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Abstract

We study the transmission of two discrete memoryless correlated sources, consisting of a common
and a private source, over a discrete memoryless multi-terminal channel with two transmitters and two
receivers. At the transmitter side, the common source is observed by both encoders but the private
source can only be accessed by one encoder. At the receiver side, both decoders need to reconstruct
the common source, but only one decoder needs to reconstruct the private source. We hence refer to
this system by the asymmetric 2-user source-channel coding system. We derive a universally achiev-
able lossless joint source-channel coding (JSCC) error exponent pair for the 2-user system by using a
technique which generalizes Csiszar’s type-packing lemma (1980) for the point-to-point (single-user) dis-
crete memoryless source-channel system. We next investigate the largest convergence rate of asymptotic
exponential decay of the system (overall) probability of erroneous transmission, i.e., the system JSCC
error exponent. We obtain lower and upper bounds for the exponent. As a consequence, we establish
a JSCC theorem with single letter characterization and we show that the separation principle holds for
the asymmetric 2-user scenario. By introducing common randomization, we also provide a formula for
the tandem (separate) source-channel coding error exponent. Numerical examples show that for a large
class of systems consisting of two correlated sources and an asymmetric multiple-access channel with
additive noise, the JSCC error exponent considerably outperforms the corresponding tandem coding
error exponent.
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1 Introduction

Recently, the study of the error exponent (reliability function) for point-to-point (single-user) source-
channel coding systems (with or without memory) has illustrated substantial superiority of joint source-
channel coding (JSCC) over the traditional tandem coding (i.e., separate source and channel coding)
approach (e.g., [8], [29], [30]). It is of natural interest to study the JSCC error exponent for multi-terminal
source-channel systems.

In this work, we address the asymmetric 2-user source-channel coding system depicted in Fig. 1.
Two discrete memoryless correlated source messages (s,1) € S™ x L™ drawn from a joint distribution
Qs : S x L, consisting of a common source messages s and a private source message 1 of length 7n,
are transmitted over a discrete memoryless asymmetric communication channel described by Wy zjrx :
U x X — Y x Z with block codes of length n, where 7 > 0 (measured in source symbol/channel use) is the
overall transmission rate. The common source can be accessed by both encoders, but the private source
can only be observed by one encoder (say, Encoder 1). In this set-up, the goal is to send the common
information to both receivers, and send the private information to only one receiver (say, Decoder 1).

This asymmetric 2-user system can be used to model [23] interference channels with cognitive radio,
an emerging and promising wireless technology where wireless systems, equipped with flexible software,
dynamically adapt to their environment (by for example adjusting the modulation format or the coding
scheme) to harness unemployed spectral capabilities [25, 26, 27, 12, 13]. For example, it can model the
practical situation where audio and video signals are modulated and transmitted to two receivers over
a cognitive interference channel (without secrecy constraints) [23], with the cognitive receiver needing to
decode both audio and video signals while the non-cognitive receiver needing to only reconstruct the audio
signal. Furthermore, it is worthy to point out that the asymmetric 2-user system is a generalization of
the following two classical asymmetric multi-terminal scenarios which have been extensively studied in the

literature.

i.) The CS-AMAC system: If we remove Decoder 2 from Fig. 1, and let |Z| = 1, then the channel
reduces to a multiple-access channel Wy yrx, and the coding problem reduces to transmitting two

correlated sources (CS) over an asymmetric multiple-access channel (AMAC) with one receiver.

ii.) The CS-ABC system: If we remove Encoder 2 from Fig. 1, and let [¢/| = 1, then the channel reduces
to a broadcast channel Wy z x, and the coding problem reduces to transmitting two CS over an

asymmetric broadcast channel (ABC) with one transmitter.

The sufficient and necessary condition for the reliable transmission of CS over the AMAC — i.e., the
lossless JSCC theorem for the CS-AMAC system — has been derived with single letter characterization in
[4]. The capacity region of the ABC has been determined in [21], and the JSCC theorem for CS-ABC

system with arbitrary transmission rate can also be analogously carried out (e.g., [17]). In this work, we



study a refined version of the JSCC theorem for the general asymmetric 2-user system (depicted in Fig. 1),
by investigating the achievable JSCC error exponent pair (for two receivers) as well as the system JSCC
error exponent, i.e., the largest convergence rate of asymptotic exponential decay of the system (overall)
probability of erroneous transmission. We also apply our results to the CS-AMAC and CS-ABC systems.

We outline our results as follows. We first extend Csiszar’s type packing lemma [8] from a single-letter
(1-dimension) type setting to a joint (2-dimensional) type setting. By employing the joint type packing
lemma and generalized maximum mutual information (MMI) decoders, we establish achievable exponential
upper bounds for the probabilities of erroneous transmission over an augmented 2-user channel Wy 77y x
for a given triple of n-length sequences (t,u,x); see Theorem 1. Here, the augmented channel Wy 77y x
is induced from the original 2-user channel Wy z;;x by adding an auxiliary random variable (RV) T" such
that T', (UX), and (Y Z), form a Markov chain in this order. We introduce the RV T because we will
employ superposition encoding which maps a source message pair (s,1) to a codeword triplet (t,u,x),
where t is the auxiliary superposition codeword. For the asymmetric 2-user system, since one of the
encoders has full access to both sources, it knows the output of the other encoder. By properly designing
the two (superposition) encoders, we apply Theorem 1 to establish a universally achievable error exponent
pair for the two receivers (namely, the pair of exponents can be achieved by a sequence of source-channel
codes independently of the statistics of the source and the channel); this generalizes Kérner and Sgarro’s
exponent pair for ABC coding (with uniformly distributed message sets) [22]. We also employ Theorem 1
to establish a lower bound for the system JSCC error exponent; see Theorem 2. Note that one consequence
of our results is a sufficient condition (forward part) for the JSCC theorem. In addition, we use Fano’s
inequality to prove a necessary condition (converse part) which coincides with the sufficient condition, and
hence completes the JSCC theorem (Theorem 3). We next demonstrate that the separation principle holds
for the 2-user system, i.e., there exists a separate source and channel coding system which can achieve
optimality from the point of view of reliable transmissibility.

Using an approach analogous to [8], we also obtain an upper bound for the system JSCC error exponent
(Theorem 4). As applications, we then specialize these results to the CS-AMAC and CS-ABC systems.
The computation of the lower and upper bounds for the system JSCC error exponent is partially studied
for the CS-AMAC system when the channel admits a symmetric conditional distribution.

We next study the tandem coding error exponent for the asymmetric 2-user system, which is the ex-
ponent resulting from separate and independent source and channel coding under common randomization.
We derive a formula for the tandem coding error exponent in terms of the corresponding 2-user source
error exponent and the asymmetric 2-user channel error exponent (Theorem 6). Finally, by numerically
comparing the lower bound of the JSCC error exponent and the upper bound of the tandem coding error
exponent, we illustrate that, as for the point-to-point systems ([29], [30]), JSCC can considerably outper-
form tandem coding in terms of error exponent for a large class of binary CS-AMAC systems with additive

noise.



At this point we pause to mention some related works in the literature on the multi-terminal JSCC of
CS. The JSCC theorem for transmitting two CS over a (symmetric) multiple access channel (where each
encoder can only access one source) has been studied in [1, 7, 14, 19, 20, 28], and the JSCC theorem for
transmitting two CS over a (symmetric) broadcast channel (where each decoder needs to reconstruct one
source) has been addressed in [5, 17]. These works focus on the case when the overall transmission rate 7 is 1
and establish some sufficient and/or necessary conditions for which the sources can be reliably transmitted
over the channel. However, for both (symmetric) systems, no matter whether the transmission rate 7 is 1
or not, a tight sufficient and necessary condition (JSCC theorem) with single-letter characterization is still
unknown.

The rest of the paper is organized as follows. In Section 2, we introduce the notation and some basic
facts regarding the method of types. A generalized joint type packing lemma is presented in Section
3. In Section 4, we establish a universally achievable error exponent pair for the 2-user system, as well
as a lower and an upper bound for the system JSCC error exponent. A JSCC theorem with single-
letter characterization is also given and we demonstrate that the reliable transmissibility condition can be
achieved by separately performing source and channel coding. In Section 5, we apply our results to the
CS-AMAC and CS-ABC systems. We partially address the computation of the bounds for the system
JSCC error exponent in Section 6. In Section 7, we provide an expression for the tandem coding error
exponent for the 2-user system and we then show that the JSCC error exponent can be strictly larger
than the tandem coding error exponent for many CS-AMAC systems. Finally, we state our conclusions in

Section 8.

2 Preliminaries

The following notation and conventions are adopted from [8, 10]. For any finite set (or alphabet) X, the
size of X is denoted by |X|. The set of all probability distributions on X is denoted by P(X). The type
of an n-length sequence x £ (1,29, - ,7,) € X™ is the empirical probability distribution Px € P(X)
defined by

1
Px(a) 2 EN((”X)? acdk,

where N (a|x) is the number of occurrences of a in x. Let P, (X) C P(X) be the collection of all types of
sequences in X™. For any Py € P, (X), the set of all x € X" with type Px is denoted by Tp,, or simply
by Tx if Px is understood. We also call Tp, or Tx a type class.

Similarly, the joint type of n-length sequences x € X™ and y 2 (y1,¥2, -+ ,yn) € V" is the empirical
joint probability distribution Pyy € P(X x )) defined by

1
Pyy(a,b) = EN(a,b\x,y), (a,b) € X x ).



Let P, (X x Y) C P(X x Y) be the collection of all joint types of sequences in X™ x Y. The set of all
x € X" and y € Y" with joint type Pxy € Pp(X x Y) is denoted by Tp,, , or simply by Txy.

For any finite sets X and ), the set of all conditional distributions Vyx : X — } is denoted by
P(Y|X). The conditional type of y € Y™ given x € Tp,, is the empirical conditional probability distribution

Pyx € P(Y|X) defined by

N(a,b|x,
Py|x(b’a) = Wa

whenever N(a|x) > 0; otherwise (if N (a|x) = 0) define Py«(bla) =0, (a,b) € X x V.

Let P,(Y|Px) be the collection of all conditional distributions Vy-x which are conditional types of
y € V" given an x € Tp,. For any conditional type Vy|x € Pn(Y|Px), the set of all y € V" for a given
x € Tpy satisfying Py, = Vy|x is denoted by Ty, (x), or simply by Ty|x(x), which is also called a
conditional type class (V-shell) with respect to x.

For finite sets X', ), Z with joint distribution Pxyz € P(X x ) x Z), we use Py, Pxy, Py z)x, etc, to
denote the corresponding marginal and conditional probabilities induced by Pxyz. Note that for a given

joint type Pxy € Pnp(X x Y), Tpy ((x) ={y : (x,¥) € Tpy, }. Note also that
{PXVY|X : Px € ,Pn(X),Vy‘X S Pn(y|PX)} = Pn(X X y)

In addition, we denote

PaVX)2 | Pu(VIPx) S POIX).

Px ePn(X)
To distinguish between different distributions (or types) defined on the same alphabet, we use sub-
subscripts, say, i, j, in Px;, Px,v;, Tx,y;, and so on. For example, Ty, is the type class of the joint type
Px,y; € Py(X x ). For any distribution Pxyz € P(X xY x Z), we use Hpy,.,(-) and Ipy, ,(-;-) to denote
the entropy and mutual information under Pxy 7, respectively, or simply by H(-) and I(-;-) if Pxyz is
understood. D(Px || Qx) denotes the Kullback-Leibler divergence between distributions Px,Qx € P(X).
D(Vyx || Wy x|Px) denotes the Kullback-Leibler divergence between stochastic matrices (conditional
distributions) Vyx, Wyx € P(Y|X) conditional on distribution Py € P(X). For x € A", y € )"
and z € Z", since the types Py, Pxy and Pyy, can also be represented as distributions of dummy RV’s,
we define the empirical entropy and mutual information by H(x) £ Hp,(X), I(x;y) £ Ip(X;Y) and
I(x;y|z) £ Ip,,,(X;Y|Z). Given distributions Px € P(X) and Wy x € P(V|X), let P)((") and W;f& be
their n-dimensional product distributions. All logarithms and exponentials throughout this paper are in

base 2. The following facts will be frequently used throughout this paper.

Lemma 1 [10]

) [Pal@)] < (n+ DY, [Pa(dI)] < (0 + 1)1,



ii.) For any Px,Qx € P,(X), we have
(n+ 1)~ 1¥l2ntex (X) < |p | < 2P (X))

and
(n+ 1)—\X\2—nD(PXIIQx) < Qg?) (Tp,) < 9—nD(Px||lQx)
iil.) For any x € Tpy, y € Ty (x) and Wy |x, Vyx € Pp(Y[Px), we have

Y1X)

)

(n+ 1) XV P RO (o) < 2P

and hence

3 A Joint Type Packing Lemma

Let us first recall Csiszar’s type packing lemma for JSCC [8], which is an essential tool to establish an

exponentially achievable upper bound for the JSCC probability of error over a discrete memoryless channel.

Lemma 2 [8, Lemma 6] Given finite set .4 and a sequence of positive integers {m,,}, for arbitrary (not

necessarily distinct) types Pa, € P,(A), and positive integers N;, i = 1,2, ..., m,, with
1
- logy N; < Hp, (A) — 4, (1)

where

5%2
n

[|A[*1oga (n + 1) + logy my, + 1] ,

there exist m,, disjoint subsets
N
0, = {aI(JZ)} _ C Ty, £ Tp,,

such that
J —n|I A; AN =6
|TVA’\A(a§j)) ﬂ Q| < Ni2 [ PAiVA’\A( ) ]’ o)

for every i,k,p and V4 € Pn(AJA), with the exception of the case when both i = k and V4 is the

conditional distribution such that Vs 4(a’|a) is 1 if ¢’ = a and 0 otherwise.

Note that Lemma 2 is a generalization of the packing lemma in [10, p. 162, Lemma 5.1], where the
later one is used for channel coding, while Lemma 2 is used for JSCC. Roughly and intuitively, if a is a

transmitted codeword, then the possible sequences decoded as a can be seen as elements in the “sphere”



Ty " ,(a) “centered” at a for some V4. Equation (2) in the packing lemma states that there exist disjoint
sets 2 with bounded cardinalities such that the size of the intersection between the sphere TVA,‘ ,(a) for
every a € (); and every set () is “exponentially small” compared with the size of each k. So the packing
lemma can be used to prove the existence of good codes that have an exponentially small probability of
error.

We herein extend Csiszér’s above type packing lemma from the (1-dimensional) single-letter type setting
to a (2-dimensional) joint type setting. This lemma will play a key role in establishing an exponentially
achievable upper bound (in Theorem 1) for the probability of erroneous transmission for our asymmetric

2-user source-channel system.

Lemma 3 (Joint Type Packing Lemma) Given finite sets A and B, a sequence of positive integers {m,, },
and a sequence of positive integers {m/, } associated with every i = 1,2, ..., m,, for arbitrary (not necessarily
distinct) types Pa, € Py(A) and conditional types Pp |4, € Pn(B|Pa,), and positive integers N; and M;;,
i=1,2,...,my and j = j(i) = 1,2,...,m}, with

1
- logy N; < Hp, (A) — 4, (3)

and

1
n logy Mi; < HPAiPBj\Ai(B’A) -0, (4)

where

2
65~ [|A|2|15’|2 logs(n + 1) + logy m,, + logy (max mf,) + log, 12

there exist m,, disjoint subsets

such that
T a ( 0 -nl|lp, v,, ,(A;A)=8
’ VA’\A( 1(7))| | k’ < Ni2 [PAZVA \A( ) ]7 (5)

for every i,k,p and Va4 € Pn(AJA), with the exception of the case when both i = k and V4 is the
conditional distribution such that V4 4(a’|a) is 1 if ¢’ = a and 0 otherwise; furthermore, for every ag) ey

and every 7, there exist m/), disjoint subsets

Q;;(al)) = {(aa)’bm)} g

q=1

such that b(]()l € Ty, (a (')) TPB 14, (a( )) and

-n|lp, Voargr (AvB;A/7BI)_5
TVA/B’\AB( D ’bl(f,f)l m U D ( a < NpMy2 [ AiBjTA'BIIAB ) (6)



N,
i j | i —n|Ip, 5V, an(B;B'1A)=0
TVA’B’\AB (az(y), bigjvl)]) ﬂ U Qil(a;,)) < M2 { A;Bj"A'B'|AB i| ’ (7)

p'=1
for any i,j,k,l,p,q and Vapiap € Pn(A x B|A x B), with the exception of the case when both i = £k,
j =1land Vypap is the conditional distribution such that V p/ap(a’,¥]a,b) is 1 if (a/,0') = (a,b) and 0

otherwise.

