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Abstract

An expansion related to the sampling theorem is derived for functions
with Fourier transforms that vanish outside a ball in d dimensions. Such
functions are determined by weighted averages of their values on a sequence
of spheres in Rd. The number of measurements per unit volume is equal
to the Nyquist-Landau density. Fourier transforms that vanish outside
ellipsoids and outside Cartesian products of balls are also considered.
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1 Introduction

The Nyquist rate is one of the fundamental constraints on the processing of
bandlimited functions. The author [2] has previously shown that the Nyquist
rate in 2 and 3 dimensions is capable of an interpretation beyond the usual one
of sampling rate. In this note we extend this result to any number of dimensions.

Let G ∈ L2(−W,W ) and let

g(t) =
∫ W

−W
ei2πft G(f) df.

Then

g(t) =
∞∑

n=−∞
g(

n

2W
)
sinπ(2Wt − n)

π(2Wt − n)
.

Thus, if g is bandlimited to the interval [−W,W ], then g is determined com-
pletely by its sample values g( n

2W ). The function g is sampled at the Nyquist
rate 2W samples per unit time. For the history of this theorem and for many
extensions of the theorem; see books by Zayed [12] and Higgins [6].
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The extension of the theorem to functions bandlimited to a d-dimensional
rectangle is immediate. Let R be the rectangle defined by

R := {y = (y1, y2, . . . , yd) : −Wi ≤ yi ≤ Wi, i = 1, 2, . . . , d},

let G ∈ L2(R), let x · y =
∑d

1 xkyk, and let

g(x) =
∫

R
ei2πx·y G(y) dy.

Then

g(x) =
∞∑

n1,...,nd=−∞
g

(
n1

2W1
, . . . ,

nd

2Wd

) d∏
i=1

sinπ(2Wixi − ni)
π(2Wixi − ni)

.

Thus, if g is bandlimited to the rectangle R in the sense described above, then
g is determined completely by its sample values g

(
n1

2W1
, . . . , nd

2Wd

)
. The number

of sample points per unit volume, 2dW1 . . .Wd, is equal to the volume of the
rectangle R. For some further results on multidimensional sampling theorems
and for a more complete bibliography concerning such theorems, see the recent
papers by Annaby [1] and Zayed [13].

Landau [7, 8] has shown quite generally that if f is any function on Rd whose
Fourier transform has support set C, then the minimal sampling density (sample
values per unit volume) for stable recovery of f is m(C), the Lebesgue measure
of C. This density is often called the Nyquist-Landau density. The shape of
the supporting set determines whether sampling of f at the Nyquist-Landau
density is sufficient to recover f or whether a larger density is needed. (For
details, see Higgins [6, Chapter 14].) For example, if C is a ball, sampling at
the Nyquist-Landau density is not sufficient. We can, of course, enclose the ball
in a rectangle and sample at the (larger) density associated with the rectangle.
In this note we show that an alternative is to measure certain other quantities
instead of sample values. Specifically, for the case that the Fourier transform of
f is supported by a ball, we show that f is completely determined by the values
of certain integrals of f evaluated on a sequence of spheres. The density of these
measurements is equal to the Nyquist-Landau density. This result is extended
in the final section to deal with the case that the support is an ellipsoid or the
Cartesian product of two balls.

An earlier paper [2] used special properties of Bessel functions and Legendre
polynomials to deduce these results for d = 2 and d = 3. Here, we use some
general properties of spherical harmonics [9] to deal with all dimensions d.
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2 Spherical harmonics

Let B denote the unit ball in Rd, d ≥ 2, and let Σ denote its surface, i.e.,

B := {x : ∥x∥2 :=
d∑

k=1

x2
k ≤ 1}, Σ := {x : ∥x∥2 = 1}.

Let ∆ denote the Laplace operator,

∆u :=
d∑

k=1

∂2u

∂x2
k

.

Our objective is to find a series expansion for functions f bandlimited to the
unit ball in the sense that

f(x) =
∫

B
ei2πx·y F (y) dy, (1)

where F ∈ L2(B). The method will be to expand the functions in the integrand
as series of eigenfunctions of the boundary-value problem:

∆u + λ2u = 0 for x ∈ B, u = 0 for x ∈ Σ. (2)

We shall use a number of properties of spherical harmonics and of eigen-
functions of the Laplace operator on the unit ball. Most of these properties
are developed in [9, Chapter 4] and in [5, Chapter 11]. Homogeneous polyno-
mials of degree n that satisfy ∆u = 0 are called solid spherical harmonics of
degree n. The restriction of a solid spherical harmonic to Σ is called a surface
spherical harmonic of degree n. Surface spherical harmonics of different degrees
are orthogonal on Σ. The space of surface spherical harmonics of degree n has
dimension

h(n, d) :=


1, if n = 0
d, if n = 1(
d + n − 1

n

)
−

(
d + n − 3

n − 2

)
if n ≥ 2.

