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Abstract 

 
Space-time block codes (STBCs) with orthogonal designs, called orthogonal 

space-time block codes (OSTBCs), provide an elegant encoding and linear 

decoding technique while offering full diversity benefits in multiple-input 

multiple-output (MIMO) environments.  Unfortunately, OSTBCs are difficult 

to design as the number of transmit antennas increases and, other than 

Alamouti’s two-branch diversity scheme, do not achieve full rate.  Non-

orthogonal STBCs (NOSTBCs) relax orthogonality conditions in code design, 

leading to exponential decoding complexity in exchange for higher rates.   

 

In this work, we propose a NOSTBC design based on the linear dispersion 

code (LDC) framework, providing high rates for any number of antennas.  

Our design aims to improve frame error rate (FER) performance, compared 

to well-known STBCs, by iteratively choosing code design parameters that 

minimize the union upper bound on the FER.  This design technique is 

implemented with three different initialization codes: Alamouti’s code, the V-

BLAST code and an LDC code.   

 

For the initialization with Alamouti’s code, new codes with tighter FER 

upper bounds were found for the cases of 2 and 4 receive antennas.  For the 

V-BLAST and LDC initializations, an improved FER upper bound was found 

for the cases of 1, 2 and 4 receive antennas. 
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Simulations show that the new Alamouti-initialized codes outperform 

Alamouti’s code in terms of FER and BER at an increasing rate as the 

number of receive antennas is increased.  The new V-BLAST-initialized 

codes outperformed V-BLAST in FER and BER at a diminishing rate as the 

number of receive antennas increases. Finally, the new LDC-initialized 

codes outperformed the LDC code in FER and BER for the case of 1 receive 

antenna but no conclusive frontrunner was seen for the cases of 2 and 4 

receive antennas, since the error rate computations were too small to be 

reliable for higher CSNRs. 

 

The results show that our non-orthogonal codes, designed by minimizing 

the FER union upper bound, produce strong FER and BER performances 

over a range of receive antennas and CSNRs when compared with the 

selected STBCs.  This error rate improvement comes at the cost of 

exponential decoding complexity, compared to linear decoding complexity for 

orthogonal codes. 
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Chapter 1 

Introduction 

1.1 Motivation 

 

With an increasing demand for reliable cellular and wireless data 

applications, such as wireless Internet, email and multimedia applications, 

there is a rising need for high data rate wireless communication.  As users’ 

demands exceed the capacity of wireless networks, operators are forced to 

find ways to improve the network capacity and throughput in order to 

provide an acceptable level of service.   

 

Unlike wired channels, which are static and predictable, wireless channels 

can be unreliable since they are subjected to time-varying impairments such 

as noise, interference and multipath propagation.  Multipath causes a 

transmitted signal to reach the receiver from two or more paths due to 
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refraction and reflection off of terrestrial objects, such as mountains and 

buildings.  As these scattered waves make their way to the receiver, they 

cause constructive and destructive interference and phase shifting in the 

signal, which ultimately lead to increased receiver errors [16][20].  

 

A proven way to mitigate these effects is by employing diversity techniques.  

In essence, diversity amounts to creating redundancy in the transmitted 

signal with the expectation that the different transmissions will undergo 

different fading.  This provides the receiver with multiple versions of the 

same information.  Current diversity techniques include space (or antenna) 

diversity, frequency diversity and time diversity.  Space diversity uses two or 

more physically separated antennas to create multiple independent fading 

channels.  Frequency diversity takes advantage of the fact that different 

carrier frequencies, sufficiently spaced out, will undergo different fading and 

multipath characteristics over a channel.  In time diversity, signals 

representing the same information are sent over the channel at different 

times, under different channel fading conditions [24][20].   

 

Recent breakthroughs in digital signal processing have allowed wireless 

communication systems to utilize both space and time diversity to address 

system performance needs by employing multiple-antennas at the 

transmitter and/or receiver to create a system with independently fading 

channels.  A system employing more than one transmitting and more than 

one receiving antenna is called a multiple-input, multiple-output (MIMO) 
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system.  MIMO systems have been shown to increase the system capacity as 

the number of transmit and receive antennas increases, when compared 

with single-input, single-output (SISO) systems [26][8].  

 

Space-time coding is a technique used in MIMO communications as a 

means to exploit the full diversity benefits of a multi-antenna system by 

utilizing both space and time diversity to transmit information.  The design 

of these codes takes into account a trade-off between decoding complexity at 

the receiver, maximizing the information rate and minimizing decoding 

errors [16].  

 

A popular family of space-time codes (STCs) is the class of space-time block 

codes (STBCs).  STBCs operate on a block of input symbols, producing a 

matrix whose columns represent antennas and rows represent time.  These 

codes generally do not offer coding gain but their main advantage comes 

from the fact that they can provide full diversity gain with relatively simple 

encoding and decoding schemes, compared with trellis-based codes.  One 

category of STBCs, called orthogonal space-time block codes (OSTBCs), follow 

orthogonal designs in code construction, providing linear-time decoding.  

Unfortunately, the design of these codes for an arbitrary number of transmit 

antennas with rates greater than 1/2 is quite difficult. 

 

There is also a class of non-orthogonal space-time block codes (NOSTBCs) 

which relax the orthogonality conditions in exchange for higher information 
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rates.  One such family of NOSTBCs are linear dispersion codes (LDCs) (or 

linear-STBCs) which break the input data into substreams which are then 

dispersed in linear combinations over space and time [11].  LDCs offer many 

of the advantages of OSTBCs but remain relatively easy to design for any 

number of transmit and receive antennas.  

 

1.2 Literature Review 

 

One of the pioneering papers on STBC design was Alamouti’s 1998  

description of a two-branch transmit diversity scheme, which he generalized 

for any number of receive antennas [1].  The code design followed an 

orthogonal block structure, providing a diversity advantage of Rn2 , where Rn  

is the number of receive antennas.  Recognizing the potential of this 

technique, Tarokh et al. extended Alamouti’s work in [25] by creating 

generalized STCs with orthogonal block coding structure, called orthogonal 

space-time block codes.  In their work, Alamouti’s scheme was generalized 

for any number of transmit antennas for real and complex constellations.  A 

major result of their work was the recognition, via the Hurwitz-Radon 

theorem, that full-rate OSTBCs do not exist for 2>Tn , where Tn  is the 

number of transmit antennas, making Alamouti’s code a unique OSTBC.  

Generalized complex OSTBC design guidelines were proposed which 

achieved a rate 1/2 while a few sporadic codes that achieved rate 3/4 with 

three and four transmit antennas were presented.  More recently, Su et al. 
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[22] found generalized complex OSTBCs with rate 7/11 and 3/5 for the case 

of five and six transmit antennas and Kan et al. [15] presented a rate 5/8 

code employing eight transmit antennas.   

 

Alternatively, non-orthogonal STBCs emerged as a way to overcome the 

shortcoming of orthogonal designs in the sense of full rate attainability for a 

higher number of transmit antennas.  The Bell Labs Layered Space-Time 

(BLAST) codes, first introduced by Foschini [7] (diagonal-BLAST) and later 

modified by Wolniansky et al. in [27] (vertical-BLAST), utilize a non-

orthogonal coding technique which divides the input bit stream into 

substreams that are layered diagonally or vertically over space and time.  In 

2002, Hassibi et al. presented in [11] a new type of NOSTBC design which is 

linear over space and time.  These so-called linear dispersion codes offer 

high performance gains using any number of transmit and receive antennas 

via a design technique which aims to maximize the mutual information 

between the transmitted symbols and received symbols.  More recently, 

Heath et al. [12] proposed an LDC which jointly considers the ergodic 

capacity (via mutual information) and diversity advantage (via the rank and 

determinant criterion in [24]) in code design.  The LDC framework forms the 

basis for the new NOSTBCs designed in this work. 

 

Naturally, it is desirable to quantify the “goodness” of our STCs.  Two such 

measurements are the frame error rate (FER) (also called the codeword error 

rate (CWER)) and the bit error rate (BER).  Both FER and BER can be 
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expressed in terms of the probability of a union of N  (finitely-many) events, 

( )NAAP UKU1 .  Due to the infeasibility of finding this probability outright, 

an upper bound for the probability of a union, known as the union bound 

[26, 4.2.4] is commonly used in its place.  The union bound bounds the 

probability of a union from above by summing the individual terms ( )iAP  for 

N,...,i 1= .  In the context of error probabilities, we define each event as the 

receiver decoding erroneously in favor of a codeword Ŝ  when S  was 

transmitted in a system with only two codewords.  The probability of this 

event is known as the pairwise error probability (PEP) and is denoted by 

( )SS ˆP → .  Many authors have found upper and lower bounds to the PEP in 

lieu of a direct computation, such as Lu et al. in [17] and Tarokh et al. in 

[24].  However, this work will use an exact expression for the PEP as given 

by Behnamfar et al. in [2][3], which relies on the residues of the moment 

generating function (MGF) of the squared-distance between a pair of 

codewords.  This PEP expression is used in the union bound to form an 

upper bound on the FER for newly designed non-orthogonal linear-STBCs. 