The proof of the packing lemma is lengthy and is deferred to Appendix A. Compared with Lemma, 2, it
is seen that Csiszar’s type packing lemma (Equation (5)) is incorporated in our extended packing lemma,
and we emphasize that here we need (6) and (7) hold in addition to (5).

Similarly, for the 2-user channel, if (a, b) is a pair of transmitted codewords, then the possible sequences
decoded as (a,b) can be seen as elements in the “sphere” Ty, . (a,b) “centered” at (a,b) for some
Varpiap- As depicted in Fig. 2, Equation (6) (similarly to (7)) states that there exist disjoint sets
Q= U;\,f’c: 1 le(al(f)) with bounded cardinalities such that the size of the intersection between the sphere
Ty, B|AB (a,b) for every (a,b) € Q;; and every set {1y, is “exponentially small” compared with the size of
each Q. Note also that the extended packing lemma is analogous to, but different from the one introduced
by Kérner and Sgarro in [22], which is used to prove a lower bound for the channel coding ABC exponent.

Lemma 3 here is used for the asymmetric 2-user JSCC problem.

4 Transmitting CS over the Asymmetric 2-User Channel

4.1 System

Let {WYZ|U x U XX — Y x Z} be a 2-user discrete memoryless channel with finite input alphabet
U x X, finite output alphabet ) x Z, and a transition distribution Wy 2\ x (y, z|u, ) such that the n-tuple
transition probability is

n

W}(,NZ)WX(y,z]u,x) = [T Wy ziwx (i zilui, ),

i=1
whereu c U,z € X,y €Y, 2€ Z,u= (u1,....u,) EU", X = (21, ..., 2,) € X",y = (y1, ..., yn) € V", and
z = (21,..., 2,) € Z". Denote the marginal transition distributions of Wy z|ux at its Y-output (respectively
Z-output) by Wy x =5, Wy ziux (respectively Wy x 2> Wy zjrx)- The marginal distributions of
W)(,%U  are denoted by W}(,T‘L[)] + and g‘?} » respectively.

Consider two discrete memoryless CS with a generic joint distribution Qgr,(s,1) defined on the finite
alphabet S x £ such that the k-tuple joint distribution is Q(Skg(s, 1) = Hle Qsr(si,l;), where (s,1) € SX L,
and (s,1) £ ((s1,11), ..., (8, 1x)) € S¥ x LF. For each pair of source messages (s,1) drawn from the above
joint distribution, we need to transmit the common message s over the channel Wy 77 x to Receivers Y

and Z and transmit the private message 1 only to Receiver Y. A joint source-channel (JSC) code with

block length n and positive transmission rate 7 (source symbol/channel use) for transmitting Q) gz, through



Wy zjux is a quadruple of mappings, (fn,gn, ¥n,¥n), where f, : ST x LT — X" and g, : S™" — U™ are
called encoders, and ¢, : Y — S x L™ and 9, : Z" — S™" are referred to as Y-decoder and Z-decoder,
respectively; see Fig. 1.

The probabilities of Y- and Z-error are given by

P Qs Wy zpx 7) 2 Pr({ea (V™) £ (ST LMD = Y QG Y Wi (viux) (8)

STmxLrn yien(¥)#(s,)
and
P Qs Wy zix.™) 2 Pr({un(2) £ 57 =D Q§"(s) > Wi ((zjux) 9)
s wn( )#s

where x 2 f,(s,1) and u £ g,(s) are the corresponding codewords of the source message pair (s,1) and the
source message s, and y and z are the received codewords at the Receivers Y and Z, respectively. Since we
will study the exponential behavior of these probabilities using the method of types, it might be a better
way to rewrite the probabilities of Y- and Z- error as a sum of probabilities of types

PP Qs Wyzx.m) = Y. Q5 (Tst)Pe(Tsp),  i=Y.Z (10)
Ps1,€Prn(SXL)

where Tgy, £ Tpg,, and

PrTss) = — 3 3wl (vlux) (11)

‘ SL‘ SI)ETSL yISDn(Y)#(Svl)

— > Z‘UX z|u, ). (12)

(s,))€ETs L, z:9n (2)#s

We say that the JSCC error exponent pair (F 4y, F4z) is achievable with respect to 7 > 0 if there exists a

and

sequence of JSC codes (fy, gn, ¥n,¥n) with transmission rate 7 such that the probabilities of Y-error and

Z-error are simultaneously bounded by
P Qs Wy zix,m) <27 Ea-d i =y 7 (13)

for n sufficiently large and any 6 > 0. As the point-to-point system, we denote the system (overall)
probability of error by

PO @s1, Wy 2 m) £ Pr ({on(r™) # (57, 1)} J(n(27) # 5™ (14)
where (S7", L™") are drawn according to Q(ST ).

Definition 1 Given Qsr, Wy zjyx and 7 > 0, the system JSCC error exponent £;(Qsz, Wy zjyx, 7) is de-
fined as supremum of the set of all numbers E for which there exists a sequence of JSC codes ( fn, gn, ©n, ¥n)

with blocklength n and transmission rate 7 such that

E <lim mf—— log, P( (QsL, Wy zjux,T)- (15)

n—~0o0



Since the system probability of error must be larger than Pﬁ(f? and Pg;) defined by (8) and (9), and is
also upper bounded by the sum of the two, it follows that for any sequence of JSC codes (fn, gn,©n, ¥n)

1 1 n n
lim inf —— logy P (Qs1, Wy zjux, ) = lim inf —— log, max (Px(/e)7 Pég) . (16)
n n

n—oo n—oo

4.2 Superposition Encoding for Asymmetric 2-User Channels

Given an asymmetric 2-user channel Wy 77 x, at the encoder side, we can artificially augment the channel
input alphabet by introducing an auxiliary (arbitrary and finite) alphabet 7, and then look at the channel
as a discrete memoryless channel Wy 77y x = Wy zjyx with marginal distributions Wy pyx and Wz iy x
such that Wy zrpx (y, 2|t u,2) = Wy ziux(y, 2|lu, @) forany t € T, u €U, v € X, y € Yand z € Z. In
other words, we introduce a dummy RV T € 7 such that T, (U, X), and (Y, Z) form a Markov chain in
this order, i.e., T — (U, X) — (Y, Z).

The idea of superposition coding is described as follows. The encoder g, first maps the source message
s to a pair of n-length sequences (t,u) € 7" x Y™ with a fixed type, say Pry, and then sends the codeword
u over the channel, i.e., g,(s) = u. The encoder f, first maps each pair (s,1) to a triple of sequences
(t,u,x) € 7" x U™ x X™ such that x € Try o (t,u), then f,, sends the codeword x over the channel,
ie., fn(s,1) = x. In other words, g, and f,, map (s,1) to a tuple of sequences (t,u,x) with a joint type
Pry Px 7y, although only u and x are sent to the channel, where t plays the role of a dummy codeword.

Since W}(,HZ)|TUX(y,z\t,u,x) is equal to 3(/"2)|Ux(y,z]u,x) and is independent of t, transmitting the
codewords (u,x) through the channel Wy 4y x can be viewed as transmitting the codewords (t,u,x) over
the augmented channel Wy 7y x. Here, the common outputs of g, and f,, (t,u)’s, are called auxiliary
cloud centers according to the traditional superposition coding notion [3], which convey the information
of the common message s, and the codewords x’s corresponding to the same (t,u) are called satellite
codewords of (t,u), which contain both the common and private information, see Fig. 3. At the decoding
stage, Receiver Z only needs to figure out which cloud (t,u) was transmitted, and Receiver Y needs to
estimate not only the cloud but also the satellite codeword x. The introduction of the auxiliary RV T is
made to enlarge the channel input alphabet from U x X to 7 x U x X, and the use of the superposition
codeword t renders the cloud centers (t,u) more distinguishable by both receivers. We next employ
superposition encoding to derive the achievable error exponent pair and the lower bound of system JSCC

error exponent.

4.3 Achievable Exponents and a Lower Bound for F;

Given arbitrary and finite alphabet 7, for any joint distribution Pryx € P(7 xU x X) and every Ry > 0,
Ry > 0, define

Ey (R, Ry, Wy rux, Prux) Vn‘lin D(Vyirux | Wy rvx|Prux)
Y|TUX

10



‘ + +
+ mn <‘[PTUXVYTUX (T,U,X;Y) — (B + R2)‘ ) ‘[PTUXVY\TUX (X;Y[T,U) — R2‘ >] {0

and

Ez(R1, Ry, Wy v, Prux) £ vﬁﬁf}x D(Vzirux | Warvx|Prux) + ‘IPTUXVZ\TUX (T,U; Z) — er] ,
(18)
where |z|T = max(0,x), and the outer minimum in (17) (respectively (18)) is taken over all conditional
distributions on P(Y|7 x U x X) (respectively P(Z|T xU x X)). It immediately follows by definition that

Ey(R1, Ry, Wy|TU x» Prux) is zero if and only if at least one of the following is satisfied

Ry > IPTUXWY\TUX (X;Y[T,U), (20)

and Ez(Ry, Ro, Wy rux, Prux) is zero if and only if
Rl 2 IPTUXWZ\TUX (T7 Uﬂ Z) (21)

Using Lemma 3 and employing generalized maximum mutual information decoders at the two receivers,

we can prove the following auxiliary bounds.

Theorem 1 Given finite sets 7, U, X, YV, Z, a sequence of positive integers {m,}, and a sequence of
positive integers {m/,} associated with every i = 1,2, ...,m, with

1 1 ,

—logomy, — 0 and —log, maxm,,, — 0,

n n 7
for any 0 > 0, n sufficiently large, arbitrary (not necessarily distinct) types Pipyy, € Pn(7 x U) and
conditional types Px | rv), € Pn(X|F1v),), and positive integers N; and M;j, i = 1,2,...,m;, and j =
j(Z) =12,.. m;n with R; < HP(TU)Z- (T, U)—5 and Rij < HP(TU)Z-PXJ-\(TU)Z- (X|T, U)—é, where R; £ % logy IN;

N
and R;; = %log2 M;;, there exist m,, disjoint subsets {2; = {(t, u);g,l)} ) C Troy, m,, disjoint subsets
p:

(e ) = { (6w x)

q=1
with X;E;{?; € ’]I‘Xj‘(TU)i((t,u),(,i)) for every (t,u),(,i) € Q; and every i, and a pair of mappings (decoding
functions) 90%0) YY" — Qand 1/)&0) 1 2" — Q, where Q) £ U;; €4ij, where Q;; = Ué\ll Q45((¢, u)I(,i)), such that
the probabilities of erroneous transmission of a triplet (t,u,x) € € over the augmented channel Wy 77y x

using decoders (gpﬁf)),w?(f)) are simultaneously bounded by

Pt ux) 2 S Wit x)
yioh (v)#((t,w),%)
< Z—N[EY (RhRiijY\TUXvP(TU)iPXj\(TU)Z->_6] (22)

11



and

Péz) (t7u7 X) é Z WéT%UX(Z“Z,u,X)
2:9) (2)=((t,u)’ x') such that (¢,u)#(t,u)
< 2—n[Ez (RivRiﬁWZ\TUXvP(TU)iPXj\(TU)Z->_6] (23)

if ((t,u),x) € Q;; for every i, j.

Proof: We apply the packing lemma (Lemma 3) and a generalized MMI decoding rule.! In the sequel of
the proof, we look at the superletter (T',U) (respectively X) as the RV A (respectively B) in Lemma 3. For
the {m,}, {m},}, Prv),» Px,|(rv), given in Theorem 1, according to Lemma 3, there exist pairwise disjoint
subsets ; and Qij((t,u)l(,i)) satisfying (5), (6), and (7) for every 1 <i < my,, 1 <j<m}, 1 <p<N,,
Viruyru € Pa(T x UIT x U), and Vippy xirux € Pa(T x U x X|T x U x X), with the exception of the
two cases that i = k and Vipyypp is the conditional distribution such that Vi po (¢, w)'[(t,w)) is 1 if
(t,u)" = (t,u) and 0 otherwise, and that i = k, j = [ and V{zyy x/jrux is the conditional distribution such

that Viryy xrjrux ((tw), @'t u, o) is 1if (t,u) = (t,u), 2" = = and 0 otherwise. Let

N;
Q= J (6, w) and Q=]
p=1 ]
We shall show that for such €;;, there exists a pair of mappings (90,(10),1#&0)) such that (22) and (23) are
satisfied.
We first show that there exists a Y-decoder 4,0%0) such that (22) holds. For any ((t,u),x) € Q and
y € Y", let
a((t,u),x;y) £ I((t,u),x;¥) — (R + Ryj),

where R; = %log2 N; and R;j = %logz M;; if ((t,u),x) € Q;;. Define Y-decoder 4,0%0) )" — Q by

(0)

on(y) £arg max__o((t,u),x;y).

((t,u),x)eQ
Using the decoder gpﬁ?), we can upper bound the probability of error (assuming that ((t,u),x) € €;; is sent

through the channel) as follows

P (6 w),%) = Wy ({36 # (60,0} (6,w). %)
< S Wi (T, e (€W {00 ) # (8 w), %) |

VY\TUXEPn(y‘P(TU)in)

t,u, x) . (24)

Note that for the symmetric multiple access channel, it has been shown in [24] that the minimum conditional entropy
(MCE) decoder leads to a larger channel error exponent than the MMI decoder; however, for the asymmetric 2-user channel

with superposition coding, MMI decoding is equivalent to MCE decoding.

12



For any particular Vy |y x, since

vl # (tw. 0] = {y: o) = (6w %), tw) # tw U {y: e ) = (6w).x).x #x].

é(C/‘l égQ
we can upper bound
W (T (6w (V{y 0 3) # (60, %)} ¢ 0,x)
< > W (710, %) + > Wik e wx).  (25)
YETT ppx (BWX)INE YETG, 1y x (BWX)NE:

It can be shown by the type packing lemma (Lemma 3) and a standard counting argument (see Appendix

B) that

((t,u) ﬂ&‘ < my (maxm > (n+ 1)\7Xu\2\?{\2\3’|

‘ ‘7Y\TUX

X2n gy x Ty VPO T 5 (BUXY) (Rt Ry q | -
and
T, 0 (B, )& < <mgwxm£n> (n+ 1) THIE
X2n P(TU)in‘A/Y‘TUX(Y\T,U,X)—’IP(TU)in‘7Y‘TUX(X;Y\T,U)—Rz_j+ o
Using the identity (cf. Lemma 1) when ((t,u),x) € Q;; C T(7y),x, and y € TVY\T ((t,u),x)
Wﬁ(/r\l%“UX (yl(t,u),x) = 9 {D (Birox Wiz ‘P(TU”XJ)JFHP(TU%XJ‘ WiTux (Y|T’U7X)} ,
we obtain
2 Wylre (8 w), %) € Q) < ma (mm) (n -+ 1)ITUFXE
YETG, iy x (BWX) N &
><2_n D(‘7Y\TUXIIWY\TUX\P(TU),L-XJ-)-F IP(TU)in ‘7Y‘TUX(T,U,X;Y)—(RZ-+RU) j ’ (28)
and
> W)(Z\L%“UX (yl((t,u),x) € Qi) < (mgxm2n> (n + 1) U]
YEToy rux ((tu),x) N &2
><2_n D<‘7Y\TUXHWY\TUX‘P(TU)Z-XJ)"‘ IP(TU)in Py U x (XY|TU)— Ry ’ (20)

13



Substituting (28) and (29) back into (25) and (24) successively, noting that |P,(Y|Prvy,x;)| is polynomial
in n by Lemma 1, we obtain that, for any é > 0, there exists a Y-decoder cpslo) such that, given ((t,u),x) €
€2;;, the probability of Y-error is bounded by

P)(/n) ((t,u),x) < 9™ [Ey (Ri,Rij,WY\TUX,P(TU)iPXj \(TU)Z-) —5] (30)

e

for sufficiently large n.

