
MEASURING DEPENDENCE VIA MUTUAL

INFORMATION

by

Shan Lu

A thesis submitted to the

Department of Mathematics and Statistics

in conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

September 2011

Copyright c⃝ Shan Lu, 2011



Abstract

Considerable research has been done on measuring dependence between random vari-

ables. The correlation coefficient [10] is the most widely studied linear measure of

dependence. However, the limitation of linearity limits its application. The informa-

tional coefficient of correlation [17] is defined in terms of mutual information. It also

has some deficiencies, such as it is only normalized to continuous random variables.

Based on the concept of the informational coefficient of correlation, a new depen-

dence measure, which we call the L-measure, is proposed in this work which general-

izes Linfoot’s measure for both continuous and discrete random variables. To further

elucidate its properties, simulated models are used, and estimation algorithms are

also discussed. Furthermore, another measure based on the L-measure, which we call

the intrinsic L-measure, is studied for the purpose of studying nonlinear dependence.

Based on criteria for a dependence measure presented by Renyi [21] and simulation

results in this thesis, we believe that the L-measure is satisfactory as a dependence

measure.
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Chapter 1

Introduction

1.1 Dependence Measures

Measuring the dependence between two random variables is a fundamental and in-

teresting problem. It has many applications in different fields, such as statistics,

demography, economics, epidemiology and signal processing among other. Obtaining

a measure that can sensibly describe the dependence relationship between random

variables has received considerable attention in the past, with several dependence

measures proposed.

The classical and most popular measure of linear dependence is the correlation

coefficient [10]. For two random variables, their correlation coefficient is the quotient

of their covariance and the product of their standard deviations. It is commonly used

in many areas due to its simplicity, low computational cost and ease of estimation.

However, it is well known that correlation is not equivalent to dependence. Two

1
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independent random variables are surely uncorrelated, which means that their correla-

tion coefficient is zero; yet, for uncorrelated random variables, they are not necessarily

independent [10].

1.2 Mutual Information as a Dependence Measure

Mutual information is a concept from information theory first introduced by Shan-

non in the context of digital communication [23]. It describes how much information

two random variables share with each other, i.e. the amount of uncertainty about

one random variable given knowledge of the other random variable. The mutual in-

formation for two random variables is symmetric and always nonnegative. It equals

zero if and only if the two random variables are independent. In addition, the mu-

tual information between two continuous random variables equals infinity if there is a

functional relationship between these two random variables. These properties provide

a possibility for the mutual information to be used as a dependence measure.

In 1957, Linfoot proposed a new dependence measure between two random vari-

ables, the informational coefficient of correlation, which is a monotone increasing

function of mutual information [17]. It successfully preserves the properties of mu-

tual information of being a symmetric nonnegative function and equaling to zero if

and only if the arguments are independent. Furthermore, it has attractive properties

as a dependence measure for continuous random variables. First, the value of the in-

formational coefficient of correlation always lies between zero and one. This property

is a useful standardization when comparing different dependence measures. Second, it

is equal to the absolute value of the correlation coefficient when the random variables
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are Gaussian. After Linfoot’s initial work on this measure, more of its properties were

studied and applied by several researchers, namely Granger and Lin [8], and Dionisio

and Menezes [6]. Their work will be further discussed in Chapter 2.

1.3 Motivation

Measuring dependence lies at the heart of many statistical problems. Although the

correlation coefficient is widely employed, it is not completely satisfactory to measure

the dependence between random variables as it provides limited information about

their dependence structure [10]. The absence of correlation is equivalent to indepen-

dence in very rare cases, such as when the random variables are Gaussian distributed.

The informational coefficient of correlation introduced by Linfoot [17] successfully

addressed some deficiencies of the correlation coefficient. It is able to measure depen-

dence when there exists a nonlinear structure between the random variables, while

the correlation coefficient only measures linear dependence between random variables.

The informational coefficient of correlation was originally introduced for continu-

ous random variables. We have found that it has some limitations when applied to

discrete random variables. For example, it does not approach one when there is a

functional relationship between the discrete random variables. This will be further

examined in Chapter 2. Additionally, the estimation of the informational coefficient of

correlation is not satisfactorily accurate in the existing literature. Therefore, we wish

to define a new dependence measure which extends Linfoot’s informational coefficient

of correlation to discrete random variables and attempt to improve the accuracy of

its estimation. Furthermore, since the correlation coefficient between two random
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variables can always be reduced to zero after some linear transformation, the new

dependence measure will be ideal if it can offer information about dependence via the

minimum value this measure can achieve after linear transformation.

1.4 Contribution

A new dependence measure, which we call the L-measure, which extends Linfoot’s

informational coefficient of correlation, is proposed in this thesis. This measure can

be used both for continuous and discrete random variables. Its properties and related

theorems are discussed and proved in detail.

A method for estimating the L-measure is presented. Specifically, Gaussian ker-

nel density estimation [24] and Gauss-Legendre quadrature are used. Issues that can

create obstacles for estimation accuracy are discussed. Moreover, the histogram esti-

mation method [22] is presented for the purpose of comparison.

A measure based on the L-measure, which we call the intrinsic L-measure, is next

introduced. This measure is defined by what remains of the L-measure after a linear

transformation that minimizes mutual information is applied. Its properties are dis-

cussed and it is applied on nonlinear data sets.

Four continuous models and two discrete models are used as examples. Imple-

mentations illustrating the advantages of the L-measure as a dependence measure are

provided. Two of the continuous models have linear structures and the other two

have nonlinear structures. Their intrinsic L-measures are calculated. The L-measure
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is also applied on discrete Markov chains. It is observed that the L-measure is able

to detect the nonlinear dependence between random variables when the correlation

coefficient fails.

1.5 Outline

This thesis is organized as follows. Corresponding literature is reviewed at the begin-

ning of each chapter. Chapter 2 reviews elementary concepts of dependence, mutual

information, Linfoot’s informational coefficient of correlation and introduces the new

definition of the L-measure. The properties of the L-measure are discussed for con-

tinuous and discrete random variables. Moreover, four continuous models and two

discrete models are generated to illustrate these properties. In Chapter 3, methods of

estimation for the L-measure are presented and simulation results for four continuous

models and two discrete models are implemented. In addition, the factors that in-

fluence the estimation accuracy are discussed. In Chapter 4, the intrinsic L-measure

is defined and a numerical method of implementation is presented. The intrinsic L-

measure of the four continuous examples are computed and the intrinsic L-measures of

two nonlinear data sets are estimated. Chapter 5 summarizes the thesis and presents

future directions.



Chapter 2

Definition and Fundamental

Properties of the L-measure

In this chapter, related literature and preliminary definitions are first reviewed. Sec-

ond, the definition of the L-measure is given and its properties are studied. Finally,

several examples are presented for the purpose of understanding the L-measure.

2.1 Literature Review

Renyi [21] proposed the following criteria consisting of seven postulates that a measure

of dependence should satisfy:

(a) it is defined for any pair of random variables;

(b) it is symmetric;

(c) its value lies between 0 and 1;

(d) it equals 0 if and only if the random variables are independent;

6
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(e) it equals 1 if there is a strict dependence between the random variables;

(f) it is invariant under marginal one-to-one transformations of the random variables;

(g) if the random variables are Gaussian distributed, it equals the absolute value of

their correlation coefficient.

The correlation coefficient is the most widely employed measure of linear depen-

dence. It is defined as follows.

Definition 2.1.1. For any two random variables X and Y , their correlation coeffi-

cient ρ(X, Y ) is given by

ρ(X,Y ) =
E[(X − µX)(Y − µY )]

σXσY
, (2.1)

where µX and µY are the means of X and Y , respectively, and σX and σY are the

standard deviations of X and Y , respectively, provided the expectations exist.

This well known measure, however, fails to satisfy criteria (d) and (f).

The problem of obtaining a measure of dependence between two random variables

is connected to that of acquiring a measure of the quantity of information about one

contained in the other. Several measures of dependence have been proposed in the

literature based on information theory [9, 14, 18, 25].

Joe’s relative entropy dependence measure [14] was introduced based on the rel-

ative entropy. Relative entropy (or divergence) quantifies the similarity or difference

between two different distributions [4]. The relative entropy between two probability

mass functions p(x) and q(x) is defined as

D(p||q) =
∑
x∈χ

p(x) log
p(x)

q(x)
.
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Based on this concept, Joe [14] defined a measure of multivariate dependence for a

random vector (X1, . . . , Xm) as

δX1,...,Xm =

∫
fX1,...,Xm log

[
fX1,...,Xm∏

j fj

]
dµ.

where fX1,...,Xm is the joint density of (X1, . . . , Xm) and fj is the marginal density of

Xj, j = 1, . . . ,m.

Given two random continuous variables X and Y , the parametric centered cor-

rentropy [18] is defined as

ηa,b(X, Y ) = EX,Y [Gσ (aX + b− Y )]

=

∫ ∫
Gσ(ax+ b− y) [p(x, y)− p(x)p(y)] dxdy,

where Gσ is the Gaussian kernel, a and b are real numbers with a ̸= 0, p(x, y) is the

joint density of X and Y and p(x) and p(y) are the marginal densities. Then, the

correntropy dependence measure between two continuous random variables is given

by [18]

Γ(X,Y ) = sup
a,b

|ηa,b(X,Y )|.

Silvey [25] adopted the concept from communication theory that the nature and

extent of association between two random variables is captured by the ratio ϕ(x, y) of

their joint density and the produts of their densities, i.e. ϕ(x, y) = p(x, y)/[p(x)p(y)].

He introduced a dependence measure defined as

∆ = E [d(x)] ,
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where d(x) =
∫
[y:ϕ(x,y)>1]

{p(y|x)− p(y)}dy. Therefore, Silvey’s ∆ measure can be

written as

∆ =

∫ ∫
{(x,y):ϕ(x,y)>1}

[p(x, y)− p(x)p(y)] dxdy.

Granger al et al. [9] considered a different formula to achieve a dependence measure

given by

Sρ =
1

2

∫ ∫ (
p1/2(x, y)− [p(x)p(y)]1/2

)2
dxdy.

None of these four measures, Joe’s relative entropy dependence measure, the cor-

rentropy dependence measure, Silvey’s ∆ coefficient, or Granger’s measure, satisfy

criterion (g); for more details, refer to [14, 18, 25, 9]. Moreover, Joe’s measure is also

not necessarily symmetric [4]. The correntropy dependence measure and Granger’s

measure also fail criteria (f) and have a large computational complexity [18].

A relatively new dependence measure, the distance correlation [26], ℜ, generalizes

the classical definition of correlation in two fundamental ways, for all distributions

with finite first moments:

• ℜ(X, Y ) is defined for X and Y in arbitrary dimensions;

• ℜ(X, Y ) = 0 holds if and only if the random vectors X and Y are independent.

