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Abstract

Warner [145] in 1960s proposed a simple mechanism, now referred to as the randomized

response model, as a remedy for what he termed evasive answer bias in survey sampling.

The randomized response setting is as follows: n people participate in a survey and a

statistician asks each individual a sensitive yes-no question and seeks to find the ratio of

”yes” responses. For privacy purposes, individuals are given a biased coin that comes up

heads with probability a ∈ (0, 1
2
). Each individual flips the coin in private. If it comes

up heads, they lie and if it comes up tails, they tell the truth. Warner derived a maximum

likelihood unbiased estimator for the true ratio of ”yes” based on the reported responses.

Thus the parameter of interest is estimated accurately while preserving the privacy of each

user and avoiding survey answer bias.

In this thesis, we generalize Warner’s randomized response model in several direc-

tions: (i) we assume that the response of each individual consists of private and non-private

data and the goal is to generate a response which carries as much ”information” about

the non-private data as possible while limiting the ”information leakage” about the private

data, (ii) we propose mathematically well founded metrics to quantify the tradeoff between

how much the response leaks about the private data and how much information it conveys

about the non-private data, (iii) we make no assumptions on the alphabets of the private

and non-private data, and (iv) we design optimal response mechanisms which achieve the
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fundamental tradeoffs.

Unlike the large body of recent research on privacy which studied the problem of re-

ducing disclosure risk, in this thesis we formulate and study the tradeoff between utility

(e.g., statistical efficiency) and privacy (e.g., information leakage). Our approach (which

is two-fold: information-theoretic and estimation-theoretic) and results shed light on the

fundamental limits of the utility-privacy tradeoff.
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Chapter 1

Introduction

With the emergence of modern techniques for data collection – arising from medicine and

bioinformatics [97], internet applications such as web search engines [72], social networks,

physics and astronomical experiments [73], and mobile data gathering platforms – which

has led to a proliferation of large datasets, the need for privacy has become paramount.

As the size of datasets increases with the concomitant amount of information we col-

lect about individuals, it has become more important to maintain privacy of individuals.

Statistical studies on privacy date back to Warner’s 1960s work on randomized response

and survey sampling [145]; however, it has become clear that modern data collection poses

new risks of disclosure and privacy breaches. For example, Homer et al. [78] recently

showed that it is possible to identify the presence of individual genotypes in high-density

SNP arrays, and consequently, it is possible to identify an individual from data obtained

from genome-wide association (GWA) studies, which contain a mixture of DNA of thou-

sands of individuals and their genetic fingerprints. This observation has led to the removal

of some publicly available genomics data [64] from the US National Institutes of Health

(NIH) and the Broad Institute in Cambridge. A major challenge in studies on privacy has

thus become characterizing and balancing statistical utility with the privacy of individuals
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from whom we obtain data [48, 49, 58].

In the large body of research on privacy and statistical inference (e.g., [49, 57, 58, 145]),

a major focus has been the problem of reducing ”disclosure risk”, i.e., the probability that

certain data of a member of the dataset can be deduced given the released statistics of

the dataset. The literature in most cases has stopped short, however, of providing a for-

mal formulation of disclosure risk that would permit information-theoretic and estimation-

theoretic tools to be used in characterizing tradeoffs between privacy and the utility asso-

ciated with an inferential goal. Recently, a formal definition of disclosure risk known as

”differential privacy” was proposed by Dwork and colleagues and extensively studied in

the cryptography and theoretical computer science literatures [51, 52, 74]. Differential pri-

vacy has strong semantic1 privacy guarantees that make it a good candidate for declaring

a statistical procedure private, and it has been the focus of a growing body of recent work

[51, 54, 75, 134, 85].

1.1 Differential Privacy

Dalenius [43] suggested the ad omnia privacy desideratum: ”nothing about an individ-

ual should be learnable from the database that could not be learned without access to the

database”. This requirement is shown to be too strong to be useful in practice. In the ab-

sence of a precise mathematical framework for privacy, statisticians have been tempted to

use various rules of thumb to maintain privacy, e.g., do not answer any query that requires

fewer than k entries [2]. To establish a mathematical framework for privacy, Dwork [50]

proposed the notion of differential privacy which, informally speaking, implies that the

1Semantically-flavored interpretation of differential privacy: regardless of external knowledge, an adver-
sary with access to the mechanism’s output draws the same conclusions whether or not any individual’s data
is included in the original database. The use of the term ”semantic” dates back to [65] in cryptography.
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presence and absence of an individual in the database should not affect in a significant way

the probability of obtaining a certain answer for a given query.

Let x denote a given database consisting of n rows, each of which corresponds to the

data of each individual. That is, x takes value in Dn, where D is an abstract set containing

all possible values of each row. The answer to any real-valued query q : Dn → R about

this database may compromise the privacy of some individuals. Therefore, one needs to

design a randomized mechanism M for the query function q which randomly provides

M(x) with a probability distribution depending on q(x). The mechanism is said to satisfy

ε-differential privacy if for all neighboring databases, i.e., x and x̃ with Hamming distance

dH(x, x̃) = 1, and any measurable set B we have

sup
B,x,x̃

Pr(M(x) ∈ B)

Pr(M(x̃) ∈ B)
≤ eε, (1.1)

It is shown in [51] and [52] that the requirement (1.1) is achieved by an additive channel

M(x) = q(x)+NL, where the independent noiseNL is drawn from a Laplacian distribution

with variance depending on ε and also on the L1 sensitivity of function q (which is the

maximum |q(x)−q(x̃)|, maximized over all neighboring x and x̃). The constraint (1.1) can

be equivalently written in terms of an f -divergence [38], e.g., [103, 131] and also in terms

of a mutual information constraint [42].

There are a few works on establishing a connection between differential privacy and in-

formation theory. For example, it is shown in [30, 44] that the mutual information I(X;Z)

between a database X and the output Z of an ε-differentially private mechanism (i.e.,

M(X) = Z) can be unbounded. On the other hand, Cuff and Yu [42] showed that when

(1.1) is met, then we have I(Xi;Z|X−i) ≤ ε, for all 1 ≤ i ≤ n, where Xi corresponds

to the ith row and X−i denotes all other rows in the database. Furthermore, differential
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privacy has been compared with the rate-distortion function in [121, 128, 111]. In par-

ticular, Mir [111] showed that any mechanism that achieves the rate-distortion function

also guarantees a certain level of differential privacy. This result was improved in [144]

by bounding the gap between mutual information and differential privacy level for a given

Hamming distortion threshold D (for D ≥ 0 ranging over a certain interval) and it was

shown that the gap diminishes if the database is uniformly distributed.

Notice that the definition of differential privacy does not depend on the prior distribu-

tion PX , as it captures the disclosure of information by the mechanism after the adversary

observes the mechanism’s output (compared to no output). There are some recent studies

which take the prior distribution into account and generalize (1.1) to the posterior distribu-

tion, e.g., [94, 98, 144].

1.2 Limitations of Differential Privacy

The requirement (1.1) involves the notion of neighboring databases and hence it intuitively

implies that the adversary has already learned about all but one entry in the database and

wishes to gain extra information about that remaining missed entry. This subtle model for

the adversary can be made clear by a recent result of Cuff and Yu [42, Theorem 1]. Having

made such a strong assumption on the adversary’s knowledge, one expects that differential

privacy must yield a very strong privacy guarantee. However, quite surprisingly, as shown

in [86], a privacy constraint that limits the inference of the stronger adversary can some-

times leak more sensitive information compared to the privacy constraint designed for the

weaker adversaries. Equivalently, a weaker assumption on the knowledge of adversaries

might yield a better privacy guarantee. This counter-intuitive phenomenon occurs if the en-

tries of the database are correlated which is quite common in certain applications especially
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in social networks and networked data. In fact, several examples of privacy breaches of dif-

ferentially private mechanisms in social networks are presented in [86]. It has thus become

clear that differential privacy is not suitable in social networks, see also [76]. Quoting from

[158, p.31]:

”Publishing complex network data with privacy guarantees remains a chal-

lenge. For example, adapting differential privacy to networked data is not

straightforward. The development of (possibly new) rigorous privacy defini-

tions which address the complexity of network data is a very important research

direction.”

Moreover, differential privacy concerns a scenario where each individual needs to trust

the data-collecting statistician or institution, who owns the corresponding database. For

example, patients of a certain hospital need to trust the hospital for collecting all their med-

ical records (e.g., HIV status or information about any other critical disease). However, in

many practical scenarios, individuals disclose their personal information voluntarily while

they do not trust the data-collecting agency and hence prefer to be able to control the level

of privacy themselves. In this model, which is often called a local privacy model, each

individual randomizes his own data using a local mechanism to obtain a report which he

sends to an untrusted statistician/agency to be aggregated in a database that can be used to

answer queries about the data. Indeed, local privacy is one of the oldest forms of privacy:

its essential form dates to Warner [145], who proposed it as a remedy for what he termed

”evasive answer bias” in survey sampling. Inspired by seminal work of Warner, Duchi et

al. [47] introduced a local version of differential privacy. The definition for ε-local differ-

ential privacy is analogous to (1.1) except that the condition on neighboring databases is

removed.
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This privacy constraint is now more suitable for networked data compared to (1.1). This

new privacy definition has recently gained interest in the information theory community,

e.g., [81, 82, 83, 99, 100, 116] with different utility functions. In particular, Kairouz et al.

[82] defined an information preservation problem where individuals would like to release

an ε-locally differentially private view Z of X that preserves as much information in X as

possible.

Although the local definition of differential privacy is shown to have connection with

binary hypothesis testing when |X | = 2 [82], it has thus far evaded any operational inter-

pretations. Hence, the quest for an operational formulation of privacy that is suitable for

correlated data has not ended. In this thesis, we present two operational privacy formula-

tions for any private data X , regardless of the cardinality X , be it finite, countably infinite,

or uncountably infinite.

1.3 Information-Theoretic Secrecy Models

Shannon initiated the problem of ”secrecy” in [130] where he mainly used the mathemati-

cal tools and insights he already developed to study the fundamental limits of information

transmission over noisy channels. Secrecy problems concern the reliable information trans-

mission over a noisy channel subject to the inability of the reliable decoding of the source

message (with a finite alphabet) by a third party, the eavesdropper. Shannon studied the

existence of a random variable, the so-called key, that, when XORing it with the channel

input, can completely conceal all information being transmitted over the channel. Thus the

eavesdropper who observes the channel is completely ignorant of the message. Shannon

proved that if zero information leakage is required (that is the eavesdropper’s observation

is statistically independent of the message being transmitted), the entropy of the key must
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be no less than that of the message.

After almost 25 years, Wyner [154] linked two notions of capacity and secrecy by defin-

ing the secrecy capacity for the wiretap channel. Wyner studied a model where the trans-

mitter and the legitimate receiver communicate over a discrete memoryless channel (DMC)

W1 while an eavesdropper uses a second DMC W2 to wiretap the information transfer over

the first channel. In this scenario, in addition to making sure that the legitimate receiver

can decode the transmitted message M with vanishing error probability, one requires to

keep the eavesdropper almost ignorant of M . The logarithm of the maximum number of

values for message M that can be reliably transmitted to the legitimate receiver and, at the

same time, can be made almost independent of the eavesdropper’s observation, is called the

secrecy capacity. Wyner studied a special case in which W2 is a degraded version of W1.

He showed that in this case, the secrecy capacity is equal to max[I(PX ,W1)− I(PX ,W2)],

where the maximum is taken over the input distribution PX , where I(·, ·) denotes mutual

information (see Section 1.8 for a detailed definition). The achievability of this result is

based on a random coding argument and thus does not give an explicit construction. A

similar problem of ”secret bit extraction” was studied in [23] which was shown to be effi-

cient and practical from the cryptographic point of view.

Secrecy can also be studied from the source coding point of view, e.g., [53, 68, 69, 119,

139, 143]. In Chapter 2, we present a secret source coding model and compare it with our

privacy model (which we describe in the next section): the objective is to encode a pair

of source n-tuples (Xn, Y n) into an index J such that a receiver, knowing J and some

external side information Zn, can losslessly recover Y n, while any eavesdropper knowing

J and possibly a correlated side information En can retrieve very little information about

Xn. We argue that this model is more realistic in practice than the model used in secrecy

7



problems.

1.4 Our Privacy Model: Generalization of the Local Privacy Model

In this thesis, we adopt the local privacy model where individuals do not have to trust the

data-collecting agency and need to design and control their own randomizing mechanisms.

The model assumed in the secrecy problems relies on the fact that the message must be

reliably decoded by the ”legitimate” receiver and, at the same time, it must be kept secret

from the eavesdropper. However, in some practical scenarios, the information source has

some features which are considered to be private and need to be kept private even from the

intended receiver.

Example 1.1 ([155]). Consider an information service company which possesses a two-

dimensional source with correlated outputs (X, Y ). A customer pays a charge to obtain

information about Y and then the company supplies Ŷ to the customer within a prescribed

distortion level. However, sinceX and Y are correlated, the customer can partially estimate

X upon receiving Ŷ with some accuracy. The company therefore wishes to keep X private

from the intended receiver, because the charge is paid only for Y .

Example 1.2. Sweeney [137], in an interesting experiment, showed that the identity of a

US citizen can be determined with high accuracy given gender, birth date, and postal code.

Now consider an individual who, in the process of setting up a social network account,

voluntarily provides his/her postal code in order to enjoy the customized feeds. According

to Sweeney’s experiment, the privacy of the individual is compromised as his/her identity

can be determined with high accuracy. Thus each individual wishes to provide his/her

postal code to the intended receiver to the extent his/her privacy is not compromised. Does

the individual have to give up the benefits of customized services in order to maintain
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privacy? Is there a smart way of revealing postal code such that the identity cannot be

efficiently estimated?

Example 1.3. In a survey, an individual is asked about his/her diabetes status. On the one

hand, the individual needs to tell the truth, and on the other hand, the truth might reveal

partial information about his/her HIV status, as the correlation between diabetes and HIV

status is tentatively known [1]. Do individuals have to lie about their diabetes status in

order to maintain privacy with respect to their HIV status?

The common theme in all these examples is the existence of two sets of data: non-

private data Y and private data X , which is embedded in Y via a fixed channel PY |X

predefined by nature. The user wishes to reveal only Y to the intended receiver; however,

the correlation between Y and X may disclose partial private information. Therefore, the

utility is measured with respect to Y and the privacy leakage is defined with respect to

X , and the goal is to design a privacy-preserving mechanism PZ|Y (the so-called privacy

filter) such that Z carries as much ”information” about Y as possible and at the same time

infers as little about X as possible, see Fig. 1.1. The mechanism then displays Z, which

is thus called displayed data. To make this goal precise, we need to quantitatively specify

the information efficiency or utility between Y and Z, denoted by U(Y, Z), as well as the

privacy leakage between X and Z, denoted by P(X,Z). The appropriate U and P must

satisfy some intuitively clear properties: i) U(Y, Z) ≥ 0 with the equality if Y and Z are

independent (denoted by Y⊥⊥Z), ii) P(X,Z) ≥ 0 with equality if and only if Z does

not provide any advantage in the inference of X , iii) P(X,Z) satisfies the data processing

inequality,2 and iv) U(Y, Z) attains its maximum (which might be∞) if Y = Z.

After U(Y, Z) and P(X,Z) are specified, the goal can then be quantified precisely by

2We say that P satisfies the data processing inequality if we have P(X,Z) ≤ P(X,Y ) for random
variables X,Y and Z satisfying X (−− Y (−− Z (see Section 1.8 for the definition).
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X Y Z

Fixed channel (observation channel) Privacy filter

Figure 1.1: Our privacy model: for a given pair of random variables (X,Y ), representing private
and non-private data, respectively, the goal is to generate the displayed data Z which
maximizes U(Y,Z) while limiting the privacy leakageP(X,Z). Due to the correlation
between X and Y , maximizing U(Y, Z) and minimizing P(X,Z) conflict with each
other. To quantify the tradeoff, we therefore need to introduce G(PXY , ε) as in (1.2)
for an ε ≥ 0.

introducing the privacy-constrained utility efficiency function

G(PXY , ε) := sup
PZ|Y :X(−−Y(−−Z

P(X,Z)≤ε

U(Y, Z), (1.2)

where PXY is the joint distribution of (X, Y ), ε ≥ 0 specifies the privacy level, and X (−

− Y (−− Z means X , Y , and Z form Markov chain in this order (i.e., X and Z are

conditionally independent given Y ).

Yamamoto [155] studied this problem from a lossy source coding standpoint where

privacy and utility are measured in terms of mutual information and a given distortion

function, respectively. This model has recently gained interest in the information theory

literature (see, e.g., [6, 14, 22, 90, 112, 120, 126]). In Chapter 2, we study a similar privacy

model with the lossless reconstruction of Y with and without eavesdropper’s side informa-

tion. The model studied in Chapter 2 has been recently generalized to the privacy-aware

remote source coding in [90].

In this thesis, we adopt information and estimation theoretic approaches to propose

appropriate U(Y, Z) and P(X,Z).
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1.5 Information-Theoretic Approaches in Privacy

As Shannon indicated in [130], from the point of view of the cryptanalyst, a secrecy system

is almost identical to a noisy communication system and hence the information-theoretic

tools developed to study the fundamental limits of information transfer over a noisy channel

can be used to model, describe and analyze a secrecy or privacy system.

Following Shannon’s lead, one can measure privacy leakageP(X,Z) via the mutual in-

formation I(X;Z). Consequently, a mechanism PZ|X is said to be ε-private if I(X;Z) ≤ ε

for the given prior distribution PX and ε. Although this choice of P(X,Z) is not opera-

tionally well motivated, it has been used extensively in several papers as an appropriate se-

crecy metric [39, 53, 66, 92, 108, 119, 139, 144]. In secrecy systems, the main motivation

for using mutual information as the secrecy metric is the similarity between the deciphering

task for the eavesdropper in the secrecy model and the decoding task in the standard noisy

communication setting. According to this similarity, I(X;Z) only provides a lower bound

on the exponent of the list size that the eavesdropper needs to make to reliably include the

source sequence.

Motivated by a seminal work of Massey [107] on guessing, Merhav and Arikan [109]

proposed another metric: the expected number of guesses, given observation Z, that the

adversary needs to make to find out the correct value of the source X . The problem with

this notion of secrecy is that the adversary needs to possess a testing system by which he

can check whether or not his guess is correct. However, any practical system only allows

a certain number of incorrect inputs. Moreover, it can be shown that there exists highly

insecure systems which are labeled secure under this metric.

More recently, Issa and Wagner [80] proposed to measure leakage in terms of the prob-

ability of a successful guess by the adversary which is defined as the probability that the
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distortion the adversary incurs is below a given level. It seems an appropriate measure of

secrecy; however, it is very hard to deal with especially in single-shot settings.

We use mutual information in Chapter 3 as a privacy metric. The main motivation for

this choice is that mutual information is well-studied and it turns out the corresponding

utility-privacy tradeoff, that we define in Chapter 3, can be used to bound the other better-

justified utility-privacy tradeoff in the subsequent chapters. We also use mutual information

as the information efficiency metric. In particular, we study the following question: Given

discrete correlated random variables X ∈ X = {1, . . . ,M} and Y ∈ Y = {1, . . . , N},

how much information can maximally be extracted from Y while revealing a limited

amount of information about X?

Since X and Y are correlated, disclosing Y completely compromises the privacy of

X . Using the functional representation lemma [87, p. 626], there exists a random variable

V with bounded cardinality such that H(Y |X, V ) = 0 and V⊥⊥X . If V satisfies X (−

− Y (−− V , then the channel PV |Y can be chosen as a privacy filter and thus Z = V is

displayed. Hence, no information about X is revealed, leading to perfect privacy. In this

case, the utility is H(Y )− I(X;Y |V ). Now suppose that we allow the displayed data Z to

reveal at most ε bits of information aboutX . To quantify the maximum utility, we introduce

the so-called rate-privacy function g(PXY , ε) in Chapter 3 as the maximum number of bits

that one can transmit about Y which reveals ε bits of information about X:

g(PXY , ε) := sup
PZ|Y :X(−−Y(−−Z,

I(X;Z)≤ε

I(Y ;Z). (1.3)
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This quantity has a similar form as the well-studied information bottleneck function [140]

IB(PXY , R) := sup
PZ|Y :X(−−Y(−−Z,

I(Y ;Z)≤R

I(X;Z). (1.4)

Interestingly, the quantity IB(PXY , ·) appears as a solution to several problems in informa-

tion theory, including: lossy source coding with logarithmic loss distortion [35], a gener-

alization of Mrs. Gerber’s Lemma [153] in [147], lossless source coding with one helper

[5, 152], and also the strong data processing inequality [4, 11]. The quantity g(PXY , ·)

was recently shown in [96] to be closely related to the extended Gray-Wyner network [67].

Although ε 7→ g(PXY , ε) and R 7→ IB(PXY , R) share several similar properties (e.g., both

are strictly increasing, concave and also ε 7→ g(PXY ,ε)
ε

and R 7→ IB(PXY ,R)
R

are decreasing),

it is important to note that they are fundamentally different.

The functional dual of g(PXY , ·) can be defined [105] as

t(PXY , R) := inf
PZ|Y :X(−−Y(−−Z,

I(Y ;Z)≥R

I(X;Z), (1.5)

which minimizes the privacy level such that Z carries at least R bits of information about

Y . It is insightful to notice that the graph of t(PXY , ·) and IB(PXY , ·) are, respectively,

the lower and upper boundaries of the two-dimensional convex set {(I(Y ;Z), I(X;Z)) :

X (−− Y (−− Z, (X, Y ) ∼ PXY } [29]. This alternative characterization allows us

to study t(PXY , ·) and IB(PXY , ·) from the geometric and convex analytic points of view

(especially using results such as Carathéodory-Fenchel and Dubin’s theorems).
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1.6 Estimation-Theoretic Approaches in Privacy

In the main body of recent research activities on privacy, the major focus has been on the

disclosure risk and how to limit it. Direct connections between statistical efficiency and

privacy, however, have been somewhat more challenging to make. With recent issues in

data collection, it is becoming more important to understand quantitative tradeoffs between

privacy and statistical efficiency, especially in our model where privacy and statistical effi-

ciency need to be defined for different correlated random variables X and Y .

Our goal here is to take a fully inferential point of view on privacy by bringing privacy

into contact with estimation theory. Our focus is on the fundamental limits of privacy-

aware estimation in both discrete and continuous cases. To this end, we need an appropriate

estimation-theoretic privacy leakage function.

It was long believed that adding random independent noise to the private database pre-

serves privacy of each individual. For example, each individual may perturb his/her own

data xi as zi = xi + Ni and send it to the data collecting agency, where Ni is a random

variable independent of xi that is uniformly distributed over an interval [3]. However, it

is easy to see that the privacy of individuals is not maintained by this perturbation. For

example, if Ni is drawn uniformly from interval [−50, 50] and zi = 120 is observed, then

it is easy to conclude that xi ≥ 70.

To make sure privacy is preserved, the notion of privacy breach was introduced in

[54, 55]: Given 0 < ρ1 < ρ2 < 1, we say that there is a ρ1-to-ρ2 privacy breach with respect

to function f if for some z ∈ Z , we have Pr(f(X) = x) ≤ ρ1 and Pr(f(X) = x|Z = z) ≥

ρ2, or equivalently, if the event {f(X) = x} has a jump of magnitude ρ2−ρ1 from its prior

to posterior after Z = z is observed. Evfimievski et al. [54] proposed a necessary condition

on PZ|X which guarantees that ρ1-to-ρ2 privacy breach does not happen with respect to any
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deterministic function.

More recently, a new line of research called quantitative information flow has been

studying the quantitative measures of information leakage in a private system, e.g., [9, 135,

129, 106]. The most widely used measure of information leakage, for X and Z being

defined on countable alphabets, is based on the so-called min-entropy, defined as

H∞(X) := H∞(PX) = min
x∈X

[− logPX(x)] ,

which is, in fact, the Rényi entropy [124] of order ∞. Letting Pc(X) be the proba-

bility of correctly guessing X without any side information in a one-try attempt; i.e.,

Pc(X) = maxx∈X PX(x), we can writeH∞(X) = − logPc(X). In the presence of side in-

formation Z, we let Pc(X|Z) denote the average probability of correctly guessing X using

the ”optimal” strategy of maximum a posterior (MAP) decoding, given by

Pc(X|Z) :=
∑
z∈Z

PZ(z) max
x∈X

PX|Z(x|z).

A natural definition for a conditional Rényi entropy was given by Arimoto [56] as

H∞(X|Z) := − logPc(X|Z). The quantity I∞(X;Z) := H∞(X) − H∞(X|Z) =

log Pc(X|Z)
Pc(X)

, which we refer to as Arimoto’s mutual information of order infinity, there-

fore measures the ”advantage” of Z in guessing X in a one-try attempt. A major body

of research in this area focuses on the connection between I∞(X;Z) and the differential

privacy level, e.g., [8, 9, 26, 33, 106, 129]. However, since differential privacy does not

depend on prior distribution PX these bounds are usually loose unless PX is uniform [9,

Proposition 1].

More recently Issa et al. [79] proposed another operational measure of privacy leakage
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for the discrete case. According to their definition, the mechanism PZ|X is said to be ε-

private if I∞(U ;Z) ≤ ε for any random variable U satisfying3 U (−− X (−− Z. This

metric therefore ensures that even randomized functions ofX cannot be efficiently guessed

from Z. This privacy metric is very stringent and does not depend on the prior distribution.

In this thesis, we consider two quantities as estimation-theoretic measures of pri-

vacy leakage: maximal correlation ρm(X,Z) [122], and I∞(X;Z). The significance of

ρm(X,Z) as a privacy leakage function is that it is well-defined for the both discrete and

continuous cases and it yields a strong semantic privacy guarantee. In particular, the con-

dition ρ2
m(X;Z) ≤ ε implies the following:

• If both X and Z are discrete random variables, then Pc(f(X)|Z) − Pc(f(X)) ≤

ε
√

1−
∑

i P
2
f(X)(i) [28, Theorem 5.6] for any deterministic function f . Hence, for

small ε ≥ 0, it is nearly as hard for an adversary observing Z to guess any determin-

istic function of X as it is without Z.

• If both X and Z are absolutely continuous random variables, then we have

(1− ε)var(f(X)) ≤ mmse(f(X)|Z) ≤ var(f(X)), (1.6)

for any non-constant real-valued measurable function f , where mmse and var denote

the minimum mean-squared estimation error (MMSE) and variance, respectively.

The relation (1.6) states that for small ε ≥ 0, no function of the private data X can

be efficiently estimated given observation Z.

3It can be shown that supU :U(−−X(−−Z I∞(U ;Z) = IS∞(X;Z), where IS∞(X;Z) is the so-called Sib-
son’s mutual information of order infinity [133, 142]. Since I∞(X;Z) ≤ IS∞(X;Z), the metric IS∞(X;Z)
results in a more stringent privacy guarantee as expected from the operational interpretation.
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These implications are similar, in essence, to the cryptographic semantic security princi-

ple [65], which states that an adversary must have a negligible advantage in guessing any

function of the input (i.e., plaintext) given an observation of the mechanism’s output (i.e.,

ciphertext).

We see that the constraint ρ2
m(X,Z) ≤ ε yields a privacy guarantee which is, in some

sense, similar to what Dalenius [43] suggested as the privacy desideratum: almost nothing

about the private data should be learnable from the displayed data that could not be learned

without access to it.

To have a fully inferential utility-privacy tradeoff, we also measure the information

efficiency in terms of I∞(Y ;Z) for discrete Y and var(Y )
mmse(Y |Z)

for continuous Y . Therefore,

we propose the following functions as quantitative utility-privacy tradeoffs

g∞(PXY , ε) := sup
PZ|Y :X(−−Y(−−Z,

I∞(X;Z)≤ε

I∞(Y ;Z), (1.7)

and

sENSR(PXY , ε) := inf
PZ|Y :X(−−Y(−−Z,

ρ2m(X,Z)≤ε

mmse(Y |Z)

var(Y )
. (1.8)

Motivated by the problem of ”secret bit extraction” [23], we also introduce the function

ĝ(PXY , ·) as the maximal information extraction from Y under the inferential privacy con-

straint dictated by maximal correlation:

ĝ(PXY , ε) := sup
PZ|Y :X(−−Y(−−Z,

ρ2m(X,Z)≤ε

I(Y ;Z). (1.9)

It is interesting to mention that the function ĝ(PXY , ·) has recently been modified in [156]

to define a general notion of common information which subsumes Wyner’s [151] and
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Gács-Körner’s [59] notions of common information.

1.7 Contributions and Organization of the Thesis

1.7.1 Chapter 2

We start by studying a simple and practical, yet unexplored, private lossless compression

model and comparing it with a well-studied secrecy model. Specifically, motivated by

the standard lossless source coding problem with one helper [152] and Yamamoto’s lossy

privacy model [155], we study in this chapter the fundamental information theoretic limits

of recovering Y losslessly with the help of coded side information at the decoder while

the mutual information between the message being transmitted over the channel and X is

negligible. This model subsumes the well-studied secrecy models by setting X = Y . The

results of this chapter have appeared in [14].

1.7.2 Chapter 3

In this chapter, we introduce the rate-privacy function g(PXY , ·) for a pair of correlated

random variables (X, Y ) defined over finite alphabets. After proving some fundamental

properties of the map ε 7→ g(PXY , ε), we derive a tight lower bound and show that this

lower bound is achieved by an erasure mechanism. One difficulty we face in evaluating

g(PXY , ·) is the cardinality of the auxiliary random variable Z. Using the standard convex

cover method [87, 40] and the Fenchel-Eggleston-Carathéodory theorem, one can show that

|Z| = |Y|+1 is sufficient in general. Hence even in the simplest case of |X | = |Y| = 2, we

have four variables in the defining non-convex optimization problem in (1.3) which makes

it intractable. We invoke Dubin’s Theorem [46] to show that the cardinality bound of Z

can be strengthened from |Y| + 1 to |Y| if the map ε 7→ g(PXY , ε) is strictly concave.
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We also formulate a coding problem, the so-called dependence dilution problem, and show

that g(PXY , ·) is a boundary point of the achievable rate region of the dependence dilution

problem.

We also revisit the convex-analytic approach that Witsenhausen and Wyner developed

to generalize Mrs. Gerber’s lemma [153] and show that this approach can be modified

to yield a closed form expression for g(PXY , ε) when PX|Y is either a binary symmetric

channel (BSC) or a binary erasure channel (BEC).

In the second part of this chapter, we focus on a particular family of joint distributions

PXY : Y is binary and PX|Y is a binary input symmetric output (BISO) channel. For this

family of joint distributions, we show that the general lower bound is achieved if and only

if Y is uniform and hence establish the optimality of the erasure mechanism in this case.4

A closed form expression for g(PXY , ε), for any ε in its domain, is given in the follow-

ing cases:

• If Y ∼ Bernoulli(q) with 0 ≤ q ≤ 1
2

and PX|Y is either BSC or BEC or Z-channel,

• If Y ∼ Bernoulli(1
2
) and PX|Y is a BISO,

• If PY |X is an erasure channel.

The results of this chapter have partially appeared in [19, 13, 18].

1.7.3 Chapter 4

In this chapter, we study the same problem of information extraction under an information

theoretic privacy constraint except that here we assume thatX and Y are absolutely contin-

uous random variables. To make the problem tractable, we focus on a particular practical
4This optimal mechanism cannot be locally differentially private, which shows that the set of information-

theoretically private mechanisms is much larger than the set of differentially private mechanisms.
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privacy filter of interest which acts in two stages: first Gaussian noise is added and then the

resulting random variable is quantized using an M -bit accuracy uniform scalar quantizer

QM (for some positive integer M ∈ N). Specifically, in this chapter gM(PXY , ε) is defined

as the maximum I(Y ;ZM
γ ), where Z = ZM

γ := QM(
√
γY + NG) and NG is standard

Gaussian random variable independent of (X, Y ) and the maximization is taken over all

γ ≥ 0 such that I(X;Zγ) ≤ ε. We show that gM(PXY , ε) → g(PXY , ε) as M → ∞

where g(PXY , ε) is defined similarly to (1.3) where Z = Zγ :=
√
γY + NG. This result

leads us to evaluating g(PXY , ε) for any given ε ≥ 0. Although characterizing the exact

value of g(PXY , ε) seems very difficult, we utilize the I-MMSE relationship [70, 71, 150]

to derive a second-order approximation for g(PXY , ε) when ε > 0 is sufficiently small (the

almost perfect privacy regime). Interestingly, sENSR(PXY , ·) on this range of ε is closely

related to the largely-ignored Rényi’s one-sided maximal correlation [122]. The results of

this chapter have appeared in [19, 16, 15].

1.7.4 Chapter 5

This chapter is a natural continuation of Chapter 3 where the information-theoretic pri-

vacy constraint I(X;Z) ≤ ε is replaced by the inferential constraint ρ2
m(X,Z) leading to

introducing the quantity ĝ(PXY , ·), defined in (1.9), as the corresponding utility-privacy

tradeoff. This function seems to be the first operational utility-privacy tradeoff in the liter-

ature where utility and privacy are defined with respect to different sources.

Evaluating this function appears to be difficult; however, it is shown that g(PXY , ·) pro-

vides a tight upper bound for ĝ(PXY , ·). Since maximal correlation and mutual information

share many similar properties, the techniques developed in Chapter 3 to study g(PXY , ·) can

be used, mutatis mutandis, to study ĝ(PXY , ·). In particular, again the erasure mechanism
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yields the lower bound for ĝ(PXY , ·) and this lower bound is shown to be optimal for PX|Y

being BISO, only if Y is uniformly distributed. The results of this chapter have appeared

in [19].

1.7.5 Chapter 6

In this chapter, we assume X and Y are discrete random variables and introduce a para-

metric family of utility-privacy functions g(ν,µ)(PXY , ε) for any ν, µ ≥ 1 as the maximum

Iµ(Y ;Z), where Iµ(Y ;Z) is Arimoto’s mutual information of order µ ≥ 1 [142, 12] and

the maximization is taken over all mechanisms PZ|Y such that Iν(X;Z) ≤ ε. We show that

g(PXY , ·) and g∞(PXY , ·), defined respectively in (1.3) and (1.7), are extreme members of

this family when both ν and µ approach one and infinity, respectively. We then argue that

g∞(PXY , ·) can be used to upper and lower bound g(ν,µ)(PXY , ·) for any ν, µ > 1 which al-

lows us to focus on evaluating g∞(PXY , ε). We show that for binary X and Y the function

g∞(PXY , ε) admits a simple closed form expression for all ε in its entire domain. The op-

timal mechanism in this case is a simple Z-channel which, as before, is not a differentially

private mechanism.

Recall that I∞(X;Z) is in a one-to-one relationship with Pc(X|Z), thus g∞(PXY , ·) can

be studied by introducing the privacy-constrained guessing probability function h(PXY , ε)

as the maximum Pc(Y |Z), where the maximization is taken over all privacy filters PZ|Y

such that Pc(X|Z) ≤ ε. A remarkable property of h(PXY , ·), proved in this chapter, is that

it is piecewise linear. This property is instrumental in deriving an expression for g∞(PXY , ·)

in the binary case.

In the second part of this chapter, we make a simplifying, yet practically convenient,

assumption that Z = Y . Even with this assumption, the computation of the corresponding
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h(PXY , ε) is rather complicated. We show that in this case h(PXY , ε) and g∞(PXY , ε)

admit simple closed-form expressions only for sufficiently large, but nontrivial, values of ε.

Finally, we generalize the convex-analytic approach, developed in Chapter 3, to the

Arimoto’s mutual information thereby computing g(ν,ν)(PXY , ε) for any ε in its domain

and ν ≥ 2, when PX|Y is BSC. The results of this chapter have appeared in [21, 20].

1.7.6 Chapter 7

As Verdú stated in [142], a shortcoming of Arimoto’s mutual information is that its general-

ization to continuous random variables is not self-evident. Hence, g(ν,µ) cannot be adapted

for absolutely continuous X and Y . In this chapter, we introduce the so-called estimation-

noise-to-signal ratio, sENSR(PXY , ·), as an operational utility-privacy tradeoff, given in

(1.8). In fact, sENSR(PXY , ε) quantifies the attainable minimum quadratic error in esti-

mating Y from the observation Z that satisfies the condition ρ2
m(X,Z) ≤ ε which leads to

a strong semantic privacy guarantee.

Since X and Y are continuous random variables, characterizing the map ε 7→

sENSR(PXY , ε) seems complicated. Motivated by differential privacy as in Chapter 4,

we focus on the independent additive Gaussian filter5 Z = Zγ :=
√
γY + NG. With this

privacy filter at disposal, sENSR(PXY , ε) indeed corresponds to the smallest variance of

the Gaussian noise for which the privacy constraint ρ2
m(X,Zγ) ≤ ε is satisfied. We ob-

tain upper and lower bounds for sENSR(PXY , ε) and establish another extremal property

of jointly Gaussian distributions: among all (X, Y ) with identical maximal correlation, the

jointly Gaussian (XG, YG) yields the largest sENSR(PXY , ε).

We also derive a tight bound for sENSR(PXY , ε) in the almost perfect privacy regime
5The assumption that the noise is independent of the input is not very restrictive. For example, Geng and

Viswanath [62] showed that in the context of differential privacy the assumption of independent noise does
not result in any loss of optimality.
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(i.e., ε � 1) and establish a connection between sENSR(PXY , ε) and g(PXY , ε). The

results of this chapter have appeared in [21, 17]

1.8 Notation

Capital letters (e.g., U and V ) are used to denote random variables, and calligraphic letters

(e.g., U and V) denote sets. The supports of random variables U and V are denoted by

U and V , respectively. We say X and Y are discrete random variables if X and Y have

countable supports, e.g., when |X | < ∞ and |Y| < ∞. We denote the joint probability

mass function (pmf) of discrete random variables X and Y by PXY = {PXY (x, y) : x ∈

X , y ∈ Y}, the conditional pmf of Y given X by PY |X , and the marginal distributions of X

and Y by PX = {PX(x) : x ∈ X} and PY = {PY (y), y ∈ Y}, respectively. We assume

that PX(x) > 0 and PY (y) > 0 for all x ∈ X and y ∈ Y . We use Bernoulli(p) to denote the

distribution with support X = {0, 1} and PX(1) = p. We use X ∼ PX to denote that X is

distributed according to PX and similarly (X, Y ) ∼ PXY to denote thatX and Y are jointly

distributed according to PXY . We say X, Y and Z form a Markov chain X (−− Y (−− Z,

if their joint distribution satisfies PXY Z(x, y, z) = PX(x)PY |X(y|x)PZ|Y (z|y). We use

X⊥⊥Y to mean that X and Y are independent. An n-tuple random vector (X1, . . . , Xn)

is denoted by Xn. We also let [M ] denote {1, . . . ,M}. The set of all functions of a

random variable X ∼ PX with finite second moment is denoted by L2(PX). The set of all

probability distributions supported over a set X is denoted by PX .

For real-valued X and Y , we say X is absolutely continuous random variable if there

exists a nonnegative function f , called probability density function (pdf), on R such that

Pr(X ≤ x) =
∫ x
−∞ fX(t)dt, for any x ∈ R. We use the notation X ∼ fX to specify the

pdf of random variable X , for example, X ∼ N (0, 1) means that X is a standard Gaussian
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random variable.

For a discrete random variable X ∼ PX and absolutely continuous random variable

Y ∼ fY , the entropy of X and Y are given by H(X) := −
∑

x∈X PX(x) logPX(x) and

h(Y ) := −
∫
Y fY (t) log fY (t)dt, respectively. The base of the logarithm will be clear

from the context. If X ∼ Bernoulli(p), then hb(p) := H(X). If X and Y are either

both discrete according to PXY or both absolutely continuous according to fXY , then the

mutual information between X and Y is defined as I(X;Y ) := H(X) +H(Y )−H(X, Y )

or I(X;Y ) := h(X) + h(Y ) − h(X, Y ), respectively. Note that the mutual information

between two random variables is a function of the marginal distribution of one variable and

the conditional distribution of the other variable given the former one. For example, when

X and Y are discrete and have a joint distribution given by PXPY |X , then we can write

I(X;Y ) = I(PX , PY |X) to emphasize the functional dependence of mutual information on

these distributions. Similarly, we can denote, H(X) by H(PX) and h(Y ) by h(fY ).

For a ∈ [0, 1], we let ā := 1 − a. We frequently use three channels in this thesis. A

channel from X to Y is called the binary symmetric channel with crossover probability α,

denoted by BSC(α), if Y = X = {0, 1} and PY |X(1|0) = PY |X(0|1) = α. A channel from

X to Y is called the binary erasure channel with erasure probability δ, denoted by BEC(δ),

if X = {0, 1}, Y = {0, e, 1} and PY |X(y|x) = δ̄ for x = y and PY |X(e|x) = δ for x ∈ X .

A channel from X to Y is called the Z channel with crossover probability β, denoted by

Z(β), if Y = X = {0, 1} and PY |X(0|0) = 1 and PY |X(0|1) = β.

Given two probability distributions P and Q supported over a finite alphabet U , the

Kullback-Leibler divergence is defined as

D(P ||Q) :=
∑
u∈U

P (u) log

(
P (u)

Q(u)

)
. (1.10)
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The minimum mean-squared error (MMSE) of estimating Y from an observation Z is given

by

mmse(Y |Z) := min
PŶ |Z :Y(−−Z(−−Ŷ

E[(Y − Ŷ )2] = E[(Y − E[Y |Z])2] = E[var(Y |Z)],

where the first equality is due to the orthogonality principle which implies that the optimal

estimator is a deterministic function of Z.
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Chapter 2

Information-Theoretic Secrecy vs. Privacy: Yamamoto’s

Lossless Secure Source Coding

2.1 Overview

The secure source coding models concern a tradeoff between utility (i.e., reconstruction

distortion) and privacy (i.e., the amount of information about the source leaking over the

channel). Given a source Y n, the goal is to transmit this source securely and reliably

over a noiseless public channel which might be perfectly observed by a passive adversary.

The utility is defined as the accuracy in the recovering of Y n by a remote receiver and

the privacy is defined as the uncertainty of the source given the message sent over the

channel. However, in some cases, it may be desirable to define utility and privacy for two

different sources, that is, we want the receiver to know Y n with some level of accuracy

while revealing very little information about a correlated source Xn, which we refer to as

the private source.

To motivate this setting, consider the following example. Suppose that Y denotes an

attribute of a bank customer that a trusted advertising company would like to target and X

denotes another, more sensitive, attribute of the customer. The bank has database (Xn, Y n)
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corresponding to n different users. The company pays the bank to receive Y n as accurately

as possible. However, some governing laws prohibit the database Xn from being revealed

too extensively over public communication channels. Consequently, the data given to the

company must be chosen so that at most a prescribed amount of information is revealed

about Xn over the communication channel while the recovery of Y n by the company sat-

isfies some level of quality.

Inspired by Yamamoto [155], where a lossy source coding problem is studied under a

privacy constraint, we consider a secure lossless source coding model in which an encoder

(Alice) encodes a two-dimensional source (Xn, Y n) such that the receiver (Bob) is able to

reconstruct Y n correctly with high probability and the leakage of information (the infor-

mation obtained by an eavesdropper, Eve) about Xn is no more than ∆ ≥ 0. It is clear that

no non-trivial level of privacy can be obtained if no side information is available to Bob.

Hence, we assume Bob has access to some correlated side information and after observing

the channel output wants to recover Y n with asymptotically vanishing error probability.

We study this problem in terms of the compression rate and also the information leakage

about Xn (or equivalently the equivocation between the compressed and the private data).

We give converse results for different cases including when Bob has coded or uncoded side

information, when Eve has uncoded side information, or when the private source, Xn, is

hidden even from Alice.

When X = Y , the problem we consider here reduces to a well-known model which

has been extensively studied e.g., [68, 69, 119, 143, 139]. In particular, Prabhakaran and

Ramchandran [119] considered a similar secure lossless setting with X = Y and Bob and

Eve having correlated uncoded side information. They focused on the best achievable in-

formation leakage rate when the public channel does not have rate limit. Gündüz et al. [69],
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[68] gave converse and achievability bounds for a similar setting for both compression rate

and information leakage which do not necessarily match. Tandon et al. [139] considered

a simpler case where Eve has no side information. In this setting, they gave a single let-

ter characterization of the optimal rates and information leakage and showed that a simple

coding scheme based on binning, similar to the one proposed by Wyner in [152], is indeed

optimal with and without the privacy constraint. Our results recover all these results in the

special case X = Y .

The rest of this chapter is organized as follows. In Section 2.2, we formally define our

problem and state an outer bound which is our main result. In Section 2.3, we consider

a more general model where Eve has side information and present another outer bound.

We then present a coding scheme which is shown to be optimal in some special cases. We

complete this chapter with some concluding remarks in Section 2.4.

2.2 Yamamoto’s Lossless Source Coding: Coded Side Information at Bob

Yamamoto [155] considered a lossy source coding scheme with a privacy constraint at

the legitimate decoder as well as the eavesdropper. This is contrasted with the typi-

cal information-theoretic secrecy models in which the privacy is defined as the uncer-

tainty of the source against a passive eavesdropper. In Yamamoto’s model, having ob-

served (Xn, Y n), the encoder ϕ : X n × Yn → [2nR], transmits a message to the de-

coder, ψ : [2nR] → Ŷn, which is required to recover Y n within some distortion D while

revealing little information about Xn. More precisely, for a given distortion measure

d : Y×Ŷ → R+, we require 1
n

∑
E[d(Yi, Ŷi)] ≤ D while the normalized uncertainty about

Xn at the decoder is lower-bounded, i.e., 1
n
H(Xn|ϕ(Xn, Y n)) ≥ E for a non-negative

E ≤ H(X). This requirement is different from the privacy constraint usually considered
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in information-theoretic secrecy (e.g., [69], [53], [139], and [143]), in that here the utility

and privacy are measured with respect to two different sources Y and X , respectively. In

this sense, X and Y correspond to the private and non-private sources, respectively. The

correlation between X and Y makes the utility and privacy constraints contradicting.

We study a similar model as Yamamoto’s but for lossless compression. Clearly, if no

side information is available to the decoder, then the eavesdropper can obtain as much

information about Xn as the legitimate decoder and hence only trivial levels of privacy can

be achieved when lossless compression of Y is required. We, therefore, assume that side

information is provided at the decoder, as depicted in Fig. 2.1.

Alice(Xn, Y n) Bob Ŷ n

CharlieZn

J

K

Figure 2.1: Yamamoto’s lossless source coding.