 

1.3 Contributions 

 

The contribution of this thesis is a design technique for linear-STBCs based 

on iteratively improving the frame error rate performance by optimizing the 

codeword design parameters to minimize the FER union upper bound.  The 

new codes are formed via an initialization with three well-known STBCs: 
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Alamouti’s OSTBC from [1], the V-BLAST code from [27] and an LDC 

presented in [11].  These new codes are then tested in a computer 

simulation where the FER and BER are computed, plotted and compared 

with the codes used to form them for a range of CSNRs and a varying 

number of receive antennas.   

 

 

1.4 Thesis Outline 

 

The remainder of this thesis is organized as follows.  In Chapter 2, 

background on communication channel models and fundamental results of 

information theory are provided followed by a multi-antenna communication 

system model.  The chapter introduces the fundamental concepts and 

results of space-time block coding with a particular focus on OSTBCs and 

linear-STBCs.  The design tradeoff between orthogonal and non-orthgonal 

codes is also discussed.  An exact PEP expression is introduced which forms 

the foundation for the error rate calculations in the new code design.  

Chapter 3 begins with a derivation of the error probability expression that is 

used in our code design.  The new code design technique is described and 

the formation of new NOSTBCs via initialization with three well-known 

codes is presented at the end of the chapter along with the FER union upper 

bound results.  These newly designed codes are then compared via 

simulation with the codes used to form them and the results are presented 
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and discussed in Chapter 4.  Finally, in Chapter 5, the findings are 

summarized and future research opportunities are proposed. 
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Chapter 2 

Space-Time Block Codes 

 

2.1 Channel Models and Information Theory Results 

 

2.1.1 Channel Models 

 

When working with communication systems, one needs to define a channel 

model to emulate the environmental conditions that will govern the 

communication process.  Two such channel models are the AWGN channel 

and the Rayleigh fading channel. 

 

 

 

 



 - 10 -

AWGN Channel 

The additive white Gaussian noise (AWGN) channel provides a simplistic 

view of a communication channel by modeling the presence of noise without 

accounting for distortion due to signal fading. 

 

The AWGN channel is a discrete-time channel with continuous input and 

output alphabets.  At time t , the channel output tY  is defined as [4] 

ttt VXY +=  , (2.1) 

where tX  is the transmitted signal and is independent of tV , which is the 

i.i.d. additive noise term with Gaussian distribution and covariance matrix 

[ ]
RnV I2E σ== *VVΦ , where ( )*⋅  represents complex conjugation. 

 

Rayleigh Fading Channel 

A more realistic representation of a communication channel, particularly in 

a wireless environment, is the Rayleigh fading channel.  This channel model 

takes into account signal fading incurred during transmission due to 

multipath propagation.  At time t , the channel output tY  is defined as [21] 

tttt VXHY +=  , (2.2) 

where tX , tV  and tH  are independent, with the former two defined as in the 

AWGN case.  tH  denotes the signal attenuation factor due to the 

communication environment with its coefficients having Rayleigh 

distribution with a probability density function (pdf) given by 
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( )
. otherwise 

0 if 
0

2
2

,
a,aeaf

a

H

>

⎪⎩

⎪
⎨
⎧

=
−

 (2.3) 

 

2.1.2 Some Results from Information Theory 

 

Mutual Information 

We first define the mutual information ( )YX;I  between two continuous 

random variables X  and Y  as [4] 

( ) ( ) ( )
( ) ( ) dydxpp
,p,pI

N M
∫ ∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅=

R R yx
yxyxYX log; , (2.4) 

where N  and M  are the dimensions of X  and Y , respectively, ( )yx,p  is the 

joint pdf and ( )xp  and ( )yp  are the pdfs of X  and Y , respectively.  In 

words, the mutual information measures the amount of information in X  

that is shared with Y .  It can be shown that if X  and Y  are independent, 

there will be no mutual information between them, that is ( ) 0; =YXI .  

Examining (2.4) one can verify that ( ) 0; ≥YXI  for any X  and Y . 

 

Capacity 

The information capacity of a communication channel with transmit signal 

covariance matrix [ ]
TnT

X In
P== *XXEΦ  under a power constraint P  is 

defined as 

( ) ( )
( )YX

x
;sup

 tr:
IC

Pp ≤
=

Φ
   bits/channel use, (2.5) 
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where Y  is the received signal.  The supremum is taken over all input pdfs 

that satisfy the given power constraint.   

 

The channel rate cR  represents the number of bits per transmission and is 

said to be “achievable” if information can be transmitted at rate cR  with an 

arbitrarily low probability of error [4].  The operational capacity of a channel 

is defined as the supremum of all achievable rates.  Shannon proved that 

the information capacity in (2.5) and the operational capacity are equal [4] 

and will herein be referred to simply as capacity.  

 

It was shown in [26][16] that the capacity of an AWGN channel with SISO is 

given by 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1122 1logE ,h hPC

σ
   bits/channel use, (2.6) 

where [ ]⋅hE  represents the expected value averaged over h ,  2σP  is called 

the channel signal-to-noise ratio (CSNR) and denoted by sγ  and 11,h  is the 

channel gain between the transmitter and receiver.  The input distribution 

that maximizes the capacity (mutual information) is a circularly symmetric 

complex Gaussian random variable [26].   

 

For a Rayleigh fading channel, beginning with expression (2.5) under a 

power constraint, the authors in [21] show the capacity of a MIMO channel 

with Tn  transmit antennas and Rn  receive antennas is given by 



 - 13 -

          ⎥
⎦

⎤
⎢
⎣

⎡
+= ][det(logE 2

tHHIH
T

s
n n

C
R

γ
   bits/channel use, (2.7) 

where [ ]⋅HE  represents the expected value averaged over the channel matrix 

][ i,jh=H , 
Rn

I is the RR nn ×  identity matrix and t)(⋅  is the Hermitian 

transpose.  The path gains i,jh  between transmit antenna i  and receive 

antenna j , for Tn,...,i 1=  and Rn,...,j 1= , are complex Gaussian with 

Rayleigh fading coefficients with pdf (2.3).   

 

To evaluate the effect on capacity of increasing the number of transmit and 

receive antennas, Grant [9] produced an upper bound on (2.7), which is 

tight for high CSNRs, and found 

(a) For a fixed Tn , as Rn  is increased there is an asymptotically 

logarithmic increase in capacity with Rn . 

(b) For a fixed Rn , as Tn  is increased there is no capacity improvement, 

though this does help to eliminate fading effects. 

(c) For a ratio 1≤= βRT nn , as Tn  and Rn  grow a linear capacity increase 

occurs. 

(d) For a 1>β , there is no asymptotic increase in capacity associated 

with growing Tn  beyond Rn .  

 

Diversity and Coding Gain 

Increased channel capacity of MIMO systems with respect to SISO systems 

can be partly realized through space-time coding, which can provide 
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diversity and coding gains.    Diversity gain is a measure of the advantage 

gained by using diversity techniques – such as space, time or frequency 

diversity – versus a traditional SISO system where no diversity is employed.  

Coding gain is a measure of the advantage of a given code when compared 

with an uncoded system under identical system conditions.   

 

In [24], the authors quantify the diversity and coding gain by first forming a 

Chernoff upper bound on the PEP in terms of the matrix U  defined by 

[ ]i,k
t

*
t,kt,ii,k

i
t

i
tt,i

u

ddu

ŝsd

=

=

−=

∑
U

  

for Tnk,i ≤≤1 , where i
ts  and i

tŝ  are the symbols of the codewords S  and Ŝ  at 

time t  from antenna i , respectively.  Letting Tnr ≤  be the rank of U , then 

the kernel of U  has dimension rnT −  with rnT −  eigenvalues. Taking only its 

r  positive eigenvalues r,...,λλ1 , the worst-case PEP upper bound is written 

as 

( )
RR nr

s
nr

i
i

ˆP
⋅−−

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤→ ∏ 41

γ
λSS  , (2.9) 

which provides a diversity gain of Rnr ⋅  and a coding gain of ( ) r
r

1

21 λλλ L  [24].  

