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Abstract

The problem of lossy transmission of correlated sources over discrete two-way chan-

nels (TWCs) is considered. The objective is to develop a robust low delay and low

complexity source-channel coding scheme without using error correction. A simple

full-duplex channel optimized scalar quantization (COSQ) scheme that implicitly mit-

igates TWC interference is designed. Numerical results for sending Gaussian bivari-

ate sources over binary additive-noise TWCs with either additive or multiplicative

user interference show that, in terms of signal-to-distortion ratio performance, the

proposed full-duplex COSQ scheme compares favourably with half-duplex COSQ.

Moreover, our numerical results illustrate that one can achieve significant gain when

the propose two-user COSQ is optimally designed for a discrete TWC with additive

Markov noise compared to the case when the TWC is fully interleaved. Furthermore,

it is demonstrated that correlation between sources can be useful in order to reduce

quantization distortion and boost the decoders’ reconstruction reliability.

Also, we investigated the effects of feedback in the design of a COSQ over a

discrete one-way channel with additive Markov noise by proposing an adaptive COSQ

(ACOSQ) where the channel input sequence are adaptively generated based on the

received symbols over the feedback link. Numerical results indicate that one can

achieve a lower overall distortion by employing feedback in the design of a quantizer
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for a noisy channel compared to the case where feedback information is not available.

Similar to our proposed two-user COSQ, our numerical results demonstrate that one

can obtain significant improvement in terms of signal-to-distortion ratio when the

ACOSQ scheme is optimally designed for a discrete one-way channel with memory

compared to the case where channel is rendered memoryless by interleaving.
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Chapter 1

Introduction

1.1 Communication System Models

A communication system is designed to reliably transceive the source information

between the nodes of a communication network. In practical situations, the source is

usually, data, speech, or image signals and is modeled as a random (stochastic) pro-

cess. In a general communication system sources can be discrete (finite or countable

alphabet) or continuous (uncountable alphabet) in value and in time. Continuous-

time sources are sampled to form discrete-time sources since in many contexts, pro-

cessing discrete-time sources is more flexible.

A general point-to-point (or single-user) one-way communication system is de-

picted in Figure 1.1 representing a separate (tandem) source-channel coding system.

Since real-world communication systems often have limited channel bandwidth and

storage capacity the role of the source encoder is to compress the source by removing

its unnecessary or redundant information. Using an algebraic structure, the chan-

nel encoder adds controlled redundancy to outputs of the source encoder, which are

vulnerable to channel noise, enabling reliable reproduction of transmitted messages
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Figure 1.1: Block diagram of a general point-to-point communication system with
tandem source-channel coding.

over the channel. The physical channel is a noisy medium, which is only capable

of transmitting analog signals and is usually modeled via a sequence of conditional

probability distributions of receiving an output given that a specific input was sent.

The modulator transforms the channel encoder outputs into waveforms suitable for

transmission over the noisy medium. At the receiving part, the demodulator converts

the received analog signal to the digital signal to go through the channel and source

decoders for estimating the original message produced by the source.

Information theory was first initiated in the late 1940s when Claude Elwood Shan-

non published his prominent work [1] where he asserted that reliable information

transfer with arbitrarily small probability of error is possible provided that the trans-

mission rate is below the channel capacity. He defined the channel capacity as a quan-

tity that depends on the channel statistical characteristics. He further showed that,
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for a given stochastic source, the minimum distortion-free compression rate is given

by the source’s intrinsic amount of information, which he later dubbed as “source

entropy” and defined in terms of the source statistics. Moreover, Shannon proved

that reliable transmission (with asymptotically vanishing probability of error) over a

noisy channel is feasible if the source entropy is smaller than the channel capacity.

This key theorem, which holds for well behaved source and channel pairs (includ-

ing memoryless sources and channels), is also known as Shannon’s source-channel

separation principle. Shannon’s separation principle lends its name to its necessary

and sufficient conditions for reliable transmissibility which are entirely functions of

separable or disentangled information quantities; the source’s minimum compression

rate and channel capacity without any other parameters depending on both source

and channel characteristics. Shannon further provided the lossy counterparts of the

aforementioned lossless (distortion-free) source-channel separation principle where the

source can be compressed and reproduced within a tolerable distortion threshold [2].

Shannon’s separation principle makes the design of a communication system mod-

ular and flexible with separate designs for the source and channel encoder/decoder

functions without having to sacrifice the system optimality, in terms of reliable trans-

missibility, by using sourcewords with asymptotically large block lengths in the coding

procedures. The requirement of asymptotically large codeword lengths introduces se-

rious decoding latency; making the design inapplicable for systems with complexity

and delay constraints such as wireless links. Moreover, it is important to point out

that, with exception of certain network topologies [3, 4] where separation is optimal,

the separation principle may not hold for multi-user (multi-terminal) systems even

under unlimited resources [5, 6], thus performing a joint source-channel coding scheme
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(JSCC) is the only viable solution for multi-user designs or system with low complex-

ity and delay tolerance. Figure 1.2 depicts a generic point-to-point communication

system using a JSCC scheme. Based on Shannon’s separation principle, the tandem

source and channel coding design of Figure 1.1 is as good (considering unlimited delay

and complexity) as the JSCC scheme of Figure 1.2 in which the joint coding operation

depends both on the source and channel statistics.

Source Modulator

Physical

Channel

DemodulatorDestination

D
is
cr
et
e
C
h
a
n
n
elTransmitter Part

Receiver Part

Joint source-channel

Encoder

Joint source-channel

Decoder

Figure 1.2: Block diagram of a general point-to-point communication system with
joint source-channel coding.

1.2 Background and Literature Review

To provide an information theoretic rationale for adopting JSCC over tandem coding,

Zhong et al. in [7, 8, 9] showed that even in the infinite block length regime where, in

terms of reliable transmissibility, separate (tandem) coding is optimal, JSCC schemes
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can achieve an error exponent1 that is up to double the error exponent achieved under

separate coding. These findings indicate that the same overall probability of error as

separate coding is realizable via JSCC schemes while introducing half the (encoding

and decoding) delay of separate coding which consequently leads to more than 2-dB

power saving when sending binary sources over Gaussian channels. Over the last

decades, various efficient JSCC schemes were developed in single-user systems (see

[11, Section 4.6] and references therein) which further emphasizes merits of joint ver-

sus separate source-channel coding. Kostina et al. in [12], gave an analysis of JSCC

by finding new tight bounds for the best achievable lossy JSCC rate; demonstrating

the considerable advantage of using JSCC over a separate one in the non-asymptotic

regime. In [13], joint and tandem source-channel coding schemes are quantitatively

compared on the basis of distortion versus complexity and distortion versus delay.

The results of this paper suggest there are complexity and delay thresholds for which

the JSCC design is superior compared to the tandem coding in terms of signal to

distortion ratio (SDR) values. Also in [14], the problem of JSCC is addressed when

variable length codes are used over discrete memoryless channels (DMCs). Channel

optimized scalar quantization (COSQ) is a well-known robust lossy JSCC scheme

with low complexity and low delay [15] in which the source encoder is a zero-memory

scalar quantizer. The performance of a COSQ can be improved with the use of high

dimensional channel optimized vector quantizers (COVQs) [16] specially when the

source has memory. The performance improvement increases as the source block-

length increases. However, the COVQ is constrained by complexity which grows

exponentially with the product of rate and source symbols block length. Phamdo et

1If the coding block length is allowed to grow without bound, the error exponent (also known
as reliability function) of a coding system is defined as the largest rate of exponential decay of its
decoding probability of error [10].
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al. in [17] proposed a low complexity channel matched tree-structured VQ (TSVQ),

which reduces the encoder computational complexity of COVQ by imposing a tree-

structure on the codebook. However, the imposed tree-structure causes the design

to be sub-optimal [18]. For a complete description of TSVQs the interested reader is

referred to [19]. Moreover, Bakus et al. studied in [20] the joint source-channel scalar

quantizers in conjunction with turbo-codes; the proposed design showed superior per-

formance compared to conventional COSQ schemes [15] by using a soft reconstruction

of samples at the decoders.

It is noteworthy to underscore that the literature on JSCC design for multi-user

systems is significant. The transmission media in multi-user systems is usually char-

acterized by multi-input multi-output channels. Specifically in a two-user system

setup, the two-way channel (TWC) is a fundamental two-user model that allows

both users to transmit information in a full-duplex manner, thus improving the spec-

tral efficiency with respect to one-way systems (i.e., half-duplex transmission) [21].

Moreover, the TWC setup inherently enables users to cooperate by adapting chan-

nel inputs to previously received signals, potentially resulting in lower end-to-end

errors or distortions. Information-theoretical studies for TWCs were made from dif-

ferent perspectives. In [22], Kaspi investigated the lossy source coding problem over a

noiseless TWC, in which only one user can use the channel at each time instant, and

established a rate-distortion region. Maor et al. later adopted the interactive proto-

col proposed in [22] and developed a lossy transmission scheme for noisy TWCs [23].

Moreover, scalar quantize and forward designs for the two-way relay channel were

studied in [24] for systems where the two terminals exchange source data with the

help of a relay when there is no direct link between the terminals. Achievability
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and converse results for the lossy transmission of correlated sources over TWCs were

derived in [25]. In the same paper, the optimality of scalar coding for TWCs with dis-

crete modulo additive noise as well as additive white Gaussian noise was investigated.

Considering that a TWC can be described as two state-dependent one-way channels,

the authors in [26] extended the one-way hybrid digital/analog coding scheme of [27]

to TWCs. The authors in [28] used multi-resolution quantization and layered JSCC

to serve simultaneously several users over the binary erasure broadcast channel. Also,

in [29], the proposed single-user JSCC scheme of [30] was adopted for the transmis-

sion of two correlated sources over an orthogonal multiple-access channel (MAC).

Certain transmission systems might be sensitive to delay. Hence sophisticated data

compression and error control coding cannot be afforded. For such communication

systems, the best alternative is a source-matched modulation scheme that maps each

source samples directly to the modulated symbols. Weng et al in [31] studied a joint

source-channel-modulation problem for such systems over non-orthogonal Gaussian

MACs (GMACs). Specifically in this paper, the two transmitters, send correlated

information using binary-pulse-amplitude modulation (BPAM) where the receiver re-

covers the messages via joint maximum-a-posteriori decoding in a real time fashion.

Also, [32] studied BPAM design for non-uniform sources transmitted over orthogonal

GMACs.

1.3 Thesis Contribution

In a traditional cellular network, all communications must be directed toward the

base station even if the two communicating parties are close enough for a direct

communication. This architecture is only suitable for low data rate services such as
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voice calls and text messages. However, with ever growing demands for high data

rate services such as video sharing, gaming, and social networking, this design is no

longer suitable for today’s cellular networks. Moreover, mobile users are potentially

in the range close enough for a direct communication; making the device-to-device

communication (D2D) scheme a viable architecture to increase the spectral efficiency

of the network [33]. Improving the system throughput, energy efficiency, and delay

are among other advantages of the D2D communications.

Devising a two-user system to model the D2D communication is one motivation

for considering the problem of this thesis. In this thesis, we extend the results of

[15], where a single-user COSQ is designed for a one-way DMC, to a two-user setup

where two correlated Gaussian sources are transmitted over a discrete TWC [21]. Our

proposed two-user COSQ judiciously mitigates the self-interference caused by simul-

taneous transmission of both users and exploits the statistical dependency between

the sources as receivers’ side information.

In space communications, usually the link from the ground station to the satellite

is modeled via a noiseless channel due to the presence of high power at the ground

transmitter, whereas the reverse path is represented via a noisy channel. Amanullah

et al. proposed in [34] a JSCC scheme in the presence of the noiseless feedback to

model such a communication system where the feedback information is used in the

design of a scalar quantizer over a discrete memoryless one-way channel. We herein

propose a new adaptive COSQ (ACOSQ) where every channel input is generated

adaptive to the information received over the feedback link. Our simulation results

show that our proposed ACOSQ compares favorably with the scheme proposed by

[34] particularly when the channel has memory.
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1.4 Thesis Overview

In Chapter 2, we give an overview of the digital communication models and describe

the channel models (with and without memory) used in this thesis. We describe

the discrete one-way channel used with and without feedback and mathematically

derive the channel’s transition distribution. Also, to model a full-duplex transmission,

Shannon’s TWC is described. We use the Polya urn contagion model to describe the

additive Markovian noise process of one-way and two-way channels with memory.

At the end of the chapter, we examine scalar quantizers (SQs) with index mapping

as well as channel optimized scalar quantizers (COSQs) as robust, low delay, and

low complexity JSCC schemes. In Chapter 3, we propose a two-user COSQ for

transmitting two generally correlated sources over a discrete TWC with additive and

multiplicative user-interference. In this system, the statistical correlation between

the two sources are used as side information at the decoders. We examine how

the sources correlation can help improve the overall system performance. We also

assess the performance of the proposed two-user COSQ optimally designed for TWCs

with memory. It is illustrated that the overall system performance is significantly

improved compared to the case where the TWC is fully interleaved and the TWC’s

memory is ignored in design of the proposed two-user COSQ. In Chapter 4, we discuss

another perspective towards JSCC schemes. We consider a discrete one-way channel

that in general can have memory accompanied by a noiseless feedback link. The

effects of information received over the feedback link in the design of a COSQ are

investigated using the adaptive scheme of [34] where the channel input sequences are

interactively adapted to the received information over the feedback link. We further

propose another adaptive COSQ (ACOSQ) that compares favorably with the adaptive
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scheme of [34] particularly over discrete channels with high noise correlation. Finally,

conclusions and directions for future works are presented in Chapter 5.
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Chapter 2

Preliminaries

2.1 Communication Channel Models

The focus of this thesis is to design a digital communication system. As shown in

Figure 1.1, the input data symbols to the modulator and output of the demodulator

are discrete values. Hence, the concatenation of modulator, physical channel, and de-

modulator can be regarded as a discrete channel. A discrete channel can be described

with a finite input alphabet X and a finite output alphabet Y using a sequence of con-

ditional probability (transition) distributions {P (Yi = yi|X i = xi, Y i−1 = yi−1)}∞i=1

where xi = (x1, · · · , xi) ∈ X i is the i-tuple channel input and yi = (y1, · · · , yi) ∈ Y i

is the i-tuple received output.

It is noteworthy to mention that for the sake of brevity, throughout this thesis we

use the following notations interchangeably

P (Y = y|X = x) = PY |X(y|x) = P (y|x),

where the capital letters denote random variables with their respective realizations

represented by lower case letters.
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1− ǫ
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0

1

0
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Figure 2.1: A memoryless BSC with cross-over probability ε.

2.1.1 Discrete One-Way Channel

For a DMC, the following equality holds:

P (Yi = yi|X i = xi, Y i−1 = yi−1) = P (Y = yi|X = xi) ∀i = 1, 2, · · · (2.1)

In other words, the condition expressed in (2.1) states that for a DMC, the current

output only depends on the current input but not on the previous inputs and previous

outputs. The memoryless binary symmetric channel (BSC), depicted in Figure 2.1,

is a well-known example of a DMC with the following channel transition matrix:

Q , [P (Y = y|X = x)] =

1− ε ε

ε 1− ε

 (2.2)

where 0 ≤ ε < 1
2

is the channel cross-over probability.

Discrete one-way channel used without feedback

Furthermore, if a discrete channel is used without feedback then

P (Xi = xi|X i−1 = xi−1, Y i−1 = yi−1) = P (Xi = xi|X i−1 = xi−1) ∀i ≥ 1, (2.3)
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holds for every xi ∈ X i and yi−1 ∈ Y i−1, implying that the next channel input

is not related to the previous channel outputs given all the previous channel inputs.

Therefore, the joint probability of all the channel input and channel output sequences,

for n ≥ 1, is given by

P (Y n = yn, Xn = xn)

=
n∏
i=1

P (Yi = yi, Xi = xi|Y i−1 = yi−1, X i−1 = xi−1) (2.4)

=
n∏
i=1

P (Yi = yi|Y i−1 = yi−1, X i = xi)P (Xi = xi|Y i−1 = yi−1, X i−1 = xi−1) (2.5)

where (2.4) and (2.5) are due to the chain rule. Considering the channel is used

without feedback, then using (2.3) in (2.5), we have

P (Y n = yn, Xn = xn) = P (Xn = xn)
n∏
i=1

P (Yi = yi|Y i−1 = yi−1, X i = xi), (2.6)

which readily leads to

P (Y n = yn|Xn = xn) =
n∏
i=1

P (Yi = yi|Y i−1 = yi−1, X i = xi), (2.7)

provided that P (Xn = xn) 6= 0 holds for any channel input sequence Xn ∈ X n.

Moreover, if the discrete channel is also memoryless, then applying (2.1) in (2.7)

gives

P (Y n = yn|Xn = xn) =
n∏
i=1

P (Y = yi|X = xi). (2.8)

It is necessary to mention that (2.8) describes a memoryless channel used without

feedback. For a clear illustration, consider the following example. If the feedback
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information is used in the manner that the previous received channel output yi−1 is

used to choose the next channel input such that xi = yi−1, then P (Y n = yn|Xn =

xn) = 0 if for some i = {2, · · · , n}, xi 6= yi−1, as a result (2.8) will not be satisfied.

The use of feedback is prohibited in (2.8) as for a channel with feedback, the current

channel input is a function of the previous channel outputs. In other words, a DMC

used without feedback is fully describable using a (|X | × |Y|)-dimensional transition

matrix Q = [P (Y = y|X = x)] where x ∈ X , y ∈ Y , and |·| determines the cardinality

of the set.

Discrete one-way channels with memory

In real-world communication systems channel errors often occur in burst rather than

independently. To realistically model practical communication channels, we briefly

describe one of the most widely used channel models with memory known as the

Gilbert-Elliott Channel (GEC) [35]. The GEC is a BSC whose cross-over probability

varies over time. As depicted in Figure 2.2, the channel’s cross-over probability is

driven by a first order Markov process with two states: the good state representing a

BSC with a low cross-over probability, whereas the bad state represents a BSC with

a high cross-over probability.