The distance covariance between two random vectors of different dimensions, X in

Rp and Y in Rq, used to calculate their distance correlation is first presented as

02(X,Y ) =
1

cpcq

∫ ∫
|f(x, y)− f(x)f(y)|2

|x|1+p
p |y|1+q

q

dxdy,
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where cd = π(d+1)/2

Γ{(d+1)/2} , and Γ(·) is the complete gamma function. Then, the distance

correlation is defined by

ℜ2(X, Y ) =


02(X,Y )√

02(X,X)02(Y,Y )
if 02(X,X)02(Y, Y ) > 0;

0 if 02(X,X)02(Y, Y ) = 0.

Recalling Renyi’s criteria, the distance covariance is symmetric, its value always lies

between 0 and 1, it reaches 0 if and only if X and Y are independent, and equals to

1 when there exist a vector a, a nonzero real number b and an orthogonal matrix C

such that Y = a+ bXC.

2.2 Preliminary Definitions

Entropy and mutual information are key concepts from information theory which were

proposed by Shannon in 1948 [4]. Entropy is a measure of uncertainty in a random

variable and mutual information measures how much information one random variable

contains about another one. They are defined as follows for the discrete cases and

continuous cases, respectively. In this thesis, all the logarithms we use are natural

logarithms.

Definition 2.2.1. The entropy of a discrete random variable X is defined by

H(X) = −Σxp(x) log p(x), (2.2)

where p(x) is the marginal probability mass function (pmf) of X.

For any two discrete random variables X and Y , their joint entropy is given by

H(X, Y ) = −Σx,yp(x, y) log p(x, y), (2.3)

where p(x, y) is the joint pmf of X and Y . The conditional entropy of Y given X is
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defined as

H(Y |X) = Σxp(x)H(Y |X = x) = −Σx,yp(x, y) log p(y|x), (2.4)

where H(Y |X = x) is the entropy of the conditional distribution of Y given X = x

and p(y|x) is the conditional pmf of Y given X = x.

Definition 2.2.2. The differential entropy of a continuous random variable X (ad-

mitting a density) is defined by

h(X) = −
∫
f(x) log f(x)dx, (2.5)

where f(x) is the marginal probability density function (pdf) of X.

For any two continuous random variables X and Y (admitting a joint density), their

joint differential entropy is given by

h(X, Y ) = −
∫ ∫

f(x, y) log f(x, y)dxdy, (2.6)

where f(x, y) is the joint pdf of X and Y .

Their conditional entropy is defined by

h(Y |X) = −
∫ ∫

f(x, y) log f(y|x)dxdy, (2.7)

where f(y|x) is the conditional pdf of Y given X = x.

Definition 2.2.3. For any two discrete random variables X and Y , their mutual

information is given by

I(X;Y ) = Σx,yp(x, y) log
p(x, y)

p(x)p(y)
, (2.8)

where p(x, y) is the joint pmf of X and Y and p(x) and p(y) are the marginal pmfs

of X and Y , respectively.

It follows from the definitions of entropy and mutual information that

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X, Y ). (2.9)
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Definition 2.2.4. For any two continuous random variables X and Y (admitting a

joint density), their mutual information is given by

I(X;Y ) =

∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy, (2.10)

where f(x, y) is the joint pdf of X and Y and f(x) and f(y) are the marginal pdfs of

X and Y , respectively.

It also follows from the definitions of differential entropy and mutual information

that

I(X;Y ) = h(Y )− h(Y |X) = h(X)− h(X|Y ) = h(X) + h(Y )− h(X,Y ). (2.11)

Mutual information has properties that are desirable for a dependence measure.

For example, (1) I(X;Y ) ≥ 0; (2) I(X;Y ) = 0 if and only if X and Y are inde-

pendent; (3) I(X;Y ) = +∞ if X and Y are continuous and there is a functional

relationship between X and Y . Thus, I(X;Y ) satisfies Renyi’s criteria except (c),

(e) and (g). The informational coefficient of correlation, introduced by E. H. Linfoot

in 1957 [17] addressed these problems for continuous random variables and is based

on the mutual information.

Definition 2.2.5. For two random variables X and Y , let I(X;Y ) denote the mutual

information between X and Y . Their informational coefficient of correlation is given

by

r(X, Y ) =
√

1− e−2I(X;Y ). (2.12)
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The informational coefficient of correlation was introduced for continuous random

variables only. When it is applied to discrete random variables, a problems arises

in that it does not equal to one when there is a functional relationship between the

random variables. The following example illustrates this point.

Example 2.1.1

Let P (X = −1) = P (X = 0) = P (X = 1) = 1
3
and Y = X2. Then we get

X -1 0 1

pX(x)
1

3

1

3

1

3

,
Y 0 1

pY (y)
1

3

2

3

, and

pX,Y (x, y) X = −1 X = 0 X = 1

Y = 1 1
3

0 1
3

Y = 0 0 1
3

0

.

Thus,

I(X,Y ) = H(Y )−H(Y |X)

= H(Y )

= −1

3
log

1

3
− 2

3
log

2

3

= 0.6365

So r(X,Y ) =
√
1− e−2I(X;Y ) = 0.8485 ̸= 1, while Y is a function of X.

Therefore, a new dependence measure based on the informational coefficient of

correlation is necessary to extend its useful properties to discrete random variables.

2.3 Definition and Fundamental Properties

Definition 2.3.1. For two arbitrary random variables X and Y , with alphabet X

and Y , respectively, let AX,Y denote the set of all bivariate random vectors (U, V ) on
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X ×Y with the same marginal distributions as X and Y , and let I(U ;V ) represent

the mutual information between two random variables U and V . Then the L-measure

of X and Y is defined as

L(X, Y ) =

[
1− exp

{
−2I(X;Y )

1− I(X;Y )/ supU,V ∈AX,Y
I(U ;V )

}]1/2

. (2.13)

With this definition of the L-measure, its properties are next studied. First note

that L(X,Y ) is defined for arbitrary random variables.

When X and Y are both discrete, it is clear that

sup
U,V ∈AX,Y

I(X;Y ) = min{H(X), H(Y )}

holds when X and Y share a functional relationship. Thus (2.13) can be rewritten as

L(X, Y ) =

[
1− exp

{
−2I(X;Y )

1− I(X;Y )/min{H(X), H(Y )}

}]1/2
. (2.14)

This yields the following result.

Theorem 2.3.1. If X and Y are two discrete random variables with finite alphabets,

and Y is possibly a function of X, then L(X,Y ) = 1 if and only if Y is a function of

X.

Proof. If L(X,Y ) = 1, then the following equation holds

−2I(X;Y )

1− I(X;Y )/ supU,V ∈AX,Y
I(U ;V )

= −∞.

Since 0 ≤ I(X;Y ) ≤ min {log |X |, log |Y |}, hence 1−I(X;Y )/ supU,V ∈AX,Y
I(U ;V ) =

0, i.e, I(X;Y ) = supU,V ∈AX,Y
I(U ;V ). Since Y can be a function of X, we have

supU,V ∈AX,Y
I(U ;V ) = H(Y ). Therefore,

I(X;Y ) = H(Y ) ⇔ H(Y |X) = 0.
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Hence, Y is a function of X.

Conversely, if Y is a function of X, i.e. Y = g(X), then

I(X;Y ) = H(Y )−H(Y |X) = H(Y ).

Therefore supU,V ∈AX,Y
I(U ;V ) = H(Y ), and thus L(X,Y ) = 1.

On the other hand, if X and Y are both continuous random variables, L(X, Y )

can be reduced to the informational coefficient of correlation r(X,Y ).

First, we note that if Y is a continuous random variable (with a pdf fY (y)),

then I(Y ;Y ) = +∞. This holds by the data processing theorem [4]: I(Y, Y ) ≥

I(qn(Y ), qn(Y )) for any function qn(·) indexed by integer n ≥ 1. Now we can always

choose qn(·) such that P (qn(Y ) = i) = 1
n
for i = 1, 2, ...n. Thus for this choice of qn(·),

we have that I(qn(Y ), qn(Y )) = H(qn(Y )) = log n. Thus I(Y, Y ) ≥ log n, ∀n ≥ 1.

Therefore, I(Y, Y ) ≥ limn→+∞ log n = +∞.

With this result, we thus obtain that if X and Y are two continuous random

variables (with pdf s fX(x) and fY (y)), where Y = g(X) for some function g(·), then

by the data processing theorem,

I(X;Y ) = I(X; g(X))

≥ I(g(X); g(X))

= I(Y ;Y ) = +∞.

Lemma 2.3.2. Suppose that X is a continuous random variable with cumulative

distribution function (cdf) FX(x). Given another cdf F (·), we can always construct a
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continuous random variable with cdf F (·) such that it can be expressed as a function

in terms of X.

Proof. Let U = FX(X), then U ∼ U(0, 1); i.e., U is a uniformly distributed random

variable over the interval (0, 1). Now construct a random variable Z = F−1(U), where

F−1(·) is the inverse function of F (·) defined by

F−1(y) = inf
x∈R

{F (x) ≥ y}. (2.15)

From (2.15), it is obvious that F−1(y) ≤ x if and only if y ≤ F (x). Then the cdf of

Z can be obtained as follows,

FZ(z) = P (Z ≤ z) = P (U ≤ F (z)) = F (z).

Thus Z is the random variable that has cdf F (·) and is a function of X.

Based on the above, we can reach the following conclusion.

Theorem 2.3.3. If X and Y are continuous random variables, L(X,Y ) can be sim-

plified as the informational coefficient of correlation r(X, Y ).

Proof. By Lemma 2.3.2, we can choose U and V such that U = g(V ), which yields

that supU,V ∈AX ,Y
I(U ;V ) = +∞ by the previous discussion. Then,

L(X, Y ) =

[
1− exp

{
−2I(X;Y )

1− I(X;Y )/ supU,V ∈AX ,Y
I(U ;V )

}]1/2

= [1− exp {−2I(X;Y )}]1/2 ,

where we use the convention that ∞
∞ = 1.

Furthermore, if X is a continuous random variable and Y is a discrete random

variable, we have a lemma as follows.

Lemma 2.3.4. If discrete random variable Y is a function of continuous random

variable X, then I(X;Y ) = H(Y ).
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Proof. Since Y is a function of X, then H(Y |X) = 0. Hence,

I(X, Y ) = H(Y )−H(Y |X) = H(Y ).

In this case, since X is a continuous random variable and Y is a discrete random

variable, Y can always be expressed as a function of X. Hence, supU,V ∈AX,Y
I(U ;V ) =

H(Y ) and thus L(X, Y ) can be written as

L(X, Y ) =

[
1− exp

{
−2I(X;Y )

1− I(X;Y )/H(Y )}

}]1/2
. (2.16)

Some other properties of the L-measure are listed and discussed as follows.

1. L(X,Y ) = L(Y,X) and 0 ≤ L(X,Y ) ≤ 1;

Proof. Since 0 ≤ I(X;Y )/ supU,V ∈AX,Y
I(U ;V ) ≤ 1, then

−∞ ≤ −2I(X;Y )

1− I(X;Y )/ supU,V ∈AX,Y
I(U ;V )

≤ 0,

thus we have 0 ≤ L(X, Y ) ≤ 1.

2. L(X,Y ) is 0 if and only if X and Y are independent;

SinceX and Y are independent if and only if I(X,Y ) = 0, consequently L(X,Y ) =

0 if and only if X and Y are independent.