A (2nRA , 2nRC , n) code for private lossless compression in this setup is composed of

two encoding functions at Alice and Charlie, respectively, fA : X n × Yn → [2nRA ] and

fC : Zn → [2nRC ], and a decoder at Bob, fB : [2nRA ]× [2nRC ]→ Ŷn, where (Xn, Y n, Zn)

are n independent and identically distributed (i.i.d.) copies of (X, Y, Z) with joint distri-

bution P (x, y, z). We assume that both encoders communicate to Bob over noiseless chan-

nels; however, the channel between Alice and Bob is subject to eavesdropping and hence

a passive party can have access to the message J transmitted over this channel. A triple

(RA, RC , ∆) ∈ R3
+ is said to be achievable if for any ε > 0, there exists a (2nRA , 2nRC , n)
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code for n large enough such that

Pr(fB(J,K) 6= Y n) < ε, (2.1)

1

n
H(Xn|J) ≥ ∆− ε, (2.2)

where J := fA(Xn, Y n) and K := fC(Zn). We denote the set of all achievable triples

(RA, RC , ∆) byR. One special case of interest is when J contains absolutely no informa-

tion about the private source, that is, when J is independent of Xn, which is called perfect

privacy.

We note that for a special case of X = Y , inner and outer bounds on the achievable

region were initially presented in [68, Theorem 3.1], although these bounds do no match in

general. Tight bounds were then given in [139, Theorem 1] whose achievability resembles

the binning scheme proposed by Wyner [152] for standard source coding with coded side

information at the decoder. This therefore shows that the privacy constraint (2.2) does not

change the optimal scheme.

Theorem 2.1. For any achievable triple (RA, RC , ∆) ∈ R we have

RA ≥ H(Y |V ),

RC ≥ I(Z;V ),

∆ ≤ I(X, Y ;V ) +H(X|U)−H(Y |U),

for some auxiliary random variables V ∈ V and U ∈ U such that P (x, y, z, u, v) =

P (x, y, z)P (v|z)P (u|x, y) with |U| ≤ |X | × |Y|+ 1 and |V| ≤ |Z|+ 2.

Remark 2.2. It can be shown that the bound for∆ is maximized when U = Y . It is because
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we can write H(X|U)−H(Y |U) ≤ H(XY |U)−H(Y |U) = H(X|UY ) ≤ H(X|Y ).

Proof. First note that Bob is required to reconstruct Y n losslessly given J and K, and thus

by Fano’s inequality we have

H(Y n|J,K) ≤ nεn, (2.3)

where εn → 0 as n→∞.

We start by obtaining a lower bound for RA as follows:

nRA ≥ H(J) ≥ H(J |K) = H(Y n, J |K)−H(Y n|J,K)

(a)

≥ H(Y n, J |K)− nεn ≥ H(Y n|K)− nεn =
n∑
i=1

H(Yi|Y i−1, K)− nεn

≥
n∑
i=1

H(Yi|Y i−1, X i−1, K)− nεn

(b)
=

n∑
i=1

H(Yi|Vi)− nεn
(c)
= nH(YQ|VQ, Q)− nεn

(d)
= nH(Y |V )− nεn,

where (a) follows from (2.3), and (b) is due to the definition Vi := (Y i−1, X i−1, K). In (c)

we have introduced a time-sharing random variable Q which is distributed uniformly over

{1, 2, . . . , n} and is independent of (Xn, Y n, Zn). In (d) we have defined V := (VQ, Q)

and used the fact that YQ has the distribution of Y and hence we can replace YQ with Y .

Next we obtain a lower bound on RC :

nRC ≥ H(K) = I(Zn;K) =
n∑
i=1

I(Zi;K|Zi−1)

(a)
=

n∑
i=1

I(Zi;K,Z
i−1)

(b)
=

n∑
i=1

I(Zi;K,Z
i−1, X i−1, Y i−1)

≥
n∑
i=1

I(Zi;K,X
i−1, Y i−1) = nI(ZQ;VQ, Q) = nI(Z;V ),
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where (a) is due to the fact that Zi is independent of Zi−1 for each i and (b) follows from

the Markov chain relation Zi (−− (K,Zi−1) (−− (Y i−1, X i−1).

We now upper bound the equivocation that any asymptotically lossless scheme pro-

duces. First we show the following identity which expresses H(Xn|J) in terms of

H(Y n|J) and some auxiliary terms:

H(Xn|J)−H(Y n|J) =
n∑
i=1

[H(Xi|Ui)−H(Yi|Ui)], (2.4)

where Ui := (Xn
i+1, Y

i−1, J). We will prove a general version of this identity later in

Lemma 2.5. The equivocation can then be upper bounded as

n(∆− ε) ≤ H(Xn|J)

(a)
= H(Y n|J) +

n∑
i=1

[H(Xi|Ui)−H(Yi|Ui)]

= H(Y n|K, J) + I(Y n;K|J) +
n∑
i=1

[H(Xi|Ui)−H(Yi|Ui)]

≤ nεn + I(K;Y n, Xn|J) +
n∑
i=1

[H(Xi|Ui)−H(Yi|Ui)]

(b)

≤ nεn + I(K;Xn, Y n) +
n∑
i=1

[H(Xi|Ui)−H(Yi|Ui)]

= nεn +
n∑
i=1

I(K;Xi, Yi|X i−1, Y i−1) +
n∑
i=1

[H(Xi|Ui)−H(Yi|Ui)]

= nεn +
n∑
i=1

I(K,X i−1, Y i−1;Xi, Yi) +
n∑
i=1

[H(Xi|Ui)−H(Yi|Ui)]

= nεn +
n∑
i=1

I(Vi;Xi, Yi) +
n∑
i=1

[H(Xi|Ui)−H(Yi|Ui)]

= nεn + nI(VQ;XQ, YQ|Q) + n[H(XQ|UQ, Q)−H(YQ|UQ, Q)]
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(c)
= nεn + nI(VQ, Q;XQ, YQ) + n[H(XQ|UQ, Q)−H(YQ|UQ, Q)]

(d)
= nεn + n[I(V ;X, Y ) +H(X|U)−H(Y |U)],

where (a) follows from (2.4), (b) follows from the Markov chain relation J (−−

(Xn, Y n) (−− K and hence I(Xn, Y n;K|J) ≤ I(Xn, Y n;K), (c) is due to the fact

that Q is independent of (XQ, YQ) and in (d) we have introduced U := (UQ, Q).

We note that by definitions of U and V , the Markov chain conditions (X, Y ) (−−

Z (−− V and Z (−− (X, Y ) (−− U are satisfied. The cardinality bounds given in the

statement of the theorem can be proved using the Support Lemma [40].

Remark 2.3. As mentioned earlier, the special case X = Y is studied in [139] where

it is shown that for any achievable triple (RA, RC , ∆), the optimal equivocation satisfies

∆ ≤ I(Y ;V ). We see that Theorem 2.1 yields the same result and thus gives a tight bound

in this special case.

In practice, the private source X might not be directly available to Alice. In this case,

her mapping is fA : Yn → {1, 2, . . . , 2nRA} and the above theorem reduces to the following

corollary.

Corollary 2.4. When the source Xn is not available to Alice, any achievable triple

(RA, RC , ∆) satisfies

RA ≥ H(Y |V ),

RC ≥ I(Z;V ),

∆ ≤ I(Y ;V ) +H(X|U)−H(Y |U),

for some U ∈ U and V ∈ V such that P (x, y, z, u, v) = P (x, y, z)P (v|z)P (u|y) and
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|U| ≤ |Y|+ 1 and |V| ≤ |Z|+ 2.

Proof. The proof follows easily from the proof of Theorem 2.1. In particular, introducing

Vi := (Y i−1, K) and Ui := (Xn
i+1, Y

i−1, J), we can follow easily the chain of inequalities

given for the equivocation analysis with appropriate modifications. Since now J = fA(Y n),

we have (Xi, Zi) (−− Yi (−− Ui.

2.3 Yamamoto’s Lossless Source Coding: Uncoded Side Information at Eve

We now turn our focus to the case where there is an eavesdropper, Eve, with perfect access

to the channel from Alice to Bob and also side information En. Unlike in the last section,

in this model the achievable (RA, RC , ∆) has not been fully characterized in the case of

X = Y . However, Gündüz et al. [69] and Probhakaran and Ramchandran [119] showed

that ifRC > H(Z), that is uncoded side information is available at Bob, then (RA, ∆) is an

achievable pair if and only ifRA ≥ H(Y |Z) and∆ ≤ max[I(Y ;Z|U)−I(Y ;E|U)] where

the maximization is taken over U that satisfies Z (−− Y (−− U , thus providing a full

single-letter characterization of the achievable rate-equivocation region. In this section, we

assume coded side information is available at Bob and Eve has uncoded side information

En, as depicted in Fig. 2.2. In the following, we assume that the Eve’s side information En

forms the Markov chain Xn (−− Y n (−− En.

2.3.1 A Converse Result

The achievable (RA, RC , ∆) in this model is defined similarly as before with the utility

constraint (2.1) and the privacy constraint

1

n
H(Xn|En, J) ≥ ∆− ε. (2.6)
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Alice(Xn, Y n) Bob Ŷ n

CharlieZn

EveEn

J

K

Figure 2.2: Yamamoto’s lossless source coding with eavesdropper having side information.

Before we get to an outer bound for the achievable region of this model, we need to state

the following lemma which is a generalization of identity (2.4) that we used in the proof of

Theorem 2.1.

Lemma 2.5. Let (J,Xn, Y n, En) be jointly distributed according to P (j, xn, yn, en). Then

we can write:

H(Xn|En, J)−H(Y n|En, J) =
n∑
i=1

[H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

where Ui := (Xn
i+1, Y

i−1, E−i, J) for each i ∈ [n] and E−i := (Ei−1, En
i+1) .

Proof. We can write

0
(a)
=

n∑
i=1

I(Yi, Ei;X
n
i+1, E

n
i+1|J, Y i−1, Ei−1)− I(Y i−1, Ei−1;Xi, Ei|J,Xn

i+1, E
n
i+1)

= H(Y n, En|J)−H(Xn, En|J)

−
n∑
i=1

[H(Yi, Ei|Xn
i+1, Y

i−1, E−i, J)−H(Xi, Ei|Xn
i+1, Y

i−1, E−i, J)]

= H(Y n|En, J)−H(Xn|En, J)

−
n∑
i=1

[H(Yi|Ei, Xn
i+1, Y

i−1, E−i, J)−H(Xi|Ei, Xn
i+1, Y

i−1, E−i, J)]
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(b)
= H(Y n|En, J)−H(Xn|En, J)−

n∑
i=1

[H(Yi|Ei, Ui)−H(Xi|Ei, Ui)],

where (a) follows from Ciszár sum identity [87, page 25], and in (b) we used the definition

of Ui.

Theorem 2.6. The set of all achievable triples (RA, RC , ∆) for this model when Eve is

provided with side information En and En (−− Y n (−− Xn, satisfies

RA ≥ H(Y |V ),

RC ≥ I(Z;V ),

∆ ≤ I(X, Y ;V )− I(X, Y ;E|U) +H(X|E,U)−H(Y |E,U),

for some U and V which form (Z,E) (−− (X, Y ) (−− U and (X, Y,E) (−− Z (−− V .

Proof. The lower bounds for both RA and RC follow along the same lines as in the proof

of Theorem 2.1. We shall show the upper bound for the equivocation. We note that since

Bob is required to reconstruct Y n losslessly, Fano’s inequality implies that

H(Y n|J,K) ≤ nεn (2.7)

for εn → 0 as n→∞. As before, let J = fA(Xn, Y n) and K = fC(Zn).

The upper bound for the equivocation is obtained as follows:

H(Xn|En, J)
(a)
= H(Y n|En, J) +

n∑
i=1

[H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

= H(Y n|J,K) + I(Y n;K|J)− I(Y n;En|J)

+
n∑
i=1

[H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]
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(b)

≤ nεn + I(Xn, Y n;K|J)− I(Y n;En|J)

+
n∑
i=1

[H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

(c)

≤ nεn + I(Xn, Y n;K)− I(Y n;En) + I(En; J)

+
n∑
i=1

[H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

(d)
= nεn +

n∑
i=1

[I(Xi, Yi;K,X
i−1, Y i−1)− I(Yi, Xi;Ei) + I(Ei; J,E

i−1)

+H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]
(e)

≤ nεn +
n∑
i=1

[I(Xi, Yi;Vi)− I(Yi, Xi;Ei) + I(Ei;Ui)]

+
n∑
i=1

[H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

(f)
= nεn +

n∑
i=1

[I(Xi, Yi;Vi)− I(Yi, Xi;Ei|Ui)]

+
n∑
i=1

[H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

(g)
= nεn + I(XQ, YQ;VQ, Q)− I(YQ, XQ;EQ|UQ, Q)

+H(XQ|EQ, UQ, Q)−H(YQ|EQ, UQ, Q)],

where (a) follows from Lemma 2.5 and (b) is due to (2.7). Since K (−− (Xn, Y n) (−− J

and En (−− Y n (−− J , we have I(Xn, Y n;K|J) ≤ I(Xn, Y n;K) and I(Y n;En|J) =

I(Y n;En) − I(En; J) and hence (c) follows. We again used the Markov chain relation

En (−− Y n (−− Xn in (d). The definition Vi := (K,X i−1, Y i−1) and the fact that

I(Ei; J,E
i−1) ≤ I(Ei;Ui) are used in (e). Note that since Ui (−− (Xi, Yi) (−− Ei we

have in (f) that I(Xi, Yi;Ei|Ui) = I(Xi, Yi;Ei) − I(Ei;Ui). The proof completes by

introduction of a time sharing random variable Q uniformly distributed over {1, 2, . . . , n}
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and independent of (Xn, Y n, Zn, En) and letting X = XQ, Y = YQ, E = EQ, V =

(VQ, Q) and U = (UQ, Q).

Remark 2.7. Setting En = ∅ and thus removing the eavesdropper’s side information, The-

orem 2.6 yields ∆ ≤ I(X, Y ;V ) +H(X|U)−H(Y |U) and hence Theorem 2.6 subsumes

Theorem 2.1.

In the simple case of X = Y , the optimal scheme when coded side information is

available at Bob and En = ∅ is proposed in [139] which is shown to resemble the bin-

ning scheme of Wyner in [152]. Although, a tight bound for the equivocation when En is

available is not yet known, Theorem 2.6, specialized to X = Y , implies

∆ ≤ I(Y ;V )− I(Y ;E|U),

for auxiliary random variables U and V which form Markov chains V (−− Z (−− (Y,E)

and U (−− Y (−− (Z,E).

2.3.2 A Coding Scheme When Bob Has Uncoded Side Information

As a special case, we consider the case where Alice does not see the private source and also

RC > H(Z) (i.e., Bob has uncoded side information). In this case, Theorem 2.6 implies

that the best achievable equivocation is upper bounded by

max[I(Y ;Z)− I(Y ;E|U) +H(X|E,U)−H(Y |E,U)],

where the maximization is taken over U which forms the Markov chain relation U (−

− Y (−− (Z,E,X). In the following, we give a simple coding scheme which incurs a

smaller equivocation and is thus suboptimal. In fact, if the above maximization results in a
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U which is independent of Z, then the following coding scheme is optimal. On the other

hand, if the maximization results in a U which is constant, then it implies that Slepian-

Wolf binning is optimal, because if Alice uses Slepian-Wolf binning then the equivocation

is equal to H(X|E)−H(Y |Z), as observed in [119].

Theorem 2.8. When Xn is not given to Alice and Bob observes side information Zn, then

(RA, ∆) which satisfies

RA ≥ H(Y |Z),

∆ ≤ I(Y ;Z|U)− I(Y ;E|U) +H(X|E,U)−H(Y |E,U),

is achievable where the auxiliary random variable U forms the Markov chain

(X,Z,E) (−− Y (−− U .

Proof. Our scheme is similar to the ones proposed in [69] and [41]. Given Y n, we gen-

erate 2n(I(Y ;U)+ε) independent codewords of length n, Un(w), w ∈ {1, 2, . . . , 2nI(Y ;U)+ε}

according to
∏n

i=1 P (ui). We then uniformly bin all the Un sequences into 2n(I(Y ;U)−I(U ;Z))

bins. Let B(i) be the indices assigned to bin i. There are approximately 2nI(U ;Z) indices in

each bin. We also uniformly bin Y n sequences into 2n(H(Y |U,Z)+ε) bins and let C(k) be the

set of sequences Y n in bin k. Alice adopts a two-part encoding scheme. Given Y n, Alice,

in the first part, looks for a codeword Un(w) such that (Y n, Un(w)) ∈ AnY U , where AnY U

denotes the set of all strongly typical (yn, un) ∈ Yn × Un with respect to the distribution

P (y, u). She then reveals the bin index J1 such that w ∈ B(J1). In the second part, she

reveals J2 such that Y n ∈ C(J2).

Given J1, J2 and Zn, Bob can find, with high probability, Un(w) such that w ∈ B(J1)

and (Un(w), Zn) ∈ AnZU . It is then clear from the Slepian-Wolf theorem that Bob can
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recover Y n with high probability given Un(w), Zn, and J2. The rate of this encoder is

clearly equal to H(Y |U,Z) + I(Y ;U)− I(U ;Z) = H(Y |Z).

The equivocation for this scheme can be found as

H(Xn|J1, J2, E
n) = H(Xn|J1, E

n)− I(Xn; J2|J1, E
n)

≥ H(Xn|Un, En)−H(J2)

(a)

≥ H(Xn|Un, En)− nH(Y |U,Z)

(b)

≥ n[H(X|U,E)−H(Y |U,Z)]

= n[H(X|E,U)−H(Y |E,U) + I(Y ;Z|U)− I(Y ;E|U)],

where (a) follow from the fact that J2 is a random variable over a set of size 2nH(Y |U,Z) and

(b) is proved as follows:

H(Xn|Un, En) =
∑

(un,en)∈Un×En
P (un, en)H(Xn|Un = un, En = en)

≥
∑

(un,en)∈T nU,E

P (un, en)H(Xn|Un = un, En = en)

=
∑

(un,en)∈T nU,E

P (un, en)

[
−
∑
xn∈Xn

P (xn|un, en) log(P (xn|un, en))

]

≥
∑

(un,en)∈T nU,E

P (un, en)

− ∑
xn∈T n

X|un,en

P (xn|un, en) log(P (xn|un, en))


(c)

≥ n(H(Y |U,E)− δn)
∑

(un,en)∈T nU,E

P (un, en)

 ∑
xn∈T n

X|un,en

P (xn|un, en)


= n(H(Y |U,E)− δn)

∑
(un,en)∈T nU,E

P (un, en)
[
Pr{(un, en, Xn) ∈ T nX|un,en}

]
(d)

≥ n(H(Y |U,E)− δn)(1− δ′n),
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where T nU,E denotes the set of typical sequences (un, en) and (c) is due to the property of

typical sequences; in particular for typical xn sequence with respect to P (xn|un, en) for

(un, en) ∈ T nU,E we have P (xn|un, en) ≤ 2−(n(H(X|U,E)−δ(n))) for δn → 0 as n → ∞.

We invoked Markov lemma [87, Lemma 12.1] in (d) to conclude that for the Markov

chain relation (X,E) (−− Y (−− U we have (xn, yn, en, un) ∈ T nX,Y,E,U and hence

Pr{(un, en, Xn) ∈ T nU,E,X} > 1− δ′n for each pair (un, en) ∈ (un, en) ∈ T nU,E and δ′n → 0

as n→∞.

2.4 Concluding Remarks

Having combined the idea of compression of private and non-private sources of Yamamoto

[155] with secure source coding problem (e.g. [69], [139] and [119]), we introduced a

lossless source coding problem in which, given a two-dimensional source (Xn, Y n), the

encoder must compress the source into an index J with rate RA such that the receiver re-

covers Y n losslessly and simultaneously reveals only little information about Xn. This

model differs from typical information-theoretic secrecy models in that the utility and pri-

vacy constraints are defined for two different sources and thus provides a more general

utility-equivocation tradeoff.

We gave converse results for compression rates and also the information leakage rate

(or equivocation) which reduce to known results in the special case ofX = Y . In particular,

with this simplifying assumption, Theorem 2.1 and Theorem 2.8 reduce to [139, Theorem

1] and [69, Corollary 3.2].

However, it is not clear at the moment that the bounds are tight in general. Constructing

an achievability scheme for the most general case (i.e., the setting of Theorem 2.6) is the

subject of our future studies.
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Chapter 3

Information Extraction Under an Information-Theoretic

Privacy Constraint: Discrete Case

3.1 Overview and Motivation

With the emergence of user-customized services, there is an increasing desire to balance

between the need to share data and the need to protect sensitive and private information.

For example, individuals who join a social network are asked to provide information about

themselves which might compromise their privacy. However, they agree to do so, to some

extent, in order to benefit from the customized services such as recommendations and per-

sonalized searches. Hence, each user needs to make a balance between the benefit he

receives from the customized services and the level of privacy they wish to maintain. As

another example, suppose a software company wants to gather statistical information on

how people use its software. Since many users might have used the software to handle

some personal or sensitive information -for example, a browser for anonymous web surf-

ing or a financial management software- they may not want to share their data with the

company. On the other hand, the company cannot legally collect the raw data either, so

it needs to entice its users. In all these situations, a tradeoff in a conflict between utility
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advantage and privacy breach is required and the question is how to achieve this tradeoff.

For example, how can a company collect high-quality aggregate information about users

while strongly guaranteeing to its users that it is not storing user-specific information?

To deal with such privacy considerations, Warner [145] proposed the randomized re-

sponse model1 in which each individual user randomizes his own data using a local ran-

domizer (i.e., a noisy channel) before sharing the data to an untrusted data collector to be

aggregated. As opposed to conditional security, e.g. [25, 45, 125], the randomized re-

sponse model assumes no limit on the computational capability of the adversary and thus it

provides unconditional privacy. This model, in which the control of private data remains in

the users’ hands, has recently regained attention after Warner within the information theory

[79, 83, 116, 126, 127] and the computer science communities [47, 82].

There have been several studies on the tradeoff between privacy and utility for differ-

ent examples of randomized response models with different choices of utility and privacy

measures. For instance, Duchi et al. [47] studied the optimal ε-locally differentially private

mechanism (defined in Section 1.2)M : X → Z which minimizes the risk of estimation of

a parameter θ related to PX . Kairouz et al. [82] studied an optimal ε-locally differentially

private mechanism in the sense of mutual information, where an individual would like to

release an ε-locally differentially private version Z of X that preserves as much informa-

tion about X as possible. Calmon et al. [32] proposed a novel privacy measure (which

includes maximal correlation and chi-square correlation) between X and Z and studied the

optimal privacy mechanism (according to their privacy measure) which minimizes the error

probability Pr(X̂(Z) 6= X) for any estimator X̂ : Z → X .

In all above examples of randomized response models, given a private source, denoted

by X , the mechanism generates Z which can be publicly displayed without breaching the
1For obvious reasons, this model is recently referred to as the local privacy model [47].
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desired privacy level. However, in a more realistic model of privacy, we can assume that

for any given private data X , nature generates Y , via a fixed channel PY |X (See Fig. 1.1).

Now we aim to release a public display Z of Y such that the amount of information in

Y is preserved as much as possible while Z satisfies a privacy constraint with respect to

X . To motivate this model, consider two communicating agents Alice and Bob. Alice

possesses Y and ultimately wants to reveal it to Bob in order to receive a payoff. However,

she is worried about her private data, represented by X , which is correlated with Y . For

instance, X might represent her precise location and Y represents measurement of traffic

load of a route she has taken. She wants to reveal these measurements to an online road

monitoring system to receive some utility. However, she does not want to reveal too much

information about her exact location. In such situations, utility is measured with respect

to Y and privacy is measured with respect to X . Our goal is to characterize the maximum

payoff that Alice can get from Bob (by revealing Z to him) without compromising her

privacy. Thus, it is of interest to characterize such competing objectives in the form of

a quantitative tradeoff. Such a characterization provides a controllable balance between

utility and privacy.

3.2 Main Contributions

The main contributions of this chapter are as follows:

• Using mutual information as a measure of both utility and privacy, we formulate the

corresponding utility-privacy tradeoff for discrete random variables X and Y via the

rate-privacy function, g(PXY , ·). If g(PXY , ε) = R, then mutual information I(Y ;Z)

is maximally equal to R among all channels PZ|Y satisfying I(X;Z) ≤ ε. We obtain

a necessary and sufficient condition for g(PXY , 0) = 0. Assuming this property, we
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show that

lim
ε↓0

g(PXY , ε)

ε
= sup

PZ|Y :X(−−Y(−−Z,
I(X;Z)>0

I(Y ;Z)

I(X;Z)
, (3.1)

which establishes a connection between g(PXY , ε) and a ”reverse” notion of strong

data processing inequality [4, 10, 11]. This connection is recently studied in [31] to

mirror all the results of [10] in the context of privacy. In Chapter 4, we derive some

results for continuous random variables which accentuate this connection.

• Inspired by (3.1), we focus on the rate of increase g′(PXY , 0) of g(PXY , ε) at ε = 0

and show that this rate characterizes the behavior of g(PXY , ε) for any ε ≥ 0 provided

that g(PXY , 0) = 0. In particular, we show that

g′(PXY , 0) ≥ max
y∈Y

− logPY (y)

D(PX|Y (·|y)‖PX(·))
,

which leads to a lower bound to the reverse strong data processing coefficient in (3.1).

The same connection can be established for the strong data processing inequality

[10, 11]. Letting

Γ (R) := max
PZ|Y :X(−−Y(−−Z

I(Y ;Z)≤R

I(X;Z),

one can easily show that

Γ ′(0) = lim
R→0

Γ (R)

R
= sup

PZ|Y :

X(−−Y(−−Z

I(X;Z)

I(Y ;Z)
,

and hence the rate of increase of Γ (R) at R = 0 characterizes the strong data pro-

cessing coefficient. Note that here we have always Γ (0) = 0.

• We derive lower and upper bounds of g(PXY , ε) for any ε in its domain. In particular,
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we show that g(PXY , ε) ≥ εH(Y )
I(X;Y )

. We then obtain conditions on PXY such that this

bound is tight. For example, we show that if the channel from Y to X satisfies a cer-

tain notion of symmetry, then g(PXY , ε) = εH(Y )
I(X;Y )

, if and only if Y ∼ Bernoulli(1
2
).

This now implies that in this case, we have

sup
PZ|Y :

X(−−Y(−−Z

I(Y ;Z)

I(X;Z)
=

1

I(X;Y )
.

We also show that g(PXY , ε) ≤ H(Y |X) + ε, where the equality holds if Y is an

erased version of X , or equivalently, PY |X is an erasure channel.

• We propose an information-theoretic setting, the so-called ”dependence dilution”

coding problem, in which g(PXY , ·) appears as a natural upper-bound for the achiev-

able rate. Specifically, we examine the joint-encoder version of an amplification-

masking tradeoff, a setting recently introduced by Courtade [36], and we show that

the dual of g(PXY , ·) upper bounds the masking rate.

3.3 Problem Formulation

Consider two random variables X and Y , defined over alphabets X = [M ] and Y = [N ],

respectively, with a fixed joint distribution PXY = P. Let X represent the private data

and let Y be the observable data, correlated with X and generated by the channel PY |X

predefined by nature, which we call the observation channel. Suppose that there exists a

channel PZ|Y such that Z, the displayed data made available to public users, has a small

mutual information with X . Such a channel is called the privacy filter. This setup is shown

in Fig. 1.1. The objective is then to find a privacy filter which gives rise to the highest

mutual information between Y and Z. To quantify this goal, we introduce the rate-privacy
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function2 as

g(P, ε) := sup
PZ|Y ∈Dε(P)

I(Y ;Z), (3.2)

where

Dε(P) := {PZ|Y : X (−− Y (−− Z, I(X;Z) ≤ ε}. (3.3)

Equivalently, we refer to g(P, ε) as the privacy-constrained information extraction func-

tion, as Z can be thought of as the extracted information from Y under privacy constraint

I(X;Z) ≤ ε.

Note that by the Markov condition X (−− Y (−− Z, we can always restrict ε ≥ 0

to only 0 ≤ ε < I(X;Y ), because by the data processing inequality we have I(X;Z) ≤

I(X;Y ) and hence for ε ≥ I(X;Y ) the privacy constraint is always satisfied by setting

Z = Y , which yields g(P, ε) = H(Y ). Note also that using the Support Lemma [40, 87],

one can readily show that it suffices to consider the random variable Z that is supported on

an alphabet Z with cardinality |Z| ≤ N + 1. Moreover, the continuity of PZ|Y → I(X;Z)

implies that Dε(P) is compact, and hence the supremum in (3.2) is indeed a maximum. We

will show later that g(P, ·) is concave and strictly increasing on [0, I(X;Y )] and hence the

continuity of I(Y ;Z) and I(X;Z) in PZ|Y implies that the feasible set Dε(P) in (3.2) can

be replaced by {PZ|Y : X (−− Y (−− Z, I(X;Z) = ε}. For the sake of brevity, we

denote g(P, ε) by g(ε) when this does not cause confusion.

A dual representation of g(ε), the so called Privacy Funnel, is introduced in [105] and

[31] as the least information leakage about X such that the communication rate is greater

2Since mutual information is adopted for utility, the privacy-utility tradeoff characterizes the optimal
rate for a given privacy level, where rate indicates the precision of the displayed data Z with respect to the
observable data Y for a privacy filter, which suggests the name.
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Figure 3.1: The region of g(ε) in terms of ε
I(X;Y ) specified by (3.5), where the upper and lower

bounds are straight lines of slopes I(X;Y )
H(Y ) and 1, respectively.

than a positive constant, i.e.,

t(P, R) := min
PZ|Y :X(−−Y(−−Z

I(Y ;Z)≥R

I(X;Z). (3.4)

Note that t(P, R) = ε if and only if g(ε) = R for R, ε > 0 and also g(0) = max{R :

t(P, R) = 0}.

3.4 Properties

Given ε1 < ε2 and a joint distribution P, we have Dε1(P) ⊂ Dε2(P), thus g(·) is non-

decreasing, i.e., g(ε1) ≤ g(ε2). Using a similar technique as in [132, Lemma 1], Calmon

et al. [31] showed that the mapping R 7→ t(P,R)
R

is non-decreasing for R > 0. This, in fact,

implies that ε 7→ g(ε)
ε

is non-increasing for ε > 0. This observation leads to a lower bound

for the rate-privacy function g(ε) as described in the following lemma which demonstrates

the possible range of the map ε 7→ g(ε) is as depicted in Fig. 3.1.

Lemma 3.1 ([31]). The mapping ε 7→ g(ε)
ε

is non-increasing on (0,∞). Moreover, g(ε)
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Figure 3.2: Privacy filter that achieves the lower bound in (3.5) where Zδ is the output of an erasure
privacy filter with erasure probability specified in (3.6).

lies between two straight lines as follows:

ε
H(Y )

I(X;Y )
≤ g(ε) ≤ H(Y |X) + ε, (3.5)

for ε ∈ (0, I(X;Y )).

Although the proof of the bounds in (3.5) is given in [31], in the following we give

an insightful and conceptual proof of the lower bound. Consider a simple erasure channel

Wδ : Y → Zδ, shown in Fig. 3.2, with erasure probability 0 ≤ δ ≤ 1. It is easy to

see that I(X;Zδ) = δ̄I(X;Y ) and I(Y ;Zδ) = δ̄H(Y ) and consequently Wδ ∈ Dε(P) if

δ̄ = ε
I(X;Y )

. Hence for this particular choice of δ, we have g(ε) ≥ I(Y ;Zδ) = δ̄H(Y )

which proves the lower bound in (3.5). This observation shows that the lower bound in

(3.5) is achieved by Wδ, illustrated in Fig. 3.2, with the erasure probability

δ = 1− ε

I(X;Y )
. (3.6)

We next show that ε 7→ g(ε) is concave and continuous.

Lemma 3.2. The mapping ε 7→ g(ε) is concave.
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Proof. It suffices to show that for any 0 ≤ ε1 < ε2 < ε3 ≤ I(X;Y ), we have

g(ε3)− g(ε1)

ε3 − ε1

≤ g(ε2)− g(ε1)

ε2 − ε1

, (3.7)

which, in turn, is equivalent to

(
ε2 − ε1

ε3 − ε1

)
g(ε3) +

(
ε3 − ε2

ε3 − ε1

)
g(ε1) ≤ g(ε2). (3.8)

Let PZ1|Y : Y → Z1 and PZ3|Y : Y → Z3 be two optimal privacy filters in Dε1(P) and

Dε3(P) with disjoint output alphabets Z1 and Z3, respectively. We introduce an auxiliary

binary random variable U ∼ Bernoulli(λ), independent of (X, Y ), where λ := ε2−ε1
ε3−ε1 and

define the following random privacy filter PZλ|Y : We pick PZ3|Y if U = 1 and PZ1|Y if

U = 0, and let Zλ be the output of this random channel which takes values in Z1 ∪ Z3.

Note that (X, Y ) (−− Zλ (−− U . Then we have

I(X;Zλ) = I(X;Zλ, U) = I(X;Zλ|U) = λI(X;Z3) + (1− λ)I(X;Z1) ≤ ε2,

which implies that PZλ|Y ∈ Dε2(P). On the other hand, we have

g(ε2) ≥ I(Y ;Zλ) = I(Y ;Zλ, U) = I(Y ;Zλ|U) = λI(Y ;Z3) + (1− λ)I(Y ;Z1),

=

(
ε2 − ε1

ε3 − ε1

)
gε3(X;Y ) +

(
ε3 − ε2

ε3 − ε1

)
gε1(X;Y )

which, according to (3.8), completes the proof.

Remark 3.3. By the concavity of ε 7→ g(ε), we can show that g(ε) is a strictly increasing

function of ε ≤ I(X;Y ). To see this, assume there exists ε1 < ε2 ≤ I(X;Y ) such that
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g(ε1) = g(ε2). Since ε 7→ g(ε) is concave, then it follows that for all ε ≥ ε2, g(ε) = g(ε2)

and since for ε = I(X;Y ), g(I(X;Y )) = H(Y ), it implies that for any ε ≥ ε2, we must

have g(ε) = H(Y ) which contradicts the upper bound shown in (3.5).

The following is a direct implication of Lemma 3.2.

Corollary 3.4. The mapping ε 7→ g(ε) is continuous for ε ≥ 0.

Remark 3.5. Using the concavity of the map ε 7→ g(ε), we can provide an alternative proof

for the lower bound in (3.5). Note that point (I(X;Y ), H(Y )) is on the curve g(·), and

hence by concavity, the straight line ε 7→ ε H(Y )
I(X;Y )

lies below the lower convex envelop of

g(ε), i.e., the chord connecting (0, g(0)) to (I(X;Y ), H(Y )), and hence g(ε) ≥ ε H(Y )
I(X;Y )

.

In fact, this chord yields a better lower bound for g(ε) on ε ∈ [0, I(X;Y ] as

g(ε) ≥ ε
H(Y )

I(X;Y )
+ g(0)

[
1− ε

I(X;Y )

]
, (3.9)

which reduces to the lower bound in (3.5) only if g(0) = 0.

3.5 Geometric Interpretation of g(ε)

Witsenhausen and Wyner [147] generalized Mrs. Gerber’s Lemma [153]. In what follows,

we describe their model, briefly illustrate their approach, and then we connect this approach

to g(ε). Before we describe their model, we need the following theorem.

Theorem 3.6 (Dubin’s Theorem [46]). If C is a compact and convex subset of a finite

dimensional3 vector space V and C ′ is the intersection of C with k hyperplanes, then every

extreme point of C ′ can be written as a convex combination of (k + 1) extreme points of C.

3The original proof in [46] assumed general vector spaces and a linearly bounded and linearly closed
convex set C, see [146] for more details.
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Given (X, Y ) ∼ P with marginals pX and qY overX = [M ] and Y = [N ], respectively,

let the (backward) channel from Y to X be denoted by T. The main question studied in

[147] is to characterize FT(qY , · ) : [0, H(Y )]→ [0, H(X)], defined as

FT(qY , ∆) := min
PZ|Y :X(−−Y(−−Z,

H(Y |Z)≥∆

H(X|Z). (3.10)

As before, the Support Lemma implies that it is sufficient to consider Z supported

over Z with cardinality |Z| = N + 1. Now consider S ⊆ RN+1 given by S =

{(q, H(q), H((Tq)X )) : q ∈ PY}, where (Tq)X ∈ PX is the marginal distribution of

X when Y ∼ q. Clearly, setting q = qY , we have H(q) = H(Y ) and H((Tq)X ) =

H(X). Let C be the convex hull of S. By definition, any point in C can be written

as
∑N+1

i=1 ωi(qi, H(qi), H((Tqi)X )), where
∑N+1

i=1 ωi = 1, ωi ≥ 0, and qi ∈ PY for

i ∈ [N + 1]. Consequently, C can be written as

C =
{

(q, H(Y ′|Z), H(X ′|Z)) : Y ′ ∼ q, X ′ ∼ (Tq)X , PZ(i) = ωi, PY ′|Z(·|i) = qi, i ∈ [N + 1]
}
.

Clearly, we have (X ′, Y ′) ∼ P if and only if q = qY . We have

FT(qY , ∆) = min {η : (qY , ∆, η) ∈ C} = min {η : (∆, η) ∈ CY }, (3.11)

where CY := C ∩ {q = qY}. This implies that the graph of FT(qY , ·) coincides with the

lower boundary of the convex set CY and thus it is convex (more specifically, FT(qY , ∆) is

jointly convex in (qY , ∆)).

We note that CY is the intersection of C with a plane described by {q = qY }, which can

be viewed as an intersection of (N − 1) hyperplanes. Therefore, Dubin’s Theorem 3.6 can
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be invoked to show that the extreme points of CY can be written as convex combinations of

at most N points of S . Consequently, if FT(qY , ·) is strictly convex, all points of its graph

are extreme points of CY , and hence FT(qY , ∆) is achievable by Z with |Z| ≤ N .

To evaluate FT(qY , ∆), Witsenhausen and Wyner suggested to study its conjugate func-

tion F ∗T(qY , · ) : R→ R, defined as

F ∗T(qY , λ) := min
0≤∆≤H(Y )

FT(qY , ∆)− λ∆ = min{η − λ∆ : (∆, η) ∈ CY }

= min{η − λ∆ : (qY , ∆, η) ∈ C}. (3.12)

It is worth noting that F ∗T(qY , λ) determines a support line of slope λ ∈ R for CY , or

equivalently, the line λx+F ∗T(qY , λ) is a support line of slope λ for the graph of FT(qY , ·).

This observation implies that FT(qY , ∆) can be recovered from F ∗T as

FT(qY , ∆) = max
λ∈R

[F ∗T(qY , λ) + λ∆] . (3.13)

Since FT(qY , ·) is increasing, we can assume λ ∈ R+ in (3.13). On the other hand, the

data processing inequality shows that FT(qY , ∆) ≥ ∆ + H(X) − H(Y ), and thus, a line

of slope 1 supports the graph of FT(qY , ·) at point ∆ = H(Y ). This in turn implies that we

can, without loss of generality, assume that λ ≤ 1 in (3.13).

As suggested by (3.13), in order to characterize FT(qY , ∆), it is sufficient to char-

acterize F ∗T(qY , λ). To this end, suppose λ ∈ [0, 1] is fixed and consider the mapping

φ( · , λ) : PY → R, given by

φ(q, λ) = H((Tq)X )− λH(q). (3.14)
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Let Sλ be the graph of φ, i.e.,

Sλ := {(q, φ(q, λ)) : q ∈ PY} = {(q, η − λ∆) : (q, ∆, η) ∈ S},

and let Cλ be its convex hull. Clearly, Cλ = {(q, η − λ∆) : (q, ∆, η) ∈ C}. It follows

from (3.12) that F ∗T(·, λ) can be viewed as the lower boundary of Cλ, and thus, as the lower

convex envelope of φ(·, λ).

Hence, if for some λ, the pair (qY , F
∗
T(qY , λ)) can be written as a convex combination

of the points (qi, φ(qi, λ)) ∈ Sλ, i ∈ [k] for some k ≥ 2 and weights ωi ≥ 0 (i.e.,∑k
i=1 ωi = 1), then qY =

∑k
i=1 ωiqi and the random variable Z, defined by PZ(i) = ωi

and PY |Z(·|i) = qi, attains the minimum of H(X|Z) − λH(Y |Z). Therefore, the point(∑k
i=1 ωiH(qi),

∑k
i=1 ωiH((Tqi)X )

)
lies on the lower boundary of CY which implies that

FT(qY , x) =
∑k

i=1 ωiH((Tqi)X ) for x =
∑k

i=1 ωiH(qi) and qY =
∑k

i=1 ωiqi, and that the

graph of the function FT(qY , ·) at this point has a support line of slope λ.

If, on the other hand, F ∗T(qY , λ) coincides with φ(qY , λ) for some λ, then we have that:

(i) the line λx + F ∗T(qY , λ) = H(X) − λ(H(Y ) − x) supports the graph of FT(qY , ·) at

x = H(Y ) and (ii) the minimum H(X|Z)− λH(X|Z) is attained by a constant Z.

In summary, Witsenhausen and Wyner [147] concluded that ”all the information about

the shape of FT is contained in the restriction of F ∗T to its domain on which it differs from

φ”. Hence, the procedure to characterize FT(q, ∆) is as follows: (see [147, Thm 4.1])

• Fix 0 ≤ λ ≤ 1 and compute the lower convex envelope of φ(·, λ) (i.e., F ∗T(·, λ)),

• If a point of the graph of F ∗T(·, λ) can be written as a convex combination of φ(qi, λ)
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with weights ωi, i ∈ [k] for some k ≥ 2, then

FT

(
k∑
i=1

ωiqi,
k∑
i=1

ωiH(qi)

)
=

k∑
i=1

ωiH((Tqi)X ).

• If, for some λ, the function F ∗T(qY , λ) coincides with φ(qY , λ), then this corresponds

to a line of slope λ supporting the graph of FT(qY , ·) at its endpoint ∆ = H(qY ).

If T = BSC(α), then characterizing FT(qY , ·) is equivalent to the so-called Mrs. Gerber’s

Lemma [153]. Thus, this approach gives an easier proof for Mrs. Gerber’s Lemma, see

[147, IV.A], than the original one given in [153]. Witsenhausen and Wyner also examined

T = BEC(δ) and also T = Z(β) and obtained closed form expressions for FT(qY , ∆) in

these cases.

It is important to mention that a subtle crucial assumption in the above analysis is that

the channels from Z to Y and from Y to X (i.e, T) are independent. However, constraining

I(X;Z) ≤ ε makes PY |Z depend on T and hence g(ε) cannot be analyzed using a similar

technique as above. However, if we instead look at t(P, R), the dual representation of g(ε)

given in (3.4), then we can use the above argument to obtain a geometric interpretation

of g(ε). First, note that t(P, ·) is strictly increasing on (0, H(Y )) and convex4 and also

t(P, R) = ε if and only if g(ε) = R. Consequently, t(P, ·) is strictly convex if and only if

ε 7→ g(ε) is strictly concave.

We clearly have

t(P, R) = H(X)− max
PZ|Y :X(−−Y(−−Z,
H(Y |Z)≤H(Y )−R

H(X|Z)

= H(X)−max{η : (qY, ∆, η) ∈ C}
4This can easily be shown using a similar argument as in the proof of Lemma 3.2.
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=: H(X)−GT(qY , ∆), (3.15)

where ∆ := H(Y ) − R. Therefore, the graph of GT(qY , ·) is the upper boundary of CY

(and thus it is concave which provides an alternative proof for the concavity of ε 7→ g(ε)).

This analogy between FT(qY , ∆) and GT(qY , ∆) allows us to invoke Dubin’s theorem, the

same way as Witsenhausen and Wyner did in [147], to conclude that if GT(qY , ·) is strictly

concave, or equivalently, if g is strictly concave, then g is achieved by Z with |Z| ≤ N . It

is important, however, to mention that g is not in general strictly concave, see for example

Lemma 3.36. We obtain a sufficient condition that g is not strictly concave for a large

family of channels T in the next section.

Recall that the graphs of FT(qY , ·) and GT(qY , ·) are the lower and upper boundaries of

the compact and convex set CY , respectively. Hence similar to [147], we evaluate GT using

its conjugate function G∗T. We define G∗T(qY , · ) : R→ R as

G∗T(qY , λ) := max
0≤∆≤H(Y )

[GT(qY , ∆)− λ∆] = max{η − λ∆ : (∆, η) ∈ CY }. (3.16)

Note that G∗T(qY , ·) determines a line of slope λ ∈ R supporting CY from above, or

equivalently, the line λx+G∗T(qY , λ) is a support line of slope λ for the graph ofGT(qY , ·).

This observation implies that GT(qY , ∆) can be recovered from G∗ as

GT(qY , ∆) = min
λ∈R

[G∗T(qY , λ) + λ∆] . (3.17)

Since GT(qY , ·) is increasing, we can assume λ ∈ R+ in (3.17). It can be shown that, for

a fixed λ, the graph of G∗T(·, λ) constitutes the upper boundary of Cλ. Thus, the graph of

G∗T(·, λ) coincides with the upper concave envelope of φ(·, λ), defined in (3.14). Hence,
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we can have the following steps to evaluate5 GT(qY , ·):

• Fix λ ≥ 0 and compute the upper concave envelope of φ(·, λ)(i.e., G∗T(·, λ)),

• If a point of the graph of G∗T(·, λ) can be written as a convex combination of φ(qi, λ)

with weights ωi, i ∈ [k] for some k ≥ 2, then

GT

(
k∑
i=1

ωiqi,
k∑
i=1

ωiH(qi)

)
=

k∑
i=1

ωiH((Tqi)X ). (3.18)

• If, for some q and λ, the function G∗T(q, λ) coincides with φ(q, λ), then this corre-

sponds to a support line of slope λ at the point ∆ = H(q).

This observation allows us to derive a closed form expression for GT(qY , ·) when T =

BEC(δ) and qY = Bernoulli(q) with 0 ≤ q ≤ 1
2
.

Theorem 3.7. Let T = BEC(δ) and qY = Bernoulli(q) with 0 ≤ q ≤ 1
2
. ThenGT(qY , ∆) =

hb(δ) + δ̄∆ for 0 ≤ ∆ ≤ hb(q) and

g(ε) =
ε

δ̄
,

for any ε ≤ δ̄hb(q).