Another channel model that fairly well characterizes the discrete channels with

memory is the binary additive Markov noise channel which is described as follows

Yi = Xi ⊕ Zi i = 1, 2, · · · (2.9)

where ⊕ is the modulo-2 addition, Xi is the binary channel input, Yi is the binary

channel output at time i, and {Zi}∞i=1 is a binary stationary ergodic Markov process
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Good
State

Bad

State

α

β

1− β 1− α

0

1

0

1

0

1

0

1

ǫG

ǫG

1− ǫG

1− ǫG

1− ǫB

1− ǫB

ǫB

ǫB

Figure 2.2: The Gilbert-Elliott channel model, where α and β are the state transition
probabilities and εG and εB are the cross-over probabilities in the good
state and in the bad state, respectively.

of order M . The aforementioned Markov noise process is independent of channel

input and is produced by a 2M by 2M dimensional transition matrix. In general, 2M

independent parameters are required to characterize the Markov process resulting in

excessive complexity when the memory order is high.

A more explicit model for channel with memory is proposed in [36] where the

additive noise process, which is independent of the channel inputs, is generated using

a finite memory contagion urn process of order M . According to this model, the noise

transition probabilities are given by

P (Zi = 1|Zi−1 = zi−1, . . . , Z1 = z1)

= P (Zi = 1|Zi−1 = zi−1, . . . , Zi−M = zi−M)

= P (Zi = 1|
i−1∑

k=i−M

Zk =
i−1∑

k=i−M

zk)

=

ε+ δ
( i−1∑
k=i−M

zk
)

1 + δM
for i = 1, 2, . . . (2.10)
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where P (Zi = 1) = ε and δ determines the noise correlation via ρz =
δ

1 + δ
where

ρz is the noise process correlation coefficient. This method, as noted in [36], is fully

characterized by three parameters: memory order M , channel cross-over probability

ε, and noise correlation coefficient ρz =
δ

1 + δ
·

2.1.2 Discrete Two-Way Channels

In a two-way communication system, two users wish to simultaneously exchange

source data over a discrete TWC [21]. The block diagram of a general TWC is

depicted in Figure 2.3 where X1 ∈ X is the channel input at terminal one such that

TWC

X1

X2

Y2

Y1

Terminal 1 Terminal 2

Figure 2.3: A general discrete two-way channel.

Y2 ∈ Y is the corresponding channel output at terminal two. Likewise, X2 ∈ X is

the channel input at terminal two with Y1 ∈ Y be the corresponding channel output

at terminal one. Due to the simultaneous transmission of the two users’ signals,

the TWC in general exhibits user-interference. In this thesis we consider two types of

discrete memoryless TWCs: the binary-additive TWC (BA-TWC) with additive noise

and the binary-multiplying TWC (BM-TWC) with additive noise where the latter is

an extension of Blackwell’s classical binary multiplying channel [21]. The outputs

of the BA-TWC with additive noise at time i for i = 1, 2, · · · can be described as
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modulo-2 sum of its inputs and noise variables:


Y1i = X1i ⊕X2i ⊕ Z1i,

Y2i = X1i ⊕X2i ⊕ Z2i,

(2.11)

where Yji, Xji, and Zji are the channel outputs, inputs and noise variables at terminal

j, respectively. The alphabets X = Y = Z = {0, 1} are all binary. The noise variables

Z1 and Z2, which are assumed to be memoryless in time, independent of each other,

and of the channel inputs, have the following distributions:

PZj
(zj = 1) = εj (2.12)

where 0 ≤ εj < 1/2 for j = 1, 2. Similarly, the BM-TWC with additive noise, at time

i, can be described as: 
Y1i = X1iX2i ⊕ Z1i,

Y2i = X1iX2i ⊕ Z2i,

(2.13)

where the channel outputs, inputs, and noise processes have the same alphabets as

described for the BA-TWC with additive noise. The noise variables for (2.13) are

identical to those in (2.11) and (2.12).

Discrete TWCs with memory

In this thesis we also consider TWCs with memory; in particular we consider the

BA-TWC with memory and the BM-TWC with memory as described above with the

exception that the channels noise processes {Z1i} and {Z2i} are each generated by

the finite memory Markovian contagion urn process of [36]. Based on this model, the
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noise transition probabilities at terminal j (j = 1, 2) are given by

P (Zji = 1|Zj(i−1) = zj(i−1), · · · , Zj1 = zj1)

= P (Zji = 1|Zj(i−1) = zj(i−1), · · · , Zj(i−M) = zj(i−M))

= P (Zji = 1|
i−1∑

k=i−M

Zjk =
i−1∑

k=i−M

zjk)

=

εj + δj
( i−1∑
k=i−M

zjk
)

1 + δjM
(2.14)

where P (Zji = 1) = εj and the parameter δj determines the noise correlation via

ρzj =
δj

1 + δj
.

2.2 Source Coding

In a general communication system, the source needs to be processed (encoded) before

being transmitted over the channel. The source information is compressed as much

as possible by eliminating its redundancy, reducing the number of bits required for

transmitting or storing the source. The source is then represented using a sequence

of symbols from a given discrete alphabet and sent over a channel with certain sta-

tistical characteristics. The redundant information in a source can stem from the

non-uniformity of its marginal probability distribution and the existence of statistical

correlation between its successive outputs (i.e., source memory) which the former is

quantified by the concept of source entropy and the latter by the concept of source

entropy rate. Shannon in [1] for the first time introduced the concept of entropy as

a means of measuring the amount of uncertainty in a random variable. A stationary

discrete memoryless source (DMS) can modeled as a random variable X with a given
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alphabet X = {0, 1, · · · , N − 1} whose entropy is defined as:

H(X) = −
∑
x∈X

P (X = x) logP (X = x) = −EX [log(P (X))] (2.15)

The discrete source with memory; however, is modeled via a stochastic process

{Xi}∞i=1 whose amount of uncertainty is measured via entropy rate, H∞(X ), defined

as

H∞(X ) = lim
n→∞

1

n

(
− EX1,X2,...,Xn [logP (X1, X2, . . . , Xn)]

)
. (2.16)

It can be shown that the entropy rate, H(X ), of a DMS is equal to the entropy of

any of its output (e.g., H(X1)). In facts, for a DMS we have

H(X ) = H(X1) = H(X),

however, in general for a stationary source with memory (i.e. a stationary Markov

source) we have

H(X ) ≤ H(X),

which means that due to the correlation between successive source samples, a Markov

source renders less amount of uncertainty than the corresponding DMS with identical

marginal distribution.

Based on Shannon’s block source coding theorem, the entropy rate of a stationary

ergodic source establishes the minimum compression rate, in terms of the number of

bits per source sample, for achieving arbitrary small probability of error. On the other

hand, log2 |X | bits per source sample is required if one uses a uniquely decodable block

source coding in the sense that |X |n codewords are used to encode every sourceword
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with blocklength n. The total block source coding redundancy (ρt) is given by (2.17)

which states the amount of reduction in coding rate one can achieve via using the

former approach, which is an asymptotically lossless block source coding, versus the

latter scheme which is a fixed-length naive lossless bit representation of the source.

ρt = log2 |X | −H(X ) (2.17)

For a memoryless or independent and identically distributed (i.i.d) source with uni-

form distribution, the entropy rate equals to log2 |X |. This means that ρt = 0 and

the source is incompressible or in other words, there are no superfluous information

that can be discarded via source coding. However, if the source has memory or has a

non-uniform distribution, then its total redundancy can decomposed into two parts:

ρt = ρM + ρD

ρM = H(X1)−H(X )

ρD = log2 |X | −H(X1)

where ρM and ρD denote the redundancy due to the source memory and due to its

non-uniform distribution, respectively.

In general, data compression schemes describe different methods of representing

source information, for a reliable transmission over a noisy channel, with reasonably

small coding rate. These representation methods can be lossless such that all the

source redundancy is removed after compressing the source while the data is still

fully retrievable. In other words, the reconstructed source after decompression is

identical (or asymptotically identical with arbitrary small probability of error) to the
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original source. Based on Shannon’s lossless source coding theorem [1], for sufficiently

large source block length n and a stationary ergodic source {Xi}∞i=1, lossless fixed-

to-variable length source coding is feasible with the coding rate arbitrarily close to

the source entropy rate H∞(X ); conversely, the probability of error is bounded away

from zero (i.e., the probability of error cannot asymptotically vanish) if the source

coding rate r is less than the entropy rate.

The entropy rate of a continuous source is theoretically infinite which indicates

that infinite precision is required to represent the source without introducing any

distortion or loss. Hence lossless reproduction of a continuous source is impossible

using a finite-rate code, leaving lossy source coding as the only practical solution. In

a lossy source coding regime, the reconstructed source is allowed to deviate from the

original data within an acceptable distortion threshold. Now the question is how to

find the best representation of a source for a given coding rate. To that end, consider

representing a single sample drawn from a continuous source. Let U0 ∈ R denote the

random variable and let it be represented by Û0. If we are given a total of r bits to

represent the source sample U0, then there are a total of 2r possible values for Û0.

Finding the optimum set of values for Û0 and the associated regions represented with

each of the 2r possible values of Û0 is the main goal of the process called quantization

with which the analog source symbols are mapped to discrete (digital) symbols from a

finite alphabet at the cost of introducing some distortion with respect to the original

source.
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2.2.1 Scalar Quantization (SQ)

In general, the continuous domain of an analog signal is partitioned into finite number

of regions such that all members of each region are represented by a single value

called output level or reproduction codeword. The set of all possible reproduction

codewords is called the codebook. For a continuous source alphabet R, an N -level

SQ is a mapping

Q : R→ C

where C = {ci}Ni=1 ⊂ R is the codebook of Q and ci’s are the quantization codewords.

The quantizer operates by partitioning the source alphabet R into N distinct regions,

Si, called Voronoi or Dirichlet partitions such that

P =
{
Si : Si ∩ Sj = ∅, ∀j 6= i, j = {1, 2, . . . , N},

N⋃
i=1

Si = R
}
,

for i = 1, 2, . . . , N . Usually in practice the SQ is described as an encoder-decoder

pair (Figure 2.4) as

Encoder E : R→ {1, 2, . . . , N}

E(u) = i if and only if u ∈ Si

Decoder D : {1, 2, . . . , N} → C

D(i) = ci,

then the overall quantizer is described as

Q(u) = D(E(u)) = ci if and only if u ∈ Si.
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EncoderU Decoder Û = Q(U) = cii = {1, 2, . . . , N}
E D

Figure 2.4: Representing an SQ as an encoder/decoder pair.

Assuming a general distortion measure d : R × R → R+, which is a mapping from

the set of source alphabet-reproduction alphabet pairs into a set of non-negative real

numbers, the quality of a quantizer, Q, is measured via the total expected amount of

distortion defined as:

D = E[d(U, Û)] (2.18)

where Û = Q(U). There are many different choices for the distortion measure;

however, one of the most common distortion measures for continuous alphabet sources

is the following squared-error distortion which is exclusively used throughout this

thesis:

d(u, û) = (u− û)2. (2.19)

The end-to-end distortion can then be calculated as follows:

D = E[d(U,Q(Û))] (2.20)

=
N∑
i=1

E[(U − ci)2|U ∈ Si]P (U ∈ Si) (2.21)

=
N∑
i=1

∫
Si

fU(u)(u− ci)2du (2.22)

For the design of an optimal SQ, the Voronoi regions, P , and the reconstruction

codebook, C, must satisfy the following two necessary conditions [19]:
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• Nearest neighbor condition (NNC): Among all N -level SQs with a fixed code-

book, C = {ci}Ni=1 ⊂ R, the SQ with quantization cells Si satisfying

Si ⊂
{
u ∈ R : d(u, ci) ≤ d(u, cj) ∀j 6= i, j ∈ {1, 2, . . . , N}

}
, ∀i ∈ {1, 2, . . . , N}

(2.23)

is optimal, that is,

Q(u) = ci if and only if d(u, ci) ≤ d(u, cj) ∀j 6= i. (2.24)

Thus, for a given decoder (codebook), the encoder (quantization cells) is a

minimum distortion or nearest neighbor mapping and hence

Q(u) = arg min
cj ∈ C

d(u, cj). (2.25)

• Centroid condition (CC): The optimal reconstruction codewords should mini-

mize the expected distortion given their respective assignment regions [6]. In

other words, among all N -level SQs with a fixed partition set, P , the quantizer,

Q, with reproduction codewords given by

ci = arg min
û ∈ R

E(d(U, û)|U ∈ Si) (2.26)

is optimal where ci is called the centroids of the cell Si. Moreover, for the

squared-error distortion measure, the centroid of a given region is its center

mass i.e.,

ci = E(U |U ∈ Si), for i ∈ {1, 2, . . . , N}. (2.27)
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Based on the optimality conditions in (2.23) and (2.27) a simple algorithm can be

developed to design a “good” quantizer: starting from an initial set of reconstruc-

tion codewords, find the optimal set of quantization cells using (2.23), which are the

nearest neighbor regions with respect to the distortion measure. In the next step, for

the given updated regions, find the optimal reconstruction codewords (which are the

centroids of their corresponding regions under the squared-error distortion measure)

using (2.27); then repeat the iteration for this new set of codewords. Successive ap-

plication of (2.23) and (2.27) forms a non-increasing sequence of average distortion

values and since the sequence is bounded below by zero, it must converge after a

finite number of iterations. However, the distortion might not converge to the global

optimal solution and only local optimality is guaranteed. As mentioned earlier, (2.23)

and (2.27) are both necessary and sufficient conditions when the codebook, C, and

nearest neighbor regions, P , are fixed respectively; however, the ultimate solution

given by the iterative algorithm does not satisfy the overall system’s optimality con-

dition since for the design of one element of the system, the other component is fixed.

This algorithm is called Lloyd algorithm [37] whose details are also depicted by Algo-

rithm 1. Note that if the source has a log-concave distribution, then it is shown in [38]

that there exits a unique globally optimal quantizer Q∗ and the Lloyd’s algorithm may

be used to find Q∗. Furthermore, a quantizer that takes k > 1 source samples at the

time and outputs 2kr quantized symbols is called vector quantizer (VQ) which is de-

signed using a generalized Lloyd algorithm [39] also known as Linde-Buzo-Gray vector

quantizer.

One important aspect of the Lloyd algorithm is the choice of initial codebook.

Several options for choosing the initial codebook have been proposed in the literature.



2.2. SOURCE CODING 26

Algorithm 1: The Lloyd algorithm for SQ design

Input: Source pdf f , initial codebook C(0), and the stopping threshold T
Output: Voronoi regions, P(m), reconstruction codebook, C(m+1), and the
ultimate distortion value D(m+1)

D(0) ← ∞
D(1) ← 0
m ← 0
while D(m)−D(m+1)

D(m) > T do

S(m)
i ← {u : d(u, c

(m)
i ) ≤ d(u, c

(m)
j ), ∀j 6= i}, ∀i ∈ {1, 2, . . . , N}

c
(m+1)
i ← E(U |U ∈ S(m)

i )
D(m+1) ← E[(U − Û)2]
m← m+ 1

end

The MATLAB scripts corresponding to this algorithm are available at https://github.com/

Saeed-Rezazadeh/COSQ.git.

One naive method is to draw N codewords from the source distribution and use them

as the initial codebook. The other widely used approach for generating the initial

codebook is the so-called splitting algorithm [39]. In this method, a training sequence,

Tw, is generated from the source distribution. The first codeword, c0, is the centroid

of the entire training sequence i.e.,

c0 =
1

W

W∑
i=1

ti

where Tw = {ti}Wi=1 is the training sequence of size W . This codeword is then split

into two points (by perturbing with a small value α) for which a two-level Lloyd

quantizer is designed. In other words, the two codewords are

c1 = c0 + α

c2 = c0 − α.
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which are used to initialize a two-level Lloyd quantizer. The splitting process is again

applied to the ultimate codewords of the two-level quantizer; creating four codewords

to initialize a four-level Lloyd quantizer. This process is continued until the initial N

codewords for an N -level quantizer is generated.

Note that to store a continuous source in a storage medium, it is not necessary to

use the actual quantized values but rather in practice, the r-bit (r = log2N) binary

representation of the encoder’s output, i, is used to store the quantized source.

Moreover, a quantizer can be viewed from another perspective as depicted in Fig-

ure 2.5 where there is a noisy channel between the encoder-decoder pair. Assuming

that the receiver already knows the quantizer codebook C, it is enough to transmit

the the indices of the quantization cells, i, over the channel to retrieve the reconstruc-

tion codewords, cj, at the receiver. For a special case of a noiseless channel we have

i = j where j ∈ {1, 2, . . . , N} is the corresponding channel output. In a real-world

communication system, the r-bit binary representation of the quantization cells in-

dices, i, are sent over the channel. For a noiseless channel, indices can be arbitrarily

assigned to the reproduction codewords as long as the same assignment is used for

quantization regions. As one can realize from (2.22), the end-to-end distortion is

independent of the index assignment since different index assignments results in rela-

beling the quantization cells that changes the order of integrals over the quantization

regions. However, when the channel is noisy, the overall distortion is not only due to

quantization, but it is also due to channel noise. As a result, for the case of a noisy

channel, index assignment plays a vital role in overall system distortion. Therefore,

the design of a SQ “optimized” for a particular channel is worth investigating.
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Figure 2.5: The block diagram of an SQ in a communication system where P (j|i) is
the channel transition probability.

2.2.2 Channel Optimized Scalar Quantizer (COSQ)

As mentioned earlier, channel noise plays a significant role in system performance;

therefore, it is not efficient to transmit the quantizer indices over the channel directly.

At the cost of increasing the system complexity, a channel coding module is added

whose aim is to make the SQ robust to channel errors. In [40], a modified version of

simulated annealing (SA) is used for devising an algorithm to assign encoding regions

indices to SQ codewords. The end-to-end distortion of an SQ that is robust to channel

noise (i.e., SQ with index assignment) can be written as:

D = E[d(U, Û)]

=
∑
x∈X r

∑
y∈Yr

E[d(U, Û)|U ∈ Sx, Û = cy]P (Û = cy|U ∈ Sx)P (U ∈ Sx)

=
∑
x∈X r

∑
y∈Yr

P (Y = y|X = x)

∫
Sx

fU(u)d(u, cy)du (2.28)

where P (Û = cy|U ∈ Sx) = P (Y = y|X = x) is probability of receiving y ∈ Yr

when1 x ∈ X r is sent. Intuitively, one can conjecture that, compared to an SQ,

the new source of distortion is the channel noise. In fact it is shown in [40], under

squared-error distortion measure, if cx represents the centroids of the encoding region

1Note that throughout this thesis, boldface letters denote a vector of a given length.
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Sx, then the overall distortion can be rewritten as:

D = Dq +Dc

=
∑
x∈X r

∫
Sx

fU(u)(u− cx)2du+
N∑
i=1

∑
y∈Yr

P (U ∈ Si)P (y|b(i))(cb(i) − cy)2 (2.29)

where the first term, Dq, is the distortion caused by the quantizer while the second

term, Dc, can be interpreted as the channel distortion, and

b : {1, 2, . . . , N} → X r,

is a 1-1 mapping such that b(i), for i = {1, 2, . . . , N}, is an r-bit binary index assigned

to ci which is used for subsequent transmission. Now the problem of designing the

U = u i x ∈ X r y ∈ Yr Û = cySQ
Encoder

Index
Assignment Channel

P (y|x)

SQ
Decoder

b(·)

Figure 2.6: The block diagram of the coding system with index assignment.

system boils down to using the standard SQ designed for a noiseless channel and

minimizing Dc over the index mapper b(·). The proposed method in [40] uses the SA

algorithm as a randomized stochastic relaxation method that tries to stochastically

avoid local minima in its search for the global minimum of the channel distortion.