In order to achieve maximal (or full) diversity gain, the matrix U  should be 

full-rank, that is Tnr = , to produce a diversity advantage of RT nn ⋅ . 
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2.2 System Model 

 

We begin our discussion of space-time codes by formally establishing a 

multiple-antenna communication model to be used throughout this work 

(Fig. 2.1).  Consider a system with Tn  transmit and Rn  receive antennas 

where an i.i.d. uniform input bit stream [ ]mb,...,b1=b  is mapped to a 

constellation of size mM 2=  (with unit energy) which is used to form the 

baseband signals s  to encode into blocks S .  To ensure a CSNR of sγ  at 

each receive antenna, the symbols are weighted by 
T

s
n
γ so that transmit 

antenna i  sends i
tn sT

sγ  at time t .  The channel induces Rayleigh flat fading 

with the complex path gain from transmit antenna i  to receive antenna j  

denoted i,jh , which are zero-mean, unit-variance complex Gaussian random 

variables, denoted by ( )1 0,CN , with i.i.d. real and imaginary parts. 

 

Figure 2.1 – Space-time communication model 

 

 

Space-Time Encoder 

Channel  

ML Decoder 

Information Source 

[ ]mb,...,b1=b ( )Tnttt s,...,s1=S  

( )Tnttt ŝ,...,ŝˆ 1=S  ( )Rnttt r,...,r1=R  
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The path gains i,jh  are known to the receiver but not the transmitter and the 

channel is quasi-static, meaning the path gains are constant within a 

symbol period T  but vary from one symbol period to the next.  The received 

signal at antenna j  at time t  can be written as 

j
t

n

i

i
ti,j

T

sj
t vsh

n
r

T

+= ∑
=1

γ
 , (2.10) 

for Rn,...,j 1= , l,...,t 1=  where l  is the frame length, and where j
tv  is the 

additive noise term seen at antenna j  at time t  with ( )1 0,CN  distribution 

and i.i.d. real and imaginary parts.  Defining ( )T1 Rn
ttt r,...,r=R , ( )T1 Tn

tt s,...,s=S , 

( )T1 Rn
ttt v,...,v=V , where ( )T⋅  denotes transposition, and [ ]i,jnn h

TR
=×H , (2.10) 

can be expressed in matrix form as 

t
T

s
t n

VHSR +=
γ

. (2.11) 

 

With all codewords being equally likely, the maximum likelihood (ML) 

decoder at the receiver computes 

2

argmin HSRS
S T

s
n

ˆ γ−= , (2.12) 

where Ŝ  represents the codeword with the lowest decision metric out of all 

possible codewords in the codebook. 
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2.3 Space-Time Diversity 

 

The benefits of space-time coding stem from its utilization of space and time 

diversity at both the receiver and the transmitter.  Receive diversity (Fig. 2.2) 

is well-established in current wireless systems as a way of exploiting space 

diversity by employing multiple antennas on the receiving-end of the uplink 

(from the mobile to the base station).  Based on the well-known maximal 

receive ratio combining (MRRC) method, the received signals are digitally 

combined and decoded [1][20].  The inherent diversity gain, proportional to 

the number of receive antennas Rn , results in considerable performance 

improvements in terms of a better link budget and tolerance for co-channel 

interference [16][19].  Another major advantage to receive diversity is that 

the improvement in uplink quality comes without incurring additional cost, 

size or power constraints on the mobile unit. 

 

 

Figure 2.2 – Receive diversity 

 

More recently, transmit diversity (Fig. 2.3) has received a lot of attention as a 

means to achieve the same performance benefits offered through receive 

diversity.  A major obstacle in transmit diversity schemes is to accurately 

.

.
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reflect the current channel conditions, called the channel state information 

(CSI), when transmitting.  There are three broad categories according to 

which CSI updates are carried out: (i) those that use feedback from the 

receiver to the transmitters, (ii) those that use training information from the 

transmitters to the receiver and (iii) blind schemes, which use no training or 

feedback information between the transmitters and receiver [24].   

 

 

Figure 2.3 – Transmit diversity 

 

MIMO systems (Fig. 2.4) provide a combination of transmit and receive 

diversity by employing multiple antennas at both sides of the 

communication system.  The remainder of this chapter will look at a 

category of codes designed to exploit the MIMO diversity environment, called 

space-time codes (STCs).  

 

 

Figure 2.4 – MIMO diversity 

 

.

.

.

.

.

.



 - 19 -

2.4 Space-Time Coding 

 

The most prevalent space-time codes can be divided into two main 

categories: space-time trellis codes (STTCs) and space-time block codes 

(STBCs).  STTCs, discovered by Tarokh et al. in 1998 [24], transmit multiple, 

redundant copies of a trellis (or convolutional) code distributed over time 

and multiple antennas. STTCs encode a stream of data ( )ns  via Tn  

convolution encoders (or one convolution encoder with Tn  outputs) and 

transmit the Tn  streams of data ( ) ( )ns,...,ns
Tn1  via the Tn  transmit antennas.  

These codes provide both coding gain and diversity gain, however, being 

based on trellis codes they are relatively complex to encode and decode, 

since they rely on a Viterbi decoder at the receiver [10][24].  

 

STBCs, on the other hand, operate on a block of input symbols at a time 

forming a matrix structure whose rows represent time and columns 

represent transmit antennas.  Unlike STTCs, STBCs generally do not 

provide any coding gain (unless concatenated with an outer-code) but do 

provide full diversity benefits [25].  The most attractive feature of STBCs is 

the relatively simple encoding and decoding scheme.   

 

In the next few sections we will introduce the two classes of STBCs – 

OSTBCs and NOSTBCs. 
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2.5 Space-Time Block Codes 

 

A STBC can be viewed as a mapping of sn  complex symbols { }
sn
s,,s L1  to a 

matrix S  with dimensions TnT × , where  T  is the symbol period and Tn  is 

the number of transmit antennas.  This mapping 

{ } S→
sn
s,,s L1   

can be defined in a variety of different ways.  The procedure of designing 

this mapping has been heavily researched in recent years, with a good 

design producing codes that are easily encoded/decoded, provide high 

information rates and are resilient against decoding errors. 

 

STBCs can be categorized into orthogonal space-time block codes (OSTBCs) 

and non-orthogonal space-time block codes (NOSTBCs).  OSTBCs are 

designed such that the transmission matrices have orthogonal columns, 

allowing for linear-time decoding since the transmitted symbols are detected 

separately from each other [1][25].  In addition to low complexity decoding, 

OSTBCs provide full diversity gain.  The shortcoming of orthogonal designs 

is that their existence with high rates (>1/2) is generally not well understood 

for an increasing number of transmit antennas.  Moreover, the Hurwitz-

Radon theorem (see [21, Section III.E]) shows that complex orthogonal 

designs cannot achieve full rate for greater than two transmit antennas 

[7][5][24].  NOSTBCs offer an effective way to increase the achievable rate by 
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relaxing orthogonality conditions while providing diversity gains for any 

number of antennas.   

 

In the next few sections, OSTBC design will be introduced by first exploring 

Alamouti’s two-branch transmit diversity scheme and then describing a 

generalized design by Tarokh et al.  A popular form of NOSTBCs, called 

LDCs, will also be introduced as a high rate coding technique for any 

number of antennas. 

 

2.5.1 Space-Time Orthogonal Block Codes 

 

Before presenting Tarokh’s generalized OSTBC structure, we investigate 

Alamouti’s scheme to gain an understanding and appreciation for the 

simplicity of the setup. 

 

2.5.1.1 Alamouti’s Scheme 

 

In his groundbreaking study in 1998 [1], Alamouti devised a simple two-

branch transmit diversity scheme with one receive antenna.  The setup was 

modeled as a dual to the MRRC technique, which employs one transmitter 

and two or more receive antennas, described in detail in [1][20]. 
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Alamouti’s two-branch transmit diversity scheme is shown in Fig. 2.5.  

During the first symbol period 1t , the symbols 1s  and 2s , which represent 

constellation points from any modulation scheme, are sent simultaneously 

from transmit antennas 1Tx  and 2Tx , respectively.  In the next symbol 

period 2t , 1Tx  transmits *s2−  and 2Tx  transmits *s1 , where ( )*⋅  represent the 

complex conjugate. 

 

 

Figure 2.5 – Alamouti’s two-branch transmit diversity scheme with one receiver 

 

This simple orthogonal code can be represented in matrix form as 
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where the columns represent transmit antennas and the rows represent 

time.  The orthogonality of (2.13) can be easily verified by multiplying the 

columns together 
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( ) ( ) ( )( ) 012211221 =−+=⋅− sssss,ss,s ***** .  