Proof. Fix q = Bernoulli(r) and λ ≥ 0. In this case, φ(q, λ) and G∗T(q, λ) are functions of

r, thus we denote them by φ(r, λ) and G∗T(r, λ), respectively. We have φ(r, λ) = hb(δ) +

(δ̄ − λ)hb(r). Thus, φ(·, λ) is concave for λ ≤ δ̄ and convex for λ ≥ δ̄. Letting G∗T(q, λ)

denote G∗T(qY , λ), we can write G∗T(q, λ) = φ(q, λ) for λ ≤ δ̄, and G∗T(q, λ) = hb(δ) for

5The duality between FT and GT was first observed by F. P. Calmon (flavio@seas.harvard.edu) and led to
[18].
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λ ≥ δ̄. In light of (3.17), we conclude that

GT(q,∆) := GT(qY , ∆) = min{G∗T(q, λ) + λ∆ : λ ≥ 0}.

Focusing on the domain of G∗T on which it differs from φ, we have that

minλ≥δ̄ [hb(δ) + λ∆] = hb(δ) + δ̄∆. Hence, GT(q,∆) = hb(δ) + δ̄∆ for 0 ≤ ∆ ≤ hb(q).

This then implies that

t(P, R) = H(X)−GT(q, hb(q)−R) = δ̄R,

and consequently g(ε) = ε
δ̄

for ε ≤ I(X;Y ) = δ̄hb(q).

The next theorem provides the values of GT(qY , ∆) for 0 ≤ ∆ ≤ H(Y ) when T =

BSC(α) and qY = Bernoulli(q) with 0 ≤ α, q ≤ 1
2
.

Theorem 3.8. 6 Let T = BSC(α) with 0 ≤ α ≤ 1
2

and qY = Bernoulli(q) with 0 ≤ q ≤ 1
2
.

Let also G := {(∆,GT(qY , ∆)) : 0 ≤ ∆ ≤ H(Y )}. Then we have,

G =
{(
ωhb

(q
z

)
, ωhb

(q
z
∗ α
)

+ ω̄hb(α)
)

: 0 ≤ ω ≤ 1, z = max{ω, 2q}
}
.

Proof. As before, fix q = Bernoulli(r) and λ ≥ 0. In this case, φ(q, λ) and G∗T(q, λ)

are functions of r, thus we denote them by φ(r, λ) and G∗T(r, λ), respectively. We have

φ(r, λ) = hb(α ∗ r) − λhb(r). It can be verified that φ(·, λ) is convex for λ ≥ (1 −

2α)2 and G∗T(r, λ) = hb(α). For 0 ≤ λ < (1 − 2α)2, the map φ(·, λ) is concave on an

interval symmetric about r = 1
2

and convex elsewhere. Moreover, φ(r, λ) ≤ φ(1
2
, λ) on

the region of concavity. Thus, if φ(1
2
, λ) < hb(α), then G∗T(r, λ) is a convex combination

6This theorem was proved in collaboration with F. P. Calmon (flavio@seas.harvard.edu) [18].
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of (0, φ(0, λ)) and (1, φ(1, λ)) and then again G∗T(r, λ) = hb(α). If φ(1
2
, λ) > hb(α),

then by definition of upper concave envelope there must exists rλ ∈ [r, 1
2
) when r < 1

2

(resp. r̄λ ∈ [r, 1) when r > 1
2
) such that (r,G∗T(r, λ)) ∈ Cλ can be written as a convex

combination of (0, φ(0, λ)) and (rλ, φ(rλ, λ)) (resp. (r̄λ, φ(r̄λ, λ)) and (0, φ(0, λ))). Since

by assumption q ≤ 1
2
, we obtain from (3.18) that

GT(q, c̄hb(0) + chb(rλ)) = c̄hb(α ∗ 0) + chb(α ∗ rλ), (3.19)

where 0 ≤ c ≤ 1 and c̄0 + crλ = q. Consequently, we can write GT(q, ωhb(
q
ω

)) =

ω̄hb(α) + ωhb(α ∗ q
ω

), where ω := q
rλ

for q ≤ rλ ≤ 1
2
. Finally, if φ(1

2
, λ) = hb(α), then

(r,G∗T(r, λ)) ∈ Cλ for any r can be written as a convex combination of points (0, φ(0, λ)),

(1
2
, φ(1

2
, λ)), and (1, φ(1, λ)). Thus, from (3.18) we obtain

GT(q, c1hb(0)+c2hb

(
1

2

)
+c3hb(1)) = c1hb(α∗0)+c2hb

(
α ∗ 1

2

)
+c3hb(α∗1), (3.20)

where 0 ≤ ci ≤ 1, 1 ≤ i ≤ 3,
∑3

i=1 ci = 1, and c10 + c2
1
2

+ c31 = q. Consequently,

we obtain GT(q, ω) = ω̄hb(α) + ω where ω = c2 ≤ 2q. Combining (3.19) and (3.20), the

result follows.

Given G in this theorem, one can characterize the set {(R, t(P, R)) : 0 ≤ R ≤ H(Y )}

by {(hb(q)−∆, hb(q ∗α)− η) : (∆, η) ∈ G}. If Y ∼ Bernoulli(1
2
) and T = BSC(α), then

Theorem 3.8 implies that GT(qY , ∆) = hb(α) + ∆(1 − hb(α)) and hence g(ε) = ε
1−hb(α)

for any ε ≤ 1 − hb(α). We will show in Section 3.8.2 that g(ε) = ε
I(X;Y )

when Y ∼

Bernoulli(1
2
) and T is any binary input symmetric output channel, which includes BEC(δ)

and BSC(α), and thus generalize Theorems 3.7 and 3.8 for the uniform case.

We will generalize this technique to study similar problems for maximal correlation
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and Arimoto’s conditional entropy in Chapters 5 and 6, respectively.

3.6 Non-Trivial Filters For Perfect Privacy

As it becomes clear later, requiring that g(0) = 0 is a useful assumption for the analysis of

g(ε). Thus, it is crucial to find a necessary and sufficient condition on the joint distribution

P under which g(0) = 0. When this holds, we say that perfect privacy implies trivial utility.

This problem is studied in two different cases: (i) when Y is a scalar random variable

and (ii) when n i.i.d. copies Y1, . . . , Yn are available and we require ε→ 0 as n→∞ (i.e.,

asymptotic perfect privacy).

3.6.1 Scalar Case

Assuming (X, Y ) ∼ P is given, we obtain a necessary and sufficient condition on P under

which g(0) > 0. To do this, we need the following definition.

Definition 3.9 ([24]). The random variable X is said to be weakly independent of Y if the

rows of the transition matrix PX|Y , i.e., the set of vectors {PX|Y (·|y), y ∈ Y}, are linearly

dependent.

Theorem 3.10. We have g(0) > 0 if and only if X is weakly independent of Y .

Proof. ⇒ direction:

The fact that g(0) > 0 implies that there exists a random variable Z over an alphabet Z

such that the Markov condition X (−− Y (−− Z is satisfied and Z⊥⊥X while I(Y ;Z) >

0. Hence, for any z1 and z2 in Z , we must have PX|Z(x|z1) = PX|Z(x|z2) for all x ∈ X ,
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which implies that

∑
y∈Y

PX|Y (x|y)PY |Z(y|z1) =
∑
y∈Y

PX|Y (x|y)PY |Z(y|z2)

and hence ∑
y∈Y

PX|Y (x|y)
[
PY |Z(y|z1)− PY |Z(y|z2)

]
= 0.

Since Y is not independent of Z, there exist z1 and z2 such that PY |Z(y|z1) 6= PY |Z(y|z2)

and hence the above shows that the set of vectors PX|Y (·|y), y ∈ Y is linearly dependent.

⇐ direction:

Berger and Yeung [24, Appendix II], in a completely different context, showed that

if X is weakly independent of Y , one can always construct a binary random variable Z

correlated with Y which satisfies X (−− Y (−− Z and X⊥⊥Z, and thus g(0) > 0.

Remark 3.11. Theorem 3.10 first appeared in [13]. However, Calmon et al. [31], in the

study of the Privacy Funnel t(P, R), showed an equivalent necessary and sufficient condi-

tion for the non-trivial utility in case of perfect privacy. In fact, they showed that for a given

P, one can always generate Z such that I(X;Z) = 0, I(Y ;Z) > 0 and X (−− Y (−− Z,

or equivalently g(0) > 0, if and only if the smallest singular value of the conditional ex-

pectation operator f 7→ E[f(X)|Y ] is zero. This condition can, in fact, be shown to be

equivalent to X being weakly independent of Y .

Remark 3.12. Recalling that X = [M ] and Y = [N ], it is clear from Definition 3.9 that X

is weakly independent of Y if N > M . Hence, Theorem 3.10 implies that g(0) > 0 if Y

has strictly larger alphabet than X .

In light of the above remark, in the most common case N = M , one might have g(0) =

0, which corresponds to the most conservative scenario as no privacy leakage implies no
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broadcasting of observable data. In such cases, the rate of increase of g(ε) at ε = 0, that

is g′(0) := d
dεg(ε)|ε=0, which corresponds to the initial efficiency of privacy-constrained

information extraction, proves to be very important in characterizing the behavior of g(ε)

for all ε ≥ 0. This is because, for example, by concavity of ε 7→ g(ε), the slope of g(ε) is

maximized at ε = 0 and so

g′(0) = lim
ε→0

g(ε)

ε
= sup

ε>0

g(ε)

ε
,

and hence g(ε) ≤ εg′(0) for all ε ≤ I(X;Y ). Also the lower bound in (3.5) implies that

g′(0) ≥ H(Y )
I(X;Y )

, for any pair of discrete random variables (X, Y ).

It is easy to show that X is weakly independent of binary Y if and only if X and Y are

independent, thus the following corollary immediately follows.

Corollary 3.13. Let Y be a non-constant binary random variable correlated with X . Then

g(0) = 0.

The following examples show that if PY |X is an erasure channel (even binary erasure

channel) then g(0) > 0.

Example 3.14. Suppose X ∼ Bernoulli(p) for 0 ≤ p ≤ 1
2

and PY |X = BEC(δ), i.e.,

PY |X(x|x) = 1 − δ and PY |X(e|x) = δ for x ∈ {0, 1}, where e denotes the erasure. Let

Z = 1 when Y ∈ {0, 1} and Z = 0 when Y = e. It is clear to see that Z ∼ Bernoulli(δ)

and hence I(Y ;Z) = hb(δ). On the other hand, PZ|X(z|0) = PZ|X(z|1) and hence Z⊥⊥X .

Note that H(Y |X) = hb(δ), thus according to the upper bound in (3.5), g(0) = hb(δ).

Example 3.15. A discrete memoryless channel W with input and output alphabets X and

Y , respectively, is called generalized erasure if Y can be decomposed as Y0 ∪Y1 such that

W(y|x) does not depend on x whenever y ∈ Y0. Suppose |Y0| = k and p0
j := PY (j),
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j ∈ Y0. Using the similar argument as Example 3.14, it is straightforward to show that

g(0) ≥ H
(
p0

1, . . . , p
0
k, 1−

∑k
j=1 p

0
j

)
.

3.6.2 Vector Case

Next, we study the same problem in the vector case, i.e., what is a condition on the joint

distribution for which g(0) > 0, when n i.i.d. copies of Y are available? More precisely, let

PY |X(·|x) be the distribution over Y induced by x ∈ X and Y1, . . . , Yn be n i.i.d. samples

drawn from the parametric distribution PY |X(·|X), where the parameter X has prior pX .

Let the simplified version g̃n(ε) of the rate-privacy function be defined as

g̃n(ε) := sup
f : I(f(Y n);X)≤ε

H(f(Y n)), (3.21)

where the maximization is taken over deterministic function f : Yn → Z such that the

privacy constraint I(f(Y n);X) ≤ ε is satisfied. The next theorem gives an asymptotic

lower bound for the normalized 1
n
g̃n(ε) in the limit when ε→ 0.

Theorem 3.16. For any pair of discrete random variables (X, Y ) ∼ P, we have

lim
ε→0

lim
n→∞

1

n
g̃n(ε) ≥ H∗∞(Y |X),

where H∗∞(Y |X) := minx∈X miny∈Y
(
− logPY |X(y|x)

)
.

For the proof, we need the following lemma which relates the difference of the entropies

of two distributions P and Q supported over a set U with their total variational distance

TV(P,Q) :=
∑

u∈U |P (u)−Q(u)|.
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Lemma 3.17 ([40]). If P and Q are two distributions with total variational distance

TV(P,Q), then

|H(P )−H(Q)| ≤ TV(P,Q) log(|X | − 1) + hb(TV(P,Q)).

The lemma implies that there exists a function δ : R+ → R+ such that δ(ε) → 0 as

ε → 0 and |H(P ) −H(Q)| ≤ δ(TV (P,Q)). Note that assuming P = P and Q = pXqY ,

then this lemma exhibits an upper bound for I(X;Y ) in terms of TV(P,Q). Now we are

in position to give the proof of the theorem.

Proof of Theorem 3.16. Recall that |X | = M . Let P n
j (yn) := PY n|X(yn|xj) =∏n

k=1 PY |X(yk|xj) be the distribution over Yn that each xj , j ∈ [M ] induces. Given these

M distributions, we construct nearly equiprobable bins Kn
j (i) ⊂ Yn for i ∈ [2r], (with r

to be determined later), such that P n
j (Kn

j (i)) :=
∑

yn∈Kn
j (i) P

n
j (yn) is close to 2−r for each

j ∈ [M ] and i ∈ [2r]. Let U r denote the uniform distribution over {0, 1}r.

Recalling the definition of H∗∞(Y |X), we can write

P n
j (yn) ≤ 2−nH

∗
∞(Y |X), j ∈ [M ]. (3.22)

We start the construction of the bins Kn
j (1), Kn

j (2), . . . , Kn
j (Jj), for each j ∈ [M ], where

Jj ≤ 2r − 1 is the number of bins for each j. The first bin is constructed as follows. We

agglomerate the minimal number of mass points of P n
j into Kn

j (1) as needed to make sure

P n
j (Kn

j (1)) ≥ 2−r − 2−s, (3.23)
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for some s < nH∗∞(Y |X). This together with (3.22) shows that

P n
j (Kn

j (1)) < 2−r − 2−s + 2−nH
∗
∞(Y |X), (3.24)

which can be simplified as

P n
j (Kn

j (1)) < 2−r, (3.25)

because s < nH∗∞(Y |X).

Once condition (3.23) is met, the construction for the first bin is completed and we move

on to the second bin. This procedure can go on until either we run out of mass points or the

restriction Jj ≤ 2r − 1 is violated. In the latter case, we set Jj = 2r − 1 and then collect

all mass points left into the bin Kn
j (Jj + 1). The former happens if the total probability of

the left-over is strictly less than 2−r − 2−s so that we cannot meet the requirement (3.23)

which yields

P n
j

 Jj⋃
i=1

Kn
j (i)

 > 1− 2−r + 2−s. (3.26)

On the other hand, we know from (3.25) that P n
j

(⋃Jj
i=1K

n
j (i)

)
< Jj2

−r which, together

with (3.26), implies

1− 2−r + 2−s < P n
j

 Jj⋃
i=1

Kn
j (i)

 < Jj2
−r, (3.27)

leading to a lower bound for the number of bins in this case

Jj > 2r + 2r−s − 1, (3.28)

which is greater than the allowable upper-bound 2r−1. We hence conclude that with s that
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satisfies s < nH∗∞, the procedure stops only when the restriction Jj ≤ 2r − 1 is violated,

and therefore, we assume Jj = 2r − 1 in what follows.

As specified earlier, we construct the last bin Kn
j (Jj + 1) by including all the leftover

mass there. We therefore have

Kn
j (Jj + 1) = supp(P n

j )−
Jj⋃
i=1

Kn
j (i), (3.29)

where supp(P n
j ) denotes the support of P n

j . Since each bin has probability lower-bounded

by (3.23), it follows from (3.29) that

P n
j (Kn

j (Jj + 1)) = 1−
Jj∑
i=1

P n
j (Kn

j (i)) ≤ 1− Jj
(
2−r − 2−s

)
, (3.30)

which, after substituting Jj = 2r − 1, is simplified as

P n
j (Kn

j (Jj + 1)) ≤ 2r−s + 2−r − 2−s. (3.31)

We have thus far constructed M × 2r bins, namely 2r bins for each P n
j , j ∈ [M ]. Consider

now the deterministic mapping gn : Yn ×X → [2r] defined as follows:

gn(yn, xj) = i if yn ∈ Kn
j (i).

This mapping requires xj because for each j ∈ [M ] the corresponding bins are disjoint.

However, we know that by using a proper channel encoding and decoding, φn and ψn,

respectively, one can decode Y n to obtain ψn(Y n) such that Pr(X 6= ψn(Y n)) decays ex-

ponentially. So, we can have a deterministic function which acts only on Y n from which
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xj is obtained with probability exponentially close to one. Hence our sequence of deter-

ministic mappings is:

fn(yn) := gn(yn, ψn(yn)) = i if yn ∈ Kn
j (i).

where j is the index of the decoded symbol, that is the j such that ψn(yn) = xj .

Now let us look at the total variation distance between P̃ n
j := fn ◦ P n

j and U r.

TV
(
P̃ n
j , U

r
)

=
2r∑
i=1

|2−r − P n
j (Kn

j (i))|

(a)
=

Jj∑
i=1

(
2−r − P n

j (Kn
j (i))

)
+ |2−r − P n

j (Kn
j (Jj + 1))|

(b)

≤
Jj∑
i=1

2−s + (2−r + P n
j (Kn(Jj + 1)))

(c)

≤ Jj2
−s + 2−r + 2r−s + 2−r − 2−s

= 2
(
2r−s + 2−r − 2−s

)
< 2

(
2r−s + 2−r

)
.

where (a) follows from (3.25), (b) is due to the triangle inequality and (3.23) and (c)

follows from (3.31). Setting r = nH∗∞(Y |X) − nδ and s = nH∗∞(Y |X) − n δ
2

for some

0 < δ ≤ 2
3
H∗∞(Y |X), we conclude that

TV
(
P̃ n
j , U

r
)
≤ 2(2r−s + 2−r) ≤ 2−

δ
2
n+2,

and hence for sufficiently large n, there exists δ > 0 such that TV
(
P̃ n
j , U

r
)
≤ ε

2
.
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Now consider P̃ n
j and P̃ n

k for j 6= k. We can write

TV(P̃ n
j , P̃

n
k ) ≤ TV(P̃ n

j , U
r) + TV(P̃ n

k , U
r) ≤ ε.

Let Zn := fn(Y n). Then by Jensen’s inequality, we can write

TV(PZnX , PZnPX) ≤
∑
x∈X

∑
x′∈X

PX(x)PX(x′)TV
(
P̃ n
j , P̃

n
k

)
≤ ε. (3.32)

Invoking Lemma 3.17, we conclude from (3.32) that I(X;Zn) ≤ ε for sufficient large n.

Notice that Zn is a random variable which is almost uniformly distributed over a set of

cardinality 2r = 2nH
∗
∞(Y |X)−nδ and hence 1

n
H(Zn) = H∗∞(Y |X)− δ.

This theorem implies that, even if Y is binary, one can have information transfer at a

positive rate while allowing perfect privacy only in the limit instead of requiring absolutely

zero privacy leakage. In fact, Theorem 3.16 implies that for any joint distribution P which

satisfies PY |X(y|x) < 1 for all x ∈ X and y ∈ Y , we have g̃n(ε) > 0 and consequently

g(PXY n , ε) > 0. This result seems similar in essence to the main result of [31] which states

that for n i.i.d. samples {(Xi, Yi)}ni=1 from (X, Y ) ∼ P, we have g(PXnY n , ε) > 0 for n

sufficiently large, unless X is a deterministic function of Y .

3.7 Operational Interpretation of Rate-Privacy Function

In this section, we propose a coding-theoretic setting, the so-called dependence dilution

model, and show that the dual of the rate-privacy function is a boundary point of its achiev-

able rate region, thereby giving an information-theoretic operational interpretation for the

rate-privacy function. It must be noted that another operational interpretation of g(ε) was
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recently shown in [96].

Inspired by the problems of information amplification [88] and state masking [110],

Courtade [36] proposed the information-masking tradeoff problem as follows. The tuple

(Ru, Rv, ∆A, ∆M) ∈ R4 is said to be achievable if for two given separated sources U ∈ U

and V ∈ V and any ε > 0 there exist mappings f : Un → [2nRu ] and g : Vn → [2nRv ] such

that I(Un; f(Un), g(V n)) ≤ n(∆M + ε) and I(V n; f(Un), g(V n)) ≥ n(∆A − ε). That is,

(Ru, Rv, ∆A, ∆M) is achievable if there exist indices K and J of rates Ru and Rv given

Un and V n, respectively, such that the receiver in possession of (K, J) can recover at most

n∆M bits about Un and at least n∆A about V n. The closure of the set of all achievable

tuple (Ru, Rv, ∆A, ∆M) is characterized in [36]. Here, we look at a similar problem but

for a joint encoder. In fact, we want to examine the achievable rate of an encoder observing

both Xn and Y n which masks Xn and amplifies Y n at the same time, by rates ∆M and ∆A,

respectively.

We define a (2nR, n) dependence dilution code by an encoder

fn : X n × Yn → [2nR],

and a list decoder

gn : [2nR]→ 2Y
n

,

having a fixed list size

|gn(J)| = 2n(H(Y )−∆A), ∀J ∈ [2nR], (3.33)

where J := fn(Xn, Y n) is the encoder’s output and 2Y
n denotes the power set of Yn.

Let the error probability be defined as p(n)
e := Pr (Y n /∈ gn(J)). A dependence dilution
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triple (R,∆A, ∆M) ∈ R3
+ is said to be achievable if, for any δ > 0, there exists a (2nR, n)

dependence dilution code that satisfies the utility constraint:

p(n)
e → 0, (3.34)

as n→∞ and the privacy constraint:

1

n
I(Xn; J) ≤ ∆M + δ. (3.35)

Intuitively speaking, upon receiving J , the decoder is required to construct list gn(J) ⊂ Yn

of fixed size which contains likely candidates of the actual sequence Y n. Without any

observation, the decoder can only construct a list of size 2nH(Y ) which contains Y n with

probability close to one. However, after J is observed and the list gn(J) is formed, the

decoder’s list size can be reduced to 2n(H(Y )−∆A) and thus reducing the uncertainty about

Y n by 0 ≤ n∆A ≤ nH(Y ). This observation led Kim et al. [88] to show that the utility

constraint (3.34) is equivalent to the amplification requirement

1

n
I(Y n; J) ≥ ∆A − δ, (3.36)

which lower bounds the amount of information that J carries about Y n. The following

lemma gives an outer bound for the achievable dependence dilution region.
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Theorem 3.18. Any achievable dependence dilution triple (R,∆A, ∆M) satisfies


R ≥ ∆A

∆A ≤ I(Y ;U)

∆M ≥ I(X;U)− I(Y ;U) +∆A,

for some auxiliary random variable U ∈ U with a finite alphabet and jointly distributed

with X and Y .

Before we prove this theorem, we need two preliminary lemmas. The first lemma is an

extension of Fano’s inequality for list decoders and the second one makes use of a single-

letterization technique to express I(Xn; J) − I(Y n; J) in a single-letter form in the sense

of Csiszár and Körner [40].

Lemma 3.19 ([88, 5]). Given a pair of random variables (U, V ) defined over U × V for

finite V and arbitrary U , any list decoder g : U → 2V of fixed list size m (i.e., |g(u)| =

m, ∀u ∈ U), satisfies

H(V |U) ≤ hb(pe) + pe log |V|+ (1− pe) logm,

where pe := Pr(V /∈ g(U)).

This lemma, applied to J and Y n in place of U and V , respectively, implies that for any

list decoder with the property (3.34), we have

H(Y n|J) ≤ log |gn(J)|+ nεn, (3.37)

where εn := 1
n

+ (log |Y| − 1
n

log |gn(J)|)p(n)
e and p(n)

e = Pr (Y n /∈ gn(J)) and hence,
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according to (3.34), εn → 0 as n→∞.

Lemma 3.20. Let (Xn, Y n) be n i.i.d. copies of a pair of random variables (X, Y ). Then

for a random variable J jointly distributed with (Xn, Y n), we have

I(Xn; J)− I(Y n; J) =
n∑
i=1

[I(Xi;Ui)− I(Yi;Ui)],

where Ui := (J,Xn
i+1, Y

i−1).

Proof. Using the chain rule for the mutual information, we can express I(Xn; J) as follows

I(Xn; J) =
n∑
i=1

I(Xi; J |Xn
i+1) =

n∑
i=1

I(Xi; J,X
n
i+1)

=
n∑
i=1

[I(Xi; J,X
n
i+1, Y

i−1)− I(Xi;Y
i−1|J,Xn

i+1)]

=
n∑
i=1

I(Xi;Ui)−
n∑
i=1

I(Xi;Y
i−1|J,Xn

i+1). (3.38)

Similarly, we can expand I(Y n; J) as

I(Y n; J) =
n∑
i=1

I(Yi; J |Y i−1) =
n∑
i=1

I(Yi; J, Y
i−1)

=
n∑
i=1

[I(Yi; J,X
n
i+1, Y

i−1)− I(Yi;X
n
i+1|J, Y i−1)]

=
n∑
i=1

I(Yi;Ui)−
n∑
i=1

I(Yi;X
n
i+1|J, Y i−1). (3.39)

Subtracting (3.39) from (3.38), we get

I(Xn; J)− I(Y n; J) =
n∑
i=1

[I(Xi;Ui)− I(Yi;Ui)]
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−
n∑
i=1

[I(Xi;Y
i−1|J,Xn

i+1)− I(Xn
i+1;Yi|J, Y i−1)]

(a)
=

n∑
i=1

[I(Xi;Ui)− I(Yi;Ui)],

where (a) follows from the Csiszár sum identity [87].

Proof of Theorem 3.18. The rate R can be bounded as

nR ≥ H(J) ≥ I(Y n; J) = nH(Y )−H(Y n|J)

(a)

≥ nH(Y )− log |gn(J)| − nεn
(b)
= n∆A − nεn,

where (a) follows from Fano’s inequality (3.37) with εn → 0 as n → ∞ and (b) is due to

(3.33). We can also upper bound ∆A as

∆A
(a)
= H(Y n)− log |gn(J)|
(b)

≤ H(Y n)−H(Y n|J) + nεn =
n∑
i=1

H(Yi)−H(Yi|Y i−1, J) + nεn

≤
n∑
i=1

H(Yi)−H(Yi|Y i−1, Xn
i+1, J) + nεn =

n∑
i=1

I(Yi;Ui) + nεn, (3.40)

where (a) follows from (3.33), (b) follows from (3.37), and in the last equality the auxiliary

random variable Ui := (Y i−1, Xn
i+1, J) is introduced.

We shall now lower bound I(Xn; J):

n(∆M + δ) ≥ I(Xn; J)

(a)
= I(Y n; J) +

n∑
i=1

[I(Xi;Ui)− I(Yi;Ui)]
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(b)

≥ n∆A +
n∑
i=1

[I(Xi;Ui)− I(Yi;Ui)]− nεn. (3.41)

where (a) follows from Lemma 3.20 and (b) is due to Fano’s inequality and (3.33) (or

equivalently from (3.36)).

Combining (3.40), (3.40) and (3.41), we can write

R ≥ ∆A − εn

∆A ≤ I(YQ;UQ|Q) + εn = I(YQ;UQ, Q) + εn

∆M ≥ ∆A + I(XQ;UQ|Q)− I(YQ;UQ|Q)− ε′n

= ∆A + I(XQ;UQ, Q)− I(YQ;UQ, Q)− ε′n

where ε′n := εn + δ and Q is a random variable distributed uniformly over {1, 2, . . . , n}

which is independent of (X, Y ) and hence I(YQ;UQ|Q) = 1
n

∑n
i=1 I(Yi;Ui). The results

follow by denoting U := (UQ, Q) and noting that YQ and XQ have the same distributions

as Y and X , respectively.

If the encoder does not have direct access to the private source Xn, then we can de-

fine the encoder mapping as fn : Yn → [2nR]. The following corollary is an immediate

consequence of Theorem 3.18.

Corollary 3.21. If the encoder does not see the private source, then for all achievable
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dependence dilution triple (R,∆A, ∆M), we have


R ≥ ∆A

∆A ≤ I(Y ;U)

∆M ≥ I(X;U)− I(Y ;U) +∆A,

for some joint distribution PXY U = PXY PU |Y where the auxiliary random variable U ∈ U

satisfies |U| ≤ |Y|+ 1.

Remark 3.22. If source Y is required to be amplified (according to (3.36)) at maximum

rate, that is, ∆A = I(Y ;U) for an auxiliary random variable U which satisfies X (−−

Y (−− U , then by Corollary 3.21, the best privacy performance one can expect from the

dependence dilution setting is

∆∗M = min
U :X(−−Y(−−U
I(Y ;U)≥∆A

I(X;U), (3.42)

which is equal to the dual of the rate-privacy function evaluated at ∆A, i.e., t(P, ∆A), as

defined in (3.4).

The dependence dilution problem is closely related to the discriminatory lossy source

coding problem studied in [138]. In this problem, an encoder f observes (Xn, Y n) and

wants to describe this source to a decoder whose task is to recover Y n within distortion

level D and I(f(Xn, Y n);Xn) ≤ n∆M . If the distortion level is Hamming measure,

then the distortion constraint and the amplification constraint are closely related via Fano’s

inequality.
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3.8 Observation Channels for Minimal and Maximal g(ε)

In this section, we characterize the observation channels which achieve the lower or upper

bounds on the rate-privacy function in (3.5). We first derive general conditions for achiev-

ing the lower bound and then present a large family of observation channels PY |X which

achieve the lower bound. We also give a family of PY |X for which g(ε) attains the upper

bound in (3.5).

3.8.1 Conditions for Minimal g(ε)

Assuming that g(0) = 0, we seek a set of conditions on P under which g(ε) is linear in ε,

or equivalently, g(ε) = ε H(Y )
I(X;Y )

. In order to do this, we shall examine the slope of g(ε) at

zero. Recall that by concavity of g, it is clear that g′(0) ≥ H(Y )
I(X;Y )

. We strengthen this bound

in the following lemmas.

Lemma 3.23. For a given joint distribution P with marginals pX and qY , if g(0) = 0, then

we have

g′(0) ≥ max
y∈Y

− log q(y)

D(PX|Y (·|y)‖pX(·))
.

Proof. Given a joint distribution P defined over X ×Y where X = [M ] and Y = [N ] with7

N ≤ M , we consider the following privacy filter: for δ > 0 and Z = {k, e} with a fixed

integer k ∈ Y

PZ|Y (k|y) = δ1{y=k} (3.43)

PZ|Y (e|y) = 1− δ1{y=k}, (3.44)

where 1{·} denotes the indicator function. The system of X (−− Y (−− Z in this case is
7Recall that, according to Theorem 3.10, if N > M then g(0) > 0.
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X Y Z

PY |X
...

...

1

e

δ

δ̄

Figure 3.3: The privacy filter associated with (3.43) and (3.44) with k = 1.

depicted in Fig. 3.3 when k = 1. We clearly have PZ(k) = δqY (k) and PZ(e) = 1−δqY (k),

and hence

PX|Z(x|k) =
PXZ(x, k)

δqY (k)
=
PXY Z(x, k, k)

δqY (k)
=
δP(x, k)

δqY (k)
= PX|Y (x|k),

and also,

PX|Z(x|e) =
PXZ(x, e)

1− δqY (k)
=

∑
y PXY Z(x, y, e)

1− δqY (k)

=

∑
y 6=k PXY Z(x, y, e) + δ̄P(x, k)

1− δqY (k)
=

pX(x)− δP(x, k)

1− δqY (k)
.

Therefore, we obtain H(X|Z = k) = H(X|Y = k) for k ∈ Y and

H(X|Z = e) = H

(
pX(1)− δP(1, k)

1− δqY (k)
, . . . ,

pX(M)− δP(M,k)

1− δqY (k)

)
=: hX(δ).

We then write

I(X;Z) = H(X)−H(X|Z) = H(X)− δqY (k)H(X|Y = k)− (1− δqY (k))hX(δ),

and hence,

d
dδ
I(X;Z) = −qY (k)H(X|Y = k) + qY (k)hX(δ)− (1− δqY (k))h′X(δ),
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where

h′X(δ) :=
d
dδ

hX(δ) = −
M∑
x=1

pX(x)qY (k)− P(x, k)

[1− δqY (k)]2
log

(
pX(x)− δP(x, y)

1− δqY (k)

)
.

Using the first-order approximation of mutual information about δ = 0, we can write

I(X;Z) =
d
dδ
I(X;Z)|δ=0δ + o(δ) = δ

[
M∑
x=1

P(x, k) log

(
P(x, k)

pX(x)qY (k)

)]
+ o(δ)

= δqY (k)D(PX|Y (·|k)‖pX(·)) + o(δ). (3.45)

Similarly, we can write

I(Y ;Z) = h(Z)−
N∑
y=1

qY (y)h(Z|Y = y) = h(Z)− qY (k)h(δ) = h(δqY (k))− qY (k)h(δ)

= −δqY (k) log(qY (k))− Ψ(1− δqY (k)) + qY (k)Ψ(δ̄),

where Ψ(x) := x log x which yields

d
dδ
I(Y ;Z) = −Ψ(qY (k)) + qY (k) log

(
1− δqY (k)

δ̄

)
.

From the above, we obtain

I(Y ;Z) =
d
dδ
I(Y ;Z)|δ=0δ + o(δ)

= −δΨ(qY (k)) + o(δ). (3.46)

Expression (3.45) implies that the filter PZ|Y , specified in (3.43) and (3.44), satisfies the
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privacy constraint I(X;Z) ≤ ε (and thus belongs to Dε(P)) if

ε

δ
= qY (k)D(PX|Y (·|k)‖pX(·)) +

o(δ)

δ
,

and hence from (3.46), we have

I(Y ;Z) =
−Ψ(qY (k))

qY (k)D(PX|Y (·|k)‖pX(·))
ε+ o(δ).

This immediately implies that

g′(0) = lim
ε↓0

g(ε)

ε
≥ −Ψ(qY (k))

qY (k)D(PX|Y (·|k)‖pX(·))
=

− log(qY (k))

D
(
PX|Y (·|k)‖pX(·)

) , (3.47)

where we have used the assumption g(0) = 0 in the first equality.

Remark 3.24. Note that with the assumption g(0) = 0, the right-hand side of inequal-

ity in Lemma 3.23 can not be infinity. We prove this fact by contradiction. To do this,

suppose that there exists y0 ∈ Y such that D(PX|Y (·|y0)‖pX(·)) = 0, and consequently

PX|Y (·|y0) = pX(·). Consider the binary random variable Z ∈ {1, e} constructed accord-

ing to the distribution PZ|Y (1|y0) = 1 and PZ|Y (e|y) = 1 for all y ∈ Y\{y0}. We can now

claim that Z is independent of X , because PX|Z(·|1) = PX|Y (·|y0) = pX(·), and for all

x ∈ X we have

PX|Z(x|e) =
∑
y 6=y0

PX|Y (x|y)PY |Z(y|e) =
∑
y 6=y0

PX|Y (x|y)
qY (y)

1− qY (y0)

=
1

1− qY (y0)

∑
y 6=y0

P(x, y) = pX(x).

On the other hand, Z and Y are clearly not independent. Therefore, we have g(0) > 0
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which contradicts our assumption g(0) = 0.

In order to prove the main result, we need the following simple lemma.

Lemma 3.25. For any joint distribution P with marginals pX and qY , we have

H(Y )

I(X;Y )
≤ max

y∈Y

− log qY (y)

D(PX|Y (·|y)‖pX(·))
,

where equality holds if and only if there exists a constant c > 0 such that − log qY (y) =

cD(PX|Y (·|y)‖pX(·)) for all y ∈ Y .

Proof. It is clear that

H(Y )

I(X;Y )
=

−
∑

y∈Y qY (y) log qY (y)∑
y∈Y qY (y)D(PX|Y (·|y)‖pX(·))

≤ max
y∈Y

− log qY (y)

D(PX|Y (·|y)‖pX(·))
,

where the inequality follows from the fact that for any three sequences of positive numbers

{ai}ni=1, {bi}ni=1, and {λi}ni=1 we have
∑n
i=1 λiai∑n
i=1 λibi

≤ max1≤i≤n
ai
bi

, where equality occurs if

and only if ai
bi

= c for all i ∈ [n].

Now we are ready to state the main result of this section.

Theorem 3.26. For a given joint distribution P with marginals pX and qY , if g(0) = 0 and

g(·) is linear on [0, I(X;Y )], then for any y ∈ Y

H(Y )

I(X;Y )
=

− log qY (y)

D(PX|Y (·|y)‖pX(·))
.

Proof. Note that the facts that g(0) = 0 and g(·) is linear are equivalent to g(ε) = ε H(Y )
I(X;Y )

.
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It is, therefore, immediate from Lemmas 3.23 and 3.25 that we have

g′(0)
(a)
=

H(Y )

I(X;Y )

(b)

≤ max
y∈Y

− log qY (y)

D(PX|Y (·|y)‖pX(·))
(c)

≤ g′(0), (3.48)

where (a) follows from the fact that g(ε) = ε H(Y )
I(X;Y )

and (b) and (c) are due to Lemmas 3.25

and 3.23, respectively. Hence, we obtain

H(Y )

I(X;Y )
= max

y∈Y

− log qY (y)

D(PX|Y (·|y)‖pX(·))
. (3.49)

According to Lemma 3.25, (3.49) implies that the ratio − log qY (y)
D(PX|Y (·|y)‖pX(·)) does not depend

on y ∈ Y and hence the result follows.

This theorem implies that if there exists y = y1 and y = y2 such that log qY (y)
D(PX|Y (·|y)‖pX(·))

results in two different values, then the lower bound in (3.5) is not achievable, that is, we

have

g(ε) > ε
H(Y )

I(X;Y )
.

This, therefore, gives a necessary condition for the lower bound to be achievable. The

following corollary simplifies this necessary condition.

Corollary 3.27. If g(0) = 0 and g(·) is linear, then the following are equivalent:

(i) Y is uniformly distributed,

(ii) D(PX|Y (·|y)‖pX(·)) is constant for all y ∈ Y .

Proof. (ii)⇒ (i):
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From Theorem 3.26, we have for all y ∈ Y

H(Y )

I(X;Y )
=

− log qY (y))

D
(
PX|Y (·|y)‖pX(·)

) . (3.50)

Letting D := D
(
PX|Y (·|y)‖pX(·)

)
for any y ∈ Y , we have

∑
y qY (y)D = I(X;Y ) and

hence D = I(X;Y ), which together with (3.50) implies that H(Y ) = − log qY (y) for all

y ∈ Y and hence Y is uniformly distributed.

(i)⇒ (ii):

When Y is uniformly distributed, we have from (3.50) that I(X;Y ) =

D
(
PX|Y (·|y)‖pX(·)

)
which implies that D

(
PX|Y (·|y)‖pX(·)

)
is constant for all y ∈

Y .

To illustrate this corollary, consider the following examples.

Example 3.28. Suppose PY |X = BSC(α) with α ∈ (0, 1) and pX = Bernoulli(1
2
). In this

case, we have PX|Y = BSC(α) with qY = Bernoulli(1
2
). Note that Corollary 3.13 implies

that g(0) = 0. It was shown in Theorem 3.8 that g(·) is linear and hence according to

Corollary 3.27, D(PX|Y (·|y)‖pX(·)) must be constant for y ∈ {0, 1}. It is simple to verify

that D(PX|Y (·|y)‖pX(·)) = 1− hb(α) for y ∈ {0, 1}.

Example 3.29. It was shown in Theorem 3.7 that if PX|Y = BEC(δ) and qY = Bernoulli(q)

with 0 ≤ q ≤ 1
2
, then g(·) is linear. In this case, we have D(PX|Y (·|0)‖PX(·)) = −δ̄ log q̄

and D(PX|Y (·|1)‖PX(·)) = −δ̄ log q which show that D(PX|Y (·|y)‖PX(·)) is constant if

and only if q = 1
2
.

Example 3.30. Now suppose PX|Y is a binary asymmetric channel such that PX|Y (·|0) =

Bernoulli(α), and PX|Y (·|1) = Bernoulli(β) for some 0 < α, β < 1 and input distri-

bution qY = Bernoulli(q) with 0 < q ≤ 1
2
. It is easy to see that if α + β = 1 then
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D(PX|Y (·|y)‖pX(·)) does not depend on y and hence we can conclude from Corollary 3.27

that g(·) is not linear for any q < 1
2

and thus we have g(ε) > ε hb(q)
I(X;Y )

.

In Theorem 3.26, we showed that when g(ε) achieves its lower bound, given in (3.5),

the slope of the mapping ε 7→ g(ε) at zero is equal to − log qY (y)
D(PX|Y (·|y)‖pX(·)) for any y ∈ Y . We

will show in the next section that the reverse direction is also true at least for a large family

of binary input symmetric output channels, thereby showing that in this case,

g′(0) =
− log qY (y)

D(PX|Y (·|y)‖pX(·))
, ∀y ∈ Y ⇐⇒ g(ε) = ε

H(Y )

I(X;Y )
, 0 ≤ ε ≤ I(X;Y ).

3.8.2 Binary Input Symmetric Output Channels

In this section, we apply the results of the previous section to a particular joint distribution.

Specifically, we look at the case where Y is binary and the reverse channel PX|Y respects a

certain notion of symmetry.

Suppose Y = {0, 1}, X = {0,±1,±2, . . . ,±k} for some integer k ≥ 1, and

PX|Y (x|1) = PX|Y (−x|0) for any x ∈ X . This channel is called binary input symmet-

ric output (BISO) [63, 136]. For x = 0, we have p0 := PX|Y (0|0) = PX|Y (0|1). We notice

that with this definition of symmetry, we can always assume that the output alphabet X

has even number of elements because we can split X = 0 into two outputs, X = 0+ and

X = 0−, with PX|Y (0−|0) = PX|Y (0+|0) = p0
2

and PX|Y (0−|1) = PX|Y (0+|1) = p0
2

. The

new channel is clearly essentially equivalent to the original one. This family of channels

can also be characterized using the definition of quasi-symmetric channels [7, Definition

4.17]. A channel W is BISO if (after making |X | even) the transition matrix PX|Y can be

partitioned along its columns into binary input binary output sub-arrays in which rows are

permutations of each other and the column sums are equal. It is clear that BSC and BEC are
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both examples of BISO. The following lemma gives an upper bound for g(ε) when PX|Y

belongs to such a family of channels.

Lemma 3.31. If PX|Y is BISO, then we have for ε ∈ [0, I(X;Y )]

ε
H(Y )

I(X;Y )
≤ g(ε) ≤ H(Y )− I(X;Y )− ε

C(PX|Y )
,

where C(PX|Y ) denotes the capacity of PX|Y .

Proof. The lower bound was already shown in Lemma 3.1. To prove the upper bound note

that by Markov condition X (−− Y (−− Z, we have for any x ∈ X and z ∈ Z

PX|Z(x|z) = PX|Y (x|0)PY |Z(0|z) + PX|Y (x|1)PY |Z(1|z). (3.51)

Now suppose Z0 := {z : PY |Z(0|z) ≤ PY |Z(1|z)} and similarly Z1 := {z : PY |Z(1|z) ≤

PY |Z(0|z)}. Then (3.51) allows us to write for z ∈ Z0

PX|Z(x|z) = PX|Y (x|0)h−1
b (H(Y |Z = z)) + PX|Y (x|1)(1− h−1

b (H(Y |Z = z))), (3.52)

where h−1
b : [0, 1]→ [0, 1

2
] is the inverse of binary entropy function, and for z ∈ Z1,

PX|Z(x|z) = PX|Y (x|0)(1− h−1
b (H(Y |Z = z))) + PX|Y (x|1)h−1

b (H(Y |Z = z)). (3.53)

Letting P ⊗h−1
b (H(Y |z)) and P̃ ⊗h−1

b (H(Y |z)) denote the right-hand sides of (3.52) and

(3.53), respectively, we can write

H(X|Z) =
∑
z∈Z

PZ(z)H(X|Z = z)
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(a)
=

∑
z∈Z0

PZ(z)H(P ⊗ h−1
b (H(Y |Z = z))) +

∑
z∈Z1

PZ(z)H(P̃ ⊗ h−1
b (H(Y |Z = z)))

(b)

≤
∑
z∈Z0

PZ(z)
[
(1−H(Y |Z = z))H(P ⊗ h−1

b (0)) +H(Y |Z = z)H(P ⊗ h−1
b (1))

]
+
∑
z∈Z1

PZ(z)
[
(1−H(Y |Z = z))H(P̃ ⊗ h−1

b (0)) +H(Y |Z = z)H(P̃ ⊗ h−1
b (1))

]
(c)
=

∑
z∈Z0

PZ(z) [(1−H(Y |Z = z))H(X|Y ) +H(Y |Z = z)H(Xunif)]

+
∑
z∈Z1

PZ(z) [(1−H(Y |Z = z))H(X|Y ) +H(Y |Z = z)H(Xunif)]

= H(X|Y )[1−H(Y |Z)] +H(Y |Z)H(Xunif),

whereH(Xunif) denotes the entropy ofX when Y is uniformly distributed. Here, (a) is due

to (3.52) and (3.53), (b) follows form convexity of u 7→ H(P ⊗ h−1
b (u))) for all u ∈ [0, 1]

[34] and Jensen’s inequality. In (c), we used the symmetry of channel PX|Y to show that

H(X|Y = 0) = H(X|Y = 1) = H(X|Y ). Hence, we obtain

H(Y |Z) ≥ H(X|Z)−H(X|Y )

H(Xunif)−H(X|Y )
=
I(X;Y )− I(X;Z)

C(PX|Y )
,

where the equality follows from the fact that for BISO channels (and in general for any

quasi-symmetric channels) the uniform input distribution is the capacity-achieving distri-

bution [7, Lemma 4.18]. Since g(ε) is attained when I(X;Z) = ε, the conclusion imme-

diately follows.

This lemma demonstrates that the larger the gap between I(X;Y ) and I(X;Y ′) is for

Y ′ ∼ Bernoulli(1
2
), the more g(·) deviates from its lower bound. When Y ∼ Bernoulli(1

2
),
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then C(PY |X) = I(X;Y ) and H(Y ) = 1 and hence Lemma 3.31 implies that

ε

I(X;Y )
≤ g(ε) ≤ 1− I(X;Y )− ε

I(X;Y )
=

ε

I(X;Y )
,

and hence we have the following corollary.

Corollary 3.32. If PX|Y is BISO and Y ∼ Bernoulli(1
2
), then we have for any ε ≤ I(X;Y )

g(ε) =
ε

I(X;Y )
.

This corollary now enables us to prove the reverse direction of Theorem 3.26 for the

family of BISO channels.