Similarly, we can design a decoder for Receiver Z as follows. For any ((t,u),x) € Q and z € 2", let

6((t7u)7x; Z) = 6((t7u);z) £ I((tvu);z) - R’ia

where R; = 1 log, N; if (t,u) € ©;. Note that 3((t,u),x;z) is independent of x. Let Q= Yo €. The
Z-decoder ¢£LO) : Z" — Q is defined by
P (z) = arg max _f((t,u),x;2)

((t,u),x)eQ

(t.u)’ = argmax,, , . A((t u):2),

= ((t,u),x’) such that
x' is arbitrary.

It can be shown in a similar manner by using (5) in Lemma 3 that, under the decoder ¢£LO), the probability

of the Z-error is bounded by

Pér;) ((t, u), x) < 9™ [EZ (Ri,Rij,Wz\TUX,P(TU)iPXj \(TU)l-) —5] (31)

for sufficiently large n. Finally, we remark that Lemma 3 ensures that there exist mappings (<p$?>,z/;,§°))

such that (31) holds simultaneously with (30). [

Theorem 1 is an auxiliary result for the channel coding problem for the 2-user asymmetric channel.
To apply it to our 2-user source-channel system, we need to design encoders which can map a pair of
correlated source messages to a particular (t,u,x) with a joint type, so that the total probabilities of error

still vanish exponentially. We hence can establish the following bounds.

Theorem 2 Given an arbitrary and finite alphabet 7, for any Pryx € P(T x U x X), the following

exponent pair is universally achievable,

Ejy(Qsw, Wy zprux, Prux, ) £ min [TD(PSL | @sz) + Ey (THp(S), THp(L[S), WY|TUX,15TUX)] :
L
(32)

and

Eyz(Qs, Wy zjrux. Prux, ) £ min [TD(PSL | Qsr) + EZ(THP(S)aTHP(L‘S)7WZ|TUX7ﬁTUX)} ; (33)
SL

14



where Wy |ryx and Wz rpx are marginal distributions of Wy 77y x, which is the augmented conditional

distribution from Wy zyx. Furthermore, given Qsr, Wy zjyx, and 7, the system JSCC error exponent

satisfies
Ej(Qsp, Wy zjux,T) > min [7D(Pst || Qsi) + E-(THp(S), THp(L|S), Wy 711 x)] (34)
SL
where
E.(R1, Ry, Wy z1x) £ sup max E,(R1, Ry, Wy z7ux, Prux), (35)
7T Prux

where the supremum is taken over all finite alphabets 7, and the maximum is taken over all the joint

distributions on P(7 x U x X) and E,.(R1, Rz, Wy z7vx, Prux) is given by
min { By (R1, R2, Wy rux, Prux), Ez(Ri, Re, Wy rux, Prux)}
where Ey and Ey are given by (17) and (18), respectively.

We remark that (32) and (33) can be achieved by a sequence of codes without the knowledge of Qgy,
and Wy 2|y x, but the lower bound (34) is achieved by a sequence of codes that needs to know the statistics
of the channel.

Proof of Theorem 2: We first prove the achievable error exponent pair (32) and (33). We need to show
that, for any given ﬁTU x € P(T xU x X) and § > 0, there exists a sequence of JSC codes such that both
the probabilities of decoding error are upper bounded by

Plgz)(QSLa Wy zux, 7)< 2‘”[EJI€(QSL7WYZ\TUX7ﬁTUX77)_5]7 k=Y,2Z,

where Ejy and Ejz are given by (32) and (33).

To apply Theorem 1, set m,, = |P,,(S)|. For each type Ps, € Prpn(S), i = 1,2, ...,m,, denote N; be
the cardinalities of these type classes, N; £ |Tg,|, and set m, £ |Pn(L|Ps,)|. For each conditional type
Ppis, € Prn(L|Ps,), j = 1,2, ...,mj,, denote M;; be the cardinalities of these type classes, M;; = ITz,s,(s)]
where s is an arbitrary sequence in Tg,. Note that |T L] s,(s)| is constant for all s € Tg,. R; and R;; are
respectively given by %logg N; and %logg M;;.

Now no matter whether the given lgTU x belongs to P, (7 xU x X) or not, we always can find a sequence
of joint types {Prux € Pn(7T xU x X)}>°, such that Pryx — JBTUX uniformly? as n — oo. Thus, we
can choose, by the continuity of Ey(R;, Rij, Wyrux, ﬁTUX) with respect to ISTUX, foreach i = 1,2,...,m,,

/

and j = j(i) = 1,2,...,m}_, the joint type Pru),x; = Prux such that the following are satisfied

’ m?

~ )
Ey(Ri, Rij, Wyrux, Prux) — Ex(Ri, Rij, Wyrux, Prux)| < " k=Y, Z

*We say that a sequence of distributions {Px, € P(X)}52; uniformly converges to Px € P(X) if the variational distance

[10] between Px, and Px converges to zero as n — 0.
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for n sufficiently large. Since the type Pryx can also be regarded as a joint distribution, let Py, =
Pry € Ppo(T x U) be the marginal distribution on 7 x U induced by Pryx for all i = 1,2, ...,m,, and let
Py \rv); = Pxjrv € Pn(X|Pru) be the corresponding conditional distribution for all i = 1,2,...,m, and
Jj=1,2,...,mj,, ie, Pxpy(x[t,u) = Pryx(t,u,x)/Pry(t,u) for any (t,u,x) € Tryx.

Without loss of generality, we assume, for the choice of N;, M;j, Piry),, and Px,\rv),;, the following

o . . . _ A~ . _ /\/
conditions are satisfied for ¢ =1,2,...,my,, j = 1,2,...,m;,,

4] _

Ri < Hpyy, (TU) =5, 0= 1,2, (36)
and
J . _ . _
R;; < HP(TU)in (X|T,U0) — 7 i=1,2, My, §=70)=1,2,..,m, (37)

where m,, < m, and m}, < m,. Then according to Theorem 1, there exist pairwise disjoint subsets
. . ~ . ~ . . 0) (0

Qij € T(rv),x; with Q] = NiMj, i =1,2,...,my, j =1,2,...,m},, and a pair of mappings (90,(1),1%)),

such that the probabilities of erroneous transmission of a ((t,u),x) € Q;; are simultaneously bounded for

the channel Wy 71y x as
P}(,n)(t,u,x) < 2_n[EY(RivRiijY\TUva(TU)in>_6/4]
o <

< 2_n[EY(RiyRij7WY\TUX713TUX)_6/2] (38)

and
Pén)(t u X) < 2‘”[EZ(RivRiijz\TUXyp(TU)in)‘5/4]
e \Us Wy >

< 2‘”[EZ(RiyRij7WZ\TUX71~)TUX)_5/2]‘ (39)

For the N;, Mi;, Pirvy,, and Px, vy, violating (36) or (37) (i.e., for i > m, or j > mj,), (38) and
(39) trivially hold for arbitrary choice of disjoint subsets €2;; since Ey <RiaRij7WY|TUX7P(TU)i Xj) or

Ey (RivRij7WZ|TUX7P(TU)in) would be less than §/4. In fact, the functions Ey and Ey are trivially
bounded by the following linear functions of R; and R;; with slope —1 by definition,

Ey (RiyRija Wy rvx, P(TU)Z-XJ-> < min {[P(TUMXJ.WY‘TUX (T,U, X;Y) — Ry — Ry,

[P(TU)inWY\TUX (X;Y|T,U) - Rij} (40)

and
Ez (Risz’j7 Wairux, P(TU)Z-XJ-) < TPy, Wairox (T, U3 2) = Ri. (41)
If R > Hppy (T,U)—§ > TPy, Wozux (15U Z)—%, then by (41) E4 (Ri, Rij, Wairux, Py, Xj> <.
Similaly, if Rij > Hp,,,)  (X|T,U) = 4, then by (40) By (Ri,Rij, Wy x> Pau, Xj) <3
Therefore, we may construct the JSC code (fn, gn, ¥n, ¥n) for CS Qs and the 2-user channel Wy iy x

as follows. Without the loss of generality, we assume that the alphabets &/ and X contain the element 0.
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Encoder gy, : For the message s € Tg, such that i > m,, let g,(s) = 0 € U". Denote Q= U, €. For the
s € Tg, such that ¢ < m,, let gg) £ 8™ = Q be a bijection that maps each s € Tg, to the corresponding
(t,u) € Q;, by noting that |Q;| = |Ts,| = N;. Finally, let g, (s) be the second component u of g,(Ll)(s).

Encoder f,: For the message pair (s,1) € Tg,; such that i > m,, or j > mj,, let f,(s,1) =0 € ™. For
the (s, l) € Ts,z; such that i < m, and j < mj,, noting that [Ty s, (s)| = |Qi;(pn(s))| = My; if s € Tg,,
let fn ( :) 1 Tpjis,(8) — €4j(gn(s)) be a bijection such that fr(Ll)(s,l) = (ggl)(s),x) € Q;j. Let fu(s,1) be
the third component x of f,(Ll)(s, 1).

Clearly, the JSC encoders (fy, gn), although working independently, they map each (s,1) € Tg,z, to a

unique pair (u,x) when i < m, and j < m. , and to (-,0) otherwise (in this case an error is declared).

in’

Y-Decoder ¢, : The Y —decoder is defined by

(s',1) if 3 (s,1) € 8" x L™ such that ff(Ll)(s’, ) = 901(10) (y),
(0,0) Otherwise.

L

on(y)

Z-Decoder 1, : The Z—decoder is defined by

s’ if 3 s’ € 8" such that 91(11)(5, ) is equal to the first two components of ¢£LO)(Z),

Yn(2) = .
0 Otherwise.

For such JSC code (fy, gn, ¢©n, ¥n), the probabilities of Y-error and Z-error are bounded by

P}(/Z)(S, 1) < 2‘”[EY(RhRij’WY\TUX7I~JTUX)_5/2] if (s,1) € Tz, (42)
and
Pg;) (s,1) < o—nEz(Ri,RijWzrux,Prux)—5/2] if (s,1) € Ts,L,;- (43)

Substituting (42) and (43) into (10) and using the fact (Lemma 1) ng)(TSL) < 27nDPsLlQse) | ye

obtain, for n sufficiently large,

P (Qsr, Wy zjux,7)
< Z o—nlTD(Ps;1; 1QsL)+Ey (Ri,Rij,.Wy |rvx Prux)—6/2]

< ZQ n[rD(PsLl|QsL)+Ey (tHp(S)—o1(n),rHp(L|S)—o02(n), Wy |rvx,Prux ) —6/2]
Psr,

< Z 92— n[rD(Ps|QsL)+Ey (rHp(S),mHp(LS), Wy v x Prux )—d] (44)
Psy,
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and

Pé?(@su Wy zjux,T)
< Z o= nlrD(Ps; L, 1QsL)+Ez(Ri,Rij, Wz rux Prux)—6/2]

< Z 9~ n[rD(PsL||QsL)+Ez(rHp(S)—o01(n),mHp(L|S)—02(n), Wz rux,Prux )—0/2]
Psy,

< Z o~—n[rD(PsLllQsL)+Ez(rHp(S),rHp(L|S), Wz rvx,Prox)— 5]7 (45)
Psy,

where 01(n) = M and oz(n) = M. Finally, the bounds (32) and (33) follow from
(44) and (45), and the fact that the cardinality of set of joint types Pr,(S x L) is upper bounded by
(n + 1)lSlEl.
To prove the lower bound (34), we slightly modify the above approach by choosing Py, X; = ﬁ(*TU)i X;
which achieves the maximum and the supremum of E,(R;, R;j, Wyzjyx) in (35) for every R; and Ry,
=1,2,..,my, j = 1,2,..,m . Then the probabilities of Y-error and Z-error in (42) and (43) are

bounded by

PiM(s,1) < 2_n[EY(Ri’Rij’WY‘TUX’ﬁ&U)in)_5/2]
e ) >~

< 9—nlEr(Ri,Rij,Wy zjux)—6/2] if (s,1) € Ts,L, (46)
and
PO < 27 (RiRi Waizux Piy,x, ) =8/
< o7nlERoRy Wyziox)=8/2if (5)1) € Ty, (47)
for n sufficiently large. The rest of the proof is similar to the proofs of (32) and (33). n

By examining the positivity of the lower bound to Ej, we obtain a sufficient condition for reliable
transmissibility for the asymmetric 2-user system. For the sake of completeness, we also prove a converse
by using Fano’s inequality, and hence establish the JSCC theorem for this system. Given Wy z;7x, define

RWy zux) = U U RWy zirvx: Prux) (48)
T\ T|<U||X|+1 Pryx €P(TxUX X)
where
Ri+ Ry < I(T,U,X;Y)=1(U,X;Y)
RWy zirux, Prux) £ (R1,Re) : Ry < (T, U; Z) ,
Ry < I(X;Y|T,U)
where the mutual informations are taken under the joint distribution Pryxyz = ProxWy zlux- Note that

R(Wy zjrx) is convex and we denote ﬁ(WYZWX) be the closure of R(Wy 2z x)-
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Theorem 3 (JSCC Theorem) Given Qsr,, Wy zjyx and 7 > 0, the following statements hold.
)

(1) The sources Qgr, can be transmitted over the channel Wy zjux with probability of error Pe(n — 0 as
n — oo if (THq(S), THq(L|S)) € R(Wy zjrx);
(2) Conversely, if the sources Qs can be transmitted over the channel Wy z|;;x with an arbitrarily small

probability of error P asn — o0, then (THq(S), 7Ho(L|S)) € R(Wy zjux)-

Proof: See Appendix C. u

Observation 1 Theorem 3 implies that ﬁ(Wyz‘U x) is actually the capacity region for the asymmetric
2-user channel Wy z|7x, as the JSCC reduces to the asymmetric 2-user channel coding if the sources come
with a uniform joint distribution. It is shown in Appendix C that R(Wy zlux) can be equivalently written

as

R (Wyzux) = U U R (Wy zirux, Prux) (49)
T:|T|<U||X|+1 Pro x €P(T xUx X)

where

Ry + Ry < min{I(U, X;Y),I(T,U; Z) + I(X;Y|T,U)}

R'(Wy zirux, Prux) £ $ (Ri,Ra) :
R < I(T\U; 2)

Recently, Liang et al. [23] also showed (using a different approach) that the capacity region for the

asymmetric 2-user channel is given by

R'(Wyzux) U U R"(Wyzjirux, Prux) (50)
T:|T|<U||X|+1 Pro x €P(T xUx X)

where

Ry + Ry < min{I(U, X;Y),[(T,U; Z) + I(X:Y|T,U)}
R"(Wy zirux, Prux) = S (R1,Rz) : Ry < I(T,U; Z) ,
Ry <I(X;Y|U)

where the mutual informations are taken under the joint distribution Pryxyz = PTUXWYZ\UX- They
state that our capacity region, R(Wy zjux ), is a subset of their region R”(Wy zyx) described above by
(50); this holds since I(X;Y|T,U) < I(X;Y|U). However this is only partially correct, since noting

that R"(Wyzjux) € R'(Wy zux) and that R'(Wy zjpx) = R(Wyzux) (as shown in Appendix C), one
directly obtains that R"(Wyzjyx) C ﬁ(Wyz‘Ux). Thus the regions are all identical: ﬁ(Wyz‘UX) =

R'(Wyzux) =R Wy zux)-

19



4.4 Separation Principle for the Asymmetric 2-User System

It can be verified that the condition (7Hg(S), THg(L|S)) € R(Wy zjrx) of Theorem 3 can be achieved by
separate source and channel coding. The separate coding system of rate 7 (source symbol/channel symbol)

(we refer to it by the tandem coding system) is depicted in Figs. 4 and 5 (with 7 and 7, being identity

mappings).
The encoder f, is composed of two source encoders fg, : L™ — {1,2,..,M;} and g5, : ST —
{1,2,..., M} with private source coding rate El = %log2 M; and common source coding rate R, &

% log, My and a channel encoder {1,2, ..., M;} x{1,2,..., Ms} — X™. Similarly, the encoder g, is composed
of a source encoder gy, : 8™ — {1,2,..., My} with common coding rate §8 and a channel encoder g, :
{1,2,..., M} — U™

At the receiver side, the decoder ¢, is composed of a channel decoder ¢., : Y" — {1,2,...,M;} X
{1,2,..., M}, and a source decoder g, : {1,2,...,M;} x {1,2,...., Mg} — 8™ x L™ which outputs the
approximation of the source messages s’ and . Similarly, the decoder 1, is composed of a channel decoder
Yen + 2" — {1,2,..., M}, and a source decoder gy, : {1,2,..., My} — S™.

