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Abstract—The rate-privacy function is defined in [1] as a
tradeoff between privacy and utility in a distributed private data
system in which both privacy and utility are measured using
mutual information. Here, we use maximal correlation in lieu of
mutual information in the privacy constraint. We first obtain
some general properties and bounds for maximal correlation
and then modify the rate-privacy function to account for the
privacy-constrained estimation problem. We find a bound for
the utility in this problem when the maximal correlation privacy
is set to some threshold ✏ > 0 and construct an explicit privacy
scheme which achieves this bound.

I. INTRODUCTION

For a given pair of random variables (X,Y ) 2 X ⇥ Y ,
the problem of privacy is, in general, to display a random
variable, say Z, such that Y and Z are as much correlated
as possible while X and Z are almost independent. To make
this statement precise, we need to introduce two measures
of dependence, one for measuring the correlation between
Y and Z and the other one between X and Z. For two
arbitrary alphabets U and V and random variables U 2 U
and V 2 V , a mapping � : U ⇥ V ! [0, 1] is said to be a
measure of dependence if �(U ;V ) = 0 if and only if U
and V are independent and �(U ;V ) = 1 if there exists
some deterministic functional relationship between U and
V , i.e., there exist functions f and g such that X = f(Y )

or Y = g(X) with probability one. Rényi [2] postulated
additional axioms for an appropriate measure of dependence.
For example, the linear correlation coefficient, |⇢(U ;V )|, is
not a measure of dependence as it might become zero even
if U is perfectly determined by V .

Rényi [2] augmented the definition of the linear correlation
coefficient by taking into account functions of U and V
and then taking the supremum of ⇢(f(U); g(V )) over all
choices of appropriate functions f and g, to obtain maximal
correlation. There are a few alternative characterizations of
maximal correlation in the literature some of which are
explained in the sequel. Due to its tensorization1 property,
maximal correlation is shown to be very important in corre-
lation distillation, e.g, [3], distributions simulation, e.g., [4],
and is also related to the hypercontractivity coefficient, e.g.,
[5] and [6]. Beigi and Gohari [7] have recently proposed
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1The measure of dependence �(U ;V ) is said to have the tensoriza-

tion property if for any n i.i.d. copies (Un
, V

n) of (U, V ), we have
�(Un;V n) = �(U ;V ). Note that mutual information violates this property
as I(Un;V n) = nI(U ;V ).

maximal correlation ribbon as a generalization of maximal
correlation.

Mutual information I(U ;V ) can also be viewed as a
measure which captures dependence between U and V .
Although, it is not a measure of dependence according to
Rényi’s stipulations, it has some properties which make mu-
tual information a good candidate in data privacy applications
especially for measuring utility. Although both maximal cor-
relation and mutual information have been used in numerous
applications in information theory, the connection between
them is still not fully explored in the literature.

The definition of maximal correlation together with some
alternative characterizations are given in Section II. In Sec-
tion III, we present some general results about maximal
correlation and also some bounds in terms of mutual infor-
mation. We then formulate a data privacy problem (privacy-
constrained estimation) in terms of maximal correlation in
Section IV and present some achievability results.

II. MAXIMAL CORRELATION: DEFINITION AND
CHARACTERIZATION

Suppose that X is a random variable with distribution P ,
over alphabet X and Y is another random variable which
results from passing X through channel W . Channel W
consists of a family of probability measures defined over
alphabet Y , i.e., P

Y |X(·|x) for x 2 X . We denote by W �P
the distribution on Y induced by the push-forward of the
distribution P , which is the distribution of the output Y when
the input X is distributed according to P , and by P ⇥W the
joint distribution P

XY

if P
X

= P .
Let G (resp. H) be the set of all real-valued functions of

X (resp. Y ) with zero mean and finite variances with respect
to P (resp. W � P ). The sets G and H are both separable
Hilbert spaces with the covariance as the inner product.