Theorem 3.33. If PX|Y is a BISO channel, then the following statements are equivalent:

(i) g(ε) = ε H(Y )
I(X;Y )

for 0 ≤ ε ≤ I(X;Y ).

(ii) The initial efficiency of the privacy-constrained information extraction is

g′(0) =
− log qY (y)

D(PX|Y (·|y)‖pX(·))
, ∀y ∈ Y .

Proof. The fact that (i) implies (ii) follows directly from Theorem 3.26. To show that (ii)

implies (i), let qY = Bernoulli(q) and as before X = {±1,±2, . . . ,±k}. We then have

− log qY (0)

D(PX|Y (·|0)‖pX(·))
=

log q̄

H(X|Y ) +
∑k

x=−k PX|Y (x|0) log pX(x)
, (3.54)

and
− log qY (1)

D(PX|Y (·|1)‖pX(·))
=

log q

H(X|Y ) +
∑k

x=−k PX|Y (x|1) log pX(x)
. (3.55)
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By assumption, we can write

log q̄

H(X|Y ) +
∑k

x=−k PX|Y (x|0) log pX(x)
=

log q

H(X|Y ) +
∑k

x=−k PX|Y (x|1) log pX(x)
.

(3.56)

It is shown in Appendix A that (3.56) holds if and only if q = 1
2
. Now we can invoke

Corollary 3.32 to conclude that g(ε) = ε H(Y )
I(X;Y )

.

Remark 3.34. Theorem 3.33 states that if PX|Y is BISO and qY = Bernoulli(1
2
), then

g(ε) = ε
I(X;Y )

which is a generalization of Theorems 3.8 and 3.7 in the uniform case.

Furthermore, since in this case g(ε) coincides with its lower bound, the erasure filter, illus-

trated in Fig. 3.2, is an optimal filter for any ε.

Note that if PX|Y = BSC(α) and qY = Bernoulli(1
2
), then PY |X = BSC(α) with

pX = Bernoulli(1
2
). The following corollary specializes Corollary 3.32 for this case.

Corollary 3.35. If pX = Bernoulli(1
2
) and PY |X = BSC(α) with 0 < α < 1

2
, then g(ε) =

ε
I(X;Y )

for 0 ≤ ε ≤ I(X;Y ). Furthermore, BEC(δ(ε, α)) is an optimal filter, where

δ(ε, α) := 1− ε

I(X;Y )
. (3.57)

3.8.3 Erasure Observation Channel

In this section, we obtain a sufficient condition for the joint distribution P under which g(ε)

attains its upper bound given in (3.5). Before that, recall from (3.9) and Lemma 3.1 that for

0 ≤ ε ≤ I(X;Y )

ε
H(Y )

I(X;Y )
+ g(0)

[
1− ε

I(X;Y )

]
≤ g(ε) ≤ H(Y |X) + ε, (3.58)
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Figure 3.4: Optimal privacy filter for PY |X = BSC(α) and uniform X , where δ(ε, α) is specified
in (3.57).

In the following, we show that the above upper and lower bounds coincide when PY |X is an

erasure channel, i.e., Y = X ∪{e} and there exists 0 ≤ δ ≤ 1 such that PY |X(x|x) = 1− δ

and PY |X(e|x) = δ for all x ∈ X .

Lemma 3.36. If PY |X is an erasure channel (as defined above), then for any 0 ≤ ε ≤

I(X;Y )

g(ε) = H(Y |X) + ε.

Proof. Notice that if g(0) = H(Y |X), then the lower bound in (3.58) becomesH(Y |X)+ε

and thus g(ε) = H(Y |X) + ε. Therefore, it suffices to show that if PY |X is an erasure

channel, then g(0) = H(Y |X).

Recall that |X | = M and Y = X ∪ {e}. Consider the following privacy filter that

generates Z ∈ Y:

PZ|Y (z|y) =


1
M
, if y 6= e, z 6= e,

1, if y = z = e.

For any x ∈ X , we have

PZ|X(z|x) = PZ|Y (z|x)PY |X(x|x) + PZ|Y (z|e)PY |X(e|x) =

[
δ̄

M

]
1{z 6=e} + δ1{z=e},

which implies Z⊥⊥X and thus I(X;Z) = 0. On the other hand, PZ(z) =
(
δ̄
M

)
1{z 6=e} +
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δ1{z=e}, and therefore we have

g(0) ≥ I(Y ;Z) = H(Z)−H(Z|Y ) = H

(
δ̄

M
, . . . ,

δ̄

M
, δ

)
− δ̄ logM

= hb(δ) = H(Y |X).

It follows from Lemma 3.1 that g(0) = H(Y |X), and thus the proof is complete.

Although Lemma 3.36 does not specify the optimal filter, we demonstrate in the fol-

lowing example that if PY |X = BEC(δ), then a ternary-valued Z is sufficient to achieve

g(ε).

Example 3.37. Suppose pX = Bernoulli(p) and PY |X = BEC(δ). Consider the privacy filter

described as: PZ|Y (e|e) = 1, PZ|Y (0|y) = ᾱ, and PZ|Y (1|y) = α for y 6= e, with a fixed

0 ≤ α ≤ 1
2
. Easy calculation reveals that I(X;Z) = δ̄[hb(α ∗ p)− hb(α)] and I(Y ;Z) =

hb(δ) + δ̄[hb(α ∗ p)− hb(α)]. Setting I(X;Z) = ε therefore implies I(Y ;Z) = hb(δ) + ε,

which is the upper bound given in (3.58). Thus, the optimal privacy filter is a combination

of an identity channel and a BSC(α(ε, δ)), as shown in Fig. 3.5, where 0 ≤ α(ε, δ) ≤ 1
2

is

the unique solution of

δ̄[hb(α ∗ p)− hb(α)] = ε. (3.59)

We note that for fixed 0 < δ < 1 and 0 ≤ p ≤ 1, the map α 7→ δ̄[hb(α ∗ p) − hb(α)]

is monotonically decreasing on [0, 1
2
] ranging over [0, δ̄hb(p)] and since ε ≤ I(X;Y ) =

δ̄hb(p), the solution of equation 3.59 is unique.

Combining Corollary 3.35 with Lemma 3.36, we obtain the following extremal property

of the BEC and BSC. For X ∼ pX = Bernoulli(1
2
), we have for any channel PY |X ,

g(ε) ≥ εH(Y )

I(X;Y )
= g(pX × BSC(α̂), ε),
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Figure 3.5: Optimal privacy filter for PY |X = BEC(δ), where δ(ε, α) is specified in (3.59).

where α̂ := h−1
b

(
H(Y |X)
H(Y )

)
. Similarly, if PX = Bernoulli(p), we have for any channel PY |X

with H(Y |X) ≤ 1

g(ε) ≤ H(Y |X) + ε = g(pX × BEC(δ̂), ε),

where δ̂ := h−1
b (H(Y |X)).
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Chapter 4

Information Extraction Under an Information-Theoretic

Privacy Constraint: Absolutely Continuous Case

4.1 Overview

In this section, we extend the rate-privacy function g to the continuous case. Specifically,

we assume that the private and observable data are continuous random variables and that

the filter is composed of two stages: first Gaussian noise is added to the observable data

and then the resulting random variable is quantized using anM -bit accuracy uniform scalar

quantizer (for some positive integer M ∈ N). These filters are of practical interest as they

can be easily implemented. This section is divided in two parts, in the first we discuss

general properties of the rate-privacy function and in the second we study approximating

the rate-privacy function for sufficiently small privacy level ε.

4.1.1 Main Contributions

The main contributions of this chapter are as follows:

• We formulate the rate-privacy function for the continuous random variables X and

Y by assuming that the privacy filter belongs to a family of additive noise channels
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followed by an M -level uniform scalar quantizer.

• We obtain asymptotic bounds asM →∞ for the rate-privacy function and show that

some of the properties of g in the discrete case do not hold in the continuous case.

• We further show that g(0) = 0 for any joint distribution P, thus perfect privacy

implies trivial utility. We then express the initial efficiency of privacy-constrained in-

formation extraction, g′(0), in terms of the so-called one-sided maximal correlation.

• Finally, we obtain a second-order approximation for g(ε) when ε is in the almost

perfect privacy regime and show the accuracy of this approximation in the Gaussian

case.

• As by-products, we derive two strong data processing inequalities for mutual infor-

mation as well as MMSE in the special case of AWGN channel.

4.2 General properties of the rate-privacy function

We assume throughout this chapter that the random vector (X, Y ) is absolutely continuous

with respect to the Lebesgue measure on R2. Additionally, we assume that its joint density

fX,Y satisfies the following:

(a) there exist constants C1 > 0, p > 1 and bounded function C2 : R→ R such that

fY (y) ≤ C1|y|−p,

and also for x ∈ R

fY |X(y|x) ≤ C2(x)|y|−p,
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(b) E[X2] and E[Y 2] are both finite,

(c) the differential entropy of (X, Y ) satisfies h(X, Y ) > −∞,

Note that assumptions (b) and (c) together imply that h(X), h(Y ), and h(X, Y ) are

finite, i.e., the maps x 7→ fX(x) log fX(x), y 7→ fY (y) log fY (y), and (x, y) 7→

fX,Y (x, y) log(fX,Y (x, y)) are integrable. Note also that assumption (b) implies that

H(bY c) < ∞, where bac denotes the largest integer ` such that ` ≤ a [149]. We also

assume that X and Y are not independent, since otherwise the problem of characterizing

g(ε) becomes trivial by assuming that the displayed data Z can equal the observable data

Y .

We are interested in filters of the form QM(Y + λNG), where λ ≥ 0, NG ∼ N (0, 1)

is independent of (X, Y ), and for any positive integer M , QM denotes the M -bit accuracy

uniform scalar quantizer, i.e., for all x ∈ R

QM(x) =
1

2M
⌊
2Mx

⌋
.

Let Uλ := Y + λNG and UM
λ := QM(Uλ) = QM(Y + λNG). We define, for any M ∈ N,

gM(ε) := sup
λ≥0,

I(X;UMλ )≤ε

I(Y ;UM
λ ), (4.1)

and similarly

g(ε) := sup
λ≥0,

I(X;Uλ)≤ε

I(Y ;Uλ). (4.2)

The main result of this section proves that g(ε) is indeed the limit of gM(ε) as M → ∞.

In order to prove this result, we need the following lemmas whose proofs are given in
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Appendices B.1, B.2, and B.3.

Lemma 4.1. The function λ 7→ I(Y ;Uλ) is strictly decreasing and continuous. Addition-

ally, it satisfies

I(Y ;Uλ) ≤
1

2
log

(
1 +

var(Y )

λ2

)
.

with equality if and only if Y is Gaussian. In particular, I(Y ;Uλ)→ 0 as λ→∞.

Lemma 4.2. The function λ 7→ I(X;Uλ) is strictly decreasing and continuous. Moreover,

I(X;Uλ)→ 0 when λ→∞.

In light of Lemmas 4.2 and 4.1, there exists a unique λε ∈ (0,∞) for every 0 < ε <

I(X;Y ) such that I(X;Uλε) = ε and g(ε) = I(Y ;Uλε), and thus g(ε) corresponds to the

smallest variance of Gaussian noise which results in I(X;Uλ) = ε.

Lemma 4.3. The functions λ 7→ I(X;UM
λ ) and λ 7→ I(Y ;UM

λ ) are continuous for each

M ∈ N and satisfy for any λ ≥ 0

lim
M→∞

I(X;UM
λ ) = I(X;Uλ) and lim

M→∞
I(Y ;UM

λ ) = I(Y ;Uλ). (4.3)

We are now in position to state the main result of this section.

Theorem 4.4. Let ε > 0 be fixed. Then lim
M→∞

gM(ε) = g(ε).

Proof. For every M ∈ N, let ΛMε := {λ ≥ 0 : I(X;UM
λ ) ≤ ε}. The Markov chain

X (−− Y (−− Uλ (−− UM+1
λ (−− UM

λ and the data processing inequality imply that

I(X;Uλ) ≥ I(X;UM+1
λ ) ≥ I(X;UM

λ ),

and, in particular,

ε = I(X;Uλε) ≥ I(X;UM+1
λε

) ≥ I(X;UM
λε ),
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This in turn implies that

λε ∈ ΛM+1
ε ⊂ ΛMε , (4.4)

and thus

I(Y ;UM
λε ) ≤ gM(ε).

Taking limits in both sides, we conclude from (4.3) that

g(ε) = I(Y ;Uλε) ≤ lim inf
M→∞

gM(ε). (4.5)

Observe, on the other hand, that

gM(ε) = sup
λ∈ΛMε

I(Y ;UM
λ ) ≤ sup

λ∈ΛMε
I(Y ;Uλ) = I(Y ;UλMε,min

), (4.6)

where inequality follows from Markovity and λMε,min := infΛMε λ. Since λε ∈ ΛM+1
ε ⊂ ΛMε ,

we have λMε,min ≤ λM+1
ε,min ≤ λε. Thus, (λMε,min) is an increasing sequence in M and bounded

from above and hence has a limit. Let λε,min = lim
M→∞

λMε,min. Clearly, we have

λε,min ≤ λε. (4.7)

By Lemma 4.3, we know that I(X;UM
λ ) is continuous in λ, so ΛMε is closed for all

M ∈ N. Thus, we have λMε,min = minΛMε λ and in particular λMε,min ∈ ΛMε . By the inclusion

ΛM+1
ε ⊂ ΛMε , we obtain λM+n

ε,min ∈ ΛMε for all n ∈ N. By closedness of ΛMε , we have that

λε,min ∈ ΛMε for all M ∈ N. In particular, I(X;UM
λε,min

) ≤ ε, for all M ∈ N. We obtain

from (4.3)

I(X;Uλε,min
) ≤ ε = I(X;Uλε),
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and by monotonicity of λ 7→ I(X;Uλ), we conclude that

λε ≤ λε,min. (4.8)

Combining (4.8) with (4.7), we conclude that λε,min = λε. Taking limits in the inequality

(4.6), we have

lim sup
M→∞

gM(ε) ≤ lim sup
M→∞

I(Y ;UλMε,min
) = I(Y ;Uλε,min

).

Plugging λε,min = λε in above, we conclude that

lim sup
M→∞

gM(ε) ≤ I(Y ;Uλε) = g(ε)

and therefore lim
M→∞

gM(ε) = g(ε).

As shown in this lemma, in the limit of large M , g(ε) approximates gM(ε). This moti-

vates us to focus on g(ε). The following theorem summarizes some general properties of

g(ε).

Theorem 4.5. The function ε 7→ g(ε) is non-negative, strictly increasing, and satisfies

lim
ε→0

g(ε) = 0 and g(I(X;Y )) =∞.

Proof. The nonnegativity of g(ε) follows directly from the definition. According to

Lemma 4.2, it is easy to verify that ε 7→ λε is strictly decreasing. Since λ 7→ I(Y ;Uλ)

is strictly decreasing, we conclude that ε 7→ g(ε) is strictly increasing.

The fact that ε 7→ λε is strictly decreasing also implies that λε → ∞ as ε → 0. In
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particular,

lim
ε→0

g(ε) = lim
ε→0

I(Y ;Uλε) = lim
λ→∞

I(Y ;Uλ) = 0.

By the data processing inequality, we have that I(X;Uλ) ≤ I(X;Y ) for all λ ≥ 0, i.e.,

any filter satisfies the privacy constraint for ε = I(X;Y ). Thus, g(I(X;Y )) ≥ I(Y ;Y ) =

∞.

In Section 4.4, we will make use of the I-MMSE relationship [70] to compute g′ the

derivative of g. To do this, it is easier to equivalently describe the privacy filter as Zγ :=

√
γY +NG, instead of Uλ. Note that assuming

√
γ = 1

λ
, we have I(X;Zγ) = I(X;Uλ) and

I(Y ;Zγ) = I(Y ;Uλ). With this representation, the rate-privacy function corresponds to the

largest signal-to-noise ration (SNR) of the privacy-preserving additive Gaussian channel.

Lemmas 4.1 and 4.2 imply together that γ 7→ I(X;Zγ) and γ 7→ I(Y ;Zγ) are both strictly

increasing and continuous and there exists a unique γε (corresponding to the largest SNR

which provides privacy level of ε) such that I(X;Zγ) = ε and g(ε) = I(Y ;Zγ). Also,

Lemma 4.2 implies that the map ε 7→ γε is strictly increasing, and it satisfies γ0 = 0 and

γI(X;Y ) =∞. The following proposition provides upper and lower bounds for g(ε) in terms

of γε.

Proposition 4.6. For a pair of absolutely continuous random variables (X, Y ), we have

1

2
log
(
1 + γε2

−2D(Y )var(Y )
)
≤ g(ε) ≤ 1

2
log(1 + γεvar(Y )),

where D(Y ) denote the ”non-Gaussianness” of Y , defined as

D(Y ) := D(PY ‖PYG), (4.9)
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with YG being the Gaussian random variable having the same mean and variance as Y .

Proof. The upper bound is a direct consequence of Lemma 4.1. The lower bound fol-

lows from the entropy power inequality [37, Theorem 17.7.3] which states that 22h(Zγ) ≥

γ22h(Y ) + 2πe and hence

g(ε) = I(Y ;Zγε) ≥
1

2
log
(
γε2

2h(Y ) + 2πe
)
− 1

2
log(2πe),

from which and the fact thatD(Y ) = h(YG)−h(Y ), the lower bound immediately follows.

As opposed to the discrete case, in the continuous case g is no longer bounded and

concave. A counterexample is given in the next section.

4.3 Gaussian Information

In the study of additive white Gaussian noise (AWGN) channel in information theory lit-

eratures, there exist several extremal properties of Gaussian distribution. For instance, (i)

I(Y ;Y +NG) ≤ I(YG;YG +NG) which establishes the optimality of Gaussian input distri-

bution for AWGN channels, (ii) mmse(Y |Y +NG) ≤ mmse(YG|YG+NG) which establishes

the fact that the Gaussian source is the hardest to estimate given its Gaussian perturbation,

and (iii) mmse(YG|YG + N) ≤ mmse(YG|YG + NG) which characterizes the worst additive

noise for a Gaussian input. Here in this section, we provide another extremal property of

Gaussian distribution. Before that, we first derive the rate-privacy function for Gaussian

(XG, YG).

Theorem 4.7. Let (XG, YG) be a pair of Gaussian random variables with zero mean and
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correlation coefficient ρ. Then, for any ε ∈ [0, I(X;Y )) we have

g(ε) =
1

2
log

(
ρ2

2−2ε + ρ2 − 1

)
.

Proof. One can always write YG = aXG +MG where a2 = ρ2 var(YG)
var(XG)

and MG is a Gaussian

random variable with mean 0, variance σ2 = (1 − ρ2)var(YG), and independent of XG.

Therefore, Zγ = a
√
γXG +

√
γMG +NG is also a Gaussian random variable. Then

I(XG;Zγ) =
1

2
log

(
1 + γvar(YG)

1 + γσ2

)
,

and hence for any ε ∈ [0, I(XG;YG)) the equation I(XG;Zγ) = ε has the unique solution

γε =
1− 2−2ε

var(YG)(2−2ε + ρ2 − 1)
, (4.10)

from which and the increasing property of γ 7→ I(Y ;Zγ), the result immediately follows.

The graph of g(ε) is depicted in Fig. 4.1 for jointly Gaussian XG and YG with ρ = 0.45

and ρ = 0.85. It is worth noting that g(ε) is related to the Gaussian rate-distortion function

RG(D) [37]. In fact, g(ε) = RG(Dε) for ε ≤ I(XG;YG), where

Dε =
2−2ε − 2−2I(XG;YG)

ρ2
,

is the mean squared distortion incurred in reconstructing Y given the displayed data Zγ .

According to Theorem 4.7, we conclude that the optimal privacy filter for jointly Gaus-

sian (XG, YG) is an additive Gaussian channel with SNR equal to
1− 2−2ε

2−2ε + ρ2 − 1
, which
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Figure 4.1: The map ε 7→ gε(PXGYG , ε) for two cases where ρ2 = 0.45 and ρ2 = 0.85.

shows that if perfect privacy is required, then the displayed data is independent of the ob-

servable data Y , i.e., g(0) = 0 as expected. Fig. 4.1 reveals that unlike to the discrete case

(cf. Lemma 3.2), the mapping ε 7→ g(ε) is not necessarily concave.

Remark 4.8. We assumed that the privacy filter is a Gaussian additive channel. More gen-

erally, we could instead assume that the privacy filter adds non-Gaussian noise to the ob-

servable data and define the rate-privacy function as

gf(ε) := sup
γ≥0,

I(X;Zf
γ )

I(Y ;Z f
γ),

where Z f
γ :=

√
γY + Nf and Nf is a real-valued random variable having density f with

supp f = R and independent of (X, Y ). In this case, we use a technique similar to Oohama

[114] to lower bound gf(ε) for jointly Gaussian XG and YG with correlation coefficient

ρ. Since XG and YG are jointly Gaussian, we can write XG = aYG + bNG where a2 =

ρ2 var(XG)
var(YG)

, b2 = (1−ρ2)var(XG), andNG is standard Gaussian random variable independent
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of YG. Applying the conditional entropy power inequality (cf., [87, Page 22]) for a random

variable Z independent of NG, we obtain

22h(XG|Z) ≥ 22h(aYG|Z) + 22h(bNG) = a222h(YG|Z) + 2πe(1− ρ2)var(XG),

and hence

2−2I(XG;Z)22h(XG) ≥ a222h(YG)2−2I(YG;Z) + 2πe(1− ρ2)var(XG). (4.11)

Assuming Z = Z f
γ , we obtain

gf(ε) ≥ 1

2
log

(
ρ2

2−2ε + ρ2 − 1

)
= g(ε),

where the equality comes from Theorem 4.7. Therefore, for jointly Gaussian XG and YG,

Gaussian noise is the worst additive noise in the sense of the privacy-constrained informa-

tion extraction.

The rate-privacy function for Gaussian YG has an interesting interpretation from an

estimation-theoretic point of view. Given the private and observable data (X, YG), suppose

an agent is required to estimate YG based on the output of the privacy filter Z f
γ . We wish

to know the effect of imposing the privacy constraint I(X;Z f
γ) ≤ ε on the estimation

efficiency. The following lemma shows that gf(ε) bounds the best performance of the

predictability of YG given Z f
γ .

Proposition 4.9. For a given (X, YG), we have for any ε ≥ 0

inf
γ≥0,

I(X;Zf
γ)≤ε

mmse(YG|Z f
γ) ≥ var(YG)2−2gf(ε).
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Proof. It is well-known from the rate-distortion theory that

I(YG; ŶG) ≥ 1

2
log

var(YG)

E[(YG − ŶG)2]
,

where ŶG is an estimation of YG. Hence, by setting ŶG = E[YG|Z f
γ] and noting that

I(YG; ŶG) ≤ I(YG;Z f
γ), we obtain

mmse(YG|Z f
γ) ≥ var(YG)2−2I(YG;Zf

γ), (4.12)

from which the result follows immediately.

Motivated by Lemma 4.9, the quantity ηε := 2−2gf(ε) can be viewed as a parameter that

bounds the difficulty of estimating YG when observing an additive perturbation Z f
γ with

privacy constraint I(X;Z f
γ) ≤ ε. Note that 0 < ηε ≤ 1, and therefore, provided that the

privacy threshold is not trivial (i.e, ε < I(X;Y )), mmse(YG|Z f
γ) is bounded away from

zero, however the bound decays exponentially at rate gf(ε).

4.4 Approximation of g(ε) in Almost Perfect Privacy Regime

We observed in the last section that perfect privacy results in a trivial utility, i.e., g(0) = 0.

In this section, we derive a second-order approximation for g(ε) for the ”almost” perfect

privacy regime, i.e., for sufficiently small ε . We also obtain the first and second derivatives

of the mapping g.

To state the main result, we need the so-called I-MMSE relationship [70]:

d
dγ
I(Y ;Zγ) =

1

2
mmse(Y |Zγ). (4.13)
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Since X , Y and Zγ form the Markov chain X (−− Y (−− Zγ , it follows that I(X;Zγ) =

I(Y ;Zγ)− I(Y ;Zγ|X) and hence two applications of (4.13) yields [70, Theorem 10]

d
dγ
I(X;Zγ) =

1

2
[mmse(Y |Zγ)−mmse(Y |Zγ, X)] . (4.14)

The next result provides the first derivative g′(ε) of the function ε 7→ g(ε).

Theorem 4.10. We have for any ε ∈ [0, I(X;Y ))

g′(ε) =
mmse(Y |Zγε)

mmse(Y |Zγε)−mmse(Y |Zγε , X)
.

Proof. Since g(ε) = I(Y ;Zγε), we have

d
dε
g(ε) =

[
d

dγ
I(Y ;Zγ)

]
γ=γε

d
dε
γε

(a)
=

1

2
mmse(Y |Zγε)

d
dε
γε, (4.15)

where (a) follows from (4.13). In order to calculate d
dεγε, notice that ε = I(X;Zγε) and

hence taking the derivative of both sides of this equation with respect to ε yields

1 =

[
d

dγ
I(X;Zγ)

]
γ=γε

d
dε
γε,

and hence

d
dε
γε =

1[
d

dγ I(X;Zγ)
]
γ=γε

(a)
=

2

mmse(Y |Zγε)−mmse(Y |Zγε , X)
, (4.16)

where (a) follows from (4.14). The result then follows by plugging (4.16) into (4.15).
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As a simple illustration of Theorem 4.10, consider (XG, YG) whose rate-privacy func-

tion was computed in Theorem 4.7. In particular, we have

g′(ε) =
2−2ε

2−2ε + ρ2 − 1
. (4.17)

On the other hand, sinceXG = aYG+bNG, where a2 = ρ2 var(XG)
var(YG)

and b2 = (1−ρ2)var(XG),

one can conclude from [71, Proposition 3] that

mmse(YG|Zγ, XG) = mmse(YG|Zγ+c),

where c = ρ2

1−ρ2 . Recalling that mmse(YG|Zγ) = var(YG)
1+γvar(YG)

, we obtain from (4.10) that

mmse(YG|Zγε)
mmse(YG|Zγε)−mmse(YG|Zγε+c)

=
1 + (1− ρ2)γεvar(YG)

ρ2
=

2−2ε

2−2ε + ρ2 − 1
,

which equals (4.17).

In light of Theorem 4.10, we can now show that g is in fact infinitely differentiable on

(0, I(X;Y )). This conclusion clears the way towards calculating the second derivative of

g.

Corollary 4.11. The map ε 7→ g(ε) is infinitely differentiable at any ε ∈ (0, I(X;Y )).

Moreover, if E[Y 2k+2] <∞, then ε 7→ g(ε) is (k + 1) right-differentiable at ε = 0.

Proof. It is shown in [71, Proposition 7] that γ 7→ mmse(Y |Zγ) is infinitely differentiable

at any γ > 0 and k right-differentiable at γ = 0 if E[Y 2k+2] < ∞. Thus the corollary

follows from Theorem 4.10 noting that since E[Y 2k+2]<∞, we also have E[Y 2k+2|X =

x]<∞ for almost all x (except for x in a set of zero pX-measure). It therefore follows that

γ 7→ mmse(Y |Zγ, X) is k right-differentiable at γ = 0.
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It is shown in [71, Proposition 9] that for every γ > 0

d
dγ

mmse(Y |Zγ, X) = −E[var2(Y |Zγ, X)], (4.18)

which, together with Theorem 4.10, implies

g′′(ε) =
d2

dε2
g(ε) (4.19)

=
2 (mmse(Y |Zγε , X)E[var2(Y |Zγε)]−mmse(Y |Zγε)E[var2(Y |Zγε , X)])

[mmse(Y |Zγε)−mmse(Y |Zγε , X)]3
,

for any ε > 0. We notice that g′′(0) is guaranteed to exist (due to Corollary 4.11) if

E[Y 4]<∞. The following corollary, which is an immediate consequence of Theorem 4.10,

provides a second-order approximation for g(ε) as ε ↓ 0. Before we get to the corollary, we

need to make a definition. Rényi [122] defined the one-sided maximal correlation1 between

U and V as

η2
V (U) := sup

g
ρ2(U, g(V )) =

var(E[U |V ])

var(U)
, (4.20)

where ρ is the (Pearson) correlation coefficient, the supremum is taken over all measurable

functions g, and the equality follows from the Cauchy-Schwarz inequality. The law of total

variance implies that

mmse(U |V ) = var(U)(1− η2
V (U)). (4.21)

Corollary 4.12. If E[Y 4]<∞, then we have as ε ↓ 0,

g(ε) =
ε

η2
X(Y )

+∆(X, Y )ε2 + o(ε2),

1This name is taken from [28, Definition 7.4]. Originally, Rényi named this quantity ”correlation ratio”.
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where

∆(X, Y ) =
1

η4
X(Y )

(
var2(Y )− E[var2(Y |X)]

var2(Y )η2
X(Y )

− 1

)
. (4.22)

Proof. According to Corollary 4.11, we can use the second-order Taylor expansion to ap-

proximate g(ε) around ε = 0, resulting in

g(ε) = εg′(0) +
ε2

2
g′′(0) + o(ε2).

From Theorem 4.10 and (4.19) we have g′(0) = 1
η2X(Y )

and g′′(0) = 2∆(X, Y ), respec-

tively, from which the corollary follows.

It can be shown that for jointly Gaussian XG and YG with correlation coefficient ρ,

η2
XG

(YG) = ρ2 and ∆(XG, YG) = 1−ρ2
ρ4

, and therefore Corollary 4.12 implies that for small

ε > 0,

g(ε) =
1

ρ2
ε+

1− ρ2

ρ4
ε2 + o(ε2).

This second-order approximation is illustrated in Fig. 4.2 for ρ2 = 0.45 and ρ2 = 0.85.

Polyanskiy and Wu [118] have recently generalized the strong data processing inequal-

ity of Anantharam et al. [11] for the case of continuous random variables X and Y with

joint distribution P. Their result states that

sup
X(−−Y(−−U,
0<I(U ;Y )<∞

I(X;U)

I(Y ;U)
= S∗(Y,X), (4.23)

where

S∗(Y,X) := sup
q,

0<D(q||qY )<∞

D(p‖pX)

D(q‖qY )
,

where pX and qY are the marginals of P and p(·) =
∫
PX|Y (·|y)q(dy). In addition, it is
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Figure 4.2: The second-order approximation for g(ε) when XG and YG are jointly Gaussian ran-
dom variables with correlation coefficient ρ2 = 0.45 or ρ2 = 0.85.

shown in [118] that the supremum in (4.23) is achieved by a binary U . Replacing U with

Zγ , we can conclude from (4.23) that I(X;Zγ)

I(Y ;Zγ)
≤ S∗(Y,X), for any γ > 0. Letting γ = γε,

the above yields

g(ε) ≥ ε

S∗(Y,X)
. (4.24)

Clearly, this bound may be expected to be tight only for small ε > 0 since g(ε) → ∞

as ε → I(X;Y ), as shown in Proposition 4.6. Note that Theorem 4.10 implies that

limε↓0
g(ε)
ε

= 1
η2X(Y )

. On the other hand, it can be easily shown that η2
X(Y ) ≤ S∗(Y,X),

with equality when X and Y are jointly Gaussian and hence the inequality (4.24) becomes

tight for small ε and jointly Gaussian X and Y .

The bound in (4.24) would be significantly improved if we could show that g(PXY , ε) ≥

g(PXGYG , ε), where XG and YG are jointly Gaussian having the same means, variances, and
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correlation coefficient as (X, Y ). This is because in that case we could write

g(PXY , ε) ≥ g(PXGYG , ε) ≥
ε

η2
XG

(YG)
=

ε

ρ2(XG, YG)
=

ε

ρ2(X, Y )
≥ ε

η2
X(Y )

. (4.25)

However, as shown in the following theorem, the inequality g(PXY , ε) ≥ g(PXGYG , ε) does

not in general hold.

Theorem 4.13. For any continuous random variable X correlated with Gaussian YG, we

have

g(PXGYG , ε) ≥ g(PXYG , ε),

where (XG, YG) is a pair of Gaussian random variables having the same mean, variance

and correlation coefficient as (X, YG).

Proof. For any pair of random variables (U, V ) with I(U ;V )<∞, let PV |U(·|u) be the

conditional density of V given U = u. Let (UG, VG) be a pair of Gaussian random variables

having the same means, variances and correlation coefficient as (U, V ), and PVG|UG
(·|u) the

conditional density of VG given UG = u. Similar to D(V ) the non-Gaussianness of V ,

defined in (4.9), we can define D(V |U) the conditional non-Gaussianness of V given U as

D(V |U) :=

∫
D
(
PV |U(·|u)‖PVG|UG

(·|u)
)

dPU(u) = EUV
[
log

PV |U(V |U)

PVG|UG
(V |U)

]
.

It is straightforward to show that

I(U ;V ) = I(UG;VG) +D(V |U)−D(V ). (4.26)

Replacing U and V with X and Zγ , respectively, in the decomposition (4.26) and noticing
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that D(Zγ) = 0, we obtain

I(X;Zγ) = I(XG;Zγ) +D(Zγ|X).

Since D(Zγ|X) ≥ 0, we have I(X;Zγ) ≥ I(XG;Zγ). Therefore, the condition

I(X;Zγ) ≤ ε implies that I(XG;Zγ) ≤ ε, from which the result follows.

In light of this theorem, it is therefore possible to have g(ε) < ε
η2X(Y )

for some 0 <

ε < I(X;Y ). To construct an example, it suffices to construct P for which ε 7→ g(ε) has

negative second-derivative at zero and hence its graph lies below the tangent line ε
η2X(Y )

for

some ε > 0.

Example 4.14. Let YG ∼ N (0, 1) and X = YG · 1{YG∈[−1,1]}. Then it can be readily shown

that E[var(YG|X)] < E[var2(YG|X)], which implies that ∆(X, YG) < 0. Hence, since

g′′(0) = 2∆(X, Y ), we have that g′′(0) < 0. This observation is illustrated in Fig. 4.3.

The above example also shows that ε 7→ g(ε)
ε

cannot be increasing, because if it were,

it would have implied g(ε)
ε
≥ limε→0

g(ε)
ε

= 1
η2X(Y )

. However, it can be shown that g(ε) lies

always above the line ε
η2X(Y )

if P has certain structures. In the next theorem, we assume that

Y is a noisy version of X through an AWGN channel.

Theorem 4.15. For a given absolutely continuous X with variance var(X), and Y =

aX + σMG, where MG is a standard Gaussian random variable independent of X , we

have:

1. The map ε 7→ g(ε) has positive second-derivative at ε = 0.

2. For any a > 0 and ε ∈ [0, I(X;Y )), we have

g(ε) ≥ ε

η2
X(Y )

. (4.27)
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Figure 4.3: The rate-privacy function for YG ∼ N (0, 1) and X = YG · 1{YG∈[−1,1]}. The map
ε 7→ g(ε) has negative second-derivative at zero. Note that here I(X;YG) = ∞ and
hence ε is unbounded.

Furthermore, we have

inf
γ≥0

mmse(Y |Zγ, X)

mmse(Y |Zγ)
= 1− η2

X(Y ), (4.28)

and

sup
γ>0

I(X;Zγ)

I(Y ;Zγ)
= η2

X(Y ). (4.29)

Proof. To see the first part, notice that var(Y ) = a2var(X) + σ2, E[var2(Y |X)] = σ4,

and η2
X(Y ) = a2var(X)

a2var(X)+σ2 , from which we can show that var2(Y ) − E[var2(Y |X)] ≥

var2(Y )η2
X(Y ), and consequently ∆(X, Y ) ≥ 0.
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To prove the second part, note that for any γ > 0, we have

mmse(Y |Zγ) = mmse(aX + σMG|a
√
γX +

√
γσMG +NG)

(a)
=

1

γ
mmse (NG|a

√
γX +

√
γσMG +NG)

(b)

≤ a2var(X) + σ2

1 + γ(a2var(X) + σ2)
<
a2var(X) + σ2

1 + γσ2

(c)
=

1

γ

(
a2var(X) + σ2

σ2

)
mmse (NG|

√
γσMG +NG)

(d)
=

(
a2var(X) + σ2

σ2

)
mmse(Y |Zγ, X), (4.30)

where (a) follows from the fact that mmse(U |αU + V ) = 1
α2mmse(V |αU + V ) for α 6= 0,

and (b) and (c) follows from [150, Theorem 12] which states that mmse(U |U + VG) ≤

mmse(UG|UG + VG) = var(U)var(VG)
var(U)+var(VG)

. Finally, (d) follows from the following chain of

equalities

mmse(Y |Zγ, X) = mmse(aX + σMG|a
√
γX +

√
γσMG +NG, X)

= mmse(σMG|
√
γσMG +NG, X)

(e)
= mmse(σMG|

√
γσMG +NG)

=
1

γ
mmse(NG|

√
γσMG +NG),

where (e) holds since X and MG are independent. We can therefore write

g′(ε) =
mmse(Y |Zγε)

mmse(Y |Zγε)−mmse(Y |Zγε , X)

(a)

≥ a2var(X) + σ2

a2var(X)

(b)
=

1

η2
X(Y )

= g′(0),

(4.31)

where (a) is due to (4.30) and (b) holds since var(Y ) = a2var(X)+σ2 and var(E[Y |X]) =

a2var(X). The identity g(ε) =
∫ ε

0
g′(t)dt and inequality (4.31) together imply that g(ε) ≥

ε
η2X(Y )

.
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It is straightforward to show that (4.31) yields (4.28). Using the integral representation

of mutual information in (4.13) and (4.14), we can write for any γ ≥ 0

I(X;Zγ) =
1

2

∫ γ

0

[mmse(Y |Zt)−mmse(Y |Zt, X)] dt

≤ η2
X(Y )

2

∫ γ

0

mmse(Y |Zt)dt = η2
X(Y )I(Y ;Zγ), (4.32)

where the inequality is due to (4.28). The equality (4.29) then follows from (4.32) by

noticing that I(X;Zγ)

I(Y :Zγ)
→ η2

X(Y ) as γ → 0.

It should be noted that both MMSE and mutual information satisfy the data process-

ing inequality, see, [150] and [11], that is, mmse(U |V ) ≤ mmse(U |W ), and I(U ;W ) ≤

I(U ;V ) for U (−− V (−− W . Therefore, (4.28) can be viewed as a strong version of the

data processing inequality for MMSE for the trivial Markov chain Y (−− (Zγ, X) (−

− Zγ . Also, (4.29) can be viewed as a strong data processing inequality for the mutual

information for the Markov chain X (−− Y (−− Zγ .

Remark 4.16. As mentioned earlier, it is immediate from [4, Theorem 3] that η2
X(Y ) ≤

S∗(Y,X) where the equality occurs if X and Y are jointly Gaussian (see [113, Theorem

3]). Equality (4.29) provides an interesting implication of the equality η2
X(Y ) = S∗(Y,X).

Combining (4.23) with (4.29), we conclude that for Y = aX+σMG with a, σ > 0, AWGN

channel is an optimal channel PU |Y , in the sense of (4.23), if and only if S∗(Y,X) =

η2
X(Y ). For instance, if X is Gaussian, then the ratio I(X;U)

I(Y ;U)
is maximized over X (−

− Y (−− U when the channel from Y to U is an AWGN channel with SNR approaching

zero.
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Chapter 5

Information Extraction Under an Estimation-Theoretic

Privacy Constraint

5.1 Overview

In the last two chapters, we proposed to measure the privacy leakage in terms of the mutual

information. By imposing constraint on the mutual information between private data and

the displayed data, we make sure that only limited bits of private information are revealed

during the process of transferring Y . Despite the dependence dilution setting studied in

Section 3.7, mutual information does not lead to an arguably operational privacy interpre-

tation and thus cannot serve as an appropriate privacy leakage function [54, 47]. For the

discrete case, one may invoke Fano’s inequality to interpret the requirement I(X;Z) ≤ ε.

That is, for any estimator X̂ : Z → X we have Pr(X̂(Z) 6= X) ≥ H(X)−1−ε
log |X | , and con-

sequently the probability that an adversary, observing Z, can correctly guess X is lower-

bounded. Unfortunately, Fano’s inequality proves to be loose in most practical cases. For

example, if |X | = 2, then the above lower bound is negative for any ε ≥ 0. In this chapter,

we provide a better motivated measure of privacy for discrete random variables, study the

corresponding privacy-constrained information extraction ĝ(ε) and obtain tight bounds on
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ĝ(ε) in terms of g(ε).

5.1.1 Main Contributions

The main contributions of this chapter are as follows:

• After justifying the use of the maximal correlation ρm as an operational privacy mea-

sure in the discrete case, we introduce a variant rate-privacy function as an oper-

ationally better-justified privacy-utility tradeoff. Specifically, we define the func-

tion ĝ(ε) as the maximum I(Y ;Z) over all PZ|Y satisfying X (−− Y (−− Z and

ρ2
m(X,Z) ≤ ε. We show that if Y is binary, then it suffices to consider ternary-valued

Z.

• Some of the functional properties of ĝ are derived. Specifically, we show that ĝ

shares many properties with g: it is strictly increasing, concave and lower-bounded

by the erasure mechanism. We also derive bounds on ĝ in terms of g. These bounds,

in particular, show that ĝ(ε) = g(ε) for any ε in the domain when PY |X is BEC and

X ∼ Bernoulli(1
2
).

• Finally, we study in detail the characterization of linear behavior of ĝ when PX|Y is

BISO and show that ĝ is linear only if Y is uniform.

5.2 Maximal Correlation: Definition and Properties

Given the collection C of all pairs of random variables (U, V ) ∈ U × V where U and V

are general alphabets, a mapping T : C → [0, 1] defines a measure of correlation [61]

if T (U, V ) = 0 if and only if U and V are independent (in short, U⊥⊥V ) and T (U, V )

attains its maximum value if g(U) = f(V ) almost surely for some measurable real-valued
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functions f and g. There are many different examples of measures of correlation including

the Hirschfeld-Gebelein-Rényi maximal correlation [77, 61, 122], the information measure

[102], mutual information and f -divergence [38], MMSE [70], and χ2-divergence. In his

seminal paper, Rényi postulated seven properties of an ”appropriate” measure of correlation

and showed that the maximal correlation satisfies all the properties.

Definition 5.1 ([77, 61, 122]). Given random variables U and V defined over general

(discrete or continuous) alphabets U and V , respectively, the maximal correlation ρm(U, V )

is defined as

ρm(U, V ) := sup
(f,g)∈S

E[f(U)g(V )],

where S := {(f, g) : E[f(U)] = E[g(V )] = 0, var(f(U)) = var(g(V )) = 1}. If S is empty

(which happens precisely when at least one of U and V is constant almost surely) then one

defines ρm(U, V ) to be 0.

Applying the Cauchy-Schwarz inequality, Rényi [122] derived an equivalent ”one-

function” characterization of the maximal correlation as follows:

ρ2
m(U, V ) = sup

f∈SU
E
[
E2[f(U)|V ]

]
, (5.1)

where SU is the set of all measurable real-valued functions f on U such that Ef(U) = 0

and var(f(U)) = 1.

It is worth mentioning that maximal correlation has a discontinuous property. To see

this discontinuous property, let δ ∈ (0, 1
2
] and (Xδ, Y δ) be defined as follows: with proba-

bility δ, one samplesXδ and Y δ independently according to uniform distribution over [0, δ]

and with probability δ̄, one samples Xδ and Y δ independently according to uniform distri-

bution over [δ, 1]. It is straightforward to show that ρ2
m(Xδ, Y δ) = 1 for all δ > 0 while
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(Xδ, Y δ) converge in distribution to (X, Y ) where X⊥⊥Y . Kimeldorf and Sampson [89]

constructed another example to show the discontinuity of maximal correlation. In what

follows, we provide some functional properties of maximal correlation including the lower

semi-continuity.

Proposition 5.2. Let random variables U and V be defined over general alphabets U and

V with joint distribution PUV and marginals PU and PV . Then

1. ρm(U, V ) ≥ 0 with equality if and only if U⊥⊥V .

2. ρm(U, V ) ≤ 1 with equality if and only if there exists a pair of measurable functions

(f, g) ∈ S such that Pr(f(U) = g(V )) = 1.

3. If U and V are jointly Gaussian with correlation coefficient ρ, then ρ2
m(U, V ) = ρ2.

4. ρm(U, V ) is equal to the second largest singular value of the operator1 T :

L2(PU) → L2(PV ) given by (Tf)(v) = E[f(U)|V = v]. In particular, if U and

V are finite alphabets, then ρm(U, V ) is equal to the second largest singular value of

matrix

B =

[
PUV (u, v)√
PU(u)PV (v)

]
u∈supp(PU ),v∈supp(PV )

.

5. ρm satisfies the data processing inequality, i,e., given random variables R and S

which form Markov chainR (−− U (−− V (−− S, we have ρm(R, S) ≤ ρm(U, V ).

6. (Tensorization property) Let (Ui, Vi) for i ∈ [n] be n independent pairs of ran-

dom variables with joint distribution PUiVi , i ∈ [n]. Then ρm(Un, V n) =

max1≤i≤n ρm(Ui, Vi).

1That is, the the square root of the second largest number in the point spectrum of the operator TT ∗ where
T ∗ is the adjoint operator of T .
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7. If N is an infinitely divisible random variable independent of X and Y , then λ 7→

ρm(X;Y + λN) is non-increasing right continuous function on [0,∞).

8. We have

max{η2
U(V ), η2

V (U)} ≤ ρ2
m(U, V ) ≤ χ2(PUV ‖PUPV ),

where the one-sided maximal correlation ηU(V ) was defined in (4.20) and the χ2-

divergence between two probability distributions P and Q is defined as

χ2(P‖Q) :=

∫ (
dP
dQ

)2

dQ− 1. (5.2)

9. The map PUV 7→ ρm(U, V ) is weakly lower semi-continuous.

Proof. Parts 1, 2 and 4 were proved by Rényi [122]. Two complicated proofs for part 3

were given in [61] and [93] using Hermite-Chebyshev polynomial decomposition. More

recently, a rather easier proof was given in [115]. An interesting (yet indirect) proof can

also be obtained by combining [4, Theorem 3.b] and [113, Theorem 3]. Different proofs for

part 5 were provided in [84], [32] and [117]. A lengthy proof for part 6 was constructed in

[148] and an easier proof was given in [91]. Part 7 was proved in [27]. Part 8 can be proved

by noticing that χ2(PUV ‖PUPV ) is equal to the sum of squares of the singular values of

operator T minus 1 (the largest one) [148] (see also the proof of Lemma 5.5) while ρm is

equal to the second largest one. To prove part 9, we define δ(U, V ) as

δ(U ;V ) := inf{E[(f(U)− g(V ))2] : (f(U), g(V )) ∈ S}

= inf{E[(f(U)− g(V ))2] : f ∈ Cb(U), g ∈ Cb(V),E[f 2(X)] = E[g2(Y )] = 1},
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where Cb(U) and Cb(V) denote the collection of all real-valued continuous bounded func-

tions over U and V , respectively, and the last equality is due to the denseness of Cb in L2.

