder, Jointly Optimized Decoder

Encoder Complexity Despite the fact that there are now two sources, the encoder functions

the same way as for the COSQ with a single user; however the rates of the two users may

not be the same. Thus the complexities of the two encoders are not necessarily equal and the

complexity instead is written as the maximum number of multiplications required to encode

a source sample.

COSQ II Complexity = max(2n1 , 2n2)

where n1 and n2 are the rates of user 1 and 2 respectively.

Storage Requirements In order to implement the encoder function, once again the sum-

mation terms need to be stored by the encoder. This requires at most the codebook size of

the larger codebook. The decoder codebook is now defined differently as both sources are

taken into consideration. The size of the codebook at the output is 2n1+n2 .

COSQ II Storage = 2 max(2n1 , 2n2) + 2n1+n2 .

COSQ III: Jointly Optimized Encoders, Jointly Optimized Decoder

Encoder Complexity The implementation of the NNC for the two user optimally, inde-

pendently, encoded scheme, is more complex than the previous two. The calculation done for

each source sample requires calculating the expected value of the other second source.

dtv1(v1,x
j
1)

=
∑

x2∈X

∫
St−1
x2

∑
y1∈Y

∑
y2∈Y

(|v1 − cy1,y2|2 + |v2 − c̃y1,y2|2)f(v1, v2)

P (Y1 = y1,Y2 = y2|X1 = xj1,X2 = x2)dv2

=
∑

x2∈X

∑
y1∈Y

∑
y2∈Y

(v1 − cy1,y2)
2P (V1 = v1, V2 ∈ St−1x2

)P (Y1 = y1,Y2 = y2|X1 = xj1,X2 = x2)

+
∑

x2∈X

∫
St−1
x2

∑
y1∈Y

∑
y2∈Y
|v2 − c̃y1,y2|2f(v1, v2)P (Y1 = y1,Y2 = y2|X1 = xj1,X2 = x2)dv2
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For the bivariate Gaussian these integrals have been derived in the previous section. When

combining them the final equation that needs to be solved at the encoder for each source has

a total of 13 unique multiplication terms. These terms are multiplied together in 23 particular

ways. This means that for each source sample, 36 multiplications for each codebook value is

required to assess the codebook values which results in the lowest distortion. The codebook

size is now larger too, as there is a codeword corresponding to each permutation at the output.

The size of the new codebook is 2n1+n2 .

COSQ III Complexity = 36 · 2n1+n2 .

Storage Requirements Due to the complexity of the encoder, this scheme requires much

more memory than the previous two. This includes the boundary values for the integrals

over the partition sets, which is the size of the codebook plus one and the channel transition

distribution which has the same size as the codebook. Some terms in the NNC are constants

which need to be stored ahead of time, such as 2(1−ρ2)√
2π(1−ρ2)

and similar terms. In total there

are 7 vectors that require storage, which are the size of the output codebook. In addition

there are 6 scalars which can be computed and stored at the encoder. The codebook also

needs to be stored at the decoder, this has size 2n1+n2 .

COSQ III Storage = 7 · 2n1+n2 + 6.

These complexity and storage requirements of the three methods are summarized in table

3.1. The joint schemes add exponential complexity and storage at the receiver regardless of

whether or not the encoder is changed.

COSQ III is the most complex scheme at the encoder, and at low rates, for example rate

2 at both users, 2n1+n2 = 8 and the 36 factor makes a large impact. At higher rates the 36

factor becomes less important; however the exponential increases twice as fast than the single

scheme, when both users have the same rate. In order to implement the COSQ III method,

the encoder also has to be able to compute exponentials and the error function.
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Table 3.1: Summary of Complexity and Storage Requirements for COSQ Schemes

Method Complexity Storage
COSQ I 2n 3 · 2n
COSQ II max(2n1 , 2n2) 2 max(2n1 , 2n2) + 2n1+n2

COSQ III 36 · 2n1+n2 7 · 2n1+n2 + 6

3.2 Results

The numerical results for the COSQ II and COSQ III are presented here. First the algorithm

used for the COSQ III scheme is shown in Algorithm 3. As with the COSQ I scheme, the

noise is gradually increased and the final codebook from the previous channel noise is used to

initialize the next iteration of the algorithm. As before, 500,000 data points are used per

user and the threshold ε = 0.0001. The channel parameters used are M = 1, α = 1, cor = 0

and 0.9, and CSNR = 15, 10, 5, 2, and 0 dB.
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Run uniform quantization and noiseless Lloyd algorithm to obtain initial

codebooks, C1 = {C1
1 , C

1
2};

for Source Correlation,

ρ = [0, 0.01, 0.02, . . . , 0.98, 0.99, 1, 0.99, 0.98, . . . , 0.02, 0.01, 0] do

for CSNR = [15, 10, 5, 2, 0] repeated 5 times, alternating the order do

Run simulated annealing to obtain optimized index assignment;