For a fixed channel, W , the maximal correlation between
X and Y is a functional of P and W defined as

⇢
m

(P ;W ) := sup

g2G,f2H
⇢(g(X); f(Y )) (1)

= sup

g2G,f2H,||f ||2=||g||2=1

E[g(X)f(Y )],

where ⇢(·; ·) is the linear correlation coefficient2 and for any

2I.e., ⇢(X;Y ) := Cov(X;Y )
�X�Y

, where Cov(X;Y ),�X and �Y are the
covariance between X and Y , the standard deviation of X and the standard
deviation of Y , respectively.
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random variable U , ||U ||2
2

:= E[U2

]. We use interchangeably
the notation ⇢

m

(P ;W ) and ⇢
m

(X;Y ) where X ⇠ P and Y
are respectively the input and output of channel W . Maximal
correlation is a measure of dependence between random
variables X and Y , that is, 0  ⇢

m

(X;Y )  1 where
⇢
m

(X;Y ) = 0 if and only if X and Y are independent and
⇢
m

(X;Y ) = 1 if an only if there exists a pair of functions
g and f such that g(X) and f(Y ) are non-degenerate and
f(Y ) = g(X) with probability one. Maximal correlation
is closely related to the conditional expectation operator,
defined as follows.

Definition 1. For a given joint distribution P
XY

= P ⇥W ,
the conditional expectation operator T

X

: H ! G is defined
as

(T
X

f)(x) := E[f(Y )|X = x].

It is a well-known fact that the second largest singular
value3 of T

X

is precisely ⇢
m

(P ;W ), see e.g. [3] and [2].
The definition of maximal correlation, given in (1), has

been simplified in the literature in general and also for some
special cases. For example, by a simple application of the
Cauchy-Schwarz inequality, Rényi [2] showed the following
one-function characterization,

⇢2
m

(P ;W ) = sup

g2G,||g||2=1

E[E2

[g(X)|Y ]]. (2)

Remark 1. If min{|X |, |Y|} = 2, then

⇢2
m

(P ;W ) = �2

(P
XY

||P
X

⇥ P
Y

), (3)

where the chi-squared divergence is defined as

�2

(P ||Q) :=

Z ✓
dP
dQ

◆
2

dQ� 1, (4)

where dP
dQ is the Radon-Nikodym derivative of P with respect

to Q. Note that in the finite dimensional case, the singular
values of operator T

X

are equal to the singular values of
the matrix Q = [

PXY (x,y)p
PX(x)PY (y)

], see [9]. The expression

(3) therefore follows from observing that ⇢2
m

(P ;W ) is the
second largest eigenvalue of both QQT and QTQ either of
which is a 2 ⇥ 2 matrix which implies that ⇢2

m

(P ;W ) is
equal to the trace of that matrix minus the largest eigenvalue,
i.e., 1. It is important to mention here that �2

(P
XY

||P
X

P
Y

)

is shown in [3] to be equal to the sum of the singular
values of operator4 T

X

minus one (i.e., the largest one) while
⇢
m

(X;Y ) is the second largest one.

Suppose ˜W is the backward channel corresponding to
W , that is, if W = P

Y |X , then ˜W = P
X|Y . Then the

3For any arbitrary operator T mapping (Banach) space X to itself, an
eigenvalue of T is defined as a number � such that Tx = �x. The singular
value of T is then defined as the eigenvalue of T ⇤

T where T

⇤ is the adjoint
of T . See [8] for more details.

4In the finite dimensional case, the sum of the singular values of
operator T is equal to the Frobenius norm of T which is defined as
||T ||F = Tr(T ⇤

T ) where Tr is the trace operator.

composition ˜W �W : X ! X defined by

˜W �W (x0|x) =
X

y2Y
W (y|x) ˜W (x0|y),

is a channel for which P is a stationary distribution and
the associated conditional expectation operator T

X

is self-
adjoint. It is easy to show that in this case

⇢2
m

(P ;W ) = ⇢
m

(P ;

˜W �W ). (5)

To see this, note that it is show in [5] that

⇢2
m

(P ;W ) = sup

g2G,||g||2=1

E[g(X)g(X 0
)], (6)

where X 0 is the output of channel ˜W � W under input X .
This clearly implies that ⇢2

m

(X;Y )  ⇢
m

(X;X 0
). The fol-

lowing gives the reverse inequality. For arbitrary measurable
functions h, g : X ! R, we have

E[g(X)h(X 0
)]

(a)

= E
h
E[g(X)|Y ]E[h(X 0

)|Y ]

i

(b)

 ||E[g(X)|Y ]||
2

||E[h(X 0
)|Y ]||

2

(c)