To show that the condition (7Hg(S),7Hq(L|S)) € R(Wyzjux) can be achieved by the above tandem
system, we need to apply the following 2-user source and channel coding theorems (we only state the
forward parts of the theorems). Note that both of these theorems are special case of Theorem 3.

Let (fsn,gsn, Psn, ¥sn) be a sequence of source codes for CS Qgz with common source rate ES and
private source rate ﬁl as defined above. The probability of the overall 2-user source coding error is given

by

PRy, i, Qs1) 2 Pr ({£0n(9en(S™): Fan(L™) # (87, L™ HWun(gan(S™) # 5™) . (51)

Then by the 2-user source coding theorem, there exists a sequence of source codes (fsn,3sn,Psn,¥sn)
with rates ES and ]%l such that Pe(?)(ﬁs,ﬁl,QSL) — 0 as n — oo if the rates satisfy ES > Hg(S) and
R > Hqg(L|S), ie., (ﬁs,ﬁl) lies in the upper-right infinite rectangle with vertex given by the point
(Hq(S), Ho(LIS)).

We next state the forward part of channel coding theorem for the asymmetric 2-user channel. Let
the (common and private) message pair (j,7) be uniformly drawn from the finite set My x M;, where
Mg 2 {1,2,..., M} and M; 2 {1,2,...,M;}, and let (fen, Gens Pens Yen) be an asymmetric 2-user channel
code with block length n and common and private message sets M, and M;. Let Ry & %logz M, and
R & %logz M be the common and private rates of the channel code, respectively. The average probability

of error for asymmetric 2-user channel coding is given by

P (R, B, Wy z0x) 2 Pr ({een(Y™) # (LD W (27) # T}) (52)

where (J, I) are uniformly drawn from M x M;. The maximum probability for error of asymmetric 2-user
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channel coding is given by

Pl e (Ros B Wyzjox) 2 max | Pr({oen(V") # (DY Wwen(2) £ )| T =5 T =) . (53)

Then there exists a sequence of channel codes (fen,gen, Pen,¥en) such that Pe(c" ) (Rs, Ri, Wy zjpx) — 0
as n — oo if (Rs, R) € R(Wyzyx). Furthermore, it can be readily shown by a standard expurgation
argument [6, p. 204] that Pe(gz,wx(Rs,Rl, Wy zux) — 0 as n — oo if (R, R;) € R(Wyzux)-

Now by (14), the overall probability of error for the tandem system is given by

Pe(n) = Pr ({‘Psn [en(Y™)] # (57", L")} U{wsn [then(Z7)] # STn}> :

)

By the union bound, it is easy to see that Pe(" is upper bounded by

IN

P < Pr({oun(gan(S™), fon(L7) # (57 L7} H{Won(gsn (S™)) # 57}

+ Pr({pen¥™) # (9un(S™), Fin( L™ N} J{en(27) # gen(5™)})

= P™(R,, Ri,Qs1)

Y Pl = (L) = ) Pr (e (Y) £ (LI (27 £ TV T = 5.1 =1)
(4 i) EMs XM,

< PU(Re, Ry, Qsp) + Paw (TR, TR, Wy 710x)

ec,max

where Pe(? 2nax (TES, Tﬁl, Wy zjpx) is the maximum channel coding probability of error with common rate
Tﬁs and private rate Tﬁl. Clearly, by combining the 2-user source coding theorem and the asymmetric 2-
user channel coding theorem, if (1Hg(S),7Hq(L|S)) € R(Wy zrx), then there exist a sequence of source
codes (fsn, Jsns Psn, Ysn) and a sequence of channel codes (fen, gen, Pens Yen) such that the overall tandem

)

system probability of error Pe(n — 0 as n — oo. Therefore, separation of source and channel coding is

optimal from the point of view of reliable transmissibility.

4.5 The Upper Bound to E;

In [8], Csiszér also established an upper bound for the JSCC error exponent for the point-to-point discrete
memoryless source-channel system in terms of the source and channel error exponents by a simple type
counting argument. He shows that the JSCC error exponent is always less than the infimum of the sum of
the source and channel error exponent, even though the channel error exponent is only partially known for
high rates. This conceptual bound cannot currently be computed as the channel error exponent is not yet
fully known for all achievable coding rates, but it directly implies that any upper bound for the channel
error exponent yields a corresponding upper bound for the JSCC error exponent. For the asymmetric

2-user channel, a similar bound can be shown.
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Definition 2 The asymmetric 2-user channel coding error exponent E(Rj, Ry, Wy zlux), for any Ry >0
and Rs > 0, is defined by the supremum of the set of all numbers E, for which there exists a sequence of
asymmetric channel codes (fen, gen,s ©ens Yen) With blocklength n, the common rate no less than R;, and

the private rate no less than Ro, such that

E. < hm1nf——10g2 pP® )(R1,R2,WYZ\UX) (54)

n—oo

Denote the probabilities of Y- and Z-error of the channel coding by
n n 1 n
P (Ry, Ry, Wyyjox) 2 Pr({gen(Y") £ (J,D)}) = SR TRs > > W;(/|X(y,u x)  (55)
Ms X Miyipen(y)#(4:1)

and

PEL R, R Wy ) 2 PH({Yen(Z) £ TY) = e S0 30 Wok(ahux)  (56)
Ms XMy z:pen (2)#5

where x £ f..(j,i) and u £ g.,(j). Clearly, for any sequence of channel codes (fen,gen,Pens>Pen)s
Pe(n)(Rl,Rg, Wy zjvx) must be larger than P)(/Z)C(RI,R% Wy rx) and sz)c(Rl,Rg, Wyzwx)) but less than

the sum of the two, so we have

1 n
lim inf = log; P, P (R, Ry, Wy zux) = l1m1nf——log2 max (Pée)c(Rl,Rg,WY‘UX),Péei(Rl,Rg,WZ‘UX)).
(57)
Our upper bound for the system JSCC error exponent E; (defined in Definition 1) is stated as follows.

Theorem 4 Given Qsz, Wy zjyx, and 7, the system JSCC error exponent satisfies
Ej(Qsr, Wy zjux,T) < }g;f [TD(Pst || Qs) + E(tHp(S), THp(L|S), Wy zjux)] » (58)
L

where E(-, -, Wy 7| x) is the corresponding channel coding error exponent for the asymmetric 2-user channel

as defined above in Definition 2.

Proof: First, from (10) we can write

p™ > ) (T4 ) Py (T =Y., Z
e (Qsp, Wy ziux,T) _PSLEI’/I}TT((SXE)QSL( sp)Pie(TsL) i=Y,Z, (59)

where Py.(Tsr) and Pz.(Tgsz) are given by (11) and (12), respectively. Comparing (11) with (55), and
comparing (12) with (56), we note that Py.(Tsr) and Pz.(Tgz) can be interpreted as the probabilities
of Y-error and Z-error of the asymmetric 2-user channel coding with (common and private) message sets
TsL, since (s,1) are uniformly distributed on Tgy. For any Psy € Prn(S X L), let Ps and Ppjg be the

marginal and conditional distributions induced by Pgsr. Recall that for each s € Tg = Tpg,
TL\S(S) < TPL‘s(S) = {l : (Sal) € TSL}
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and that ']I‘L‘S(s) is the same set for all s € Tg. Hence, we can write Tgz, by the product of two sets
Tsr = Ts x Trs(s). Setting R = 1log, |Tg| and Ry = L 1og, ITris(s)], it follows that, by the definition

of asymmetric 2-user channel coding error exponent and (57),

1
liminf —— 10g2 m}zyé Pi.(Tgr) < E(liminf Rl, hm mf Rg, Wy ziux)

n—~o0 n—~o0

= E(tHp(S),THp(L|S), Wy zjux) (60)
for any sequence of JSC codes (fy, ¢n,¥n), recalling from Lemma 1 that
(Tn+ 1)—‘5‘2717’}[}3(5) S |TS| S 2n7’HP(S)

and
(tn + 1)~ ISIIEIgnTHp(LIS) < IT1s(s)] < onTHp(L|S)

According to (16), we write

liminf —= 10g2 P( (Qst, Wy zjux,T)

n—oo

= timinf —logy max (PY (Qst, Wyix, 7). P52 (@s1, Wi 7))

n—oo

1 (tn)
< 1 f——1 T Pie(T
lnnig n 062 zmﬂz})éPSLe%li)((SxE QSL ( SL) ( SL)

= liminf min —_10 ™) (T max P (T
Nn—00 PgrePpn(SXL) TN g2QSL( SL)i:Y,)é 26( SL)

.. ) 1 (tn) 1
= liminf po, i o [—ﬁlogg Qg1 (Tsr) — —log, max Pie(TSL):| : (61)

By Lemma 1, for any Psy, € Prp(S x L),
1 g 1
- logy Q(SL)(TSL) < D(Psy, || Qsr) + \SHQE logy(1 4 7n)

which implies
lim Sllp—— log, QSL (Tsz) < 7D(Psy || QsL)- (62)

n—oo

Now assume that

inf D(P E(TH Hp(L
PsLeP(SxL) [7D(Ps || Qsr) + E(rHp(S), THp(LIS), Wy zjyx)]

is finite (the upper bound is trivial if it is infinity) and the infimum actually becomes a minimum. Let
the minimum be achieved by distribution P&; € P(S x L), then there must exists a sequence of types
{]35L € Prn(S % E)}OO such that Py, — P¢; uniformly®. It then follows from (61), (60) and (62) that

n=ne

liminf —= log2 P( (Qsr, Wy ziux,T)

n—oo
(tn) 1
< liminf [—— log, Q) (T5,) — - logs max Pu(T,,)
< 7D(Pg || Qsr) + E(rHp«(S), 7Hp«(L|S), Wy zjux)- (63)
3The sequence {PSL € Prn(S x L)} here denotes a sequence for n = no, 2n,, 3No, ..., where n, is the smallest integer

such that mn, is also an integer.
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Since the above bound holds for any sequence of JSC codes, we complete the proof of Theorem 4. |

5 Applications to CS-AMAC and CS-ABC Systems

As pointed out in the introduction, our results obtained in the previous section can be directly applied to

the CS-AMAC and CS-ABC source-channel systems.

5.1 CS-AMAC System

Setting |Z| = 1 and removing the decoder ), the 2-user asymmetric channel Wy ;7x reduces to an
AMAC Wy pyx. Since the CS-AMAC system is a special case of the 2-user system, the quantities defined
before, including the system (overall) probability of error, the system JSCC error exponent, and the
channel error exponent still hold for the CS-AMAC system. Note that there is only one decoder, so we
do not have the Z-error probability (nor exponent) here. The first union in (48) can be removed since
the largest region is given by |7| = 1. In fact, for any 7' — (U, X) — Y, I(T,U, X;Y) = I(U, X;Y) and
I(X;Y|T,U) < I(X;Y|U). Thus Theorem 3 reduces to the same JSCC theorem established in [4] for
the CS-AMAC system. Choosing the auxiliary alphabet |7| = 1, we specialize Theorems 2 and 4 to the

following corollary.

Corollary 1 Given Qgr, Wyyx and 7, the system JSCC error exponent satisfies

E;(QsL, Wyjux,T) = llﬂ,};? [TD(Psy || Qsi) + E-(THp(S), THp(L|S), Wyjux)] (64)
and
Ej(QsL, Wyjux,7) < 11325 [TD(Psy || Qs) + E(rHp(S), THp(L|S), Wyjux)] » (65)

where E(tHp(S), 7Hp(L|S), WY\UX) is the channel error exponent of the AMAC Wyyx defined in (54)
with |Z]| =1, and
By (B, B, Wyyx) = max Ey (B1, Ra, Wy ux, Pux) (66)
UXx

where Ey (R1, Ry, Wy yx, Pux) is defined in (17) with |7| = 1.

It has been shown in [2] that for any Ry > 0 and Ry > 0, the channel exponent for AMAC Wy orx

satisfies
E(R17R2>WYZ\X) < ESP(R17R27 WY\UX)?
where
Es(Ry, Ry, W- = in D(14 W- Pyx), 67
p(R1, Re, Wy yx) Py ) T Wox | Wywx|Pux) (67)

where the minimum is taken over Vyjyx € P(YU x X) such that Ip, vy, (U, X:Y) < Ry + Ry or
IPUXVY\UX (X;Y|U) < Ra.
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As a consequence, we obtain that
Ej(Qs, Wyjux,7) < }%E [TD(Pst, || Qsi) + Esp(THp(S), THp(L|S), Wy x)] - (68)

In Section 6, we investigate the evaluation of lower bound (64) and upper bound (68) when the AMAC

has a symmetric distribution.

5.2 CS-ABC System

Setting || = 1 and removing the encoder g,, the 2-user asymmetric channel Wy zux reduces to an
ABC Wy x. The quantities defined before, including the probabilities of error at Y-decoder and Z-
decoder, the achievable error exponent pair, system (overall) probability of error, the system JSCC error
exponent, and the channel error exponent still hold for the CS-ABC system. Given an arbitrary and finite
auxiliary alphabet 7, we augment the channel Wy 7 x to Wy zrx by introducing a RV T" € T such that
T — X — (YZ). Similarly, the marginal distributions of the augmented channel are denoted by Wy rx
and Wy 7x. We then specialize Theorems 2, 3 and 4 to the following corollaries.

Given Wy 71 x, R(Wyzjux) of (48) reduces to R(Wy 2 x) given by
RWyzx) 2 | U  ROWzrx, Prx) (69)
TA|T|<|X|+1 Prx €P(T x X)
where
Ri+ Ry < I(T,X;Y)=1(X;Y)
RWy zirx, Prx) = (R, R2) : Ry < I(T; 2) ,
Ry < I(X;Y|T)

where the mutual informations are taken under the joint distribution Prxyz = PrxWy 71X We remark

that the closure of R(Wy z|x), denoted by R(Wy z|x), is the capacity region of the ABC Wy zx [21].

Corollary 2 (JSCC Theorem for CS-ABC system) Given Qsr,, Wy 7| x and 7 > 0, the following statements
hold.

(1) The sources Qgsy, can be transmitted over the ABC Wy z x with Pe(n) — 0 as n — oo if
(THQ(S), THg(L]S)) € RWy z,x);

(2) Conversely, if the sources Qs can be transmitted over the ABC Wy x with an arbitrarily small
probability of error P asn — 00, then (THq(S),7Hg(L|S)) € R(Wyzx).

Corollary 3 Given an arbitrary and finite alphabet 7, for any Prx € P(T x X), the following exponent

pair is universally achievable,

Eyy(QsL. Wy zjrx, Prx,7) 2 min TD(Psy, || Qsz) + Ey(tHp(S), THp(L|S), WY\TXJSTX)] , (70)
SL
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and

Eyz(QsL, Wy zirx, Prx,7) & Ilglsin [TD(PSL | Qsz) + Ez(THp(S), THp(L|S), WZ|TX713TX)] . (M)
L

where Ey and Ey are defined in (17) and (18) by setting || = 1. Furthermore, given Qsr, Wy z|x, and

7, the system JSCC error exponent satisfies

Ej(QsL, Wyzx,T) > I};;? [TD(Pst || Qsi) + E-(THp(S), THp(L|S), Wy zx)] (72)
and
Ej(Qsp, Wy zx,7) < ]1325 [TD(Psy, || @sz) + E(THp(S), THp(L|S), Wy z|x)] (73)

where E,.(Ry, R2, Wy z|x) is given by E,.(Ry, Ry, Wy zjpx) in (35) with [U| =1, and E(Ry, Rz, Wy z|x) is

the channel error exponent for the ABC Wy 7 x.