Input: Joint pdf f(v1, v2), initial codebook C1 = {C1
1 , C

1
2}, index

assignment, threshold ε;

m = 1;

D0 =∞;

D1 = E[d(V1, V̂1) + d(V2, V̂2)];

while Dm−1−Dm

Dm
> ε do

m = m+ 1;

Sm
xju

= {vu : dmvu(vu, x
j
u) ≤ dmvu(vu, x

k
u),∀k 6= j}, j ∈ I, u ∈ {1, 2};

cyj1,yk2
=

∑
x1∈X

P (Y1=y
j
1|X1=x1)

∑
x2∈X

P (Y2=yk2 |X2=x2)
∫
Sm
x1

∫
Sm
x2
v1f(v1,v2)dv1dv2∑

x1∈X
P (Y1=y

j
1|X1=x1)

∑
x2∈X

P (Y2=yk2 |X2=x2)
∫
Sm
x1

∫
Sm
x2
f(v1,v2)dv1dv2

;

c̃yj1,yk2
=

∑
x1∈X

P (Y1=y
j
1|X1=x1)

∑
x2∈X

P (Y2=yk2 |X2=x2)
∫
Sm
x2

∫
Sm
x1
v2f(v1,v2)dv2dv1∑

x1∈X
P (Y1=y

j
1|X1=x1)

∑
x2∈X

P (Y2=yk2 |X2=x2)
∫
Sm
x2

∫
Sm
x1
f(v1,v2)dv2dv1

;

Cm = {Cm
1 , C

m
2 };

Dm = E[d(V1, V̂1) + d(V2, V̂2)];

end

Output: Cm;

end

end

Algorithm 3: Two User COSQ Algorithm
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Table 3.2: Gain due to Source Correlation, ρ, in dB for COSQ II, Channel Parameters:
M = 1, cor = 0, α = 0

CSNR (dB)
Rate Noiseless 15 10 5 2 0

Gaussian
1 0.6 0.6 0.7 1.1 0.9 0.8
2 1.0 1.2 1.6 1.4 1.3 1.2
3 0.8 1.7 1.8 1.7 1.7 1.8
4 0.3 2.5 2.0 2.5 3.0 2.5

Laplacian
1 0.3 0.3 0.3 0.5 0.6 0.6
2 0.7 1.0 1.0 1.1 1.1 1.1
3 0.8 1.3 1.3 1.5 1.5 1.4
4 0.5 1.9 1.8 2.7 1.7 1.5

3.2.1 COSQ II

Table 3.2 shows the increase in SDR due to the source correlation ρ of the input source for

Gaussian and Laplacian sources over channels of varying CSNR. It shows the maximum

increase in SDR, i.e. the distance between the lowest SDR, which occurs when the sources

are independent and the highest SDR which generally occurs close to when the sources are

dependent. The general trend is that as the noise increases, the gain also increases, to a

point. As the rate increases, the performance gain also increases.

The graphs below show the performance of the COSQ II algorithm at varying rates and

channel noise, with the bivariate Gaussian and Laplacian used as the training data. Figures

3.2, 3.3, 3.4, and 3.5 show the COSQ for rates from 1 to 4 trained on the bivariate Gaussian,

at varying channel SNR (CSNR). The general trend is an increase in SDR, with the increase

of the source correlation. The numerical results support the Lemma 1, when the channel

is noiseless, the performance is the same for the independent and dependent sources with

rate one encoding. This behaviour is also observed at higher rates. Figures 3.6, 3.7, 3.8,

and 3.9 show the SDR results for rates from 1 to 4 with varying CSNR, for the bivariate

Laplacian. With this distribution Lemma 1 does not hold for noiseless channels, as the
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SDR for dependent sources is lower than the SDR for independent sources, at high rates.

This is likely due to numerical error as the SDR difference between the independent and

identical sources is only 0.1 to 0.2 dB. Figure 3.10 shows the COSQ II algorithm when the

two Gaussian users are encoded with different rates. As expected, the higher the rate of the

second user, the higher the SDR the for other user. If the second user is encoded with a lower

rate, the gain is not as substantial. As with the other scheme, the higher performance gains

occur at higher channel noise. Finally Figure 3.11 shows the gain due to channel memory. In

these graphs, the channel correlation parameter cor = 0.9 and is represented by the dotted

line. Generally the channel correlation contributes a gain of 2 to 4 dB, with the highest gain

occurring when the channels have high noise.
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Rate = 1, Noiseless Channel, COSQ II, 
Bivariate Gaussian

Rate = 1, CSNR = 15dB, COSQ II, Bivariate 
Gaussian

Rate = 1, CSNR = 10dB, COSQ II, Bivariate 
Gaussian

Rate = 1, CSNR = 5dB, COSQ II, Bivariate 
Gaussian

Rate = 1, CSNR = 2dB, COSQ II, Bivariate 
Gaussian

Rate = 1, CSNR = 0dB, COSQ II, Bivariate 
Gaussian

Figure 3.2: Two User Rate 1 COSQ II with Varying CSNR, Gaussian
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Rate = 2, Noiseless Channel, COSQ II, 
Bivariate Gaussian