It is clear that δ(U, V ) = 2(1 − ρm(U, V )). It therefore suffices to prove that δ(PUV ) is

weakly upper semi-continuous. For fixed f ∈ Cb(U) and g ∈ Cb(V),

E[(f(U)− g(V ))2] =

∫
(f(u)− g(v))2PUV (du, dv),

is weakly continuous in PUV . The result then follows from the fact that pointwise infimum

of a family of weakly continuous functions is weakly upper semi-continuous.

We next show that the data processing inequality shown in part 5 can be strengthened.

The following lemma proves the strong data processing inequality for the maximal corre-

lation from which the typical data processing inequality immediately follows.

Lemma 5.3. For random variables U and V with a joint distribution PUV , we have

sup
U(−−V(−−S
ρm(V,S)6=0

ρm(U, S)

ρm(V, S)
= ρm(U, V ).

Proof. Fix a joint distribution PUV S satisfying U (−− V (−− S. For measurable functions

f ∈ SU and g ∈ SS , we have

E2[f(U)g(S)] = E2[E[f(U)g(S)|V ]] = E2 [E[f(U)|V ]E[g(S)|V ]]

≤ E[E2[f(U)|V ]]E[E2[g(S)|V ]], (5.3)

where the inequality follows from the Cauchy-Schwarz inequality. Taking supre-

mum from both sides of (5.3) over (f, g) and recalling (5.1), we obtain ρ2
m(U, S) ≤

ρ2
m(U, V )ρ2

m(V, S).
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In the following we show that this bound holds with equality for the special case of

U (−− V (−− Û , where PÛ |V is the backward channel associated with PV |U . To this end,

first note that the above implies that ρm(U, Û) ≤ ρm(U, V )ρm(Û , V ). Since PUV = PÛV ,

it follows that ρm(U, V ) = ρm(Û , V ) and hence in this case ρm(U, Û) ≤ ρ2
m(U, V ). On the

other hand, we have

E[[E[f(U)|V ]]2] = E[E[f(U)|V ]E[f(Û)|V ]] = E[E[f(U)f(Û)|V ]] = E[f(U)f(Û)],

which together with (5.1) implies that

ρ2
m(U, V ) = sup

f∈SU
E[f(U)f(Û)] ≤ ρm(U ; Û).

Thus, ρ2
m(U, V ) = ρm(U, Û) which completes the proof.

5.3 Maximal Correlation as a Privacy Measure

It is proposed in [104] and [95] to consider ρ2
m(X,Z) ≤ ε as a privacy guarantee without

giving an operational justification. However, an interesting interpretation for this constraint

was given in [32]. Before giving this result, we need the following definition.

Definition 5.4. Given discrete random variables U and V taking values respectively in U

and V with joint distribution PUV = PV × PU |V , the Bayes map Φ : V → U is given

by Φ(v) := arg maxu∈U PU |V (u|v). Furthermore, Pc(U |V ) the probability of correctly

guessing U given V (also known as the Bayes risk [37]) is defined as

Pc(U |V ) := sup
PÛ|V : U(−−V(−−Û

Pr(U = Û) =
∑
v∈V

PV (v) Pr(U = Φ(v)|V = v)

119



=
∑
v∈V

PV (v) max
u∈U

PU |V (u|v) =
∑
v∈V

max
u∈U

PUV (u, v).

When side information is not available, i.e., V = ∅, then Pc(U), the probability of correctly

guessing U , is given by

Pc(U) := max
u∈U

PU(u).

Given a pair of discrete random variables (X,Z) with joint distribution PXZ , it is

clearly easier to correctly guessX with side information Z than without it, i.e., Pc(X|Z) ≥

Pc(X). However, it has been recently shown [28, Theorem 5.6] (see [32, Corollary 3] for a

weaker result) that Pc(f(X)|Z) cannot be much larger than Pc(f(X)), for any determinis-

tic function f , if the maximal correlation between X and Z is small:

Pc(f(X)) ≤ Pc(f(X)|Z) ≤ Pc(f(X)) + ρm(X,Z)
√
S2(pf ),

where S2(pf ) := 1−
∑

i P
2
f(X)(i) and Pf(X) is the distribution of f(X) induced by pX , the

distribution of X . Consequently, ρm(X,Z) ≤ ε for small ε ≥ 0 implies that Pc(f(X)|Z)

is close to Pc(f(X)) and hence the observation Z cannot be used to efficiently guess any

deterministic function of X . This justifies to use ρm(X,Z) as a privacy measure.

Similar to Chapter 3, we define the rate-privacy function ĝ(ε) for a pair of given discrete

random variables (X, Y ) with joint distribution P and marginals pX and qY over finite

alphabets X and Y , respectively, as

ĝ(ε) := sup
PZ|Y ∈D̂ε(P)

I(Y ;Z),
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where ε ≥ 0 and

D̂ε(P) := {PZ|Y : X (−− Y (−− Z, ρ2
m(X,Z) ≤ ε}.

In words, ĝ(ε) quantifies the maximum number of bits of information one can extract from

Y such that X cannot be efficiently guessed from the extracted information. Again, we

refer to ĝ(ε) as the privacy-constrained information extraction function, where here the

privacy is guaranteed by ρ2
m(X,Z) ≤ ε.

Setting ε = 0 corresponds to the case where X and Z are required to be statistically

independent, i.e., no information leakage about X is allowed. This case is called perfect

privacy. Since the independence ofX and Z is equivalent to I(X;Z) = ρm(X;Z) = 0, we

have ĝ(0) = g(0). This in turn implies that weak independence, defined in Definition 3.9,

is still a necessary and sufficient condition for ĝ(0) > 0. However, for ε > 0, both g(ε) ≤

ĝ(ε) and g(ε) ≥ ĝ(ε) may occur in general. We also note that it is not clear how to bound

the cardinality of Z in the definition of ĝ(ε). However, we will show that if |Y| = 2, then

Z with |Z| = 3 is sufficient to achieve ĝ(ε).

According to Lemma 5.3, maximal correlation satisfies the data processing inequality

and thus ρ2
m(X,Z) ≤ ρ2

m(X, Y ). Therefore, for any ε ≥ ρ2
m(X, Y ), setting Z = Y results

in ĝ(ε) = H(Y ). We can hence restrict ε to the interval ε ∈ [0, ρ2
m(X, Y )).

The following proposition provides a bound for ĝ(ε) in terms of g(ε) for any ε ≥ 0.

Lemma 5.5. If |X | = M , then

ĝ(ε) ≤ g((M − 1)ε).
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Proof. First we notice that2

I(X;Z) = E
[
log

PXZ(X,Z)

pX(X)PZ(Z)

]
(a)

≤ logE
[
PXZ(X,Z)

pX(X)PZ(Z)

]
(b)
= log

(
1 + χ2(PXZ‖pXPZ)

)
≤ χ2(PXZ‖pXPZ), (5.4)

where (a) follows from Jensen’s inequality and (b) holds due to the definition of the χ2-

divergence given in (5.2). On the other hand, in light of Proposition 5.2 we know that

ρm(X,Z) is equal to the second largest singular value of matrix B of size M × |Z| with

entries PXZ(x,z)√
pX(x)PZ(z)

. Let σ0 ≥ σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0 be the singular values of B where

k := min{M − 1, |Z| − 1}. It is easy to verify that σ0 = 1. Letting Tr(·) denote the trace

of a matrix and B∗ denote the conjugate of matrix B, we can then write

1 +
k∑
i=1

σ2
i = Tr(BB∗) =

∑
x∈X

∑
z∈Z

P 2
XZ(x, z)

pX(x)PZ(z)
, (5.5)

and hence
∑k

i=1 σ
2
i = χ2(PXZ‖pXPZ), which implies that

χ2(PXZ‖pXPZ) ≤ kσ2
1 ≤ (M − 1)ρ2

m(X;Z). (5.6)

Combining (5.4) and (5.6), we obtain that I(X;Z) ≤ (M − 1)ρ2
m(X,Z). Therefore, we

conclude that the requirement ρ2
m(X,Z) ≤ ε implies I(X;Z) ≤ (M − 1)ε, which com-

pletes the proof.
2Note that all the logarithms in this chapter are natural.
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5.4 Properties of ĝ(ε)

Similar to g(ε), we clearly have D̂ε1(P) ⊂ D̂ε2(P) for ε1 ≤ ε2, and hence ε 7→ ĝ(ε) is

non-decreasing. The following lemma, which is a counterpart of Lemma 3.2, establishes

the concavity of ĝ(ε).

Lemma 5.6. The mapping ε 7→ ĝ(ε) is concave for ε ≥ 0.

Proof. Let the privacy filters D̂ε1(P) 3 PZ1|Y : Y → Z1 and D̂ε3(P) 3 PZ3|Y : Y → Z3 be

optimal, i.e., g(ε1) = I(Y ;Z1) and g(ε3) = I(Y ;Z3). Let also the channel PZλ|Y : Y →

Zλ with output alphabetZ1∪Z3 be the random filter constructed in the proof of Lemma 3.2.

Then the proof is similar to the proof of Lemma 3.2 except that here we need to show that

PZλ|Y ∈ D̂ε2(P), where 0 ≤ ε1 < ε2 < ε3 ≤ ρ2
m(X, Y ). To show this, consider f ∈ SX

and let U be a binary random variable as in the proof of Lemma 3.2. We then have

E[E2[f(X)|Zλ]] = E
[
E[E2[f(X)|Zλ]|U ]

]
= λE[E2[f(X)|Z3]] + λ̄E[E2[f(X)|Z1]], (5.7)

We obtain from (5.7) and (5.1) that

ρ2
m(X,Zλ) = sup

f∈SX
E[E2[f(X)|Zλ]]

= sup
f∈SX

[
λE[E2[f(X)|Z3]] + λ̄E[E2[f(X)|Z1]]

]
≤ λρ2

m(X;Z3) + λ̄ρ2
m(X;Z1) ≤ λε3 + λ̄ε1,

from which we conclude that PZλ|Y ∈ D̂ε2(P) and hence the proof is complete.

In light of this result, the following corollaries are immediate.
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Corollary 5.7. The mapping ε 7→ ĝ(ε)
ε

is non-increasing on (0,∞).

Proof. We note that since ε 7→ ĝ(ε) is concave, the chordal slope ĝ(ε)−ĝ(0)
ε

is non-increasing

in ε. The corollary then follows by noticing that ĝ(ε)
ε

= ĝ(ε)−ĝ(0)
ε

+ ĝ(0)
ε
.

Corollary 5.8. For any ε ∈ [0, ρ2
m(X, Y )), we have

ĝ(ε) ≥ ε
H(Y )

ρ2
m(X, Y )

+ ĝ(0)

(
1− ε

ρ2
m(X, Y )

)
.

Proof. Due to the concavity, ĝ(ε) must lie above the chord connecting (0, ĝ(0)) and

(ρ2
m(X, Y ), H(Y )).

Remark 5.9. When X is weakly independent of Y (and thus ĝ(0) = 0), this corollary then

implies that ĝ(ε) ≥ ε H(Y )
ρ2m(X,Y )

. This lower bound can be achieved by the simple erasure

privacy filter shown in Fig. 3.2 with erasure probability 1 − ε
ρ2m(X,Y )

. This is because for

X (−− Y (−− Zδ, where PZδ|Y is an erasure channel with erasure probability δ, we have

ρ2
m(X,Zδ) = δ̄ρ2

m(X, Y ) [157, Page 8] and I(Y ;Zδ) = δ̄H(Y ).

The lower bound for ĝ(ε) given in Corollary 5.8 is similar to the lower bound for g(ε)

given in (3.9) with I(X;Y ) replaced by ρ2
m(X, Y ). Hence, these two bounds coincide

if for the given P we have I(X;Y ) = ρ2
m(X, Y ). For example if PY |X = BEC(δ) and

X ∼ Bernoulli(1
2
), then ρ2

m(X, Y ) = I(X;Y ) = δ̄ and then according to Lemmas 5.5 and

3.36, we have ĝ(ε) = g(ε). The following lemma generalizes this observation to the case

where PY |X is an erasure channel (see Section 3.8.3 for definition).

Lemma 5.10. If PY |X is an erasure channel (defined in Section 3.8.3) with erasure proba-

bility δ with 0 ≤ δ ≤ 1 and X = [M ], then for any 0 ≤ ε ≤ δ̄, we have

hb(δ) + εH(X) ≤ ĝ(ε) ≤ hb(δ) + (M − 1)ε.
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In particular, if X ∼ Bernoulli(1
2
), then

ĝ(ε) = g(ε) = hb(δ) + ε.

Proof. The upper bound follows immediately from Lemmas 5.5 and 3.36. For the lower

bound we use the observations that ρ2
m(X, Y ) = δ̄ [157, Page 8], ĝ(0) = g(0) = hb(δ)

(Lemma 3.36), and H(Y ) = hb(δ) + δ̄H(X), and then apply Corollary 5.8.

5.5 Binary Observable Data

In this section, we assume that Y is binary and show that it is sufficient to consider a ternary

random variable Z in the definition of ĝ(ε). We also derive bounds for ĝ(ε) in the special

case of PX|Y being BISO.

5.5.1 Cardinality Bound

We start by the following lemma.

Lemma 5.11. For a given P with marginals pX and qY = Bernoulli(q), ĝ(ε) is attained by

a privacy filter with a ternary output alphabet, i.e., |Z| = 3.

Proof. We first recall that ρ2
m(X,Z) = σ1, where σ1 is the second largest singular value of

the matrix B with entries PXZ(x,z)√
pX(x)PZ(z)

. We remark that B can also be written as B = AC,

where A and C have entries P(x,y)√
pX(x)qY (y)

and PY Z(y,z)√
qY (y)PZ(z)

, respectively. This implies that

rank(B) ≤ min{rank(A), rank(C)}. It follows that for binary Y , we have rank(B) = 2

(excluding the trivial cases where rank(A) = 1 or rank(C) = 1) and hence in light of (5.5),

ρ2
m(X,Z) = χ2(PXZ‖pXPZ).
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Consider the mapping L : [0, 1] → [0, 1]3 given by r 7→ (r, χ2(rX‖pX), hb(r)), where

rX(·) := PX|Y (·|0)r̄ + PX|Y (·|1)r is the X-marginal when Y ∼ Bernoulli(r). Let S be the

image of [0, 1] under this mapping and C its convex hull, i.e.,

C =

{
k∑
i=1

ωiL(ri) : ri ∈ [0, 1], k > 0, ωi ≥ 0,
k∑
i=1

ωi = 1

}
.

Since S is a compact and connected set in [0, 1]3, so is C, and hence according to the

Carathéodory-Fenchel theorem every points in C can be written as a convex combination

of no more than k = 3 points of S.

Now let PZ|Y be an optimal privacy filter which generates Z taking values in Z . Note

that

(q, χ2(PXZ‖pXPZ), H(Y |Z)) =

|Z|∑
z=1

PZ(z)L(PY |Z(1|z)),

and hence (q, χ2(PXZ‖pXPZ), H(Y |Z)) ∈ C. Thus there exists a ternary Z̃ such that

χ2(PXZ‖pXPZ) = χ2(PXZ̃‖pXPZ̃) and H(Y |Z) = H(Y |Z̃).

Remark 5.12. Since Z with |Z| = 3 is sufficient to achieve ĝ(ε) when Y is binary, we can

improve Lemma 5.5 for binary Y as follows:

ĝ(ε) ≤ g(κ̂ε),

where κ̂ := min{|X | − 1, 2}. In particular, we have

• If X ∼ Bernoulli(1
2
) and PY |X = BSC(α) with 0 ≤ α ≤ 1

2
, then according to

Corollaries 3.35 and 5.8 we have for 0 ≤ ε ≤ (1− 2α)2

ε

(1− 2α)2
≤ ĝ(ε) ≤ ε

1− hb(α)
.
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• If Y ∼ Bernoulli(1
2
) and PX|Y is BISO, then according to Corollaries 3.32 and 5.8

we have for 0 ≤ ε ≤ ρ2
m(X, Y )

ε

ρ2
m(X, Y )

≤ ĝ(ε) ≤ 2ε

I(X;Y )
.

5.5.2 Binary Input Symmetric Output Channels

In this section, we first derive an necessary condition for the linearity of ĝ when PX|Y is

BISO. We then derive bounds for two special cases: (i) Y ∼ Bernoulli(1
2
) and (ii) PX|Y =

BSC(α) and Y ∼ Bernoulli(q) for any 0 ≤ q ≤ 1
2
.

Similar to Section 3.8, we can define the initial efficiency of privacy-constrained infor-

mation extraction as the derivative ĝ′(0) of ĝ(ε) at ε = 0. Analogous to Lemma 3.23, the

following lemma provides a lower bound for the initial efficiency.

Lemma 5.13. For a given joint distribution P with marginals pX and qY , if X is weakly

independent of Y (i.e., ĝ(0) = 0), then

ĝ′(0) ≥ max
y∈Y

− log qY (y)

χ2(PX|Y (·|y)‖pX(·))
,

where the χ2-divergence is defined in (5.2).

Proof. First, note that it can be verified using (5.5) that if either X or Z is binary, then

ρ2
m(X,Z) =

∑
x∈X

∑
z∈Z

[
P 2
XZ(x, z)

pX(x)PZ(z)

]
− 1. (5.8)

We use the same privacy filter as in the proof of Lemma 3.23, illustrated in Fig. 3.3. Specif-

ically, let Z = {k, e} for some fixed k ∈ Y and the erasure symbol e, and define the
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privacy filter PZ|Y by PZ|Y (k|y) = δ1{y=k}, and PZ|Y (e|y) = 1 − δ1{y=k}, which imply

PZ(k) = δq(k) and PZ(e) = 1− δq(k). Since Z is binary, from (5.8) we can write

ρ2
m(X,Z) = −1 +

∑
x∈X

P 2
XZ(x, k)

pX(x)PZ(k)
+
∑
x∈X

P 2
XZ(x, e)

pX(x)PZ(e)

(a)
= −1 + δqY (k)

∑
x∈X

P 2
X|Y (x|k)

pX(x)
+
∑
x∈X

(pX(x)− δP(x, k))2

pX(x)(1− δqY (y))

where (a) follows from the fact that PX|Z(x|k) = PX|Y (x|k) for k ∈ Y and PX|Z(x|e) =

pX(x)−δP(x,k)
1−δqY (k)

. We can therefore write

d
dδ
ρ2
m(X,Z) = qY (k)

∑
x∈X

P 2
X|Y (x|k)

pX(x)

+
∑
x∈X

pX(x)(1− δPY |X(k|x))

(1− δqY (k))2
(δPY |X(k|x)qY (k) + qY (k)− 2PY |X(k|x)),

and hence

d
dδ
ρ2
m(X,Z)|δ=0 = qY (k)

[∑
x∈X

P 2
X|Y (x|k)

pX(x)
− 1

]
= qY (k)χ2(PX|Y (·|k)‖pX(·)). (5.9)

The rest follows similarly as in the proof of Lemma 3.23.

The following result establishes a similar result as Lemma 3.25.

Lemma 5.14. For any joint distribution P with marginals qY and pX , we have

H(Y )

ρ2
m(X, Y )

≤ dH(Y )

χ2(P‖pXqY )
≤ max

y∈Y

−d log qY (y)

χ2(PX|Y (·|y)‖pX(·))
,

where d := min{|X |, |Y|} − 1 and the second inequality becomes equality if and only if

there exists a constant c > 0 such that− log qY (y) = cχ2(PX|Y (·|y)‖pX(x)) for all y ∈ Y .

128



Proof. First note that from Proposition 4.6 and (5.6), we have

1

d
χ2(P‖pXqY ) ≤ ρ2

m(X, Y ) ≤ χ2(P‖pXqY ). (5.10)

We therefore obtain

H(Y )

ρ2
m(X, Y )

≤ dH(Y )

χ2(P‖pXqY )
=

−d
∑

y∈Y qY (y) log qY (y)∑
y∈Y qY (y)χ2(PX|Y (·|y)‖pX(·))

≤ max
y∈Y

−d log qY (y)

χ2(PX|Y (·|y)‖pX(·))
,

where the second inequality is analogous to Lemma 3.25.

Combining Lemmas 5.13 and 5.14, we obtain a necessary condition for the linearity of

ĝ when PX|Y is BISO.

Theorem 5.15. If PX|Y is BISO, then ĝ is linear only if Y ∼ Bernoulli(1
2
).

Proof. First, we notice that since Y is binary (i.e., d = 1), we have from (5.10) that

ρ2
m(X, Y ) = χ2(P‖pXqY ). Since for binary Y we have ĝ(0) = 0, linearity and concavity

of ĝ imply ĝ(ε) = ε H(Y )
ρ2m(X,Y )

. Thus we can write

max
y∈{0,1}

− log qY (y)

χ2(PX|Y (·|y)‖pX(·))
(a)

≤ ĝ′(0) =
H(Y )

ρ2
m(X, Y )

(b)

≤ max
y∈{0,1}

− log qY (y)

χ2(PX|Y (·|y)‖pX(·))
,

where (a) and (b) follow from Lemmas 5.13 and 5.14, respectively. We then conclude that

ĝ′(0) = H(Y )
ρ2m(X,Y )

= maxy∈{0,1}
− log qY (y)

χ2(PX|Y (·|y)‖pX(·)) and hence

χ2(PX|Y (·|0)‖pX(·))
log q̄

=
χ2(PX|Y (·|1)‖pX(·))

log q
, (5.11)
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where q := qY (1). It is straightforward to modify Lemma A.1 to show that equation (5.11)

has only one solution q = 1
2
.

In light of this theorem, if PX|Y is BISO, then the lower bound in Corollary 5.8 is

attained only if Y is uniform. In an attempt to prove the converse, i.e., if PX|Y is BISO and

Y is uniform, then ĝ(ε) = ε
ρ2m(X,Y )

, we obtain the following result. It is still not clear that

the converse of Theorem 5.15 holds.

Theorem 5.16. If Y ∼ Bernoulli(1
2
) and PX|Y is BISO, then

ĝ(ε) ≤ log

(
2 + 2ε

1 + ρ2
m(X, Y )

)
.

Furthermore, the bound is tight if there exists a function f such that f(X) = Y with

probability one.

Proof. Let X = {±k, . . . ,±2,±1}. As shown earlier, for binary Y we have ρ2
m(X,Z) =

χ2(PXZ‖pXPZ). Thus we can write

ρ2
m(X,Z) = −1 +

∑
z∈Z

k∑
x=−k

P 2
XZ(x, z)

pX(x)PZ(z)
= −1 +

∑
z∈Z

k∑
x=−k

pX(x)P 2
Z|X(z|x)

PZ(z)

= −1 +
∑
z∈Z

k∑
x=−k

pX(x)(PZ|Y (z|0)PY |X(0|x) + PZ|Y (z|1)PY |X(1|x))2

PZ(z)

= −1 +
∑
z∈Z

P 2
Z|Y (z|0)

PZ(z)

k∑
x=−k

pX(x)P 2
Y |X(0|x) +

∑
z∈Z

P 2
Z|Y (z|1)

PZ(z)

k∑
x=−k

pX(x)P 2
Y |X(1|x)

+2
∑
z∈Z

PZ|Y (z|0)PZ|Y (z|1)

PZ(z)

k∑
x=−k

pX(x)PY |X(0|x)PY |X(1|x)

= −1 +
1

4

∑
z∈Z

P 2
Z|Y (z|0)

PZ(z)

k∑
x=−k

P 2
X|Y (x|0)

pX(x)
+

1

4

∑
z∈Z

P 2
Z|Y (z|1)

PZ(z)

k∑
x=−k

P 2
X|Y (x|1)

pX(x)
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+
1

2

∑
z∈Z

PZ|Y (z|0)PZ|Y (z|1)

PZ(z)

k∑
x=−k

PX|Y (x|0)PX|Y (x|1)

pX(x)
. (5.12)

Note that

1

2

k∑
x=−k

P 2
X|Y (x|0)

pX(x)
=

−1∑
x=−k

P 2
X|Y (−x|1)

PX|Y (−x|1) + PX|Y (x|1)
+

k∑
x=1

P 2
X|Y (−x|1)

PX|Y (−x|1) + PX|Y (x|1)

=
k∑
x=1

P 2
X|Y (x|1)

PX|Y (−x|1) + PX|Y (x|1)
+

k∑
x=1

P 2
X|Y (−x|1)

PX|Y (−x|1) + PX|Y (x|1)

=
1

2

k∑
x=−k

P 2
X|Y (x|1)

pX(x)
.

On the other hand, we can write

ρ2
m(X, Y ) = −1+

∑
x∈X

∑
y∈{0,1}

P2(x, y)

pX(x)qY (y)
= −1+

1

2

k∑
x=−k

P 2
X|Y (x|0)

pX(x)
+

1

2

k∑
x=−k

P 2
X|Y (x|1)

pX(x)
.

Thus we have

1

2

k∑
x=−k

P 2
X|Y (x|0)

pX(x)
=

1

2

k∑
x=−k

P 2
X|Y (x|1)

pX(x)
=

1

2
(1 + ρ2

m(X, Y )). (5.13)

Plugging (5.13) into (5.12), we obtain

ρ2
m(X,Z) = −1 +

1

2
(1 + ρ2

m(X, Y ))

[
1

2

∑
z∈Z

P 2
Z|Y (z|0)

PZ(z)
+

1

2

∑
z∈Z

P 2
Z|Y (z|1)

PZ(z)

]

+
1

2
K(PZ|Y (·|0)‖PZ|Y (·|1))K(PX|Y (·|0)‖PX|Y (·|1))

= −1 +
1

2
(1 + ρ2

m(X, Y ))(1 + ρ2
m(Y, Z))

+
1

2
K(PZ|Y (·|0)‖PZ|Y (·|1))K(PX|Y (·|0)‖PX|Y (·|1))
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(a)

≥ −1 +
1

2
(1 + ρ2

m(X, Y ))(1 + ρ2
m(Y, Z)), (5.14)

where

K(P‖Q) :=
∑
i∈I

P (i)Q(i)

0.5P (i) + 0.5Q(i)
,

for any pairs of probability distributions P and Q supported over a set I. Inequality (a)

becomes equality if K(PX|Y (·|0)‖PX|Y (·|1)) = 0 or equivalently PX|Y (x|0)PX|Y (x|1) = 0

for all x ∈ X . After relabeling if necessary, we can assume that there exist disjoints sets

X0 and X1 such that X = X0 ∪ X1 and PX|Y (x|1) = 0 for all x ∈ X0, and PX|Y (x|0) = 0

for all x ∈ X1. We then define a boolean function f as f(x) = 0 if x ∈ X0 and f(x) = 1 if

x ∈ X1.

The inequality in (5.14) implies

1 + ρ2
m(Y, Z) ≤ 2 + 2ρ2

m(X,Z)

1 + ρ2
m(X, Y )

,

from which, and the fact that I(Y ;Z) ≤ log(1 + ρ2
m(Y, Z)) proved in (5.4), the result

follows.

Remark 5.17. If there exists a function f such that f(X) = Y with probability one, or

equivalently K(PX|Y (·|0)‖PX|Y (·|1)) = 0, then we obtain two Markov chains X (−−

Y (−− Z and Y (−− X (−− Z. Due to the data processing inequality for maximal

correlation (5.3), we conclude that ρ2
m(X,Z) = ρ2

m(Y, Z), and hence, according to the

inequality I(Y ;Z) ≤ log(1 + ρ2
m(Y, Z)), we obtain that ĝ(ε) ≤ log(1 + ε). In fact,

Theorem 5.16 proves that in this case this bound holds with equality because the existence

of such a function f implies that ρ2
m(X, Y ) = 1.

We close this chapter by modifying the geometric approach that Witsenhausen and
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Wyner [147] proposed to generalize Mrs. Gerber’s Lemma [153] (see Section 3.5). To this

end, let %2
T(q,∆) be defined as

%2
T(q,∆) := min

PZ|Y :ρ2m(Y,Z)≥∆
X(−−Y(−−Z

ρ2
m(X,Z),

for any 0 ≤ ∆ ≤ 1, where Y ∼ qY = Bernoulli(q) and T is the channel from

Y to X . Recall that X ∼ pX . Consider the map τ : [0, 1] → [0, 1]3 given by

r 7→ (r, χ2(rY ‖qY ), χ2(rX‖pX)), where rY = Bernoulli(r) and rX(·) = PX|Y (·|0)r̄ +

PX|Y (·|1)r is the X-marginal when Y ∼ rY . Let S be the image of [0, 1] under

τ and C be its convex hull. By definition, C can be written as the collection of

triplets (s, χ2(PY ′|ZPZ‖qY PZ), χ2(PX′|ZPZ‖pXPZ)), where s =
∑k

i=1 ωiri, PZ(i) = ωi,

PY ′|Z(·|i) = Bernoulli(ri), and PX′|Z(·|i) = PX|Y (·|0)r̄i + PX|Y (·|1)ri for i ∈ [k] and

some integer k. Note that if and only if s = q, then the pair (X ′, Y ′) has the same dis-

tribution as the given pair (X, Y ). Since Y is binary ρ2
m(X,Z) = χ2(PXZ‖pXPZ) and

ρ2
m(Y, Z) = χ2(PY Z‖qY PZ). Consequently, the graph of %2

T(q, ·) is the lower boundary of

the convex set Cq := C ∩ {s = q}.

Similar to (3.12), we can define the conjugate function

r2
T(q, λ) := min

0≤∆≤1
%2
T(q,∆)− λ∆ = min{η − λ∆ : (∆, η) ∈ Cq}, (5.15)

for every λ ≥ 0. It can be verified that

%2
T(q,∆) = max

λ≥0
r2
T(q, λ) + λ∆. (5.16)

Using a technique similar to Section 3.5, we can show that for a fixed λ the graph of r2
T(·, λ)
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is the lower convex envelope of the map φ( · , λ) : [0, 1]→ R, given by

φ(r, λ) = χ2(rX‖pX)− λχ2(rY ‖qY ).

Hence, similar to Section 3.5, we only need to focus on the domain of φ(·, λ) on which

it differs from r2
T(·, λ) for a given λ. Computing r2

T(·, λ) from φ(·, λ) follows the same

procedure as given in Section 3.5. The following lemma clarifies this approach in the

simple binary symmetric case.

Lemma 5.18. Let PX|Y = BSC(α) and Y ∼ qY = Bernoulli(q) with 0 ≤ α, q ≤ 1
2
. Then

for any ε ≤ ρ2
m(X, Y )

ĝ(ε) ≤ log

(
1 +

ε

ρ2
m(X, Y )

)
.

Proof. For notational simplicity let χ2
b(a‖b) := a2

b
+ ā2

b̄
− 1 for 0 < a, b < 1. Then, we

can write φ(r, λ) = χ2
b(r ∗ α‖q ∗ α)− λχ2

b(r‖q). It is straightforward to show that φ(·, λ)

is convex for 0 < λ < ρ2
m(X, Y ) and concave for λ ≥ ρ2

m(X, Y ). Therefore we need to

focus on λ ≥ ρ2
m(X, Y ). Note that (q, r2

T(q, λ)) can be written as a convex combination

of the points (0, φ(0, λ)) and (1, φ(1, λ)) with weights q̄ and q, respectively. Thus, for any

λ ≥ ρ2
m(X, Y )

r2
T(q, λ) =

α2q̄ + ᾱ2q

α ∗ q
+
ᾱ2q̄ + α2q

1− α ∗ q
− 1− λ

= ρ2
m(X, Y )− λ.

Now that we obtain r2
T(q, λ), we invoke (5.16) to write

%2
T(q,∆) = max

λ≥ρ2m(X,Y )
ρ2
m(X, Y )− λ+ λ∆
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= ∆ρ2
m(X, Y ) (5.17)

Since %2
T(q,∆) = ∆ρ2

m(X, Y ), we conclude that

max
PZ|Y :ρ2m(X,Z)≤ε
X(−−Y(−−Z

ρ2
m(Y, Z) =

ε

ρ2
m(X, Y )

. (5.18)

Since we have I(Y ;Z) ≤ log(1 + ρ2
m(Y, Z)), the results immediately follows.

It is interesting to note that, on the one hand, the strong data processing inequality for

maximal correlation (5.3) implies that ρm(X,Z) ≤ ρm(Y, Z)ρm(X, Y ) and, on the other

hand, (5.18) implies that ρm(X,Z) ≥ ρm(Y, Z)ρm(X, Y ). Hence, if the channel from Y

to X is BSC, then we have

ρm(X,Z) = ρm(Y, Z)ρm(X, Y ), (5.19)

for any arbitrary channel PZ|Y which forms the Markov chainX (−− Y (−− Z. A mutual

information counterpart of (5.19) can be obtained from Corollary 3.32. If Y ∼ Bernoulli(1
2
)

and PX|Y is BISO, then

I(X;Z) ≥ I(X;Y )I(Y ;Z),

for any arbitrary channel PZ|Y which forms the Markov chain X (−− Y (−− Z.
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Chapter 6

Privacy-Aware Guessing Efficiency

6.1 Overview

As seen in the previous chapter, the privacy measure based on maximal correlation re-

sults in an operational interpretation; that is the requirement ρ2
m(X,Z) ≤ ε implies that

Pc(f(X)|Z) − Pc(f(X)) ≤ O(
√
ε) for any non-constant function f . However, the cor-

responding rate-privacy function ĝ(ε) is difficult to calculate in closed form. In order to

overcome this difficulty and at the same time to enjoy the operational interpretation of pri-

vacy, we propose to measure privacy when bothX and Y are discrete in terms of Arimoto’s

mutual information . In fact, we utilize Arimoto’s mutual information to measure both

utility and privacy and then define a parametric family g(ν,µ)(ε) of utility-privacy trade-

offs. In the uniform case, the parameters ν ∈ [1,∞] and µ ∈ [1,∞] correspond to the

sensitivity of privacy and utility, respectively, i.e., for ν1 ≤ ν2 and µ1 ≤ µ2 we have

g(ν2,µ1)(ε) ≤ g(ν1,µ1)(ε) ≤ g(ν1,µ2)(ε). Of this family of utility-privacy tradeoffs, two ex-

treme cases are particularly interesting: g(1,1)(ε), which equals g(ε), and g(∞,∞)(ε), that is

the limit of g(ν,µ)(ε) as both ν and µ tend to∞. As seen in Chapter 3, the former provides

an information-theoretic formulation for the utility-privacy tradeoff. In this chapter, we see
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that the latter provides an estimation-theoretic formulation for the utility-privacy tradeoff.

In fact, g(∞,∞)(ε) provides a quantitative answer to the following question: Among all dis-

crete random variables Z satisfying X (−− Y (−− Z, what is the largest log Pc(Y |Z)
Pc(Y )

such

that log Pc(X|Z)
Pc(X)

≤ ε for a given ε?

6.1.1 Main Contribution

The main contributions of this chapter are as follows:

• We first describe a decision-theoretic setting where given two discrete random vari-

ables X and Z we define the so-called information leakage as the amount of in-

formation leaking from X to Z. We then show that, in some particular cases, the

information leakage is in a one-to-one correspondence with Arimoto’s mutual infor-

mation and thus provide an operational interpretation for the privacy measure based

on Arimoto’s mutual information.

• Given 1 ≤ ν, µ ≤ ∞, we then define a parametric family g(ν,µ)(ε) of utility-privacy

tradeoffs which is shown to include g(ε). It is argued that g(1,1)(ε) = g(ε) and

g(∞,∞)(ε) can lower and upper bound each g(ν,µ)(ε) for ν, µ > 1. This observation

motivates us to concentrate on evaluating g(∞,∞)(ε).

• In evaluating g(∞,∞)(ε), we define the so-called privacy-constrained guessing proba-

bility h(ε) as the maximum of Pc(Y |Z), where the maximization is taken over PZ|Y

such that X (−− Y (−− Z and Pc(X|Z) ≤ ε. We observe that h(ε) has a one-to-

one relationship with g(∞,∞)(ε) and that it is easier to deal with, and thus we turn our

attention to h(ε).

• Using geometric properties of the set of the privacy filters, we prove some functional
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properties of h. In particular, we show that it is strictly increasing, concave and

piecewise linear on [Pc(X),Pc(X|Y )]. These properties allow us to derive a closed

form expression for h in the binary case, i.e., |X | = |Y| = 2. The optimal privacy fil-

ter in this case is a simple Z-channel which establishes an optimal privacy-preserving

mechanism to avoid survey response bias [145]; see Example 1.3.

• To study the non-binary case, we define h similar to h with a further assumption

that Z = Y . Using a novel technique, we compute, h′(Pc(X|Y )), the derivate of

h(·) at ε = Pc(X|Y ) in closed form and show that there exists a constant 0 ≤ εL <

Pc(X|Y ) such that h(ε) = 1 − (Pc(X|Y ))h′(Pc(X|Y )) for ε ∈ [εL,Pc(X|Y )].

Thus, this technique yields a closed form expression for h(ε) for general pair of

discrete random variables (X, Y ) for sufficiently large, but nontrivial, values of ε.

By assuming X = Y = {0, 1}n, this result enables us to derive expression for

h corresponding to n-tuples (Xn, Y n), where Xn consists of the first n samples

of either a memoryless or a first-order Markov process with a symmetric transition

matrix and Y n is the output of a memoryless BSC(α) fed with Xn.

In this chapter, we need the following definitions. The Rényi entropy Hν(X) of order

ν ∈ [1,∞] is defined as

Hν(X) :=


H(X), ν = 1,

1
1−ν log

(∑
x∈X pνX(x)

)
, 1 < ν <∞,

− log (Pc(X)) , ν =∞,

(6.1)

where Pc(X) was defined in Definition 5.4. Arimoto’s conditional entropy of order ν ∈
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[1,∞] is defined as

Hν(X|Z) :=



H(X|Z), ν = 1,

ν
1−ν log

(∑
z∈Z PZ(z)

[∑
x∈X P

ν
X|Z(x|z)

]1/ν
)
, 1 < ν <∞,

− log (Pc(X|Z)) , ν =∞,

(6.2)

where Pc(X|Z) was defined in Definition 5.4. Arimoto’s mutual information of order ν ∈

[1,∞] is then defined as Iν(X;Z) := Hν(X) − Hν(X|Z) (see, e.g. [142]). Note that

I1(X;Z) = I(X;Z).

6.2 Loss-Based Information Leakage: A General Framework

Consider a pair of random variables (X,Z) ∈ X ×Z . Using a decision rule ψ : Z → X̂ , a

decision maker, say Bob, takes x̂ = ψ(z) as a prediction of the target variable X whenever

Z = z. In this context, a loss function ` : X × X̂ → R+ quantifies through `(x, x̂) the loss

suffered by Bob when the true value of X is x but he used x̂ as an estimate of X .

The Bayes map for loss function ` is the optimal decision rule, i.e., the map ψ that

minimizes the expected loss. When no side information is available, the loss correspond-

ing to the Bayes map is inf x̂∈X̂ E[`(X, x̂)] and when side information Z is available, the

corresponding loss is

inf
ψ:Z→X̂

E[`(X,ψ(Z))] = inf
PX̂|Z :X(−−Z(−−X̂

E[`(X, X̂)].

In this context, we propose the difference between the log-losses with and without side

information Z as a measure of the information leakage from X to Z.
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Definition 6.1. For a given loss function ` : X × X̂ → R+, the information leakage from

X to Z is defined as

L`(X → Z) := sup
PX̂|Z :X(−−Z(−−X̂

log
inf x̂∈X̂ E[`(X, x̂)]

E[`(X, X̂)]
.

Since side information can only improve the performance, L`(X → Z) ≥ 0.

Example 6.2 (Hamming loss function). Let X̂ = X = [M ] and `H(x, x̂) = 1{x6=x̂}, where

1{·} is the indicator function. Then, the associated information leakage LH(X → Z) is

given by

LH(X → Z) = log
1− Pc(X)

1− Pc(X|Z)
= log

1− 2−H∞(X)

1− 2−H∞(X|Z)
,

where the second equality follows from (6.1) and (6.2).

Note that if X ∼ Bernoulli(p) and PZ|X = BSC(α) with p ∈ [1
2
, 1] and α ∈ [0, 1

2
],

then Pc(X) = p and Pc(X|Z) = pᾱ + max{p̄ᾱ, αp}. In this case, it is straightforward to

verify that LH(X → Z) = 0 if and only if p ≥ ᾱ. Therefore, if 1
2
< ᾱ ≤ p < 1 then

LH(X → Z) = 0 even though Z is not independent of X . This example shows that, in

general, L`(X → Z) = 0 does not imply X⊥⊥Z. This contrasts with other notions of

information leakage: mutual information in Chapter 3, maximal correlation in Chapter 5,

and Sibson’s mutual information in [79], where zero leakage is equivalent to independence.

Example 6.3 (Generalized Hamming loss function). Let X = [M ] and X̂ be the set of all

probability distributions over X . For ν ∈ (1,∞), the generalized Hamming loss function

of order ν is defined as [141, eq. 10.27]

`ν(x,Q) :=
ν

ν − 1

(
1−Q(x)

ν−1
ν

)
.
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For this loss function, the associated information leakage LGH
ν (X → Z) satisfies

LGH
ν (X → Z) = log

1− 2−
ν−1
ν
Hν(X)

1− 2−
ν−1
ν
Hν(X|Z)

. (6.3)

It is straightforward to show that lim
ν→1
LGH
ν (X → Z) =

H(X)

H(X|Z)
and lim

ν→∞
LGH
ν (X → Z) =

LH(X → Z).

Example 6.4 (Squared-error loss function). Let X = X̂ = R and `(x, x̂) = (x − x̂)2. The

corresponding information leakage LMS(X → Z) is given by

LMS(X → Z) = log
var(X)

mmse(X|Z)
,

where mmse(X|Z) := E[(X − E[X|Z])2] = E[var(X|Z)].

We end this section by considering the following decision problem. Suppose that Alice

observes Y and, in order to receive a utility, she has to disclose it to Bob. In general, Y

might be correlated to her private information, represented by X . To maintain her privacy,

Alice would like to disclose another random variable Z which, on the one hand, maximizes

the utility, and on the other hand, preserves the privacy of X . From an estimation theoretic

point of view, it is reasonable to measure the utility in terms of the efficiency of Bob in

estimating Y . A way to measure this estimation efficiency is by the expectation of the

reward function associated to a loss function ` : Y × Ŷ → R+. In this case, for a given

Z, Bob seeks to maximize −E[`(Y, Ŷ (Z))] over all estimators Ŷ : Z → Ŷ . Since such a

maximum is in a one-to-one correspondence with L`(Y → Z), we will take the latter as

a utility measure. Similarly, we will take L`′(X → Z) as a measure of privacy where `′ :

X × X̂ → R+ is a loss function. In order to quantify the tradeoff between L`(Y → Z) and

L`′(X → Z), we introduce the utility-privacy function for discrete X and Y in Section 6.3
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using generalized Hamming loss functions ` = `µ and `′ = `ν and the estimation-noise-to-

signal ratio for continuous X and Y in Chapter 7 using the squared-error loss function for

both ` and `′.

6.3 Discrete Scalar Case

In this section, we assume that X and Y are discrete random variables taking values in

X = [M ] and Y = [N ], respectively. Let P(x, y) := PXY (x, y) with x ∈ X and y ∈ Y be

their joint distribution and pX and qY the marginal distributions. For every ν, µ ∈ [1,∞],

we define G(ν,µ)(P, · ) : [0,∞)→ R by

G(ν,µ)(P, ε) := sup
X(−−Y(−−Z
LGHν (X→Z)≤ε

LGH
µ (Y → Z),

which is a measure of the tradeoff between estimation efficiency and privacy discussed in

the previous section. In connection with the rate-privacy function in Chapter 3, we define

the following family of utility-privacy functions.

Definition 6.5. For every ν, µ ∈ [1,∞], we define the utility-privacy function g(ν,µ)(P, · ) :

[0,∞)→ R by

g(ν,µ)(P, ε) := sup
X(−−Y(−−Z
Iν (X;Z)≤ε

Iµ(Y ;Z).

Notice that the function g(ε) introduced in Chapter 3 equals g(1,1)(P, ε). If Z⊥⊥X ,

then both LGH
ν (X → Z) and Iν(X;Z) equal zero. Therefore, G(ν,µ)(P, ε) and g(ν,µ)(P, ε)

are well defined. When there is no risk of confusion, we will omit P in G(ν,µ)(P, ε) and

g(ν,µ)(P, ε).
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It is easy to see from (6.3) that

G(ν,µ)(ε) = log

(
1− 2−

µ−1
µ
Hµ(Y )

1− 2−
µ−1
µ

[Hµ(Y )−g(ν,µ)(ϑ(ε))]

)
,

where ϑ(ε) =
ν

ν − 1
log
(

2
ν−1
ν
Hν(X)

(
1− 2−ε

)
+ 2−ε

)
. This shows that G(ν,µ) can be ob-

tained from the utility-privacy function g(ν,µ). To characterize G(ν,µ), we can therefore focus

on g(ν,µ).

Computing g(ν,µ) for every ν, µ > 1 seems to be complicated even for the simple binary

case. However, the following lemma provides lower and upper bounds for g(ν,µ) in terms

of g(∞,∞). For notational simplicity, we let gν(ε) denote g(ν,ν)(ε).

Lemma 6.6. Let (X, Y ) be a pair of random variables and ν, µ ∈ (1,∞). Then

g(ν,µ)(ε) ≤ g∞
(
ν − 1

ν
ε+

1

ν
H∞(X)

)
+Hµ(Y )−H∞(Y ),

for any ε ≥ 0, and

g(ν,µ)(ε) ≥ µ

µ− 1
g∞ (ε−Hν(X) +H∞(X))− 1

µ− 1
H∞(Y ),

for any ε ≥ Hν(X)−H∞(X).

Proof. The facts that ν 7→ Hν(X|Z) is non-increasing on [1,∞] [56, Proposition 5] and

(
∑

i |xi|p)
1/p ≥ maxi |xi| for all p ≥ 0 imply

ν − 1

ν
Hν(X|Z) ≤ H∞(X|Z) ≤ Hν(X|Z). (6.4)
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Since I∞(X;Z) = H∞(X)−H∞(X|Z), the above lower bound implies

I∞(X;Z) ≤ H∞(X)− ν − 1

ν
Hν(X) +

ν − 1

ν
Iν(X;Z)

≤ 1

ν
H∞(X) +

ν − 1

ν
Iν(X;Z), (6.5)

where the second inequality follows from the fact that ν 7→ Hν(X) is non-increasing. Since

Iµ(Y ;Z) = Hµ(Y )−Hµ(Y |Z), the upper bound in (6.4) implies

Iµ(Y ;Z) ≤ I∞(Y ;Z) +Hµ(Y )−H∞(Y ). (6.6)

Therefore,

g(ν,µ)(ε) ≤ g∞
(

1

ν
H∞(X) +

ν − 1

ν
ε

)
+Hµ(Y )−H∞(Y ).