6 Evaluation of the Bounds for E;: CS over Symmetric AMAC

We established the lower and upper bounds for the JSCC error exponent of the asymmetric 2-user JSCC
system. However, we are not able to simplify these bounds for general 2-user JSCC systems (not even for
general CS-AMAC and CS-ABC systems) into computable parametric forms as we did for the point-to-
point systems [29, 30]. In the following, we only address a special case of CS-AMAC systems where the
channel admits a symmetric transition probability distribution. We first introduce the parametric forms
of functions E,.(R1, Ro, Wy yx) and Egy(R1, Ro, Wy |yx) defined in (66) and (67), respectively. For any
R1, Ry > 0, rewrite

Ey (Rq1, Ry, Wy|yx, Pux) = min {Ey(«l)(Rl + Ro, Wy ux, Pux), B (Ra, Wy x, PUX)}

where
+
EM(R, Wy px, Pux) & I ‘in {D(Vywx | Wy jwx|Pux) + ‘IPUXVY\UX(U’X;Y) - R‘ } (74)
Y|IUX
and
+
E® (R, Wyyx, Pux) & Vm‘in [D(VYlUX | Wyjwx|Pux) + ‘IPUXVY\UX(X;Y|U) - R‘ ] - (75)
Y|IUX

Also, rewrite

Esp(R1, R2, Wy px) = max Esp(R1, Ro, Wy ux, Pux)
UXx
where
Egp(Ry1, Ro, Wy |y x, Pyx) = min {Eéé’ (Ry + Ro, Wy ux, Pux), B2 (R, Wy, PUX)}
where

B (R Wy, Pux) 2 min (DVrpx | WywxlPox): Irpcvyox (U X5Y) S R) - (76)

Y|UX
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and

ER (R, Wyjyx, Pyx) £ min (D(VY\UX | Wyiux|Pux) : Ipyxvaux (X3 Y|U) < R) - (77)

Wy ux
Note that EY and E? (respectively Eg;,) and Eg?,)) are the random-coding (respectively sphere-packing)
type exponents expressed in terms of constrained Kullback-Leibler divergences and mutual informations

[10]. In fact, it has been shown in [2] that

Eg;))(Ra WY\UX7PUX) = I?géi[El(pa WY\UX7PUX) - pR]? 1=1,2,

where
1+p1
1
Er(p1, Wyrx, Pux) & —logy » > Pux(u,z)Wypx (ylu, z) ; (78)
y€Y \(u,x)EUXX
and
) 1+p2
By(p2, Wyjux, Pux) = —logs > Pu(u) Y <Z Py (zlu)Wyrx (ylu, x)””z) : (79)
uel yeY \zeX

Analogously to [10, Lemma 5.4, Corollary 5.4, p. 168], we can prove the following results; some of them

has been proved in [2].

Lemma 4 Leti = 1,2. EY)(R, Wy yx, Prx) coincides with ESy (R, Wy v x, Pux) if R > RY (Wy ux, Pox)

where
OEi(p, Wy ux, Pux)

dp

)

p=1

Rg")(WYWXa Pyx) =

and is a straight line tangent on Eg))(R, Wy ux, Pux) with slope —1 if R < Rgn)(WYWX, Pyx), ie.

EY)(R, Wy ux, Pux),
it R> Rg«)(Wy\UXypUX)7

ES) (RS Wy, Pux), Wyjo, Pux ) + RS (Wyx, Pux) = B,
if 0<R< Rg“)(WY|UX7 Pyx).

EY(R,Wyx, Pux) =

Furthermore, Eﬁi) (R, Wywx, Pu x) has the parametric form
E{)(R,Wy|ux, Pux) = max [Ei(p, Wyyx, Pux) — pR]

0<p<1

where E1(p, Wy ux, Pux) and Ea(p, Wy x, Pux) are given in (78) and (79) respectively.

Therefore, we can write the functions E,.(Ri, Ro, Wy |yx) in (66) and Eg,(Rq, Re, Wy yx) in (67) as
follows.

Er (R, Ro, Wyyx) = max min Olggéil[Ei(Py Wy ux, Pux) — pilti] (80)

and
Esp(R1, R2, Wy x) = max min max[E;(p;, Wy x, Pux) — pﬁl] (81)
Pux i=1,2 p>0
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where ﬁl = R1+R5 and ﬁg = Rs. Since it is in general hard to find the optimizing solution Py x for E, and

E, above, we next confine our attention to multiple access channels with some symmetric distributions.

Definition 3 [2] We say that the multiple access channel Wy ux is U-symmetric if for every u € U
the transition matrix Wy yx(-|u,-) is symmetric in the sense that the rows (respectively columns) are
permutations of each other. An X-symmetric multiple access channel is defined similarly. We then say

that Wy yx is symmetric if it is both U-symmetric and X-symmetric.

It follows that the multiple access channel with additive noise is symmetric (e.g., see the example

below), where a multiple access channel Wy ;x with (modulo B) additive noise { Pr : F} is described as
Yi=U;®X;®F;, (mod B)

where Y; € Y, X; € X, U; € U and F; € F are the channel’s output, two input and noise symbols at time
i such that Y =U =X =F ={0,1,2,..., B — 1}, and F; is independent of X; and U;, i = 1,2,...,n.

It is shown in [2] that if the multiple access channel Wy iy x is U-symmetric, then the outer maximum
of (80) and (81) is achieved by a joint distribution of the form Pyx(u,z) = Py(u)/|X| for every x and w.
It then follows that for the symmetric multiple access channel, the maximum of (80) and (81) is achieved
by a uniform joint distribution

N 1
PUX(“?‘/E) = |Z/[||X|,

which is independent of p. Substituting Py in (80) and (81) yields

E.(R1, Re, Wy yx) = iy max, [Ei(p, Wy ux) — pRi] (82)
and
Esp(Ry1, Re, Wyux) = min I}}gg[ﬁi(p, Wy rx) — pRi] (83)

where él = R1 + R, 1§2 = Ry,

1+p

- 1
Ei(p, Wyux) = (1 + p)logy (||| X]) — log, Z Z Wy ux (ylu, z) T+
yeY \(u,x)eEUXX

and
1+p
- 1
Es(p, Wyjrx) = (1 + p) logy [ X] + log, [U] — log, Z <Z Wy ux (ylu, ) ””) :
(u,y)eUXY \z€X

We also can prove the following identities using a standard optimization method (cf. [29]).

Lemma 5
. D P = R _ ES , , 84
oyl g (Psz|Qsz) max [p 1(p, Qs1)] (84)
i D P = — ES , ,
PSL:HI?(IE‘S):R (Psel@st) I})lzaéi [PR 2(p, Qsr)] (85)
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where

1
Ea(p,Qsr) = (L+p)logs > Qsr(s, 1)
(s,))eSxL

and

Eoa(p,Qsi) = (14 ) >_ Qs(s)logz Qus(lls) 7.

SES lel
Note that Es1(p,Qsr) and Egs(p,Qsr) are both concave in p. Clearly, if the marginal distribution
Qs(s) is uniform, then (84) and (85) are equal. Using (82) we now can write (64) as

min [TD(Psz || Qst) + Er(THp(S), 7Hp(L|S), Wy ux)]
SL
= min {min [TD(PSL | Qsr) + max [El(pl, Wywx) — p1imHp(S, L)]] ,
Psr. 0<p1<1
min [TD(PSL | Qsr) + max [Ea(p2, Wypx) — PzTHP(L\S)]]}
Psy, 0<p2<1

= min {min [ min TD(Psy, || Qsr) + Og)a}él[ﬁl(pl,Wwa) - le]] ,
>P1>

R |Psp:tHp(S,L)=R
i i D(P. Esy(pa, W — mR 86
wjn |, i rD(Pa | Qst) + g [Baloe Wyiox) - part] | (36)

and similarly using (83) we can write (65) as

[TD(Pst || Qsi) + Esp(tHp(S), 7Hp(L|S), Wy x)]

inf
Psr,

= min {inf [ min TD(Psy, || Qs1) + ?%%[El(pl’ Wy jux) — le]} ,
1=

R |Psp:THp(S,L)=R
inf i D(P. Es(pa, W — pR]| V. 87
ind [PSL:TI?;I(%S):RT (Pse || Qsr) + Igzlf;é[ 2(p2, Wyux) — p2 ]]} (87)

Consequently, using an optimization technique based on Fenchel duality [29] and (84) and (85), we obtain
the following.

Theorem 5 Given Qgr, a symmetric Wy x, and the transmission rate 7, the lower bound of the JSCC
error exponent given in (64) and the upper bound given in (68) can be equivalently expressed as

min max [E;(p, Wyjux) — TEsi(p, Qsr)] < Ej(Qsi, Wyjwx,T)

i=1,20<p<1

< min maX[Ei(p, Wy ux) — TEsi(p, QsL)]- (88)
i=1,2 p>0

Example 1 Now consider binary CS Qg7 with distribution

Qsr(S=0,L =0)= —, QsL(S=1L=0)=

QSL(S:07L: ):_ QSL(S:17L:1):—7



where 0 < ¢ < 1/2. Then

Es1(p, Qsr) = (1+p)log, { [<§>ﬁ + (%) m] (1—q)™7 +2 <g>1ip}7

2(1—q) I+p q T+p
2(1—¢q q A9 q
Balp Qi) = (1+p)< | 3 )+§> o8 (2(1+)+g> " (2(1—42) + >
2

1
1—q T+p q I+p
l—-a ¢ N 2
+(1+p)< 3 —|—§>10g2 <1—§q+% + i g

Consider a binary multiple access channel Wy |y x with binary additive noise Pp(F =1) = ¢ (0 <€ < 1/2).

That is, the transition probabilities are given by

Py|UX(Y:0’U:0,X:O) = 1—67 PY\UX(Y: HU:O,X :0) =€
Py‘UX(Y:0|U:0,X = 1) =€, PY\UX(Y: 1|U:0,X = 1) =1—c¢
Py‘UX(YZOIU: 1,X :0) = €, PY\UX(Y: 1’U: 1,X —0) =1—c¢

( )

Py|Ux(Y:0’U:1,X:1):1—6, PY\UX Y:HU:LX:
It follows that

~ ~ 1 1
Ey(p, Wywx) = Ba(p, Wypx) = p— (1+ p)logy (e75 + (1 - 757 ).

In Fig. 6, we plot the lower and upper bounds for the JSCC error exponent E; for different (g,¢) pairs
with transmission rate ¢ = 0.25 and 0.35. As illustrated, the upper and lower bounds coincide (this
can also be proved by checking that the two outer minimums in (88) are achieved by the same i and
that the inner maximum in the upper bound is achieved by p < 1) for many (q,€) pairs (e.g., when
7 = 0.25,q = 0.1,e¢ > 0.0205 and when 7 = 0.35,¢ = 0.1, € > 0.0056), and hence exactly determine the

exponent.

7 Tandem Coding Error Exponent for the Asymmetric 2-User System

7.1 Tandem System with Common Randomization

In Section 4.4, we showed that the reliable transmissibility condition (1Hg(S),7Hq(L|S)) € R(Wy zux)
in Theorem 3 can be achieved by a tandem coding system where separately designed source and channel
coding operations are sequentially applied; see Figs. 4 and 5 with 7y and 7, being identity mappings.
By “separately designed” we mean that the source code is designed without the knowledge of the channel
statistics and the channel code is designed without the knowledge of the source statistics. Note however

that, as long as the source encoder is directly concatenated by a channel encoder (i.e., if 7; and 7, are
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identity mappings), the source statistics would be automatically brought into the channel coding stage.
Thus, the performance of the channel code is affected by that of the source code (since the compressed
messages (indices) fed into the channel encoders are not necessarily uniformly distributed). To statistically
decouple the source and channel coding operations, we need to employ common randomization between
the source and channel coding components (e.g., [18]). This results in a “complete” tandem coding system
with fully separate source and channel coding operations, and for which we can establish an expression for
its error exponent in terms of the source coding and channel coding exponents.

The tandem coding system is depicted in Figs. 4 and 5. As in Section 4.4, the encoder f, is com-
posed of two source encoders fs, and gs, and one channel encoder f.,. The difference is that the in-
dices i = fs, (1) and j = gs,(s) are separately mapped to channel indices through permutation functions
mr {12, M} — {1,2,..,M;} and 7, = {1,2,..., M} — {1,2,..., M}, which are usually called index
assignments (7y and 7, are assumed to be known at both the transmitter and the receiver). Furthermore,
the choice of 7y (74, respectively), is assumed random (independent of the source and the channel) and
equally likely from all M;! (M;!, respectively) different possible index assignments, so that the indices fed

into the channel encoder have a uniform distribution and are mutually independent:

M
Pr(n(fan(L™) =a) = Y Pr(fe(L™) =i)Pr(ms(i) = a|fen(L™) = i)
=1
M
_ l Tn_(Ml_l)'_l
= ;Pr(fsn([/ )_Z)TI!_MI’
Pr(ry(gon(S™) =) = 3

b =
b

Pr(mg(fsn(L™)) = a,m4(gsn(S™")) = b) = Pr(mi(fsn(L™)) = a)Pr(my(gsn(S™)) = b),

for any (a,b) € {1,2,..., M;} x {1,2,..., Ms}. Hence common randomization achieves statistical separation
between the source and channel coding operations (in the sense that the channel coding error probability
is not a function of the source statistics and the source coding error probability is not a function of the
channel statistics when no channel decoding error occurs).

Similarly, the encoder g, is independently composed of a source encoder gs,, an index mapping m, :
{1,2,..., M} — {1,2,..., M}, and a channel encoder g, : {1,2,..., Mg} — U™.

At the receiver side, the decoder ¢, is composed of a channel decoder @.,, a pair of index mappings

-1

;) which maps every channel index pair (7 (i), g (7)) back to a source index pair (7, 7), and a source

(WJTI, T
decoder ¢, which outputs the approximation of the source messages s’ and I'. Similarly, the decoder 1,
is composed of a channel decoder 9., : Z" — {1,2,..., M}, an index mapping 7rg_1, and a source decoder

Ysn : {1,2, ..., M} — 8™
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7.2 A Formula for the Tandem Coding Error Exponent

We now can study the error performance and exponent of tandem source-channel coding (with com-
mon randomization) for the asymmetric 2-user system. Since the tandem code consists of a source code
(fsns Gsns Psns Ysn) and a channel code (fen, Gens Pens Yen), we first define the corresponding source coding
error exponent (note that the corresponding channel coding error exponent for the asymmetric 2-user

channel was defined in Section 4.5).

Definition 4 The 2-user source coding error exponent E(R1, R2,Qsr), for any Ry > 0 and Ry > 0, is
defined by the supremum of the set of all numbers F; for which there exists a sequence of source codes
(fsns Gsns ©sns Ysn) With blocklength n, common rate no larger than Ry, and private rate no larger than Ry,
such that

B, < liminf ~log, P (1, Rz, Qs), (89)

n—oo

where Pe(g ) (R1, R2,Qsr) is the source coding probability of error defined in (51).

Denote the probabilities of Y- and Z- error for the source coding by

P (Ry, Ry, Qs1) 2 Pr({pen(i,§) # (S, L™)}) = S Qs (90)
(8,1):%sn (4,5)#(s,1)
and
Py (R, R, Qs1) = Py (R, Qs) 2 Pr({tsa() £ 5™H = Y. QW(s) (91)
s:thsn (1) 7#s

where i £ f,,(1) and j 2 gs,(s). Clearly, for any sequence of source codes (fsn, Gsns Psn, Wsn), the error
probability Pe(g)(Rl, Rs, Q1) must be larger than P}(,n) (R1, R2,Qgr) and Pg;l(Rl, R2,Qsr)) but less than

€s

the sum of the two; so we have

1 1 n n
lim inf —— log, P (R, Ry, Qs1) = lim inf — - logy max (P}(/e)s(Rla Ry, Qs1), Pyl (R1, Ra, QSL)) - (92)

In what follows we need to make three assumptions in order to analyze the probability of error of the
overall tandem system. The first two assumptions (referred to as (A1) and (A2)) are regarding the source
codes. Let the source codebook for (gsn,¥sn) (Receiver Z) be Cl9) = {cgg), ...,cg\%} C 8§™, and let the

source codebook for (fsn, gsn, ©sn) (Receiver Y) be C) x €9 where C) = {cgf), ,CS\JZ} c L,

e We assume that (A1) the source encoder fy, satisfies the condition (for every n): Q7"(f;,1(i)) > 0 and
cl(.f) € fo1(3) for every i = 1,2,..., My, where f;1(i) 2 {1 € L™ : f,,(1) = i}. Clearly, the assumption
has practical meaning. If Q7"(f5,}(i)) = 0 for some i, then the codeword e i redundant, and we can

sn i

remove it from the codebook C/). If cl(-f ) ¢ fal(i), we can map the index i to some source message 1
such that QE”(T) > 0 and fsn(T) = 1, so that the source coding probability of error P)(/Z)s(ﬁ& ﬁl, Qsr)
is strictly reduced by setting 1 as the codeword cl(f ) (note that Pgé) (ﬁs, ﬁl, Qsr) is independent of

fsn)-
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e Similarly, we assume that (A2) the source code gs, satisfies the condition (for every n): Q% (g5, (4)) >

W e g2 1(j) for every j = 1,2, ..., My, where g3, (j) 2 {s € 8™ : gon(s) = j}. I QF (951 (7)) =
(9)

0 and c
0 for some j, then the codeword ¢;”* is redundant, and we can remove it from the codebook C(9). If

gé 9l (4), we can map the index j to some source message S such that Q%*(S) > 0 and gs,,(8) = 7,
SO that the source coding error probabilities Px(/ e)s(Rs,Rl,QgL) and ng) (RS,RZ,QSL) are strictly

S
reduced by setting S as the codeword cg-g).

o We assume that the limits lim,,_, % logy M; and lim,, % logy M exist, i.e., liminf, % logy M; =
limsup,, % logy M; and liminf, % logy My = limsup,,_, % logy M. This assumption is used

later to upper bound the tandem coding error exponent in Theorem 6.