Rate = 2, CSNR = 15dB, COSQ II, Bivariate 
Gaussian

Rate = 2, CSNR = 10dB, COSQ II, Bivariate 
Gaussian

Rate = 2, CSNR = 5dB, COSQ II, Bivariate 
Gaussian

Rate = 2, CSNR = 2dB, COSQ II, Bivariate 
Gaussian

Rate = 2, CSNR = 0dB, COSQ II, Bivariate 
Gaussian

Figure 3.3: Two User Rate 2 COSQ II with Varying CSNR, Gaussian

46



Rate = 3, Noiseless Channel, COSQ II, 
Bivariate Gaussian

Rate = 3, CNSR = 15dB, COSQ II, Bivariate 
Gaussian

Rate = 3, CNSR = 10dB, COSQ II, Bivariate 
Gaussian

Rate = 3, CNSR = 5dB, COSQ II, Bivariate 
Gaussian

Rate = 3, CNSR = 2dB, COSQ II, Bivariate 
Gaussian

Rate = 3, CNSR = 0dB, COSQ II, Bivariate 
Gaussian

Figure 3.4: Two User Rate 3 COSQ II with Varying CSNR, Gaussian
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Rate = 4, Noiseless Channel, COSQ II, 
Bivariate Gaussian

Rate = 4, CSNR = 15dB, COSQ II, Bivariate 
Gaussian

Rate = 4, CSNR = 10dB, COSQ II, Bivariate 
Gaussian

Rate = 4, CSNR = 5dB, COSQ II, Bivariate 
Gaussian

Rate = 4, CSNR = 2dB, COSQ II, Bivariate 
Gaussian

Rate = 4, CSNR = 0dB, COSQ II, Bivariate 
Gaussian

Figure 3.5: Two User Rate 4 COSQ II with Varying CSNR, Gaussian
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Rate = 1, Noiseless Channel, COSQ II, 
Bivariate Laplacian

Rate = 1, CSNR = 15dB, COSQ II, Bivariate 
Laplacian

Rate = 1, CSNR = 10dB, COSQ II, Bivariate 
Laplacian

Rate = 1, CSNR = 5dB, COSQ II, Bivariate 
Laplacian

Rate = 1, CSNR = 2dB, COSQ II, Bivariate 
Laplacian

Rate = 1, CSNR = 0dB, COSQ II, Bivariate 
Laplacian

Figure 3.6: Two User Rate 1 COSQ II with Varying CSNR, Laplacian
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Rate = 2, Noiseless Channel, COSQ II, 
Bivariate Laplacian

Rate = 2, CSNR = 15dB, COSQ II, Bivariate 
Laplacian

Rate = 2, CSNR = 10dB, COSQ II, Bivariate 
Laplacian

Rate = 2, CSNR = 5dB, COSQ II, Bivariate 
Laplacian

Rate = 2, CSNR = 2dB, COSQ II, Bivariate 
Laplacian

Rate = 2, CSNR = 0dB, COSQ II, Bivariate 
Laplacian

Figure 3.7: Two User Rate 2 COSQ II with Varying CSNR, Laplacian
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Rate = 3, Noiseless Channel, COSQ II, 
Bivariate Laplacian

Rate = 3, CSNR = 15dB, COSQ II, Bivariate 
Laplacian

Rate = 3, CSNR = 10dB, COSQ II, Bivariate 
Laplacian

Rate = 3, CSNR = 5dB, COSQ II, Bivariate 
Laplacian

Rate = 3, CSNR = 2dB, COSQ II, Bivariate 
Laplacian

Rate = 3, CSNR = 0dB, COSQ II, Bivariate 
Laplacian

Figure 3.8: Two User Rate 3 COSQ II with Varying CSNR, Laplacian
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Rate = 4, Noiseless Channel, COSQ II, 
Bivariate Laplacian

Rate = 4, CSNR = 15dB, COSQ II, Bivariate 
Laplacian

Rate = 4, CSNR = 10dB, COSQ II, Bivariate 
Laplacian

Rate = 4, CSNR = 5dB, COSQ II, Bivariate 
Laplacian

Rate = 4, CSNR = 2dB, COSQ II, Bivariate 
Laplacian

Rate = 4, CSNR = 0dB, COSQ II, Bivariate 
Laplacian

Figure 3.9: Two User Rate 4 COSQ II with Varying CSNR, Laplacian
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First User Rate 1, Second User Varying Rate, Noiseless Channel

First User Rate 1, Second User Varying Rate, CSNR = 0 dB
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First User Rate 4, Second User Varying Rate, Noiseless Channel