(3)

Note that the complex conjugate of a surface spherical harmonic is also a surface
spherical harmonic of the same degree. The surface spherical harmonics can be
orthogonalized and normalized to form a basis for L2(Σ). We use the nota-
tion Y m

n (x) (n = 0, 1, 2, . . . ; m = 1, 2, . . . , h(n, d)) to denote these orthonormal
surface spherical harmonics, so that∫

Σ
Y m

n (x)Y m′
n′ (x) dσ(x) = δmm′δnn′ , (4)



58 L. LORNE CAMPBELL

where dσ(x) denotes Lebesgue measure on Σ. The corresponding solid spherical
harmonics are ∥x∥nY m

n (x/∥x∥).
Let the positive zeros of the Bessel function J d

2
+n−1(z) be denoted λ(k, n)

for k = 1, 2, . . . . Then the eigenvalues and normalized eigenfunctions of the
boundary-value problem (2) are [3, p. 194] respectively [λ(k, n)]2 and

ψkmn(x) :=

√
2J d

2
+n−1(λ(k, n)∥x∥)

J d
2
+n(λ(k, n))∥x∥

d
2
−1

Y m
n

(
x

∥x∥

)
, (5)

where the eigenvalue [λ(k, n)]2 has multiplicity h(n, d). These eigenfunctions
form an orthonormal basis for L2(B).

The following property of spherical harmonics will be used:

Lemma Let Σ be the unit sphere in Rd and let x ∈ Σ. Let Yn be any surface
spherical harmonic of degree n. Then∫

Σ
e−iξ x·y Yn(y) dσ(y) = i−n(2π)

d
2 ξ1− d

2 J d
2
+n−1(ξ)Yn(x). (6)

This lemma was proved by Erdélyi [4, eq. (4.4) and (4.5)] in a slightly different
notation. A different proof can be developed using Theorem 3.10 of [9].

3 Series expansion

The main theorem of this note is the following:

Theorem Let f satisfy (1), where F ∈ L2(B). Then

f(x) =
∞∑

n=0

h(n,d)∑
m=1

∞∑
k=1

Akmn(f)Wkmn(x), (7)

where

Akmn(f) :=
∫

Σ
f

(
λ(k, n)

2π
x
)

Y
m
n (x) dσ(x), (8)

and

Wkmn(x) :=
2[λ(k, n)]

d
2 J d

2
+n−1(2π∥x∥) Y m

n

(
x

∥x∥

)
(2π∥x∥)

d
2
−1J d

2
+n(λ(k, n))[λ(k, n)2 − 4π2∥x∥2]

. (9)

The series (7) converges uniformly and absolutely on Rd.

Remark. The coefficient Akmn(f) in (7) is a weighted average of f on the
sphere of radius λ(k, n)/2π. There are h(n, d) different weighted averages on
this sphere. The theorem shows that functions bandlimited to the unit ball in
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Rd are determined completely by certain weighted averages on the sequence of
spheres with radii λ(k, n)/2π.

Proof. It will be convenient to use radial coordinates and coordinates on the
unit sphere, defined by

r := ∥x∥, ρ := ∥y∥, x′ := x/r, y′ := y/ρ. (10)

(Note that x′ and y′ are coordinates of points on Σ and are independent of r
and ρ, respectively.) The notation 〈u, v〉 will be used for the usual inner product
on L2(B). We rewrite (1) as

f(x) = 〈F (y), e−i2πx·y〉, (11)

where the notation implies that the inner product is formed by fixing x and
integrating with respect to y. We expand the two terms in the inner product in
a series of eigenfunctions (5) and use Parseval’s theorem.

From (8), (1), and an interchange in the order of integration, we have

Akmn(f) =
∫

B
F (y)

(∫
Σ

Y
m
n (x)eiλ(k,n)x·y dσ(x)

)
dy.

Using the Lemma, we have

Akmn(f) =
∫

B
F (y)in(2π)

d
2 [λ(k, n)∥y∥]1−

d
2 J d

2
+n−1(λ(k, n)∥y∥)Y m

n

(
y

∥y∥

)
dy.

A comparison with (5) shows that

〈F,ψkmn〉 = i−n
√

2(2π)−
d
2

[λ(k, n)]
d
2
−1

J d
2
+n(λ(k, n))

Akmn(f). (12)

Let

bkmn(x) := 〈e−i2πx·y, ψkmn(y)〉 =
∫

B
e−i2πx·yψkmn(y) dy.

Then using (5) and the notation of (10),

bkmn(x) =
∫ 1

0

√
2 ρ

d
2

J d
2
+n−1(λ(k, n)ρ)

J d
2
+n(λ(k, n))

(∫
Σ

e−i2πrρx′·y′
Y

m
n (y′) dσ(y′)

)
dρ.