We remark that the source code satisfying (Al) and (A2) does not lose optimality in the sense of
achieving the source error exponent.

Denote 771(4, ) £ (71']71( i), g_l( /). By introducing (A1) and (A2), the error probability of the tandem
code (f.¢n) = (fsns Gsns Psns Vsns fens Gen, Pens Pen) 18 given by

P (@Qst, Wy zux,T)

£ Pr ({pon [T (gen(Y")] # (8™ I H U Won [, Wen(27)] £ 57})
S P (7] = ) P (57 = 1)
o=t b=l —1/M, —1/M,
[Pr ({een(Y™) # (@6} en(2") £ 0} 741 an (L] = @, 7, [g0n(S™)] = b) +
Pr ({pen(Y") = (a,5) and i (2") = b} ({ponlr ™ (@,B)] # (57, L) ox only ' (0)] # S}
milfen( L) = @, 7[00 (S™)] = b) (93)

S

M,
- ZZ MM Pr <{<pcn(Y” (av b)} U{¢cn(zn) ?é b}‘ (CL, b) is sent)

a=1 b=1
+Pr ({anlS™, L7 # (57, L™ H J{wnlS™] # 5™3)

Z ES: M, M, Pr <{900"(Yn) (a,b)} ﬂ{wcn(Z") = b}‘ (a,b) is sent) (94)

a=1 b=1
= PW(rRy, TR, Wy ziux) + [1 — P (r Ry, TRy, Wy 21 x )P (R, Ri, Qs1), (95)

where (93) follows from assumptions (A1) and (A2), which imply that a channel decoding error must cause

an overall system decoding error.

Definition 5 The tandem coding error exponent Er(Qsr, Wy zjvx, T) for source Qs and channel Wy z iy x

is defined as the supremum of the set of all numbers E for which there exists a sequence of tandem codes
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(fr, k) satisfying (A1) and (A2) with transmission rate 7 such that
~ 1
E <liminf —— logy Pe(f)(QSL, WYZ|UX7 7).
n—oo n

When there is no possibility of confusion, ET(QSL,Wyzwx,T) will often be written as Ep. The

following lemma illustrates the relation between Er and Ej.

Lemma 6 E;(Qsr, Wyzjux,7) 2 Er(Qsr, Wy ziux, 7).

[e.e]

Proof: By definition, for any sequence of rate 7 tandem codes {(f;, ¢k)}o2, composed of a sequence of

source codes {(fsn, Gsns Psn, Ysn) }oo; and a sequence of channel codes {(fens Gens Pens Yen) Fooq, we have

P (Qsr, Wy ziux,T)
= EWergPr ({‘psn [W_l(@cn(yn))] 7& (STn7LTn)} U{wsn [7;1(¢cn(zn))] #* STn}
min Pr ({Cﬁsn (7 (en(Y™)] # (ST L)} oo [ (Wen(2™))] # ST}

TfTg

7y and 7, are ﬁxed)

v

7y and 7, are ﬁxed> .

Let the above minimum be achieved by 7} = 7}(n) and m; = 7}(n). Obviously, there exists a sequence of
JSC codes {(fn:gn,¥n,¥n)}02, where f, is composed of fsp, gsn, T}, Tgs feny gn is composed of gsp, 7
and gepn, ©n is composed of ey, (77;_1 77*_1), and gy, and finally, v, is composed of Y., 7'(';_1, and Vg,

g
(cf. Figs. 4 and 5), such that
P (Qst, Wy zrx,7) = P (Qsp, Wy ziux,7)  for any n > 1,

where Pe(")(QSL, Wy zjux,7) is the probability of error induced by the JSC codes {(fens gens Pens Yen)}-
Since this holds for any sequence of tandem codes (satisfying (A1) and (A2)), it then follows from the
definition of joint and tandem exponents that E; > Erp. |

We next derive a formula for E7 in terms of the corresponding source and channel error exponents.

Theorem 6

. R R
Er(Qsrt, Wyzux,7) = sup min {Te <—17 _27QSL> , E(Ry, Ro, WYZ|UX)}
R1>0,R2>0 T T

where e(Ry, Rz, Qsr) is the 2-user source coding error exponent defined in (4) and E(Rq, Ro, Wy zjrx) is

the asymmetric 2-user channel coding error exponent defined in (2).

Remark 1 As can be seen from the proof below, the common randomization set-up together with the
assumptions regarding the source and channel codes are essentially needed to prove the converse part of
the tandem coding error exponent; the forward part (the proof of the lower bound on the exponent) is still

valid for tandem systems without these assumptions.
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Proof:
Forward Part: we show that there exists a sequence of tandem codes (f, @) satisfying (A1) and (A2)
such that
1 . Ri R
lim 1nf—— log, P, (QSL, Wy ziwx,T) > sup min {Te <—1, —2,QSL> E(Ry, Ry, WYZUX)} -
o R1>0,R2>0 T T

for any § > 0. It follows from (95) that

Pe(f)(QSL,WYZ\UX, 7) < 2max{P™ (R, Ry, Qsr.), PV (TR, 7Ry, Wy z10x)}

or equivalently

hmlnf—ElOg2 (QSL)WYZ\UX7 ) > min {hmlnf—_P(Tn)(R\mR\l)QSL)

n—oo n—oo

lim lnf——P(n)(TR57T§17WYZUX)} (96)

n—oo

Fix 6 > 0 and let Ry = 71lim,,_ ﬁs and Ry = 7lim,,_ El. According to the definition of the 2-user
source coding error exponent, there exists a sequence of source codes (fsn,ﬁsn, an,an) satisfying (A1)
and (A2) (since (Al) and (A2) do not lose optimality) with common source rate R, and private source
rate ]%l such that
(rn) ~ Ry R

hmlnf—_P (RszvaSL) >e _7_7QSL

n—oo T
On the other hand, according to the definition of the asymmetric 2-user channel coding error exponent,
there exists a sequence of channel codes (fen, gen, Pen, Yen) With common rate Tﬁs and private rate 7']?21

such that
hmmf——P( )(7Rs, 7R1, Wy zux) > E(T Ry, 7Ra, Wy zjx) — 0.

n—oo
Finally, since the sequences of rates Rs; and R; can be arbitrarily choose, and so are R; and Ro, we can

take the supremum of Ry and Rs, completing the proof of the forward part.

Converse Part: We show that for any sequence of tandem codes (f¥, ¢ ) with rate 7 composed by source
codes {(fsn, gsn, Psns Ysn) }oo ; satisfying assumptions (A1) and (A2) and channel codes {(fen, gens Pen, Yen) }oq,
lim inf — = logy P\ (Qst., Wyzux,7) < sup  min {7'6 <&, &,QSL> E(Ry, Ry, WY2|UX)} - (97)
n—oo N R1>0,R2>0 T
Let the private index set for the tandem system be {1,2,...,M;} (cf. Figs. 4 and 5). Thus the
private source and channel code rates are given by El = % logy M; and R; = Tﬁl, respectively. Let the
common index set be {1,2,..., Ms}. Thus the common source code rate and channel code rate are given
by §8 = % logy Mg and Rg = Tﬁs, respectively.
We first assume that limsup,,_, ., —% log,[1 — Pe(?) (Tﬁs,Tﬁl, Wy zjrx)] > 6 for some positive § inde-

pendent of n, which implies that there exists a sequence ng < n; < no < --- < oo such that

llHl Pé?i)(Tﬁs,Tél,Wyz|Ux) > 1-— hm 2_ni5 =1

1— 00 71— 00
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In this trivial case,

1 1 ~ ~
hmlnf——logz (QSLWYZ\UXa ) < hmmf——log2 PRy, TRy, Wy z1x)

n—oo n—oo

< lim ——log2 P("’)(TRS,TRl,WYZ\UX)

1—o0 N,

= 0

and (97) holds. Next we assume that lim sup,, ., —+ log,[1 —p (TR,, TR, Wy zjux)] = 0. Tt then follows
from (95) that
lgglogf —— log2 PP (Qs1, Wy ziux,T)

< hmmf——log2 (1= PO (- Ry m R, Wy 7y x) P (R, B, Qs

n—~o0

]
< liminf ——log, PU(R,, Ry, Qs1) (98)
and
1
lim inf —— log, P, "(Qs1, Wy zjux,7) < liminf —~ 10g2 P (rRs, TRy, Wy z1x). (99)
Let
~ log, M,
Ry = lim 7R, = lim 0g2T (100)
and
- logy M,
Ry = lim 7R = lim —2221, (101)

n—0o00 n—0o00 n

Ry

7—77—7

By definition, the source error exponent e( QSL) is the largest (supremum) number E; such that

there exists a sequence of source codes (fsn, Jsn> Psns ¢sn) with message sets {1,2, ..., ]\Afs} and {1,2, ..., M;}

satisfying .
log, M R
n—oo ™ T
logy M; _ R
n—oo ™ T
and

n—oo

lim lnf _T_ 10g2 Pr <{908n(fsn( )7 gsn(STn)) 7& (STnv LTn)} U{an(asn(s‘rn)) 7& STn}> Z E

This means that

ot~ 1o Pr ({Gon (T (L), Gen(57™) # (7 L7 U Gn(570) # 57) < ¢ (2122, Qs

n—~0o0

log, M. . log, M,
%2 s < B and limsup,,_, ., 827t < &2

holds for all source codes (ﬁn,ﬁsn,@n,{/;sn) with limsup,, ., =2 < = 2ol < 2

and hence holds for the sequence of block codes (fsn, Gsn, Psns Ysn) With rates (ﬁs, El) satisfying (A1) and
(A2).
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Similarly, by the definition of the asymmetric 2-user channel error exponent and on account of (100)

and (101) we have

lim mf—— logy Pr <{<pm(Y”) (J,I)} U{qzcn(Zn) # J}) < E(Ry, B2, Wy z1ux)

n—oo

holds for all channel codes (ﬁn,’g\m,@nﬂzj\m) with common and private message sets {1,2, ,]\Z} and

{1,2,..., ]\/4\1} such that liminf,,_, % > Ry and liminf,,_ logiMl > Ro, and of course holds for the

sequence of channel codes (fen, gen, Pen, Yen) With common rate Ry = Tﬁs and private rate R; = Tﬁl.

Putting things together, (98) and (99) yield

1 . R R
hmlnf—— log, P, (QSL, Wy zjux,7) < min {Te (—1, 727QSL> E(Ry, Ry, WYZUX)} ,

n—oo T

holds for all the source codes satisfying (A1) and (A2) and all the channel codes with lim, . % =R

logy M;
n

and lim,, = Rs. Since the above is satisfied for any sequences of My > 0 and M; > 0, and hence

for all Ry > 0 and Rs > 0, we take the supremum over Ry > 0, Ry > 0 and obtain (97). |

7.3 Comparison of Joint and Tandem Coding Error Exponents

Although tandem source-channel coding can achieve reliable transmissibility, it might not achieve the
system JSCC error exponent. In the following we consider the tandem system consisting of CS Qg1 and
AMAC Wy yx. For the CS-AMAC tandem system, we have only one receiver, Receiver Y, and the source
decoder (cf. Fig. 5) g, becomes a Slepian-Wolf decoder [6]. Furthermore,

PU(Ry, Ry, Qs1) = Yo (R1, R, Qsr) = > QU(s.])
(8.):9sn (1,5)#(s,))
and
Pe(g)(RlaR%WY\UX) 1(/6)0(R1,R2,WY|UX 2R1+R2 Z Z W;(/‘X( lu,x).

M x M, y: <Pcn( )75(.772)

In this case, we can upper bound the source error exponent by

<&7&7QSL> < min D(PSLHQSL) = max

p R+ Ry
T Psr:THp(S,L)=R1+R2 p>0 T

— EBa(p, Qsm] . a02)

which is obtained by viewing the two source encoders fs, and g, as a joint encoder [11], where F(p, Qsr.)
is given by Lemma 5. Therefore, we can upper bound the tandem coding error exponent for the CS-AMAC

system by

Er(Qsp, Wy zux,7) < sup  min {maX [p(R1 + R2) — TEs1(p, Qsr)], Esp(Ri, Ra, WYUX)} (103)
R1>0,R2>0 p=>0

where Eg,(Rq, Ra, Wy o x) is an upper bound for the channel error exponent and is given by (81).
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Example 2 Now consider the same binary CS Qgr, given in Example 1 such that

Es1(p, Qsr) = (1+p)logy { [(g)@ + (%) 1#] (1—q)™ +2 (g)ﬁ}y

and consider the same binary multiple access channel Wy yx as in Example 1 with binary additive noise
Prp(F =1)=¢€ (0 <e<1/2) such that

Eqp(Ry, Ry, Wy|yx) = min I}}gg[ﬁi(m Wyjox) — pRi) = I}}gg[ﬁi(/}, Wy ux) — p(R1 + Re)]

where ]?21 = R + R, ﬁg = Ry, and

~ ~ 1 1

E1(p, Wy ux) = Ea(p, Wyjux) = p — (1 + p) logy (5”” +(1- 6)”") :
It follows from (103) that the upper bound for E7 only depends on the sum rate Ry + R and hence the
upper bound can be reduced to

Er(Qsi, Wy zjux,T) < sup min {m&X [pR — TEq1(p, Qs1)] , max|Ey (p, Wyjux) — PR} .
R>0 p=0 p=0

In Fig. 7, we plot the lower bound for E; from (88), and the above upper bound for Ep for different
source and channel parameters. It is seen that for a large class of (g, €) pairs with the same transmission
rate 7, there is a considerable gap between the upper bound for Er and the lower bound for Ej, which
implies that JSCC can substantially outperform tandem coding in terms of error exponent for many binary
CS-AMAC systems with additive noise. In fact, from Fig. 7, we see that E; almost doubles Er for many
(g,€) pairs. When E; =~ 2E7 holds, it can be equivalently interpreted that, to achieve the same system
error performance, JSCC only requires around half delay of the tandem coding, provided that the coding

length is sufficiently large.

8 Conclusion

In this paper, we study the error performance and exponents of JSCC for a class of discrete memoryless
communication systems which transmit two correlated sources over a 2-transmitter 2-receiver channel in
an “asymmetric” way. For such systems, we derive universally achievable error exponent pairs for the two
receivers by employing a generalized type-packing lemma. We also establish a lower and an upper bound
for the system JSCC error exponent. We next specialize these results to CS-AMAC and CS-ABC systems.
As a special case, we study the analytical computation of the lower and upper bounds for CS-AMAC
systems for which the channel admits a symmetric conditional distribution. We show that the lower and
upper bounds coincide for many binary CS-AMAC source-channel pairs with additive noise, and hence

exactly determine the JSCC error exponent.
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As a consequence of our lower bound for the JSCC error exponent, we prove a JSCC theorem for the
asymmetric 2-user system, i.e., a sufficient and necessary condition for the reliable transmissibility of the
two CS over the asymmetric channel is provided. It is demonstrated that the condition can actually be
achieved by a tandem coding scheme, which combines separate source and channel coding. This means that
tandem coding does not lose optimality from the point of view of reliable transmissibility. Nevertheless,
tandem coding might not be optimal in terms of the error exponent. To exploit the advantage of JSCC
over tandem coding for the 2-user system, we show that the tandem coding exponent can never be larger
than the JSCC exponent and we derive a formula for the tandem exponent in terms of the source and
channel coding exponents. The formula holds under two basic assumptions on the source code and the
assumption that common randomization is used at the transmitter and receiver sides to render the source
and channel coding operations statistically decoupled from one another. By numerically comparing the
upper bound for the tandem exponent and the lower bound for the JSCC exponent, we note that there is
a considerable gain of the JSCC error exponent over the tandem coding error exponent for a large class
of binary CS-AMAC systems with additive noise. Note that this prospective benefit of JSCC over tandem

coding can also translate into substantial reductions in system complexity and coding delay.