 

Let ( )th1  and ( )th2  represent the path from 1Tx  and 2Tx  to the receiver, 

respectively.  Assuming that channel fading is quasi-static, that is constant 

across two consecutive symbol transmissions, we have 

( )
( ) ,  )  (

 )  (
2

1

2222

1111

θ

θ

j

j

eαhTthth

eαhTthth

==+=

==+=
  

where T  is the symbol period.  The corresponding received signals are 

, )(

)(

2
*
12

*
212

122111

vshshTtrr

vshshtrr

++−=+=

++==
  

where 1r  and 2r  are the received signals and 1v  and 2v  are the additive 

Gaussian noise terms across the channel at symbol periods 1 and 2, 

respectively.   

 

Once combined, the received signals are  

1
*
2

*
212

2
2

2
1

*
211

*
22

*
221

*
11

2
2

2
1

*
221

*
11

)(

)(

vhvhsααrhrhs~
vhvhsααrhrhs~

+−+=−=

+++=+=
  

and are sent to the ML detector which then minimizes the decision metric 

2*
12

*
212

2

22111 shshrshshr −++−−   

over all possible pairs 1s  and 2s .  This can be expanded and simplified to 

have two separate minimization expressions.  The minimization expression 

to detect 1s  is 
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2

1
2
2

2
1

2

12
*
2

*
11 )1( sααshrhr −++−−  (2.14) 

and the minimization expression to detect 2s  is 

2

2
2
2

2
1

2

21
*
2

*
21 1)( sααshrhr −++−− . (2.15) 

 

Now defining )(2 x,yd  such that 

2**2 ))(()( yxyxyxx,yd −=−−=   

the decision rule for each combined signal js~  can be expressed as below, 

where is  is chosen if and only if (iff) 

),(1)(),(1)( 222
2

2
1

222
2

2
1 kjkiji ss~dsααss~dsαα +−+≤+−+ ,  ik ≠∀ .  

When using a PSK modulation, with equal energy constellations, the above 

inequality simplifies to 

),(),( 22
kjij ss~dss~d ≤ ,  ik ≠∀ .  

 

Alamouti went on to extend his two transmit and one receive antenna 

scheme to 1>Rn  receive antennas.  The resulting diversity order of the two-

branch transmit diversity scheme with two receivers was shown to be 

equivalent to a four-branch MRRC scheme [1].  In general, this method 

provides a diversity order of Rn2 , which is maximal since there are 2=Tn  

transmit antennas.   
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2.5.1.2 Generalized Complex Orthogonal OSTBCs 

 

Tarokh et al. [25] generalized Alamouti’s scheme above to an arbitrary 

number of transmit antennas and presented design guidelines for real and 

complex-valued OSTBCs.  These codes require no CSI at the transmitter, 

achieve ML decoding through linear processing at the receiver and exhibit 

maximum diversity gain.  For real constellations (such as PAM), they are 

known to provide the maximum theoretical transmission rate.  For complex 

constellations (such as PSK and QAM), OSTBCs can be constructed for 

2>Tn  transmit antennas while providing full diversity and half of the 

maximum theoretical rate.   

 

For brevity, this section will focus on complex orthogonal designs, though 

much of the discussion is analogous to the real orthogonal case.  In fact, it 

is shown in [25] that a complex orthogonal design of size Tn  determines a 

real orthogonal design of size Tn2  and, as a corollary square, complex 

orthogonal designs only exist for 2=Tn or 4 , since their real counterparts 

only exist for 4 2,nT = and 8  (see [22, Section V.C]).  Furthermore, the 

authors find that complex orthogonal designs with full rate can only exist for 

2=Tn  by proving that no such design exists for the case of 4=Tn . 

 

A general complex OSTBC of size Tn  can be represented by a TnT ×  matrix 

kG  which transmits k  data symbols from 
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*
kk

** ss,ssss, ±±±±±± ,,,,,0 1100 L   

or their product with 1-=j .  If we satisfy the condition that kkk DGG =t , 

where kD  is a diagonal matrix with ( )i,i th diagonal entry of the form 

22
11

2
00 |||| |slsls|l k

i
k

ii +++ L   

such that the coefficients 010 >ik
ii l,...,l,l , then kG is said to be a generalized 

OSTBC with size Tn  and rate MR T
k

2log=  bits per channel use, where M  is 

the constellation size.   

 

The existence of high-rate complex orthogonal designs is not well 

understood.  A complex orthogonal design with full rate can only be found 

for the case where 2=Tn , which is exactly Alamouti’s 2G  code in (2.13).  

Tarokh et al. produced generalized complex designs with rate 1/2 ( 3G  and 

4G  below) and sporadic codes with rate 3/4 ( 3H  and 4H below).  Recent 

work by Su et al. [22] produced generalized complex OSTBC design for 5 and 

6 transmit antennas with rate 7/11 and 3/5 while Kan et al. [15] found an 

OSTBC with rate 5/8 for eight transmit antennas. 
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Rate 1/2 OSTBCs for three transmit antennas ( 3G ) and four transmit antennas ( 4G ) : 
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Rate 3/4 OSTBCs for three transmit antennas ( 3H ) and four transmit antennas ( 4H ): 
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2.5.2 Linear Space-Time Block Codes 

 

For high data rates and a large number of transmit antennas, STTCs and 

OSTBCs suffer from complexity and/or performance shortcomings.  In 

STTCs, the number of trellis states grows exponentially with the number of 

transmit antennas [24] and finding high rate (>1/2) OSTBCs for an arbitrary 

number of transmit antennas is a daunting problem.   

 

Hassibi et al. [11] present a new type of non-orthogonal linear-STBC called 

linear dispersion codes, since they work by dividing the data into 

substreams that are dispersed in linear combinations over space and time.  

These LDCs provide coding gain and diversity gain while maintaining  

relatively simple decoding for an arbitrary number of transmit and receive 

antennas.  Heath et al. later proposed an LDC design guideline which 

sought optimality in both the ergodic capacity sense and the diversity gain 

sense in [12].  In this work we utilize the framework of the LDC and not the 

design conditions.  Therefore, we restrict our discussion of LDCs to the 

findings of the pioneering paper of Hassibi et al. [11].  

 

Encoding 

For a system with Tn  transmit antennas, Rn  receive antennas and a symbol 

period T , the TnT ×  transmitter matrix S  can be written as  
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( )∑
=

+=
Q

q
qqqq BjA

1
βαS  , (2.16) 

where the data is broken into Q  substreams and the real scalars { }qq ,βα  are 

determined by qs,,s L1 , which are complex symbols chosen from an 

arbitrary constellation of size M  and expressed as 

qqq js βα += ,  Q,,q L1= . (2.17) 

These codes have a rate of MR T
Q

2log=  bits per channel use. 

 

The choices for the dispersion matrices { }qq B,A  and Q  are critical factors in 

designing LDCs.  The authors propose an information-theoretic approach to 

choosing these parameters such that the mutual information between the 

transmitted signals and received signals is maximized.   

 

Decoding 

Consider the following block equation for the system: 

( ) ,BjA
n

n
Q

q
qqqq

T

s

T

s

 
1

VH

VHSR

+⋅+=

+⋅=

∑
=

βα
γ

γ

 (2.18) 

where sγ  is the CSNR at each receive antenna, R  is the received matrix, V  

is the noise matrix containing the Gaussian noise at each receive antenna, 

H  is the channel gain matrix representing the path between transmit 

antenna i  and receive antenna j  for Tn,...,i 1=  and Rn,...,j 1= .  
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The receive matrix R  can be decomposed into real and imaginary parts to 

get 

{ } { }

{ } { }( ) { } { }( )[ ]
{ } { }( ) { } { }( ) .jj

BjBjAjA
n

j
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q
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s
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∑
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Separating the real and imaginary parts, we get 
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Letting ( ) ( ) ( ) ( ) ( )jjjjj vhhrr ℜℑℜℑℜ  , , , ,  and ( )jvℑ  represent the j th columns of 

( ) ( ) ( ) ( ) ( )VHHRR ℜℑℜℑℜ  , , , ,  and ( )Vℑ , respectively, we define 
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for Q,...,q 1=  and Rn,...,j 1= , where jh  has independent ( )2
1 0,CN  entries. 
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With the above definitions, we rewrite the channel matrix as the QTnR 22 ×  

matrix: 
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which is known to the receiver since the original H  and the dispersion 

matrices { }qq B,A  are all known.  The definition in (2.19) allows us to rewrite 

the entire system, in terms of a combined ( )Rℜ  and ( )Rℑ , as     
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(2.20) 

giving the linear input vector s  and output vector r  relation 

vs
n

r
T

s +⋅= H
γ

  . (2.21) 

 

The system described above will have a solution as long as we satisfy the 

condition in H  that TnQTnQ RR ≤⇔≤ 22 .  In choosing a value for Q , the 

authors make the following argument.  The larger the value of Q , the larger 

the mutual information between the input ( s ) and the output ( r ), since the 

matrix S  will have more degrees of freedom.  However, the smaller the value 

of Q , the stronger the effect of coding becomes since the system of 
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equations in (2.20) becomes over-determined.  In practice, it is suitable to 

take 

( ) Tn,nQ RT ⋅= min   

since this typically maximizes the input-output mutual information while 

providing coding gain [11].   