3. L(X,Y ) = 1 when there is an functional relationship between X and Y ;

From Theorem 2.3.1, L(X,Y ) = 1 holds directly from the fact that the supremum

value is achieved if there is a functional relationship between the variables.

4. L(X, Y ) = |ρ(X,Y )| when X,Y are bivariate normally distributed with correlation

coefficient ρ;
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Let (X, Y ) ∼ N(µ,K), where K =

 σ2 ρσ2

ρσ2 σ2

 .

I(X;Y ) = h(X) + h(Y )− h(X,Y )

=
1

2
log(2πe)σ2 +

1

2
log(2πe)σ2 − 1

2
(log (2πe))2 |K| = −1

2
log(1− ρ2)

L(X, Y ) =
√

1− e−2I =
√
1− (1− ρ2) = |ρ(X, Y )|.

5. L(X, Y ) is invariant under continuous and strictly increasing marginal transfor-

mations.

Proof. Discrete case:

Assume that g1(·) and g2(·) are continuous and strictly increasing functions, then

we have

P (X = x) = P (g1(X) = g1(x)),

P (Y = y) = P (g2(Y ) = g2(y)),

P (X = x, Y = y) = P (g1(X) = g1(x), g2(Y ) = g2(y)).

Thus, I(X;Y ) = I(g1(X); g2(Y )). Hence we have L(X,Y ) = L(g1(X), g2(Y )).

Continuous case:

Assuming that the joint probability density function of (X, Y ) is fX,Y (x, y), and

U = g1(X) =⇒ X = g−1
1 (U), (2.17)

V = g2(Y ) =⇒ Y = g−1
2 (V ). (2.18)

Based on (2.17) and (2.18),

J =
∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣
∂x

∂u

∂y

∂u
∂x

∂v

∂y

∂v

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
dg−1

1 (u)

du
0

0
dg−1

2 (v)

dv

∣∣∣∣∣∣∣ =
(
dg−1

1 (u)

du
· dg

−1
2 (v)

dv

)
.
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Moreover, we can have

fU(u) = fX
(
g−1
1 (u)

)
· dg

−1
1 (u)

du
,

fV (v) = fY
(
g−1
2 (v)

)
· dg

−1
2 (v)

dv
,

fU,V (u, v) = fX,Y (x(u, v), y(u, v)) |J |,

hence,

fU,V (u, v)

fU(u)fV (v)
=

fX,Y

(
g−1
1 (u), g−1

2 (v)
)

fX
(
g−1
1 (u)

)
fY

(
g−1
2 (v)

) ,

I(U ;V ) =

∫ ∫
fU,V (u, v) log

{
fU,V (u, v)

fU(u)fV (v)

}
dudv

=

∫ ∫
fX,Y

(
g−1
1 (u), g−1

2 (v)
)
log

{
fX,Y

(
g−1
1 (u), g−1

2 (v)
)

fX
(
g−1
1 (u)

)
fY

(
g−1
2 (v)

)} dg−1
1

du

dg−1
2

dv
dudv

=

∫ ∫
fX,Y (x, y) log

{
fX,Y (x, y)

fX(x)fY (y)

}
dxdy

= I(X;Y ).

So L(X, Y ) = L(U, V ).

2.4 Examples

2.4.1 Application to the t-distribution

Let the random vector (X, Y ) have the bivariate t distribution [16] with degrees of

freedom ν, mean vector µ = 0 and correlation matrix R, where their joint pdf is given
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by

fX,Y (x, y) =
Γ
(

(ν+2)
2

)
(νπ)Γ(ν/2)

|R|−0.5

[
1 +

1

ν
(x, y)TR−1(x, y)

]−(ν+2)/2

, (2.19)

where Γ(·) is the Gamma function defined by

Γ(z) =

∫ ∞

0

tz−1e−t dt . (2.20)

Guerrero-Cusumano [11] derived the form of the mutual information for the central

multivariate t-distribution:

I(X;Y ) = Ω− 1

2
log |R|,

where Ω is given by

Ω = ln

[
1

π

B2(1
2
, ν
2
)

B(1, ν
2
)

]
+ (ν + 1)

[
Ψ(

1 + ν

2
)−Ψ(

ν

2
)

]
− ν + 2

ν
. (2.21)

where B(·) is the Beta function defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt . (2.22)

and where Ψ(·) is the Digamma function defined by

ψ(x) =
d

dx
log Γ(x) =

Γ′(x)

Γ(x)
. (2.23)

Thus,

L(X,Y ) =
√

1− exp{−2I} =
√

1− exp{−2Ω}|R|

=
√

1− exp{−2Ω}(1− ρ2(X, Y )). (2.24)

Table 2.1 provides values of the L-measure for a range of ν and ρ and Figure 2.1

plots the L-measure in this range. The figure indicates that the dependence increases
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as ν decreases and as ρ increases. In fact, the derivative of Ω with respect to ν,

Ω′ =

[
ln

[
Γ(ν

2
+ 1)

Γ2(1
2
+ ν

2
)

]
+ (ν + 1)

[
ψ(

1 + ν

2
)− ψ(

ν

2
)

]
− ν + 2

2

]′
=

2

ν
− ψ

(
1 + ν

2

)
+ (ν + 1)

[
ψ′(

1 + ν

2
)− ψ′(

ν

2
)

]
− 1

2
(2.25)

Since ψ′(1+ν
2
) − ψ′(ν

2
) < 0 and when ν ≥ 2, ψ(1+ν

2
) > 0, 2

ν
− 1

2
< 0, Ω′ < 0, thus

Ω increases as ν decreases and obviously, Ω → 0 as ν → +∞. So the L-measure in-

creases as ν decreases and L(X, Y ) → |ρ| when ν → +∞, which agrees with the fact

that the joint t-distribution as ν → +∞ is the same as a joint normal distribution

with same mean vector and covariance matrix.

Moreover, L(X,Y ) = 1 when ρ = 1 for any value of ν, as there is a linear functional

relationship between X and Y .

Table 2.1: L-measure of bivariate t-distribution

ρ ν = 2 ν = 4 ν = 6 ν = 8 ν = 10
0 0.3904 0.2236 0.1555 0.1189 0.0962
0.2 0.4316 0.2966 0.2514 0.2315 0.2211
0.4 0.5367 0.4494 0.4246 0.4146 0.4096
0.6 0.6764 0.6261 0.6128 0.6075 0.6049
0.8 0.8336 0.8112 0.8054 0.8032 0.8021
1 1.0000 1.0000 1.0000 1.0000 1.0000

In particular, since Ω is always positive, we have

L(X,Y ) =
√
1− exp−2Ω(1− ρ2) ≥

√
1− (1− ρ2) = |ρ|.
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Figure 2.1: L-measure of the t-distribution

0
0.2

0.4
0.6

0.8
1

2
4

6
8

10

0

0.2

0.4

0.6

0.8

1

degrees of freedom
correlation coefficient

L−
m

ea
su

re

2.4.2 Continuous Examples

In this section, two dependence measures, the L-measure and the correlation coeffi-

cient, are examined. Four continuous time series are used as examples. They are all

strictly stationary and we let Zt be i.i.d gaussian noise such that Zt ∼ N(0, 1).

We first recall the definition of autocorrelation [2].

Definition 2.4.1. Let Yt be a stationary time series. The autocorrelation function

of Yt at lag h is

R(h) = R(Yt, Yt+h) = ρ(Yt, Yt+h) =
E[(Yt − µYt)(Yt+h − µYt+h

)]

σYtσYt+h

. (2.26)
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Examples

Model 1: Yt = Zt + 0.8Z2
t−1

(a) Autocorrelation:

Lag 1:

R(Yt, Yt−1) =
EYtYt−1 − EYtEYt−1

σYtσYt−1

.

=
E[(Zt + 0.8Z2

t−1)(Zt−1 + 0.8Z2
t−2)]− 0.64

σYtσYt−1

= 0.

Lag 2 to 5: Since Yt and Yt−m are independent, R(Yt, Yt−m) = 0.

(b) L-measure:

Lag 1:

Since (Zt, Zt−1, Zt−2)
T ∼ N(0, I), and


Zt

Yt

Yt−1

 =


Zt

Zt + 0.8Z2
t−1

Zt−1 + 0.8Z2
t−2

. Thus,

fZt−2,Yt,Yt−1(zt−2, yt, yt−1) = fZt−2,Zt,Zt−1(zt−2, zt−1(yt, yt−1, zt−2), zt(yt, yt−1, zt−2)) ∗ |J |

=
1

(2π)3/2
exp

{
−1

2

[
z2t−2 + (y2t−1 − 0.8z2t−2)

2 +
(
yt − 0.8(y2t−1 − 0.8z2t−2)

2
)2]}

.

Thus fYt,Yt−1(Yt, Yt−1) =
∫
fet−2,Yt,Yt−1(et−2, Yt, Yt−1)det−2. To calculate the inte-

gral, we use Gaussian quadrature with 100 nodes and weight at interval(−15, 15)

(Note: this method is used in all examples listed in this section; therefore it will

not be reintroduced again).

h(Yt, Yt−1) = −E
(
log

(
fYt,Yt−1(yt, yt−1)

))
= 3.3713.
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Also, since Zt ∼ N(0, 1) and Z2
t−1 ∼ χ2(1) are independent, and

Z2
t−1

Yt

 =

 Z2
t−1

Zt + 0.8Z2
t−1

. We have

fZ2
t−1,Yt

(z2t−1, yt) = fZ2
t−1,Zt

(
z2t−1, zt(yt, z

2
t−1)

)
∗ |J |

=
1

2π
exp

{
−1

2

[
z2t + (yt − 0.8z2t )

2
]} (

z2t
)− 1

2 .

So h(yt) = h(yt−1) = 1.7540. Thus,

I(yt; yt−1) = h(yt) + h(yt−1)− h(yt, yt−1) = 1.7540 + 1.7540− 3.3713 = 0.1367,

and hence L(Yt;Yt−1) = 0.4891.

Lags 2-5:

Since Yt and Yt−m are independent, L(Yt, Yt−m) = 0.

To summarize, the results are shown in Table 2.2.

Table 2.2: Autocorrelation and L-measure of Model 1

Lag Rm Lm

0 1 1
1 0 0.4891
2 0 0
3 0 0
4 0 0
5 0 0

Model 2: Yt = Zt + 0.8Z2
t−1 + 0.8Z2

t−2 + 0.8Z2
t−3
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(a) Autocorrelation:

Lag 1:

R(Yt, Yt−1) =
EYtYt−1 − EYtEYt−1

σYtσYt−1

=
E[(Zt + 0.8Z2

t−1 + 0.8Z2
t−2 + 0.8Z2

t−3)(Zt−1 + 0.8Z2
t−2 + 0.8Z2

t−3 + 0.8Z2
t−4)]− 0.242

σYtσYt−1

= 0.5289.