Note that in this algorithm, every index assignment b = (b(1), . . . , b(N)) is the state

vector of the system and the resulting channel distortion Dc, given by (2.29), is the

objective function to be minimized. The stochastic perturbation scheme used in SA to

choose the next system state, b′, is as follows. Two elements of the current state vector

b are picked at random and are interchanged. This perturbation scheme makes it
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possible to move from any states to any states within a finite number of perturbations.

Details of SA is described in Algorithm 2. The exact same set of parameters as those

used in [40] are used in this thesis which are listed in Table 2.1. It is necessary

Table 2.1: Simulated annealing parameters.

T0 10
Tf 2.5× 10−4

α 0.97
Nfailure 50000
Nsuccess 5
Ncut 200

to note that the cooling schedule is such that the temperature, T , is reduced by

a factor α = 0.97 either after five non-consecutive drops in channel distortion, Dc,

(Nsuccess = 5) or after 200 perturbation (Ncut = 200); whichever occurs earlier. Also,

the algorithm is terminated after 50000 consecutive perturbation (Nfailure = 50000)

that do not result in a drop in channel distortion or either the temperature, T , is below

the freezing threshold (Tf = 2.5 × 10−4). As mentioned earlier, the final goal of the

SA is to minimize the system energy function or in other words the channel distortion

Dc. Since ∆Dc ≤ 0 indicates a drop in channel distortion, the corresponding system

state vector is accepted. Although, ∆Dc > 0 corresponds to an increase in channel

distortion, the corresponding perturbation is still accepted with a probability that

decreases as the system effective temperature decreases which means that in the

beginning, almost all perturbations are accepted allowing the algorithm to escape

from local minimums when the temperature is high. However, as the temperature is

reduced, the perturbations causing increase in channel distortion are accepted with

small probabilities; hoping, once the system is completely cooled down, the system

state falls in the global minimum. It can be shown that with a sufficiently slow cooling
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Algorithm 2: Simulated annealing algorithm for index assignment

Input: Initial temperature T0, cooling factor α, initial system state b,
freezing temperature Tf , maximum number of failed trials Nfailure ,
maximum number of successful trial Nsuccess, total of number of trials Ncut

Output:b
T ← T0

count ← 0
countsuccess ← 0
countfailure ← 0
while T > Tf and countfailure < Nfailure do

Choose the next state b′ by randomly perturbing b
∆Dc ← D(b′)−D(b)
if ∆Dc ≤ 0 then

b ← b′

countsuccess ← countsuccess + 1
countfailure ← 0

end

else if with probability e−∆Dc/T , do then
b ← b′

countfailure ← countfailure + 1
end
else

countfailure ← countfailure + 1
end
if count ≥ Ncut or countsuccess ≥ Nsuccess then

T ← αT
count← 0
countsuccess ← 0

end
count← count+ 1

end

The MATLAB scripts corresponding to this algorithm are available at https://github.com/

Saeed-Rezazadeh/Simulated-Annealing.git.

scheme and a proper perturbation method, the SA algorithm converges to the global

minimum of the system in probability. It is shown in [41] and [42] that using a cooling

schedule described by Tk = c/log (k+1) insures convergence in probability to the global

minimum.
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Note that a better design is the so-called channel optimized scalar quantizer

(COSQ) where the aim is to minimize the overall system distortion D, given by (2.28),

over both the partition set, P , and the codebook C. Farvardin et al. in [15] designed a

joint source-channel optimized scalar quantizer whose encoder, E as depicted in Fig-

ure 2.6, takes the source sample U from a continuous alphabet as input and outputs

the channel input x ∈ X r. Similar to the design of an N -level (i.e., r-bit) SQ, the en-

coding regions and the reconstruction codebook must satisfy the following optimality

conditions to minimize the overall distortion given by (2.28):

• Generalized NNC : Rewriting the distortion function in (2.28) as

D =
∑
x∈X r

∫
Sx

fU(u)
{ ∑

y∈Yr

P (Y = y|X = x)(u− cy)2
}

du (2.30)

yields that the problem of minimizing the average distortion is similar to the

design of an SQ with the following modified distortion measure

d′(u,x) ,
∑
y∈Yr

P (Y = y|X = x)(u− cy)2. (2.31)

Specifically, for a fixed codebook C, the optimal partition is such that

Sx =
{
u : d′(u,x) ≤ d′(u, x̂), ∀x̂ 6= x, x̂ ∈ X r

}
, x ∈ X r. (2.32)

• Generalized CC : For a fixed partition set, P , the optimal codebook, C, is given

by

cy = arg min
û∈R

E[d(U, û)|Y = y], ∀y ∈ Yr (2.33)
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and in case of the squared-error distortion measure we have,

cy = E(U |Y = y), y ∈ Yr. (2.34)

Therefore, a straightforward extension of the method described in Algorithm 1 can be

used to optimize the partition set P and the codebook C by replacing the NNC and CC

conditions in Algorithm 1 with (2.32) and (2.33), respectively. Similar to the scalar

quantizer described in Section 2.2.1, the initial codebook plays a significant role in

design of an optimal COSQ. An SQ (considering a noiseless channel) is designed using

the splitting algorithm to choose the initial codebook. The r-bit binary indices are

assigned to the codewords of the SQ using the SA algorithm. The resulting codebook

is then used as the initial codebook to design a 2r-level COSQ for a discrete channel

with the lowest cross-over probability ε. After the training is complete, we slightly

increase the channel noise level and train the COSQ again, setting the previously

trained codebook for small ε as the initial state of the system with new ε. This

process is continued until the desired channel’s cross-over probability is reached.
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Chapter 3

Channel Optimized Scalar Quantizers for TWCs

To the best of our knowledge, the problem of an N -level COSQ design over TWCs

has not been studied1. In this chapter, we extend the optimality conditions of [15] to

TWCs. Note that these channels need not be memoryless; in general they can have

memory. Our proposed scheme judiciously mitigates the self-interference caused by

either users, also the statistical dependency between the users is utilized as receivers’

side information. In other words, the correlated source at each terminal is treated as

side information for the source at the other terminal. As a first step, we consider a

restricted TWC that does not adapt the channel inputs to prior received outputs.

3.1 The COSQ Design for Discrete TWCs

Consider a two-way communication system where two users wish to simultaneously

exchange source data over a discrete TWC. The block diagram of the proposed system

is depicted in Figure 3.1. At terminal j, the input source to the COSQ encoder is a

real-valued memoryless process {Uj,i}∞i=1 for j = 1, 2. We assume that at each time

instant i, the source samples U1,i and U2,i are correlated in general. For the sake

1The system proposed in this chapter was previously presented in part in [43].
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of convenience, as we deal with time-memoryless sources, we drop the time index i

and write Uj,i as Uj, j = 1, 2. The corresponding COSQ encoder at terminal j is

a mapping Ej that takes a source realization uj ∈ R and outputs an index r-tuple

xj = (xj1, . . . , xjr) ∈ X r where X is the channel input alphabet such that

Ej(uj) = xj, if uj ∈ Sxj
(3.1)

where Pj = {Sxj
:
⋃

xj∈X r

Sxj
= R, Sxj

∩ Sx̂j
= ∅, ∀x̂j 6= xj ∈ X r} is a partition of R

and r is the coding rate given by:

r = log2 N bits/source symbol (3.2)

where N is the total number of quantization indices (i.e., quantization levels). The

r-tuples xj ∈ X r are then transmitted via r uses of a discrete TWC (used without

adaptation) with the transition distribution PY1,Y2|X1,X2 . If such a channel is also

memoryless then we have that

PY1,Y2|X1,X2(y1,y2|x1,x2) =
r∏
i=1

PY1,Y2|X1,X2(y1i, y2i|x1i, x2i)

where for j = 1, 2, yj = (yj1, . . . , yjr) ∈ Yr is the received sequence at terminal j

and Y is the channel output alphabet. Note that for both the BA-TWC and the

BM-TWC with additive Markov noise (as described in Chapter 2), we have:

P (y1,y2|x1,x2) = P (Z1 = z1,Z2 = z2)

= P (Z1 = z1)P (Z2 = z2) (3.3)
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where {Z1i}∞i=1 and {Z2i}∞i=1 are assumed to be independent of each other,

P (Zj = zj) =
r∏
i=1

P (Zji = zji|Zj(i−1) = zj(i−1), . . . , Zj(i−M) = zj(i−M))

= L
r∏

i=M+1

[εj + δj
i−1∑

k=i−M
zjk

1 +Mδj

]zji[1− εj + δj(M −
i−1∑

k=i−M
zjk)

1 +Mδj

]1−zji
, (3.4)

L ,

∏qj−1
i=0 (εj + iδj)

∏M−1−qj
h=0 (1− εj + hδj)∏M−1

l=1 (1 + lδj)
, (3.5)

qj =
∑M

i=1 zji, zji = yji⊕x1i⊕x2i for additive, and zji = yji⊕x1ix2i for multiplicative

user-interference. Finally, the corresponding decoder at terminal j is a mapping

Dj : Yr×R→ R that maps the received r-tuple yj to the output levels of a quantizer

codebook using the statistical dependency between sources at the two terminals as

side information:

Dj(yj, uj) = cyj ,uj , cyj ,uj ∈ R, yj ∈ Yr, uj ∈ R. (3.6)

The proposed COSQ over the discrete TWC, aims to select the codebooks

Cj = {cyj ,uj : yj ∈ Yr, uj ∈ R}

and the partition sets Pj = {Sxj
: xj ∈ X r} to minimize the overall average mean-

square error (MSE) given by:

D = E[(U1 − Û1)2 + (U2 − Û2)2] (3.7)
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E1 D2

E2D1
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TWC
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X2

Y2

Y1

Û1

Û2 U2

Encoder Decoder

EncoderDecoder

Figure 3.1: The block diagram of the COSQ TWC system.

where Ûj is the reconstruction of the source Uj, j = 1, 2. Hence, the overall MSE is

described as:

D =
∑

x1∈X r

∑
x2∈X r

∫
Sx1

∫
Sx2

fU1,U2(u1, u2)

×
∑

y1∈Yr

∑
y2∈Yr

P (y1,y2|x1,x2)
{

(u1 − cy2,u2)
2 + (u2 − cy1,u1)

2
}

du1du2 (3.8)

where fU1,U2 is the joint probability density function (pdf) of the two sources. The

performance of this system is usually measured via the average distortion D. For a

given source, channel, and fixed rate r, we wish to find the optimal functions Ej and

Dj for j = 1, 2 to minimize the overall MSE given by (3.8). The necessary conditions

for optimal encoders and decoders are next determined. The optimal encoder for

each user is derived given fixed decoders and the encoder of the other user. Similarly,

the optimal decoder for each user is obtained given fixed encoders. Assuming known

and fixed decoders (D1 and D2) and the encoder of user two (E2), we seek the best
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encoding function for user one (i.e., E1). Rewriting the overall MSE in (3.7) as:

D =

∫ ∞
−∞

fU1(u1)× E[(U1 − Û1)2 + (U2 − Û2)2|U1 = u1]du1, (3.9)

we note by (3.1) that

E[(U1 − Û1)2 + (U2 − Û2)2|U1 = u1] = E[(U1 − Û1)2 + (U2 − Û2)2|X1 = x1, U1 = u1].

(3.10)

To minimize D, it is sufficient to find a mapping E1 that minimizes the modified

distortion measure defined as:

d1(u1,x1) , E[(U1 − Û1)2 + (U2 − Û2)2|X1 = x1, U1 = u1].

Therefore, given fixed codebooks C1, C2, and the partition set, P2, for user two, D is

minimized provided that the partition P1 satisfies:

Sx1 =
{
u1 : d1(u1,x1) ≤ d1(u1, x̂1), ∀x̂1 6= x1, x̂1 ∈ X r

}
, x1 ∈ X r (3.11a)

where

d1(u1,x1) =
∑

x2∈X r

∑
y1∈Yr

∑
y2∈Yr

P (y1,y2|x1,x2)∫
Sx2

f(u2|u1)
{

(u1 − cy2,u2)
2 + (u2 − cy1,u1)

2
}

du2. (3.11b)
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Similarly, given fixed codebooks C1, C2, and the partition set, P1, for user one, the

average distortion D is minimized if the partition P2 satisfies:

Sx2 =
{
u2 : d2(u2,x2) ≤ d2(u2, x̂2), ∀x̂2 6= x2, x̂2 ∈ X r

}
, x2 ∈ X r (3.11c)

where

d2(u2,x2) , E{(U1 − Û1)2 + (U2 − Û2)2|X2 = x2, U2 = u2}

=
∑

x1∈X r

∑
y1∈Yr

∑
y2∈Yr

PY1,Y2|X1,X2(y1,y2|x1,x2)

×
∫
Sx1

fU1|U2(u1|u2)
{

(u1 − cy2,u2)
2 + (u2 − cy1,u1)

2
}

du1. (3.11d)

It can be shown that the optimal decoders for fixed and known encoders are the con-

ditional expectation of the source, given the channel outputs and the locally observed

source samples, i.e.,

û1 = cy2,u2

= E(U1|Y2 = y2, U2 = u2)

=

∑
x1∈X r

PY2|X1,X2(y2|x1, E2(u2))

∫
Sx1

u1fU1|U2(u1|u2)du1

∑
x1∈X r

PY2|X1,X2(y2|x1, E2(u2))

∫
Sx1

fU1|U2(u1|u2)du1

(3.12a)
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and

û2 = cy1,u1

= E(U2|Y1 = y1, U1 = u1)

=

∑
x2∈X r

PY1|X1,X2(y1|E1(u1),x2)

∫
Sx2

u2fU2|U1(u2|u1)du2

∑
x2∈X r

PY1|X1,X2(y1|E1(u1),x2)

∫
Sx2

fU2|U1(u2|u1)du2

(3.12b)

where the marginal channel distributions are given by:

PY1|X1,X2(y1|E1(u1),x2) =
∑

y2∈Yr

PY1,Y2|X1,X2(y1,y2|E1(u1),x2),

and

PY2|X1,X2(y2|x1, E2(u2)) =
∑

y1∈Yr

PY1,Y2|X1,X2(y1,y2|x1, E2(u2)).

Given the structure of decoders in (3.12), optimizing the decoders cannot increase the

overall distortion. However, optimizing the encoder at terminal j for j = 1, 2 requires

a fixed encoder at the other terminal (see (3.11)). This inherent entanglement in the

structure of the two encoders may increase the distortion value from one iteration

to the next during the optimization procedure. Although there is no guarantee to

have monotonically decreasing distortion values as a function of iteration index, the

distortion, for the cases we studied in this paper, did not increase and the algorithm

converged. The proposed iterative COSQ algorithm is as follows:

1. Input the joint source pdf fU1,U2 , the initial partition sets P(0)
1 , P(0)

2 , and a

stopping threshold T .
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Set m← 0 and D0 ←∞.

2. • Given the partitions P(m)
1 and P(m)

2 , use (3.12) to get the optimal code-

books C(m)
1 and C(m)

2 .

• Given C(m)
1 and C(m)

2 , use (3.11a) for a fixed P(m)
2 to find the optimal

partition P(m+1)
1 . Similarly, given C(m)

1 and C(m)
2 , use (3.11c) for an updated

and fixed P(m+1)
1 to find the optimal partition P(m+1)

2 .

3. Update the distortion Dm+1 associated with the partitions P(m+1)
1 , P(m+1)

2 , and

codebooks C(m)
1 and C(m)

2 .

• If |Dm−Dm+1|
Dm+1

≤ T , stop and output C(m)
1 , C(m)

2 , P(m+1)
1 , and P(m+1)

2 .

• Otherwise, m← m+ 1 and go to step (2).

Algorithm 3 shows the design procedure of the proposed two-user COSQ. This design

assumes the joint source probability distribution is known a priori; however, in real-

world communication systems only samples from the two sources are available and

hence we use training sequences to implement the proposed design. The proposed

two-user COSQ with the training set is further described in Section A.4. We also

note that the proposed COSQ design implicitly optimizes the mapping from the

quantization indices to the channel inputs as the encoders at each terminal directly

map source symbols to channel inputs.

3.2 Numerical Results

In this section we present numerical results for two types of discrete TWCs with

and without memory: the binary-additive TWC (BA-TWC) with additive noise and
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Algorithm 3: The proposed two-user COSQ for a general discrete TWC.

Input: Source pdf fU1,U2 , initial partition sets P(0)
1 and P(0)

2 , and the
stopping threshold T
Output: Partition sets P(m+1)

1 and P(m+1)
2 , reconstruction codebooks, C(m)

1

and C(m)
2 , and the ultimate distortion value D(m+1)

D(0) ← ∞
D(1) ← 0
m ← 0
while D(m)−D(m+1)

D(m) > T do

c
(m)
y1,u1 ← E[U2|Y1 = y1, U1 = u1]

c
(m)
y2,u2 ← E[U1|Y2 = y2, U2 = u2]

S(m+1)
x1 ← {u : d(u1,x1) ≤ d(u1, x̂1), ∀x̂1 6= x1, x̂1 ∈ X r}, ∀x1 ∈ X r

S(m+1)
x2 ← {u : d(u2,x2) ≤ d(u2, x̂2), ∀x̂2 6= x2, x̂2 ∈ X r}, ∀x2 ∈ X r

D(m+1) ← E[(U1 − Û1)2 + (U2 − Û2)2]
m← m+ 1

end

The MATLAB scripts corresponding to this algorithm are available at https://github.com/

Saeed-Rezazadeh/TWC-COSQ.git.

the binary-multiplying TWC (BM-TWC) with additive noise as described in Sec-

tion 2.1.2. The two sources outputs are drawn from a bi-variate Gaussian source with

the covariance matrix

Σ =

1 ρ

ρ 1


where ρ is the correlation coefficient of the two sources which means that each source

is a zero-mean and unite-variance (i.e. σ2
j = 1) Gaussian source. Before assessing

the performance of our (full-duplex) COSQ system, we first describe its standard

half-duplex counterpart.
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3.2.1 Half-duplex COSQ System

So far, we have proposed a COSQ design where the two users exchange sources

simultaneously which we refer to as the full-duplex system. We also propose another

design such that when one terminal is using the TWC, the other user transmits a

constant symbol. We refer to the latter approach as the half-duplex system. The block

diagram of the half-duplex design is depicted in Figure 3.2. Considering a discrete

U1 X1 Y2 Û1

U2X1Y2
Û2

PY2|X1,X2
(y2|x1, a)

PY1|X1,X2
(y1|b,x2)

D2

D1 E2

E1
Encoder Decoder

EncoderDecoder

U2

U1

Figure 3.2: The block diagram of the half-duplex COSQ system where
a = (a∗, . . . , a∗) ∈ X r and b = (b∗, . . . , b∗) ∈ X r.