A Proof of Lemma 3

Although the result (5) of Lemma 3 was already shown in [8], we include its proof here since we need to
show that (5) holds simultaneously with (6) and (7). We employ a random selection argument as used
in [8]. For each i = 1,2,...,m,, we randomly generate a set of 2V; sequences (according to a uniform
distribution) from the type class T4, = Tp,, C & {a&i),ag), ...,ag%i} C Tyu,, ie., each az(,i) is randomly
drawn from the type class T4, with probability 1/|T4,|, p = 1,2, ...,2N;. Each set has 2N; elements rather
than NV; because an expurgation operation will be performed later. Also, we denote the set Cp Ci/ {ap }

m/,, we randomly generate 4N;M;; sequences

Now for each i with associated j = j(i) = 1,2,.
(according to a uniform distribution)
{bgjl)7 b§j2)7 o bg{%Mw ’ bgjl)7 b%?’ Tt bgj,%M”7 o bé@z@,l’ bgj]\)fi,27 "t bé]]zfiQMij }

such that the set

¢y = {(a %) (abD) ... () b, ).
(5.68) (a2, 68) o (5650, ).

(abh, b1 ) + (a5 bR 2) <o (8% D5 aar, ) | € T, = T i,

In other words, each bg()l is drawn from TBj\Az— (al(f)> with probability 1/ ‘TBJ-|A1- (ag)) yq=1,2,..., My,

and hence each pair (al(,i), bgg) is drawn from T4, p;, with probability 1/ |T A;B; ‘ Furthermore, we denote
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thesetCé”jqé U/{(ap, )>} For any 1 <4,k <my, 1 <j<m), and 1 <1 <mj,, define

V = {VA’|A€P A’PA ZPA VA’|A ’a):PAk(CL,)}
acA

and

Vij,kl £ VA’B’\AB €Pn (“4 X B|PA7;B]’) : Z PAiBj (av b)VA’B’\AB(alv b,|av b) = PAkBl(alv b,)
(a,b)eAxB

Based on the above set-up, the following inequalities hold.

i.) For any (i,7) # (k,1) and any Vapap € Vijki,

IN
&=

/4
{0.4): ().
'b(

— AN, M,,Pr { (ag@,

i) 1.(5)
‘TVA’B’\AB <ap ) bp&])
T a5,

= 4NpMy

- A’ ,B";A,B
< AN Myg(n + 1)AIBIo ™ Pas; Vargr g (A0 B5AE) (104)

where the above expectation and probability are taken over the uniform distribution

1
Pkl((’f),b;”q)ém V 1<k<mn, 1<1<m},, 1<p <Np 1<q <My, (105)
kD1

and (104) follows from the basic facts (Lemma 1) that

(A’,B'|A,B)

’fLHp B.Valinr
‘TVA,B,‘AB< ;(J)ab(”ﬂ < o HPan,Varan

and that

|’]I‘AkBl| > (n + 1)_|‘A||B|2nHPAkBL (A’,B’)

Y

noting that the marginal distribution of Pa,p,Varpijap for RV’s (A’, B') is Pa,

ii.) For any (7,j) = (k,l) and any Vypap € Vij,ij, likewise,

E ‘TVA’B’\AB (a;gf ) pII> mcm

where the expectation is taken over the uniform distribution 13” defined by (105).

(n I 1)‘./4“8‘2_” PA B. VA/B/‘AB(AlvBIQAvB)7 (106)

iii.) For any 7 and j # [, and any Vyp/ap € Vij i, similarly we have

E ‘TVA’B’\AB (azg)i)v bé{g) ﬂ Cil (A,B’;A,B)'

< AN; My (n + 1)MAIBlg ™ Pai5; Vapt an
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iv.)

vi.)

Using the identity
IPAZ-BJ- VAB’\AB (A7 B/7 Av B)

and assumption (3)

1
Elogg N; < Hp, (4) =4,

we obtain another bound

E ‘TVA’B’\AB < 2 ’ng> ﬂcll

where the expectation is taken over the uniform distribution ]3”

For any i and j = [, and any Vg ap € Viju, likewise,

‘TVA’B"AB <"‘z(>i)v b)) M| <

ij(n + 1)MAlIBI2” "MPa; Varpr an

where the expectation is taken over the uniform distribution 15”

For any i # k and any Va4 € Vi,

E "]TVA,‘A <a§f>> ﬂck(

IN

<

9N, Pr {agi) €Tv,,, (ag?)}

2N,

‘TVA/\A (az(f)>
T a,l

< 4My(n + 1)l Pain, Varsr .z

= HPAZ. (4) + IPAiBjVAB/‘AB (B/§ B|A)

(B';B|A)

)

(B';B|A)

2Ni(n + 1)_‘A\2_”IPAZ.VA,‘A(A’;A),

where the above expectation and probability are taken over the uniform distribution

1

D, (af)) 2
Pk(ap, )= ma

V 1<k<m,, 1<p <N,

and (109) follows from the basic facts (Lemma 1) that

‘TVA’\A (agl)

and that

’TAk‘ > (n + 1)\A\2anAk (A/)7

noting that the marginal distribution of P4,V 4 for the RV Alis Py, .

For any « = k and any Vy/ 14 € Vi, likewise,

E ‘TVA’\A (aig)) mcf =

(4 1)l Va4

)

where the expectation is taken over the uniform distribution P; defined in (110).
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(107)

(108)
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Note also if Varpriap € Vijk

‘TVA’B’\AB <a(l ’bj, > ﬂckl =0,
and if Varprjap & Vijiij
‘TVA’B’\AB (ag ’bgq) ﬂC = 0.

Therefore, it follows from (104) and (106) that for any Vypap € Pn(A x B|A x B),

E TVA’B’\AB (al(?i)v bg?]) mckl‘

> AN M
(k.d)#(i.5) Rk

< mn(max mgn)(n + 1)|A”B|2_n1PAiBJ’ Va'B!|AB
i

4NiM2-j

ABA
(4"BA.5) (112)

Taking the sum over all Vypiap € Pn(A x B|A x B), and using the fact (Lemma 1)
Pu(A x BJA x B)| < (n+ 1)HFIBF

and |A|?|B|? + | A||B| < 2|A|?|BJ?, we obtain
ESY < (n+ 1)2|A|2‘B‘2mn(mﬁxm§n)

where

(1>

SPe

2”IPAiBj VA’B’\AB (A/7BIQA7B)
¥

VA/B/‘ABEPn(AXB|A><B)
TVA'B’\AB (ag)’ bfg’]v‘)l) ﬂijq

‘TVA’B’\AB (a,(f), bgz}) ﬂckz‘

> AN M
(k.d)#(i.5) RETKL

X

Immediately, normalizing by 4N;M;; and taking the sum over 1 <i <my,, 1 <j<m,,1<p<N;1<
q < Mij yields

2N; 2M;;
2
E E 4NM E E Sy < n—|—12|A| BEm, (mlaxmén)z. (113)
i=1j=1 """ p=1 ¢=1

Similarly, it follows from (107) and (108) that

2N; 2Mi;
ZZ 4NM D> KN < (4 )P (maxcn, ) < (n 4+ 1Pl (maxm],)?, - (114)
i=1j=1 I p=1 g=1 ‘
where
KZ.‘J S Z 2n1PAiBjVA,B,‘AB(B’;B|A)

VA/B/‘ABG'PTL(AXB‘.AXB)

‘TVA/B"AB (ap ’ pq) ﬂC ‘TVA’B’\AB (al(?i)v bé{t)l) NCa

4Mij %]: 4 My ’
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and it follows from (109) and (111) that

2N; 2M;;

ZZ4NM >0 D L <+ )PP (maxmi,) < (n 4 1A i, (maxm, )%,

i=1 j=1 p 1 g=1
pq . . . . .
where Li; is actually independent of j and ¢ and is given by
Pg  _ 1P A nip, v, ,(A5A)
Ly = Iy= Z 9™ Pa;Varia
Vi4r | 4€Pn (ALA)

P (£)0] [P, (89) 04

2N; * kz#:l 2Ny,

Summing (113), (114) and (115) together, we obtain

/

m; 2N; 2Mij

m.
n wm 1

EY Y o 2o O (S04 K+ LE7) < 3(n + 125 2 (a2

i=1 j=1 v p=1 ¢=1
Therefore, there exists at least a selection of these sets {52}7;"1 and {52 ]}z Tjwl mi, such that
2N; 2M;;
2
Z Z 4NM Z Z <Spq + qu + Lm) <3(n+ 1)2"4‘ 1Bl (maxm )2

i=1 j=1
which implies that for all i = 1,2,...,m,, and j = 1,2,...,m/, the following is satisfied
2N; 2M;;

Z Z (Spq —i—qu—i—qu) <3(n+ 1)2|A| B, (maxm )2

7

4N, Mw

We next proceed with an expurgation argument. Without loss of generality, we assume

) 2M;; 1 2M;;
S (ke ) < ghe S (SR er) <
2M;; 2M;;
q=1 q=1
2M;;
2Nl,q 2N7,,q 2N’L7q
< 3 M Z < + K2V L ) ,
q=
then we must have, for every 1 < p < N;,
2M;;
2M Z Spq+qu+qu < 6(n—|—1)2|A| |B|2 (maxm )2‘
Z] q= 1

Similarly, suppose for each p = 1,2, ..., N;,
2M;; 2M 2M
S KP4 L2 <SP KPP L < < PP p KP4 LR
the above implies that for each p = 1,2, ..., N; and each ¢ = 1,2, ..., M;;,

SP 4 KP4 LR < 12(n + 1)2|A|2‘B‘2m%(mzaxm/- )2.

m
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We now let for i = 1,2,...,my,, p=1,2,,,.,N;, ; & {agl),ag), (2)} 6 Qr 2 Q;/ {al(,i)} C CP and

MZ--
for j =1,2,...,m},, ¢=1,2,..., M;;, let Q;;(a (Z)) {(a,(,),b};]()l)}q:1 such that

052 o) = {(a b)), (a,68) o (o B, )

p=1
(59,660 (a0 52) . (52,80, ).

(1) 1,0) (1) ,0) (1) 1,0) 2
<aNi’b]\]fi,l) ) (aN vle 2) (aN vbz\]fi,Mij)} C Cij,
and denote also Q‘;’.’;—] £ Qij/ {(ap , )>} C é?f. Immediately, it follows from (118) that for every
i=1,2,...,my, j=1,2,..ml, k=12..m,, | =12 ..m,p=12.,N;, ¢ =12, ..M, and
every VA’B’|AB S Pn(A X B‘A X B) and VA’|A S Pn(A‘A)

A'B/|AB SVkMkl ) < 9"l Pa;B;Varpap ) L (k1) £ (i, ), (119)
"]I‘V (a( ) > nqu [ 1 !
A'B'|AB P > p q < 2_n _IPAZ-BJ- VA’B’\AB (A B ;A’B)_6i| (120)
N; M;; B
(4) 1,() , [ /
‘TVA’B’\AB <3]l\1)4 abpvq> N < 2_n_IPAiBjVA’B’\AB(B ;BIA)_(;}, L # 7, (121)
il
() 1 Pq [
‘TVA/B/‘AB (ap ) pq> M€ < 2_n_IPAiBjVA’B’\AB(B ;B|A)_6} (122)
M;; = ’
(@)
Ty, a ﬂQk _ 1 A)—
‘ AllA <]\:; ) < 2 n[IPAiVA’\A(A 4) 6]7 k #1, (123)
k
(4) P
Ty, , & @, '
‘ Varia <J\;> )ﬂ i < 2—TL[1PAZ_VA,‘A(A ;A)—5]’ (124)

where
2
5= - [\A\2]B]210g2(n + 1) + logy my, + logy(max mi,,) + logy 12| .

Thus far, we proved the existence of the sets (2; and €);; with elements selected uniformly from each
T4, and Ta,p; satisfying the inequalities (119)—(124) for any V44 and Vg prjap. It remains to show that
these sets are disjoint and have distinct elements provided assumptions (3) and (4). Indeed, since (123)
and (124) hold for every Vaa € Py (A|A), they of course hold when V4 is a conditional distribution
such that V7, 4(d'la) is 1'if ' = a and 0 otherwise. It then follows from (3)

1
—loggNi<HpAi(A) 5—IPAV (A’;A)—6

/‘A

that ‘TVX/\A <a1(,i)> N Qk‘ = H } N Qk‘ < 1 or equivalently, H } N Qk‘ = 0, which means any elements
in ©Q; does not belong to Qy, for ¢ # k, i.e., Q; and j are disjoint. Likewise, using assumption (3) in (124),
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we see that

T (=7) N19%] = ({7 192 =

which means that €; has N; disjoint elements. Similarly, setting V4 p/ap be the conditional distribution

such that V}, ., a',b|a,b)is 1if ' = a, b’ = b and 0 otherwise, and using (4
A'B'|AB

1
n logy Mij < HPAiPBj\Ai(B’A) -

we see that for any al(f) € Q, Qyj (ag))’s are disjoint and the elements in €);; (al(f)) are all distinct, i.e.,

|QU( )| = M;; for every al) € Q;. Finally, when V4114 is not the conditional distribution such that
Vara(ad'la) is 1 if ’ = a and 0 otherwise, we can write (123) and (124) in the same way as (5), and
when Vg g/ ap is not the conditional distribution such that Vg ap(a’,0'la,b) is 1if o’ = a, b’ = b and 0

otherwise, we can write (119)—(120) as (6), and write (121)—(122) as (7), since
‘TVA,‘A (a(i)) ﬂ QY = ‘TVA’\A (a(i)> ﬂQz
‘TVA’B’\AB < 1(7)’b:£7]()1> ﬂgfq = ‘TVA’B’\AB < 1(7) b(]

‘TVA’B’\AB < P ’ng> ﬂQ

)

- ‘TVA’B’\AB <a1(72)’b§?