Similarly, interchanging X, ν and Y, µ in (6.5) and (6.6), we obtain

g(ν,µ)(ε) ≥ µ

µ− 1
g∞
(
ε−Hν(X) +H∞(X)

)
− 1

µ− 1
H∞(Y )

whenever ε ≥ Hν(X)−H∞(X).

In light of this lemma, we can focus on g∞ as it provides upper and lower bounds for

g(ν,µ), 1 < ν, µ ≤ ∞. In order to study g∞, we need the following definition.

Definition 6.7. Given a pair of discrete random variables (X, Y ) ∼ P and ε > 0, the

privacy-constrained guessing probability is defined as

h(P, ε) := sup
PZ|Y :X(−−Y(−−Z,

Pc(X|Z)≤ε

Pc(Y |Z). (6.7)
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For brevity, we write h(ε) for h(P, ε). The fact that I∞(X;Z) = log
(

Pc(X|Z)
Pc(X)

)
implies

g∞(ε) = log
h(2εPc(X))

Pc(Y )
. (6.8)

The above functional relation allows us to translate results for h into results for g∞.

In summary, G(ν,µ) and g(ν,µ) are intrinsically related and both quantify the tradeoff be-

tween utility and privacy. The latter family of functions can be bounded using the function

g∞ which, by the functional relation (6.8), can be obtained from h. The quantity h is

thus not only operational by itself, but it provides bounds for the family of utility-privacy

functions g(ν,µ) for any ν, µ > 1. It is therefore natural to focus on h in the remainder of

this chapter. However, before delving into h, we generalize the geometric approach given

in Section 3.5 to compute gν in the binary symmetric case.

6.3.1 Computation of g(ν,ν)

In this section, we generalize the geometric approach given in Section 3.5 to derive an

expression for gν(ε) in the special case PX|Y = BSC(α) and Y ∼ qY = Bernoulli(q) with

q ∈ [0, 1
2
].

Recall that the function φ was defined in (3.14) and it was shown that its upper concave

envelope (resp. lower convex envelop) equals G∗T (resp. F ∗T), the conjugate of GT (resp.

FT), defined in (3.15) (resp. (3.11)). This argument can also be used to characterize gν(ε)

for any ν ≥ 2 when PX|Y is a BSC, as shown below.

Define

Kν(X|Z) := E
[
‖PX|Z(·|Z)‖ν

]
=
∑
z∈Z

PZ(z)

[∑
x∈X

P ν
X|Z(x|z)

]1/ν

,
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and also Kν(X) := ‖pX‖ν for ν > 1. We may also use Kν(pX) to denote Kν(X). Note

that

Kν(X|Z) = exp

{
1− ν
ν

Hν(X|Z)

}
,

and also Kν(X) = exp
{

1−ν
ν
Hν(X)

}
. Note that conditioning reduces entropy, i.e.,

Hν(X|Z) ≤ Hν(X) for ν ∈ [1,∞] [56, Theorem 2]. Note also that the map x 7→

exp {1−ν
ν
x} is strictly decreasing, thus we have Kν(X|Z) ≥ Kν(X). For a given ν > 1,

T = PX|Y , and Y ∼ qY , let F (ν)
T (qY , · ) : [Kν(Y ), 1]→ [Kν(X), 1] be defined as

F
(ν)
T (qY , ∆) := min

Kν(Y |Z)≥∆
Kν(X|Z). (6.9)

Having defined F (ν)
T as above, we can write

max
Hν(Y |Z)≤κ

Hν(X|Z) =
ν

1− ν
logF

(ν)
T (qY , ∆), (6.10)

where κ = ν
1−ν log∆. The above expression yields a relationship between F (ν)

T and the

dual of gν :

min
Iν(Y ;Z)≥R

Iν(X;Z) = Hν(X)− ν

1− ν
logF

(ν)
T (qY , ∆), (6.11)

where R = Hν(Y )− ν
1−ν log∆. Consequently, analogous to Section 3.5, characterizing gν

is equivalent to characterizing F (ν)
T . In what follows, we generalize the approach given in

Section 3.5 to characterize F (ν)
T .

Recall that T = PX|Y and Y ∼ qY are given. Now consider the (|Y|+ 1)-dimensional

set S(ν) := {(q, Kν(q), Kν((Tq)X )) : q ∈ PY}, where (Tq)X ∈ PX is the marginal

distribution of X when Y ∼ q. Let C(ν) be the convex hull of S. It can be shown that C(ν)
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can be characterized as

C(ν) = {(q, Kν(Y
′|Z), Kν(X

′|Z)) : Y ′ ∼ q, X ′ ∼ (Tq)X , X
′ (−− Y ′ (−− Z}

Note that if and only if q = qY , then the pair (X ′, Y ′) has the same distribution as the given

pair (X, Y ). It is clear that we can write

F
(ν)
T (qY , ∆) = min {η : (qY , ∆, η) ∈ C(ν)} = min {η : (∆, η) ∈ C(ν)

Y },

where C(ν)
Y := C(ν) ∩ {q = qY}. Hence, the graph of F (ν)

T (qY , ·) is the lower boundary

of the convex set C(ν)
Y . Although this observation establishes the convexity of F (ν)

T (qY , ·),

the function gν need not be convex nor concave. Let now F
(ν)∗
T (q, · ) : R → R be the

conjugate of F (ν)
T (q, ·), i.e.,

F
(ν)∗
T (q, λ) := min{F (ν)

T (q, ∆)− λ∆ : Kν(q) ≤ ∆ ≤ 1}.

In fact, the line λx+F
(ν)∗
T (q, λ), of slope λ, supports C(ν)

Y from below and thus supports the

graph of F (ν)
T (q, ·). We can recover F (ν)

T from F
(ν)∗
T according the following relationship

F
(ν)
T (q, ∆) = max{F (ν)∗

T (q, λ) + λ∆ : λ ∈ R}.

The above setting coincides exactly with the Witsenhausen and Wyner’s setting [147],

described in Section 3.5. Consequently, we can invoke the procedure given in Section 3.5

to compute F (ν)
T . For a given λ, define the mapping φ(ν)( · , λ) : PY → R, given by

φ(ν)(q, λ) = Kν((Tq)X )− λKν(q). The procedure is as follows:

• Fix λ ∈ R and compute the lower convex envelope of φ(ν)(·, λ) (i.e., F (ν)∗
T (·, λ)),
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• If a point of the graph of F (ν)∗
T (·, λ) can be written as a convex combination of

φ(ν)(qi, λ) with weights ωi, i ∈ [k] for some k ≥ 2, then

F
(ν)
T

(
k∑
i=1

ωiqi,
k∑
i=1

ωiKν(qi)

)
=

k∑
i=1

ωiKν((Tqi)X ).

• If, for some λ, the function F (ν)∗
T (qY , λ) coincides with φ(qY , λ), then this corre-

sponds to a line of slope λ supporting the graph of F (ν)
T at point ∆ = Kν(qY ).

We next apply this procedure for the special case T = BSC(α) and qY = Bernoulli(q) with

α, q ∈ [0, 1
2
]. Let Kν(q) be defined as Kν(q), where q = Bernoulli(q) and also φ(ν)

b (q, λ) :=

Kν(α ∗ q) − λKν(q). Note that Kν(q) is strictly decreasing in q for q ∈ [0, 1
2
]. Let also

K−1
ν : [0, 1] → [0, 1

2
] be the functional inverse of Kν . The following result characterizes

gν for any ν ≥ 2 by characterizing its functional dual in the same spirit that Theorem 3.8

characterized the dual of g(ε).

Lemma 6.8. Let T = BSC(α) and qY = Bernoulli(q) with α, q ∈ [0, 1
2
]. Then, we have for

ν ≥ 2 and Kν(q) ≤ ∆ ≤ 1

FT(qY , ∆) = Kν(K
−1
ν (∆) ∗ α). (6.12)

Consequently,

min
Iν(Y ;Z)≥R

Iν(X;Z) =
ν

1− ν
log

Kν(q ∗ α)

Kν(K−1
ν (∆) ∗ α)

, (6.13)

where R = ν
1−ν log Kν(q)

∆
.
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Figure 6.1: The set of achievable pairs {(Iν(Y ;Z), Iν(X;Z))}, for PX|Y = BSC(0.1) and
qY = Bernoulli(0.3) in different cases ν = 1, ν = 2 and ν = 5. The lower
boundaries of these sets correspond to Theorem 3.8 for ν = 1 and to Lemma 6.8
for ν = 2 and 5.

Proof. First note that (6.13) follows directly from (6.11) and (6.12). To prove (6.12), ob-

serve that the second derivative of φ(ν)
b (·, λ) is given by

d2

dp2
φ

(ν)
b (p, λ) = (ν−1)(1−2α)2A(r)(C(r)−B(r))−λ(ν−1)A(p)(C(p)−B(p)), (6.14)

where r := α ∗ p and A(r) := (rν + r̄ν)1/ν−2, B(r) := (rν−1 − r̄ν−1)2, and C(r) :=

(rν + r̄ν)(rν−2 + r̄ν−2). This expression can be shown to be positive if λ ≤ (1− 2α)2 and

ν ≥ 2. For λ ≥ (1−2α)2 and ν ≥ 2, the right-hand side of (6.14) is negative on an interval

[pλ,ν , p̄λ,ν ] symmetric about p = 1
2

and is positive elsewhere with the local maximum at

p = 1
2

(Fig. 6.2). Therefore, we only need to focus on the interval [pλ,ν , p̄λ,ν ]. It can be

verified that we have d
dpφ

(ν)
b (pλ,ν , λ) = d

dpφ
(ν)
b (p̄λ,ν , λ) = 0. By symmetry, the lower convex
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Figure 6.2: The function φ(3)
b (p, 0.7), where T = BSC(0.1) and qY = Bernoulli(0.3).

envelope of the graph φ
(ν)
b (·, λ) is obtained by replacing p in φ

(ν)
b (p, λ) on the interval

[pλ,ν , p̄λ,ν ] by pλ,ν . Therefore, for the given q ≤ 1
2
, if pλ,ν ≤ q, then (q, F

(ν)∗
T (qY , λ)) is

a convex combination of (pλ,ν , φ
(ν)
b (pλ,ν , λ) and (p̄λ,ν , φ

(ν)
b (p̄λ,ν , λ) with weights ω and ω̄.

Hence, we can write

F
(ν)
T (qY , ωKν(pλ,ν) + ω̄Kν(p̄λ,ν)) = ωKν(pλ,ν ∗ α) + ω̄Kν(p̄λ,ν ∗ α),

where ω satisfies q = ωpλ,ν+ω̄p̄λ,ν . Note thatKν(pλ,ν) = Kν(p̄λ,ν) and alsoKν(pλ,ν∗α) =

Kν(p̄λ,ν ∗α). Thus, denoting pλ,ν by p, we conclude that F (ν)
T (qY , Kν(p)) = Kν(p ∗α) for

0 ≤ p ≤ q.

6.3.2 Geometric Properties of h

First, note that Pc(X|Y Z) ≥ Pc(X|Z) ≥ Pc(X) for random variables X , Y and Z. There-

fore from (6.7) we have Pc(Y ) ≤ h(ε) ≤ 1, and h(ε) = 1 if and only if ε ≥ Pc(X|Y ).

Thus it is enough to study h(·) over the interval [Pc(X),Pc(X|Y )]. An application of the

Support Lemma [40, Lemma 15.4] shows that it is enough to consider random variables Z

supported on Z = [N + 1]. Thus, the privacy filter PZ|Y can be realized by an N × (N + 1)
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stochastic matrix F ∈MN×(N+1), whereMN×M denotes the set of all real-valued N ×M

matrices. Let F be the set of all such matrices. Then both utility U(P, F ) = Pc(Y |Z) and

privacy P(P, F ) = Pc(X|Z) are functions of F ∈ F and can be written as

P(P, F ) :=
N+1∑
z=1

max
1≤x≤M

N∑
y=1

P (x, y)F (y, z), U(P, F ) :=
N+1∑
z=1

max
1≤y≤N

q(y)F (y, z).

(6.15)

In particular, we can express h(ε) as

h(ε) = sup
F∈F,

P(P,F )≤ε

U(P, F ). (6.16)

As before, consider P fixed and omit it in U(P, F ) and P(P, F ) when there is no risk of

confusion. It is straightforward to verify that P and U are continuous and convex on F .

On the other hand, we show in the following theorem that h is concave and continuous on

[Pc(X),Pc(X|Y )] and consequently, for every ε ∈ [Pc(X),Pc(X|Y )] there exists G ∈ F

such that P(G) = ε and U(G) = h(ε).

Theorem 6.9. The mapping ε 7→ h is concave on [Pc(X),Pc(X|Y )].

Proof. This result can be proved using a proof technique similar to [147, Theorem 2.3] (see

Section 3.5). However, we provide an easier proof based on the random filter argument

presented in the proof of Theorem3.2. Let PZ1|Y : Y → Z1 and PZ2|Y : Y → Z2 be

two optimal privacy filters with disjoint output alphabets Z1 and Z2, and corresponding

privacy levels ε1 and ε2, respectively. We introduce an auxiliary binary random variable

U ∼ Bernoulli(λ), independent of (X, Y ), for some λ ∈ [0, 1] and define the following

random privacy filter PZλ|Y : We pick PZ2|Y if U = 1 and PZ1|Y if U = 0. Note that U is a
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Figure 6.3: Typical h and its trivial lower bound, the chord connecting (Pc(X),h(Pc(X)))
and (Pc(X|Y ), 1).

deterministic function of Zλ. Then, we have

Pc(X|Zλ) = Pc(X|Zλ, U) = λ̄Pc(X|Z1) + λPc(X|Z2) = λ̄ε1 + λε2.

Analogously, we obtain Pc(Y |Zλ) = λ̄h(ε1) + λh(ε2). Since h(λ̄ε1 + λε2) ≥ Pc(Y |Zλ),

the result immediately follows.

The following theorem states that h is a piecewise linear function, as illustrated in

Fig. 6.3.

Theorem 6.10. The function h : [Pc(X),Pc(X|Y )] → R+ is piecewise linear, i.e., there

exist K ≥ 1 and thresholds Pc(X) = ε0 ≤ ε1 ≤ . . . ≤ εK = Pc(X|Y ) such that h is

linear on [εi−1, εi] for all i ∈ [K].

The proof of this theorem, which is given in Appendix C.1, relies on the geometric

formulation of h. In particular, it is proved that P and U , are piecewise linear functions in
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F . Using this fact, we establish the existence of a piecewise linear path of optimal filters

in F . The proof technique allows us to derive the slope of h on [εi−1, εi], given the family

of optimal filters at a single point ε ∈ [εi−1, εi]. For example, since the family of optimal

filters at ε = Pc(X|Y ) is easily obtainable in the binary case, it is possible to compute h

on the last interval. We utilize this observation in Section 6.3.4 to prove that in the binary

case h is indeed linear.

6.3.3 Perfect Privacy

When ε = Pc(X), observing Z does not increase the probability of guessingX . In this case

we say that perfect privacy holds. An interesting problem is to characterize when non-trivial

utility can be obtained under perfect privacy, that is, to characterize when h(Pc(X)) >

Pc(Y ) holds. To the best of our knowledge, a general necessary and sufficient condition

for this requirement is unknown.

Notice that h(Pc(X)) > Pc(Y ) is equivalent to g∞(0) > 0. As opposed to Iν(X;Z)

with 1 ≤ ν < ∞, I∞(X;Z) = 0 does not necessarily imply that X⊥⊥Z. In particular,

the weak independence arguments from Chapter 3 cannot be applied for g∞. However, we

have the following.

Proposition 6.11. Let (X,Z) be a pair of random variables with X uniformly distributed.

If I∞(X;Z) = 0, then X⊥⊥Z.

This proposition follows easily from the following lemma.

Lemma 6.12. If X is uniformly distributed, then the mapping ν 7→ Iν(X;Z) is non-

decreasing on [1,∞]. In particular, I(X;Z) ≤ I∞(X;Z).
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Proof. From the definition of Arimoto’s mutual information, we can write

Iν(X;Z) = − ν

1− ν
log
∑
z∈Z

[∑
x∈X

rν(x)P ν
Z|X(z|x)

] 1
ν

,

where rν(x) :=
pνX(x)∑

x′∈X pνX(x′)
. Since X is uniformly distributed, rν(x) = pX(x) = 1

M
. Thus

we obtain

Iν(X;Z) =
E0(ρ, pX , PZ|X)

ρ
,

where ρ := 1−ν
ν

, and for any channel W with input distribution Q, E0(ρ,Q,W) is Gal-

lager’s error exponent function [60], defined as

E0(ρ,Q,W) := − log
∑
z∈Z

[∑
x∈X

Q(x)W
1

1+ρ (z|x)

]1+ρ

.

Arimoto [12] showed that for anyQ and W fixed, the mapping ρ 7→ E0(ρ,Q,W)
ρ

is decreasing.

Since ρ is decreasing in ν, the result follows.

As a consequence of Proposition 6.11, when X and Y are uniformly distributed, one

can apply the weak independence arguments from Chapter 3 to obtain the following.

Corollary 6.13. If X and Y are uniformly distributed, then g∞(0) > 0 if and only if X is

weakly independent of Y .

When X is uniform, the privacy requirement I∞(X;Z) ≤ ε guarantees that an adver-

sary observing Z cannot efficiently estimate any arbitrary randomized function of X . To

see this, consider a random variable U which satisfies U (−− X (−− Z. Then we have

Pc(U |Z) =
∑
z∈Z

max
u∈U

∑
x∈X

PUX(u, x)PZ|X(z|x)
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≤
∑
z∈Z

(
max
x∈X

PZ|X(z|x)

)(
max
u∈U

∑
x∈X

PUX(u, x)

)

=
Pc(X|Z)Pc(U)

Pc(X)
,

which can be rearranged to yield I∞(U ;Z) ≤ I∞(X;Z). It is worth mentioning that

the data processing inequality for I∞ [56] states that I∞(Z;U) ≤ I∞(Z;X). However,

I∞(Z;U) is not necessarily equal to I∞(U ;Z).

6.3.4 Binary Case

A channel W is called a binary input binary output channel with crossover probabilities α

and β, denoted by BIBO(α, β), if W(·|0) = (ᾱ, α) and W(·|1) = (β, β̄). Notice that ifX ∼

Bernoulli(p) with p ∈ [1
2
, 1) and PY |X = BIBO(α, β) with α, β ∈ [0, 1

2
), then Pc(X) = p

and Pc(X|Y ) = max{ᾱp̄, βp}+ β̄p. In this case, if ᾱp̄ ≤ βp then Pc(X|Y ) = p = Pc(X)

and hence h(p) = 1. The following theorem, whose proof is given in Appendix C.2,

establishes the linear behavior of h in the non-trivial case ᾱp̄ > βp.

Theorem 6.14. Let X ∼ Bernoulli(p) with p ∈ [1
2
, 1) and PY |X = BIBO(α, β) with α, β ∈

[0, 1
2
) such that ᾱp̄ > βp. Then, for any ε ∈ [p, ᾱp̄+ β̄p] = [Pc(X),Pc(X|Y )],

h(ε) =


1− ζ(ε)q, αᾱp̄2 < ββ̄p2,

1− ζ̃(ε)q̄, αᾱp̄2 ≥ ββ̄p2,

where q := qY (1) = αp̄+ β̄p,

ζ(ε) :=
ᾱp̄+ β̄p− ε
β̄p− αp̄

, and ζ̃(ε) :=
ᾱp̄+ β̄p− ε
ᾱp̄− βp

. (6.17)
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Figure 6.4: Optimal privacy mechanisms in Theorem 6.14.

Furthermore, the Z-channel Z(ζ(ε)) and the reverse Z-channel Z̃(ζ̃(ε)) achieve h(ε) when

αᾱp̄2 < ββ̄p2 and αᾱp̄2 ≥ ββ̄p2, respectively. The optimal privacy filters are depicted in

Fig. 6.4.

Note that the condition αᾱp̄2 < ββ̄p2 can be equivalently written as PX|Y (0|0) <

PX|Y (1|1). Consequently, when αᾱp̄2 < ββ̄p2, the event Y = 1 reveals more useful

information about X and hence it needs to be distorted to maintain the privacy of X .

Under the hypotheses of Theorem 6.14, there exists a Z-channel for every ε ∈

[Pc(X),Pc(X|Y )] that achieves h(ε). A minor modification to the proof of Theorem 6.14

shows that the Z-channel is the only binary channel with this property. It must be noted that

even in the symmetric case (i.e., α = β), the optimal filter cannot be a symmetric channel

for p ∈ (1
2
, 1). However, when α = β and p = 1

2
, the channel BSC(0.5ζ(ε)) can be easily

shown to be an optimal privacy filter for every ε ∈ [Pc(X),Pc(X|Y )].

It is straightforward to show that 1−ζ(p)q > q̄ if and only if p ∈ (1
2
, 1), and 1−ζ(p)q >

q if and only if αᾱp̄2 < ββ̄p2. In particular, we have the following necessary and sufficient

condition for the non-trivial utility under perfect privacy.

Corollary 6.15. Let X ∼ Bernoulli(p) with p ∈ [1
2
, 1) and PY |X = BIBO(α, β) with

α, β ∈ [0, 1
2
) such that ᾱp̄ > βp. Then g∞(0) > 0 if and only if αᾱp̄2 < ββ̄p2 and
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p ∈ (1
2
, 1).

6.3.5 A variant of h

Thus far, we studied the privacy-constrained guessing probability hwhere no constraint on

the cardinality of the displayed data Z is imposed (other than being finite). Nevertheless, it

was shown that it is sufficient to considerZ with cardinality |Y|+1 = N+1. However, this

condition may be practically inconvenient. Moreover, for the scalar binary case examined

in the last section we showed that a binary Z was sufficient to achieve h(ε) for any ε ∈

[Pc(X),Pc(X|Y )]. Hence to simplify the constrained optimization problem involved, it is

natural to require that |Z| = |Y| = N , which leads to the following variant quantity of h,

denoted by h.

Definition 6.16. For arbitrary discrete random variables X and Y supported on X and Y

respectively, let h : [Pc(X),Pc(X|Y )]→ R+ be defined by

h(ε) := sup
PZ|Y ∈Dε

Pc(Y |Z),

where Dε :=
{
PZ|Y : Z = Y , X (−− Y (−− Z,Pc(X|Z) ≤ ε

}
.

Unlike h, the definition of h requires Z = Y . This difference makes the tools from

[147] unavailable. In particular, the concavity and hence the piecewise linearity of h do

not carry over to h. However, we have the following theorem for h whose proof is given

in Appendix C.3. For (y0, z0) ∈ Y × Y , a channel W is said to be an N -ary Z-channel

with crossover probability γ from y0 to z0, denoted by Zy0,z0(γ), if the input and output

alphabets are Y and W(y|y) = 1 for y 6= y0, W(z0|y0) = γ, and W(y0|y0) = γ̄. We also let

h′(Pc(X|Y )) denote the left derivative of h(·) evaluated at ε = Pc(X|Y ). For notational

157



convenience, we adopt the convention x
0

= +∞ for x > 0.

Theorem 6.17. Let X and Y be discrete random variables. If Pc(X) < Pc(X|Y ), then

there exists εL < Pc(X|Y ) such that h is linear on [εL,Pc(X|Y )]. In particular, for every

ε ∈ [εL,Pc(X|Y )],

h(ε) = 1− (Pc(X|Y )− ε)h′(Pc(X|Y )). (6.18)

Moreover, if qY (y) > 0 for all y ∈ Y and if there exists (a unique) xy ∈ X for each y ∈ Y

such that Pr(X = xy|Y = y) > Pr(X = x|Y = y) for all x 6= xy, then

h′(Pc(X|Y )) = min
(y,z)∈Y×Y

qY (y)

Pr(X = xy, Y = y)− Pr(X = xz, Y = y)
. (6.19)

In addition, if (y0, z0) ∈ Y × Y attains the minimum in (6.19), then there exists εy0,z0L <

Pc(X|Y ) such that Zy0,z0(ζy0,z0(ε)) achieves h(ε) for every ε ∈ [εy0,z0L ,Pc(X|Y )], where

ζy0,z0(ε) =
Pc(X|Y )− ε

Pr(X = xy0 , Y = y0)− Pr(X = xz0 , Y = y0)
.

Although (6.18) establishes the linear behavior of h over [εL,Pc(X|Y )] for general X

and Y , a priori it is not clear how to obtain h′(Pc(X|Y )). Under the assumptions of Theo-

rem 6.17, (6.19) expresses h′(Pc(X|Y )) as the minimum of finitely many numbers, and a

suitable Z-channel achieves h for ε close to Pc(X|Y ). As we will see in the following sec-

tion, these assumptions are rather general and allow us to derive a closed form expression

for h for a pair of binary random vectors (Xn, Y n) with Xn, Y n ∈ {0, 1}n.

158



6.4 Binary Vector Case

We next study privacy aware guessing for a pair of binary random vectors (Xn, Y n).

First note that since having more side information only improves the probability of cor-

rect guessing, one can write Pc(X
n) ≤ Pc(X

n|Zn) ≤ Pc(X
n|Y n, Zn) = Pc(X

n|Y n)

for Xn (−− Y n (−− Zn and thus, we can restrict εn in the following definition to

[Pc(X
n),Pc(X

n|Y n))].

Definition 6.18. For a given pair of binary random vectors (Xn, Y n), the function hn is

defined, for ε ∈ [Pc
1/n(Xn),Pc

1/n(Xn|Y n)], as

hn(ε) := sup
PZn|Y n∈Dn,ε

Pc
1/n(Y n|Zn) (6.20)

where Dn,ε = {PZn|Y n : Zn = {0, 1}n, Xn (−− Y n (−− Zn,Pc
1/n(Xn|Zn) ≤ ε}.

Notice that this definition does not make any assumption about the privacy filters PZn|Y n

apart from Zn = {0, 1}n. Nonetheless, this restriction makes the functional properties of

hn different from those of h.

In order to study hn, we consider the following two scenarios for (Xn, Y n):

(a1) X1, . . . , Xn are i.i.d. samples drawn from Bernoulli(p),

(a2) X1 ∼ Bernoulli(p) and Xk = Xk−1 ⊕ Uk for k = 2, . . . , n, where U2, . . . , Un are

i.i.d. samples drawn from Bernoulli(r) and independent ofX1, where⊕ denotes mod

2 addition,

and in both cases, we assume that

(b) Yk = Xk ⊕ Vk for k ∈ [n], where V1, . . . , Vn are i.i.d. samples drawn from

Bernoulli(α) and independent of Xn.
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We study hn for (Xn, Y n) satisfying the assumptions (a1) and (b) in Section 6.4.1 and

for (Xn, Y n) satisfying the assumptions (a2) and (b) in Section 6.4.2. We study hn in the

special case r = 0 in more detail.

6.4.1 I.I.D. Case

Here, we assume that (Xn, Y n) satisfy (a1) and (b) and apply Theorem 6.17 to derive a

closed form expression for hn(ε) for ε close to Pc(X
n|Y n). Additionally, we determine an

optimal filter in the same regime.

We begin by identifying the domain [Pc(X
n),Pc(X

n|Y n)] of h in the following lemma,

whose proof follows directly from the definition of Pc.

Lemma 6.19. Assume that (X1, Z1), . . . , (Xn, Zn) are independent pairs of random vari-

ables. Then

Pc(X
n|Zn) =

n∏
k=1

Pc(Xk|Zk).

Thus, according to this lemma, if p ∈ [1
2
, 1) and α ∈ [0, 1

2
) then Pc(X

n) = pn and

Pc(X
n|Y n) = ᾱn. The following proposition, whose proof is given in Appendix C.4, is

a straightforward consequence of Theorem 6.17. A channel W is said to be a 2n-ary Z-

channel with crossover probability γ, denoted by Zn(γ), if its input and output alphabets

are {0, 1}n and it is Z1,0(γ), where 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1).

Theorem 6.20. Assume that (Xn, Y n) satisfy (a1) and (b) with p ∈ [1
2
, 1) and α ∈ [0, 1

2
)

such that ᾱ > p. Then there exists εL < ᾱ such that, for all ε ∈ [εL, ᾱ],

hn
n(ε) = 1− ζn(ε)qn
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Figure 6.5: The optimal filter for h2(ε) for ε ∈ [εL, ᾱ].

where q = αp̄+ ᾱp and

ζn(ε) :=
ᾱn − εn

(ᾱp)n − (αp̄)n
.

Moreover, the 2n-ary Z-channel Zn(ζn(ε)) achieves hn(ε) in this interval.

The optimal privacy filter achieving h2(ε) is depicted in Fig. 6.5. From an implemen-

tation point of view, the simplest privacy filter is a memoryless filter such that Zk is a noisy

version of Yk for each k ∈ [n]. This privacy mechanism generates Zk, given Yk, using a

single BIBO channel W, and thus

PZn|Y n(zn|yn) =
n∏
k=1

W(zk|yk). (6.21)

Now, let hi
n(ε) = supPc

1/n(Y n|Zn), where the supremum is taken over all PZn|Y n

satisfying (6.21) and Pc
1/n(Xn|Zn) ≤ ε. Clearly, hi

n(ε) ≤ hn(ε) for all ε ∈

[Pc
1/n(Xn),Pc

1/n(Xn|Y n)]. The following proposition shows that if we restrict the pri-

vacy filter PZn|Y n to be memoryless, then the optimal filter coincides with the optimal filter

in the scalar case, which in this case is Z(ζ(ε)), defined in Theorem 6.14.

Proposition 6.21. Assume that (Xn, Y n) satisfy (a1) and (b) with p ∈ [1
2
, 1) and α ∈ [0, 1

2
)
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such that ᾱ > p. Then, for all ε ∈ [p, ᾱ],

hi
n(ε) = h(ε) = 1− ζ(ε)q,

where q = αp̄+ ᾱp and ζ(ε) =
ᾱp̄+ ᾱp− ε
ᾱp− αp̄

.

Proof. For any privacy filter satisfying (6.21), (Xn, Zn) and (Y n, Zn) are i.i.d. By

Lemma 6.19, we have Pc(X
n|Zn) = (Pc(X|Z))n and Pc(Y

n|Zn) = (Pc(Y |Z))n where

(X, Y, Z) has the common distribution of {(Xk, Yk, Zk)}nk=1. In particular,

hi
n(ε) = sup

Pc
1/n(Xn|Zn)≤ε

Pc
1/n(Y n|Zn) = sup

Pc(X|Z)≤ε
Pc(Y |Z),

where the first supremum assumes (6.21) and the second supremum is implicitly con-

strained to Z = {0, 1}. The result then follows from Theorem 6.14.

It must be noted that, despite the fact that (Xn, Y n) is i.i.d., the memoryless privacy

filter associated to hi
n(ε) is not optimal, as hn(ε) is a function of n while hi

n(ε) is not. The

following corollary, whose proof is given in Appendix C.5, bounds the loss resulting from

using a memoryless filter instead of an optimal one for ε ∈ [εL, ᾱ]. Clearly, for n = 1, there

is no gap as h1(ε) = h(ε) = hi
1(ε).

Corollary 6.22. Let (Xn, Y n) satisfy (a1) and (b) with p ∈ [1
2
, 1) and α ∈ [0, 1

2
) such that

ᾱ > p. Let εL be as in Theorem 6.20. If p > 1
2

and α > 0, then for ε ∈ [εL, ᾱ] and

sufficiently large n

hn(ε)− hi
n(ε) ≥ (ᾱ− ε)[Φ(1)− Φ(n)], (6.22)

where q = αp̄+ ᾱp and

Φ(n) :=
qnᾱn−1

(ᾱp)n − (αp̄)n
.
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Figure 6.6: The graphs of h10(ε) (green solid curve), h2(ε) (red dashed curve), and hi
2(ε) =
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10(ε) (blue dotted line) given in Proposition 6.21 and Theorem 6.20 for i.i.d.

(Xn, Y n) with X ∼ Bernoulli(0.6) and PY |X = BSC(0.2).

If p = 1
2
, then

hi
n(ε) ≤ hn(ε) ≤ hi

n(ε) +
α

2ᾱ
, (6.23)

for every n ≥ 1 and ε ∈ [εL, ᾱ].

Note that Φ(n) ↓ 0 as n → ∞. Thus (6.22) implies that, as expected, the gap between

the performance of the optimal privacy filter and that of the optimal memoryless privacy

filter increases as n increases. This observation is numerically illustrated in Fig. 6.6, where

hn(ε) is plotted as a function of ε for n = 2 and n = 10.

Moreover, (6.23) implies that when p = 1
2

and α is small, hn(ε) can be approximated by

hi
n(ε). Thus, we can approximate the optimal filter Zn(ζn(ε)) with a simple memoryless

filter given by Zk = Yk ⊕ Wk, where W1, . . . ,Wn are i.i.d. Bernoulli(0.5ζ(ε)) random

variables that are independent of (Xn, Y n).
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6.4.2 Markov Private Data

In this section, we assume that Xn comprises the first n samples of a homogeneous first-

order Markov process having a symmetric transition matrix; i.e., (Xn, Y n) satisfy (a2) and

(b). In practice, this may account for data that follows a pattern, such as a password.

It is easy to see that under assumptions (a2) and (b),

Pr(Xn = xn) = p̄r̄n−1

(
p

p̄

)x1 n∏
k=2

(r
r̄

)xk⊕xk−1

.

In particular, if r < 1
2
≤ p, then a direct computation shows that Pc(X

n) = pr̄n−1. The

values of Pc(X
n|Y n) for odd and even n are slightly different. For simplicity, in what

follows we assume that n is odd. In this case, as shown in equation (C.42) in Appendix C.6,

Pc(X
n|Y n) = ᾱnr̄n−1

(n−1)/2∑
k=0

(
n

k

)(α
ᾱ

)k
. (6.24)

Theorem 6.17 established the optimality of a Z-channel Zy0,z0 for some y0, z0 ∈ {0, 1}n.

In order to find a closed form expression for hn, it is necessary to find (y0, z0) which in

principle depends on the parameters (p, α, r). The following theorem, whose proof is given

in Appendix C.6, bounds hn for different values of (p, α, r).

Theorem 6.23. Assume that n ∈ N is odd and (Xn, Y n) satisfy (a2) and (b) with p ∈

[1
2
, 1), α ∈ (0, 1

2
), ᾱ > p and Pc(X

n) < Pc(X
n|Y n). If

r

r̄
<
(α
ᾱ

)n−1

, then there exists

εL < Pc(X
n|Y n) such that

1− ζn(ε) Pr(Y n = 1) ≤ hn
n(ε) ≤ 1− ζn(ε)αn,
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for every ε ∈ [εL,Pc(X
n|Y n)], where

ζn(ε) := r̄
Pc(X

n|Y n)− εn

p(ᾱr̄)n − p̄(αr̄)n
.

Furthermore, the 2n-ary Z-channel Zn(ζn(ε)) achieves the lower bound in this interval.

The special case of r = 0 is of particular interest. Note that when r = 0, then (a2)

corresponds to X1 = · · · = Xn = θ ∈ {0, 1}. Here, Y n ∈ {0, 1}n are i.i.d. copies drawn

from PY |θ = Bernoulli(ᾱθαθ̄). The prior distribution of the parameter θ is Bernoulli(p). The

parameter θ is considered to be private and Y n must be guessed as accurately as possible.

This problem can be viewed as a reverse version of privacy-aware learning studied in [47].

The following proposition, whose proof is given in Appendix C.7, provides a closed form

expression for hn in the low privacy regime. Note that in this case, Pc(θ) = p and the value

of Pc(θ|Y n) is obtained from (6.24) by setting r = 0.

Proposition 6.24. Assume that n is odd. Let θ ∼ Bernoulli(p) with p ∈ [1
2
, 1) and Y n be

n i.i.d. Bernoulli(ᾱθαθ̄) samples with α ∈ (0, 1
2
), ᾱ > p and p < Pc(θ|Y n). Then, there

exists εL < Pc(θ|Y n) such that

max
PZn|Y n :Zn={0,1}n,

Pc(θ|Zn)≤εn

Pc(Y
n|Zn) = 1− ζn(ε)(pᾱn + p̄αn),

for every ε ∈ [εL,Pc(θ|Y n)] where

ζn(ε) =
Pc(θ|Y n)− εn

pᾱn − p̄αn
.

Moreover, the 2n-ary Z-channel Zn(ζn(ε)) achieves hn(ε) in this interval.
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Chapter 7

Privacy-Aware MMSE Estimation Efficiency

7.1 Overview

In Chapter 4, we studied the problem of information extraction under an information-

theoretic privacy constraint for absolutely continuous X and Y and Gaussian additive pri-

vacy filters. In the previous chapter, we replaced the information-theoretic privacy require-

ment I(X;Z) ≤ ε by an estimation-theoretic requirement I∞(X;Z) ≤ ε in the discrete

case. It is thus natural to follow the same spirit for the continuous case as well. Specifically,

we focus on the additive Gaussian channels as the privacy filters and replace the privacy

constraint I(X;Zγ) ≤ ε as in (4.2) by a better justified estimation-theoretic constraint.

The new constraint ensures that the minimum mean-squared error (MMSE) in estimating

any arbitrary real-valued non-constant function f of X given the observation Zγ is lower

bounded. As such, an adversary observing Z cannot estimate efficiently any arbitrary func-

tion f of X , thus maintaining a very strong privacy guarantee.

Furthermore, we define the utility between Y and Zγ by the efficiency of Zγ in estimat-

ing Y . The estimation efficiency is defined as 1
mmse(Y |Zγ)

which is equal to infinity if Y can

be perfectly estimated from Zγ . Therefore, we seek γ ≥ 0 which minimizes mmse(Y |Zγ)
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among all privacy-preserving Zγ .

7.1.1 Main Contributions

The main contributions of this chapter are as follows:

• We first present an operational ”definition” for an ε-private mechanism (i.e., chan-

nel PZ|Y ). This definition is motivated by the notion of information leakage in the

previous chapter for the squared-error loss function and corresponds to the semantic

privacy: all non-constant functions of the private data X need to remain private. We

then show that this definition is equivalent to a certain constraint about maximal cor-

relation, and thus we provide an operational interpretation for maximal correlation

as a privacy measure.

• We then concentrate on the additive Gaussian filters and introduce the so-called es-

timation noise-to-signal ratio function sENSR as the corresponding utility-privacy

tradeoff. We obtain tight bounds for sENSR by assuming Y is Gaussian and derive

some extremal property for jointly Gaussian X and Y .

• Finally, we derive a tight bound for sENSR for arbitrary (X, Y ) and show that this

bound leads to a connection between sENSR and g in the special case Y = aX +M ,

for M being a noise random variable having density and independent of X .

7.2 Estimation Noise-to-Signal Ratio

We assume that X and Y are both real-valued absolutely continuous random variables (so

that X = Y = R) and the filter PZ|Y is realized by an independent additive Gaussian noise
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random variable NG ∼ N (0, 1) which is independent of (X, Y ). Similar to Chapter 4, we

denote the mechanism’s output by Zγ =
√
γY +NG, for some γ ≥ 0.

As shown in Example 6.4 in the last chapter, if X̂ = R and the loss function is given

by `(x, x̂) = (x − x̂)2, the corresponding information leakage LMS(X → Z) (see Defini-

tion 6.1) is

LMS(X → Zγ) = log
var(X)

mmse(X|Zγ)
.

Hence, in order to have small information leakage fromX to Zγ , the filter must be such that

mmse(X|Zγ) is close to var(X). Since mmse(X|Zγ) ≤ var(X), it is natural to consider

filters which satisfy

1− ε ≤ mmse(X|Zγ)
var(X)

≤ 1, (7.1)

for a given 0 ≤ ε ≤ 1, which clearly implies LMS(X → Zγ) ≤ − log(1 − ε); thus

LMS(X → Z) is close to zero for ε � 1. Analogous to the discrete case, studied in

Chapter 6, we formulate a stronger version of privacy where the information leakage from

f(X), any arbitrary non-constant deterministic function of X , to Zγ is limited. In other

words, we require that LMS(f(X)→ Zγ) be small for any measurable real-valued function

of X , or equivalently, as above

1− ε ≤ mmse(f(X)|Zγ)
var(f(X))

≤ 1, (7.2)

for a given 0 ≤ ε ≤ 1 and all non-constant f . It is worth mentioning that the strong pri-

vacy guarantee introduced in (7.2) is related to semantic security [65] in the cryptographic

literature. An encryption mechanism is said to be semantically secure if the adversary’s

advantage for correctly guessing any function of the private data given an observation of

the mechanism’s output (i.e., the ciphertext) is required to be negligible.

168



The operational privacy requirement (7.2) motivates the following definition.

Definition 7.1. Given a pair of absolutely continuous random variables (X, Y ) with dis-

tribution P and ε ≥ 0, we say that Zγ satisfies ε-strong estimation privacy, denoted as

Zγ ∈ Γ (P, ε), if (7.2) holds for any measurable real-valued non-constant function f . Sim-

ilarly, Zγ is said to satisfy ε-weak estimation privacy, denoted by Zγ ∈ ∂Γ (P, ε), if (7.2)

holds only for the identity function f(x) = x, as in (7.1).

Similar to privacy, the utility between Y and Zγ will be measured in terms of LMS(Y →

Zγ). Since maximizing LMS(Y → Zγ) amounts to minimizing mmse(Y |Zγ), to quantify

the tradeoff between utility and information leakage, we define the strong and weak esti-

mation noise to signal ratio (ENSR), respectively, as

sENSR(P, ε) := inf
γ:Zγ∈Γ (P,ε)

mmse(Y |Zγ)
var(Y )

,

and

wENSR(P, ε) := inf
γ:Zγ∈∂Γ (P,ε)

mmse(Y |Zγ)
var(Y )

.

Note that both sENSR(P, ε) and wENSR(P, ε) are inversely proportional for the respec-

tive utilities in these problems. For the sake of brevity, we omit P in Γ (P, ε), ∂Γ (P, ε),

sENSR(P, ε), and wENSR(P, ε) when there is no confusion.

In what follows we derive an equivalent characterization of the random mapping PZ|X

that generates Z ∈ Γ (ε).

Theorem 7.2. Let U and V be non-degenerate random variables and ε ∈ [0, 1]. Then

mmse(f(U)|V ) ≥ (1− ε)var(f(U)),
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for all f ∈ SU if and only if ρ2
m(U, V ) ≤ ε. In particular, Zγ ∈ Γ (ε) if and only if

ρ2
m(X,Zγ) ≤ ε.

Proof. Fix f and define f̃(U) := f(U) − E[f(U)]. Since mmse(f̃(U)|V ) =

mmse(f(U)|V ) and var(f̃(U)) = var(f(U)), without loss of generality, we can assume

that E[f(U)] = 0. Recalling the alternative characterization of the maximal correlation

(5.1), we can write

inf
f

mmse(f(U)|V )

var(f(U))
= inf

f∈SU
mmse(f(U)|V ) = 1− sup

f∈SU
var(E[f(U)|V ])

= 1− sup
f∈SU

E[E2[f(U)|V ]] (7.3)

= 1− ρ2
m(U, V ). (7.4)

If ρ2
m(U, V ) ≤ ε, then it is clear from (7.4) that mmse(f(U)|V ) ≥ (1 − ε)var(f(U)).

Conversely, let PUV satisfy mmse(f(U)|V ) ≥ (1− ε)var(f(U)) for any measurable f . In

view of (7.3) and (7.4), there exists real-valued measurable f for arbitrary δ > 0 such that

1− ε ≤ mmse(f(U)|V )

var(f(U))
≤ 1− ρ2

m(U, V ) + δ,

which implies ρ2
m(U, V ) ≤ ε.

From this theorem and (4.21), we can equivalently express sENSR(ε) and wENSR(ε)

as

sENSR(ε) = 1− sup
γ≥0: ρ2m(X,Zγ)≤ε

η2
Zγ (Y ),

wENSR(ε) = 1− sup
γ≥0: η2Zγ (X)≤ε

η2
Zγ (Y ).

170



As observed in previous chapters, η and ρm satisfy the data processing inequality and

hence ηZγ (X) ≤ ηY (X) and ρm(X,Zγ) ≤ ρm(X, Y ). Therefore, we can restrict ε in

the definition of wENSR(ε) and sENSR(ε) to the intervals [0, η2
Y (X)] and [0, ρ2

m(X, Y )],

respectively. Unlike the discrete case, it is clear that perfect privacy ε = 0 implies γ = 0.

Thus perfect privacy yields trivial utility; i.e., sENSR(0) = 1 and wENSR(0) = 1.

Note that γ 7→ mmse(Y |Zγ) is continuous and decreasing on (0,∞) [70] and γ 7→

ρ2
m(X,Zγ) is left-continuous and increasing on (0,∞) (see Proposition 5.2). Thus we

can define γ∗ε := max{γ ≥ 0 : ρ2
m(X,Zγ) ≤ ε} for which we have sENSR(ε) =

mmse(Y |Zγ∗ε )
var(Y )

. The left-continuity of γ 7→ ρ2
m(X,Zγ) implies that ε 7→ γ∗ε is right-

continuous, and thus ε 7→ sENSR(ε) is right-continuous on (0, ρ2
m(X, Y )).

Example 7.3. Let (XG, YG) be jointly Gaussian random variables with mean zero and cor-

relation coefficient ρ. Since ρ2
m(XG, Zγ) = ρ2(XG, Zγ), we have that

ρ2
m(XG, Zγ) = ρ2 γvar(YG)

1 + γvar(YG)
,

and hence the mapping γ 7→ ρ2
m(XG, Zγ) is strictly increasing. As a consequence, for

0 ≤ ε ≤ ρ2, the equation ρ2
m(XG, Zγ) = ε has a unique solution

γε :=
ε

var(YG)(ρ2 − ε)
,

and ρ2
m(XG, Zγ) ≤ ε if and only if γ ≤ γε. On the other hand,

mmse(YG|Zγ) =
var(YG)

1 + γvar(YG)
,
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which shows that the map γ 7→ mmse(YG|Zγ) is strictly decreasing. Therefore,

sENSR(ε) =
mmse(YG|Zγε)

var(YG)
= 1− ε

ρ2
. (7.5)

Clearly, for jointly Gaussian XG and YG, we have η2
Zγ

(XG) = ρ2
m(XG, Zγ) for any γ ≥ 0.