 

Now that Q  has been determined the question remains as to how the 

dispersion matrices { }qq B,A  are to be defined.  True to their information-

theoretic approach, the authors choose the dispersion matrices via an 

optimization of the system capacity  
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where H  is given in (2.19).  In general, there is no closed-form solution to 

(2.22) for arbitrary Tn,T   and Rn . 

 

In addition to the optimization above, to satisfy the normalization condition 

( )[ ] TnT ⋅=*SStrE , (2.23) 

{ }qq B,A  are subject to one of the following normalization constraints  

(i) ( ) ( )[ ] TnBBAA T
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*
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Q
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*
q

⋅
== trtr , (2.25) 

(iii) Tnq
*
qq

*
q Q

TBBAA I⋅==  , (2.26) 
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for Q,...,q 1= , where 
Tn

I  is the TT nn ×  identity matrix.  Note that these 

constraints get progressively more strict in ensuring (2.23) by forcing the 

symbols qα  and qβ  to have equal energy over space and time resulting in 

higher coding  gains at the expense of smaller mutual information results. 

 

To demonstrate the simplicity of the LDC structure, consider the following 

representation of Alamouti’s 2G  code.  For 2  === TnTQ  and 1=Rn , the set 

of dispersion matrices representing (2.13) are 

. 
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This representation of Alamouti’s code will be used to initialize and compare 

our newly formed linear-STBCs in Chapter 3. 

 

2.6 Complexity 

 

In designing STBCs, there exists a tradeoff between information rate and 

decoding complexity.  Knowing that OSTBCs cannot provide full-rate codes 

for greater than two transmit antennas, whereas NOSTBCs can do so for 

any number of antennas, it is important to assess the cost in terms of 

decoding complexity associated with abandoning the orthogonal structure.   
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Consider a general STBC which transmits k  information symbols ks,...,s1  per 

block, chosen from M  constellation points.  For OSTBCs, the ML detector 

can separate the decoding decision for each individual transmitted symbol 

is , as demonstrated in the two-branch Alamouti setup in 2.5.1.1 with 

equations (2.14) and (2.15).  Thus, decoding is done in linear time, requiring 

kM computations.  The Alamouti 2G  code transmits 2 symbols at a time, 

hence  2=k , giving a decoding complexity of M2 . 

 

In contrast, for NOSTBCs the ML decoder cannot separate the detecting 

decision by individual symbols.  Instead it detects entire codewords (or 

blocks) at a time.  This results in exponential decoding complexity, since the 

ML detector requires kM  computations.   

 

Clearly there is a large complexity difference between the two code design 

schemes and one must take into consideration the advantages and 

disadvantages of OSTBC and NOSTBC designs and their system 

requirements in choosing a suitable coding scheme. 

 

2.7 Pairwise Error Probability 

 

The notion of pairwise error probability is a fundamental measure of the 

error performance of STCs.  The codeword PEP, denoted by ( )SS ˆP → , 
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expresses the probability of erroneously detecting the codeword Ŝ  when in 

fact S  was transmitted.  Behnamfar presents a derivation for the codeword 

PEP for arbitrary STBCs in [2], which is also derived by Lu et al. in [17]. 

  

It can be shown [23] that the codeword PEP can be expressed as 
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where ( )⋅Q  is the Gaussian Q -function and 2
 SS ˆ,∆  is the squared-distance 

between a pair of channel-faded transmitted codewords S  and Ŝ  can be 

expressed as  
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where we use our definition of U from above (2.9), that is  

[ ]∑==
t

*
t,kt,ii,k dduU   

for Tnk,i ≤≤1  and where i
t

i
tt,i ŝsd −=  and [ ]T21    

Tn,j,j,jj hhh L=h  is the transpose 

of the j th row of the channel matrix H .  Since U  is Hermitian ( UU =t ) and 

non-negative definite, we can be decompose it into DYYU t= , where D  is a 

non-negative definite diagonal matrix having the real-valued eigenvalues of 

U  on its main diagonal and Y  is a unitary matrix, that is 
Tn

IYY =t . 

 

Replacing U  with DYY t  in (2.28) and multiplying by 1/2, we get 
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where jj h⋅= YX  with i.i.d. ( )1 0,CN  i th element i,jx  and i,ii D=λ .  The 

moment generating function (MGF) of 2
 2

1
SS ˆ,∆  is expressed as 
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where 
T

is
i n2
2 λγ

δ = , iλ  is the i th non-zero eigenvalue of U  with multiplicity in  

and i,knn iT −α  is the residue of (2.30) and is expressed as   
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Taking the inverse Laplace transform of (2.30) we get 
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Now (2.32) is applied to the expectation (2.27) to get 
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which follows the form established in the orthogonal block code symbol PEP 

between symbol pair ( )ji s,s  , shown in [2], and provides a solution for (2.33) 

of the form 
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where i,k
k

ii,k αδβ 2= .     

 

The codeword PEP expression in (2.34) forms the foundation of our error 

rate analysis, which is the basis of the new non-orthogonal linear-STBC 

design and analysis in Chapter 3. 
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Chapter 3 

Design of Linear-NOSTBCs 

3.1 Error Analysis 

 

In our code design, we are interested in finding non-orthogonal, linear 

space-time block codes that have low error probabilities and high 

information rates.  Specifically, we want to find codes that minimize the 

total frame error rate performance. 

  

3.1.1 Frame Error Rate and Bit Error Rate 

 

A frame error (or codeword error) occurs when a codeword uS  is transmitted 

over the channel and received as iS  by the ML decoder in (2.12), which is 

denoted by the event uiε .  With all codewords being equally likely, the FER is 

expressed as [2] 



 - 39 -

( )
( ) ( )

, P1

PP

PFER

1

1

∑

∑

= ≠

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

≠=

M

u ui
ui

M

u
uu

M

|

ˆ

Uε

ε SS

SS

 
(3.1) 

where there are M  codewords in the codebook and ( )u|SεP  is the 

probability of an error event given uS  was sent. 

 

The bit error rate represents the statistical proportion of bits received in 

error.  The BER is expressed as [2] 
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where Mm 2log=  is the number of data bits and ( )u,jDH  is the Hamming 

distance between the bits representing jS  and uS . 

 

3.1.2 Union Bound 

 

Both the FER expression in (3.1) and the BER expression in (3.2) rely on the 

calculation of the probability of a union of events.  In practice, it is infeasible 
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to make this calculation and it is acceptable to use an upper or lower bound 

in its place. 

 

The union bound is one such upper bound on the probability of a union 

which utilizes the basic probability inequality 

( ) ( ) ( )jiji AAAA PPP +≤∪ .  

Applying this to the probability of union seen in (3.1) and (3.2), we represent 

the union bound on the probability of a union of error events knowing that 

uS  was sent as 
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as shown in [28][19], where ( )uiεP  is the PEP between iS  and uS , which was 

derived in Section 2.7 and is expressed in (2.34). 

 

Substituting (3.4) in (3.1), we get 
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which agrees with the findings of [14, section 4.2.2].  The FER union upper 

bound expression in terms of the system parameters can now be expressed 

by substituting (2.34) above to get 
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Equation (3.5) is the optimization expression in our design of new linear-

STBCs as the dispersion matrices { }qq B,A  are iteratively perturbed to 

minimize this FER upper bound. 

 

3.2 Linear-STBC Design 

 

3.2.1 Overview 

 

The LDCs by Hassibi et al. in Section 2.5.2 were designed to optimize the 

capacity of a multi-antenna system via a method which maximizes the 

mutual information between the input and output symbols [11].  In this 

study, we design our linear-STBCs to minimize the FER union upper bound 

in (3.5) via an iterative random search process of finding dispersion matrices 

{ }qq B,A  which provide increasingly lower FER upper bounds.  We note that 

the random search process is simple but far from optimal.  For future 

extensions of this work, a more sophisticated search method such as 

simulated annealing or a gradient-based search would be more suitable in 

finding better dispersion matrices in less time. 