B Proof of (26) and (27)

B.1 Upper Bound on ‘T‘/}Y\TUX((t7 u),x) &

If we fix a k =1,2,...,my, and a l = 1,2,...,m],,, then & is the set of all y such that there exist some
((tv u),7X/) € Qg (t7u), 7£ (tv u)> ((tv u)7X7 (tv u)’,x’,y) admits a joint type P(t,u)x(t,u)’x’y € PTL(T2 X U? x
X% xY) and

I((t,w), x"y) = (Rk + Rig) = I((t,0),x;y) — (Ri + Ryj). (125)
Note that (125) can be represented as for dummy R.V.’s (TU) € T xU, X €e X, (TU) € T xU, X' € X,

and Y € Y, the following holds under the joint distribution Piryx vy xy = Pt,ux(t,u)yx'y

(T,U), X";Y) = (R, + Ri) > Ippyxy (T, U), X;Y) — (R; + Ryj),

IP(TU)’X’Y

where Piryy xy and Pryxy are the corresponding marginal distributions induced by Py x(ruy xry -

Thus, ’]I"7Y‘TUX ((t,u),x) (&1 can be written as a union of subsets

’
My, My

(tw,x &= U U Fra((t,0),x, Pryyx(ruy x1y) (126)

k=1 1=1 P(TU)X(TU)’X’YECkvl((t’u)’x)

VY\(TU)X
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where

Pruyx = Peux = Pruyx;
Paroyxruyxy Pauyxr = Pruyx,s  Priroyx = Ywiro)xs
EPu(T? XU x X2 x V)t Ipon (TU), X1 Y) — (R + Ry)
2 IP(TU)XY((T7 U), X; Y) - (Ri + Rij)

Ck,l((t7 u)v X) £

where Piryyx, Piruyx: and Pyry)x, ete, are the corresponding marginal and conditional distributions

induced by Piry)xruyxry, and

3 ((t,u),x) ((t,n),x, (t,u),x",y) € Troyx vy xy }

Jka t,u ,X,P D' é y:
((t,u) (TU)X (TUY X7Y ) { such that ((t,u),x') € Qug,  (t,0) # (t,0)

where T (7 x(Tvy x'y = TP(TU)X(TU),X,Y. Clearly, given any k, I, and FPiryyx(Tuyxry,

| Frea((t,0), %, Peronyx(roy xvy) |

((t,u),x, (t,u),x",y) € Tiroyx vy xy

< t,u),x,y):
S N EEIE ) € Q) £ ()

((t,0),x, (t,u),x") € T(rv)x(Tv)yx”

= t,u),x'):
(& u)',x) ((t,u),x") € Qp, (t,u) # (t,u)

X |Ty|rv)x vy x: (£, 1), %, (t,u), x')|

(L) X(T0) XN =n]

2 (TU)X(TU)/X/Y‘(Y‘(T7U)7X7(T7U)/7“X,)

< NkMkﬂ‘"[IP@wX@U)'X’( : (127)

where the last inequality follows from Lemma 3. Meanwhile, when ((t,u),x) € €;;, the following simple
bound also holds

nH . Y(T,U),X
| Frea((6,0), %, Proyxcroy xy)| < [Ty jrvyx (8, 0),x)] < 2Py VIO _ o P(<TU))inVY‘(TU)X( oD

(128)
since for each T(ry)x vy x'y € Cri((t,u),x), we have Pruoyx = Puvy.x;» Priovyx = ‘7Y\(TU)X and
hence Piry)xy = Pyrvy), x; Vy|(rv)x- Now substituting the following inequality (cf. [8, Eq. (28)])

HP(TU)X(TU)/X/Y (Y|(T,U), X, (T, U)/7 X,)
- HP(TU)XY(Y|(T7 U),X)
HP(TU)XY(Y‘(T7 U), X)

— IP(TU)X(TU)’X’ ((T, U), )(7 (CZ—'7 U),7 Xl)
- IP(TU)X(TU)’X’Y((T’ U)/v X' (1,U),X,Y)
(1,U),X"Y) (129)

IN

B IP(TU)’X’Y
into (127), combining with (128) together, we obtain

(NT0).X) |1 (@0) X¥) (R o) ]

H ~
Puruyx; Wwiro) x (TU)' X'Y

| Frea (6, 0), %, Poroyx croy xry)| < 2 [
(130)
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Again recall that for Pry)xruyxy € Cri((t,0),%x), Pruyxy = P(rvy),x; Vy‘(TU)X, and note that

(T, U)/7X,; Y) = (R + Rpt) = [P(TU)XY((T7 U), X;Y)— (R + RZ])

IP(TU)’X’Y

This implies when Piroyxroyxry € Cra((t,1),%)

+

(Y|(T,U),X)—‘I ((T,U),X;Y)—(R;+Ry )

n|H PN ~
)| <9 { Puruy); x; VY (TU)X Pruyy; x; Yy (Tu) X

| Frea((6,0), %, Poroyx cruy xry

and hence

((t,u),x) mgl‘ <m, <m2ax m;n> (n+ 1)‘7X“\2\X\2D/|

‘ ?Y\(TU)X

+
X2" HP((TU))inVY\(TU)X(Y‘(T’U)’X)_ (IP((TU))in\A/Y‘(TU)X((TvU)vx;Y)_(Ri'i_Rij)) }
)

since by Lemma 1

1Cha((t,0), %)| < [Pu(T2 x U x X2 x V)| < (n+ 1) TFMEIXEDL

Wy (ruyx

B.2 Upper Bound on "]13 ((t,u),x) ﬂé'g’

/

If we fix an ¢ = 1,2,...,m,, and an [ = 1,2,...,m;, , then & is the set of all y such that there exist some

((t,u),x') € U, X' #x, ((t,u),x,x,y) admits a joint type P yyxxry € Pn(T x U x X x V) and
I((t,u),x";y) — (Ri + Ry) > I((t,u),x;y) — (R + Rij). (131)

Using the identity
I(T,U0),X;Y) = I(T,U;Y) + I(X; Y[T,U),

on both sides of (131) we see it is equivalent to
I(x;ylt,u) — Ry > I(x;y[t,u) — Ri;. (132)

Note that (132) can be represented as for dummy R.V.’s (TU) € T xU, X € X, X' € X, and Y € ), the

following holds under the joint distribution Pryyxxy = Pt u)xx'y>

IP(TU)X’Y(X,; Y|T7 U) - Ril > IP(TU)XY (X7 Y|T, U) — Rij,

where Piry)xy and Pry)xy are the corresponding marginal distributions induced by P7y)x x7y- Thus,

Vy\(TU)x((t’ u), x) () &2 can be written as a union of subsets

’
in

T‘/}Y\(TU)X((t7u)7X) ﬂgz - U U ﬁ((tvu)’X’P(TU)XX’Y) (133)

=1 Pipyyx xry €Ci((t,u),x)

m
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where

Pruyx = Peuwx = Pruyx;
Pruyxxry Pruvyx = Pruyx,:  Priroyx = ‘7Y|TUX
EPu(T xUX X xY): Ip 0 (XSY|TU) = Ry
> Ipgyyxy (X3 Y[T,U) — R;j

Cl((tv u)v X) =

where Pryyx, Prvyx: and Pyyru)x, ete, are the corresponding marginal and conditional distributions
induced by Piry)xx'y, and
a 3 ((tu),x)  ((t,w),x,x"y) € Tirvyxxry

y: )

]ﬁ((t,u),x,P 4 )
(X such that ((t,u),x") e Qy, x #x

where Ty xxy = ']I‘p(TU) «xry- Using a similar counting argument, and applying Lemma 3, we can
bound, for any I = 1,2,...,m;, and Pry)xxry € G((t,u),x),
+

F P X n{ " v VITULX)=| 15 v (X;Y|T.U)~Ri
(TU))X; VY (TU)X (TU)); X VY |(TU) X
| Fi((t,0), %, Proyxxry)| < 2 iX; X 7

and finally, we obtain,

2
‘TVY\(TU)X((t’u)’X)ﬂ&‘ < <mlaxm;n> (n + 1)U
+

Y|(T,U0),X)—|I (X5Y|T,U)—Ry;

e vy x,; Prirv)x P(ruy)x; Yy |(Tv)x

n
X2

since |Ci((t,u),x)| < (n + 1)|T||MHX\2IJJ\. -

C Proof of Theorem 3

Forward Part (1): Tt follows from (19)-(21) that E,.(R1, R2, Wy zi7vx, Prux) > 0 if and only if (Rq, Rg) €
RWy zirux, Prux). Tt then follows that E,.(Ri, R2, Wy zjyx) > 0 if (R1, Ra) € R(Wyzux). Accord-
)

ing to Theorem 2 and the definition of the system JSCC error exponent, Pe(n — 0 if the lower bound
(34) is positive, which needs E.(THp(S),7Hp(L|S), Wy zux) > 0. This means P = 0 if the pair
(THQ(S), THqQ(L]S)) € RWy zjux)-

Converse Part (2): The proof follows from a similar manner as the converse part of [16, Theorem 1] for
a broadcast channel. For the sake of completeness, we also provide a full proof here since we deal with a

2-user channel. We first prove the following lemma.

Lemma 7

RWyziux) =R Wy zux),

where R'(Wy 7|y x) is defined in (49).
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Proof: It is straightforward to see that ﬁ(Wyle x) € R'(Wyzux). To complete the proof, it suffices
to show R'(Wy zipx) € R(Wyzjux). We note that both R(Wy zyx) and R'(Wy zyx) are convex and
closed. Therefore, instead of verifying that all (R1, Rg)’s in R'(Wy 2y x) belong to R(Wy Z|ux), we show
that all the boundary points of R'(Wy zyx) are in ﬁ(WYZWX)- By the definition of R'(Wy zrx), we
note that any boundary point (Ry, Rg) of R'(Wy zyx) has to satisfy at least one of the conditions:

e Case 1: there exist RV T and Pryx such that

IU,X;Y) < I(X;Y|T,U)+ I(T,U;7)
Ri+Ry, = I(UX;Y)
R = I(T.U;Z).

This is true since if Ry + Re < I(U, X;Y) or Ry < I(T,U;Z), we can increase R; or Ry which

contradicts the boundary point assumption on (Ry, R2).
e Case 2: there exist RV T and Ppyx such that
(U, X;Y) > I(X;Y|T,U)+ [(T,U; Z)

Ri+Ry = I(X;Y|T,U)+ I(T,U;2)
Ry, = I(T,U;Z2).

Now if the boundary point (R1, Ro) satisfies Case 1, clearly, for the same T and Pryyx, we have

Ri+Ry, = IUX;Y)
Ry = I(T,U;2)
Ry < I(X;Y|T,U).

This shows that (R1, Ry) € R(Wyzpx). Similarly, if the boundary point (R, Ry) satisfies Case 2, for

such T and Pryx, we have

Ry = I(X;Y|T,U)
Ry = I(T,U;Z)
Ri+Ry < I(U,X;Y),

and thus, (R1, Rs) € ﬁ(Wyz‘Ux). Since the boundary points of R'(Wyzyx) are in ﬁ(Wyz‘Ux), we

conclude that the entire region of R'(Wy 2y x) is in R(Wy zlux ), and hence Lemma 7 is proved. [

By lemma 7, it suffices to show that, for any € > 0, if
max {Py;)(QSLy Wy z1xv,7)s Py (Qst, WYZ\UX77')} <€ —0
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as n goes to infinity, then there exists a RV T satisfying T'— (U, X) — (Y, Z), i.e., the joint distribution
Pryxyz can be factorized as PrPyxpWy zux, such that (1Hq(S), THo(L|S)) € R'(Wy zux, Prux),

i.e.,

Fix k = mn.

where Sk £

kH(S,L)

where Y1

THo(S,L) < min{I(U,X;Y),I(X;Y|T,U)+ I(T,U; Z)},
THo(S) < I(T,U;Z2).

Fano’s inequality gives
H(S* L¥y™) < PMlog, |S* x £F| + H (Pff?) 2 nern (134)
H(S* 2" < P{log, |SF| + H (ng) 2 neg, (135)

(51,52, -+, Sk); similar definitions apply for the other tuples. It follows from (134)-(135) that

= H(L*|S*) + H(S")
= I(L*Y™|S%) + H(LF|S*, y™) + 1(S*; Z™) + H(S"|Z")

n

< O IR YSF, YY) 4 I(SF; 2| 2] + H(SF, LFIY™) + nean
=1

< Z[I(Lk’zi+1;yvi|sk’yi—l) +I(Sk,Yi_1;Zi|Zi+1) _ I(Yi_l;Zi|Sk,Zi+1)] +n(€1n + €2n),
i=1

<

Z [I(Lk;Yi|5k’Yz'—17Zi+l) _|_I(Zi+1;yi|sk’yi—1)
=1
FI(SK, Zi YT Z) — 1YL 7|8k, zi“)} + nlern + €an),

= (Y1,Ys,...,Y;_1) and ZH & (Z;,1, Ziyo, ..., Z,). Substituting the identity [11, Lemma, 7]
ZI(ZH_I; Y;|Sk, Yz—l) _ Z[(Yz—l; ZZ|Sk, Zz—l—l)
i=1 =1

into the above, and setting T; = (S*, Y1, Zi“) for 1 <1i < n yields

RH(S,L) < [ILSYIT) + 1T 2)] + nenn + e2n)
=1
L3 [ YIT, U + 1T, U5 20)] + nlern + ean)
i=1
b &
ST H(X™ YT, Us) + I(Ty, Ui Z)] + nlern + ean)
i=1
= Y (X YiT, U) + LT, Uss Zi)] + nlenn + €an), (136)

i=1
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where (a) holds since U; is a deterministic function of S* and hence of T;, (b) follows from the data
processing inequality, and (c) holds since Y; is only determined by U; and X; due to the memoryless

property of the channel. On the other hand, kH (S, L) can also be bounded by

kH(S,L) H(S* LF)

I(S*, LF;y™) + H(S*, LF|y™)

IN

I(X™, U Y") 4+ ney,

= > I(U;, X Vi) + nen. (137)

i=1
Likewise, it follows from (135) that
kH(S) = H(SY)
= I(S*;z™) + H(S*Z")

= > I(S*;zi|Z") + H(S*|2)
=1

< Z I(S*, 2" Z;) + nean
i=1

< Y IS YL 2L U Zi) + nean
i=1

= > I(T},Ui; Zi) + nean. (138)
i=1

Note also that T; — (U;, X;) — (Y;,7Z;) for all 1 < i < n. According to (136), (137), and (138),
and recalling that k& = 7n, it is easy to show (e.g., see [11]) that there exists an auxiliary RV T with

PTUXYZ = PTPUX\TWYZ|UX such that
TH(S,L) < min{lp,yy, (U, X5Y), Ipy sy, (X5 YT, U) + Ippy iy, (T,U; Z)}
TH(S) < IPTUXYZ (Tn U; Z)'

It remains to show that the alphabet of the RV T can be limited by |7| < [U||X |+ 1; i.e., we will show
by applying the support lemma below, which is based on the Carathéodory theorem (cf. [10, p. 311]) that
there exists a RV 7 with |7| < |U||X| + 1 such that Pruxyz = PabyxaWy zux and

Upyxyz U, XY ) Ippy iy (T U3 Z2) Iy oy (X YT, U))
= ([PUXYZ(U7X;Y)7IPA (f,U;Z),IpA (X;Y’f, U)) (139)

TUXY Z TUXY Z
Lemma 8 ([10, Support lemma, p. 311]) Let f;, j = 1,2,...,k be real-valued continuous functions on

P(X). For any probability measure p on the Borel o-algebra of P(X), there exist k elements P, Ps, ..., Py

o1



of P(X) and k non-negative reals oy, ag, ...cy with Zle «; = 1 such that for every j =1,2,..., k

k
/P o DHPIP) = D sf (P

We first rewrite
IPTUXYZ (T’ U; Z) = H(Z) - H(Z|T’ U)
and

IPTUXYZ (X; Y|T7 U)) = H(Y|T7 U) - H(Y|X7 T, U) = H(Y|T7 U) - H(Y|Xa U)

where the last equality follows since T'— (U, X) — Y forms a Markov chain. To apply the support lemma,
we define the following real-valued continuous functions of distribution Py x 7 (-, -[t) on P(U x X) for fixed
teT,

fi(Pyxr(u, zlt)) = Pyxr(u, z|t)
for all (u,z) € U x X except one pair (u,z), so there are m — 1 = |U||X| — 1 functions; i.e., i ranges from

1 to m. Furthermore, we define real-valued continuous functions

and
fm-i—l(PUX\T(uax‘t)) = H(Y‘T = t, U)

According to the support lemma, there must exist a new RV T (jointly distributed with (U, X)) with
alphabet size |T\| =m+1 = [U||X|+1 such that the expectation of f; with respect to Pp,i =1,2,....m+1,

can be expressed in terms of the convex combination of m + 1 points, i.e.,

Pyx(u,r) ZPT ) fi(Puxr (- ZPA @ fi (Poxpe (-[t), i=1,2,...m—1 (140)

H(ZIT,U) = 3 Pr(t) fu (Puxir (10) = > Pr@) fn Py (D)) = HEZIT,0) - (141)
T 7
and

HY|T,U) =Y Pr(t)fme1 (Poxir (oo [8) =Y Pa(t) fns1 (PUX@ (-, .@) =HY|T,U). (142
T T

Clearly T — (U, X) — (Y, Z) forms a Markov chain and (139) holds. The proof for the converse part is

complete. |
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Figure 1: Transmitting two CS over the asymmetric 2-user communication channel.

Figure 2: A graphical illustration of the (2-dimensional) joint type packing lemma (Lemma 3): there exist

disjoint subsets €2;;’s with bounded cardinalities in the “2-dimensional” space A™ x B™ such that for any

(a,b) € Q;; (say, (a,b) € Q1 1), the size of the intersection between the sphere Ty, ,

set y; is “exponentially small” compared with the size of each €.
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Figure 3: Relation between clouds and satellite codewords in superposition coding.
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