TWC with arbitrary user-interference, the optimal symbol, in terms of maximal one-

way information transfer, to be constantly applied by user two while user one is

transmitting its source symbols is obtained by:

a∗ = arg max
a∈X

max
PX1|X2

(x1|a)
I(X1;Y2|X2 = a) (3.13)
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where PX1|X2(x1|a) is the distribution of the channel inputs generated by user one

given that the other user is transmitting X2 = a, and I(X1;Y2|X2 = a) is the con-

ditional mutual information between X1 and Y2 given X2 = a. As a result, the

r-tuple that is transmitted by user two for r consecutive uses of the TWC is given

as: a , (a∗, . . . , a∗) ∈ X r. Similarly, the optimal value that user one sends in the

half-duplex mode is given by:

b∗ = arg max
b∈X

max
PX2|X1

(x2|b)
I(X2;Y1|X1 = b), (3.14)

and the optimal r-tuple for user one is: b , (b∗, . . . , b∗). The proposed half-duplex

design can be treated as two independent COSQ systems for two one-way channels

with side information at the decoders. We adopt the iterative algorithm along with

the optimality conditions proposed in [15] and also described in Section 2.2.2 to design

the optimal quantizers for half-duplex schemes.

Moreover, for the BA-TWC with additive noise, we choose the partition sets ob-

tained from the half-duplex design as the initial partition sets for the full-duplex

scheme with the same source and channel parameters and with the same encoding

rate. However, for the BM-TWC the ultimate partition sets from the half-duplex

scheme are used to initialize the full-duplex design with twice the quantization rate

and with the same channel parameters. For every source sample, the r/2-tuple parti-

tion index of the half-duplex design is left-padded by all-one r/2-tuples for user one.

The initial partition indices of the user two in the full-duplex design is obtained in the

same way; however, by right-padding the partition indices of the half-duplex scheme

with all-one r/2-tuples. This method of initialization provides each users symbols

with protection against the other user’s transmission.
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3.2.2 Results and Discussion

Two-user COSQ over discrete memoryless TWCs

Tables 3.1 and 3.2 show the COSQ performance results for full-duplex designs com-

pared to the corresponding half-duplex schemes for memoryless additive-noise TWCs

with additive and multiplicative user interference, respectively. The performance re-

sults are in terms of signal-to-distortion ratio (SDR) which in general is defined as:

SDR = 10 × log10
σ2
1+σ2

2

D
(in dB); specifically in this thesis we considered zero-mean

unit-variance Gaussian sources (i.e., σ2
1 = σ2

2 = 1).

In Table 3.1, we also include the SDR optimum performance theoretically achiev-

able (OPTA) using the complete JSCC theorem in [26, Theorem 3] (by calculating the

sum of the users distortions) which readily applies for the case of correlated Gaussian

sources sent over the discrete memoryless BA-TWC with additive noise. However in

Table 3.2, since there is no complete JSCC theorem for the discrete memoryless BM-

TWC (as the exact determination of its capacity region is still an open problem even

in the absence of additive noise), we include an upper bound on the system’s OPTA

using the converse result in [25, Lemma 2]2. The exact/upper bound OPTA values

are meant to show the best performance potentially realizable if one were to employ

powerful source-channel codes with unlimited delay and complexity. Naturally, since

our low-delay COSQ schemes are scalar, their performance are considerably below

the OPTA bound; this gap can however be reduced with the use of high-dimensional

COVQs in conjunction with capacity-achieving channel codes.

Setting the quantization rate in the full-duplex system as twice the quantization

rate in the half-duplex system makes the number of source symbols transmitted per

2Further details on how to compute the OPTA values are provided in Appendix.A.
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the total number of TWC uses equal in both full-duplex and half-duplex systems. In

this set-up, the full-duplex scheme always outperforms the corresponding half-duplex

design for both additive and multiplicative user interferences.

Table 3.1: SDR (in dB) performance results of the full-duplex compared to the cor-
responding half-duplex design for a discrete memoryless BA-TWC with
additive noise. OPTA values are also included.

Correlation ε1 = 0 ε1 = 0.005 ε1 = 0.01 ε1 = 0.05
coefficient r ε2 = 0 ε2 = 0.01 ε2 = 0.05 ε2 = 0.10

ρ = 0 1 half-duplex 4.40 4.17 3.60 2.69
2 full-duplex 9.31 8.18 6.33 4.34
2 OPTA 12.04 11.27 9.65 7.35
2 half-duplex 9.31 8.18 6.33 4.34
4 full-duplex 20.24 13.18 9.57 6.47
4 OPTA 24.08 22.54 18.99 14.45

ρ = 0.5 1 half-duplex 4.92 4.72 4.21 3.42
2 full-duplex 9.53 8.47 6.74 4.88
2 OPTA 13.29 12.52 10.90 8.60
2 half-duplex 9.53 8.47 6.74 4.88
4 full-duplex 20.31 13.65 10.01 7.10
4 OPTA 25.33 23.79 20.23 15.70

ρ = 0.9 1 half-duplex 8.80 8.67 8.44 8.09
2 full-duplex 11.63 11.06 10.25 9.26
2 OPTA 19.25 18.48 16.86 14.56
2 half-duplex 11.63 11.06 10.25 9.26
4 full-duplex 20.68 16.76 14.03 11.65
4 OPTA 31.29 29.75 26.20 21.66

For the BA-TWC with additive noise, due to the channel structure, it is feasible to

perfectly “cancel” channel interference by subtracting the locally transmitted symbol

from the channel outputs. However, in our decoding scheme we do not attempt

to explicitly cancel the effect of self-interference from the channel outputs since one

cannot undo the effects of self-interference in all TWCs such as the BM-TWC. Rather,

we use the known self-interference, as shown in (3.12), to condition the decoding of
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Table 3.2: SDR (in dB) performance results of the full-duplex compared to the cor-
responding half-duplex design for a discrete memoryless BM-TWC with
additive noise. OPTA upper bounds values are also included.

Correlation ε1 = 0 ε1 = 0.005 ε1 = 0.01 ε1 = 0.05
coefficient r ε2 = 0 ε2 = 0.01 ε2 = 0.05 ε2 = 0.10

ρ = 0 1 half-duplex 4.40 4.17 3.60 2.69
2 full-duplex 4.40 4.18 3.60 2.69
2 OPTA upper bound 8.35 7.81 6.71 5.10
2 half-duplex 9.31 8.18 6.33 4.34
4 full-duplex 9.31 8.19 6.34 4.34
4 OPTA upper bound 16.71 15.61 13.37 10.13

ρ = 0.5 1 half-duplex 4.92 4.72 4.21 3.42
2 full-duplex 4.92 4.72 4.21 3.42
2 OPTA upper bound 9.60 9.05 7.96 6.34
2 half-duplex 9.53 8.47 6.74 4.88
4 full-duplex 9.53 8.47 6.74 4.88
4 OPTA upper bound 17.95 16.84 14.62 11.35

ρ = 0.9 1 half-duplex 8.80 8.67 8.44 8.09
2 full-duplex 9.75 9.52 9.30 8.81
2 OPTA upper bound 15.55 15.01 13.93 12.31
2 half-duplex 11.63 11.06 10.24 9.26
4 full-duplex 12.30 12.20 11.07 10.10
4 OPTA upper bound 23.90 22.83 20.59 17.34

channel outputs.

Considering (3.12a), for instance at terminal two, one can observe that the side-

information U2 = u2 not only does provide prior information fU1|U2=u2 for estimating

U1 but also determines the right channel state for decoding in the presence of self-

interference, e.g., PY2|X1,X2(y2|x1, E2(u2)). For a noiseless BM-TWC, the codebook

constellations of full-duplex and its corresponding half-duplex design at terminal two

with uncorrelated sources (ρ = 0) and quantization rate r = 2 (bits/source sample)

are depicted in Figure 3.3. The abrupt changes in the codebook values for the full-

duplex design (Figure 3.3(a)) illustrate how the decoder tries to mitigate interference;
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however, for the corresponding half-duplex setup (Figure 3.3(b)), where there is no

interference as the local encoder transmits an all-one 2-tuple over the TWC, the

codeword values are constant over the entire support of the locally observed source

U2. The same interpretation also applies to the codewords for a 2-bit COSQ over a

noiseless BA-TWC with uncorrelated sources (i.e., ρ = 0). As shown in Figure 3.4,

the codeword values have the same absolute values but with opposite signs. More

specifically, the codewords corresponding to y2 = (00)2 and y2 = (01)2 have3 the

exact same values but with opposite signs compared to the cases when channel output

y2 = (11)2 and y2 = (10)2 at terminal two, respectively. This means that the decoder

at terminal two is trying to avoid the self-interference caused by its own transmission

by using opposite signs for the codeword values, accordingly.

Moreover, the encoding criterion described in (3.11a), specifies a set Sx1 on the

real line whose members, if mapped to the xth1 channel input compared to any other

channel inputs x̂1 ∈ X r at terminal one, will result in a lower MSE. This criterion

attempts to form P1 as a partition of R such that the self-interference is avoided by

taking into account all possible interference induced by user two, i.e., by averaging

over all possible values of x2 ∈ X r in addition to combating channel noise. The encod-

ing (3.11c) and decoding (3.12b) functions attempt to mitigate self-interference in a

similar manner. For a noiseless BM-TWC, the quantization cells of the full-duplex de-

sign as well as its corresponding half-duplex scheme with uncorrelated sources (ρ = 0)

and quantization rate r = 2 (bits/source sample) are shown in Figure 3.5. To com-

bat interference, the full-duplex design (Figure 3.5(a)) does not use all partition

3The lower-script for the term (00)2 describes the base with which the sequence inside the paren-
theses must be computed. For the example of interest, we are dealing with base-2 (i.e., binary
digits).
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(a)

(b)

Figure 3.3: Codebook constellations at terminal two for full-duplex (Figure 3.3(a))
and half-duplex (Figure 3.3(b)) schemes over a noiseless BM-TWC with
uncorrelated sources (ρ = 0) and 2-bit quantizers.
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(a)

(b)

Figure 3.4: Codebook constellations (Figure 3.4(a)) at terminal two and the quan-
tization cells (Figure 3.4(b)) for a noiseless BA-TWC with uncorrelated
sources (ρ = 0) and 2-bit quantizers.
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indices, whereas, in the half-duplex setup (Figure 3.5(b)), where interference is per-

fectly avoided, the encoders can use all possible quantization indices for transmission.

Unlike for a BM-TWC where some of the partition indices are avoided, for the BA-

TWC where interference can be perfectly canceled, the quantizer does not trade off

the quantization accuracy to avoid interference, but rather all possible indices are

used for transmission (Figure 3.4(b)). Moreover, for a single-user COSQ it is shown

in [15] that the NNC is linear in U = u implying that the quantization cells must

be intervals and a close form expression is also derived to compute the boundaries

of these cells for the squared error distortion measure. However, for a two-user sys-

tem, (3.11) is not linear in Uj = uj and Sxj
will not in general be an interval as

depicted in Figure 3.6. Therefore, Sxj
is designed according to (3.11) by numerically

evaluating the modified distortion measure given by (3.11b) and (3.11d). Figure 3.6,

represents the samples of the two highly correlated sources Uj = uj (i.e., ρ = 0.99) in

blue dots and the boundaries of the quantization cells are shown for a 2-bit quantizer

with red dashed lines. The decimal representation of the quantization cells indices

(i.e., xj ∈ X r which are transmitted over a discrete noiseless BA-TWC) are shown

along the two axes. As it can be seen in Figure 3.6, some of the indices are used to

annotate more than one quantization cell. For example the index x1 = (10)2 = 2

is used for six separated regions, therefore, it is not possible to distinguish where

U1 = u1 belongs to. However, if x2 = (11)2 = 3, then it is highly probable that

approximately U1 ∈ [2.1, 2.37] (i.e., the first region indexed by x1 = (10)2 = 2 from

the right in Figure 3.6). In this way distributed coding is used to decrease the quanti-

zation distortion. In other words, for correlated sources, the sequence transmitted by

each user bears extra information about which region the source samples of the other



3.2. NUMERICAL RESULTS 52

(a)

(b)

Figure 3.5: Quantization cells for full-duplex (Figure 3.5(a)) and half-duplex (Fig-
ure 3.5(b)) schemes over a noiseless BM-TWC with uncorrelated sources
(ρ = 0) and 2-bit quantizers.
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Figure 3.6: Encoding structure (quantization cells) for a 2-bit two-user COSQ over a
BA-TWC with ε1 = ε2 = 0 and ρ = 0.99

user reside in with high probability which leads to improved performance in terms of

SDR values.

As shown in Figure 3.7(a), for a 4-bit COSQ over a discrete memoryless BA-TWC

with ε1 = ε2 = 0.1, and uncorrelated sources, the quantizer avoids certain partition

indices to make the design robust against channel noise. The same behavior is also

observed for a single-user COSQ in [15]. The useless indices are those that are never

optimal according to (3.1). However, for correlated sources (Figure 3.7(b)) the lo-

cally observable source samples used as side information at the decoders boost the

decoders’ reconstruction reliability. Hence, the quantizer uses all possible channel

inputs (i.e., quantization indices) for transmitting the two sources and does not sac-

rifice the quantization accuracy for less sensitivity to the channel noise which leads

to significantly improved SDR performance over the case of uncorrelated sources.
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(a)

(b)

Figure 3.7: Quantization cells for a 4-bit COSQ over a memoryless BA-TWC with
uncorrelated sources (Figure 3.7(a)) and correlated sources ρ = 0.99 (Fig-
ure 3.7(b)) where ε1 = ε2 = 0.10.
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Two-user COSQ over discrete TWCs with memory

Most of the previous works on JSCC designs other than a few exceptions such as

for [44] and [45] considered memoryless channels in their designs, disregarding the

fact that real-world communication channels often have memory. In this section we

investigate the performance of proposed two-user COSQ over TWCs with additive

and multiplicative user-interferences where the noise processes in both directions of

transmission have memory. As described in Section 2.1.2, we extend the finite memory

Polya contagion urn process in [36] to model the memory of the noise process in a

real-world two-user communication channel. The channel transition probability for

a discrete TWC with memory is given by (3.3). The parameter δj for j = 1, 2,

determines the noise correlation for the corresponding noise process {Zji}∞i=1. In our

simulation results we assumed δ1 = δ2 = δ. Tables 3.3 and 3.4 show the performance

results, in terms of SDR values, for full-duplex designs versus the corresponding half-

duplex scheme as described in Section 3.2.1, for additive Markov noise TWCs with

additive and multiplicative user-interference, respectively.

Note that the memory in the channel can be exploited within r uses of the two-

user channel. Tables 3.3 and 3.4 exhibit that, for a given M , the effect of intra-block

memory of the TWC with both additive and multiplicative user-interference becomes

more significant as the coding rate r grows large. This is essentially due to the fact

that the intra-block memory increases as the channel input block length (i.e., r)

increases. The proposed two-user COSQ can properly exploit the increase in intra-

block memory of the channel as long as r > M .

Interleaving is a traditional technique used for handling channels with memory.
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Assume that we are given a discrete TWC with memory and also consider the fol-

lowing two scenarios. For the first scenario, suppose we perfectly know how the

channel memory is characterized (such as a Markov TWC) versus the case when we

know nothing about channel memory. For the latter scenario, the best approach is

to use interleaving that renders the channel memoryless and then design a two-user

COSQ for a discrete memoryless TWC with the same noise parameters, εj, as the

Markov TWC. The designed two-user COSQ is then used over an interleaved chan-

nel which is a combination of the interleaver, TWC with additive Markov noise, and

the de-interleaver. It is assumed that the length of interleaving is sufficiently large

such that the Markov TWC along with the interleaver and de-interleaver is perfectly

equivalent to a discrete memoryless TWC. Note that the perfectly interleaved system

corresponds to the two-user COSQ designed for a memoryless channel (i.e., δ = 0).

On the other hand, if we perfectly know how to model the memory of a TWC, a good

approach is use a two-user COSQ optimally designed for the TWC whose memory

characteristics are perfectly known in advanced.

The SDR values given in Tables 3.1 and 3.2 represent COSQs designed for a

discrete memoryless TWCs, whereas the SDR values in Tables 3.3 and 3.4 represent

the performance of the two-user COSQ optimally designed for a TWC with additive

Markov noise. Comparing the SDR performances in Table 3.1 with SDR values

in Table 3.3 reveals that for the additive user-interference the largest gain one can

achieve by exploiting the channel memory compared to the case where the TWC is

fully interleaved is 3.98 dB which occurs for r = 4, ε1 = 0.05, ε2 = 0.1, ρ = 0.5,

and δ = 10. Likewise, for the BM-TWC with additive Markov noise, the largest gain

is 3.12 dB which occurs for r = 4, ε1 = 0.05, ε2 = 0.1, ρ = 0, and δ = 10. Note
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that in our experimental results, we considered M = 1. Therefore, in order to obtain

improvements due exploiting the TWC’s memory, the encoding rate must be r > 1,

as a result the performance of the half-duplex schemes for r = 1 is independent

of the value of δ. Moreover, as mentioned earlier, the effects of TWC’s memory

becomes more significant as the encoding rate increases. Although, there are slight

improvements for full-duplex schemes with r = 2, the largest gains occur with r = 4

for TWCs with both additive and multiplicative user-interferences.
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Table 3.3: SDR (in dB) performance results of the full-duplex compared to the corre-
sponding half-duplex design for a discrete Markov BA-TWC with memory
order M = 1. OPTA values are also included.