Lag 2: Similarly,

R(Yt, Yt−2) =
EYtYt−2 − EYtEYt−2

σYtσYt−2

=
E[(Zt + 0.8Z2

t−1 + 0.8Z2
t−2 + 0.8Z2

t−3)(Zt−2 + 0.8Z2
t−3 + 0.8Z2

t−4 + 0.8Z2
t−5)]− 0.242

σYtσYt−2

= 0.2645.

Lag 3:

R(Yt, Yt−3) =
EYtYt−3 − EYtEYt−3

σYtσYt−3

=
E[(Zt + 0.8Z2

t−1 + 0.8Z2
t−2 + 0.8Z2

t−3)(Zt−3 + 0.8Z2
t−4 + 0.8Z2

t−5 + 0.8Z2
t−6)]− 0.242

σYtσYt−3

= 0.

Lags 4, 5: Since Yt and Yt−m are independent, R(Yt, Yt−m) = 0.

(b) L-measure:

Lag 1:
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Since (Zt, Zt−1, Zt−2, Zt−3, Zt−4)
T ∼ N(0, I), and

Zt−2

Zt−3

Zt−4

Yt

Yt−1


=



Zt−2

Zt−3

Zt−4

Zt + 0.8Z2
t−1 + 0.8Z2

t−2 + 0.8Z2
t−2

Zt−1 + 0.8Z2
t−2 + 0.8Z2

t−3 + 0.8Z2
t−4


,

thus,

fZt−2,Zt−3,Zt−4,Yt,Yt−1(zt−2, zt−3, zt−4, yt, yt−1)

= fZt−2,Zt−3,Zt−4,Zt,Zt−1(zt−2, zt−3, zt−4, zt−1(yt, yt−1, zt−2, zt−3, zt−4),

zt(yt, yt−1, zt−2, zt−3, zt−4)) ∗ |J |

=
1

(2π)5/2
exp{−1

2
[z2t−2 + z2t−3 + z2t−4

+ (yt−1 − 0.8z2t−2 − 0.8z2t−3 − 0.8z2t−4)
2 + (yt − 0.8z2t−2 − 0.8z2t−3

− 0.8(yt−1 − 0.8z2t−2 − 0.8z2t−3 − 0.8z2t−4)
2)2]}.

Thus,

fYt,Yt−1(yt, yt−1) =

∫ ∫ ∫
fZt−2,Zt−3,Zt−4,Yt,Yt−1(zt−2, zt−3, zt−4, yt, yt−1)dzt−2dzt−3dzt−4,

and h(Yt, Yt−1) = −E(log(fYt,Yt−1(yt, yt−1))) = 4.0094.

Also, since Zt ∼ N(0, 1) and Z2
t−1 + Z2

t−2 + Z2
t−3 ∼ χ2(3) are independent, andZ2

t−1 + Z2
t−2 + Z2

t−3

Yt

 =

Z2
t−1 + Z2

t−2 + Z2
t−3

Zt + 0.8Z2
t−1

 ,
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thus, setting X = Z2
t−1 + Z2

t−2 + Z2
t−3, we have

fX,Yt(x, yt) = fX,Zt (x, zt(yt, x)) ∗ |J |

=
1

2π
exp

{
−1

2
[x+ (yt − 0.8x)2]

}
(x)

1
2 .

So h(yt) = h(yt−1) = 2.1182. Therefore,

I(Yt;Yt−1) = h(Yt) + h(Yt−1)− h(Yt, Yt−1) = 2.1182 + 2.1182− 4.0094 = 0.2270

and L(Yt;Yt−1) = 0.6041.

Lag 2:

Since (Zt, Zt−1, Zt−2, Zt−3, Zt−4, Zt−5)
T ∼ N(0, I), and

Zt−1

Zt−3

Zt−4

Zt−5

Yt

Yt−2


=



Zt−1

Zt−3

Zt−4

Zt−5

Zt + 0.8Z2
t−1 + 0.8Z2

t−2 + 0.8Z2
t−2

Zt−2 + 0.8Z2
t−3 + 0.8Z2

t−4 + 0.8Z2
t−5


.

Similarly, fYt,Yt−2(yt, yt−2) =
∫ ∫ ∫ ∫

f(zt−1, zt−3, zt−4, zt−5, yt, yt−2)dzt−1dzt−3dzt−4dzt−5,

and h(Yt, Yt−2) = −E(log(f(Yt, Yt−2))) = 4.1820.

Thus,

I(Yt;Yt−2) = h(Yt) + h(Yt−2)− h(Yt, Yt−2) = 2.1182 + 2.1182− 4.1820 = 0.0544

and hence L(Yt;Yt−2) = 0.3211.

Lag 3:
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Since (Zt, Zt−1, Zt−2, Zt−3, Zt−4, Zt−5, Zt−6)
T ∼ N(0, I),and

Zt−1

Zt−2

Zt−4

Zt−5

Zt−6

Yt

Yt−3



=



Zt−1

Zt−2

Zt−4

Zt−5

Zt−6

Zt + 0.8Z2
t−1 + 0.8Z2

t−2 + 0.8Z2
t−2

Zt−3 + 0.8Z2
t−4 + 0.8Z2

t−5 + 0.8Z2
t−6



.

Similarly,

fyt,yt−3(yt, yt−3) =

∫
· · ·

∫
f(zt−1, zt−2, zt−4, zt−5, zt−6, yt, yt−3)det−1det−2det−4det−5det−6,

and h(Yt, Yt−3) = −E(log(f(Yt, Yt−2))) = 4.2230.

Thus, I(Yt;Yt−2) = h(Yt) + h(Yt−2) − h(Yt, Yt−2) = 2.1182 + 2.1182 − 4.2230 =

0.0134 and hence L(Yt;Yt−2) = 0.1626.

Lags 4, 5: Since Yt and Yt−m are independent, L(Yt, Yt−m) = 0.

To summarize, the results are shown in Table 2.3.

Model 3: Yt = Zt + 0.8Zt−1

(a) Autocorrelation:
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Table 2.3: Autocorrelation and L-measure of Model 2

Lag Rm Lm

0 1.0000 1
1 0.5289 0.6041
2 0.2645 0.3211
3 0 0.1626
4 0 0
5 0 0

Lag 1:

R(Yt, Yt−1) =
EYtYt−1 − EYtEYt−1

σYtσYt−1

=
E[(Zt + 0.8Zt−1)(Zt−1 + 0.8Zt−2)]− 0

1 + 0.8 ∗ 0.8
= 0.4878.

Lags 2 to 5: Since Yt and Yt−m are independent, R(Yt, Yt−m) = 0.

(b) L-measure:

Lag 1:

Since (Zt, Zt−1, Zt−2)
T ∼ N(0, I),and


Zt

Yt

Yt−1

 =


Zt

Zt + 0.8Zt−1

Zt−1 + 0.8Zt−2

.

f(Yt, Yt−1) =

∫
f(zt, zt−1(yt, yt−1, zt), zt−2(yt, yt−1, zt)) ∗ |J |dzt

=

∫
1

(2π)3/2
exp

{
−0.5

(
z2t +

(yt − zt)
2

0.64
+

(yt−1 − yt−zt
0.8

)2

0.64

)}
∗ 1

0.64
dzt.

(2.27)

Thus, I(Yt;Yt−1) = h(Yt) + h(Yt−1) − h(Yt, Yt−1) = 1.6664 + 1.6664 − 3.1970 =
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0.1358, hence L(Yt;Yt−1) = 0.4878.

Lags 2 to 5: Since Yt and Yt−m are independent, L(Yt, Yt−m) = 0.

To summarize, the result is shown in table in Table 2.4.

Table 2.4: Autocorrelation and L-measure of Model 3

Lag Rm Lm

0 1 1
1 0.4878 0.4878
2 0 0
3 0 0
4 0 0
5 0 0

Model 4: Yt = Zt + 0.8Zt−1 + 0.8Zt−2 + 0.8Zt−3

(a) Autocorrelation:

Lag 1:

R(Yt, Yt−1) =
EYtYt−1 − EYtEYt−1

σYtσYt

=
E[(Zt + 0.8Zt−1 + 0.8Zt−2 + 0.8Zt−3)(Zt−1 + 0.8Zt−2 + 0.8Zt−3 + 0.8Zt−4)]− 0

1 + 0.64 ∗ 3

=
E[0.8Z2

t−1 + 0.64Z2
t−2 + 0.64Z2

t−3]

1 + 0.64 ∗ 3

= 0.7123.

Lag 2: Similarly, R(Yt, Yt−2) = 0.4932.

Lag 3: We have R(Yt, Yt−3) = 0.2740.

Lags 4, 5: Since Yt and Yt−m are independent, R(Yt, Yt−m) = 0.

(b) L-measure:
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Lag 1:

Since (Zt, Zt−1, Zt−2, Zt−3, Zt−4)
T ∼ N(0, I), and

((Zt, Zt−1, Zt−2, Yt, Yt−1)
T = A(Zt, Zt−1, Zt−2, Zt−3, Zt−4)

T ,

then (Yt, Yt−1) ∼ N(0, B1), where B1 =

2.92 2.08

2.08 2.92

. Then

fYt,Yt−1(yt, yt−1) =
1

2π
√
det(B1)

exp(−0.5(yt, yt−1)B
−1
1 (yt, yt−1)

′).

Thus, I(Yt;Yt−1) = h(Yt) + h(Yt−1)− h(Yt, Yt−1) = 1.9547 ∗ 2− 3.5554 = 0.3540,

hence L(Yt, Yt−1) = 0.7123.

Lag 2: Similarly we have

(Yt, Yt−2) ∼ N(0, B2), where B2 =

2.92 1.44

1.44 2.92

.

I(Yt;Yt−2) = h(Yt)+h(Yt−2)−h(Yt, Yt−2) = 1.9547∗2−3.7701 = 0.1393; therefore

L(Yt, Yt−2) = 0.4931.

Lag 3: Similarly we have

(Yt, Yt−3) ∼ N(0, B3), where B3 =

2.92 0.8

0.8 2.92

.

I(Yt;Yt−3) = h(Yt) + h(Yt−3)− h(Yt, Yt−3) = 1.9547 ∗ 2− 3.8704 = 0.0390,

so L(Yt, Yt−3) = 0.2739.

Lags 4, 5: Since they are independent with each other, L(Yt, Yt−m) = 0.
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To summarize, the result is shown in Table 2.5.

Table 2.5: Autocorrelation and L-measure of Model 4

Lag Rm Lm

0 1.0000 1
1 0.7123 0.7123
2 0.4932 0.4932
3 0.2740 0.2740
4 0 0
5 0 0

Model 1 is a nonlinear MA(1) model, so Yt and Yt−1 are dependent and Yt and

Yt−m are independent when m > 1. Table 2.2 shows that the correlation coefficient

of Yt and Yt−1 is 0 while the L-measure of them is 0.47.

Similarly, Model 2 is a nonlinear MA(3) model, so Yt and Yt−m with lags 1, 2, 3 are

dependent, and their dependence tends to decrease when the lag increases. However,

in the Table 2.3, the correlation coefficient is 0, when lag is 3, while the L-measure

has a significant value.