 ⇢
m

(X;Y )⇢
m

(X 0
;Y )

(d)

= ⇢2
m

(X;Y ), (7)

where (a) is due to the Markov condition X ! Y ! X 0,
(b) is a simple application of the Cauchy-Schwarz inequality,
(c) comes from (2), and (d) follows from the fact that
⇢
m

(X 0
;Y ) = ⇢

m

(X;Y ). This chain of inequalities shows
that ⇢

m

(X;X 0
)  ⇢2

m

(X;Y ) which, together with the earlier
inequality, yields ⇢

m

(X;X 0
) = ⇢2

m

(X;Y ).

III. MAXIMAL CORRELATION AND MUTUAL
INFORMATION

It is well-known that for Gaussian random variables X , Y
and Z which satisfy the Markov condition X ! Y ! Z,
we have ⇢(X,Z) = ⇢(Y, Z)⇢(X,Y ). A similar relation for
maximal correlation does not in general hold. However, the
following theorem gives a similar result.

Theorem 1. For random variables X and Y with a joint
distribution P ⇥W , we have

sup

X!Y!Z

⇢m(Y ;Z) 6=0

⇢
m

(X;Z)

⇢
m

(Y ;Z)

= ⇢
m

(X;Y ).

Proof. First note that by data processing for maximal corre-
lation the ratio on the left-hand side is always less than or
equal to one. The inequality (c) in (7) yields ⇢

m

(X;Z) 
⇢
m

(X;Y )⇢
m

(Y ;Z) from which we can write

⇢
m

(X;Z)

⇢
m

(Y ;Z)

 ⇢
m

(X;Y ).

The achievability result comes from the special case treated
in Section II where X ! Y ! X 0 and P

X

0|Y is the
backward channel associated with P

Y |X . It was shown that
⇢
m

(X;Y )⇢
m

(X 0
;Y ) = ⇢

m

(X;X 0
) which completes the

proof.
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This theorem is similar to a recent result by Anantharam et
al. [5] in which for a given P

XY

the ratio between I(X;Z)

and I(Y ;Z) is maximized over all channels P
Z|Y such that

the Markov condition X ! Y ! Z is satisfied.
The following theorem connects the maximal correlation

with mutual information when X and channel W are both
assumed to be Gaussian.

Theorem 2. Let (X,Y ) be jointly Gaussian random vari-
ables, then we have

⇢2
m

(X;Y )  1� 2

�2I(X;Y )  (2 ln 2)I(X;Y ).

Remark 2. Linfoot [10] introduced the informational measure
of correlation which is defined for two continuous random
variables X and Y as

r(X;Y ) :=

p
1� 2

�2I(X;Y ).

Theorem 2 therefore implies that for jointly Gaussian random
variables, ⇢

m

(X;Y )  r(X;Y ). The informational measure
of correlation is generalized in [11] for general random
variables.
Proof. Since (X,Y ) is bivariate Gaussian, we know from
[12] that ⇢

m

(X;Y ) = |⇢(X;Y )|. On the other hand, we
can show that given a pair of random variables X and Y ,
the conditional expectation of X given Y has the maximum
linear correlation with X among all functions f 2 H, i.e.

sup

f

⇢(X; f(Y )) = ⇢(X;E[X|Y ]) =

||E[X]� E[X|Y ]||
2p

var(X)

,

(8)
where the supremum is taken over all measurable functions
f with finite variance (not necessarily with zero mean) and
var(X) denotes the variance of X . To see this, without loss
of generality, we can assume that f 2 H, i.e., E[f(Y )] = 0.
Then we have

⇢(X; f(Y )) =

E[Xf(Y )]p
var(X)||f(Y )||

2

=

E
⇥
f(Y )E[X|Y ]

⇤
p
var(X)||f(Y )||

2

 ||E[X|Y ]||
2p

var(X)

,

where the inequality comes from the Cauchy-Schwarz in-
equality. Equality occurs if f(Y ) = E[X|Y ]. It is a well-
known fact from rate-distortion theory that for Gaussian X
and its reconstruction ˆX

I(X;

ˆX) � 1

2

log

var(X)

E[(X � ˆX)

2

]

,

and hence by setting ˆX = E[X|Y ], after some straightfor-
ward calculations we obtain

I(X;Y ) � 1

2

log

1

1� ⇢2(X;E[X|Y ])

, (9)

and hence,

⇢2(X;E[X|Y ])  1� 2

�2I(X;Y ). (10)

Combining (8) and (10), we have

⇢2
m

(X;Y )  ⇢2(X;E[X|Y ])  1� 2

�2I(X;Y )

= 1� e�2 ln 2I(X;Y )  2 ln 2I(X;Y ).