First User Rate 4, Second User Varying Rate, CSNR = 0 dB
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First User Rate 5, Second User Varying Rate, Noiseless Channel

First User rate 5, second user varying, CSNR = 0 dB

Figure 3.10: Two User Varying Rates COSQ II with Noiseless and Very Noisy Channels,
Gaussian
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Rate = 3, CSNR = 15dB, COSQ II, Bivariate 
Gaussian

Rate = 3, CSNR = 10dB, COSQ II, Bivariate 
Gaussian

Rate = 3, CSNR = 5dB, COSQ II, Bivariate 
Gaussian

Rate = 3, CSNR = 2dB, COSQ II, Bivariate 
Gaussian

Rate = 3, CSNR = 0dB, COSQ II, Bivariate 
Gaussian

Figure 3.11: Two User Rate 3 COSQ II with Varying CSNR, Channel Correlation cor = 0
and 0.9, Gaussian
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3.2.2 COSQ III

The next set of graphs show the SDR results for the COSQ III scheme. Figure 3.12 shows

the results for rate 1. Once again the horizontal axis shows the source correlation, from 0

to 1, and the vertical axis shows the SDR. The increase due to source correlation from the

COSQ III scheme is significantly more than in the COSQ II scheme; in the noiseless channel

there is a 3.6 dB gain over the COSQ II method when the sources are highly correlated. The

gain is not as high as the noise increases; however the COSQ III always performs better.

The next set of graphs, in Figure 3.13 shows the COSQ III scheme for rate 2. The gain in

the noiseless channel due to source correlation is 11 dB, which is substantial. The largest

increase in performance occurs around ρ = 0.75. The gain is consistent throughout the

varying channel noise. For the CSNR = 15 dB and CSNR = 10 dB channels the increase

is not strictly monotonical, with dips in the gain around source correlation with value 0.6.

Next, Figure 3.14 examines the gain due to the soft-decoding granularity, where q = 2. There

is an increase in performance compared to the q = 1 system in Figure 3.12, especially in

the speed at which the SDR increases. Finally, Figure 3.15 has graphs demonstrating the

increase in gain due to channel memory. Once again the channel correlation parameter is cor

= 0.9. As with the system with q = 2, the gain starts increasing at lower source correlation,

ρ around 0.6, instead of 0.75.
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Rate = 1, Noiseless Channel, COSQ III, 
Bivariate Gaussian

Rate = 1, CSNR = 15dB, COSQ III, Bivariate 
Gaussian

Rate = 1, CSNR = 10dB, COSQ III, Bivariate 
Gaussian

Rate = 1, CSNR = 5dB, COSQ III, Bivariate 
Gaussian

Rate = 1, CSNR = 2dB, COSQ III, Bivariate 
Gaussian

Rate = 1, CSNR = 0dB, COSQ III, Bivariate 
Gaussian

Figure 3.12: Two User Rate 1 COSQ III with Varying CSNR, Gaussian
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Rate = 2, Noiseless Channel, COSQ III, 
Bivariate Gaussian

Rate = 2, CSNR = 15dB, COSQ III, Bivariate 
Gaussian

Rate = 2, CSNR = 10dB, COSQ III, Bivariate 
Gaussian

Rate = 2, CSNR = 5dB, COSQ III, Bivariate 
Gaussian

Rate = 2, CSNR = 2dB, COSQ III, Bivariate 
Gaussian

Rate = 2, CSNR = 0dB, COSQ III, Bivariate 
Gaussian

Figure 3.13: Two User Rate 2 COSQ III with Varying CSNR, Gaussian
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Rate = 1, CSNR = 15dB, COSQ III, q =2, 
Bivariate Gaussian

Rate = 1, CSNR = 10dB, COSQ III, q =2, 
Bivariate Gaussian

Rate = 1, CSNR = 5dB, COSQ III, q =2, 
Bivariate Gaussian

Rate = 1, CSNR = 2dB, COSQ III, q =2, 
Bivariate Gaussian

Rate = 1, CSNR = 0dB, COSQ III, q = 2, 
Bivariate Gaussian

Figure 3.14: Two User Rate 1 COSQ III with Varying CSNR, q = 2, Gaussian
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Rate = 1, CSNR = 15dB, COSQ III, Channel 
Correlation = 0.9, Bivariate Gaussian

Rate = 1, CSNR = 10dB, COSQ III, Channel 
Correlation = 0.9, Bivariate Gaussian

Rate = 1, CSNR = 5dB, COSQ III, Channel 
Correlation = 0.9, Bivariate Gaussian

Rate = 1, CSNR = 2dB, COSQ III, Channel 
Correlation = 0.9, Bivariate Gaussian

Rate = 1, CSNR = 0dB, COSQ III, Channel 
Correlation = 0.9, Bivariate Gaussian

Figure 3.15: Two User Rate 1 COSQ III with Varying CSNR, Channel Correlation cor = 0.9,
Gaussian
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Chapter 4

Application to Correlated Images sent

over Orthogonal MACs

In this chapter the single user COSQ I and the two user COSQ II are used to send correlated

images over the orthogonal MAC. Given the results in the previous section, an increase in

performance is expected when the images are highly correlated and when there is high noise

in the channel. First the method used for the image transmission is introduced and then

results will be presented.

