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What is a Linear Program?

A linear program (LP) is an optimization problem over some
set of variables, say x = (x1, ..., xn), in which the objective
function is linear in the xi variables and the region in which
the solution is allowed to lie can be defined by a series of
linear constraints.

More precisely, an LP can be described as:

minimize cT x

subject to Ax ≤ b
.

Alternatively, we can talk about optimizing over polytopes
(i.e, the generalization of a polygon). Given any polytope,
there exists a set of linear constraints (or facets) that describe
the polytope.
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Linear Programming Decoding

For a length-n code C , the following LP is equivalent to ML
decoding [1]:

x̂ = argmax
x∈poly(C)

γ · x ,

where poly(C ) is the convex hull of C defined by

poly(C ) =





∑

y∈C

λyy : λy ≥ 0,
∑

y∈C

λy = 1





and γ = (γ1, · · · , γn) is defined as the log-likelihood ratio (LLR)

γi = log
(

P(yi |ci=1)
P(yi |ci=0)

)
.

Since solving this LP is equivalent to solving the ML decoding
problem, we know that it is NP-hard.
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Feldman’s Codeword Polytope Relaxation

A “relaxed” polytope can be used in order to solve the problem with
managable complexity.

The following relaxation is due to Feldman et. al. [1]. Given an
(n, k) linear code C , and H ⊂ C⊥, the relaxation is defined as:

Q(H) =
⋂

h∈H

P(h⊥),

where P(h⊥) is the codeword polytope of the code
h⊥ = {c ∈ {0, 1}n : h · c ≡ 0 (mod 2)}.

The following LP uses the above polytope to implement a
sub-optimal ML decoder:

x̂ = argmax
x∈Q(H)

γ · x .
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Properties of the Polytope Q(H)

The relaxed polytope Q(H) has the following desirable properties:

1 The polytope can be expressed easily in terms of linear constraints
(this is important, as such an expression is required by any LP
solver).

2 For LDPC codes, the polytope Q(H) can be expressed efficiently,
which means that an LP using this polytope can also be solved
efficiently.

3 If we choose H to span C⊥, then the integral vertices of Q(H) are
exactly the codewords of C , (i.e, {0, 1}n

⋂
Q(H) = C ).

4 The above gives us the so-called “ML Certificate” property. That is,
if the LP converges to an integral vertex, then it is known that this
vertex must be the ML solution.



LP Decoding LP Decoding for Non-Uniform Sources LP Decoding for the Polya Contagion Channel

Exploiting Source Redundancy at the Decoder

Non-uniformity at the source can be exploited at the decoder.

Assuming a systematic (n, k) code C , it is possible to linearize
the MAP decoding metric so as to exploit non-uniformity in
an LP decoder:

ĉ = argmax
c∈C

P(c)P(y |c)

= argmax
c∈C

γ∗ · c

where γ∗ = (γ∗
1 , · · · , γ∗

n) is defined by

γ∗
i =

{
γi + log p1

p0
, for 1 ≤ i ≤ k

γi , for k < i ≤ n.
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Relaxation for MAP Decoding

Using the cost function γ∗ above, we can define an LP over
the polytope Q(H) to obtain an LP relaxation for the MAP
decoding problem:

max
x∈Q(H)

γ∗ · x .

It is known that non-systematic codes perform better than
systematic codes in scenarios with non-uniformity at the
source; however, γ∗ relies on the code being systematic.

So, we would like to find an LP formulation for MAP decoding
which does not require the transmission of a systematic code.
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Puncturing

One way to incorporate the a-priori codeword information into an
LP decoder without transmitting a systematic code is to encode
using a systematic code of rate lower than desired, and then
puncture the systematic bits before transmission.

More precisely, suppose that we wish to use a code of rate R = k
n
,

and blocklength n:

1 We select a systematic (n + k , k) code, C̃ .
2 We encode source symbols s using C̃ , but, before transmission,

we strip away the first k (systematic) bits.

LP decoding can be performed over the “extended polytope” Q(H̃),

H̃ ⊂ C̃⊥ using a modified cost function γ′ = (γ′
1, . . . , γ

′
n+k):

γ′
i =





log

(
p1

p0

)
, for 1 ≤ i ≤ k

log
(

P(yi−k |xi=1)
P(yi−k |xi=0)

)
, for k < i ≤ n + k .
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Simulation Results for LP Decoding w/ Non-Uniform
Sources
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Figure: Source p1 = 0.9. Top two curves: regular systematic (200, 100)
LDPC code. Bottom curve: regular (300, 100) LDPC code with the first
100 (systematic) bits punctured.
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Infinite-Memory Polya Contagion Channel

The infinite-memory Polya-contagion communication channel
is a binary non-ergodic channel in which the noise is modeled
by the Polya-contagion urn scheme.

At time i , a ball is drawn from an urn containing R red balls
and B black balls (T = R + B > 0).

If the ball is red, then the noise, zi , at time slot i is 1, and
otherwise, it is 0.

After each draw, 1 + ∆ balls of the colour selected are added
to the urn, where ∆ ≥ 0.
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ML Decoding for the Polya Channel w/ All-ones Codeword

It can be shown (by an extension of results from [2]) that for
any linear code C containing the all-ones codeword that if
ρ = R

T
< 0.5, then ML decoding is equivalent to minimum

Hamming distance decoding (MDD).

Further, if we consider γ+

γ+
i =

{
−1, if yi = 1
1, if yi = 0.

,

then we have the following, where ω() represents the
Hamming weight [3]:

γ+ · x = d(x , y) − ω(y)

So, it follows that

min
x∈C

γ+ · x = min
x∈C

d(x , y).
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LP Decoding for the Polya Channel

Using the cost function γ+ we can then define a relaxed LP which
represents ML (MDD) decoding for the infinite-memory Polya
channel assuming that our code contains the all-ones codeword.

We implement this scheme using a regular (200, 100) LDPC code
with row degree 6. Having even row degree guarantees that the
all-ones codeword is in the code.

We compare the results to the channel ǫ-capacity, Cǫ.

For a given ǫ > 0, the ǫ-capacity, Cǫ, of a channel is defined as the
maximum rate, R , for which there exist, given sufficiently large
block length, codes having rate arbitrarily close to R and probability
of error at most ǫ.

For comparison purposes, we also include the code performance over
the BSC (i.e,, when δ = 0), corresponding to the situation where an
ideal (infinite-depth) interleaver is applied to the channel.
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Simulation Results ∆ = 2
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ML Decoding for the Polya Channel for Arbitrary Codes

In [2], a formulation is given for ML decoding of arbitrary codes
transmitted over the Polya channel. It is shown that ML decoding is
achieved by either decoding to the minimum or maximum Hamming
distance codeword (w.r.t. the received vector) depending on the
channel parameters and the received vector.

Maximum distance decoding can be approximated by an LP by
using the negative of the cost function for minimum distance
decoding, defined earlier.

Using the conditions from [2] and the approximate min and max
distance LP decoders, approximate ML decoding can be
implemented for arbitrary codes.

The next plot shows results for an irregular (w/out the all-ones
codeword) (200, 100) LDPC code under min/max distance decoding
and under min distance only decoding as well as a regular (w/ the
all ones codeword) (200, 100) LDPC code under min distance only
decoding.
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Comparing Codes and Decoders for ∆ = 10
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