From the results of Models 1 and 2, we can draw the conclusion that the L-measure

captures well the dependence structure for nonlinear MA models while the correlation

coefficient fails.

Models 3 and 4 are two linear MA models and we find that the value of the

correlation coefficients and the L-measures are exactly the same for any number of

lags, which supports property 4 of the L-measure as well. The dependence between Yt

and Yt−m agrees with the correlation coefficient since they are all bivariate Gaussian
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distributed for any number of lags.

2.4.3 Discrete Examples

In this section, we examine the L-measure and correlation coefficient for two discrete

Markov chains.

Model 5: Stationary Two-state First-order Markov Chain

Consider a two-state stationary Markov chain with probability transition matrix

A =

0.5 0.5

0.6 0.4

 and stationary distribution P (Xn = 0) = 6
11

and P (Xn = 1) = 5
11
.

(a) Autocorrelation:

Lag 1:

R(Xn, Xn−1) =
EXnXn−1 − EXnEXn−1√

σXnσXn−1

=
2
11

− 25
121

30
121

= −0.1.

Lag 2:

R(Xn, Xn−2) =
EXnXn−2 − EXnEXn−2√

σXnσXn−2

=
23
110

− 25
121

30
121

= 0.01.

Lag 3:

R(Xn, Xn−3) =
EXnXn−3 − EXnEXn−3√

σXnσXn−3

=
0.2064− 25

121
30
121

= −0.0009.

(b) L-measure:
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Lag 1:

H(Xn) = −
∑

pXn(xn) log pXn(xn) = 0.6890;

H(Xn−1, Xn) = −
∑

pXn−1,Xn(xn−1, xn) log pXn−1,Xn(xn−1, xn) = 1.3730.

Thus,

I(Xn;Xn−1) = H(Xn)+H(Xn−1)−H(Xn, Xn−1) = 0.6890∗ 2− 1.3730 = 0.0050,

and since it is stationary, we have

L(Xn, Xn−1) =

[
1− exp

{
−2I(Xn;Xn−1)

1− I(Xn;Xn−1)/H(Xn)

}]1/2
= 0.1001.

Lag 2:

H(Xn) = −
∑

pXn(xn) log pXn(xn) = 0.6890;

H(Xn−2, Xn) = −
∑

pXn−2,Xn(xn−2, xn) log pXn−2,Xn(xn−2, xn) = 1.3780.

Thus,

I(Xn;Xn−2) = H(Xn)+H(Xn−2)−H(Xn, Xn−2) = 0.6890∗2−1.3780 = 0.00005,

hence L(Xn, Xn−2) =
[
1− exp

{
−2I(Xn;Xn−2)

1−I(Xn;Xn−2)/H(Xn)

}]1/2
= 0.0100.

Lag 3:

H(Xn) = −
∑

pXn(xn) log pXn(xn) = 0.6890;

H(Xn−3, Xn) = −
∑

pXn−3,Xn(xn−3, xn) log pXn−3,Xn(xn−3, xn) = 1.3780.

Thus,

I(Xn;Xn−3) = H(Xn)+H(Xn−3)−H(Xn, Xn−3) = 0.6890∗2−1.3780 = 0.0000005,

hence L(Xn, Xn−3) =
[
1− exp

{
−2I(Xn;Xn−3)

1−I(Xn;Xn−3)/H(Xn)

}]1/2
= 0.0010.

The results are summarized in Table 3.6.
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Table 2.6: Autocorrelation and L-measure of Model 5

Lag Rm Lm

0 1 1
1 -0.1 0.1001
2 0.01 0.0100
3 -0.0009 0.0010

Model 6: Stationary Two-state Second-order Markov Chain

Consider a two-state stationary Markov second-order chain with probability tran-

sition P (0|00) = P (1|11) = 0.8, P (0|10) = P (0|01) = 0.5 and stationary distribution

P (Xn = 0) = 1
2
and P (Xn = 1) = 1

2
.

(a) Autocorrelation:

Lag 1:

R(Xn, Xn−1) =
EXnXn−1 − EXnEXn−1√

σXnσXn−1

=
5
14

− 1
4

1
4

= 0.4286.

Lag 2:

R(Xn, Xn−2) =
EXnXn−2 − EXnEXn−2√

σXnσXn−2

=
5
14

− 1
4

1
4

= 0.4286.

Lag 3:

R(Xn, Xn−3) =
EXnXn−3 − EXnEXn−3√

σXnσXn−3

=
0.3143− 1

4
1
4

= 0.2571.

(b) L-measure:
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Lag 1:

H(Xn) = −
∑

pXn(xn) log pXn(xn) = 0.6931;

H(Xn−1, Xn) = −
∑

pXn−1,Xn(xn−1, xn) log pXn−1,Xn(xn−1, xn) = 1.2914.

Thus,

I(Xn;Xn−1) = H(Xn)+H(Xn−1)−H(Xn, Xn−1) = 0.6931∗ 2− 1.2914 = 0.0949,

and since it is stationary, we have

L(Xn, Xn−1) =

[
1− exp

{
−2I(Xn;Xn−1)

1− I(Xn;Xn−1)/H(Xn)

}]1/2
= 0.4443.

Lag 2:

H(Xn) = −
∑

pXn(xn) log pXn(xn) = 0.6931;

H(Xn−2, Xn) = −
∑

pXn−2,Xn(xn−2, xn) log pXn−2,Xn(xn−2, xn) = 1.2914.

Thus,

I(Xn;Xn−2) = H(Xn)+H(Xn−2)−H(Xn, Xn−2) = 0.6931∗ 2− 1.2914 = 0.0949,

hence L(Xn, Xn−2) =
[
1− exp

{
−2I(Xn;Xn−2)

1−I(Xn;Xn−2)/H(Xn)

}]1/2
= 0.4443.

Lag 3:

H(Xn) = −
∑

pXn(xn) log pXn(xn) = 0.6931;

H(Xn−3, Xn) = −
∑

pXn−3,Xn(xn−3, xn) log pXn−3,Xn(xn−3, xn) = 1.3529.

Thus,

I(Xn;Xn−3) = H(Xn)+H(Xn−3)−H(Xn, Xn−3) = 0.6931∗2−1.3529 = 0.0000005,

hence L(Xn, Xn−3) =
[
1− exp

{
−2I(Xn;Xn−3)

1−I(Xn;Xn−3)/H(Xn)

}]1/2
= 0.2603.
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The results are summarized in Table 2.7.

Table 2.7: Autocorrelation and L-measure of Model 6

Lag Rm Lm

0 1 1
1 0.4286 0.4443
2 0.4286 0.4443
3 0.2571 0.2603

Model 5 is stationary two-state first-order Markov chain, so Xt and Xt−1 are

dependent and Xt and Xt−m are less dependent when m > 1. Table 2.6 shows that

the correlation coefficient and the L-measure of Xt and Xt−m both decrease when the

lag increases.

Model 6 is a stationary two-state second-order Markov chain, so Xt and Xt−m

are dependent in the first two lags and also have dependence structure with higher

lags. The correlation coefficient and the L-measure in Table 2.7 both illustrate this

dependence.



Chapter 3

Estimation

This chapter discusses the method we used for estimating the L-measure from time

series data. Examples of both the continuous time series and discrete ones, described

in Chapter 2, are utilized in this chapter to illustrate the estimation method.

In this chapter, it is assumed that we estimate the pdf fX(x) of Xt for continuous

random variables or pmf pX(x) of Xt for discrete random variables given a sample

X1, X2, ..., Xn. The symbol ·̂ is used to denote the estimation of the function being

estimated. MATLAB is used for all the implementations.

3.1 Literature Review

Before proceeding to our approach we first briefly review some existing methods from

the literature for estimating the mutual information and entropy. The two main

38
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methods, histogram-based estimators and Kernel-based estimators, to estimate en-

tropy or mutual information in literature, will be discussed.

Histogram-based estimators are widely used for their simplicity of implementation.

Moddemeijer [19] and Tambakis [28] utilized the histogram method with equidistant

cells. From the sequence of pairs of observations, a bivariate histogram is constructed

with the cells having identical bandwidths. The probability of a point is approximated

by the ratio of the number of pairs in the bin containing the point to the product of

the number of pairs and the area of the bin. The the marginal pdfs, fX(x) and fY (y),

are estimated by taking the marginal of the estimate of the joint pdf . On the other

hand, Darbellay [5] and Dionisio [6] utilized a histogram method with equiprobable

cells. The bivariate histogram is constructed by dividing each edge into cells with

approximately the same number of points. Then the mutual information is estimated

by

Î(X, Y ) =

N1∑
i=1

N2∑
j=1

f̂X,Y (ti, sj) log

{
f̂X,Y (ti, sj)

f̂X(ti)f̂Y (sj)

}
, (3.1)

where ti and sj are the points selected from the domain of fX,Y (x, y).

Ahmad and Lin [1] and Granger [8] proposed estimating the mutual information

using a kernel estimate. They first estimate the joint pdf fX,Y (x, y) by a kernel

estimate, then estimate the marginal pdfs, fX(x) and fY (y), from the estimate of the

joint pdf . Then they evaluate the marginal entropy and the joint entropy as follows:

ĥ(X) =
1

N

N∑
i=1

log
{
f̂X(ti)

}
, (3.2)

where ti, i = 1, ..., N are the points selected from the domain of fX(x),

ĥ(Y ) =
1

N

N∑
j=1

log
{
f̂Y (sj)

}
, (3.3)
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where sj, j = 1, ..., N are the points selected from the domain of fY (y),

ĥ(X, Y ) =
1

N2

N∑
i=1

N∑
j=1

log
{
f̂X,Y (ti, sj)

}
, (3.4)

where ti and sj are the points selected from the domain of fX,Y (x, y).

3.2 Continuous Case

In this section, our methods for estimating the L-measure and correlation coefficient

for continuous time series are described. Then, the four continuous time series from

Chapter 2 are generated and the L-measure and the correlation coefficient are esti-

mated based on these series. Possible reasons resulting in estimation bias are discussed

at the end of the section.

3.2.1 Method of Estimation of the L-measure

Let {Xt} denote a strictly stationary time series. Our goal is to estimate the lag m

L-measure, L(Xk, Xk+m) which for a stationary time series depends only on m, and

so we denote this by L(m). The following equation holds:

I(Xk;Xk+m) = 2h(Xk)− h(Xk, Xk+m), (3.5)

since h(Xk) = h(Xk+m).

To estimate the marginal density fX(x) of Xt, univariate Gaussian kernel density

estimation [24] is used:

f̂X(x) =
1

nσ

n∑
i=1

K

(
x−Xi

σ

)
(3.6)
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whereK(·) is the Gaussian kernel defined asK(x) = 1√
2π

exp(−0.5x2), n is the sample

size of the series and σ is the smoothing parameter also called the bandwidth, which

we select using Silverman’s Rule [24],

σ = 0.9An−1/5 (3.7)

where A = min{standard deviation of {Xt}, data interquartile range/1.34}, where

the data interquartile range is defined as the difference between the third and first

quartiles.