Note that Theorem 2 is based on the fact that for jointly
Gaussian random variables X and Y , we have ⇢

m

(X;Y ) =

|⇢(X;Y )|. This is not, in general, true. For example consider
a pair of zero-mean random variables X = U

1

V and Y =

U
2

V where all U
1

, U
2

and V are independent and Pr(U
i

=

+1) = Pr(U
i

= �1) = 1/2 for i = 1, 2. We have E[X|Y ] =

E[U
1

V |U
2

V ] = 0 and similarly E[Y |X] = 0 both implying
that ⇢(X;Y ) = 0. Nevertheless, Pr(X2

= Y 2

) = 1 implying
that ⇢

m

(X;Y ) = 1.
The following theorem gives a lower bound for maximal

correlation in terms of mutual information. We assume that
the Radon-Nikodym derivative P

XY

with respect to P
X

⇥P
Y

exists which we denote it by ı, i.e.,

ı :=
dP

XY

d(P
X

⇥ P
Y

)

. (11)

The logarithm of this quantity is sometimes called the
information density [13, p. 248].

Theorem 3. For a given P
XY

= P ⇥ W with
min{|X |, |Y|} = 2, we have

⇢2
m

(P ;W ) � 2

I(P ;W ) � 1

Proof. As mentioned earlier, when min{|X |, |Y|} = 2, then
⇢2
m

(X;Y ) = �2

(P
XY

||P
X

P
Y

) and hence

⇢2
m

(X;Y ) =

Z
dP

XY

✓
dP

XY

d(P ⇥ P
Y

)

◆
� 1

= E
PXY

h
2

log ı(X,Y )

i
� 1

� 2

EPXY
[log ı(X,Y )] � 1, (12)

where the inequality is due to Jensen’s inequality.

Theorem 3 hods only when either |X | = 2 or |Y| = 2.
Suppose we have a binary-input AWGN channel modeled by
Y = X+N , where X ⇠ Bernoulli(p) and N ⇠ N (0,�2

) are
independent. Theorem 3 then implies that if I(X;Y ) ! 1

(which occurs only when �2 ! 0) then there exists a pair
of functions f 2 H and g 2 G such that f(Y ) = g(X) with
probability one. The following theorem gives an upper bound
for maximal correlation when |X | < 1.

Theorem 4. If X is a discrete random variable with |X | <
1, then for a given joint distribution P

XY

= P ⇥ W , we
have

P 2

min

⇢2
m

(P ;W )  (2 ln 2)I(P ;W ),

where P
min

:= min

x2X P (x).

Proof. In the proof we assume that Y has also a finite
alphabet, however, the proof can be modified for general
alphabet Y . As mentioned earlier, for any pair of random
variables (X,Y ), ⇢

m

(X;Y )  �2

(P
XY

||P⇥P
Y

) and hence

⇢
m

(X;Y )  �2

(P
XY

||P ⇥ P
Y

)

=

X

x,y

(P
XY

(x, y)� P (x)P
Y

(y))
P
XY

(x, y)

P (x)P
Y

(y)
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 max

x,y

P
XY

(x, y)

P (x)⇥ P
Y

(y)
||P

XY

� P ⇥ P
Y

||
TV

 1

P
min

||P
XY

� P ⇥ P
Y

||
TV

 1

P
min

p
(2 ln 2)I(P ;W ),

where ||Q � P ||
TV

:=

P
x

|Q(x) � P (x)| is the total
variation distance for probability measures Q and P and the
last inequality is due to Pinsker’s inequality (see e.g., [14,
problem 3.18]).

The value of the maximal correlation is often hard to
calculate except for a few classes of joint distributions. For
instance, as mentioned earlier, if (X,Y ) is jointly Gaussian
then the exact value of ⇢

m

(X;Y ) is known. Bryc et al. [15]
showed that there exists another family of joint distributions
for which the maximal correlation can be exactly computed.
For this, we need the following definition.