Correlation ε1 = 0 ε1 = 0.005 ε1 = 0.01 ε1 = 0.05
coefficient δ r ε2 = 0 ε2 = 0.01 ε2 = 0.05 ε2 = 0.10

ρ = 0 5 1 half-duplex 4.40 4.18 3.60 2.69
2 full-duplex 9.31 8.38 6.51 4.34
2 OPTA 12.04 11.81 11.28 10.40

10 1 half-duplex 4.40 4.18 3.60 2.69
2 full-duplex 9.31 8.41 6.55 4.37
2 OPTA 12.04 11.90 11.57 11.01

5 2 half-duplex 9.31 8.38 6.51 4.34
4 full-duplex 20.28 14.08 9.62 6.80
4 OPTA 24.08 23.63 22.52 20.75

10 2 half-duplex 9.31 8.41 6.55 4.37
4 full-duplex 20.28 16.68 13.34 10.25
4 OPTA 24.08 23.80 23.13 22.00

ρ = 0.5 5 1 half-duplex 4.92 4.72 4.21 3.42
2 full-duplex 9.53 8.68 7.12 5.31
2 OPTA 13.29 13.06 12.53 11.65

10 1 half-duplex 4.92 4.72 4.21 3.42
2 full-duplex 9.53 8.70 7.19 5.41
2 OPTA 13.29 13.15 12.82 12.26

5 2 half-duplex 9.53 8.68 7.12 5.31
4 full-duplex 20.31 14.28 11.92 9.45
4 OPTA 25.33 24.88 23.77 22.00

10 2 half-duplex 9.53 8.70 7.19 5.41
4 full-duplex 20.31 16.25 13.64 11.08
4 OPTA 25.33 25.05 24.38 23.25

ρ = 0.9 5 1 half-duplex 8.80 8.67 8.44 8.10
2 full-duplex 11.63 11.35 10.85 10.13
2 OPTA 19.25 19.03 18.49 17.61

10 1 half-duplex 8.80 8.67 8.44 8.10
2 full-duplex 11.63 11.39 10.94 10.30
2 OPTA 19.25 19.11 18.78 18.22

5 2 half-duplex 11.63 11.35 10.85 10.13
4 full-duplex 20.64 18.40 16.31 14.07
4 OPTA 31.29 30.84 29.74 27.97

10 2 half-duplex 11.63 11.39 10.94 10.30
4 full-duplex 20.66 18.67 16.70 14.58
4 OPTA 31.29 31.02 30.34 29.22
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Table 3.4: SDR (in dB) performance results of the full-duplex compared to the corre-
sponding half-duplex design for a discrete Markov BM-TWC with memory
order M = 1.

Correlation ε1 = 0 ε1 = 0.005 ε1 = 0.01 ε1 = 0.05
coefficient δ r ε2 = 0 ε2 = 0.01 ε2 = 0.05 ε2 = 0.10

ρ = 0 5 1 half-duplex 4.40 4.18 3.60 2.69
2 full-duplex 4.40 4.33 4.14 3.80

10 1 half-duplex 4.40 4.18 3.60 2.69
2 full-duplex 4.40 4.36 4.25 4.05

5 2 half-duplex 9.31 8.38 6.51 4.34
4 full-duplex 9.31 8.91 8.01 6.54

10 2 half-duplex 9.31 8.41 6.55 4.37
4 full-duplex 9.31 9.07 8.50 7.46

ρ = 0.5 5 1 half-duplex 4.92 4.72 4.21 3.42
2 full-duplex 4.92 4.86 4.69 4.40

10 1 half-duplex 4.92 4.72 4.21 3.42
2 full-duplex 4.92 4.88 4.79 4.61

5 2 half-duplex 9.53 8.68 7.12 5.31
4 full-duplex 9.53 9.18 8.41 7.14

10 2 half-duplex 9.53 8.70 7.19 5.41
4 full-duplex 9.53 9.32 8.82 7.92

ρ = 0.9 5 1 half-duplex 8.80 8.67 8.44 8.10
2 full-duplex 9.50 9.40 9.17 8.90

10 1 half-duplex 8.80 8.67 8.44 8.10
2 full-duplex 9.46 9.39 9.20 9.00

5 2 half-duplex 11.63 11.35 10.85 10.13
4 full-duplex 12.32 12.12 11.73 11.12

10 2 half-duplex 11.63 11.39 10.94 10.30
4 full-duplex 12.32 12.20 11.94 11.52
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Chapter 4

Channel Optimized Scalar Quantizers for

One-Way Channels With Feedback

Consider a discrete-time, finite alphabet, single-user channel with additive random

noise process which in general can have memory. The Gilbert-Elliot burst-noise chan-

nel as well as the Polya-contagion channel are examples of discrete single-user channels

with memory with their descriptions explained in Section 2.1.1. In this chapter, we

consider a discrete single-user channel that is accompanied with a noiseless feedback

link. Shannon in [46] for the first time investigated the effect of feedback on the

capacity of DMCs from an information theoretic point of view showing that feed-

back does not increase capacity for DMCs. Furthermore, the use of feedback does

not increase the capacity for discrete additive noise channels with memory [47] nor

for continuous alphabet channels with additive white Gaussian noise; however, the

system’s distortion can be improved using the information from a feedback channel.

Amanullah et al. in [34] showed that feedback information can be used to design a

COSQ over a noisy DMC with lower overall distortion compared to the case where

feedback is not available. In this chapter, we additionally investigate the performance
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of [34] over a discrete channel with memory. We also propose an adaptive single-user

COSQ which improves the scheme proposed by Amanullah in [34] particularly when

the communication channel has memory.

4.1 Single-User Adaptive COSQ With Feedback

For the adaptive scheme described in [34], a continuous alphabet source is encoded

using an N -level quantizer within multiple steps. In this scheme, the information

received over the feedback link is used dynamically at every step to generate the next

channel input. Consider that r bits with r = log2N are divided into L groups such

that r = r1 + r2 + · · · + rL. At every step k, for k = 1, 2, . . . , L, rk bits are used to

quantize (encode) and transmit the source adaptively vis-a-vis the received symbols

over the feedback link. More specifically, in the first step, the source is encoded using

r1 bits and then the r1-tuple channel input, Xr1 = xr1 ∈ X r1 , is transmitted over

the channel. After receiving the corresponding sequence Y r1 = yr1 ∈ Yr1 , due to the

presence of feedback, the encoder knows what codeword was received at the receiver.

Therefore, in the second encoding step, r2 bits are generated and used to encode the

source based on the particular sequence received in the previous step. This process is

continued until the entire r bits are transmitted. The block diagram of the adaptive

COSQ (ACOSQ) is depicted in Figure 4.1 where the encoder and decoder functions
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U

E(k) D(k)
Encoder DecoderSingle-User

Channel

xrk ∈ X rk

yrk ∈ Yrk

yr1+···+rk−1 ∈ Yr1+···+rk−1

Û

Figure 4.1: The block diagram of the single-user ACOSQ design for k = 1, 2, . . . , L.

at step k are described as

Encoder: E (k) : R× Yr1+···+rk−1 → X rk

E (k)(u, yr1 , . . . , yrk−1) = xrk

Decoder: D(k) : Yr1+···+rk → R

D(k)(yr1 , . . . , yrk) = cyr1 ,...,yrk (4.1)

where X , Y are the channel input and the channel output alphabets respectively, and

cyr1 ,...,yrk is the codeword corresponding to the received sequence (yr1 , . . . , yrk) such

that ∀k ∈ {1, 2, . . . , L}, yrk ∈ Yrk .

In what follows, the process of designing the adaptive COSQ is described. At the

first step, an r1-bit COSQ is designed using the method described in [15] for the source

with pdf fU(·). Let Pr1 = {Sxr1 : xr1 ∈ X r1} denote the corresponding partition set

of the 2r1-level quantizer. The uncertainty about the source can be updated based on

the received sequence over the feedback link. The source conditional pdf1 given the

1In this thesis, the source’s conditional pdf given the received sequence at every encoding step is
sometimes referred to as the source’s posterior pdf.
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received sequence Y r1 = yr1 ∈ Yr1 is given by:

fU |Y r1 (u|yr1) =
fU(u)P (Y r1 = yr1 |U = u)

P (Y r1 = yr1)

fU(u)P (Y r1 = yr1|U = u)∑
xr1∈X r1

P (Y r1 = yr1|Xr1 = xr1)

∫
Sxr1

fU(u)du
(4.2)

where according to (4.1) at the first step i.e., k = 1

P (Y r1 = yr1|U = u) =
∑

xr1∈X r1

P (Y r1 = yr1|Xr1 = xr1).1{u ∈ Sxr1},

and 1{·} is the indicator function. In the second step, an r2-bit COSQ is designed,

for the source pdf given by (4.2), using the approach described by [15]. The r2-tuple

channel input, Xr2 = xr2 ∈ X r2 , generated at the second step is then transmitted

over the channel. Based on the received sequence Y r2 = yr2 ∈ Yr2 , the source pdf is

updated for the design of the next step quantizer in the following way

fU |Y r1 ,Y r2 (u|yr1 , yr2) =
fU,Y r1 (u, yr1)P (Y r2 = yr2|U = u, Y r1 = yr1)

P (Y r1 = yr1 , Y r2 = yr2)

=
fU,Y r1 (u, yr1)P (Y r2 = yr2|U = u, Y r1 = yr1)∑

xr2∈X r2

∫
Sxr2

P (Y r2 = yr2|Xr2 = xr2 , Y r1 = yr1 , U = u)fU,Y r1 (u, yr1)du
(4.3)

=
fU |Y r1 (u|yr1)P (Y r2 = yr2|U = u, Y r1 = yr1)∑

xr2∈X r2

∫
Sxr2

P (Y r2 = yr2|Xr2 = xr2 , Y r1 = yr1 , U = u)fU |Y r1 (u|yr1)du
, (4.4)

where (4.3) and (4.4) are due to the chain rule and the encoding structure in (4.1)
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provided that P (Y r1 = yr1) 6= 0 holds for ∀yr1 ∈ Yr1 . Also

P (Y r2 = yr2|U = u, Y r1 = yr1)

=
∑

xr2∈X r2

P (Y r2 = yr2|Xr2 = xr2 , Y r1 = yr1 , U = u).1{u ∈ Sxr2}

=
∑

xr1∈X r1

∑
xr2∈X r2

P (Y r2 = yr2|Xr2 = xr2 , Xr1 = xr1 , Y r1 = yr1).1{u ∈ Sxr1 ∩ Sxr2},

(4.5)

where (4.5) is due to encoding functions at the first two steps and Pr2 = {Sxr2 :

xr2 ∈ X r2} denotes the quantization cells at the second step. For the special case of

a DMC, as noted by (2.1), we have:

P (Y r2 = yr2|U = u, Y r1 = yr1) =
∑

xr2∈X r2

P (Y r2 = yr2|Xr2 = xr2).1{u ∈ Sxr2},

It can be shown that the optimal codebook at every step is the conditional expectation

of the source given the received sequences, i.e. for the kth step we have

cyr1 ,...,yrk = E[U |Yr1+···+rk = (yr1 , . . . , yrk)], (4.6)

and according to the received sequence (yr1 , yr2 , · · · , yrk−1) the NNC condition at the

kth step is given by

Sxrk =
{
u : d(u, yr1 , yr2 , . . . , yrk−1 , xrk)

≤ d(u, yr1 , yr2 , . . . , yrk−1 , x̂rk), x̂rk 6= xrk ,∀x̂rk ∈ X rk
}
,∀xrk ∈ X rk (4.7)
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where

d(u, yr1 , yr2 , . . . , yrk−1 , xrk) ,
∑
yrk

P (yrk |xrk , yr1 , yr2 , . . . , yrk−1 , u)(u− cyr1 ,yr2 ,...,yrk )2,

P (yrk |xrk , yr1 , yr2 , . . . , yrk−1 , u) =∑
xr1∈X r1

· · ·
∑

xrk−1∈X rk−1

P (yrk |xrk , yr1 , . . . , yrk−1 , xr1 , . . . , xrk−1)

× 1{u ∈ Sxr1 ∩ · · · ∩ u ∈ Sxrk−1},

the corresponding posterior pdf is

fU |Y r1 ,...,Y rk−1 (u|yr1 , . . . , yrk−1)

=
fU |Y r1 ,...,Y rk−2 (u|yr1 , . . . , yrk−2)P (yrk−1|yrk−2 , . . . , yr1 , u)∑

xrk−1∈X rk−1

∫
S
x
rk−1

P (yrk−1|xrk−1 , yrk−2 , . . . , yr1 , u)fU |Y r1 ,...,Y rk−2 (u|yr1 , . . . , yrk−2)du

(4.8)

where

P (yrk−1 |yrk−2 , . . ., yr1 , u) =
∑

xrk−1∈X rk−1

P (yrk−1|xrk−1 , yr1 , yr2 , . . . , yrk−1 , u).1{u ∈ Sxrk−1}

=
∑

xr1∈X r1

· · ·
∑

xrk−1∈X rk−1

P (yrk−1|xrk−1 , yr1 , . . . , yrk−1 , xr1 , . . . , xrk−2)

× 1{u ∈ Sxr1 ∩ · · · ∩ u ∈ Sxrk−1},

and Prk = {Sxrk : xrk ∈ X rk} is a partition of R at the kth step corresponding to the



4.1. SINGLE-USER ADAPTIVE COSQ WITH FEEDBACK 66

received sequence over the feedback link. Note that the conditional distortion given

the received sequences (yr1 , yr2 , · · · , yrk−1) at the kth step is given as

D|Y r1 ,...,Y rk−1 = E
[
(U − Û)2|Yr1+···+rk−1 = (yr1 , yr2 , . . . , yrk−1)

]
=

∑
xrk∈X rk

∑
yrk∈Yrk

∫
Sxrk

fU |Y r1 ,Y r2 ,...,Y rk−1 (u|yr1 , yr2 , . . . , yrk−1)

× (u− cyr1 ,...,yrk )2P (yrk |xrk , yr1 , yr2 , . . . , yrk−1 , u)du.

This process is continued until the last step, where an rL-bit COSQ is designed

given all the previously received sequences i.e., (yr1 , . . . , yrL−1) ∈ Yr1+···+rL−1 . The

overall system distortion is the weighted sum of all conditional distortions given the

previously received sequences, i.e.,

D = EY r1 ,...,Y rL−1 [D|Y r1 ,...,Y rL−1 ] (4.9)

where

D|Y r1 ,...,Y rL−1 =
∑

yrL∈YrL

∑
xrL∈X rL

∫
SxrL

f(u|yr1 , . . . , yrL−1)

× (u− cy)2P (yrL|xrL , yrL−1 , . . . , yr1 , u)du, (4.10)

y , (yr1 , . . . , yrL) ∈ Yr, C = {cy ∈ R : y ∈ Yr} is the codebook at the final step, and

PrL = {SxrL : xrL ∈ X rL} denotes the partition set in the last step. If the channel is
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memoryless, by (2.1) we have:

D|Y r1 ,...,Y rL−1 =
∑

yrL∈YrL

∑
xrL∈X rL

P (yrL|xrL)

∫
SxrL

f(u|yr1 , . . . , yrL−1)(u− cy)2du. (4.11)

The design procedure of the ACOSQ is presented in2 Algorithm 4.

Algorithm 4: The ACOSQ design procedure at the kth step

Input: Conditional source pdf fU |Y r1 ,Y r2 ,··· ,Y rk−1 , initial codebook C(0), and
the stopping threshold T
Output: Voronoi regions, P(m), reconstruction codebook, C(m+1), and the
ultimate distortion value D(m+1)

D(0) ← ∞
D(1) ← 0
m ← 0
while D(m)−D(m+1)

D(m) > T do

S(m)
xrk ←

{
u : d(u, yr1 , yr2 , . . . , yrk−1 , xrk) ≤

d(u, yr1 , yr2 , . . . , yrk−1 , x̂rk), ∀x̂rk 6= xrk , x̂rk ∈ X rk

}
, ∀xrk ∈ X rk

c
(m+1)
yr1 ,yr2 ,...,yrk ← E

[
U |Yr1+···+rk = (yr1 , yr2 , . . . , yrk)

]
D(m+1) ← E

[
(U − Û)2|Yr1+···+rk−1 = (yr1 , yr2 , . . . , yrk−1)

]
m← m+ 1

end

The MATLAB scripts corresponding to this algorithm with r = (1, 1, 1, 1) are available at https:

//github.com/Saeed-Rezazadeh/ACOSQ-1-1-1-1.git.

As mentioned earlier, once the quantizers are designed, the source is also encoded

in L steps. More specifically, at the first step, the source output is compared to

the partition set Pr1 , mapped to the nearest quantization cell index and transmitted

over the channel. Due to the presence of feedback, the encoder knows about the

received sequence at the receiver; therefore, for the transmission of the next r2 bits

2The MATLAB scripts corresponding to the ACOSQ design of Section. 4.1 with different bit
allocations are available at https://github.com/Saeed-Rezazadeh/.
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in the second step, the source output is compared to the partition set Pr2 for the

posterior distribution corresponding to the received sequence. This means that the

source output is compared to a different partition set depending on which sequence

had been received in the previous step. The third step involves the transmission of

the next r3 bits based on the previously received sequences yr1 ∈ Yr1 and yr2 ∈ Yr2 .

This process is continued until the entire r bits are transmitted.

It is necessary to mention that based on (4.10), only the reconstruction codebook

from the last step is of significance for the computation of the overall system distor-

tion; however, the intermediate quantization cells are needed during the transmission

phase. Moreover, the quantization cells at every encoding step is optimized subject

to minimizing the conditional distortion given all the previous received sequences up

to that particular step without considering the effects of future channel inputs that

will be generated in the succeeding encoding steps. Finally, note that, for a discrete

channel with memory, exploiting the intra-dependency between the channel inputs by

considering future transmissions to design the intermediate quantizers could poten-

tially lead to improving the overall system distortion. In the next section, we propose

an adaptive COSQ scheme which takes into account future transmissions to design

the quantizers at every encoding step.

4.2 Improvements to the Single-User Adaptive COSQ With Feedback

Similar to the scheme described in Section 4.1, we propose an N -level adaptive COSQ

which is designed within L steps. Also, the transmission of the source is a multistep

process such that r = r1 + · · · + rL where r = log2N is the total number of bits

to be transmitted and rk, for k = 1, 2, . . . , L, is the number of bits used to encode
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and transmit the source at the kth step. At the first step, r1 bits, xr1 ∈ X r1 , are

used to encode the source with pdf fU(·). Using the feedback channel, the encoder is

informed about the received r1-tuple channel output yr1 ∈ Yr1 . In the second step,

r2 bits are generated based on the received channel outputs in the previous step (i.e.,

yr1 ∈ Yr1). This process is continued until the entire r bits are transmitted. In the

following, we delineate the differences in the design of the proposed ACOSQ and the

adaptive scheme of Section 4.1.