4.1 Image Transmission System

The two user joint-source channel coding scheme is now applied to correlated, grayscale

images. A grayscale image is represented by a two dimensional array of pixel values. Each

pixel value ranges from 0 to 255 in base two. Colour images are based on the same principle;

however instead of each pixel value containing one value, it contains three values. The first

value represents the intensity of red in the pixel, the second value the intensity of green, and

the third value the intensity of blue. As before the three values can vary from 0 to 255 as

binary representations. An algorithm that works for grayscale images can be generalized for

use with color images. For this reason, the rest of this thesis assumes the use of grayscale

images. In a single image, the binary pixel values, which take on values between 0 and 255 in

base two, are highly correlated. The discrete cosine transform (DCT) is used to decorrelate
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the pixel values by mapping the pixels into the frequency domain. The discrete cosine

transform is a linear transform that takes values from the spatial domain to the frequency

domain. The one dimensional transform is given by:

Ck =
N−1∑
n=0

xn cos

[
π

N
(n+

1

2
)k

]
for k = 0, ..., N − 1

where xn is the value undergoing the transform and N is the number of values being

transformed. The two dimensional transform (2D DCT) is given by,

Ck1,k2 =

N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2 cos

[
π

N1

(
n1 +

1

2

)
k1

]
cos

[
π

N2

(
n2 +

1

2

)
k2

]
,

where xn1,n2 is the pixel value, and N1 and N2 are the sizes of the block in their respective

dimension. As the name suggests, the DCT is a finite sum of cosine functions at different

frequencies. When using the 2D DCT, the output from the transform is a two dimensional

array of coefficients. The coefficients in the upper left hand corner contains the highest

amount of energy at the lowest frequency. The top leftmost coefficient is called the DC

coefficient and can be modeled using the Gaussian distribution. The other coefficients are all

called the AC coefficients and are modeled by Laplacian distribution [23]. The human eye

can not easily discern high frequencies and as such the AC coefficients become less important

as the bottom right hand corner of the array of coefficients is approached. The zig-zag

pattern shown in Figure 4.1 below demonstrates the order of importance of the coefficients

for reconstructing pixel values in a reliable fashion.

The DCT is performed on 8× 8 pixel blocks of the image. The coefficients in the top left

corner are required to reconstruct the image in the spatial domain. The rates used to encode

the coefficients are given by a bit allocation table, which will be further discussed in the next

section. Once the DC and AC coefficients that are being kept have been generated, they are
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Figure 4.1: Zig Zag Pattern [23]

normalized. In this case the normalization method used is:

Xnorm =
X − µX√

σ2
X

,

Figure 4.2: Image Transmission System

where µX is the mean of the data, and σ2
X the variance. The normalized data is now

encoded, the DC and AC coefficients are encoded with different rates, determined by the bit

allocation table. The binary indices are sent across the NBNDC and the images are decoded.

The decoding methods used for this section are the benchmark COSQ I method, and the

COSQ II method. Both decoded values are denormalized by reversing the above described

normalization methods, and the inverse DCT is performed on the 8x8 blocks that have been

reconstructed. Any AC coefficient that was not sent across the channel is filled in with a
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0. Once the image has been recreated, the peak signal-to-noise ratio can be calculated by

comparing the reconstructed image with the one that was sent across the channel. This value,

in dB, gives an idea of the quality of the reconstruction, the higher the value, the closer to

the encoded image. It is calculated as:

PSNRdB = 10 log10

2552∑512
i=1

∑512
j=1(Xij − X̂ij)2

,

where Xij is the compressed image sent over the channel, and X̂ij is the received, reconstructed

image. The images are 512x512 pixels in size, and the maximum value of the pixels is 255.

When applying the algorithm to two images, it needs to be ensured that the densities

of the two sets of corresponding DC, and AC coefficients are jointly distributed. Images were

used with a source correlation ρ ∈ (0.7, 1) for the DC coefficient.