Definition 2. [16] A random variable X is said to have an
↵-stable distribution if the characteristic function of X is of
the form

'(t) := E[exp(itX)]

= exp (itc� b|t|↵(1 + i sgn(t)!
↵

(t))) ,

where c is a constant, sgn is the sign function, �1    +1

and

!
↵

(t) =

(
tan(

⇡↵

2

) if ↵ 6= 1

2

⇡

log |t| if ↵ = 1.

Gaussian, Cauchy and Lévy distributions are examples of
stable distributions.

Theorem 5. [15] Let (X,Y ) be a given pair of random
variables.
(I). If N is a random variable with an ↵-stable distribution
and is independent of (X,Y ), then � 7! ⇢

m

(Y ;X + �N) is
a non-increasing function for � � 0.
(II). If N and X are independent and have the same ↵-stable
distribution for 0 < ↵  2, then for any � � 0,

⇢
m

(X,X + �N) =

1p
1 + �↵

.

This theorem shows that if W (the channel X ! Y) is an
additive noise channel, Z = X + �N , where N and X have
an ↵-stable distribution, then ⇢

m

(X;Z) can be analytically
calculated. Part (I) of this theorem might look trivial at first,
as for N independent of (X,Y ), one might think that Y
and X + �N are asymptotically independent when � ! 1.
However this does not, in general, hold. For example let X
take value in [0, 1] and N be a binary random variable taking
values +1 and �1. Then X+N is mapped either to [1, 2] or
[�1, 0] which are two disjoint sets and hence for any known
|�| > 1, X + �N determines uniquely the value of X .

IV. A PROBLEM OF PRIVACY

The tradeoff between data privacy and utility has always
been an intriguing problem in computer science and informa-

tion theory. Information-theoretic privacy was first studied by
Shannon who connected information theory to cryptography.
Yamamoto [17] introduced a set-up where given n i.i.d.
copies of two correlated sources X and Y , the receiver is
to be able to reconstruct Y within a distortion D and unable
to estimate X , and hence X is kept private from the receiver.
In this set-up privacy is measured in terms of equivocation
which is the conditional entropy of X given what the receiver
observes. Yamamoto [17] characterized the tradeoff between
distortion and equivocation. Another set-up for privacy is
given in [1] where both utility and privacy are defined in
terms of mutual information and the rate-privacy function is
introduced as the tradeoff between utility and privacy.

Definition 3. For a given joint distribution P ⇥W , the rate-
privacy function is defined as

g
✏

(P,W ) := sup{I(Y ;Z) : X ! Y ! Z, I(X;Z) = ✏}.
The channel P

Z|Y , over which the supremum is taken,
is in fact responsible for masking information about X and
is thus called a privacy filter. Thus, g

✏

(P,W ) quantifies the
maximum information that one can receive about Y while
revealing only ✏ bits of information about X . From the
privacy point of view, the case with zero privacy leakage is
of more interest, i.e., ✏ = 0, which is called perfect privacy.
It is shown in [1] that for finite X and Y , g

0

> 0 if and
only if vectors {P

X|Y (·|y) : y 2 Y} are linearly dependent
implying that the matrix corresponding to joint distribution
P
XY

is rank-deficient. In particular if |Y| > |X |, then g
0

> 0.
The following lemma shows that the mapping ✏ 7! g✏(P,W )

✏

is non-increasing.

Lemma 1. For a given joint distribution P⇥W , ✏ 7! g✏(P,W )

✏

is non-increasing.

Proof. The proof follows the same steps as the proof of [18,
Lemma. 1].

This lemma yields the following bound for the rate-privacy
function.

Corollary 1. For a given joint distribution P ⇥W , we have
for any ✏ > 0

g
✏

(P,W ) � ✏
H(Y )

I(P ;W )

.

Proof. By the Markov condition X ! Y ! Z, we know
that ✏  I(P ;W ). When ✏ = I(P ;W ) then the privacy
constraint is removed and hence g

I(P ;W )

= H(Y ). The result
then follows from Lemma 1.