To design the adaptive quantizer, in the first step, an optimal r-bit COSQ is de-

signed where the encoder (i.e., quantization cells) and the decoder (i.e., the codebook)

are optimized subject to minimizing the following distortion function

D = E[(U − Û)2]

=
∑

x(1)∈X r

∑
y(1)∈Yr

P (Y(1) = y(1)|X(1) = x(1))

∫
S
x(1)

fU(u)(u− cy(1))2du (4.12)

where P(1) = {Sx(1) ⊂ R : x(1) ∈ X r} and3 C(1) = {cy(1) ∈ R : y(1) ∈ Yr} are the

partition set and the codebook for the first step, respectively such that

cy(1) = E[U |Y = y(1)].

Although, an optimal r-bit COSQ is designed, only r1 bits, xr1 ∈ X r1 , out of the

possible r bits, x(1) ∈ X r, are chosen for transmission. Note that the transmitted

r1-tuple, xr1 ∈ X r1 , is a selection of r1 bits from the r-tuple x(1) ∈ X r, hence, there

are a total of
(
r
r1

)
×r1! possibilities to choose the r1-tuple channel input. In the second

3Note that the digit embraced with parentheses used as super-script denotes the encoding step;
e.g., x(k) ∈ X r−(r1+···+rk−1) and y(k) ∈ Yr−(r1+···+rk−1) represent the r − (r1 + · · · + rk−1)-tuple
channel input and channel output at the kth step, respectively.
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step, another optimal r-bit COSQ is designed to optimize the remaining r − r1 bits

based on the previously received sequence, i.e., yr1 ∈ Yr1 which is the channel output

corresponding to the transmitted sequence xr1 ∈ X r1 in the first step. In other words,

in the second step, the encoding and the decoding functions are subject to minimizing

the following distortion function

D =
∑

yr1∈Yr1

∑
y(2)∈Yr−r1

∑
xr1∈X r1

∑
x(2)∈X r−r1

P (Y r1 = yr1|Xr1 = xr1)

× P (Y(2) = y(2)|X(2) = x(2), Y r1 = yr1 , Xr1 = xr1)

∫
Sxr1∩Sx(2)

fU(u)(u− cyr1 ,y(2))2du

(4.13)

where Sxr1 =
⋃

x′∈X r−r1

Sx(1) , x′ ∈ X r−r1 is the group of bits not chosen for transmission

in the first step, and P(2) = {Sx(2) : x(2) ∈ X r−r1} is the partition set for the second

step such that for every yr1 ∈ Yr1

Sx(2) =
{
u ∈ R : d(2)(u, yr1 , xr1 ,x(2))

≤ d(2)(u, yr1 , xr1 , x̂(2)), x̂(2) 6= x(2), ∀x̂(2) ∈ X r−r1
}
, ∀x(2) ∈ X r−r1 , (4.14)

where

d(2)(u, yr1 , xr1 ,x(2)) = E[(U − Û)2|U = u, Y r1 = yr1 , Xr1 = xr1 ,X(2) = x(2)]

=
∑

y(2)∈Yr−r1

P (Y(2) = y(2)|X(2) = x(2), Y r1 = yr1 , Xr1 = xr1)(u− cyr1 ,y(2))2.

(4.15)
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For the special case of a memoryless channel we have:

d(2)(u, yr1 , xr1 ,x(2)) =
∑

y(2)∈Yr−r1

P (Y(2) = y(2)|X(2) = x(2))(u− cyr1 ,y(2))2. (4.16)

Here, C(2) = {cyr1 ,y(2) : (yr1 ,y(2)) ∈ Yr} denotes the codebook for the second step

such that

cyr1 ,y(2) = E[U |Y = (yr1 ,y(2))]

=

∑
xr1∈X r1

∑
x(2)∈X r−r1

P (yr1|xr1)P (y(2)|x(2), yr1 , xr1)

∫
Sxr1∩Sx(2)

ufU(u)du

∑
xr1∈X r1

∑
x(2)∈X r−r1

P (yr1|xr1)P (y(2)|x(2), yr1 , xr1)

∫
Sxr1∩Sx(2)

fU(u)du
. (4.17)

If the channel is memoryless we have:

cyr1 ,y(2) = E[U |Y = (yr1 ,y(2))]

=

∑
xr1∈X r1

∑
x(2)∈X r−r1

P (yr1|xr1)P (y(2)|x(2))

∫
Sxr1∩Sx(2)

ufU(u)du

∑
xr1∈X r1

∑
x(2)∈X r−r1

P (yr1|xr1)P (y(2)|x(2))

∫
Sxr1∩Sx(2)

ufU(u)du
· (4.18)

Similar to the previous step, only r2 bits out of the possible r − r1 bits are used for

encoding the source at the second step. The r2-tuple channel input, xr2 ∈ X r2 which

is a selection of r2 bits from the (r − r1)-tuple x(2) ∈ X r−r1 , is then transmitted over

the noisy channel. Note that for every received sequence yr1 , there are a total of(
r−r1
r2

)
× r2! possibilities to choose the channel input Xr2 = xr2 .
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In general, the NNC and CC conditions along with the corresponding distor-

tion function at the kth step for the given received sequence (yr1 , yr2 , . . . , yrk−1) ∈

Yr1+r2+···+rk−1 are as follows

Sx(k) =
{
u : d(k)(u, yr1 , . . . , yrk−1 , xr1 , . . . , xrk−1 ,x(k))

≤ d(k)(u, yr1 , . . . , yrk−1 , xr1 , . . . , xrk−1 , x̂(k)),

∀x̂(k) 6= x(k), x̂(k) ∈ X r−(r1+···+rk−1)
}
, ∀x(k) ∈ X r−(r1+···+rk−1) (4.19)

where

d(k)(u, yr1 , . . . , yrk−1 , xr1 , . . . , xrk−1 ,x(k)) ,∑
y(k)∈Yr−(r1+···+rk−1)

P (y(k)|x(k), yr1 , . . . , yrk−1 , xr1 , . . . , xrk−1)(u− cy)2,

cy = E[U |Y = (yr1 , . . . , yrk−1 ,y(k))]

=

∑
xr1∈X r1

· · ·
∑

x(k)∈X r−(r1+···+rk−1)

P (yr1 |xr1) · · ·P (y(k)|x(k), . . . , yr1 , xr1)

∫
Sxr1∩···∩Sx(k)

ufU (u)du

∑
xr1∈X r1

· · ·
∑

x(k)∈X r−(r1+···+rk−1)

P (yr1 |xr1) · · ·P (y(k)|x(k), . . . , yr1 , xr1)

∫
Sxr1∩···∩Sx(k)

fU (u)du
,

(4.20)

and Prk = {Sxrk : xrk ∈ X rk}, such that Sxrk =
⋃

x′∈X r−(r1+r2+···+rk)

Sx(k) , for x(k) ∈
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X r−(r1+···+rk−1) and x′ ∈ X r−(r1+r2+···+rk) is the group of bits not chosen for transmis-

sion in the kth step, and

D = E[(U − Û)2]

=
∑

xr1∈X r1

· · ·
∑

x(k)∈X r−(r1+···+rk−1)

∑
yr1∈Yr1

· · ·
∑

y(k)∈Yr−(r1+···+rk−1)

P (yr1|xr1)× · · ·

× P (y(k)|x(k), yrk−1 , xrk−1 , . . . , yr1 , xr1)×
∫

Sxr1∩···∩Sx(k)

fU(u)(u− cy)2du. (4.21)

This process is continued until the last step, where the last rL bits are optimized

based on all the previously received sequences over the feedback channel. More specif-

ically, at the last step, an r-bit COSQ is designed such that the last rL bits are

optimized subject to minimizing the following distortion function based on all the

previously received sequences (yr1 , yr2 , . . . , yrL−1) ∈ Yr1+···+rL−1 :

D = E[(U − Û)2]

=
∑

xr1∈X r1

· · ·
∑

xrL∈X rL

∑
yr1∈Yr1

· · ·
∑

yrL∈YrL

P (yr1|xr1)× · · ·

× P (yrL|xrL , yrL−1 , xrL−1 , . . . , yr1 , xr1)×
∫

Sxr1∩···∩SxrL

fU(u)(u− cy)2du (4.22)

where y , (yr1 , . . . , yrL) ∈ Yr,

SxrL = {u ∈ R : d(L)(u, yr1 , · · · , yrL−1 , xr1 , . . . , xrL−1 , xrL)

≤ d(L)(u, yr1 , · · · , yrL−1 , xr1 , . . . , xrL−1 , x̂rL), ∀x̂rL 6= xrL , x̂rL ∈ X rL}, ∀xrL ∈ X rL ,

(4.23)
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and

d(L)(u, yr1 , · · · , yrL−1 , xr1 , . . . , xrL−1 , xrL)

= E[(U − Û)2|U = u, Y r1 = yr1 , . . . , Y rL−1 = yrL−1 , Xr1 = xr1 , . . . , XrL−1 = xrL ]

=
∑

yrL∈YrL

P (yrL|xrL , . . . , yr1 , xr1)(u− cy)2. (4.24)

If the channel is memoryless then

d(L)(u, yr1 , · · · , yrL−1 , xr1 , . . . , xrL−1 , xrL) =
∑

yrL∈YrL

P (yrL|xrL)(u− cy)2.

The codeword value in the last step is given by

cy = E[U |Y = (yr1 , . . . , yrL)]

=

∑
xr1∈X r1

· · ·
∑

xrL∈X rL

P (yr1|xr1) · · ·P (yrL|xrL , . . . , yr1 , xr1)
∫

Sxr1∩···∩SxrL

ufU(u)du

∑
xr1∈X r1

· · ·
∑

xrL∈X rL

P (yr1|xr1) · · ·P (yrL|xrL , . . . , yr1 , xr1)
∫

Sxr1∩···∩SxrL

fU(u)du
,

(4.25)

and for a memoryless channel we have

cy = E[U |Y = (yr1 , . . . , yrL)]

=

∑
xr1∈X r1

· · ·
∑

xrL∈X rL

P (yr1|xr1) · · ·P (yrL|xrL)

∫
Sxr1∩···∩SxrL

ufU(u)du

∑
xr1∈X r1

· · ·
∑

xrL∈X rL

P (yr1|xr1) · · ·P (yrL|xrL)

∫
Sxr1∩···∩SxrL

fU(u)du
·
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Likewise, the distortion function in the last step for a memoryless channel is given by

D =
∑

xr1∈X r1

· · ·
∑

xrL∈X rL

∑
yr1∈Yr1

· · ·
∑

yrL∈YrL

P (yr1|xr1)× · · · × P (yrL|xrL)

×
∫

Sxr1∩···∩SxrL

fU(u)(u− cy)2du

The proposed ACOSQ at the kth step is presented4 in Algorithm 5. Note that the

sequence for transmission at every step is chosen exhaustively. In other words, at every

step, r bits are used to annotate the quantization cells; however, we exhaustively

search for the best channel input sequence xrk ∈ X rk that minimizes the ultimate

overall system distortion given by (4.22); making the design phase of the proposed

ACOSQ complex as the total number bits (i.e., r) and the number of encoding steps

(i.e., L) grow large. However, once the quantizers are designed, the ultimate ACOSQ

is a robust JSCC with low complexity and low delay. We note that a simple approach

to reduce the system design complexity is to use the first rk bits of the generated

sequence at every step for transmission instead of searching for the best rk tuple

exhaustively. The experimental results for the proposed ACOSQ with and without

exhaustive search are provided in Tables A.1, A.2, and A.3 in Appendix A.

Similar to the ACOSQ design of Section 4.1, the intermediate partitions sets are

required to transmit the source; however, the codebook from only the last step of

the design process is significant in the computation of overall system distortion. The

distortion function in the last step given by (4.22) determines the quality of the

quantizer.

4The MATLAB scripts corresponding to the ACOSQ design of Section. 4.2 with different bit
allocations are available at https://github.com/Saeed-Rezazadeh/.
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Algorithm 5: The proposed ACOSQ design procedure at the kth step

Input: The source pdf f , initial codebook C(0), and the stopping threshold T
Output: Voronoi regions, P(m), reconstruction codebook, C(m+1), and the
ultimate distortion value D(m+1)

D(0) ← ∞
D(1) ← 0
m ← 0
while D(m)−D(m+1)

D(m) > T do

S(m)

x(k) ←
{
u : d(k)(u, yr1 , yr2 , . . . , yrk−1 ,x(k)) ≤

d(k)(u, yr1 , yr2 , . . . , yrk−1 , x̂(k)), ∀x̂(k) 6= x(k), x̂(k) ∈
X r−(r1+···+rk−1)

}
, ∀x(k) ∈ X r−(r1+···+rk−1)

c
(m+1)
y ← E

[
U |Y = (yr1 , yr2 , . . . , yrk−1 ,y(k))

]
D(m+1) ← E(U − Û)2, as given by (4.21)
m← m+ 1

end

The MATLAB scripts corresponding to this algorithm with r = (1, 1, 1, 1) are available at https:

//github.com/Saeed-Rezazadeh/Proposed-ACOSQ-1-1-1-1.git.

Similar to the scheme of [34], also described in Section 4.1, in the proposed

ACOSQ, the source outputs are encoded in L steps. Let Pr1 = {Sxr1 : xr1 ∈ X r1} de-

note the partition set in the first step. The source output is compared to the partition

set Pr1 , mapped to the nearest quantization index, and transmitted. Likewise in the

second step, the source output is compared with the partition set Pr2 = {Sxr2 : xr2 ∈

X r2}, where Sxr2 =
⋃

x′∈X r−r1−r2

Sx(2) and x′ ∈ X r−r1−r2 is the group of bits not chosen

for transmission in the second step, corresponding to the received sequence over the

feedback link. Note that due to the presence of feedback at every step, the source

output is compared to a different partition set according to the previously received

sequence over the feedback link. This process is continued until the entire r bits are

transmitted.
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4.3 Numerical Results

In this section, we provide the experimental results for designing a 4-bit adaptive

quantizer. For such a quantization rate, different possible coding strategies are also

used to further illustrate the effect of feedback throughout the transmission process.

For instance to design a 4-bit quantizer, we consider rk = 1 for k = 1, 2, 3, 4. In other

words, one bit is used to encode and transmit the source at every step such that every

single bit is adapted to the previously received channel outputs; utilizing the most

amount of feedback information. Other possible coding strategies are also provided

in this section.

The experimental results for the scheme of [34] is referred to as ACOSQ whereas

the adaptive scheme presented in Section 4.2 is referred to as the proposed ACOSQ.

For the sake of comparison, we provide the experimental results for the non-adaptive

COSQ design [15], referred to as NA-COSQ, where the encoder outputs are not

adapted to the previous channel outputs so that the source is encoded in a single

step. The source to be encoded is a memoryless Gaussian source with zero mean

and unit variance. The encoder outputs are transmitted over a discrete channel with

additive Markov noise with memory order M = 1 as described in Section 2.1.1. The

parameter δ determines the amount of noise correlation. The performance of the

two aforementioned adaptive COSQs and the non-adaptive COSQ are presented in

terms of SDR values such that SDR = log10
1
D

as the source has zero-mean and unit-

variance. Numerical results for the 4-bit ACOSQ design of [34], also described in

Section 4.1, and the proposed ACOSQ over the binary Markov channel are presented

in Tables 4.1, 4.2, and 4.3 for different values of δ. Also provided in these tables is

the system’s OPTA obtained by evaluating D(rC), where D(·) is the distortion-rate
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function of the source for the squared-error distortion measure and C is the channel

capacity in bits per channel use. For a given bit allocation, the best performance

obtained by comparing the two adaptive schemes described in Sections 4.1 and 4.2 is

shown with boldface values whereas the best performance achieved among all different

bit allocations are underlined.

Initial codebook selection for adaptive quantizers

As noted earlier, for the scheme of [34] (also referred to as ACOSQ) at every step k,

an rk-bit COSQ is designed for the source with the conditional pdf given a received

sequence over the feedback link. To initialize the quantizer at each step, we use

the same approach as in [15]. In other words, at each step an SQ, considering a

noiseless channel, is designed for the source with the posterior pdf corresponding to

the received sequence using the splitting algorithm as the initial codebook selection.

The resulting codebook is used to initialize the rk-bit COSQ for the channel with

the lowest cross-over probability ε. Once the quantizers for all encoding steps are

designed, we slightly increase the channel cross-over probability and design all of the

quantizers again, setting the previously obtained codebook (for small ε) at every step

as the initial state of the quantizer at the corresponding encoding step for the new ε.

Moreover, the design of the proposed ACOSQ is also a multi-step process where

at every step an r-bit COSQ is designed based on the information obtained from the

feedback channel. The ultimate codebook for the last step in the ACOSQ is used as

the initial codebook for the r-bit COSQ at the first step of the proposed ACOSQ. The

codebook obtained at every step is used to initialize the r-bit quantizer in the next

step. Similar to ACOSQ, once the quantizers in all steps are designed, we slightly
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increase the channel cross-over probability, ε, and design the quantizers again, using

the previously obtained codebook in the first step (for small ε) as the initial state of

the r-bit COSQ in the first step with new ε. The resulting codebook obtained in the

first step is then used to initialize the quantizer in the next step.