4.2 Fixed Bit Allocation

As mentioned previously, another method of joint-source channel coding, is unequal error

protection, where the values sent across the channel are sorted by importance and the more

important values are encoded with a higher rate. Bit allocation is one such method. The

DCT coefficients generated from the 2D DCT hold varying degrees of information and thus

they can be encoded differently. The DC coefficient is generally encoded with a higher rate

and the AC coefficients with a lower rate, or not at all. For this experiment rates 3 and

4 are used for the DC coefficient and only the first two AC coefficients are encoded, using rate 2.
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Table 4.1: Fixed Bit Allocation Tables for DCT

BPP = 0.125 BPP = 0.109

4 2 0 0 0 0 0 0 3 2 0 0 0 0 0 0
2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.3 Correlated Images

The images used for the image transmission system were satellite images of the Arctic taken

every 24 hours. The average source correlation between the DC coefficients of consecutive

images was ρDC = 0.75 and, ρAC1 = 0.58 and ρAC2 = 0.51 for the first and second AC

coefficients respectively. For a large class of images the DC coefficients are well modelled by

the Gaussian distribution. The histogram shown in Figure 4.5, shows that the DC coefficients

from 22 Arctic images do not however behave like a bivariate Gaussian distribution. For

this reason, instead of using codebooks trained on the bivariate Gaussian distribution, the

codebooks were trained directly on the DC and AC coefficients from a set of Arctic images.

To train the codebook, 22 images from April 2nd to April 24th, 2017 were used. The DCT

was performed on 8x8 pixel blocks, so that each 512x512 image yielded 4,096 DC coefficients,

and AC coefficients (of which the first two were kept). These codebooks, from COSQ I and

COSQ II were used to encode and decode images from May 2017.
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Figure 4.3: Histogram of Correlated DC Coefficients

Figure 4.4: Histogram of First AC Coefficients
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Figure 4.5: Histogram of Second AC Coefficients
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4.4 Results

Table 4.2 shows the SDR in dB of the COSQ I and COSQ II methods trained on the DC

coefficients from 22 Arctic images, for the memoryless channel and the channel with cor =

0.9. All channels used have M = 1, α = 1. For both rates, and all channel conditions, the

COSQ II method performs better than the COSQ I method. The gain is larger on average

for the channel with memory, with a few exceptions. The average gain due to the method for

the memoryless channel and rate 3 is 0.70 dB, and for rate 4 is 0.81 dB. For the channel with

memory, cor = 0.9, the average gain due to the method is 0.97dB for rate 3 and 0.85 dB for

rate 4. Table 4.3 shows similar SDR results for the first and second AC coefficient at rate

2. In this case the gain due to the scheme is higher for the memoryless channel, with the

average gain for the memoryless channel being 0.23 dB, and 0.09 dB for the channel with

memory. The gain due to the scheme for the AC coefficients is lower, as expected, due to the

fact that the correlation ρAC1 and ρAC2 is lower than for the DC coefficients.

Table 4.2: SDR Results for DC Coefficients

Channel Correlation, cor Method CSNR in dB
15 10 5 2 0

Rate 3
0 COSQ I 12.68 9.96 6.92 5.19 4.09

COSQ II 13.05 10.52 7.66 6.09 4.99
0.9 COSQ I 13.54 13.48 10.87 9.38 8.52

COSQ II 15.53 13.73 11.30 9.94 9.16
Rate 4

0 COSQ I 14.66 11.68 8.27 6.30 5.03
COSQ II 15.25 12.33 9.21 7.24 5.97

0.9 COSQ I 18.60 16.09 13.05 11.35 10.39
COSQ II 18.84 16.74 14.04 12.49 11.60

For the image results, images from outside the training set were sent across channels of
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Table 4.3: SDR Results for AC Coefficients, Rate 2

Channel Correlation, cor Method CSNR in dB
15 10 5 2 0

First AC Coefficient
0 COSQ I 5.50 4.30 2.84 2.04 1.57

COSQ II 5.71 4.63 3.14 2.29 1.80
0.9 COSQ I 6.14 5.25 3.66 2.60 1.95

COSQ II 6.22 5.34 3.77 2.70 2.05
Second AC Coefficient

0 COSQ I 5.58 4.39 2.88 2.07 1.60
COSQ II 5.73 4.62 3.15 2.29 1.78

0.9 COSQ I 6.21 5.32 3.72 2.63 1.97
COSQ II 6.29 5.40 3.79 2.71 2.04

varying noise, compressed with either 0.125 bits per pixel (bpp) or 0.109 bpp using the fixed

bit allocation from above. For consistency, the results shown are from the May 1st and May

2nd images; however the averages quoted are from multiple dates.

Figure 4.6 shows the original consecutive images used, and below, in Figure 4.7 are the

images compressed at 0.125 bpp with the encoder designed for the 2 dB channel. The next

set of Figures, 4.8 and 4.9 show the images received from a 2 dB channel. The top two are

decoded independently, while the bottom were decoded jointly. The average performance

gain from the jointly decoded scheme was 0.44 dB. Figures 4.10 and 4.11 show independently

and jointly decoded images received from a CSNR = 0 dB channel, and encoded at rate 0.109.

These conditions resulted in a 0.52 dB gain on average from using the jointly decoded scheme.