 

All codes are designed for a system with 2=Tn , 2=T  and for a CSNR of 5 

dB.  The design process begins with an initialization for the dispersion 

matrices, { }qq B,A .  In this work, we produce three different code 
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initialization scenarios with three different well-known codes: one with 

Alamouti’s orthogonal 2G  code, another with the V-BLAST code by 

Wolniansky et al. and a third with an LDC code presented by Hassibi et al.   

In each case, the formation of our codes follows an identical procedure, 

producing non-orthogonal STBCs of the form 

⎥
⎦

⎤
⎢
⎣

⎡
=

43

21
NEW ss

ss
G  , (3.6) 

where the is  are chosen from a BPSK constellation (Fig. 3.1(i)).  Since NEWG  

is designed with BPSK modulation, i.e. no complex component, all the iB  

dispersion matrices for the new codes will be zero in all design cases, for 

Q,...,i 1= . 

 

Design with Alamouti-Initialization 

For this design scenario, we initialize the new code dispersion matrices with 

Alamouti’s 2G code, which is expressed in linear-STBC notation by the 

dispersion matrices 
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 (3.7) 

 

For the case of 22×  block codewords, Alamouti’s design will transmit 2 

symbols in 2 symbol periods, whereas the new code design will transmit 4 

symbols in that time.  In order to maintain the same transmission rate, the 
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design algorithm uses QPSK modulation (Fig. 3.1 (ii)) for Alamouti’s code, 

compared with BPSK modulation for the new codes.  This produces a rate of 

4 bits per channel use (PCU) for both codes.   

Figure 3.1 – (i) BPSK and (ii) QPSK constellations 

 

 

 

  

Design with V-BLAST-Initialization 

The V-BLAST code structure has a similar form as our code in (3.6) with the 

major exception that the codewords follow a vertically layered encoding 

scheme and do not provide transmit diversity, since the input bit 

substreams are associated exclusively with one transmit antenna [27]. 

 

For this design scenario, we initialize the new code dispersion matrices with 

the linear-STBC representation of V-BLAST with dispersion matrices 
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We use BPSK modulation for V-BLAST, thus iB  will be zero for Q,...,i 1= . 
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Design with LDC-Initialization 

Since our new code design is based on the LDC framework in [11], it is of 

interest to test whether our design technique can provide improved error 

rate performance compared to those presented by Hassibi et al.   

 

A description of an LDC code is provided in [11, pp. 1813] where the 

dispersion matrices are formed via a transformation of the dispersion 

matrices that we defined in Chapter 2.  For the 2== TnT  case, the new 

matrices, denoted as i'A  for Q,...,i 1= , are expressed as 
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 (3.9) 

with a similar set of transformations for i'B .  The authors take the iA  and 

iB  values from the V-BLAST code in (3.8) to form i'A  and i'B  in (3.9), for 

Q,...,i 1= .  The code design is again modulated with a BPSK constellation. 

 

3.2.2 Implementation 

 

The design algorithm can be summarized as a five step process: 

 

Step 1. Initialize iA  and iB  based on the desired starting code 

Step 2.

  

Find the FER union upper bound in (3.5) using the codewords 

formed by the normalized iA  and iB , subject to constraint (2.25) 
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Step 3.

  

If the new upper bound is lower than the previous best then save 

the dispersion matrices and the upper bound 

Step 4. Perturb iA  and iB  

Step 5. Repeat steps 2 – 4 until you have 106 consecutive iterations with 

no FER upper bound improvement 

 

The code design was implemented entirely in the C-programming language.  

The table below highlights the key functions used in the program to 

implement the iterative random search process. 

 

Table 3.1 – Design implementation functions 

 

Function Name Description 

temp_mtx() Initializes the temporary iA  and iB  matrices 

perturb_matrix() Takes a matrix input and perturbs the individual values by via 

additive Gaussian noise 

create_codeword() Creates the new codebook based on the constellation points 

and the current versions of the iA  and iB  

eigen_U() Takes in two matrices, { }Dℜ  and { }Dℑ , representing the real 

and imaginary parts of the matrix D , and two eigenvalues of 

D  in ascending order and produces the eigenvalues of 
tDDU =    

UBound() This function performs the computations to produce the union 

upper bound in (3.5) using the PEP expression in (2.34).  The 

inputs are the real and complex codewords matrices, the 

number of receive antennas, the CSNR, the number of 

transmit antennas and the codebook size.   

main() The main() program first performs all necessary initializations, 

including setting parameters like the CSNR, number of 

transmit/receive antennas, symbol period, codebook size and 

constellation size.  The core feature of the main program is a 
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for-loop in which the codewords are created using the current 

iA  and iB  and the union upper bound on the FER is 

calculated.  If the new upper bound is better than the 

previously saved best, then the new code values are kept.  

Otherwise they are discarded.  The main program also 

performs the normalization on iA  and iB , subject to 

constraint (2.25), to ensure that the total transmit power 

remains constant as the matrices are perturbed. 

 

The following flow chart diagram shows the various steps that the design 

program takes in producing improved code designs. 

 

 
Figure 3.2 – Design program flow diagram 
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3.2.3 Design Results 

 

Design Results with Alamouti-Initializaton 

Table 3.2 shows the FER union upper bound results for the new code design 

NEWG  compared with Alamouti’s 2G  code for the case with 1, 2 and 4 receive 

antennas. 

 

Table 3.2 – FER union upper bound results with Alamouti-initialization 

 

 1=Rn  2=Rn  4=Rn  

Alamouti, 2G  7.313696×10-1 1.592608×10-1 2.087142×10-2 

New code, NEWG  No Improvement 1.368865×10-1 6.612724×10-3 

 

For the case of 1=Rn , the 2G  upper bound is lower than the bounds found 

by the new code design algorithm.  This result is not surprising since it was 

shown in [11] that the 2G  code maximizes mutual information under the 

given system conditions with 2=Tn  and 1=Rn , which also has positive 

implications on error rate performance [11]. 

   

For the case of 2=Rn , a NEWG  code was found with a lower upper bound 

than the 2G  code.  The dispersion matrices which produced the upper 

bound in Table 3.2 are 
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Finally, for the case of 4=Rn , a significant improvement in the upper bound 

was found in NEWG  code with dispersion matrices  
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Design Results with V-BLAST-Initializaton 

Table 3.3 shows the FER union upper bound results for the new code design 

NEWG  compared with V-BLAST for the case with 1, 2 and 4 receive 

antennas. 
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Table 3.3 – FER union upper bound results with V-BLAST-initialization 

 

 1=Rn  2=Rn  4=Rn  

V-BLAST 1.535247×100 5.188582×10-1 9.4444677×10-2 

New code, NEWG  1.116808×100 2.676792×10-1 2.0017310×10-2 

 

For the case of 1=Rn , a NEWG  code is found with a lower FER union upper 

bound than the V-BLAST code.  The dispersion matrices that produced this 

bound are 
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For the case of 2=Rn , another NEWG  code was found with a lower upper 

bound than the V-BLAST code.  The improvement in the upper bound was 

greater for this case than the case with 1 receive antenna.  The dispersion 

matrices which produced the upper bound in Table 3.3 are 
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Finally, for the case of 4=Rn , an even greater improvement than the 2 

receive antenna case was found in the upper bound from the NEWG  code 

with dispersion matrices  
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Design Results with LDC-Initializaton 

Table 3.4 shows the FER union upper bound results for the new code design 

NEWG  compared with the LDC in (3.9) for the case with 1, 2 and 4 receive 

antennas. 
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Table 3.4 – FER union upper bound results with LDC-initialization 

 

 1=Rn  2=Rn  4=Rn  

LDC 1.287384×100 3.610328×10-1 5.391041×10-2 

New code, NEWG  1.110078×100 2.606916×10-1 1.926679×10-2 

 

For the case of 1=Rn , a NEWG  code is found with a lower FER union upper 

bound than the LDC code.  The dispersion matrices that produced this 

bound are 
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For the case of 2=Rn , another NEWG  code was found with a lower upper 

bound than the LDC code.  Again, the improvement in the upper bound was 

greater for this case than the case with 1 receive antenna.  The dispersion 

matrices which produced the upper bound in Table 3.4 are 



 - 52 -

. 
13371505042400
74316704190050

30117807590560
55454501600180

48421602714420
38788407357990

78245404955050
22168103051200

4

3

2

1

⎥
⎦

⎤
⎢
⎣

⎡
−

=

⎥
⎦

⎤
⎢
⎣

⎡
−

−−
=

⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=

⎥
⎦

⎤
⎢
⎣

⎡−
=

..

..
A

,
..
..

A

,
..
..

A

,
..
..