Recall that the differential entropy h(Xt) is defined as an integral in (2.5). To

estimate the integration in h(Xk), Gauss-Legendre quadrature [20] is applied:

ĥ(Xk) =
N∑
i=1

wif̂(ti) log
{
f̂(ti)

}
, (3.8)

where ti, i = 1, ..., N are the evaluation points, wi, i = 1, ..., N are the weights for

these points in the sum and N is the number of points in the approximation, which

influences the accuracy of the estimation.

For the estimation of fm(x, y), the joint pdf of Xk and Xk+m, we apply a bivariate

kernel density estimation method:

f̂m(x, y) =
1

(n−m)σ2

n−m∑
i=1

K

(
(x, y)T − (Xi, Xi+m)

T

σ

)
, (3.9)

where K(·, ·) is the Gaussian kernel defined as K(x, y) = 1
2π

exp{−0.5(x2 + y2)} and

the bandwidth is selected by Silverman’s Rule again such that σ = 0.96N−1/6 [24].
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Recall that the joint differential entropy h(Xk, Xk+m) is defined as a double inte-

gral (2.6). To estimate the double integral in h(Xk, Xk+m), Gauss-Legendre quadra-

ture is used again:

ĥ(Xk, Xk+m) =

N1∑
i=1

N2∑
j=1

wij f̂m(ti, sj) log
{
f̂m(ti, sj)

}
(3.10)

where ti and sj are the evaluation points; wij is the product of wi and wj, the two

weights corresponding to these two points, and N1 and N2 are the numbers of the

evaluation points chosen.

By now the estimation for mutual information, I(Xk, Xk+m), is available and is

given by

Î(Xk;Xk+m) = 2ĥ(Xk)− ĥ(Xk, Xk+m). (3.11)

Then, the estimate of the lag m L-measure, L(m), is given by

L̂(m) = L̂(Xk, Xk+m) =

√
1− exp{−2Î(Xk, Xk+m)}. (3.12)

We use the usual estimate of the autocorrelation function [2] in which the lag m

correlation between Xk and Xk+m, R(m), is given by

R̂(m) =
1

(n−m)σ̂2
X

n−m∑
k=1

(xk − µ̂X)(xk+m − µ̂X), (3.13)

where µ̂X = 1
n

∑n
i=1Xi is the sample mean and σ̂X

2 = 1
n−1

∑n
i=1(Xi − µ̂X)

2 is the

sample variance.
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3.2.2 Simulation of continuous examples

In this subsection, the four continuous examples from Chapter 2 are generated, and es-

timates of L(m) and R(m) are computed. In the Gauss-Legendre quadrature method

in (3.10) for h(Xk), N is selected as 200, on the interval (min{Xk} − 3σ,max{Xk}+

3σ); and for h(Xk, Xk+m), N1 and N2 both are defined as 50, and domain from

(min{Xk} − 3σ,min{Xk+m} − 3σ) to (max{Xk}+ 3σ,max{Xk+m}+ 3σ).

Model 1: Yt = Zt + 0.8Z2
t−1

The simulation with sample size 20,000 and replication number 10 is shown in Table

3.1.

Table 3.1: Simulation results for Model 1

Lag R̂m L̂m Rm Lm

0 1.0000 0.9827 1 1
1 -0.0003 0.4626 0 0.4891
2 -0.0004 0.0161 0 0
3 -0.0007 0.0157 0 0
4 -0.0005 0.0164 0 0
5 -0.0025 0.0160 0 0

Model 2: Yt = Zt + 0.8Z2
t−1 + 0.8Z2

t−2 + 0.8Z2
t−3

The simulation with sample size 20,000 and replication number 10 is shown in Table

3.2.

Model 3: Yt = Zt + 0.8Zt−1

The simulation with sample size 20,000 and replication number 10 is shown in table
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Table 3.2: Simulation results for Model 2

Lag R̂m L̂m Rm Lm

0 1.0000 0.9915 1.0000 1
1 0.5329 0.5912 0.5289 0.6041
2 0.2678 0.3563 0.2645 0.3211
3 0.0022 0.1839 0 0.1626
4 0.0002 0.0218 0 0
5 0.0006 0.0199 0 0

in Table 3.3.

Table 3.3: Simulation results for Model 3

Lag R̂m L̂m Rm Lm

0 1.0000 0.9796 1 1
1 0.48894 0.4782 0.4878 0.4878
2 -0.0006 0.0166 0 0
3 -0.0056 0.0163 0 0
4 -0.0068 0.0153 0 0
5 -0.0034 0.0149 0 0

Model 4: Yt = Zt + 0.8Zt−1 + 0.8Zt−2 + 0.8Zt−3

The simulation with sample size 20,000 and replication number 10 is shown in Table

3.4.

3.2.3 Bias Analysis

In this section, the histogram estimation method is used to compare with the kernel

density estimation method that was used in this thesis. Furthermore, reasons that
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Table 3.4: Simulation results for Model 4

Lag R̂m L̂m Rm Lm

0 1.0000 0.9884 1.0000 1
1 0.7122 0.7035 0.7123 0.7123
2 0.4941 0.4890 0.4932 0.4932
3 0.2750 0.2747 0.2740 0.2740
4 0.0002 0.0223 0 0
5 -0.0001 0.0225 0 0

may cause numerical bias are discussed.

Histogram Estimation

The histogram is one of the most classic and widely used density estimators thanks

to its simplicity. In this method, the estimation of the density function of variable

X, f̂X(x), is calculated as the ratio of the number of observations that fall into the

bin containing x to the total number of observations:

f̂X(x) =
1

nh
(the number of Xi in same bin as x), (3.14)

where n is the number of all the observations and h is the bandwidth that we choose

by the Freedman-Diaconis’ Rule [29],

h = 2 ∗ data interquartile range

n1/3
. (3.15)

Similarly to the univariate case, a bivariate histogram method for estimating

fm(x, y), the joint pdf of Xk and Xk+m, is defined by

f̂m(x, y) =
1

nh1h2
(no. of Xi, Yj in same bin as x), (3.16)
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where h1 and h2 are the bandwidths of X and Y , respectively, and n is the number

of all the observations. Now the histogram estimator is applied to estimate the L-

measure for different lags in time series.

Let {Xt} denote a strictly stationary time series. We already know that

Î(Xk;Xk+m) = 2ĥ(Xk)− ĥ(Xk, Xk+m). (3.17)

To estimate the integration in h(Xk), the histogram estimator is substituted, f̂X(·),

into Gauss-Legendre quadrature,

ĥ(Xk) =
N∑
i=1

wif̂(ti) log
{
f̂(ti)

}
, (3.18)

where ti, i = 1, ..., N are the evaluation points, wi, i = 1, ..., N are the weights for

these points in the sum and N is the number of points in the approximation, which

influences the accuracy of the estimation.

To estimate the double integral in h(Xk, Xk+m), again, the bivariate histogram

estimator is taken and plugged, f̂m(·, ·), into Gauss-Legendre quadrature,

ĥ(Xk, Xk+m) =

N1∑
i=1

N2∑
j=1

wij f̂m(ti, sj) log
{
f̂m(ti, sj)

}
, (3.19)

where ti and sj are the evaluation points; wij is the product of wi and wj, the two

weights corresponding to these two points, and N1 and N2 are the numbers of the

evaluation points chosen. Then the L-measure is calculated as 3.17.

To evaluate the accuracy of both estimators, they are both applied to estimate

the L-measure of the first three lags of i.i.d N(0, 1) distributed time series with same

sample size 1000 and 5000. The estimated mean µ̂ and standard deviation σ̂ are
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shown in the following tables.

Table 3.5: µ̂ and σ̂ for both estimators with sample size 1000

Lag mean of hist std of hist mean of kernel std of kernel
1 0.1901 0.1590 0.1036 0.0073
2 0.1744 0.1663 0.1011 0.0190
3 0.1795 0.1859 0.0900 0.0159

Table 3.6: µ̂ and σ̂ for both estimators with sample size 5000

Lag mean of hist std of hist mean of kernel std of kernel
1 0.1082 0.1273 0.0531 0.0100
2 0.1379 0.1329 0.0536 0.0109
3 0.1089 0.1292 0.0509 0.0078

From the tables above, we note that the bias of the histogram estimation method

is bigger than the bias of the kernel density estimation method; this is due to the

discontinuity of histograms and the lack of information about tails of distribution

which is not appropriate for the integral.

Moreover, the standard deviation of the histogram estimation method is also larger

than that of the kernel method, because the selections of an origin and the bandwidth

have important effects on the result and are highly depended on the data. It should

be better to choose an origin and bandwidth for different contexts individually.

Based on these two reasons, the kernel density estimation method instead of his-

togram estimation method is selected as the estimation method in this thesis.
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Bias

In this paragraph, several reasons that may lead to bias of the kernel density estima-

tion method are presented.

From the examples above, we have seen that the bias of the L-measure with sample

size 20,000 is around 0.02 when the value of L-measure approaches zero, and decreases

when the value is bigger. Sample size is a very important element that affects the

accuracy. To see how it influences the bias, several Gaussian distributed i.i.d. series

with sample size 1000, 5000, 10000, 20000, 50000 are generated and their L-measures

are calculated. The simulation with replication number 10 for different sample sizes

is shown in Table 3.8.

Table 3.7: L-measure of i.i.d. series with different sample sizes

Lag 1000 5000 10000 20000 50000
1 0.1036 0.0531 0.0392 0.0211 0.0124
2 0.1011 0.0536 0.0374 0.0204 0.0132
3 0.0900 0.0509 0.0360 0.0207 0.0140

The bias of the L-measure for the sample of size 1000 is around 0.10 and can

decrease to 0.015 for the one of the size of 20,000. Thus these values in this form can

be regarded as criteria to examine whether there is a dependence between random

variables for a given sample size.

Besides sample size, there also exist some other reasons leading to the inaccura-

cies. First, the interval in the Gauss-Legendre quadrature was selected based on the
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assumption that the interval on the domain that is out of this interval is small enough

to ignore; this also result in a bias. Second, the particular form of the L-measure can

also exaggerate the bias in the estimation of mutual information. Last, the methods

of generating the data sets and defining the bandwidth may also bring some variances.

3.3 Discrete Case

In this section, the method of estimation of the L-measure and the correlation coef-

ficient for discrete time series are described. Then, the two discrete Markov chains

from Chapter 2 are generated and the two measures are estimated.

3.3.1 Method of Estimation

Let {Yt} denote a strictly stationary discrete time series. Our goal is to estimate the

lag m L-measure, L(Yk, Yk+m) which for a stationary time series depends only on m,

and so we denote this by L(m). The following equation holds

I(Yk;Yk+m) = 2H(Yk)−H(Yk, Yk+m), (3.20)

since H(Yk) = H(Yk+m).