The next two sets of images use a channel with memory; the correlation parameter for the

channel cor = 0.9. The first set of Figures 4.12 and 4.13, use a 0 dB channels, at 0.125 bpp

compression and 0.109 bpp respectively. The average gain from using the joint decoding was

1.1 dB and 1 dB respectively. Finally, to increase the correlation between the images being

sent, a noisy image was sent alongside the original May 1st image. Figures 4.14 and 4.15

show the original images and the 0.125 bpp compressed images that would be sent across the

15 dB channel. The following two pages show images compressed at 0.125 bpp, the first set
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is sent across a 15 dB channel, while the second is sent across a 0 dB channel. The average

gain from the jointly decoded scheme was 1.21 dB and 1.94 dB respectively. The final two

pages of results show images compressed at 0.109 dB and sent over 15 dB and 5 dB channels.

The average gain from the jointly decoded scheme was 1 dB and 2.11 dB respectively.

These results support the findings from above, where bivariate Gaussian and Laplacian data

was used. The largest performance gains are obtained at higher source correlation and higher

channel noise. It is interesting to note that the independently decoded scheme has more detail

in the edges of the images; however there are more artifacts. When the channel had memory,

the performance gain due to the joint decoding was also higher than when the memoryless

channel was used. After the image results, Tables 4.4, 4.5 and 4.6 show all the PSNR averages

for the two methods, the memory and memoryless channel, and the differently correlated

images.
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Image 1 (Arctic on May 1st, 2017) Image 2 (Arctic on May 2nd, 2017)

Figure 4.6: Original, Correlated images

Image 1 Compressed Image 2 Compressed

Figure 4.7: Images Compressed with 0.125 bpp for a Channel with CSNR = 2 dB
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Image 1, PSNR = 19.35 dB Image 2, PSNR = 19.33 dB

Figure 4.8: COSQ I Decoded Images, CSNR = 2 dB, 0.125 bpp

Image 1, PSNR = 19.95 dB Image 2, PSNR = 19.85 dB

Figure 4.9: COSQ II Decoded Images, CSNR = 2 dB, 0.125 bpp
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Image 1, PSNR = 14.85 dB Image 2, PSNR = 14.74 dB

Figure 4.10: COSQ I Decoded Images, CSNR = 0 dB, 0.109 bpp

Image 1, PSNR = 15.17 dB Image 2, PSNR = 15.21 dB

Figure 4.11: COSQ II Decoded Images, CSNR = 0 dB, 0.109 bpp
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Image 1, PSNR = 18.55 dB Image 2, PSNR = 19.14 dB

Figure 4.12: COSQ I Decoded Images, CSNR = 0 dB, 0.125 bpp, Channel cor = 0.9

Image 1, PSNR = 19.71 dB Image 2, PSNR = 21.01 dB

Figure 4.13: COSQ II Decoded Images, CSNR = 0 dB, 0.125 bpp, Channel cor = 0.9
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Image 1, PSNR = 17.21 dB Image 2, PSNR = 17.44 dB

Figure 4.14: COSQ I Decoded Images, CSNR = 0 dB, 0.109 bpp, Channel cor = 0.9

Image 1, PSNR = 18.02 dB Image 2, PSNR = 18.43 dB

Figure 4.15: COSQ II Decoded Images, CSNR = 0 dB, 0.109 bpp, Channel cor = 0.9
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Image 1 (Arctic on May 1st, 2017)
Image 2 (Arctic on May 1st, 2017 with
Noise)

Figure 4.16: Original, Correlated Images

Image 1 Compressed Image 2 Compressed

Figure 4.17: Images Compressed with 0.125 bpp for a Channel with CSNR = 15 dB
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Image 1, PSNR = 27.67 dB Image 2, PSNR = 28.79 dB

Figure 4.18: COSQ I Decoded Images, CSNR = 15 dB, 0.125 bpp

Image 1, PSNR = 29.22 dB Image 2, PSNR = 30.04 dB

Figure 4.19: COSQ II Decoded Images, CSNR = 15 dB, 0.125 bpp
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Image 1, PSNR = 16.31 dB Image 2, PSNR = 16.17 dB

Figure 4.20: COSQ I Decoded Images, CSNR = 0 dB, 0.125 bpp

Image 1, PSNR = 18.16 dB Image 2, PSNR = 18.15 dB

Figure 4.21: COSQ II Decoded Images, CSNR = 0 dB, 0.125 bpp
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Image 1, PSNR = 26.66 dB Image 2, PSNR = 27.50 dB

Figure 4.22: COSQ I Decoded Images, CSNR = 15 dB, 0.109 bpp

Image 1, PSNR = 27.60 dB Image 2, PSNR = 28.26 dB

Figure 4.23: COSQ II Decoded Images, CSNR = 15 dB, 0.109 bpp
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Image 1, PSNR = 20.62 dB Image 2, PSNR = 20.43 dB