A

 (3.16) 

 

Finally, for the case of 4=Rn , an even more significant improvement in the 

upper bound was found in the NEWG  code with dispersion matrices  
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The results in Tables 3.2, 3.3 and 3.4 indicate that the potential for FER 

upper bound improvement increases as the number of receive antennas 

does, regardless of which code we choose to initialize with.  In the next 

chapter, these newly designed codes (3.10)-(3.17) will be tested in a 

simulation and their FER and BER performance will be compared with their 

respective initialization codes. 
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Chapter 4 

Simulation Results & Discussion 

4.1 Simulation Design 

 

In order to validate the FER upper bounds found in the design chapter, 

shown in Tables 3.2-3.4, we test the dispersion matrices (3.10)-(3.17) via 

computer simulation.  The simulation takes a set of dispersion matrices 

and, based on the chosen modulation scheme, produces an indexed set of 

codewords.  For our case, the Alamouti code is designed with a QPSK 

modulation and all other codes ( NEWG , V-BLAST and LDC) are designed with 

BPSK modulation. 

 

Figure 4.1 shows the simulation process for a given set of dispersion 

matrices and constellation points.  The MATLAB program performs 5×104 

repetitions of a codeword transmission and detection method for each CSNR 
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in a specified range.  Each time the transmitted codeword index does not 

match the ML detector index, the frame error counter is incremented.  After 

5×104 iterations for a particular CSNR, the FER for that CSNR is calculated 

by dividing the total frame errors by the total frames sent, i.e. 5×104. 

 

 
Figure 4.1 – Simulation program flow diagram 

 

 

 

Similarly, to find the BER, the simulation keeps track of the bit 

representations of the codewords and finds the Hamming distance between 

the transmitted codeword and detected codeword.  For each bit difference, a 
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count is divided by the total number of bits transmitted, that is 4 bits ×  

5×104 iterations = 2×105. 

 

4.2 Simulation Results 

 

Simulation Results for Alamouti-Initialization  

Figure 4.2 shows the FER versus CSNR plot of the Alamouti 2G  code and 

the NEWG  code in (3.10) with 2=Rn .  We observe that for the range of CSNRs 

shown, the new code outperforms Alamouti’s code with gains by upwards of 

2.5 dB at a CSNR of 2.5 dB.   

 

Figure 4.3 shows the BER versus CSNR for the same setup.  Again we 

observe that the new code provides a gain upwards of 2.5 dB at a CSNR of 

2.5 dB over the Alamouti code.   
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Figure 4.2 – FER for Alamouti-QPSK, New-BPSK for 2 Tx, 2 Rx 
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Figure 4.3 – BER for Alamouti-QPSK, New-BPSK for 2 Tx, 2 Rx 
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In Figure 4.4, the FER versus CSNR plot of the Alamouti 2G  code and the 

NEWG  code design is shown with dispersion matrices shown in (3.11) for the 

case with 4=Rn .  Here, the new code outperforms with gains upwards to 3 

dB over Alamouti’s code at a CSNR of 0 dB. 

 

Figure 4.4 – FER for Alamouti-QPSK, New-BPSK for 2 Tx, 4 Rx 
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Figure 4.5 – BER for Alamouti-QPSK, New-BPSK for 2 Tx, 4 Rx 
 

 

 

Figure 4.5 shows the BER versus CSNR for the same codes and where 

4=Rn .  Once again, the new code provides a gain upwards to 3 dB 

compared to the Alamouti code.  
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Simulation Results for V-BLAST-Initialization  

Figures 4.6-4.11 show FER and BER plots for the new V-BLAST-initialized 

codes presented in (3.12), (3.13) and (3.14) with 1, 2 and 4 receive antennas, 

respectively, compared with the V-BLAST code in (3.8). 

 

Figure 4.6 – FER for V-BLAST-BPSK, New-BPSK for 2 Tx, 1 Rx 
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Figure 4.7 – BER for V-BLAST-BPSK, New-BPSK for 2 Tx, 1 Rx 
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Figure 4.8 – FER for V-BLAST-BPSK, New-BPSK for 2 Tx, 2 Rx 
 

 

 

 

 

 

 

 



 - 63 -

 

 

 

 

Figure 4.9 – BER for V-BLAST-BPSK, New-BPSK for 2 Tx, 2 Rx 
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Figure 4.10 – FER for V-BLAST-BPSK, New-BPSK for 2 Tx, 4 Rx 
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Figure 4.11 – BER for V-BLAST BPSK, New-BPSK for 2 Tx, 4 Rx 
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Simulation Results for LDC-Initialization  

Figures 4.12-4.17 show FER and BER plots for the new LDC-initialized 

codes presented in (3.15), (3.16) and (3.17) with 1, 2 and 4 receive antennas, 

respectively, compared with the LDC code in (3.9). 

 

Figure 4.12 – FER for LDC-BPSK, New-BPSK for 2 Tx, 1 Rx 
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Figure 4.13 – BER for LDC-BPSK, New-BPSK for 2 Tx, 1 Rx 
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Figure 4.14 – FER for LDC-BPSK, New-BPSK for 2 Tx, 2 Rx 
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Figure 4.15 – BER for LDC-BPSK, New-BPSK for 2 Tx, 2 Rx 
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Figure 4.16 – FER for LDC-BPSK, New-BPSK for 2 Tx, 4 Rx 
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Figure 4.17 – BER for LDC-BPSK, New-BPSK for 2 Tx, 4 Rx 
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4.3 Discussion 

 

Tables 4.1 and 4.2 provide summaries of the largest FER and BER gains, 

respectively, by the new codes observed in the simulation plots of Fig. 4.2-

4.17. 

  

  Table 4.1 – Largest FER gains of new codes observed in simulation plots (in dB) 
 

 1=Rn  2=Rn  4=Rn  

Alamouti -- 2.5 3 

V-BLAST 5 3 2.5 

LDC 2.5 Inconclusive Inconclusive 

 

 Table 4.2 – Largest BER gains of new codes observed in simulation plots (in dB) 
 

 1=Rn  2=Rn  4=Rn  

Alamouti -- 2.5 3 

V-BLAST 2.5 2.5 2.5 

LDC 2.5 Inconclusive Inconclusive 

 

These results show that the FER and BER performance of the new codes 

become increasingly better compared to Alamouti’s code as the number of 

receive antennas goes up.  For the V-BLAST simulations, we see that the 

new codes provide improved FER performance at a diminishing rate as the 

number of receive antennas goes up, going from a 5 dB gain at 1=Rn  to a 
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2.5 dB gain at 4=Rn ,  while maintaining a BER gain of 2.5 dB for all of the 

receive antenna cases tested.  Finally, the LDC simulations show that the 

FER and BER advantage of the new codes is 2.5 dB for 1=Rn .  No 

conclusion can be drawn for the 2=Rn  or 4  case due to the simulation FER 

and BER values being too small to produce reliable results for high CSNRs.  

 

The FER gains observed in Table 4.1 are a direct result of our design 

methodology for the new codes, which aims to reduce the FER via a 

minimization of the FER union upper bound expression in (3.5).  In 

contrast, Alamouti’s code design objective was to produce OSTBCs with 

transmit and receive diversity which could produce diversity orders greater 

than the MRRC scheme.  In designing V-BLAST, Wolniansky et al. sought to 

take advantage of the rich-scattering effects of multipath propagation to 

achieve high spectral efficiency, which is a measure of the number of bits 

per second that can be transmitted per Hz of bandwidth, while maintaining 

relatively simple decoding.  Finally, the LDC code shown in (3.9) was 

designed by Hassibi et al. in order to maximize the mutual information 

between the input and output symbols.  Though each of these three codes 

satisfies their respective design criteria, there was room for improvement 

when tested with our FER upper bound minimization criteria.  In fairness, 

the new codes designed in this work were not tested with the conditions set 

out in [1], [27] and [11] and we have no reason to believe that those 

conditions would be satisfied, since our design did not take into 

consideration decoding complexity, high spectral efficiencies or mutual 
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information maximization between the transmitted and received symbols.  

An interesting extension of this work would be to test our newly designed 

codes under these criteria. 

 

In our simulations, we also observe a significant discrepancy between the 

FER union upper bounds calculated in the design stage at 5 dB, shown in 

Tables 3.2-3.4, and the observed simulation FERs at a CSNR of 5 dB.  Table 

4.3 provides a summary of the findings. 