Table 4.1: SDR (in dB) performance results of the single-user ACOSQs compared to
the NA-COSQ over a discrete memoryless BSC (δ = 0).

bit allocation ε = 0.001 ε = 0.005 ε = 0.01 ε = 0.05 ε = 0.1

r = (1, 1, 1, 1) ACOSQ 19.30 16.96 15.20 10.39 7.38
Proposed
ACOSQ

19.37 17.07 15.12 10.41 7.37

r = (1, 1, 2) ACOSQ 19.22 16.75 14.99 9.77 6.77
Proposed
ACOSQ

19.27 16.70 14.82 9.89 6.80

r = (1, 2, 1) ACOSQ 19.14 16.45 14.58 9.89 6.89
Proposed
ACOSQ

19.02 16.26 14.72 9.90 6.98

r = (2, 1, 1) ACOSQ 18.80 15.71 14.44 9.77 6.72
Proposed
ACOSQ

18.90 16.10 14.64 9.97 7.16

r = (1, 3) ACOSQ 18.81 15.82 13.99 9.20 6.30
Proposed
ACOSQ

18.74 15.73 13.84 9.20 6.30

r = (3, 1) ACOSQ 18.14 14.78 13.27 9.36 6.47
Proposed
ACOSQ

18.56 15.29 13.92 9.47 6.55

r = (2, 2) ACOSQ 18.74 15.60 14.21 8.68 6.07
Proposed
ACOSQ

18.63 15.42 13.78 9.31 6.52

r = 4 NA-COSQ 17.51 14.24 12.50 8.28 5.88
OPTA 23.80 22.98 22.13 17.18 12.78

To examine how the adaptive designs combat channel errors, consider a 4-bit

ACOSQ that is to encode the source within four steps such that at every encoding

step, one bit is used to encode the source samples. In the beginning, the first bit is
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Table 4.2: SDR (in dB) performance results of the single-user ACOSQs compared to
the NA-COSQ over the additive Markov noise channel with memory δ = 5.

bit allocation ε = 0.001 ε = 0.005 ε = 0.01 ε = 0.05 ε = 0.1

r = (1, 1, 1, 1) ACOSQ 19.30 17.00 15.27 11.86 9.99
Proposed
ACOSQ

19.68 17.79 16.22 12.03 9.96

r = (1, 1, 2) ACOSQ 19.26 16.89 15.39 11.69 9.48
Proposed
ACOSQ

19.53 17.40 15.82 11.52 9.71

r = (1, 2, 1) ACOSQ 19.13 16.43 15.02 10.92 8.31
Proposed
ACOSQ

19.57 17.64 16.15 11.73 9.51

r = (2, 1, 1) ACOSQ 19.42 17.36 15.68 11.73 9.91
Proposed
ACOSQ

19.74 18.05 16.60 11.73 9.64

r = (1, 3) ACOSQ 19.33 16.56 15.21 11.23 8.93
Proposed
ACOSQ

19.43 17.09 15.40 11.04 8.76

r = (3, 1) ACOSQ 19.35 17.10 15.50 11.07 9.11
Proposed
ACOSQ

19.50 17.53 16.10 11.76 9.67

r = (2, 2) ACOSQ 19.33 17.30 15.55 11.16 9.21
Proposed
ACOSQ

19.70 17.94 16.45 11.54 9.34

r = 4 NA-COSQ 19.18 16.77 15.25 11.10 8.95
OPTA 24.01 23.77 23.50 21.73 19.96

generated and transmitted over the channel. Through the feedback link, the encoder

knows about the outcome of the previous transmission. As a result, the encoder either

refines the source in case of the perfect reception (i.e., no error) or compensates

for the erroneous reception that occurred previously using the next channel input.

Particularly, for the ACOSQ presented in Section 4.1 and in the low noise level regime

where channel errors rarely occur, the bit-by-bit quantization (successive refinement)

is sub-optimal compared to the NA-COSQ that generates the channel input sequence
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Table 4.3: SDR (in dB) performance results of the single-user ACOSQs compared
to the NA-COSQ over the additive Markov noise channel with memory
δ = 10.

bit allocation ε = 0.001 ε = 0.005 ε = 0.01 ε = 0.05 ε = 0.1

r = (1, 1, 1, 1) ACOSQ 19.45 17.47 16.32 12.93 11.53
Proposed
ACOSQ

19.93 18.77 17.62 13.82 11.87

r = (1, 1, 2) ACOSQ 19.46 17.51 16.48 12.86 11.08
Proposed
ACOSQ

19.84 18.29 17.23 13.14 11.18

r = (1, 2, 1) ACOSQ 19.51 17.22 15.56 12.28 10.14
Proposed
ACOSQ

19.86 18.54 17.42 13.51 11.50

r = (2, 1, 1) ACOSQ 19.64 18.06 16.73 13.32 11.68
Proposed
ACOSQ

19.95 18.81 17.71 13.82 12.01

r = (1, 3) ACOSQ 19.40 17.21 16.06 12.15 9.87
Proposed
ACOSQ

19.74 18.11 16.81 12.99 11.03

r = (3, 1) ACOSQ 19.69 18.05 16.73 12.50 10.58
Proposed
ACOSQ

19.84 18.41 17.17 12.97 10.86

r = (2, 2) ACOSQ 19.60 17.98 16.54 13.16 11.12
Proposed
ACOSQ

19.81 18.38 17.15 13.41 11.30

r = 4 NA-COSQ 19.52 17.59 16.17 12.08 10.08
OPTA 24.03 23.89 23.72 22.61 21.47

in a single step with the same channel parameters (see Figures 4.2(a) and 4.3(a)).

This means that, for the ACOSQ design, due to the imposed tree-structure on the

ultimate codebook obtained in the last step, the resulting system is a sub-optimal

quantizer [19]. Thus, other allocations of quantization rate perform better for this

range of noise level (see Figures 4.2(b) and 4.3(b)). In other words, the intermediate

quantizers do not satisfy the optimality conditions for the overall system design. On

the other hand, for the proposed ACOSQ presented in Section 4.2, the intermediate
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quantizers are designed subject to minimizing the overall system distortion and hence

even in low noise level regime, the proposed ACOSQ performs no worse than the

corresponding NA-COSQ.

Moreover, in the high noise level regime where channel errors occur frequently the

error correction capability of the two adaptive schemes help compensate for channel

distortion and hence achieve a higher SDR value compared to the corresponding NA-

COSQ with the same channel parameters.

Similar to the two-user COSQ described in Chapter 3, for the adaptive single-

user schemes of this chapter we consider two scenarios in dealing with channels with

memory. If there is no prior knowledge about the channel memory, the best approach

is to interleave the channel so that the channel is rendered memoryless. Then an

adaptive quantizer is designed for a memoryless channel. The designed adaptive

scheme is then used over an interleaved single-user channel which is the combination

of the interleaver, discrete one-way channel with additive Markov noise, and the de-

interleaver. Similar to the proposed two-user COSQ, we herein assume the length

of the interleaving is sufficiently large so that the Markov single-user channel along

with the interleaver and de-interleaver is perfectly equivalent to a single-user DMC.

If the channel’s memory characteristic is known a priori, then we may be better off

designing our adaptive systems optimally for the channel with memory.

As noted earlier, the NA-COSQ encodes the source in a single step without adapt-

ing the channel input sequence to the previously received symbols. On the other hand

if the channel inputs are adapted to the previously received symbols, then the largest

gain the information on the feedback link for an interleaved channel (i.e., δ = 0) can
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(a)

(b)

Figure 4.2: ACOSQ schemes for a discrete one-way channel with δ = 0.
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(a)

(b)

Figure 4.3: ACOSQ schemes for a discrete one-way channel with δ = 10.
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provide is 2.83 dB, compared to the corresponding NA-COSQ with the same chan-

nel parameters, which occurs for the proposed ACOSQ with r = (1, 1, 1, 1) and the

cross-over probability ε = 0.005 (see Table. 4.1). Moreover, if the adaptive schemes

are optimally designed for a channel with memory, the largest gain provided by the

adaptive design compared to the corresponding NA-COSQ with the same channel’s

cross-over probability ε is 1.35 dB for δ = 5 and 1.93 dB for δ = 10 which occur for

ε = 0.01 and ε = 0.10, respectively, using the proposed ACOSQ with r = (2, 1, 1) for

both values of δ (see Tables 4.2 and 4.3).

Comparing the best performance obtained among all adaptive schemes with dif-

ferent bit allocations5 for a channel with highly correlated noise (i.e., δ = 10) against

the performance of the NA-COSQ over an interleaved channel (i.e., δ = 0) given a

fixed ε states that the largest gain is 6.13 dB which occurs at ε = 0.1 and is provided

by the proposed ACOSQ with r = (2, 1, 1). This means that one can achieve up to

6.13 dB gain by incorporating both the feedback information and channel memory

into the system’s design and transmission processes.

It is noteworthy to mention that the two adaptive schemes with different bit

allocations can very well be extended to a two-user system setup. In Appendix A,

we extend the adaptive scheme of Section 4.1 to a two-user system where we consider

two orthogonal one-way channels for each direction of transmission.

5The boldface underlined SDR values in Tables 4.1, 4.2, and 4.3.
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Chapter 5

Conclusions

We extended the optimality conditions in [15] for the COSQ design to the TWC setup

such that the statistical dependency between the two users can be exploited as side

information at the decoders. Our numerical results indicated that the statistical cor-

relation between the two users can boost the decoders reliability. Also for correlated

sources, the resulting encoders use identical binary indices for multiple separated

quantization cells, leading to significant reduction in distortion values caused by the

quantizers. Moreover, we compared the performance of our designs with half-duplex

schemes that avoid interference. We showed that our proposed full-duplex system can

considerably outperform the corresponding half-duplex scheme (with identical overall

transmission rate) for the BA-TWC with additive noise. Also, for the BM-TWC with

additive noise where the interference cannot be perfectly eliminated, the full-duplex

design provides superior performance compared to the half-duplex system. Addition-

ally, we investigated the performance of the proposed two-user COSQ over a discrete

TWC with memory. Our experimental results showed that if the system is designed

optimally for the TWC with memory, one can achieve significant improvement com-

pared to the case where the TWC is interleaved and a two-user COSQ is designed for
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a memoryless TWC.

Amanullah et al. proposed in [34] an adaptive quantizer for a single-user one-way

DMC where the design of the quantizer as well as the source encoding are multi-step

processes. In this scheme, the channel input sequence at every step is interactively

adapted to the received information over the feedback link. In this work we addi-

tionally investigated the performance of the ACOSQ of [34] over discrete single-user

one-way channels with additive Markovian noise. Note that the proposed scheme

of [34] is totally ignorant toward the effects of channel inputs in the remaining steps

when generating the channel inputs in a given encoding step. This means that the

quantizers at every step are designed subject to minimizing the distortion in that par-

ticular step for the given received sequence and not subject to minimizing the overall

system distortion. We proposed an ACOSQ such that not only is every channel input

sequence generated adaptively vis-a-vis the received symbols over the feedback link,

but also the effects of the channel inputs in the succeeding encoding steps are taken

into consideration when designing the quantizer. Our experimental results showed

that our proposed ACOSQ compares favorably with the ACOSQ of [34] particularly

over channels with memory. Unlike the proposed ACOSQ described in Section 4.2,

for the ACOSQ of Section 4.1, the effect of future channel inputs is not considered

in the design of the intermediate quantizers. To have a better comparison between

the proposed ACOSQ of Section 4.2 and ACOSQ of Section 4.1, a new mechanism

can be proposed to consider the effect of future channel inputs when encoding the

source samples using the ACOSQ of Section 4.1; therefore, both the adaptive schemes,

once designed, will benefit from considering the effects of future channel inputs for

transmitting their source information.
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Figure 5.1: Block diagram of a JSCC system using scalar quantization and joint MAP
decoder over a discrete TWC with memory.

There are several extensions of the current work that can be investigated in the

future studies. Another JSCC scheme can be discussed that benefits from the chan-

nel’s and sources’ memory. In other words, the problem of joint sequence MAP

decoding for two quantized sources transmitted over a discrete TWC with an arbi-

trary user-interference can be an interesting future research direction. As depicted in

Figure 5.1, each real-valued source samples is first encoded by an SQ designed for a

noiseless channel. Using a proper index mapping function, the quantizer outputs are

transmitted over a discrete TWC which in general can have memory as described in

Section 2.1.2. The received sequence is then fed into a joint sequence MAP decoder

at each terminal that exploits the source and channel memory. Future work could

include developing necessary and sufficient conditions to replace the delay prone joint

sequence MAP decoder with an instantaneous (symbol-by-symbol) decoding rule to

significantly reduce the decoding delay and complexity.
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Appendix A

Additional Analysis

A.1 Proposed ACOSQ With and Without Exhaustive Search

In this section we show the performance gain that can be realized via an exhaustive

search determining the best channel input against the case where the first rk bits

of the generated sequence are chosen as the channel input at every encoding step.

Tables A.1, A.2, and A.3 show1 numerical results , in terms of SDR values, with

different channel parameters (i.e., ε and δ) for the proposed ACOSQ scheme where

in these tables for every bit allocations the SDR values in the upper row corresponds

to the case where at the kth step, the first rk bits of the quantization index x(k) ∈

X r−(r1+···+rk−1) is chosen for transmission whereas the second row shows the results

of exhaustive search for choosing the channel input sequence at every step.

A.2 ACOSQ for a Two-User System

All of the adaptive schemes discussed in Chapter 4 can be extended to a two-user

setup. Consider the two-user system depicted in Figure A.1 where at each terminal a

1In Tables A.1, A.2, and A.3 the best approach for choosing the channel input sequence is shown
in boldface letters for a given bit allocation.
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Table A.1: SDR (in dB) performance results of the proposed single-user ACOSQ with
and without exhaustive search compared to the NA-COSQ over a discrete
memoryless BSC (δ = 0).

bit allocation ε = 0.001 ε = 0.005 ε = 0.01 ε = 0.05 ε = 0.1

r = (1, 1, 1, 1) Proposed 19.37 17.07 15.09 9.44 6.79
ACOSQ 19.37 17.07 15.12 10.41 7.37

r = (1, 1, 2) Proposed 19.27 16.70 14.82 9.08 6.46
ACOSQ 19.27 16.70 14.82 9.89 6.80

r = (1, 2, 1) Proposed 18.92 16.14 14.72 9.54 6.83
ACOSQ 19.02 16.26 14.72 9.90 6.98

r = (2, 1, 1) Proposed 18.44 15.13 13.27 9.59 6.60
ACOSQ 18.90 16.10 14.64 9.97 7.16

r = (1, 3) Proposed 18.74 15.72 13.84 8.85 6.15
ACOSQ 18.74 15.73 13.84 9.20 6.30

r = (3, 1) Proposed 17.92 15.29 13.92 9.22 6.49
ACOSQ 18.56 15.29 13.92 9.47 6.55

r = (2, 2) Proposed 17.96 14.92 13.15 8.88 6.19
ACOSQ 18.63 15.42 13.78 9.31 6.52

r = 4 NA-COSQ 17.51 14.24 12.50 8.28 5.88
OPTA 23.80 22.98 22.13 17.18 12.78

zero-mean unit-variance Gaussian source is to be encoded and transmitted over the

channel. Similar to the proposed two-user NA-COSQ design described in Chapter 3,

the correlated source at each terminal can be treated as side information for the

source at the other terminal. However, in this system setup, the TWC consists of two

orthogonal one-way sub-channels each accompanied with a noiseless feedback link.

In this system setup since the two sub-channels are orthogonal, the two users’ trans-

mission do not interfere with each other in both directions of transmission; therefore,

the outputs of the binary orthogonal one-way channels with additive Markov noise
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Table A.2: SDR (in dB) performance results of the proposed single-user ACOSQ
with and without exhaustive search compared to the NA-COSQ over the
additive Markov noise channel with memory δ = 5.

bit allocation ε = 0.001 ε = 0.005 ε = 0.01 ε = 0.05 ε = 0.1

r = (1, 1, 1, 1) Proposed 19.68 17.73 16.18 11.83 9.64
ACOSQ 19.68 17.79 16.22 12.03 9.96

r = (1, 1, 2) Proposed 19.31 17.40 15.82 11.29 9.17
ACOSQ 19.53 17.40 15.82 11.52 9.71

r = (1, 2, 1) Proposed 19.57 17.64 16.15 11.73 9.51
ACOSQ 19.57 17.64 16.15 11.73 9.51

r = (2, 1, 1) Proposed 19.73 18.03 16.60 11.72 9.64
ACOSQ 19.74 18.05 16.60 11.73 9.64

r = (1, 3) Proposed 19.35 17.04 15.40 11.04 8.76
ACOSQ 19.43 17.09 15.40 11.04 8.76

r = (3, 1) Proposed 19.50 17.53 16.10 11.75 9.67
ACOSQ 19.50 17.53 16.10 11.76 9.67

r = (2, 2) Proposed 19.69 17.92 16.45 11.54 9.34
ACOSQ 19.70 17.94 16.45 11.54 9.34

r = 4 NA-COSQ 19.18 16.77 15.25 11.10 8.95
OPTA 24.01 23.77 23.50 21.73 19.96

at time i for i = 1, 2, . . . can be described as


Y1i = X2i ⊕ Z1i,

Y2i = X1i ⊕ Z2i,

(A.1)

where Yji, Xji, and Zji are the channel outputs, inputs and noise variables at terminal

j for j = 1, 2, respectively. The alphabets X = Y = Z = {0, 1} are all binary. The

noise variables Z1 and Z2, which are independent of each other and of the channel

inputs, are identical to those in (3.3) and (3.4). The ACOSQ design of Section 4.1
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Table A.3: SDR (in dB) performance results of the single-user ACOSQ with and
without exhaustive search compared to the NA-COSQ over the additive
Markov noise channel with memory δ = 10.

bit allocation ε = 0.001 ε = 0.005 ε = 0.01 ε = 0.05 ε = 0.1

r = (1, 1, 1, 1) Proposed 19.87 18.58 17.41 13.51 11.61
ACOSQ 19.93 18.77 17.62 13.82 11.87

r = (1, 1, 2) Proposed 19.53 18.12 16.84 13.14 11.18
ACOSQ 19.84 18.29 17.23 13.14 11.18

r = (1, 2, 1) Proposed 19.84 18.53 17.42 13.51 11.50
ACOSQ 19.86 18.54 17.42 13.51 11.50

r = (2, 1, 1) Proposed 19.94 18.77 17.66 13.68 11.65
ACOSQ 19.95 18.81 17.71 13.82 12.01

r = (1, 3) Proposed 19.70 18.08 16.81 12.99 11.03
ACOSQ 19.74 18.11 16.81 12.99 11.03

r = (3, 1) Proposed 19.83 18.41 17.17 12.97 10.86
ACOSQ 19.84 18.41 17.17 12.97 10.86

r = (2, 2) Proposed 19.81 18.38 17.15 13.04 11.13
ACOSQ 19.81 18.38 17.15 13.41 11.30

r = 4 NA-COSQ 19.52 17.59 16.17 12.08 10.08
OPTA 24.03 23.89 23.72 22.61 21.47

with r = (1, 1, 1, 1) is extended to the aforementioned two-user system setup2. This

means that at each terminal four bits are used to encode and transmit the source.