Consequently, Γ (ε) = ∂Γ (ε) and, for 0 ≤ ε ≤ ρ2,

sENSR(ε) = wENSR(ε) = 1− ε

ρ2
. (7.6)

Next, we obtain bounds on sENSR(ε) for the special case of Gaussian non-private data

YG.

Theorem 7.4. Let X be jointly distributed with Gaussian YG. Then,

1− ε

ρ2(X, YG)
≤ sENSR(PXYG , ε) ≤ 1− ε

ρ2
m(X, YG)

,

Proof. Without loss of generality, assume E(X) = E(YG) = 0. Since YG is Gaussian, we

have ρ2
m(YG, Zγ) = η2

Zγ
and thus (4.21) implies that

sENSR(ε) = inf
γ:ρ2m(X,Zγ)≤ε

mmse(YG|Zγ)
var(YG)

= 1− sup
γ:ρ2m(X,Zγ)≤ε

ρ2
m(YG;Zγ). (7.7)

A straightforward computation leads to

ρ2
m(YG, Zγ) = ρ2(YG, Zγ) =

γvar(YG)

1 + γvar(YG)
, (7.8)

ρ2
m(X,Zγ) ≥ ρ2(X,Zγ) = ρ2(X, YG)ρ2

m(YG, Zγ).
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The preceding inequality and (7.7) imply

sENSR(ε) ≥ 1− sup
γ:ρ2m(X,Zγ)≤ε

ρ2
m(X,Zγ)

ρ2(X, YG)
= 1− ε

ρ2(X, YG)
,

which proves the lower bound.

The strong data processing inequality for maximal correlation proved in Lemma5.3

implies that if ρ2
m(YG, Zγ) ≤

ε

ρ2
m(X, Y )

, then ρ2
m(X,Zγ) ≤ ε. Therefore, (7.7) implies

sENSR(ε) ≤ 1− sup
γ:ρ2m(YG,Zγ)≤ ε

ρ2m(X,YG)

ρ2
m(YG;Zγ) = 1− ε

ρ2
m(X, YG)

,

where the last equality follows from the continuity of γ 7→ ρ2
m(YG, Zγ), established in (7.8),

finishing the proof of the upper bound.

Combined with (7.6), this theorem shows that for a Gaussian Y , a Gaussian XG min-

imizes sENSR(ε) among all continuous random variables X having identical ρ(X, YG)

and maximizes sENSR(ε) among all continuous random variables X having identical

ρm(X, YG). These observations establish another extremal property of Gaussian distribu-

tion over AWGN channels, see e.g., [150, Theorem 12] for another example. This theorem

also implies that

sENSR(PXGYG , ε)− sENSR(PXYG , ε) ≤ ε

[
1

ρ2(X, YG)
− 1

ρ2
m(X, YG)

]

for Gaussian XG which satisfies ρ2
m(XG, YG) = ρ2

m(X, YG). This demonstrates that if

the difference ρ2
m(X, YG) − ρ2(X, YG) is small, then sENSR(PXYG , ε) is very close to

sENSR(PXGYG , ε).

As stated before, for any given joint density P, perfect privacy results in trivial utility,
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i.e., sENSR(0) = 1. Therefore, it is interesting to study the approximation of sENSR(ε) for

sufficiently small ε, i.e., in the almost perfect privacy regime. The next result provides such

an approximation and also shows that the lower bound in Theorem 7.4 holds for general Y

for ε in the almost perfect privacy regime.

Lemma 7.5. For any given joint density P, we have as ε→ 0

sENSR(ε) ≥ 1− ε

ρ2(X, Y )
+ o(ε).

Proof. Let

γ∗ε := sup{γ ≥ 0 : ρ2
m(X,Zγ) ≤ ε}. (7.9)

Recall that

ρ2
m(X,Zγ) ≥ ρ2(X,Zγ) =

γρ2(X, Y )var(Y )

1 + γvar(Y )
. (7.10)

Since ε→ 0, we can assume that ε < ρ2(X, Y ). Thus, from (7.10) we obtain

γ∗ε ≤
ε

var(Y )(ρ2(X, Y )− ε)
. (7.11)

In particular, γ∗ε → 0 as ε → 0. Since γ 7→ mmse(Y |Zγ) is decreasing, we have that

sENSR(ε) = mmse(Y |Zγ∗ε ). Therefore, the first-order approximation of sENSR(·) around

zero yields

sENSR(ε) = 1 +
γ∗ε

var(Y )

d
dγ∗ε

mmse(Y |Zγ∗ε )
∣∣∣
ε=0

+ o(γ∗ε )

(a)
= 1− var(Y )γ∗ε + o(γ∗ε )

(b)

≥ 1− ε

ρ2(X, Y )
+ o(ε)
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where (a) follows from the fact that d
dγmmse(Y |Zγ) = −E[var2(Y |Zγ)] [70, Prop. 9] and

(b) follows from (7.11).

We close this chapter by providing an interpretation for the rate-privacy function for

continuous random variables introduced in Chapter 4. We showed in Corollary 4.12 that as

ε→ 0

g(ε) =
ε

η2
X(Y )

+ o(ε). (7.12)

Now assume that PY |X is additive, i.e., Y = aX + M for a ∈ R and an independent

noise random variableM with a density having zero mean and variance σ2
M . Then it is easy

to verify that η2
X(Y ) = ρ2(X, Y ) and hence in light of (7.12) and Lemma 7.5, we have for

ε→ 0

g(ε) ≥ 1− sENSR(ε) + o(ε),

which shows that in the almost perfect privacy regime the gap between sENSR(ε) and 1 is

bounded by g(ε), thereby providing an interpretation for g(ε).
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Chapter 8

Summary and Concluding Remarks

In this thesis, we mathematically formulated a more general local privacy setting. This

setting takes into consideration the existence of two sets of correlated data: private data

X and non-private (or observable) data Y , which is correlated with X via a fixed joint

distribution PXY . The ultimate goal is to generate the so-called displayed data Z based on

Y such that Z maximizes the ”utility” with respect to Y while limiting the ”information

leakage” about X . We proposed information-theoretic and estimation-theoretic metrics for

utility and information leakage measures and quantified the corresponding privacy-utility

tradeoff. We presented converse bounds on the achievable maximal utility under different

metrics of information leakage. In particular, these bounds provide provably unconditional

privacy guarantees: regardless of the computational resources available to the recipient

of Z, he will not be able to guess/estimate X with the estimation error smaller than the

proposed converse bounds. We then used these bounds to both evaluate and design optimal

privacy-preserving mechanisms.

We claimed that this setting is more general than the setting studied in the differential

privacy literature [50]. Indeed, the standard differential privacy analysis used in the cen-

tralized statistical databases can be mapped to this general framework: Y can represent a
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query response over a database, and X a binary variable that indicates whether or not a

particular user is present in the database. The goal then is to distort the query response Y

(in differential privacy this is often done by adding noise) in order to produce Z .

As a first step, we used mutual information as a metric for both utility and information

leakage and defined the so-called rate-privacy function g as the corresponding privacy-

utility tradeoff. If g(ε) = R, then one can maximally extract R bits of information about

Y in a single shot such that the extracted information does not carry more than ε bits of

private information about X . Apart from its interpretation in the context of privacy, g has

an interesting geometric interpretation: it is closely related to the upper boundary of the

convex set {(I(Y ;Z), I(X;Z)) : X (−− Y (−− Z}. We mentioned that the mutual

information does not arguably lead to an operational interpretation of privacy. Despite this

fact, we showed that if both X and Y are discrete and the channel from Y to X enjoys a

notion of symmetry, then g admits a simple expression. We also studied the properties of g

when X and Y are continuous.

Second, we took an estimation-theoretic viewpoint on privacy while keeping the util-

ity in terms of mutual information. We introduced ĝ as the corresponding privacy-utility

tradeoff, which quantifies the maximum number of bits one can extract from Y such that

no deterministic function of X can be efficiently estimated from the extracted information.

Specifically, we showed that this strong semantic privacy requirement is equivalent to a

certain condition on the Hirschfeld-Gebelein-Rényi maximal correlation between X and

the displayed data Z. Although ĝ seems to be more complicated to deal with than g, we

showed that g can serve as a tight bound for ĝ.

Third, we took a fully inferential point of view by bringing both utility and privacy in
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contact with statistical efficiency. In the discrete case, we used the Arimoto’s mutual infor-

mation of order infinity for both utility and privacy and defined g∞ as the corresponding

privacy-utility tradeoff. In fact, g∞ quantifies the highest probability of correctly guess-

ing Y from Z such that the probability of correctly guessing X from Z does not exceed

a threshold. We derived simple closed-form expressions for g∞ in the binary case and

also for a (practically-motivated) variant of g∞ in the non-binary case. In the continuous

case, the corresponding privacy-utility tradeoff concerns a balance between the minimum

mean-squared error (MMSE) of estimating Y from Z and MMSE of estimating X from Z.

We believe that the results and approaches presented here can be applied to develop

theory and methods for distributed processing of statistical data. The fundamental lim-

its of guessing and estimation under privacy constraints can be used to study how to as-

sign storage and computation tasks in face of the heterogeneous reliability, performance,

and security properties of different nodes in the system. In addition, the information and

estimation-theoretic measures presented here can also be used to quantify the security threat

posed if one of the processing nodes is attacked.

A possible direction for future work is extending our information and estimation-

theoretic approaches to an asymptotic theory for information processing under a privacy

constraint in distributed systems, which leads to a better understanding of the tradeoffs

involved when acquiring, processing, securing and storing data.

Our approaches have also applications in centralized systems. An agency (e.g., a bank,

hospital, or government) in possession of a large database of private and non-private data

of individuals is often requested to respond to a query. Our approach can, at least in theory,

help guide the design of a privacy-preserving query response mechanism.

178



Bibliography

[1] HIV and diabetes. https://aidsinfo.nih.gov/education-materials/

fact-sheets/22/59/hiv-and-diabetes. Accessed: 2016-11-21.

[2] N. R. Adam and J. C. Worthmann. Security-control methods for statistical databases: A

comparative study. ACM Comput. Surv., 21(4):515–556, December 1989.

[3] D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy preserving

data mining algorithms. In Proc. 20th ACM Symposium on Principles of Database Systems

(PODS), pages 247–255, 2001.
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Appendix A

Completion of Proof of Theorem 3.33

To prove that the equality (3.56) has only one solution p = 1
2 , we first show the following lemma.

Lemma A.1. Let P and Q be two distributions over X = {±1,±2, . . . ,±k} which satisfy P (x) =

Q(−x). Let Rλ := λP + (1− λ)Q for λ ∈ (0, 1). Then

D(P ||R1−λ)

D(P ||Rλ)
<

log(1− λ)

log(λ)
, (A.1)

for λ ∈ (0, 1
2) and

D(P ||R1−λ)

D(P ||Rλ)
>

log(1− λ)

log(λ)
, (A.2)

for λ ∈ (1
2 , 1).

Note that it is easy to see that the map λ 7→ D(P ||Rλ) is convex and strictly decreasing

and hence D(P ||Rλ) > D(P ||R1−λ) when λ ∈ (0, 1
2) and D(P ||Rλ) < D(P ||R1−λ) when

λ ∈ (1
2 , 1). Inequality (A.1) and (A.2) strengthen these monotonic behavior and show that

D(P ||Rλ) > log(λ)
log(1−λ)D(P ||R1−λ) and D(P ||Rλ) < log(λ)

log(1−λ)D(P ||R1−λ) for λ ∈ (0, 1
2) and

λ ∈ (1
2 , 1), respectively.

Proof. Without loss of generality, we can assume that P (x) > 0 for all x ∈ X . Let X+ :=

{x ∈ X |P (X) > P (−x)}, X− := {x ∈ X |P (X) < P (−x)} and X0 := {x ∈ X |P (X) =
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P (−x)}. We notice that when x ∈ X+, then −x ∈ X−, and hence |X+| = |X−| = m for a

0 < m ≤ k. After relabelling if needed, we can therefore assume that X+ = {1, 2, . . . ,m} and

X− = {−m, . . . ,−2,−1}. We can write

D(P ||Rλ) =

k∑
x=−k

P (x) log

(
P (x)

λP (x) + (1− λ)Q(x)

)

=
k∑

x=−k
P (x) log

(
P (x)

λP (x) + (1− λ)P (−x)

)
(a)
=

m∑
x=1

[
P (x) log

(
P (x)

λP (x) + (1− λ)P (−x)

)

+ P (−x) log

(
P (−x)

λP (−x) + (1− λ)P (x)

)]

(b)
=

m∑
x=1

P (x) log

(
1

λ+ (1− λ)ζx

)
+ P (x)ζx log

 1

λ+ (1−λ)
ζx


(c)
=

m∑
x=1

P (x)Υ (λ, ζx) log

(
1

λ

)
,

where (a) follows from the fact that for x ∈ X0, log
(
P (x)
Rλ(x)

)
= 0 for any λ ∈ (0, 1), and in (b) and

(c) we introduced ζx := P (−x)
P (x) and

Υ (λ, ζ) :=
1

log
(

1
λ

)
log

(
1

λ+ (1− λ)ζ

)
+ ζ log

 1

λ+ (1−λ)
ζ

 .

Similarly, we can write

D(P ||R1−λ) =

k∑
x=−k

log

(
P (x)

(1− λ)P (x) + λQ(x)

)

=

k∑
x=−k

log

(
P (x)

(1− λ)P (x) + λP (−x)

)

=
m∑
x=1

[
P (x) log

(
P (x)

(1− λ)P (x) + λP (−x)

)
196



+P (−x) log

(
P (−x)

(1− λ)P (−x) + λP (x)

)]

=

m∑
x=1

[
P (x) log

(
1

1− λ+ λζx

)
+ P (x)ζx log

(
1

1− λ+ λ
ζx

)]

=
m∑
x=1

P (x)Υ (1− λ, ζx) log

(
1

1− λ

)
,

which implies that

D(P ||Rλ)

− log(λ)
− D(P ||R1−λ)

− log(1− λ)
=

m∑
x=1

P (x) [Υ (λ, ζx)− Υ (1− λ, ζx)] .

Hence, in order to show (A.1), it suffices to verify that

Φ(λ, ζ) := Υ (λ, ζ)− Υ (1− λ, ζ) > 0, (A.3)

for any λ ∈ (0, 1
2) and ζ ∈ (1,∞). Since log(λ) log(1 − λ) is always positive for λ ∈ (0, 1

2), it

suffices to show that

h(ζ) := Φ(λ, ζ) log(1− λ) log(λ) > 0, (A.4)

for λ ∈ (0, 1
2) and ζ ∈ (1,∞). We have

h′′(ζ) = A(λ, ζ)B(λ, ζ), (A.5)

where

A(λ, ζ) :=
1 + ζ

(1− λ+ λζ)2(λ+ (1− λ)ζ)2ζ
,

and

B(λ, ζ) := λ2(1 + λ(λ− 2)(ζ − 1)2 + ζ(ζ − 1)) log(λ)− (1− λ)2(λ2(ζ − 1)2 + ζ) log(1− λ).
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We have
∂2

∂ζ2
B(λ, ζ) = 2λ2(1− λ)2 log

(
λ

1− λ

)
< 0,

because λ ∈ (0, 1
2) and hence λ < 1−λ. This implies that the map ζ 7→ B(λ, ζ) is concave for any

λ ∈ (0, 1
2) and ζ ∈ (1,∞). Moreover, since ζ 7→ B(λ, ζ) is a quadratic polynomial with negative

leading coefficient, it is clear that limζ→∞B(λ, ζ) = −∞. Consider now g(λ) := B(λ, 1) =

λ2 log(λ)− (1− λ)2 log(1− λ). We have limλ→0 g(λ) = g(1
2) = 0 and g′′(λ) = 2 log

(
λ

1−λ

)
< 0

for λ ∈ (0, 1
2). It implies that λ 7→ g(λ) is concave on (0, 1

2) and hence g(λ) > 0 over (0, 1
2)

which implies that B(λ, 1) > 0. This together with the fact that ζ 7→ B(λ, ζ) is concave and

it approaches to −∞ as ζ → ∞ imply that there exists a real number c = c(λ) > 1 such that

B(λ, ζ) > 0 for all ζ ∈ (1, c) and B(λ, ζ) < 0 for all ζ ∈ (c,∞). Since A(λ, ζ) > 0, it follows

from (A.5) that ζ 7→ h(ζ) is convex on (1, c) and concave on (c,∞). Since h(1) = h′(1) = 0 and

limζ→∞ h(ζ) = ∞, we can conclude that h(ζ) > 0 over (1,∞). That is, Φ(λ, ζ) > 0 and thus

Υ (λ, ζ)− Υ (1− λ, ζ) > 0, for λ ∈ (0, 1
2) and ζ ∈ (1,∞).

The inequality (A.2) can be proved by (A.1) and switching λ to 1− λ.

Letting P (·) = PX|Y (·|1) and Q(·) = PX|Y (·|0) and λ = Pr(Y = 1) = p, we have

Rp(x) = PX(x) = pP (x) + (1 − p)Q(x) and R1−p = PX(−x) = (1 − p)P (x) + pQ(x).

Since D(PX|Y (·|0)||PX(·)) = D(P ||R1−p), we can conclude from Lemma A.1 that

D(PX|Y (·|0)||PX(·))
− log(1− p)

<
D(PX|Y (·|1)||PX(·))

− log(p)
,

over p ∈ (0, 1
2) and

D(PX|Y (·|0)||PX(·))
− log(1− p)

>
D(PX|Y (·|1)||PX(·))

− log(p)
,

on p ∈ (1
2 , 1), and hence equation (3.56) has only solution p = 1

2 .
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Appendix B

Proofs of Chapter 4

B.1 Proof of Lemma 4.1

We first prove the following version of the data processing inequality which will be required in the

proofs.

Lemma B.1. Let X and Y be absolutely continuous random variables such that X , Y and (X,Y )

have finite differential entropies. If V is an absolutely continuous random variable independent of

X and Y , then

I(X;Y + V ) ≤ I(X;Y )

with equality if and only if X and Y are independent.

Proof. Since X (−− Y (−− (Y + V ), the data processing inequality implies that I(X;Y +

V ) ≤ I(X;Y ). It therefore suffices to show that this inequality is tight if and only X and Y are

independent. It is known that data processing inequality is tight if and only if X (−− (Y +V ) (−

− Y . This is equivalent to saying that for any measurable set A ⊂ R and for PY+V -almost all

z, Pr(X ∈ A|Y + V = z, Y = y) = Pr(X ∈ A|Y + V = z). On the other hand, due to the

independence of V and (X,Y ), we have Pr(X ∈ A|Y + V = z, Y = y) = Pr(X ∈ A|Y = y).

Hence, the equality in data processing inequality holds if and only if Pr(X ∈ A|Y + V = z) =
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Pr(X ∈ A|Y = y) which implies that X and Y must be independent.

Proof of Lemma 4.1. Recall that, by assumption (b), var(Y ) is finite. This implies that the entropy

of Y is also finite. The finiteness of the entropy of Uλ then follows directly from the entropy power

inequality [37, Theorem 17.7.3] and the fact that var(Uλ) = var(Y )+λ2 <∞. The data processing

inequality, as stated in Lemma B.1, implies that for any δ > 0, we have I(Y ;Uλ+δ) ≥ I(Y ;Uλ).

Clearly, Y and Uλ are not independent for any λ < ∞, therefore the inequality is strict and thus

λ 7→ I(Y,Uλ) is strictly increasing.

Continuity is proved for λ = 0 and λ > 0 separately. Let first λ = 0. Recall that h(λNG) =

1
2 log(2πeλ2). In particular, lim

λ→0
h(λNG) = −∞, which together with the entropy power inequality

implies that lim
λ→0

I(Y ;Uλ) = ∞. This coincides with the convention I(Y ;Z0) = I(Y ;Y ) = ∞.

For λ > 0, let (λn)n≥1 be a sequence of positive numbers such that λn → λ. Observe that

I(Y ;Uλn) = h(Y + λnNG)− h(λnNG) = h(Y + λnNG)− 1

2
log(2πeλ2

n).

Since lim
n→∞

1

2
log(2πeλ2

n) =
1

2
log(2πeλ2), we only have to show that h(Y +λnN)→ h(Y +λN)

as n → ∞ to establish the continuity at λ. This, in fact, follows from de Bruijn’s identity (cf., [37,

Theorem 17.7.2]).

Since the channel from Y to Uλ is an additive Gaussian noise channel, we have I(Y ;Uλ) ≤
1

2
log
(
1 + λ−2var(Y )

)
with equality if and only if Y is Gaussian. The claimed limit as λ → 0 is

clear.

B.2 Proof of Lemma 4.2

The proof of the strictly decreasing behavior of λ 7→ I(X;Uλ) is analogous to the proof of

Lemma 4.1. To prove continuity, let λ ≥ 0 be fixed. Let (λn)n≥1 be any sequence of positive

numbers converging to λ. First suppose that λ > 0. Recall that I(X;Uλn) = h(Uλn)− h(Uλn |X),

for all n ≥ 1. As shown in Lemma 4.1, h(Uλn) → h(Uλ) as n → ∞. Therefore, it is enough
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to show that h(Uλn |X) → h(Uλ|X) as n → ∞. Note that by de Bruijn’s identity, we have

h(Zλn |X = x)→ h(Zλ|X = x) as n→∞ for all x ∈ R. Note also that since

h(Uλn |X = x) ≤ 1

2
log (2πevar(Uλn |x)) ,

we can write

h(Uλn |X) ≤ E
[

1

2
log(2πevar(Uλn |X))

]
≤ 1

2
log (2πeE[var(Uλn |X)]) ,

and hence we can apply dominated convergence theorem to show that h(Uλn |X) → h(Uλ|X) as

n → ∞. To prove the continuity at λ = 0, we first note that Linder and Zamir [101, Page 2028]

showed that h(Uλn |X = x) → h(Y |X = x) as n → ∞, and hence as before by dominated

convergence theorem we can show that h(Uλn |X) → h(Y |X). Similarly [101] implies that

h(Uλn) → h(Y ). This concludes the proof of the continuity of λ 7→ I(X;Uλ). To prove the

last claim, note that the data processing inequality and Lemma 4.1 imply

0 ≤ I(X;Uλ) ≤ I(Y ;Uλ) ≤ 1

2
log

(
1 +

var(Y )

λ2

)
,

and hence lim
λ→∞

I(X;Uλ) = 0.

B.3 Proof of Lemma 4.3

In order to prove Lemma 4.3, we first prove some preliminary results.

Theorem B.2 ([123]). If U is an absolutely continuous random variable with density fU and if

H(bUc) <∞, then

lim
n→∞

H(n−1bnUc)− log(n) = −
∫
R
fU (x) log fU (x)dx,
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provided that the integral on the right hand side exists.

We will need the following consequence of the previous theorem. Rényi [123] proved that

H(QM (U)) ≤ H(bUc) + M ; however, one can improve this inequality using Jensen’s inequality

as H(QM−1(U)) ≤ H(QM (U)) ≤ H(QM−1(U)) + 1.

Lemma B.3. If U is an absolutely continuous random variable with density fU and if H(bUc) <

∞, then H(QM (U))−M ≥ H(QM+1(U))− (M + 1) for all M ≥ 1 and

lim
M→∞

H(QM (U))−M = −
∫
R
fU (x) log fU (x)dx,

provided that the integral on the right hand side exists.

Lemma B.4. Fix M ∈ N. Assume that fY (y) ≤ C|y|−p for some positive constant C and p > 1.

For integer k and λ ≥ 0, let

pk,λ := Pr

(
UMλ =

k

2M

)
.

Then

pk,λ ≤
C2(p−1)M+p

kp
+ 1{λ>0}

λ2M+1

k
√

2π
e−k

2/22M+3λ2 .

Proof. The case λ = 0 is trivial, so we assume that λ > 0. For notational simplicity, let ra := a
2M

for all a ∈ Z. Assume that k ≥ 0. Observe that

pk,λ =

∫ ∞
−∞

∫ ∞
−∞

fλNG
(n)fY (y)1[rk,rk+1)(y+n)dydn =

∫ ∞
−∞

e−n
2/2λ2

√
2πλ2

Pr (Y ∈ [rk, rk+1)− n) dn.

We will estimate the above integral by breaking it up into two pieces. First, we consider

rk
2∫

−∞

e−n
2/2λ2

√
2πλ2

Pr (Y ∈ [rk, rk+1)− n) dn.
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When n ≤ rk
2 , then rk − n ≥ rk/2. By the assumption on the density of Y ,

Pr (Y ∈ [rk, rk+1)− n) ≤ C

2M

(rk
2

)−p
.

(The previous estimate is the only contribution when λ = 0.) Therefore,

rk
2∫

−∞

e−n
2/2λ2

√
2πλ2

Pr (Y ∈ [rk, rk+1)− n) dn ≤ C

2M

(rk
2

)−p rk
2∫

−∞

e−n
2/2λ2

√
2πλ2

dn ≤ C2(p−1)M+p

kp
.

Using the trivial bound Pr (Y ∈ [rk, rk+1)− n) ≤ 1 and well known estimates for the error

function, we obtain that

∞∫
rk
2

e−n
2/2λ2

√
2πλ2

Pr (Y ∈ [rk, rk+1)− n) dn <
1√
2π

2λ

rk
e−r

2
k/8λ

2
=
λ2M+1

k
√

2π
e−k

2/22M+3λ2 .

Therefore, we have

pk,λ ≤
C2(p−1)M+p

kp
+
λ2M+1

k
√

2π
e−k

2/22M+3λ2 .

The proof for k < 0 is completely analogous.

Lemma B.5. Fix M ∈ N. Assume that fY (y) ≤ C|y|−p for some positive constant C and p > 1.

The mapping λ 7→ H(UMλ ) is continuous.

Proof. Let (λn)n≥1 be a sequence of non-negative real numbers converging to λ0. First, we prove

continuity at λ0 > 0. Without loss of generality, assume that λn > 0 for all n ∈ N. Define

λ∗ := inf{λn : n ≥ 1} and λ∗ := sup{λn : n ≥ 1}. Clearly 0 < λ∗ ≤ λ∗ <∞. Recall that

pk,λ =

∫
R

e−z
2/2λ2

√
2πλ2

Pr

(
Y ∈

[
k

2M
,
k + 1

2M

)
− z
)

dz.
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Since, for all n ∈ N and z ∈ R,

e−z
2/2λ2n√
2πλ2

n

Pr

(
Y ∈

[
k

2M
,
k + 1

2M

)
− z
)
≤ e−z

2/2(λ∗)2√
2πλ2

∗
,

the dominated convergence theorem implies that

lim
n→∞

pk,λn = pk,λ0 . (B.1)

Lemma B.4 implies that for all n ≥ 0 and |k| > 0,

pk,λn ≤
C2(p−1)M+p

kp
+
λn2M+1

k
√

2π
e−k

2/22M+3λ2n .

Thus, for k large enough, pk,λn ≤
A

kp
for a suitable positive constant A that does not depend on

n. Since the function x 7→ −x log(x) is increasing in [0, 1/2], there exists K ′ > 0 such that for

|k| > K ′

−pk,λn log(pk,λn) ≤ A

kp
log(A−1kp).

Since
∑
|k|>K′

A

kp
log(A−1kp) <∞, for any ε > 0 there exists Kε such that

∑
|k|>Kε

A

kp
log(A−1kp) < ε.

In particular, for all n ≥ 0,

H(UMλn)−
∑
|k|≤Kε

−pk,λn log(pk,λn) =
∑
|k|>Kε

−pk,λn log(pk,λn) < ε.

Therefore, for all n ≥ 1,

∣∣H(UMλn)−H(UMλ0 )
∣∣
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≤
∑
|k|>Kε

−pk,λn log(pk,λn) +

∣∣∣∣∣∣
∑
|k|≤Kε

pk,λ0 log(pk,λ0)− pk,λn log(pk,λn)

∣∣∣∣∣∣+
∑
|k|>Kε

−pk,λ0 log(pk,λ0)

≤ ε+

∣∣∣∣∣∣
∑
|k|≤Kε

pk,λ0 log(pk,λ0)− pk,λn log(pk,λn)

∣∣∣∣∣∣+ ε.

From (B.1) and the continuity of the function x 7→ −x log(x) on [0, 1], we conclude that

lim sup
n→∞

∣∣H(UMλn)−H(UMλ0 )
∣∣ ≤ 3ε.

Since ε is arbitrary, we have limn→∞H(UMλn) = H(UMλ0 ), which completes the proof.

To prove continuity at λ0 = 0, observe that equation (B.1) holds in this case as well. The rest is

analogous to the case λ0 > 0.

Proof of Lemma 4.3. Since λ → H(UMλ ) is continuous, it suffices to show that λ 7→ H(UMλ |Y )

and λ 7→ H(UMλ |X) are continuous. To show these, we will first prove that H(UMλ |Y ) and

H(UMλ |X) are bounded and then apply the dominated convergence theorem.

We note that H(UMλ |Y ) ≤M +H(bUλc|Y ), and hence we can write

H(UMλ |Y ) ≤ M +H(bUλc|Y ) ≤M + sup
t∈[0,1]

H(bt+ λNGc)

(a)

≤ M +
1

2
sup
t∈[0,1]

log

(
2πeE[(bt+ λNGc)2] +

2πe

12

)
,

where (a) follows from [37, Problem 8.7]. Since |bt + λNGc| ≤ |t + λNG| + 1 almost surely, we

have E[(bt+ λNGc)2] ≤ 2t2 + λ2c1, where c1 is a positive constant. Consequently,

H(UMλ |Y ) ≤M +
1

2
log

(
4πe+ λ2c1 +

2πe

12

)
,

and hence the continuity of λ 7→ H(UMλ |Y ) follows from the dominated convergence theorem.
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Analogously, we can write for any x ∈ R

H(UMλ |X = x) ≤ M +H(bUλc|X = x)

(b)

≤ M +
1

2
log

(
2πeE[(bUλc)2|X = x] +

2πe

12

)
,

where (b) follows from [37, Problem 8.7]. As before, we can easily show that E[(bUλc)2|X = x] ≤

2E[Y 2|X = x] + λ2c2, where c2 is a constant. Consequently, we can write

H(UMλ |X) =

∫
H(UMλ |X = x)fX(x)dx

≤ M +

∫
H(bUλc|X = x)fX(x)dx

≤ M +
1

2

∫
log

(
2πeE[(bUλc)2|X = x] +

2πe

12

)
fX(x)dx

≤ M +
1

2

∫
log

(
4πeE[Y 2|X = x] + λ2c2 +

2πe

12

)
fX(x)dx

(c)

≤ M +
1

2
log

(
4πeE[Y 2] + λ2c2 +

2πe

12

)
,

where (c) follows from Jensen’s inequality. The continuity of λ 7→ H(UMλ |X) then follows imme-

diately from the dominated convergence theorem.

Observe that

I(X;UMλ ) = I(X;QM (Uλ)) = H(QM (Uλ))−H(QM (Uλ)|X)

= [H(QM (Uλ))−M ]−
∫
R
fX(x)[H(QM (Uλ)|X = x)−M ]dx.

By Lemma B.3, the integrand is decreasing in M , and thus we can take the limit with respect to M

inside the integral. Thus,

lim
M→∞

I(X;UMλ ) = h(Uλ)− h(Uλ|X) = I(X;Uλ).
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The proof for I(Y ;ZMλ ) is analogous.
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Appendix C

Proofs of Chapter 6

C.1 Proof of Theorem 6.10

Before proving Theorem 6.10, we need to establish some technical facts. Recall that X = [M ],

Y = [N ], and Z = [N + 1].

Consider the mapH : F → [0, 1]× [0, 1] given by

H(F ) = (P(F ),U(F )),

with P(F ) and U(F ) defined in (6.15). For ease of notation, let D ={
D ∈MN×(N+1) : ‖D‖ = 1

}
where || · || denotes the Euclidean norm in MN×(N+1) ≡

RN×(N+1). For G ∈ F , let

D(G) = {D ∈ D : G+ tD ∈ F for some t > 0} .

In graphical terms, D is the set of all possible directions in MN×(N+1) and D(G) is the set of

directions that make t 7→ G+ tD (t ≥ 0) stay locally in F .

Lemma C.1. For every G ∈ F , the set D(G) is compact.

Proof. Let A = {(y, z) ∈ Y × Z : G(y, z) = 0} and B = {(y, z) ∈ Y × Z : G(y, z) = 1}. It is
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straightforward to verify that

D(G) = A ∩ B ∩ C ∩ D,

where

A =
⋂

(y,z)∈A

{
D ∈MN×(N+1) : D(y, z) ≥ 0

}
,

B =
⋂

(y,z)∈B

{
D ∈MN×(N+1) : D(y, z) ≤ 0

}
,

C =

{
D ∈MN×(N+1) :

N+1∑
z=1

D(y, z) = 0, y ∈ Y

}
.

Observe that since sets A, B, C, and D are closed, so is D(G). Since D is bounded, we have that

D(G) is bounded as well. In particular, D(G) is closed and bounded and thus compact.

The following lemma shows the local linear nature of the mappingH. Let [G1, G2] = {λG1 +

(1− λ)G2 : λ ∈ [0, 1]}.

Lemma C.2. For every G ∈ F , there exists δ > 0 such that F 7→ H(F ) is linear on [G,G + δD]

for every D ∈ D(G).

Proof. Let P = [P (x, y)]x∈X ,y∈Y be the joint probability matrix of X and Y , and Q the diagonal

matrix with q1, . . . , qN as diagonal entries, where qy = Pr(Y = y) for y ∈ Y . For G ∈ F fixed,

consider the function τ : D(G)→ R given by

τ(D) = sup{t ≥ 0 | G+ tD ∈ F}.

Using the fact that F is a convex polytope, it can be shown that τ is continuous. The definition

of D(G) clearly implies that τ(D) > 0 for all D ∈ D(G). For x ∈ X , z ∈ Z , and D ∈ D(G),
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consider the function f (D)
x,z : R→ R given by

f (D)
x,z (t) := [PG](x, z) + t[PD](x, z), (C.1)

where PG (resp., PD) is the product of matrices P andG (resp., P andD). Note thatP(G+tD) =∑
z∈Z

max
x∈X

f (D)
x,z (t) for all t ∈ [0, τ(D)] (see (6.15)). Let

az = max
x∈X

[PG](x, z), Mz = {x ∈ X : [PG](x, z) = az}, and b(D)
z = max

x∈Mz

[PD](x, z).

(C.2)

Let t(D)
x,z := − az − [PG](x, z)

b
(D)
z − [PD](x, z)

whenever [PD](x, z) 6= b
(D)
z , and t(D)

x,z = ∞ otherwise. Notice

that f (D)
x,z (t

(D)
x,z ) = az + t

(D)
x,z b

(D)
z . Since t(D)

x,z 6= 0 for all x /∈Mz ,

t(D) := min
z∈Z

min
x/∈Mz

min{|t(D)
x,z |, τ(D)} > 0.

It is easy to see that az + tb(D)
z = max

x∈X
f (D)
x,z (t) for all t ∈ [0, t(D)]. In particular,

P(G+ tD) =
N+1∑
z=1

max
x∈X

f (D)
x,z (t) =

N+1∑
z=1

az + t
N+1∑
z=1

b(D)
z = P(G) + tb(D), (C.3)

for every D ∈ D(G) and t ∈ [0, t(D)], where b(D) :=
∑N+1

z=1 b
(D)
z . Consequently, P is linear on

[G,G + t(D)D]. Since τ : D(G) → R is continuous and bounded, it follows that the map D 7→

min{|t(D)
x,z |, τ(D)} (x /∈ Mz) is also continuous. In particular, the map D 7→ t(D) is continuous.

By compactness of D(G) established in Lemma C.1, we conclude that δP := min
D∈D(G)

t(D) > 0.

Thus, P is linear on [G,G+ δPD] for every D ∈ D(G).

For y ∈ Y , z ∈ Z , and D ∈ D(G), consider the function g(D)
y,z : R→ R given by

g(D)
y,z (t) = [QG](y, z) + t[QD](y, z).
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t

f
(D)
x,z

τ(D)t
(D)
1,z

f
(D)
1,z

f
(D)
2,z

f
(D)
3,z

f
(D)
4,z

0

Figure C.1: Typical functions f (D)
x,z (x ∈ {1, 2, 3, 4}) for a given z ∈ Z and D ∈ D(G). In this

example, we haveMz = {3, 4} and az + tb
(D)
z = f

(D)
4,z (t). Notice that t(D)

2,z =∞ and

t
(D)
3,z = t

(D)
4,z = 0.

Observe that U(G + tD) =
∑
z∈Z

max
y∈Y

g(D)
y,z (t) for all t ∈ [0, τ(D)] (see (6.15)). Similarly to (C.2),

let

αz = max
y∈Y

[QG](y, z), Nz = {y ∈ Y : [QG](y, z) = αz}, and β(D)
z = max

y∈Nz
[QD](y, z).

Using a similar argument that resulted in (C.3), it can be shown that there exists δU > 0 such that

U(G+ tD) =
N+1∑
z=1

g(D)
yz ,z(t) =

N+1∑
z=1

αz + t

N+1∑
z=1

β(D)
z = U(G) + tβ(D), (C.4)

for every D ∈ D(G) and t ∈ [0, δU ], where β(D) :=
∑N+1

z=1 β
(D)
z . Consequently, U is linear

on [G,G + δUD] for every D ∈ D(G). Therefore, F 7→ H(F ) = (P(F ),U(F )) is linear on

[G,G+ δD] for every D ∈ D(G), where δ = min(δP , δU ).

We say that a filter F ∈ F is optimal if U(F ) = h(P(F )). If F is an optimal filter and

P(F ) = ε, we say that F is optimal at ε. The following result is a straightforward application of
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the concavity of h, and thus its proof is omitted.

Lemma C.3. For G ∈ F , let δ > 0 be as in Lemma C.2. If there exist D ∈ D(G) and 0 < t1 <

t2 ≤ δ such that G, G+ t1D and G+ t2D are optimal filters, then G+ tD is an optimal filter for

each t ∈ [0, δ].

A function [Pc(X),Pc(X|Y )] 3 ε 7→ Fε ∈ F is called a path of optimal filters if P(Fε) = ε

and U(Fε) = h(ε) for every ε ∈ [Pc(X),Pc(X|Y )]. As mentioned in Section 6.3.2, for every ε

there exists Fε such that P(Fε) = ε and U(Fε) = h(ε), i.e., a path of optimal filters always exists.

In the rest of this section we establish the existence of a piecewise linear path of optimal filters.

Lemma C.4. For every ε ∈ [Pc(X),Pc(X|Y )), there exists Fε ∈ F and D ∈ D(Fε) such that Fε

is an optimal filter at ε, P(Fε + δD) > ε, and Fε + tD is an optimal filter for each t ∈ [0, δ] with

δ > 0 as in Lemma C.2 for Fε.

Proof. LetK = 2(Pc(X|Y )−ε)−1. For every n,m > K, letGn,m be an optimal filter at ε+ 1
n+ 1

m .

For every n > K, the set {Gn,m : m > K} is an infinite set. Since F is compact, {Gn,m : m > K}

has at least one accumulation point, sayGn. Let (Gn,mk)k≥1 ⊂ {Gn,m : m > K} be a subsequence

with limkGn,mk = Gn. By continuity of P , U , and h, we have that

P(Gn) = lim
k→∞

P(Gn,mk) = ε+
1

n
,

U(Gn) = lim
k→∞

U(Gn,mk) = lim
k→∞

h(P(Gn,mk)) = h(P(Gn)),

i.e., Gn is an optimal filter at ε+ 1
n . By the same arguments as before, the set {Gn : n > K} has at

least one accumulation point, say Fε, and this accumulation point is an optimal filter at ε. Let δ > 0

be as in Lemma C.2 for Fε. By construction of Fε, there exists n1 > K such that ‖Gn1 −Fε‖ < δ
2 .

The filter Gn1 can be written as Gn1 = Fε + t1D1 with t1 ∈ (0, δ2) and D1 ∈ D(Fε). Recall that,

by (C.3) and (C.4), for every D ∈ D(Fε) and t ∈ [0, δ],

P(Fε + tD) = ε+ tb(D) and U(Fε + tD) = h(ε) + tβ(D).
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Notice that the maps D 7→ b(D) and D 7→ β(D) are continuous. Since P(Gn1) = ε + 1
n1
> ε, we

conclude that b(D1) > 0 and, in particular, P(Fε + δD1) > ε.

Let (Gn1,mk)k≥1 ⊂ {Gn1,m : m > K} be such that limkGn1,mk = Gn1 . For k large enough,

we can write Gn1,mk = Fε + θkEk with θk ∈ [0, δ] and Ek ∈ D(Fε). Since θk → t1 and

Ek → D1 as k → ∞, there exists n2 > K such that θn2 <
δ
2 and |b(En2 ) − b(D1)| < b(D1)

2 . Let

t2 := θn2 and D2 := En2 . Clearly, t2 < δ
2 and 1

2b
(D1) < b(D2) < 2b(D1). These inequalities yield

P(Fε+ δD1) > P(Fε+ t2D2) and P(Fε+ δD2) > P(Fε+ t1D1). Thus, there exist s1, s2 ∈ [0, δ]

such that P(Fε + t2D2) = P(Fε + s1D1) and P(Fε + t1D1) = P(Fε + s2D2). In particular,

ε+ t2b
(D2) = ε+ s1b

(D1) and ε+ t1b
(D1) = ε+ s2b

(D2). (C.5)

By the optimality of Gn1 = Fε + t1D1 and Gn1,mn2
= Fε + t2D2,

U(Fε + t2D2) = h(ε) + t2β
(D2) ≥ h(ε) + s1β

(D1) = U(Fε + s1D1),

U(Fε + t1D1) = h(ε) + t1β
(D1) ≥ h(ε) + s2β

(D2) = U(Fε + s2D2).

By the equations in (C.5), the above inequalities are in fact equalities. In particular, Fε, Fε + t1D1

and Fε + s1D1 are optimal filters. Invoking Lemma C.3, we conclude that Fε + tD1 is an optimal

filter for all t ∈ [0, δ].

Using an analogous proof, we can also prove the following lemma.

Lemma C.5. For every ε ∈ (Pc(X),Pc(X|Y )], there exists Fε ∈ F and D ∈ D(Fε) such that Fε

is an optimal filter at ε, P(Fε + δD) < ε, and Fε + tD is an optimal filter for each t ∈ [0, δ] with

δ > 0 as in Lemma C.2 for Fε.

We are in position to prove Theorem 6.10.

Proof of Theorem 6.10. For notational simplicity, we define S := Pc(X) and T := Pc(X|Y ). In

light of Lemmas C.4 and C.5, for every ε ∈ (S, T ) there exist optimal filters Fε and Gε at ε, δε > 0,
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Dε ∈ D(Fε), and Eε ∈ D(Gε) such that Fε + tDε and Gε + tEε are optimal filters for each

t ∈ [0, δε], and P(Gε + δεEε) < ε < P(Fε + δεDε). Note that δε = min{δFε , δGε}, where δFε

and δGε are the constants obtained in Lemma C.2 for filters Fε and Gε, respectively. For every

ε ∈ (S, T ), let Vε = (P(Fε + δεEε),P(Gε + δεDε)). Similarly, there exist

a) an optimal filter FS at S, δS > 0, and DS ∈ D(FS) such that FS + tDS is an optimal filter

for each t ∈ [0, δS ] and P(FS + δSDS) > S;

b) an optimal filter GT at T , δT > 0, and ET ∈ D(GT ) such that GT + tET is an optimal filter

for each t ∈ [0, δT ] and P(GT + δTET ) < T .

Let VS = [S,P(FS + δSDS)) and VT = (P(GT + δTET ), T ]. The family {Vε : ε ∈ [S, T ]} forms

an open cover of [S, T ] (in the subspace topology). By compactness, there exist S = ε0 < · · · <

εl = T such that {Vε0 , . . . , Vεl} forms an open cover for [S, T ]. For each i ∈ {0, . . . , l − 1}, the

mapping

[εi,P(Fεi + δεiDεi)) 3 ε 7→ Fεi +
ε− εi
b(Dεi )

Dεi ∈ F , (C.6)

is clearly linear. Similarly, for each i ∈ {0, . . . , l − 1}, the mapping

(P(Gεi + δεiEεi), εi] 3 ε 7→ Gεi +
ε− εi
b(Eεi )

Eεi ∈ F , (C.7)

is also linear. Notice that P
(
Fεi +

ε− εi
b(Dεi )

Dεi

)
= ε = P

(
Gεi +

ε− εi
b(Eεi )

Eεi

)
. Since

{Vε0 , . . . , Vεl} forms an open cover for [S, T ], the mappings in (C.6) and (C.7) implement a piece-

wise linear path of optimal filters.

The proof provided in this appendix establishes the existence of δ∗ > 0, an optimal filter F∗ at

T := Pc(X|Y ), and D∗ ∈ D(F∗) such that P(F∗ + δ∗D∗) < T (or equivalently b(D∗) < 0) and

h(ε) = 1 + (ε− T )
β(D∗)

b(D∗)
,
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for every ε ∈ [T + δ∗b
(D∗), T ]. The previous equation and the maximality of h(ε) imply that

h′(T ) = min
F∈F
P(F )=T

min
D∈D(F )

b(D)<0

β(D)

b(D)
. (C.8)

C.2 Proof of Theorem 6.14

We first note that since h is concave on [Pc(X),Pc(X|Y )], its right derivative exists at Pc(X|Y ).

Therefore, we have by concavity

h(ε) ≤ 1− (Pc(X|Y )− ε)h′(Pc(X|Y )), (C.9)

for all ε ∈ [p,Pc(X|Y )]. In Lemma C.6 below, we show that

h′(Pc(X|Y )) =
q

β̄p− αp̄
1{αᾱp̄2<ββ̄p2} +

q̄

ᾱp̄− βp
1{αᾱp̄2≥ββ̄p2}.

Thus, (C.9) becomes

h(ε) ≤


1− ζ(ε)q, αᾱp̄2 < ββ̄p2,

1− ζ̃(ε)q̄, αᾱp̄2 ≥ ββ̄p2.

(C.10)

To finish the proof of Theorem 6.14 we show that the Z-channel Z(ζ(ε)) and the reverse Z-channel

Z̃(ζ̃(ε)) achieve (C.9) and (C.10), when αᾱp̄2 < ββ̄p2 and αᾱp̄2 ≥ ββ̄p2, respectively.