 

Table 4.3 – Design FER upper bound compared with observed simulation FER 
 

 Design FER upper bound 

at 5 dB 

Simulation FER observed 

(approx.) at 5 dB 

Alamouti 

2=Rn  1.592608×10-1 5.00×10-2 

4=Rn  2.087142×10-2 3.16×10-3 

NEWG , Alamouti-initialized 

2=Rn  1.368865×10-1 1.59×10-2 

4=Rn  6.612724×10-3 1.78×10-4 

V-BLAST 

1=Rn  1.535247×100 2.51×10-1 

2=Rn  5.188582×10-1 1.12×10-1 

4=Rn  9.444677×10-2 1.12×10-2 

NEWG , V-BLAST-initialized 

1=Rn  1.116808×100 2.40×10-1 

2=Rn  2.676792×10-1 1.00×10-1 
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4=Rn  2.001731×10-2 6.31×10-3 

LDC 

1=Rn  1.287384×100 1.78×10-1 

2=Rn  3.610328×10-1 1.00×10-1 

4=Rn  5.391041×10-2 5.01×10-3 

NEWG , LDC-initialized 

1=Rn  1.110078×100 1.78×10-1 

2=Rn  2.606916×10-1 1.00×10-1 

4=Rn  1.926679×10-2 7.94×10-3 

 

This sizeable difference between the theoretical FER upper bound and the 

observed simulation FER upper bound suggests that there is room for lower 

upper bounds to be found in the design stage.  We present this as an 

extension of this work. 

  

Comments on other non-orthogonal codes 

We have seen that our method of designing non-orthogonal STBCs by 

iteratively finding dispersion matrices iA  and iB  via random searches to 

minimize the FER union upper bound has produced encouraging results for 

the simple cases we have explored, that is, with BPSK modulation and only 

2 transmit antennas.  For more complex environments with larger 

constellation sizes and an increasing number of antennas, there exist 

strong-performing non-orthogonal codes, such as in Damen et al. [6], Lu et 

al. [17] and Maddah-Ali et al. [18].  The design of these codes takes into 
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account the determinant criterion and the rank criterion, established in 

[24], which aim to minimize the worst-case PEP between two codewords by 

establishing guidelines to optimize coding gain and diversity gain, 

respectively.  In contrast, our design considers the entire error probability 

term, not just between two codewords, and uses an exact PEP expression 

(2.32) rather than a worst-case bound.  Our approach provides increasingly 

accurate error probability performance as the CSNR rises. 

 

Comparisons with [6], [17] and [18] were not made in this work but we 

propose it as an interesting research opportunity.  We note that the design 

technique presented in this work cannot increase the FER union upper 

bound of the initial code but can only improve it or, in the worst-case, keep 

it the same.  However, we have seen in the case of the LDC comparison that 

a lower FER union upper bound in the design stage does not guarantee 

stronger FER performance in simulation, due to the looseness of the bound.   

 

Comments on complexity 

In Section 2.6 we commented on the comparative decoding complexity of 

orthogonal codes versus non-orthogonal codes.  In our designs, Alamouti’s 

code uses a QPSK modulation to transmit 2 symbols per block, i.e. 4=M  

and 2=k , which could be decoded efficiently in 842 =×  detections.  For the 

new codes, we used BPSK modulation ( 2=M ) and transmitted 4 symbols 

per block ( 4=k ), requiring 1624 =  ML detections to decode.  Hence, even in 
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our simple setup, the decoding complexity is twice as high for our non-

orthogonal linear codes compared with the orthogonal block code designs.



 - 78 -

 

 

Chapter 5 

Conclusions & Future Work 

5.1 Summary 

 

In Chapter 2, we presented background material on communication 

channel models and information theory before establishing a multiple-

antenna system model.  We also presented orthogonal and non-

orthogonal space-time block code designs.  For OSTBCs, we started with 

a description of Alamouti’s simple two-branch diversity scheme and how 

it inspired Tarokh et al. to generalize this method for any number of 

transmit antennas.  These orthogonal codes offer a variety of benefits, 

including linear processing at the decoder and full diversity gains.  

However, complex orthogonal designs that achieve high rate (>1/2) are 

difficult to construct for arbitrary numbers of transmit antennas.  

NOSTBCs loosen the orthogonality conditions in codeword design in 
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exchange for codes that can achieve full rate for any number of 

antennas.  In the case of LDCs, we saw that the design parameters, the 

dispersion matrices iA , iB  and Q , were chosen in order to maximize the 

mutual information between the input and output symbols.  The tradeoff 

of high-rate achievability in NOSTBCs comes at the price of exponential 

decoding complexity, versus linear complexity for OSTBCs.  In this 

chapter, we also defined the concept of pairwise error probability as the 

probability of erroneously decoding a codeword Ŝ  when S  was 

transmitted.  We presented Behnamfar’s derivation of a general formula 

for the PEP which relies on the residues of the MGF of the squared-

distance expression between two codewords. 

 

In Chapter 3, we proposed a new NOSTBC based on minimizing error 

rate performance using the LDC structure of [11], unlike the LDCs by 

Hassibi et al. who chose design parameters based on maximizing mutual 

information.  We defined the FER and BER and expressed both in terms 

of a probability of a union of events and used the union bound in the 

FER expression to form an upper bound.  The union bound relies on the 

pairwise error probability equation derived in the previous chapter. 

 

The new NEWG  codes were designed for a CSNR of 5 dB and for 2== TnT  

through an iterative random search process of finding dispersion 

matrices that produced progressively lower FER union upper bounds.  
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Three such designs were formed by initializing with Alamouti’s 2G  code, 

V-BLAST and an LDC code from [11].  For the Alamouti-initialization, the 

relaxed orthogonality conditions in the new codes produced lower FER 

upper bounds for the 2=Rn  and 4  cases.  For the case of 1 receive 

antenna, the NEWG  code could not provide a lower FER bound than the 

2G  code.  This result is due to the fact that Alamouti’s code maximizes 

the mutual information under this system setup for orthogonal codes 

with 2=Tn  and 1=Rn .  For the V-BLAST and LDC-initializations, lower 

FER upper bounds were found for 2  1,nR =  and 4 . Overall, the design 

results indicated that as the number of receive antennas is increased, so 

does the potential improvement in the FER union upper bound in the 

new codes.  

 

The resulting NEWG  codes from Chapter 3 were tested in simulations 

whose results were presented in Chapter 4.  The simulation took in the 

dispersion matrices from the code designs and produced an indexed 

codebook.  For a given CSNR, a random codeword index was transmitted 

and subjected to channel fading and noise and detected by an ML 

decoder.  This process was repeated 5×104 times for each CSNR in a 

range and the FER and BER were calculated and plotted for each NEWG  

versus the code used to initialize it. 
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The resulting plots showed a significant improvement in the FER and 

BER performance of the NEWG  codes over the 2G  code, with gains of 2.5 

dB and 3 dB for the cases of 2 and 4 receive antennas, respectively.  This 

trend indicates that as the number of receive antennas is increased, the 

error rate advantage of NEWG  over 2G  increases.  The simulation plots for 

the V-BLAST-initialization showed the opposite trend.  Starting with a 

performance gain for NEWG  of 5 dB over V-BLAST when 1=Rn , the 

advantage diminished to 3 dB when 2=Rn  and down to 2.5 dB when 

4=Rn .  This leads us to conclude that as the number of receive antennas 

goes up, the error rate performance of NEWG  gets weaker compared to V-

BLAST.  Finally in the LDC-initialization, NEWG  provided a 2.5 dB 

advantage over the LDC for the 1 receive antenna case.  For the case of 2 

and 4 receive antennas, no conclusive claim can be made since the FER 

and BER values became too low to be reliable at higher CSNRs. 

 

In all three design scenarios above, it was also observed that the 

simulation FER at the design target CSNR of 5 dB was considerably 

smaller than the calculated FER upper bounds in the design stage, 

leading us to conclude that tighter upper bounds on the FER can and 

should be found. 
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5.2 Future Work 

 

This work introduced an approach to producing non-orthogonal linear-

STBCs via FER union upper bound minimization.  There are many 

different research opportunities available to extend the work presented 

here.  Such opportunities include: 

• Designing non-orthogonal linear-STBCs via the method described 

in this work that utilize larger complex constellations, such as 8-

PSK and 16-QAM. 

• Use a more advanced search technique for dispersion matrices 

{ }qq B,A , such as simulated annealing which allows non-improving 

replacements with diminishing probability over time to increase 

the chance of not getting ‘stuck’ in a local minimum. 

• Use a tighter upper bound than the union bound for the 

probability of a union of events, such as Hunter’s bound in [13]. 

• In the code design, one could initialize with other non-orthogonal 

codes that were designed for error rate minimization, such as 

Damen’s code in [6], Lu’s code in [17] or the Maddah-Ali code in 

[18].
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