Suppose that there are a set of possible states a1, a2..., ar for {Yt}, to estimate the

marginal pmf pY (y). The ratio of the number of observations of a given point to the

number of all observations is considered:

P̂ (y = ai) =
n(y = ai)

n
, i = 1, ...r, (3.21)

where n(y = ai) is the number of observations with value ai and n is the sample size

of the series.
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Then the estimate of H(Yk) is given by

Ĥ(Yk) =
r∑

i=1

P̂ (Y = ai) log
{
P̂ (Y = ai)

}
. (3.22)

Similarly, the joint pmf of Yk and Yk+m can be estimated as

P̂ (Yk = ai, Yk+m = aj) =
n(Yk = ai, Yk+m = aj)

n−m
, (3.23)

where i, j = 1, ...r, n(yk = ai, yk+m = aj) is the number of observation pairs that

Yk = ai and Yk+m = aj.

Thus the estimate of H(Yk, Yk+m) is given by

Ĥ(Yk, Yk+m) =
r∑

i=1

r∑
j=1

P̂ (Yk = ai, Yk+m = aj) log
{
P̂ (Yk = i, Yk+m = j)

}
. (3.24)

By now, the estimation for mutual information, I(Yk, Yk+m) is given by

Î(Yk;Yk+m) = 2Ĥ(Yk)− Ĥ(Yk, Yk+m). (3.25)

Then, the estimate of the lag m L-measure, L(m), is given by

L̂(m) = L̂(Yk, Yk+m) =

√√√√1− exp

{
−2Î(Yk;Yk+m)

1− Î(Yk;Yk+m)/Ĥ(Yk)

}
. (3.26)

On the other hand, the estimate of the autocorrelation function at lag m, R(m),
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as for the continuous time series, is given by

R̂(m) =
1

(n−m)σ̂2
Y

n−m∑
k=1

(Yk − µ̂Y )(Yk+m − µ̂Y ). (3.27)

where µ̂Y = 1
n

∑n
i=1 Yi is the sample mean and σ̂Y

2 = 1
n−1

∑n
i=1(Yi − µ̂Y )

2 is the

sample variance.

3.3.2 Simulation of Discrete Examples

In this subsection the two discrete Markov Chains from Chapter 2 are generated and

estimates of L(m) and R(m) are computed.

Model 5: Stationary two-state first-order Markov chain

The simulation with sample size 20,000 and replication number 10 is shown in Table

3.8.

Table 3.8: Simulation results for Model 5

Lag R̂m L̂m Rm Lm

0 1.0000 1.0000 1 1
1 -0.1013 0.1015 -0.1 0.1001
2 0.0095 0.0105 0.01 0.0100
3 -0.0029 0.0061 -0.0009 0.0010

Model 6: Stationary two-state second-order Markov chain

The simulation with sample size 20,000 and replication number 10 is shown in Table

3.9.

The bias of L-measure for discrete cases is about 0.01 with sample size 1,000 and is



3.3. DISCRETE CASE 52

Table 3.9: Simulation results for Model 6

Lag R̂m L̂m Rm Lm

0 1.0000 1.0000 1 1
1 0.4302 0.4461 0.4286 0.4443
2 0.4278 0.4434 0.4286 0.4443
3 0.2572 0.2606 0.2571 0.2603

almost able to reach 0.005 with sample size increases more than 10000.



Chapter 4

Intrinsic L-measure

For any two random variables, the correlation coefficient between them can always be

reduced to zero after an appropriate linear transformation. In this chapter, first, the

properties of the L-measure under such transformations are discussed and the intrinsic

L-measure is defined based on these properties. Second, the intrinsic L-measure of

the four examples is calculated and the intrinsic L-measure of two nonlinear data sets

is numerically estimated.

4.1 Preliminary Discussion

If X, Y is a pair of random variables with covariance matrix

KXY =

 σ2
X ρσXσY

ρσXσY σ2
Y

 ,

there exists more than one linear transformation that can make the transformed vari-

ables uncorrelated.

53



4.2. DEFINITION 54

For example, since KXY is symmetric, we may write KXY = BDBT , where D is

diagonal and B is orthonormal (i.e., BBT = BTB = I). Then setting

Z1

Z2

 = BT

X
Y

 ,

the covariance matrix of (Z1, Z2)
T is KZ1Z2 = BTKXYB = BTBDBTB = D, and so

Z1 and Z2 are uncorrelated.

Independent component analysis (ICA) was first proposed by Juttena and Herault

[15]. It describes how to separate the components to minimize their dependency by

linear transformation. This technique is a powerful tool for data analysis for its ability

of not only the decorrelating the random variables but also minimizing high-order

statistical moments.

The mutual information, was first proposed as the dependence measure in ICA

by Common [3] in 1994. Minimization of the mutual information is considered as

a criterion for ICA. Since the L-measure is a monotone increasing function of the

mutual information, we next consider the properties of the L-measure under a linear

transformation.

4.2 Definition

Definition 4.2.1. Let (X,Y ) be a pair of continuous random variables. The intrinsic

L-measure between X and Y is defined as minA L(X̃, Ỹ ), whereX̃
Ỹ

 = A

X
Y

 ,

and the minimum is taken over all nonsingular 2× 2 matrices A.
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This section discusses how to find out the matrix which can make the transformed

variables obtain the minimum value of their L-measure.

The L-measure is a monotonic increasing function of mutual information; therefore

it is equivalent to look for the minimum value of mutual information instead of the

one of the L-measure. Based on Property 5 of the L-measure that the L-measure is

invariant under continuous and strictly increasing transformations for the marginals,

the L-measure is then invariant under the multiplication with a diagonal matrix.

I(aX; dY ) = h(aX) + h(dY )− h


a 0

0 d


x
y




= h(X) + log a+ h(Y ) + log d− h(X,Y )− log(a ∗ d)

= I(X;Y ). (4.1)

Assume that

Au =

 1√
a2+b2

0

0 1√
c2+d2


a b

c d

 =

 a√
a2+b2

b√
a2+b2

c√
c2+d2

d√
c2+d2

 ,

thus, the mutual information after transformation matrix A is the same as after trans-

formation matrix Au which has unit row vectors.

Therefore, we can set the range of a and c from -1 to 1, respectively. Furthermore,

b =
√
1− a2 and d =

√
1− c2 are given.
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A special class of random variables we need to mention here are bivariate Gaus-

sian distributed random variables. As we know, for Gaussian distributed random

variables, independence is equivalent to zero correlation. Thus the minimum value of

the L-measure of transformed random variables is 0 if and only if the transformation

also makes them uncorrelated. In this case we can say the intrinsic L-measure be-

tween them is zero.

Obviously, the intrinsic L-measure between one variable and itself is 0. Choose

A =

1 0

1 −1

, then X̃ = X and Ỹ = 0, thus I(X̃; Ỹ ) = H(Ỹ )−H(Ỹ |X̃) = 0.

The intrinsic L-measure of purely linearly dependent random variables also equals

to 0. Assume that Y = aX + Z, where a is constant and Z is a random variable

that is independent of X. Choose A =

a −1

1 0

, then X̃ = −Z and Ỹ = X, thus

I(X̃; Ỹ ) = 0.

4.3 Examples

Model 1: Yt = Zt + 0.8Z2
t−1
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Since (Zt, Zt−1, Zt−2)
T ∼ N(0, I), and


Zt

Yt

Yt−1

 =


Zt

Zt + 0.8Z2
t−1

Zt−1 + 0.8Z2
t−2

,

fZt−2,Yt,Yt−1(zt−2, yt, yt−1) = fZt−2,Zt,Zt−1(zt−2, zt−1(yt, yt−1, zt−2), zt(yt, yt−1, zt−2)) ∗ |J |

=
1

(2π)3/2
exp

{
−1

2

[
z2t−2 + (y2t−1 − 0.8z2t−2)

2 +
(
yt − 0.8(y2t−1 − 0.8z2t−2)

2
)2]}

.

Thus fYt,Yt−1(Yt, Yt−1) =
∫
fet−2,Yt,Yt−1(et−2, Yt, Yt−1)det−2.

Then based on the assumption that A =

a b

c d

, we have


Ỹt = aYt + bYt−1

Ỹt−1 = cYt + dYt−1.

(4.2)

Therefore,

fỸt,Ỹt−1
(ỹt, ỹt−1) = FYt,Yt−1(yt(ỹt, ỹt−1), yt−1(ỹt, ỹt−1))|A−1|

=

∫
fZt−2,Yt,Yt−1(zt−2, yt(ỹt, ỹt−1), yt−1(ỹt, ỹt−1)) ∗ |A−1|dzt−2. (4.3)

Thus, 
fỸt

(ỹt) =

∫
fỸt,Ỹt−1

(ỹt, ỹt−1)dỹt−1

fỸt−1
(ỹt−1) =

∫
fỸt,Ỹt−1

(ỹt, ỹt−1)dỹt.

To calculate the integral h(Ỹt), here we chose Gaussian quadrature with 200 nodes

and weight at interval (−15(a+ b)/2, 15(a+ b)/2); and for h(Ỹt−1), Gaussian quadra-

ture with the same number of nodes but weight at interval (−15(c+d)/2, 15(c+d)/2)

instead.
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From Chapter 2, we know that I(Yt;Yt−1) = h(Yt) + h(Yt−1) − h(Yt, Yt−1) =

1.7540 + 1.7540− 3.3713 = 0.1367, and L(Yt, Yt−1) = 0.4891.

Now we find (by numerical search) that when A =

−0.95 0.3122

0.35 0.9367

, I(Ỹt, Ỹt−1)

would achieve its minimum value and thus h(Ỹt) = 1.7609, h(Ỹt−1) = 1.6734 and

h(Ỹt, Ỹt−1) = h(Yt, Yt−1) + log(det |A|) = 3.3713 + log(det |A|) = 3.3705.

Thus I(Ỹt; Ỹt−1) = 0.0638 and L(Ỹt, Ỹt−1) = 0.3461.

Model 2: Yt = Zt + 0.8Z2
t−1 + 0.8Z2

t−2 + 0.8Z2
t−3

Lag 1:

Since (Zt, Zt−1, Zt−2, Zt−3, Zt−4)
T ∼ N(0, I), and

Zt−2

Zt−3

Zt−4

Yt

Yt−1


=



Zt−2

Zt−3

Zt−4

Zt + 0.8Z2
t−1 + 0.8Z2

t−2 + 0.8Z2
t−2

Zt−1 + 0.8Z2
t−2 + 0.8Z2

t−3 + 0.8Z2
t−4


,

thus,

fYt,Yt−1(yt, yt−1) =

∫ ∫ ∫
fZt−2,Zt−3,Zt−4,Yt,Yt−1(zt−2, zt−3, zt−4, yt, yt−1)dzt−2dzt−3dzt−4.
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Then we assume that A =

a b

c d

. Therefore,

fỸt,Ỹt−1
(ỹt, ỹt−1) = fYt,Yt−1(yt(ỹt, ỹt−1), yt−1(ỹt, ỹt−1))|A−1|

=

∫ ∫ ∫
fZt−2,Zt−3,Zt−4,Yt,Yt−1(zt−2, zt−3, zt−4, yt(ỹt, ỹt−1), yt−1(ỹt, ỹt−1))|A−1|dzt−2dzt−3dzt−4.