Similar to the scheme of Section 4.1, the quantizers at both terminals are designed

within four steps such that at every step, one bit is generated adaptive to the received

symbols over the feedback links. The memory of each sub-channel is modeled via the

Polya urn contagion process described in Section 2.1.2 for a general non-orthogonal

TWC where P (Zij = 1) = εj and δj determines the amount of noise correlation at

terminal j for j = 1, 2. Particularly in this section we considered ε1 = ε2 = ε and

δ1 = δ2 = δ.

2The MATLAB scripts corresponding to the ACOSQ design of Section. 4.1 with r = (1, 1, 1, 1)
extended to a two-user system setup are available at https://github.com/Saeed-Rezazadeh/

two-user-ACOSQ-1-1-1-1.git.
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Û1

Û2
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Figure A.1: The ACOSQ design with r = (1, 1, 1, 1) for two orthogonal one-way chan-
nels.

Comparing the SDR values in Table A.4 shows that the two-user ACOSQ out-

performs the corresponding two-user NA-COSQ design with the same channel and

source parameters. More specifically, comparing the performance of the two-user

ACOSQ with correlated Gaussian sources (i.e., ρ = 0.9) for the two-orthogonal one-

way channels with the highly correlated noise (i.e., δ = 10) against the performance

of the two-user NA-COSQ over an interleaved channel with no side information at

the decoders (i.e., δ = 0 and ρ = 0) reveals that the largest gain is 9.06 dB which

occurs for ε = 0.1. In other words, the largest gain one can achieve by incorporating

the feedback information, channel’s memory, and statistical correlation between the

two sources is 9.06 dB. Also, for an interleaved channel (i.e., δ = 0), comparing the

SDR values for the two-user ACOSQ with correlated sources (i.e., ρ = 0.9) and SDR

values for the two-user NA-COSQ without any side information at the decoders for

different values of ε shows that the largest gain provided by the information received
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Table A.4: SDR (in dB) performance results of the two-user ACOSQ with r =
(1, 1, 1, 1) over two-orthogonal one-way channels with additive Markov
noise compared to the two-user NA-COSQ. OPTA values are also in-
cluded.

δ ρ ε = 0.001 ε = 0.005 ε = 0.01 ε = 0.05 ε = 0.1

0 0 ACOSQ 19.30 16.96 15.20 10.39 7.38
NA-COSQ 17.51 14.24 12.50 8.28 5.88

OPTA 23.80 22.98 22.13 17.18 12.78
0.5 ACOSQ 19.32 17.02 15.29 10.65 7.74

NA-COSQ 17.76 14.39 13.01 8.25 6.04
OPTA 25.05 24.23 23.38 18.43 14.03

0.9 ACOSQ 19.70 18.14 16.93 13.14 10.98
NA-COSQ 19.59 17.50 16.08 12.73 10.85

OPTA 31.02 30.20 29.34 24.39 20.00

10 0 ACOSQ 19.45 17.47 16.32 12.93 11.53
NA-COSQ 19.52 17.59 16.17 12.08 10.08

OPTA 24.03 23.89 23.72 22.61 21.47
0.5 ACOSQ 19.48 17.51 16.25 12.86 11.30

NA-COSQ 18.70 16.17 15.44 12.21 10.33
OPTA 25.28 25.14 24.97 23.86 22.72

0.9 ACOSQ 20.07 19.49 18.65 16.74 14.94
NA-COSQ 20.22 19.14 18.24 15.29 13.74

OPTA 31.25 31.10 30.93 29.82 28.69

over the feedback links plus the decoders’ side information is 5.1 dB which occurs

for ε = 0.1. Likewise, for orthogonal one-way channels with highly correlated noise

in both directions of transmission (i.e., δ = 10) the largest gain one can achieve by

exploiting sources’ statistical correlation along with feedback information is 4.86 dB

which occurs for ε = 0.1.

A.3 Computation of OPTA values

As noted in Section. 3.2.2, we obtain the OPTA values using the complete JSCC

theorem in [26, Theorem 3] for transmission of two correlated Gaussian sources over



A.3. COMPUTATION OF OPTA VALUES 95

a memoryless BA-TWC with additive noise. Using this theorem we have:

R(D1) ≤ rI(X1;Y2|X2) (A.2)

R(D2) ≤ rI(X2;Y1|X1), (A.3)

and

I(X1;Y2|X2) = H(Y2|X2)−H(Y2|X1, X2) (A.4)

≤ H(Y2)−H(Y2|X1, X2) (A.5)

≤ 1−H(Z2), (A.6)

where (A.4) is due to the chain rule for mutual information, (A.5) and (A.6) hold

since H(Y2|X2) ≤ H(Y2) ≤ 1. Note that equality in (A.5) and (A.6) is achieved under

a uniform i.i.d. input {X1i} at Terminal 1. A similar result holds for I(X2;Y1|X2).

Also,

H(Z2) = (1− ε2)hb(ε2) + ε2hb(1− ε2),

where hb(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function. More-

over, in case of a BA-TWC with additive Markov noise, the right-hand side mutual

information quantities in (A.2) and (A.3) are replaced with the corresponding mutual

information rates for each channel direction. In this case, we have that

lim
n→∞

1

n
I(Xn

1 ;Y n
2 |Xn

2 ) ≤ 1−H(Z2)

= 1−H(Z22|Z21) (A.7)

= 1− (1− ε2)hb(
ε2

1 + δ2

)− ε2hb(
1− ε2
1 + δ2

)
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where (A.7) is the result of the Markov process with order M = 1, where equality

is achieved under a uniform i.i.d. input at Terminal 1. A similar result holds for

the mutual information rate from Terminal 2 to Terminal 1. Therefore using the

rate-distortion function for a bi-variate Gaussian source sent over a BA-TWC with

additive Markov noise, lower bounds for the system distortions D1 and D2 can be

derived as follows

R(D1) =
1

2
log2

1− ρ2

D1

≤ r
{

1− (1− ε2)hb(
ε2

1 + δ2

)− ε2hb(
1− ε2
1 + δ2

)
}

(A.8)

R(D2) =
1

2
log2

1− ρ2

D2

≤ r
{

1− (1− ε1)hb(
ε1

1 + δ1

)− ε1hb(
1− ε1
1 + δ1

)
}
, (A.9)

hence the system’s overall OPTA value is given by

OPTA = 10× log10

σ2
1 + σ2

2

D1 +D2

. (A.10)

Note that δ1 = δ2 = 0 for a memoryless TWC and hence (A.8) and (A.9) also apply

to a discrete memoryless BA-TWC with additive noise.

Since there is no complete JSCC theorem for the discrete memoryless BM-TWC

even in the absence of additive noise, we include an upper bound on the system’s

OPTA using the converse result in [25, Lemma 2]. To that end, I(X1;Y2|X2) and

I(X2;Y1|X1) are maximized over all possible joint probability distribution P (X1, X2).

Assume that the channel input probability P (X1, X2), for X1 = X2 = {0, 1}, is

uniformly drawn from a standard 3-simplex, we generate a large number of joint

probability distributions to cover the joint distortion region of (D1, D2) as shown in

Figure. A.2. For every probability distribution P (X1, X2), the mutual information

I(X1;Y2|X2) is computed using (A.4) and the lower bounds for the system distortions
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Figure A.2: The joint distortion region for a bi-variate Gaussian source with ρ = 0.9,
a discrete memoryless BM-TWC with ε1 = ε2 = 0.1, and r = 4.

D1 and D2 are given by (A.2) and (A.3) using the maximum values obtained for

I(X1;Y2|X2) and I(X2;Y1|X1), respectively, and the rate-distortion function for a bi-

variate Gaussian source. The system’s overall OPTA upper bound for transmission of

two correlated Gaussian sources over a discrete memoryless BM-TWC with additive

noise is then obtained using (A.10)3.

A.4 Two-user COSQ without adaptation using training set

As mentioned in Section 3.1, the proposed two-user COSQ considers that the joint

pdf of the two sources is known a priori; however, in real-world communication sys-

tems, the source pdf is not known but rather only samples from the two sources

3The MATLAB scripts corresponding to exact/upper bound OPTA values are available at https:
//github.com/Saeed-Rezazadeh/OPTA.git
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are available and we use the training sequences to replace the integrals with sum-

mations and the density function with empirical weights. Thus, for a training set

T =
{

(u1i, u2i)
}W
i=1

, (3.11b) and (3.12a) are modified as

d1(u1,x1) =
∑

x2∈X r

∑
y1∈Yr

∑
y2∈Yr

PY1,Y2|X1,X2(y1,y2|x1,x2)

∑
u2 ∈ Tu1 ∩ Sx2

{(u1 − cy2,u2)
2 + (u2 − cy1,u1)

2} (A.11)

cy2,u2 =

∑
x1∈X r

PY2|X1,X2(y2|x1, E2(u2))
∑

u1∈ Tu2 ∩ Sx1

u1∑
x1∈X r

PY2|X1,X2(y2|x1, E2(u2))× |Tu2 ∩ Sx1|
(A.12)

where Tuj is a narrow strip standing on uj such that

Tuj =
{

(u′1, u
′
2) : u′j ∈ (uj −

α

2
, uj +

α

2
)
}

j = 1, 2,

and α determines the width of the strip. Similarly, (3.11d) and (3.12b) can also

be modified to only use the training set. Finally, the distortion function in (3.8) is

modified as

D =
∑

x1∈X r

∑
x2∈X r

∑
y1∈Yr

∑
y2∈Yr

P (y1,y2|x1,x2)

∑
(u1,u2) ∈ Sx1 ∩ Sx2

{
(u1 − cy2,u2)

2 + (u2 − cy1,u1)
2
}
. (A.13)

It is noteworthy to mention that implementation of the proposed two-user COSQ for

TWCs using the training sequence is feasible only when Tuj ∩ Sxk
6= ∅ for j, k = 1, 2

and j 6= k. It is observed that when the two sources are highly correlated, depending
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on the value of ρ, we may have Tuj ∩ Sxk
= ∅. Hence, the proposed two-user COSQ

with training set is only applicable to uncorrelated sources.



BIBLIOGRAPHY 100

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell Syst. Tech.

J, vol. 27, no. 3, pp. 379–423, July 1948.

[2] ——, “Coding theorems for a discrete source with a fidelity criterion,” IRE Nat.

Conv. Rec, vol. 4, no. 142-163, p. 1, 1959.

[3] T. S. Han, “Multicasting multiple correlated sources to multiple sinks over a

noisy channel network,” IEEE Trans. Inf. Theory, vol. 57, no. 1, pp. 4–13, Jan

2011.

[4] C. Tian, J. Chen, S. N. Diggavi, and S. Shamai, “Optimality and approximate

optimality of source-channel separation in networks,” IEEE Trans. Inf. Theory,

vol. 60, no. 2, pp. 904–918, Feb 2014.

[5] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge Univer-

sity press, 2011.

[6] T. Cover and J. Thomas, Elements of Information Theory. John Wiley & Sons,

2012.



BIBLIOGRAPHY 101

[7] Y. Zhong, F. Alajaji, and L. L. Campbell, “On the joint source-channel cod-

ing error exponent for discrete memoryless systems,” IEEE Trans. Inf. Theory,

vol. 52, no. 4, pp. 1450–1468, April 2006.

[8] ——, “Joint source-channel coding error exponent for discrete communication

systems with Markovian memory,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp.

4457–4472, Dec 2007.

[9] ——, “Joint source-channel coding excess distortion exponent for some memory-

less continuous-alphabet systems,” IEEE Trans. Inf. Theory, vol. 55, no. 3, pp.

1296–1319, March 2009.

[10] R. G. Gallager, Information Theory and Reliable Communication. Springer,

1968, vol. 2.

[11] F. Alajaji and P.-N. Chen, An Introduction to Single-User Information Theory.

Springer, 2018.

[12] V. Kostina and S. Verd, “Lossy joint source-channel coding in the finite block-

length regime,” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 2545–2575, May

2013.

[13] J. Lim and D. L. Neuhoff, “Joint and tandem source-channel coding with com-

plexity and delay constraints,” IEEE Trans. Commun., vol. 51, no. 5, pp. 757–

766, May 2003.

[14] V. B. Balakirsky, “Joint source-channel coding with variable length codes,” in

Proc. IEEE Int. Symp. Inf. Theory, June 1997, p. 419.



BIBLIOGRAPHY 102

[15] N. Farvardin and V. Vaishampayan, “Optimal quantizer design for noisy chan-

nels: An approach to combined source - channel coding,” IEEE Trans Inf. The-

ory, vol. 33, no. 6, pp. 827–838, November 1987.

[16] ——, “On the performance and complexity of channel-optimized vector quantiz-

ers,” IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 155–160, Jan 1991.

[17] N. Phamdo, N. Farvardin, and T. Moriya, “A unified approach to tree-structured

and multistage vector quantization for noisy channels,” IEEE Trans. Inf. Theory,

vol. 39, no. 3, pp. 835–850, May 1993.

[18] R. Gray and Y. Linde, “Vector quantizers and predictive quantizers for Gauss-

Markov sources,” IEEE Trans. Commun., vol. 30, no. 2, pp. 381–389, February

1982.

[19] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.

Springer Science & Business Media, 2012, vol. 159.

[20] J. Bakus and A. K. Khandani, “Quantizer design for channel codes with soft-

output decoding,” IEEE Trans. Veh. Tech., vol. 54, no. 2, pp. 495–507, March

2005.

[21] C. E. Shannon, “Two-way communication channels,” in Proc. 4th Berkeley Symp.

Math. Stat. and Prob. The Regents of the University of California, 1961.

[22] A. Kaspi, “Two-way source coding with a fidelity criterion,” IEEE Trans. Inf.

Theory, vol. 31, no. 6, pp. 735–740, November 1985.

[23] A. Maor and N. Merhav, “Two-way successively refined joint source-channel

coding,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1483–1494, April 2006.



BIBLIOGRAPHY 103

[24] M. Heindlmaier, O. Ican, and C. Rosanka, “Scalar quantize-and-forward for sym-

metric half-duplex two-way relay channels,” in 2013 IEEE Inter. Symp. Inf.

Theory, July 2013, pp. 1322–1326.

[25] J.-J. Weng, F. Alajaji, and T. Linder, “Lossy transmission of correlated sources

over two-way channels,” in 2017 IEEE Inf. Theory Workshop (ITW), Nov 2017,

pp. 354–358.

[26] ——, “Joint source-channel coding for the transmission of correlated sources over

two-way channels,” 2019 IEEE Inter. Symp. Inf. Theory, 2019.

[27] P. Minero, S. H. Lim, and Y. Kim, “A unified approach to hybrid coding,” IEEE

Trans. Inf. Theory, vol. 61, no. 4, pp. 1509–1523, April 2015.

[28] O. Y. Bursalioglu, G. Caire, M. Fresia, and H. V. Poor, “Joint source-channel

coding at the application layer for parallel Gaussian sources,” in 2009 IEEE

Inter. Symp. Inf. Theory, June 2009, pp. 2126–2130.

[29] S. P. Beheshti, F. Alajaji, and T. Linder, “Optimal joint decoding of correlated

data over orthogonal multiple-access channels with memory,” IEEE Trans. Veh.

Tech., vol. 66, no. 1, pp. 79–94, Jan 2017.

[30] S. Shahidi, F. Alajaji, and T. Linder, “MAP detection and robust lossy coding

over soft-decision correlated fading channels,” IEEE Trans. Veh. Tech., vol. 62,

no. 7, pp. 3175–3187, Sep. 2013.

[31] J. Weng, F. Alajaji, and T. Linder, “Optimized signaling of binary correlated

sources over Gaussian multiple access channels,” in 2018 IEEE 88th Veh. Tech.

Conf. (VTC-Fall), Aug 2018, pp. 1–5.



BIBLIOGRAPHY 104

[32] T. P. Mitchell, F. Alajaji, and T. Linder, “Binary signaling of correlated sources

over orthogonal multiple-access channels,” IEEE Wireless Commun. Lett., vol. 4,

no. 5, pp. 501–504, Oct 2015.

[33] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communi-

cation in cellular networks,” IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp.

1801–1819, Fourthquarter 2014.

[34] A. S. Amanullah and M. Salehi, “Joint source-channel coding in the presence of

feedback,” in Proc of 27th Asilomar Conf. Signals, Syst. Comput., Nov 1993, pp.

930–934 vol.2.

[35] M. Mushkin and I. Bar-David, “Capacity and coding for the gilbert-elliott chan-

nels,” IEEE Trans. Inf. Theory, vol. 35, no. 6, pp. 1277–1290, Nov 1989.

[36] F. Alajaji and T. Fuja, “A communication channel modeled on contagion,” IEEE

Trans. Inf. Theory, vol. 40, no. 6, pp. 2035–2041, Nov 1994.

[37] S. Lloyd, “Least squares quantization in pcm,” IEEE Trans. Inf. Theory, vol. 28,

no. 2, pp. 129–137, March 1982.

[38] J. Kieffer, “Uniqueness of locally optimal quantizer for log-concave density and

convex error weighting function,” IEEE Trans. Inf. Theory, vol. 29, no. 1, pp.

42–47, January 1983.

[39] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer design,”

IEEE Trans. Commun., vol. 28, no. 1, pp. 84–95, January 1980.

[40] N. Farvardin, “A study of vector quantization for noisy channels,” IEEE Trans.

Inf. Theory, vol. 36, no. 4, pp. 799–809, July 1990.



BIBLIOGRAPHY 105

[41] B. Hajek, “A tutorial survey of theory and applications of simulated annealing,”

in 1985 24th IEEE Conf. on Decision and Control, Dec 1985, pp. 755–760.

[42] D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, “Convergence and finite-

time behavior of simulated annealing,” Advances in applied probability, vol. 18,

no. 3, pp. 747–771, 1986.

[43] S. Rezazadeh, F. Alajaji, and W.-Y. G. Chan, “Scalar quantizer design for Two-

Way channels,” in 2019 16th Canadian Workshop Inf. Theory (CWIT 2019),

Hamilton, Canada, Jun. 2019.

[44] H. S. Wang, Finite-state modeling, capacity, and joint source/channel coding for

time-varying channels. Rutgers, The State University of New Jersey, 1992.

[45] A. C. Hung and H. . Meng, “Adaptive channel optimization of vector quantized

data,” in Proc DCC ‘93: Data Comp. Conf., March 1993, pp. 282–291.

[46] C. Shannon, “The zero error capacity of a noisy channel,” IRE Trans. Inf. The-

ory, vol. 2, no. 3, pp. 8–19, Sep. 1956.

[47] F. Alajaji, “Feedback does not increase the capacity of discrete channels with

additive noise,” IEEE Trans. Inf. Theory, vol. 41, no. 2, pp. 546–549, March

1995.