For αᾱp̄2 < ββ̄p2, consider the filter PZ|Y =

 1 0

ζ(ε) 1− ζ(ε)

. Notice that

PXZ =

p̄(ᾱ+ αζ(ε)) p̄α(1− ζ(ε))

p(β + β̄ζ(ε)) pβ̄(1− ζ(ε))

 and PY Z =

 q̄ 0

qζ(ε) q(1− ζ(ε))

 . (C.11)

It is straightforward to verify that p̄(ᾱ+αζ(ε)) ≥ p(β+ β̄ζ(ε)). As a consequence, Pc(X|Z) = ε.

Since αᾱp̄2 < ββ̄p2, we have that
q̄

q
> ζ(ε). Thus, Pc(Y |Z) = 1− ζ(ε)q.
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For αᾱp̄2 ≥ ββ̄p2, consider the filter PZ|Y =

1− ζ̃(ε) ζ̃(ε)

0 1

. Notice that

PXZ =

p̄ᾱ(1− ζ̃(ε)) p̄(α+ ᾱζ̃(ε))

pβ(1− ζ̃(ε)) p(β̄ + βζ̃(ε))

 and PY Z =

q̄(1− ζ̃(ε)) q̄ζ̃(ε)

0 q

 . (C.12)

Recall that ᾱp̄ > βp and also observe that p(β̄ + βζ̃(ε)) ≥ p̄(α + ᾱζ̃(ε)). As a consequence,

Pc(X|Z) = ε. The fact that αᾱp̄2 ≥ ββ̄p2 implies q ≥ q̄ζ̃(ε). Therefore, Pc(Y |Z) = 1− ζ̃(ε)q̄.

Lemma C.6. Let X ∼ Bernoulli(p) with p ∈ [1
2 , 1) and PY |X = BIBO(α, β) with α, β ∈ [0, 1

2)

such that ᾱp̄ > βp. Then h′(Pc(X|Y )) =
q

β̄p− αp̄
1{αᾱp̄2<ββ̄p2} +

q̄

ᾱp̄− βp
1{αᾱp̄2≥ββ̄p2}.

Proof. As before, let T := Pc(X|Y ). We begin the proof by noticing that the Z-channels defined

in (C.11) and (C.12) provide a lower bound on h(ε) as follows:

h(ε) ≥ 1− ζ(ε)q1{αᾱp̄2<ββ̄p2} − ζ̃(ε)q̄1{αᾱp̄2≥ββ̄p2}. (C.13)

By concavity of h, this inequality implies

h′(T ) ≤ q

β̄p− αp̄
1αᾱp̄2<ββ̄p2 +

q̄

ᾱp̄− βp
1αᾱp̄2≥ββ̄p2 .

The rest of the proof is devoted to establishing the reverse inequality. To this end, we use the

variational formula for h′(T ) given in (C.8). Let P = [P (x, y)]x,y∈{0,1} be the joint probability

matrix of X and Y . Without loss of generality we can assume Z = {z1, z2, z3}. It follows from

(C.3) and (C.4) that for every F ∈ F ⊂M2×3 there exists δ > 0 such that

P(F + tD) = P(F ) + tb(D) and U(F + tD) = U(F ) + tβ(D), (C.14)

for every t ∈ [0, δ] and D ∈ D(F ), where b(D) =
3∑
i=1

max
x∈Mzi

[PD](x, zi) and β(D) =
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3∑
i=1

max
y∈Nzi

q(y)D(y, zi) with

Mzi =
{
x ∈ {0, 1} : (PF )(x, zi) = max

x′∈{0,1}
(PF )(x′, zi)

}
,

Nzi =
{
y ∈ {0, 1} : q(y)F (y, zi) = max

y′∈{0,1}
q(y′)F (y′, zi)

}
.

Up to permutation of columns, which corresponds to permuting the elements of Z , the set of

filters F ∈ F such that P(F ) = T equals


1 0 0

0 u v

 :
0 < v ≤ u
u+ v = 1


⋃

0 u v

1 0 0

 :
0 < v ≤ u
u+ v = 1


⋃

1 0 0

0 1 0


 . (C.15)

To compute h′(T ) using formula (C.8) we need to compute β(D) and b(D) for eachD ∈ D(F ) with

F of the form described in (C.15).

Let F =

1 0 0

0 u v

 for some 0 < v ≤ u and u+ v = 1. A direct computation shows that

PF =

ᾱp̄ uαp̄ vαp̄

βp uβ̄p vβ̄p

 . (C.16)

In particular,Mz1 = {0},Mz2 = {1}, andMz3 = {1}. For every D ∈ D(F ),

PD =

ᾱp̄D11 + αp̄D21 ᾱp̄D12 + αp̄D22 ᾱp̄D13 + αp̄D23

βpD11 + β̄pD21 βpD12 + β̄pD22 βpD13 + β̄pD23

 ,
and hence b(D) = ᾱp̄D11+αp̄D21+βpD12+β̄pD22+βpD13+β̄pD23. Notice that, for 1 ≤ i ≤ 3,

we have that Di1 +Di2 +Di3 = 0. In particular, b(D) = (ᾱp̄−βp)D11 + (αp̄− β̄p)D21. Consider
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the matrices,

q̄ 0

0 q

F =

q̄ 0 0

0 qu qv

 and

q̄ 0

0 q

D =

q̄D11 q̄D12 q̄D13

qD21 qD22 qD33

 ,
from which we obtain Nz1 = {0}, Nz2 = {1}, Nz3 = {1}, and therefore, β(D) = q̄D11 + qD22 +

qD23 = q̄D11 − qD21. In what follows we use the simple fact that
ax+ y

bx+ y
≥ min

{a
b
, 1
}

for

a, b > 0 and x, y ≥ 0 with x + y > 0. For notational simplicity, let η := q̄
q and ζ := ζ(p), where

ζ(·) is defined in (6.17).

From the form of F , it is clear that −D11 ≥ 0 and D21 ≥ 0. If b(D) < 0, then D11 and D21

cannot be simultaneously zero, and hence

β(D)

b(D)
=

q

β̄p− αp̄
η(−D11) +D21

ζ(−D11) +D21
≥ q

β̄p− αp̄
min

{
η

ζ
, 1

}
=


q

β̄p−αp̄ , αᾱp̄2 < ββ̄p2,

q̄
ᾱp̄−βp , αᾱp̄2 ≥ ββ̄p2.

In particular, we obtain that

min
D∈D(F )

b(D)<0

β(D)

b(D)
≥


q

β̄p−αp̄ , αᾱp̄2 < ββ̄p2,

q̄
ᾱp̄−βp , αᾱp̄2 ≥ ββ̄p2.

(C.17)

The case F =

0 u v

1 0 0

 for 0 < v ≤ u and u+ v = 1 is analogous.

Now, let F =

1 0 0

0 1 0

. By (C.16) with u = 1 and v = 0, we obtain that Mz1 = {0},

Mz2 = {1}, and Mz3 = {0, 1}. In a similar way, Nz1 = {0}, Nz2 = {1}, and Nz3 = {0, 1}.

Hence

b(D) = ᾱp̄D11 + αp̄D21 + βpD12 + β̄pD22 + max{ᾱp̄D13 + αp̄D23, βpD13 + β̄pD23},
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β(D) = q̄D11 + qD22 + max{q̄D13, qD23}.

We therefore need to consider the following cases:

Case I: ᾱp̄D13 + αp̄D23 ≤ βpD13 + β̄pD23 and q̄D13 ≤ qD23. The computation in this case

reduces to the computation for F =

1 0 0

0 u v

.

Case II: ᾱp̄D13 + αp̄D23 ≤ βpD13 + β̄pD23 and q̄D13 > qD23. Notice that these conditions

imply that ζD13 ≤ D23 < ηD13, and therefore this case requires ζ < η (or equivalently,

αᾱp̄2 < ββ̄p2). This yields

b(D) = (ᾱp̄− βp)D11 + (αp̄− β̄p)D21 and β(D) = qD22 − q̄D12.

Hence, we have
β(D)

b(D)
=

q

β̄p− αp̄
D22 − ηD12

ζD11 −D21
.

By the form of F , we have that −D11, D12, D21 ≥ 0. The inequalities ζ < η and ζD13 ≤

D23 imply that
D22 − ηD12

ζD11 −D21
≥ 1, and hence

β(D)

b(D)
≥ q

β̄p− αp̄
1{αᾱp̄2<ββ̄p2}. (C.18)

Case III: ᾱp̄D13 + αp̄D23 > βpD13 + β̄pD23 and q̄D13 ≤ qD23. Notice that these conditions

imply that ηD13 ≤ D23 < ζD13, and hence this case requires ζ > η (or equivalently,

αᾱp̄2 > ββ̄p2). In this case, we have

b(D) = (βp− ᾱp̄)D12 + (β̄p− αp̄)D22 and β(D) = q̄D11 − qD21.
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Therefore,
β(D)

b(D)
=

q̄

ᾱp̄− βp
D11 − η−1D21

−D12 + ζ−1D22
.

By the form of F , we have that −D22, D12, D21 ≥ 0. The inequalities ζ−1 < η−1 and

ζD13 > D23 imply that
D11 − η−1D21

−D12 + ζ−1D22
> 1, and hence

β(D)

b(D)
>

q̄

ᾱp̄− βp
1{αᾱp̄2>ββ̄p2}. (C.19)

Case IV: ᾱp̄D13+αp̄D23 > βpD13+β̄pD23 and q̄D13 > qD23. Notice that these two inequalities

imply that D23 < min{ζ, η}D13. For this case we have that

b(D) = (βp− ᾱp̄)D12 + (β̄p− αp̄)D22 and β(D) = qD22 − q̄D12.

Hence, we have
β(D)

b(D)
=

q

β̄p− αp̄
ηD12 −D22

ζD12 −D22
.

By the form of F , we have that −D22, D12 ≥ 0. As before, we conclude that

β(D)

b(D)
≥ q

β̄p− αp̄
min

{
η

ζ
, 1

}
=


q

β̄p−αp̄ , αᾱp̄2 < ββ̄p2,

q̄
ᾱp̄−βp , αᾱp̄2 ≥ ββ̄p2.

(C.20)

Combining (C.17), (C.18), (C.19), and (C.20), we obtain

min
F∈F
P(F )=T

min
D∈D(F )

b(D)<0

β(D)

b(D)
≥


q

β̄p−αp̄ , αᾱp̄2 < ββ̄p2,

q̄
ᾱp̄−βp , αᾱp̄2 ≥ ββ̄p2,

as desired.
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C.3 Proof of Theorem 6.17

Recall thatX = [M ] and Y = Z = [N ], and P = [P (x, y)](x,y)∈X×Y is the joint probability matrix

of X and Y , and the marginals are pX(x) = Pr(X = x) and qY (y) = Pr(Y = y) for every x ∈ X

and y ∈ Y . Similar to h, the function h admits the alternative formulation

h(ε) = sup
F∈F : P(F )≤ε

U(F ),

where F is the set of all stochastic matrices F ∈MN×N ,

P(F ) =
∑
z∈Z

max
x∈X

(PF )(x, z), and U(F ) =
∑
z∈Z

max
y∈Y

qY (y)F (y, z).

We let D = {D ∈MN×N : ‖D‖ = 1} and, for each F ∈ F , we define

D(F ) := {D ∈ D : F + tD ∈ F for some t > 0} .

Before proving Theorem 6.17, we need to establish some technical lemmas. Notice that the proofs

of Lemmas C.1 and C.2 do not depend on the alphabets X , Y , and Z . Therefore, D(F ) is compact

for any F ∈ F and also we obtain the following lemma.

Lemma C.7. Let H : F → [0, 1] × [0, 1] be the mapping given by H(F ) = (P(F ),U(F )). For

every F ∈ F , there exists δ > 0 such thatH is linear on [F, F + δD] for every D ∈ D(F ).

The convex analysis tools used to study h heavily rely on the fact that |Z| = |Y| + 1. Hence,

they are unavailable in this case, and thus we need an alternative approach to establish the desired

functional properties of h.

Lemma C.8. If Pc(X) < Pc(X|Y ), then h is continuous at Pc(X|Y ).
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Proof. Without loss of generality, we will assume that qY (1) > 0. Let D∗ ∈ D(IN ) be given by

D∗ =



0 0 0 · · · 0

λ −λ 0 · · · 0

λ 0 −λ · · · 0

...
...

...
. . .

...

λ 0 0 · · · −λ


,

where λ = (2(N − 1))−1/2. As in the proof of Lemma C.2, one can show that there exist δ1 > 0

and (xz)z∈Z ⊂ X such that for every t ∈ [0, δ1],

P(IN + tD∗) =
∑
z∈Z

max
x∈X

(P (IN + tD∗))(x, z) =
∑
z∈Z

(P (IN + tD∗))(xz, z). (C.21)

In this case, we have that

P(IN + tD∗) = P (x1, 1) + tλ
N∑
z=2

P (x1, z) + (1− tλ)
N∑
z=2

P (xz, z)

=
∑
z∈Z

P (xz, z)− tλ

(∑
z∈Z

P (xz, z)− P (x1, z)

)
.

Note that Pc(X|Y ) = P(IN ) =
∑

z∈Z P (xz, z). Hence,

P(IN + tD∗) = Pc(X|Y )− tλσ, (C.22)

where σ =
∑
z∈Z

(P (xz, z) − P (x1, z)). Setting t = 0 in (C.21), we have that P (xz, z) ≥ P (x, z)

for all (x, z) ∈ X × Z . If P (xz, z) = P (x1, z) for all z ≥ 1, then

Pc(X|Y ) =
∑
z∈Z

P (x1, z) = pX(x1) ≤ Pc(X),

which contradicts the hypothesis of the lemma. Therefore, there exists z ∈ Z such that P (xz, z) >
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P (x1, z) and hence σ > 0. Similarly, there exists δ2 > 0 such that for every t ∈ [0, δ2],

U(IN + tD∗) = qY (1) + (1− tλ)
N∑
z=2

qY (z) = 1− tλ(1− qY (1)). (C.23)

Let δ = min(δ1, δ2). From (C.22) and (C.23), we have for every t ∈ [0, δ]

1− tλ(1− qY (1)) ≤ h(Pc(X|Y )− tλσ) ≤ 1. (C.24)

In particular,

lim
ε→Pc(X|Y )

h(ε) = lim
t→0

h(Pc(X|Y )− tλσ) = 1 = h(Pc(X|Y )),

i.e., h is continuous at Pc(X|Y ).

We say that F ∈ F is an optimal filter at ε if U(F ) = h(ε) and P(F ) ≤ ε. As opposed to

h, the concavity of h is unknown and hence the existence of an optimal filter at ε with P(F ) = ε

is not immediate. Nonetheless, since P and U are continuous functions, there exists an optimal

filter F at ε (with P(F ) ≤ ε) for every ε ∈ [Pc(X),Pc(X|Y )]. For any F ∈ F and δ > 0, let

B(F, δ) = {G ∈ F : ‖G− F‖ < δ}.

Lemma C.9. Let δ > 0 be as in Lemma C.7 for IN , i.e., U and P are linear on [IN , IN + δD]

for every D ∈ D(IN ). If Pc(X) < Pc(X|Y ) and qY (y) > 0 for all y ∈ Y , then there exists

εL < Pc(X|Y ) such that for every ε ∈ [εL,Pc(X|Y )] there exists an optimal filter Fε at ε with

Fε ∈ B(IN , δ).

Proof. Let F1 = {F ∈ F : U(F ) = 1} and let B =
⋃
F∈F1

B(F, δ). The proof is based on the

following claim.

Claim. There exists εL < Pc(X|Y ) such that if F is an optimal filter at ε with ε ≥ εL, then F ∈ B.

223



Proof of the claim. The proof is by contradiction. Assume that for every ε < Pc(X|Y ) there exists

an optimal filter Gε′ at ε′ ∈ [ε,Pc(X|Y )) with Gε′ /∈ B. Since h is a non-decreasing

function, we have that U(Gε′) = h(ε′) ≥ h(ε). Let K := (Pc(X|Y )−Pc(X))−1. For each

n > K, let Fn = GPc(X|Y )−1/n. Since F\B is compact, there exist {n1 < n2 < · · · } and

F ∈ F\B such that Fnk → F as k →∞. By continuity of U and h at Pc(X|Y ), established

in the Lemma C.8, we have

1 ≥ U(F ) = lim
k→∞

U(Fnk) ≥ lim
k→∞

h(Pc(X|Y )− n−1
k ) = h(Pc(X|Y )) = 1.

In particular, we have that F ∈ F1 ⊂ B, which contradicts the fact that F ∈ F\B.

The assumption qY (y) > 0 for every y ∈ Y implies that F ∈ F1 if and only if F is a permu-

tation matrix, i.e., F can be obtained by permuting the columns of IN . In particular, the map-

ping G 7→ GF−1 is a bijection between B(F, δ) and B(IN , δ) which preserves P and U , i.e.,

P(G) = P(GF−1) and U(G) = U(GF−1) for every G ∈ B(F, δ). As mentioned earlier, there

exists an optimal filter Fε at ε for every ε ∈ [Pc(X),Pc(X|Y )]. By the claim, Fε, for ε ≥ εL,

belongs to B and, in particular, Fε ∈ B(F, δ) for some F ∈ F1. By the aforementioned properties

of the bijection G 7→ GF−1, the filter FεF−1 is an optimal filter at ε with FεF−1 ∈ B(IN , δ).

Now we are in position to prove Theorem 6.17.

Proof of Theorem 6.17. If qY (y) = 0 for some y ∈ Y , the effective cardinality of the alphabet of Y

is |Y| − 1 and thus h(ε) equals h(ε) for every ε ∈ [Pc(X),Pc(X|Y )]. In this case, h is piecewise

linear and (6.18) follows trivially by Theorem 6.10. In what follows, we assume that qY (y) > 0 for

all y ∈ Y .

Let δ > 0 and ε′L < Pc(X|Y ) be as in Lemma C.9. For each ε ∈ [ε′L,Pc(X|Y )), let Gε be

an optimal filter at ε with Gε ∈ B(IN , δ) whose existence was established in Lemma C.9. Let

tε ∈ [0, δ] and Dε ∈ D(IN ) be such that Gε = IN + tεDε for every ε ∈ [ε′L,Pc(X|Y )). As in (C.3)
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and (C.4) in the proof of Lemma C.2, for every t ∈ [0, δ] and D ∈ D(IN ),

P(IN + tD) = Pc(X|Y ) + tb(D) and U(IN + tD) = 1 + tβ(D), (C.25)

where

b(D) =
∑
z∈Z

max
x∈Mz

(PD)(x, z) and β(D) =
∑
z∈Z

q(z)D(z, z), (C.26)

where Mz = {x ∈ X : P (x, z) ≥ P (x′, z) for all x′ ∈ X}. Since P(F ) ≤ Pc(X|Y ) for all

F ∈ F , it is immediate that b(D) ≤ 0 for every D ∈ D(IN ). Moreover, since P(Gε) ≤ ε, we have

that b(Dε) < 0 for all ε ∈ [ε′L,Pc(X|Y )). By definition ofD(IN ), it is clear that if D ∈ D(IN ), then

we have D(y, y) ≤ 0 for all y ∈ Y , which together with the fact that ‖D‖ = 1 for all D ∈ D(IN ),

implies that β(D) < 0 for all D ∈ D(IN ). We first establish the following intuitive claim.

Claim. Let ε′L < Pc(X|Y ) be as defined in Lemma C.9. Then, there exists an optimal filter Gε at ε

for each ε ∈ [ε′L,Pc(X|Y )] such that P(Gε) = ε and U(Gε) = h(ε).

Proof of Claim. The filter Gε = IN + tεDε is optimal at ε for every ε ∈ [ε′L,Pc(X|Y )). To reach

contradiction, assume that there exists ε0 < ε such that P(Gε) = ε0. According to (C.25),

we obtain Pc(X|Y ) + tεb
(Dε) = ε0 < ε and hence

tε >
Pc(X|Y )− ε
−b(Dε)

=: t′.

Now consider the filter IN + t′Dε. Since t′ ≤ δ, we have from (C.25) that P(IN + t′Dε) = ε

and

h(ε)
(a)
= 1 + tεβ

(Dε)
(b)
< U(IN + t′Dε) = 1 + t′β(Dε),

where (a) is due to the optimality of Gε and (b) follows from the negativity of β(Dε). The

above inequality contradicts the maximality of h(ε). This implies that P(Gε) = ε which,
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according to (C.25), yields

h(ε) = 1− (Pc(X|Y )− ε)β
(Dε)

b(Dε)
, (C.27)

for all ε ∈ [ε′L,Pc(X|Y )).

Now fix ε′ ∈ [ε′L,Pc(X|Y )] with ε ≤ ε′. On the one hand, according to (C.27), we know that

h(ε′) = 1− (Pc(X|Y )− ε′)β
(Dε′ )

b(Dε′ )
. (C.28)

On the other hand, we obtain from (C.25) that 0 ≤ Pc(X|Y )−ε′
−b(Dε) ≤ tε and hence

P
(

IN +
Pc(X|Y )− ε′

−b(Dε)
Dε

)
= ε′, (C.29)

U
(

IN +
Pc(X|Y )− ε′

−b(Dε)
Dε

)
= 1− (Pc(X|Y )− ε′)β

(Dε)

b(Dε)
. (C.30)

Comparing (C.28) and (C.30), we conclude that

1− (Pc(X|Y )− ε′)β
(Dε′ )

b(Dε′ )
= h(ε′) ≥ 1− (Pc(X|Y )− ε′)β

(Dε)

b(Dε)
,

and hence the function ε 7→ β(Dε)

b(Dε)
is non-increasing over [ε′L,Pc(X|Y )). Therefore, since

β(Dε)

b(Dε)
>

0, the limit lim
ε→Pc(X|Y )−

β(Dε)

b(Dε)
=: A exists.

Let K = (Pc(X|Y )− ε′L)−1. For each n > K, let Fn = GPc(X|Y )− 1
n

. Write Fn = IN + tnDn

with tn ∈ [0, δ] and Dn ∈ D(IN ). Since D(IN ) is compact, there exist {n1 < n2 < · · · } and

D∗ ∈ D(IN ) such that Dnk → D∗ as k → ∞. By continuity of the mappings D 7→ b(D) and

D 7→ β(D), we have that b(Dnk ) → b(D
∗) and β(Dnk ) → β(D∗) as k →∞.

Claim. We have that b(D
∗) < 0 and, in particular, A =

β(D∗)

b(D∗)
.

Proof of Claim. Recall that F ∈ F 1 if and only if F is a permutation matrix. In particular, F1 is
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finite with |F1| = N !. Recall that b(D
∗) ≤ 0. Assume that b(D

∗) = 0. Since
β(Dnk )

b(Dnk )
→ A ∈

[0,∞) and b(Dnk ) → b(D
∗) = 0 as k →∞, we have that β(Dnk ) → 0 and hence β(D∗) = 0.

This implies that U(IN + tD∗) = 1 for all t ∈ [0, δ], i.e., IN + tD∗ ∈ F1 for all t ∈ [0, δ].

This contradicts the fact that F1 is finite.

The claim implies that for ε ∈ [Pc(X|Y ) + δb(D
∗),Pc(X|Y )],

P
(

IN +
Pc(X|Y )− ε
−b(D∗)

D∗
)

= ε,

U
(

IN +
Pc(X|Y )− ε
−b(D∗)

D∗
)

= 1− (Pc(X|Y )− ε)A.

Recall that
β(D∗)

b(D∗)
= A ≤ β(Dε)

b(Dε)
for all ε ∈ [ε′L,Pc(X|Y )). Let εL := max{ε′L,Pc(X|Y )+δb(D

∗)}.

Then

h(ε) ≥ 1− (Pc(X|Y )− ε)β
(D∗)

b(D∗)
≥ 1− (Pc(X|Y )− ε)β

(Dε)

b(Dε)
(a)
= h(ε), (C.31)

for all ε ∈ [εL,Pc(X|Y )], where the equality in (a) follows from (C.27). This proves that h is

linear on ε ∈ [εL,Pc(X|Y )].

Recall that β(D) < 0 for all D ∈ D(IN ). The maximality of h and (C.31) imply then

h′(Pc(X|Y )) = min
D∈D(IN )

β(D)

b(D)
. (C.32)

If b(D) = 0 for some D ∈ D(IN ), the term
β(D)

b(D)
is defined to be +∞. Notice that this convention

agrees with the fact that if b(D) = 0 then D cannot be an optimal direction. Furthermore, for every

D′ ∈ D(IN ) such that h′(Pc(X|Y )) = β(D′)

b(D
′) , there exists εL < Pc(X|Y ) (depending on D′) such

that

IN +
Pc(X|Y )− ε
−b(D′)

D′ (C.33)
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achieves h(ε) for every ε ∈ [εL,Pc(X|Y )]. In addition, assume that for each y ∈ Y there exists (a

unique) xy ∈ X such that, for all x 6= xy,

Pr(X = xy|Y = y) > Pr(X = x|Y = y).

In particular,Mz = {xz} for every z ∈ Z and hence (C.26) becomes

b(D) =
∑
z∈Z

(PD)(xz, z) and β(D) =
∑
z∈Z

qY (z)D(z, z),

for every D ∈ D(IN ). Using the fact that
∑
z∈Z

D(y, z) = 0 for all y ∈ Y , we obtain

b(D) = −
∑
y∈Y

∑
z 6=y

(P (xy, y)− P (xz, y))D(y, z) and β(D) = −
∑
y∈Y

∑
z 6=y

qY (y)D(y, z).

Therefore, for every D ∈ D(IN ),

β(D)

b(D)
=

∑
y∈Y

∑
z 6=y qY (y)D(y, z)∑

y∈Y
∑

z 6=y(P (xy, y)− P (xz, y))D(y, z)
. (C.34)

Since
∑

k akxk∑
k bkxk

≥ min
k

ak
bk

for ak > 0 and bk, xk ≥ 0 with
∑

k xk > 0, we obtain from (C.34) that

for every D ∈ D(IN )

β(D)

b(D)
≥ min

(y,z)∈Y×Z

qY (y)

P (xy, y)− P (xz, y)
.

Equation (C.32) implies that

h′(Pc(X|Y )) ≥ min
(y,z)∈Y×Z

qY (y)

P (xy, y)− P (xz, y)
.

Assume that (y0, z0) attains the above minimum. We note that one can easily show from (C.24)

that 0 ≤ h′(ε) ≤ 1−qY (1)
σ < ∞, where σ :=

∑
z∈Z (P (xz, z)− P (x1, z)) > 0. Hence, we have
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y0 6= z0. Now, consider the direction D∗ such that

D∗(y, z) =



λ, y = y0, z = z0

−λ, y = z = y0

0, otherwise,

where λ = 2−1/2. Equation (C.34) implies then that

β(D∗)

b(D∗)
=

qY (y0)

P (xy0 , y0)− P (xz0 , y0)
,

and hence

h′(Pc(X|Y )) ≤ qY (y0)

P (xy0 , y0)− P (xz0 , y0)
= min

(y,z)∈Y×Z

qY (y)

P (xy, y)− P (xz, y)
.

As a consequence,

h′(Pc(X|Y )) = min
(y,z)∈Y×Z

qY (y)

P (xy, y)− P (xz, y)
.

Moreover, (C.33) implies that there exists εy0,z0L < Pc(X|Y ) such that IN +
Pc(X|Y )− ε
−b(D∗)

D∗

achieves h(ε) for every ε ∈ [εy0,z0L ,Pc(X|Y )]. Note that

IN +
Pc(X|Y )− ε
−b(D∗)

D∗ = Zy0,z0(ζy0,z0(ε)),

where ζy0,z0(ε) =
Pc(X|Y )− ε

P (xy0 , y0)− P (xz0 , y0)
.

C.4 Proof of Theorem 6.20

Let P = [P (xn, yn)]xn,yn∈{0,1}n denotes the joint probability matrix of Xn and Y n and q(yn) =

Pr(Y n = yn) for yn ∈ {0, 1}n. Let 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1). We will show that
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(Xn, Y n) satisfies the hypotheses of Theorem 6.17 with y0 = 1 and z0 = 0.

Under the assumptions (a1) and (b), it is straightforward to verify that

P (xn, yn) = (ᾱp̄)n
n∏
k=1

(
p

p̄

)xk (α
ᾱ

)xk⊕yk
, (C.35)

for every xn, yn ∈ {0, 1}n. By assumption, Pc(X
n) = pn < ᾱn = Pc(X

n|Y n). It is also

straightforward to verify that q(yn) > 0 for all y ∈ {0, 1}n. Since ᾱp̄ > αp, we have from (C.35)

that

Pr(Xn = zn, Y n = zn) > Pr(Xn = xn, Y n = zn),

for all xn 6= zn. In the notation of Theorem 6.17, xnzn = zn for all zn ∈ {0, 1}n. Note that

min
yn,zn∈{0,1}n

q(yn)

P (xnyn , y
n)− P (xnzn , y

n)
= min

yn∈{0,1}n
q(yn)

P (yn, yn)− min
zn 6=yn

P (zn, yn)
.

It is easy to show that min
zn 6=yn

P (zn, yn) = (αp)n
n∏
k=1

(
p

p̄

)−yk
and that the minimum is attained by

zn = (ȳ1, ȳ2, . . . , ȳn). As a consequence,

min
yn,zn∈{0,1}n

q(yn)

P (xnyn , y
n)− P (xnzn , y

n)
= min

yn∈{0,1}n

∑
xn∈{0,1}n

n∏
k=1

(
p
p̄

)xk−yk (α
ᾱ

)xk⊕yk
1−

(
pα
p̄ᾱ

)n
Π−2
yn

= min
yn∈{0,1}n

n∏
k=1

[
(pp̄)−yk(αᾱ)yk + (pp̄)1−yk(αᾱ)1−yk

]
1−

(
pα
p̄ᾱ

)n
Π−2
yn

,

where Πyn =

n∏
k=1

(
p

p̄

)yk
. Observe that the denominator is maximized when yn = 1. Using the

fact that p ≥ 1
2 ≥ p̄, one can show that the numerator is minimized when yn = 1. In particular,

min
yn,zn∈{0,1}n

q(yn)

P (xnyn , y
n)− P (xnzn , y

n)
=

(αp̄+ ᾱp)n

(ᾱp)n − (αp̄)n
,
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and the minimum is attained by (yn0 , z
n
0 ) = (1,0).

Therefore (Xn, Y n) satisfies the hypotheses of Theorem 6.17 with (yn0 , z
n
0 ) = (1,0). Thus,

there exists ε′L < ᾱn such that for every ε ∈ [ε′L, ᾱ
n]

h(ε) = 1− ᾱn − ε
(ᾱp)n − (αp̄)n

qn.

Moreover, Z1,0(ζy0,z0(ε)) achieves h(ε) for every ε ∈ [ε′L, ᾱ
n], where

ζy0,z0(ε) =
ᾱn − ε

(ᾱp)n − (αp̄)n
.

Recall that h(ε) = hnn(ε1/n) and let εL = (ε′L)1/n. Therefore, hnn(ε) = 1 − ζn(ε)qn for all

ε ∈ [εL, ᾱ] which is attained by the Z-channel Zn(ζn(ε)), where ζn(ε) := ζy0,z0(εn).

C.5 Proof of Corollary 6.22

Assume that p > 1
2 . By Theorem 6.20, for every ε ∈ [εL, ᾱ] we have hn(ε) = [Anε

n +Bn]1/n,

where An =
qn

(ᾱp)n − (αp̄)n
and Bn = 1− ᾱnqn

(ᾱp)n − (αp̄)n
. In particular,

h′n(ε) = An

(
ε

hn(ε)

)n−1

, (C.36)

h′′n(ε) = (n− 1)
AnBn

hn+1
n (ε)

(
ε

hn(ε)

)n−2

.

Since p > 1
2 and α > 0, we have Bn → 1 as n → ∞. Let N0 ≥ 1 be such that Bn ≥ 0 for all

n ≥ N0. In this case, we have that h′′n(ε) ≥ 0 for all ε ∈ [εL, ᾱ] and n ≥ N0. In particular, hn is

convex on [εL, ᾱ]. As a consequence, for all ε ∈ [εL, ᾱ] and n ≥ N0

hn(ε) ≥ 1− (ᾱ− ε)h′n(ᾱ).
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Since hi
n(ε) = h1(ε) = 1− (ᾱ− ε)h′1(ᾱ) for all ε ∈ [p, ᾱ], the above inequality implies that

hn(ε)− hi
n(ε) ≥ (ᾱ− ε)(h′1(ᾱ)− h′n(ᾱ))

for all ε ∈ [εL, ᾱ] and n ≥ N0. The result follows from (C.36).

Now, assume that p = 1
2 . In this case, we have for all ε ∈ [εL, ᾱ]

hn(ε) =

(
εn − αn

ᾱn − αn

)1/n

and hi
n(ε) =

ε− α
ᾱ− α

.

Let Ξn : [1
2 , ᾱ]→ R be given by Ξn(ε) = hn(ε)− hi

n(ε).

Claim. The function Ξn is decreasing on [1
2 , ᾱ].

Proof of Claim. We shall show that Ξ ′n(ε) ≤ 0 for all ε ∈ [1
2 , ᾱ]. A straightforward computation

shows that

Ξ ′n(ε) =
1[

1−
(
α
ε

)n](n−1)/n

1

[ᾱn − αn]1/n
− 1

ᾱ− α
.

This function is clearly decreasing, and so it is enough to show that Ξ ′n(1
2) ≤ 0. Note that

Ξ ′n(1
2) ≤ 0 if and only if (

1− α
ᾱ

)n
1−

(
α
ᾱ

)n ≤ [1− (2α)n]n−1. (C.37)

Observe that

(
1− α

ᾱ

)n
1−

(
α
ᾱ

)n ≤ (1− α

ᾱ

)n−1
. Using the fact that 4αᾱ ≤ 1, it is straightforward

to verify that (C.37) holds.

Since Ξn is decreasing over [1
2 , ᾱ], we obtain for all ε ∈ [εL, ᾱ]

0 ≤ hn(ε)− hi
n(ε) ≤ Ξn

(
1

2

)
=

1

2

[(
1− (2α)n

ᾱn − αn

)1/n

− 1

]
.

Since 1− (2α)n ≤ 1−
(
α
ᾱ

)n, it is straightforward to show that Ξn
(

1
2

)
≤ α

2ᾱ , which completes the

proof.
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C.6 Proof of Theorem 6.23

As before, let P = [P (xn, yn)]xn,yn∈{0,1}n denote the joint probability matrix of Xn and Y n and

let q(yn) = Pr(Y n = yn) for yn ∈ {0, 1}n. We first show that (Xn, Y n) satisfies the hypotheses

of Theorem 6.17, and thus we can use (6.19) to obtain bounds on h′(Pc(X
n|Y n)).

Assumptions (a2) and (b) imply that, for all xn, yn ∈ {0, 1}n

P (xn, yn) = (ᾱr̄)n
p̄

r̄

(
p

p̄

)x1 (α
ᾱ

)x1⊕y1 n∏
k=2

(r
r̄

)xk⊕xk−1
(α
ᾱ

)xk⊕yk
, (C.38)

where the product equals one if n = 1. Since α > 0, it is clear that q(yn) > 0 for all yn ∈ {0, 1}n.

Let N0(zn) = |{1 ≤ k ≤ n : zk = 0}| and N1(zn) = |{1 ≤ k ≤ n : zk = 1}| for any binary

vector zn ∈ {0, 1}n. Recall that n is odd, so either N0(zn) < N1(zn) or N0(zn) > N1(zn). The

following lemma shows that for every yn ∈ {0, 1}n there exists (a unique) xnyn ∈ {0, 1}n such that

P (xnyn , y
n) > P (xn, yn) for all xn 6= xnyn .

Lemma C.10. Let (Xn, Y n) be as in the hypothesis of Theorem 6.23. Then, we have for any

yn ∈ {0, 1}n

P (xn, yn) ≤


P (0, yn) = (ᾱr̄)n p̄r̄

(
α
ᾱ

)N1(yn)
, if N0(yn) > N1(yn),

P (1, yn) = (ᾱr̄)n pr̄
(
α
ᾱ

)N0(yn)
, if N0(yn) < N1(yn),

for all xn ∈ {0, 1}n with equality if and only if xn = 0 or xn = 1, respectively.

To prove this lemma, we will make use of the following fact.

Claim. Let yn ∈ {0, 1}n be given. If xn ∈ {0, 1}n maximizes P (xn, yn), then x1 = x2 = · · · =

xn.

Proof of Claim. We prove the result using backward induction. To do so, we assume that the

maximizer xn satisfies xn = xn−1 = · · · = xl for 2 ≤ l ≤ n. It is sufficient to show that
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xn = · · · = xl = xl−1. In light of (C.38), we have

P (xn, yn) = Al−1

(r
r̄

)xl⊕xl−1
n∏
k=l

(α
ᾱ

)xl⊕yk
, (C.39)

where1

Al−1 := (ᾱr̄)n
p̄

r̄

(
p

p̄

)x1 (α
ᾱ

)x1⊕y1 l−1∏
k=2

(r
r̄

)xk⊕xk−1
(α
ᾱ

)xk⊕yk
.

Notice that Al−1 depends only on x1, . . . , xl−1. By the induction hypothesis, we have xl = · · · =

xn. In particular, xn equals either

x̃n := {x1, . . . , xl−1, x̄l−1, . . . , x̄l−1︸ ︷︷ ︸
n−l+1

} or x̂n := {x1, . . . , xl−1, xl−1, . . . , xl−1︸ ︷︷ ︸
n−l+1

}.

By (C.39), we have that

P (x̃n, yn) = Al−1
r

r̄

n∏
k=l

(α
ᾱ

)1−xl−1⊕yk
and P (x̂n, yn) = Al−1

n∏
k=l

(α
ᾱ

)xl−1⊕yk
.

By the assumptions on r and α, we have

r

r̄

n∏
k=l

(α
ᾱ

)1−xl−1⊕yk
≤ r

r̄
<
(α
ᾱ

)n−1
≤
(α
ᾱ

)n−l+1
≤

n∏
k=l

(α
ᾱ

)xl−1⊕yk
,

which shows that P (x̃n, yn) < P (x̂n, yn) and hence xn = x̂n. In other words, xl−1 = xl = · · · =

xn. This completes the induction step.

Proof of Lemma C.10. By the above claim, for any given yn ∈ {0, 1}n, the maximizer xn ∈ {0, 1}n

of P (xn, yn) is either xn = 0 or xn = 1, for which we have

P (0, yn) = (ᾱr̄)n
p̄

r̄

(α
ᾱ

)N1(yn)
, (C.40)

1When l ≤ 3, we use the convention that
∏l−1
k=2

(
r
r̄

)xk⊕xk−1
(
α
ᾱ

)xk⊕yk = 1.
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P (1, yn) = (ᾱr̄)n
p

r̄

(α
ᾱ

)N0(yn)
. (C.41)

Assume N0(yn) > N1(yn) and recall that αp < ᾱp̄. In this case,

p
(α
ᾱ

)N0(yn)
≤ αp

ᾱ

(α
ᾱ

)N1(yn)
< p̄

(α
ᾱ

)N1(yn)
,

which implies P (0, y) > P (1, y), and hence xn = 0 is the only maximizer. If N0(yn) < N1(yn),

then
(
α
ᾱ

)N0(yn)
>
(
α
ᾱ

)N1(yn). Since p ≥ p̄, we conclude that

p
(α
ᾱ

)N0(yn)
> p̄

(α
ᾱ

)N1(yn)
.

Consequently, P (1, y) > P (0, y) and hence xn = 1 is the only maximizer.

Note that

Pc(X
n|Y n) =

∑
yn∈{0,1}n

max
xn∈{0,1}n

P (xn, yn)

(a)
=

∑
yn:N0(yn)>N1(yn)

P (0, yn) +
∑

yn:N0(yn)<N1(yn)

P (1, yn)

(b)
= ᾱnr̄n−1

(n−1)/2∑
k=0

(
n

k

)(α
ᾱ

)k
, (C.42)

where (a) is due to Lemma C.10 and (b) comes from (C.40) and (C.41).

Now that all the hypotheses of Theorem 6.17 are shown to be satisfied, we can use (6.19) to

study h′(Pc(X
n|Y n)). The following lemma is important in bounding h′(Pc(X

n|Y n)).

Lemma C.11. Let (Xn, Y n) be as in the hypothesis of Theorem 6.23. Then, for all yn ∈ {0, 1}n,

q(yn) ≥ αn.
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Proof. From (C.38), we have

P (xn, yn) = (ᾱr̄)n
p̄

r̄

(
p

p̄

)x1 (α
ᾱ

)x1⊕y1 n∏
k=2

(r
r̄

)xk⊕xk−1
(α
ᾱ

)xk⊕yk
≥

(α
ᾱ

)n
(ᾱr̄)n

p̄

r̄

(
p

p̄

)x1 n∏
k=2

(r
r̄

)xk⊕xk−1

= αnr̄n
p̄

r̄

(
p

p̄

)x1 n∏
k=2

(r
r̄

)xk⊕xk−1

.

Summing over all xn ∈ {0, 1}n, we obtain

q(yn) ≥ αnr̄n−1p̄
∑

xn∈{0,1}n

(
p

p̄

)x1 n∏
k=2

(r
r̄

)xk⊕xk−1.
(C.43)

On the other hand, it is straightforward to verify that

1 =
∑

x∈{0,1}n
Pr(Xn = xn) = r̄n−1p̄

∑
xn∈{0,1}n

(
p

p̄

)x1 n∏
k=2

(r
r̄

)xk⊕xk−1

. (C.44)

Plugging (C.44) into (C.43), the result follows.

By (6.19) and the previous lemma,

h′(Pc(X
n|Y n)) ≥ min

yn∈{0,1}n
min

zn∈{0,1}n
zn 6=yn

αn

P (xnyn , y
n)− P (xnzn , y

n)
.

Since both xnyn and xnzn are either 0 or 1, we have to maximize

ϑ :=


(ᾱr̄)n p̄r̄

(
α
ᾱ

)N1(yn) − (ᾱr̄)n pr̄
(
α
ᾱ

)N0(yn)
, if N0(yn) > N1(yn),

(ᾱr̄)n pr̄
(
α
ᾱ

)N0(yn) − (ᾱr̄)n p̄r̄
(
α
ᾱ

)N1(yn)
, if N0(yn) < N1(yn).
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Clearly, ϑ is maximized when yn = 1 and thus

h′(Pc(X
n|Y n)) ≥ r̄αn

p(ᾱr̄)n − p̄(αr̄)n
.

By (6.18) and the fact that hnn(ε) = h(εn),

hnn(ε) ≤ 1− r̄Pc(X
n|Y n)− εn

p(ᾱr̄)n − p̄(αr̄)n
αn,

where Pc(X
n|Y n) is computed in (C.42).

The lower bound follows from considering the direction D̃ ∈ D(I2n), whose entries are all zero

except D̃(1,0) = λ and D̃(1,1) = −λ for λ = 2−1/2. In particular, plugging D̃ into (C.34), we

obtain an upper bound for h′(Pc(X
n|Y n)) and thus a lower bound for h(ε) for the desired range

of ε. Note that the filter I2n+ζn(ε)D̃ corresponds to the 2n-ary Z-channel Zn(ζn(ε)).

C.7 Proof of Proposition 6.24

Since r = 0, the joint distribution PθY n can be equivalently written as the joint probability matrix

P = [P (xn, yn)]xn,yn∈{0,1}n with x1 = x2 = · · · = xn = θ. As in the proof of Theorem 6.23, the

hypotheses of Theorem 6.17 are fulfilled. In particular,

h′(Pc(θ|Y n)) = min
yn∈{0,1}n

min
zn∈{0,1}n
zn 6=yn

q(yn)

P (xnyn , y
n)− P (xnzn , y

n)
. (C.45)

In this case, (C.38) becomes

P (0, yn) = p̄ᾱn
(α
ᾱ

)N1(yn)
and P (1, yn) = pᾱn

(α
ᾱ

)N0(yn)
.
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In particular,

h′(Pc(θ|Y n)) = min
yn∈{0,1}n

min
zn∈{0,1}n
zn 6=yn

pᾱn
(
α
ᾱ

)N0(yn)
+ p̄ᾱn

(
α
ᾱ

)N1(yn)

P (xnyn , y
n)− P (xnzn , y

n)
.

Lemma C.10 implies that both xnyn and xnzn are either 0 or 1. If N0(yn) > N1(yn), then

pᾱn
(
α
ᾱ

)N0(yn)
+ p̄ᾱn

(
α
ᾱ

)N1(yn)

P (xnyn , y
n)− P (xnzn , y

n)
≥
pᾱn

(
α
ᾱ

)N0(yn)
+ p̄ᾱn

(
α
ᾱ

)N1(yn)

p̄ᾱn
(
α
ᾱ

)N1(yn) − pᾱn
(
α
ᾱ

)N0(yn)
,

with equality if and only if N1(zn) > N0(zn). It is not hard to show that

pᾱn
(
α
ᾱ

)N0(yn)
+ p̄ᾱn

(
α
ᾱ

)N1(yn)

p̄ᾱn
(
α
ᾱ

)N1(yn) − pᾱn
(
α
ᾱ

)N0(yn)
≥
p̄+ p

(
α
ᾱ

)n
p̄− p

(
α
ᾱ

)n , (C.46)

with equality if and only if yn = 0. Similarly, if N1(yn) > N0(yn), then

pᾱn
(
α
ᾱ

)N0(yn)
+ p̄ᾱn

(
α
ᾱ

)N1(yn)

P (xnyn , y
n)− P (xnzn , y

n)
≥
pᾱn

(
α
ᾱ

)N0(yn)
+ p̄ᾱn

(
α
ᾱ

)N1(yn)

pᾱn
(
α
ᾱ

)N0(yn) − p̄ᾱn
(
α
ᾱ

)N1(yn)
,

with equality if and only if N0(zn) > N1(zn). As before,

pᾱn
(
α
ᾱ

)N0(yn)
+ p̄ᾱn

(
α
ᾱ

)N1(yn)

p̄ᾱn
(
α
ᾱ

)N1(yn) − pᾱn
(
α
ᾱ

)N0(yn)
≥
p+ p̄

(
α
ᾱ

)n
p− p̄

(
α
ᾱ

)n , (C.47)

with equality if and only if yn = 1. From (C.46) and (C.47), we conclude that

h′(Pc(θ|Y n)) =
p+ p̄

(
α
ᾱ

)n
p− p̄

(
α
ᾱ

)n =
pᾱn + p̄αn

pᾱn − p̄αn
,

and y0 = 1 and z0 = 0 achieve the minimum in (C.45). From the last part of Theorem 6.17 the

optimality of the 2n-ary Z-channel Zn(ζn(ε)) is evident.
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