Figure 4.24: COSQ I Decoded Images, CSNR = 5 dB, 0.109 bpp

Image 1, PSNR = 22.54 dB Image 2, PSNR = 22.50 dB

Figure 4.25: COSQ II Decoded Images, CSNR = 5 dB, 0.109 bpp

81



Table 4.4: PSNR Results Consecutive May Images

Method User CSNR in dB
15 10 5 2 0

Compressed at 0.125 bpp
COSQ I Image 1 28.20 24.84 21.09 19.35 16.13

Image 2 27.42 24.83 20.81 19.33 16.65
COSQ II Image 1 28.34 25.18 21.41 19.95 16.80

Image 2 27.61 25.10 21.15 19.85 16.95
Compressed at 0.109 bpp

COSQ I Image 1 26.65 22.96 20.36 17.11 14.85
Image 2 26.69 23.22 20.54 17.54 14.74

COSQ II Image 1 26.87 23.22 20.68 17.68 15.17
Image 2 27.14 23.47 20.81 17.63 15.21

Table 4.5: PSNR Results Consecutive May Images Sent Over Channel with cor = 0.9

Method User CSNR in dB
15 10 5 2 0

Compressed at 0.125 bpp
COSQ I Image 1 32.72 29.6 25.25 23.26 18.55

Image 2 32.57 30.53 25.35 22.52 19.14
COSQ II Image 1 32.91 29.76 25.61 23.92 19.71

Image 2 32.69 30.65 25.87 23.23 21.01
Compressed at 0.109 bpp

COSQ I Image 1 31.53 28.31 19.30 18.46 17.21
Image 2 31.65 28.04 19.12 18.15 17.44

COSQ II Image 1 31.66 28.53 21.31 20.61 18.02
Image 2 31.72 28.19 20.94 19.65 18.43
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Table 4.6: PSNR Results for May Images sent with Noisy Version

Method User CSNR in dB
15 10 5 2 0

Compressed at 0.125 bpp
COSQ I Image 1 27.67 22.93 21.15 19.68 16.31

Image 2 28.79 22.92 21.38 19.60 16.17
COSQ II Image 1 29.22 24.81 21.55 20.91 18.16

Image 2 30.04 24.78 22.02 21.18 18.15
Compressed at 0.109 bpp

COSQ I Image 1 26.66 23.02 20.62 17.16 15.14
Image 2 27.50 23.39 20.43 17.27 15.08

COSQ II Image 1 27.60 23.82 22.54 18.68 16.41
Image 2 28.26 24.21 22.50 18.83 16.55
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Chapter 5

Conclusion and Future Work

Necessary conditions for the optimality for COSQ for a two-user MAC system were derived in

this thesis. Three coding schemes were introduced, the independently optimized encoder and

decoder scheme, COSQ I, the independently optimized encoder, jointly optimized decoder

scheme, COSQ II, and the jointly optimized encoder and decoder scheme, COSQ III. The

methods were designed to take the advantage of the source correlation and the channel

characteristics of the NBNDC-QB. After the algorithms were fully derived, the results showed

that for source data from both the bivariate Gaussian and Laplacian distribution, the COSQ

II performed better, or equal to the single user scheme at all rates and levels of channel noise.

It was proved that for rate 1, the COSQ II performs equally when decoding the bivariate

Gaussian with correlation, ρ = 0 and ρ = 1. The performance for independent sources is also

equivalent to the single user scheme. All three COSQ methods successfully exploited the

channel memory, with a maximum gain of 4 dB in the COSQ II scheme. The COSQ III had

the highest gain due to source correlation, with the rate 2 encoder, designed for the noiseless

channel increasing from 9.33 dB to 20.23 dB. When comparing the complexity and storage of

the three methods, the COSQ III is shown to be the most complex of the three schemes.

To further investigate the usefulness of the schemes, the independent and dependent decoders

were compared on images. The images were consecutive images of the Arctic throughout the

months of April and May, 2017. First the images from April were processed using the DCT,

and then the COSQ I and II codebook trained on the DC coefficient and the first two AC
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coefficients. The May 2017 images were independently encoded and decoded using the two

different codebooks. The COSQ II scheme consistently resulted in better performance, both

in terms of PSNR and also visually, the method resulted in fewer artifacts in the final images.

There are a variety of ways this research can be continued. The obvious continuation is to

add more users; however the optimality conditions of the schemes imply that each user would

exponentially increase the complexity and storage requirements. As a result, it is worthy

investigating how to simplify the encoder term of the COSQ III such that the encoding

complexity can be reduced. One way would be to calculate the expected values for the

second user for each partition of the first users codebook, and store these values in a lookup

table. This would only reduce the linear complexity of the system; however the exponential

complexity, due to the size of the codebook, would still be present. To mitigate this, the

second user could be designed with a low rate, to boost the performance of the first user.

Finally, an interesting result would be using the COSQ III scheme to encode and decode the

images from Chapter 4. This would require either an estimation of the distribution of the

DC and AC coefficients from these images, or an empirical estimation of the expected values

for the encoder.
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