Since Y
m
n is a surface spherical harmonic, we can use the Lemma to evaluate

the inner integral. The result, after some algebraic simplification, is

bkmn(x) = i−n2π
√

2
r1− d

2 Y
m
n (x′)

J d
2
+n(λ(k, n))

∫ 1

0
ρJ d

2
+n−1(λ(k, n)ρ)J d

2
+n−1(2πrρ) dρ

= i−n2π
√

2
λ(k, n)r1− d

2 J d
2
+n−1(2πr)

[λ(k, n)]2 − 4π2r2
Y

m
n (x′). (13)
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The integral in the last calculation was evaluated using [11, p. 134, eq. (8)] and
the fact that λ(k, n) is a zero of Jn+ d

2
−1(z).

Finally, an application of Parseval’s theorem to the inner product in (11),
together with (12) and (13) yields (7). The absolute convergence of the series
in (7) follows from viewing this series as an inner product in ℓ2.

To see the uniform convergence, we proceed as in [2]. Let

SKN (x) :=
N∑

n=0

h(n,d)∑
m=1

K∑
k=1

Akmn(f)Wkmn(x),

and let

PKN (y) :=
N∑

n=0

h(n,d)∑
m=1

K∑
k=1

〈F,ψkmn〉ψkmn(y).

Note that, by Parseval’s theorem,

〈PKN (y), e−i2πx·y〉 =
N∑

n=0

h(n,d)∑
m=1

K∑
k=1

〈F,ψkmn〉bkmn(x) = SKN (x).

Then for each x ∈ Rd,

|f(x) − SKN (x)| = |〈F (y) − PKN (y), e−i2πx·y〉| ≤ ∥F − PKN∥ ∥e−i2πx·y∥.

But ∥e−i2πx·y∥2 = m(B) for each x, while ∥F − PKN∥ is independent of x and
approaches zero as K,N → ∞. Thus, SKN → f uniformly on Rd.

4 Density of measurements

Instead of measuring function values at a sequence of points, as in the sam-
pling theorem, we must measure the averages Akmn(f) on a sequence of spheres
in order to reconstruct the function using (7). Since these measurements are
concentrated on a sequence of spheres, it is possible to define the density of
these measurements. Recall that the eigenvalue λ(k, n)2 has multiplicity h(n, d)
and that the number of measurements on the sphere of radius λ(k, n)/2π is also
h(n, d). It follows that each measurement can be associated with one eigenvalue,
provided that an eigenvalue of multiplicity h(n, d) is regarded as h(n, d) eigen-
values. It is known [10, p. 169] that the number of eigenvalues of (2) less than
Λ, N(Λ) say, is asymptotically

N(Λ) ∼ Λ
d
2

2d[Γ(d
2 + 1)]2

.
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Thus, the number of measurements inside a sphere of radius R is the number
of eigenvalues for which λ(k, n)/2π < R, or N(4π2R2) and, since the volume of
the ball of radius R is

π
d
2 Rd

Γ(d
2 + 1)

,

the density of measurements is

lim
R→∞

N(4π2R2)Γ(d
2 + 1)

π
d
2 Rd

=
π

d
2

Γ(d
2 + 1)

= m(B).

That is, the density of measurements is equal to the Nyquist-Landau density for
B. Thus, the Nyquist-Landau density has a significance beyond that associated
with point sampling.

5 Extensions

The results above are easily extended to functions bandlimited to the interior of
an ellipsoid. Let ai > 0 for each i, let E be the set

E :=

{
y :

d∑
i=1

(
yi

ai

)2

≤ 1

}
,

and let
f(x) =

∫
E

ei2πx·y F (y) dy.

Then the changes of variables xi = ξi/ai, yi = aiηi puts the expression in a form
such that the Theorem can be employed. The result is that f(x) is determined
by weighted averages on the sequence of ellipsoids with equations

d∑
i=1

(aixi)2 =
[λ(k, n)]2

4π2
.

Moreover, the density of measurements is equal to the Nyquist-Landau density.
We omit the details.

Another possible extension is to functions bandlimited to the Cartesian prod-
uct of two (or more) balls. Let B1 be the unit ball in Rd1 and let B2 be the unit
ball in Rd2 . If x ∈ Rd1+d2 and

f(x) =
∫

B1×B2

ei2πx·y F (y) dy,

then f is determined by its weighted averages on a sequence of sets of the form
S1 × S2, where S1 is a sphere in Rd1 and S2 is a sphere in Rd2 . Thus, each set
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has dimension d1 + d2 − 2. The derivation involves applying the linear operator
Akmn of (8) successively to the first d1 coordinates and then to the remaining
d2 coordinates. We omit the details. An example of this type is to be found in
[2], where the function is bandlimited to a solid cylinder {(x, y, z) : x2 + y2 ≤
a2, |z| ≤ b}. This set is the Cartesian product of a ball in R2 and a ball in R1.
Since the boundary of the ball in R1 consists of just two points, the “integral”
over this boundary is absorbed in the summation. The remaining integrals are
on a sequence of circles in R3.
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