It is important to note, however, that the mutual informa-
tion has deficiencies as a measure of privacy (e.g. [19]). We
can, instead, use maximal correlation as a measure of privacy
and then define

ĝ
✏

(P,W ) := sup{I(Y ;Z) : X ! Y ! Z, ⇢
m

(X;Z)  ✏},
as the corresponding privacy-rate tradeoff.
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Suppose now that the privacy filter is such that the Markov
condition X ! Y ! Z is satisfied and the channel P

Z|X can
be modeled by Z = X+�N for � > 0 where N and (X,Y )

are independent and has the same ↵-stable distribution as X
for some ↵ 2 (0, 2]. Then by Theorem 5, we know that
⇢
m

(X;Z) =

1p
1+�

↵ . Let

%
✏

(X;Y ) := ⇢
m

(Y ;X + �⇤N),

where

�⇤
✏

=

✓
1

✏2
� 1

◆
1/↵

.

We can therefore conclude from Theorem 5 that

max ⇢
m

(Y ;X + �N) = %
✏

(X;Y ) (13)

where the maximum is taken over all � such that ⇢
m

(X;X+

�N)  ✏. This says that if the privacy filter meets the above
model, then the best � which satisfies ✏ maximal correlation
privacy; ⇢

m

(X;Z)  ✏, is �⇤
✏

. In other words, among all
such privacy filters

sup

⇢m(X;Z)✏

⇢
m

(Y ;Z) = %
✏

(X;Y ). (14)

Unfortunately, all stable distributions have infinite support
(like the Poisson and Gaussian distributions), thus |Y| =

1, and hence we can not invoke Theorem 4 to obtain a
lower bound for ĝ

✏

(P,W ). Finding a similar upper-bound
of ⇢

m

(X;Y ) in terms of mutual information for general
alphabets remains open. It is worth mentioning that the
channel model, Z = X + �N is similar to the artificial
noise introduced in [20] in which both signal and noise are
assumed to be Gaussian, i.e., having a 2-stable distribution.

Defining a utility in terms of linear correlation coefficient,
we can construct a privacy-constrained estimation problem.
Suppose an agent knowing Z wants, on the one hand to
estimate Y as reliably as possible, and on the other hand, to
satisfy the privacy constraint ⇢

m

(X;Z)  ✏. Let mmse(Y ;�)
denote the minimum mean squared error (MMSE) of Y based
on Z = X + �N , that is

mmse(Y ;�) := E
h�
Y � E[Y |X + �N ]

�
2

i
.

Let mmse

✏

(Y ) denote the minimum achievable mmse(Y ;�)
when ⇢

m

(X;Z)  ✏.

Theorem 6. If the privacy filter P
Y |Z is such that for random

variables X ! Y ! Z, P
Z|X can be modeled as Z =

X + �N , for N independent of (X,Y ) and having similar
↵-stable distribution as X for ↵ 2 (0, 2]. Then

mmse

✏

(Y ) � (1� %2
✏

(X;Y ))var(Y ).

Proof. By simple algebraic manipulations, we can write

mmse(Y ;�) = E[Y 2

]� E[E2

[Y |Z]]

= var(Y )� ||E[Y ]� E[Y |Z]||2
2

(a)

= var(Y )[1� ⇢2(Y ;E[Y |Z])],

where (a) is obtained from (8). Since ⇢(Y, g(Z)) 

⇢
m

(Y ;Z) for any function g, we have

mmse(Y ;�) � var(Y )(1� ⇢2
m

(Y ;Z)).

The result follows by taking minimum from both sides over
� such that ⇢

m

(X;Z)  ✏ and invoking (13).

The lower bound for MMSE becomes zero only if
%
✏

(X;Y ) = 1. It is easy to verify that in the trivial Markov
chain Y ! X ! �⇤

✏

N , we have ⇢
m

(Y ;X) � ⇢
m

(Y ;X +

�⇤
✏

N), therefore if ⇢
m

(X;Y ) < 1, then %
✏

(X;Y ) < 1 and
thus (1 � %2

✏

(X;Y )) is bounded away from zero. This is
the price that one has to pay to have privacy-constrained
estimation. We note that %

✏

(X;Y ) is non-increasing in ✏ and
thus for a more stringent privacy constraint (i.e., smaller ✏)
we have bigger mmse

✏

(Y ).
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