(4.4)

Thus, 
fỸt

(ỹt) =

∫
fỸt,Ỹt−1

(ỹt, ỹt−1)dỹt−1

fỸt−1
(ỹt−1) =

∫
fỸt,Ỹt−1

(ỹt, ỹt−1)dỹt.

(4.5)

To calculate the integral h(Ỹt), here we chose Gaussian quadrature with 150 nodes

and weight at interval (−15(a+ b)/2, 15(a+ b)/2); and for h(Ỹt−1), Gaussian quadra-

ture with the same number of nodes but weight at interval (−15(c+d)/2, 15(c+d)/2)

instead.

From Chapter 2 we have I(Yt;Yt−1) = h(Yt) + h(Yt−1) − h(Yt, Yt−1) = 2.1182 +

2.1182− 4.0094 = 0.2270 and L(Yt, Yt−1) = 0.6041.

Now we find A =

−0.8000 0.6000

0.2700 0.9629

 can make I(Ỹt, Ỹt−1) achieve the minimum

value and thus h(Ỹt) = 1.7971, h(Ỹt−1) = 2.1929 and h(Ỹt, Ỹt−1) = h(Yt, Yt−1) +

log(det |A|) = 4.0094 + log(det |A|) = 3.9393.

Thus I(Ỹt; Ỹt−1) = 0.0507 and L(Ỹt, Ỹt−1) = 0.3105.
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Lag 2:

Since (Zt, Zt−1, Zt−2, Zt−3, Zt−4, Zt−5)
T ∼ N(0, I), and

Zt−1

Zt−3

Zt−4

Zt−5

Yt

Yt−2


=



Zt−1

Zt−3

Zt−4

Zt−5

Zt + 0.8Z2
t−1 + 0.8Z2

t−2 + 0.8Z2
t−2

Zt−2 + 0.8Z2
t−3 + 0.8Z2

t−4 + 0.8Z2
t−5


.

Similarly,

fYt,Yt−2(yt, yt−2) =

∫ ∫ ∫ ∫
f(zt−1, zt−3, zt−4, zt−5, yt, yt−2)dzt−1dzt−3dzt−4dzt−5.

Therefore,

fỸt,Ỹt−2
(ỹt, ỹt−2) = fYt,Yt−2(yt(ỹt, ỹt−2), yt−2(ỹt, ỹt−2))|A−1|

=

∫ ∫ ∫ ∫
fZt−1,Zt−3,Zt−4,Zt−5,Yt,Yt−2 (zt−1, zt−3, zt−4, zt−5, yt (ỹt, ỹt−2) , yt−2(ỹt, ỹt−2))

∗ |A−1|dzt−1dzt−3dzt−4dzt−5. (4.6)

(4.7)

To calculate the integral h(Ỹt), here we chose Gaussian quadrature with 60 nodes

and weight at interval (−15(a+ b)/2, 15(a+ b)/2); and for h(Ỹt−2), Gaussian quadra-

ture with the same number of nodes but weight at interval (−15(c+d)/2, 15(c+d)/2)
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instead.

From Chapter 2 we have

I(Yt;Yt−2) = h(Yt) + h(Yt−2)− h(Yt, Yt−2) = 2.1182 + 2.1182− 4.1820 = 0.0544,

and L(Yt;Yt−2) = 0.3211.

Now we find A = I can make I(Ỹt, Ỹt−2) achieve the minimum value and thus

I(Ỹt; Ỹt−2) = I(Yt;Yt−2) = 0.0544 and L(Ỹt, Ỹt−2) = L(Yt;Yt−2) = 0.3211.

Lag 3:

Since (Zt, Zt−1, Zt−2, Zt−3, Zt−4, Zt−5, Zt−6)
T ∼ N(0, I),and

Zt−1

Zt−2

Zt−4

Zt−5

Zt−6

Yt

Yt−3



=



Zt−1

Zt−2

Zt−4

Zt−5

Zt−6

Zt + 0.8Z2
t−1 + 0.8Z2

t−2 + 0.8Z2
t−2

Zt−3 + 0.8Z2
t−4 + 0.8Z2

t−5 + 0.8Z2
t−6



.

Similarly,

fyt,yt−3(yt, yt−3) =

∫ ∫ ∫ ∫ ∫
f(zt−1, zt−2, zt−4, zt−5, zt−6, yt, yt−3)det−1det−2det−4det−5det−6.
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Therefore,

fỸt,Ỹt−3
(ỹt, ỹt−3) = fYt,Yt−3(yt(ỹt, ỹt−3), yt−3(ỹt, ỹt−3))|A−1|

=

∫
· · ·

∫
fZt−1,Zt−2,Zt−4,Zt−5,Zt−6,Yt,Yt−2(zt−1, zt−2, zt−4, zt−5, zt−6,

yt(ỹt, ỹt−3), yt−3(ỹt, ỹt−3))|A−1|dzt−1dzt−2dzt−4dzt−5dzt−6. (4.8)

To calculate the integral h(Ỹt), here we chose Gaussian quadrature with 40 nodes

and weight at interval (−15(a+ b)/2, 15(a+ b)/2); and for h(Ỹt−3), Gaussian quadra-

ture with the same number of nodes but weight at interval (−15(c+d)/2, 15(c+d)/2)

instead.

From Chapter 2 we have I(Yt;Yt−2) = h(Yt) + h(Yt−2) − h(Yt, Yt−2) = 2.1182 +

2.1182− 4.2230 = 0.0134 and L(Yt;Yt−2) = 0.1626.

Now we find A =

 0.9900 0.1411

−0.1600 0.9871

 can make I(Ỹt, Ỹt−2) achieve the minimum

value and thus h(Ỹt) = 2.1159, h(Ỹt−3) = 2.1192 and h(Ỹt, Ỹt−3) = h(Yt, Yt−3) +

log(det |A|) = 4.2230 + log(det |A|) = 4.2228.

Thus I(Ỹt; Ỹt−3) = 0.0123 and L(Ỹt, Ỹt−3) = 0.1559.

Model 3 and Model 4:

Since for any lag m for both models, (Yt, Yt−m) is bivariate Gaussian distributed,

their intrinsic L-measure are all zero.
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4.3.1 Application to Data Sets

In this section, the Santa Fe data set A [7] and the Lorenz data [27] are presented

and their L-measure and intrinsic L-measure are estimated.

The Santa Fe data set A [7] is a univariate time record including 1,000 points from

a physics laboratory experiment. It is stationary and is approximately described by

three coupled nonlinear ordinary differential equations. Figure 4.1 shows the Santa Fe

data Set A and Figure 4.2 shows the estimated L-measure and the estimated intrinsic

L-measure for lags from 0 to 150.

The Lorenz data [27] (of length 5000 points) is the y-component of the data

generated from a chaotic Lorenz system by equations
x′ = σ(y − x)

y′ = x(ρ− z)− y)

z′ = xy − βz

, (4.9)

where ρ = 28, β = 8/3 and (x0, y0, z0) = (0, 0, 0).

These two data sets were tested by comparing of their correntropy and the cor-

rentropy of their surrogate data by Gunduz [12]. The results indicate that they have

nonlinear structures. From Figure 4.2 we can see that the trend of the L-measure and

of the intrinsic L-measure are almost the same. The intrinsic L-measure is decreasing

when the L-measure decreases and is increasing when the L-measure increases. The

value of the intrinsic L-measure is very close to the value of the L-measure and sta-

bilizes around 0.2 after lag 100. This illustrates that it is hard to reduce the value

of the L-measure through linear transformation after lag 100. It is not clear that
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Figure 4.1: Santa Fe data set A
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dependence still exists for high lags due to the 0.1 estimation bias. Figure 4.4 shows

a similar result. The value of the intrinsic L-measure is close to the L-measure and

becomes almost identical after lag 50.
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Figure 4.2: L-measure and intrinsic L-measure of Santa Fe data set A
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Figure 4.3: Lorenz data
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Figure 4.4: L-measure and intrinsic L-measure of Lorenz data
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Chapter 5

Conclusion

5.1 Summary

Measuring dependence is a central and interesting research topic in statistics and is

also a challenge because there is no known standard constructive dependence mea-

sure. In this thesis, the L-measure was introduced as a new measure of dependence.

The L-measure is defined based on the concept of informational coefficient of corre-

lation introduced by Linfoot [17]. It expands the application range from continuous

random variables to arbitrary ones. All of the good properties of the informational

coefficient of correlation for continuous cases are also inherited by the L-measure and

were proved in detail. For example, the L-measure is symmetric, its value lies between

0 to 1 and equals to 0 if and only if its arguments are independent. Corresponding

properties for discrete cases were also discussed and proved.

To estimate the L-measure for continuous cases, Gaussian kernel density estima-

tion and Gauss-Legendre quadrature were combined and applied. The performances
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of estimations of continuous examples are satisfactory. Compared to the histogram

estimation method and some other methods from previous studies in the literature,

the proposed method in this thesis has more accurate results. To calculate the L-

measure for discrete cases, the ratio of the number of occurrences of a event to the

total number of occurrences of all events has been considered as the probability of

this event. Results of estimation of discrete examples are quite accurate.

Since all the bivariate random variables can be uncorrelated after some linear

transformation, the intrinsic L-measure was defined to search for intrinsic depen-

dence between two continuous random variables. Some interesting properties of the

intrinsic L-measure were introduced. The intrinsic L-measure for bivariate Gaussian

distributed random variables was shown to be zero. It reaches zero between a ran-

dom variable and itself or between two random variables if they have a pure linear

functional relationship. Two nonlinear data sets were used and the implementation of

their L-measures and intrinsic L-measures show that the L-measure and the intrinsic

L-measure can offer more information than the traditional correlation coefficient.

In conclusion, the L-measure is satisfactory as a new dependence measure since

not only it can describe the dependence for random variables with linear structure,

but it is also sensitive for those with nonlinear structure. It also applies to both

discrete cases and continuous cases.
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5.2 Further Research

The L-measure is defined as a new dependence measure based on the informational

coefficient of correlation. This thesis offered one step for extending the range of ap-

plication from continuous cases to arbitrary cases. Further research can start from

several aspects as follows.

First, the dependence measure between two random variables can expand to a

measure among multiple random variables. It is indeed known that mutual informa-

tion is a special case of Kullback-Leiber number for measuring dependence between

multiple random variables [13]. The Kullback-Leiber number is defined as the expec-

tation of the logarithm of the ratio of the joint pdf and the product of marginal pdf s.

Therefore, it would be very interesting if the dependence measure can consider the

dependence between more than two variables.

Second, the accuracy of estimation for continuous cases can be improved. In this

thesis, the Gaussian kernel density estimation was implemented. Alternative kernels

may yield better results.

Third, regarding the estimation accuracy, the bandwidth is also a key aspect that

influences the accuracy. Besides Silverman’s Rule, alternative ways to choose the

bandwidth can also be further studied.

Fourth, more properties of the intrinsic L-measure can be discovered. We found

that the intrinsic L-measure is zero when there is a pure linear relationship between
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the random variables, but the relationship between the intrinsic L-measure and non-

linear dependence is still an open question.

Finally, because the results of the intrinsic L-measure are all numerical, there is

ample room for future analytical investigations.
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