
1

On the Performance of Hybrid Digital-Analog

Coding for Broadcasting Correlated Gaussian

Sources∗

Hamid Behroozi, Member, IEEE, Fady Alajaji, Senior Member, IEEE and Tamás

Linder, Senior Member, IEEE

Abstract

We consider the problem of sending a bivariate Gaussian source S = (S1, S2) across a power-limited two-user

Gaussian broadcast channel. User i (i = 1, 2) observes the transmitted signal corrupted by Gaussian noise with

power σ2
i and desires to estimate Si. We study hybrid digital-analog (HDA) joint source-channel coding schemes and

analyze the region of (squared-error) distortion pairs that are simultaneously achievable. Two cases are considered:

1) broadcasting with bandwidth compression, and 2) broadcasting with bandwidth expansion. We modify and adapt

HDA schemes of Wilson et al. [1] and Prabhakaran et al. [2], originally proposed for broadcasting a single common

Gaussian source, in order to provide achievable distortion regions for broadcasting correlated Gaussian sources. For

comparison, we also extend the outer bound of Soundararajan et al. [3] from the matched source-channel bandwidth

case to the bandwidth mismatch case.
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I. INTRODUCTION

WE consider the reliable transmission of a correlated bivariate Gaussian source S = (S1, S2) across

a power-limited two-user Gaussian broadcast channel. One motivation of our study is the problem

of sending a correlated vector source such as the pair (temperature, pressure) of a reactor to monitoring

sites. Different components of the source could have their own fidelity requirements instead of an average

or total distortion measure even though they are jointly coded.

First let us consider the problem of broadcasting a single memoryless source to two destinations. A

Gaussian source sequence of mean zero and variance σ2
S is to be transmitted across a Gaussian two-user

broadcast channel with power constraint P and with respective noise variances N1 and N2 (N1 > N2) (e.g.,

see [4]). For this example, it is known that uncoded transmission performs better than the best separate

source-channel code (see, e.g., [5]–[8]). Let C1 = 1
2

log(1+ P
N1

) and C2 = 1
2

log(1+ P
N2

) be, respectively, the

capacities of the two underlying point-to-point channels. If separate source and channel coding is used, i.e.,

the Gaussian source is optimally quantized and the quantization bits are encoded with a capacity-achieving

channel code (see Fig. 1), the mean squared-error (MSE) pair of achievable distortions satisfies

D1 =
σ2
S

1 + (1−γ)P
γP+N1

; D2 =
σ2
S(

1 + (1−γ)P
γP+N1

)(
1 + γP

N2

) , (1)

where γ can be chosen in [0, 1] to provide the desired tradeoff between D1 and D2. Since the Gaussian

problem we consider is successively refinable [7], [9], this result follows from combining Ri = R(D) =

1
2

log(
σ2
S

D
) with the pair of achievable rates for a broadcast channel as R1 = 1

2
log(1+ (1−γ)P

γP+N1
) and R2 = R1+

1
2

log(1+ γP
N2

) [4], [7]. Note that for each value of γ, we can design a channel code that provides a particular

achievable rate pair (which gives an specific distortion pair). However, applying uncoded transmission yields

the following distortion pair:

D1 =
σ2
S

1 + P
N1

; D2 =
σ2
S

1 + P
N2

. (2)

These distortions are clearly not simultaneously achievable by separate source-channel codes. This simple

example provides a multi-user scenario where analog information is more valuable than digital information.

In a similar spirit, this paper considers broadcasting correlated Gaussian sources and aims to characterize

MSE distortion pairs that are simultaneously achievable at the two receivers using hybrid digital-analog
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(HDA) coding schemes.

Shannon proved that the separate (independent) design of source and channel coding is an optimal strategy

for a fixed channel signal-to-noise ratio (CSNR) in ergodic point-to-point communication systems (where

optimality in terms of reproducing the source at the destination within a prescribed fidelity is achieved

asymptotically as the coding/decoding delay and complexity increase without bound) [10]. Such a scheme

is often referred to as a digital tandem source-channel coding scheme. There are two inherent problems

associated with the digital tandem scheme: the “leveling-off effect” and the “threshold effect” [11], [12].

Since the system typically performs well at a certain designed CSNR, the system performance does not

improve with increased CSNR (leveling-off effect), and it degrades drastically when the true CSNR falls

beneath the designed CSNR (threshold effect). It is also known that this conceptually simple coding scheme

does not in general lead to the optimal performance theoretically attainable (OPTA) in networks; see e.g.

[4], [13].

On the other hand, for the point-to-point transmission of a single Gaussian source through an additive

white Gaussian noise (AWGN) channel, it is well known (e.g., see [5], [13]) that if the channel and source

bandwidths are equal, simple uncoded transmission achieves OPTA. Uncoded (or analog) transmission in

this case (and in the rest of this paper) means scaling the encoder input subject to the channel power

constraint and transmitting without explicit channel coding. The optimality of uncoded transmission in

some multi-user communication systems was recently shown in [14]–[16].

In order to exploit the advantages of both analog transmission and digital techniques, a family of HDA

schemes were introduced in the literature, see e.g., [1], [2], [7], [12], [17]–[26]. These methods usually

offer better distortion performance than the purely analog or digital schemes; they do not suffer from

the leveling-off effect, have a less severe threshold effect [18] compared to digital tandem source-channel

coding schemes, and they can asymptotically achieve Shannon’s OPTA limit at the designed CSNR. The

case of broadcasting a single memoryless Gaussian source with bandwidth mismatch between the source

and the channel using HDA schemes is considered in [18], [20]. Bross et al. [27] show that there exists

a continuum of HDA schemes with optimal performance for the transmission of a Gaussian source over

an average-power-limited Gaussian channel with matched bandwidth. Tian and Shamai [28] generalize this

result to the mismatched bandwidth case. In [29] Gao and Tuncel propose two new schemes for transmitting
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a Gaussian source over a Gaussian channel. These schemes directly generalize previous result of [27] by

making better use of the dirty-paper coding auxiliary random variable. A complete characterization of

the set of achievable distortion pairs in transmitting a Gaussian source with memory over an arbitrarily

colored Gaussian broadcast channel with matched bandwidth is presented in [2]. In [30] inner and outer

bounds for the distortion region in broadcasting a Gaussian mixture source is provided. Broadcasting a

common source to multiple receivers having different correlated side information is investigated in [31]–

[34]. An HDA coding scheme for broadcasting a common source to two receivers with matched bandwidth

having different correlated side information is proposed in [35], where the authors show that under certain

conditions their scheme achieves the same performance as in point-to-point communication simultaneously

at both receivers and is thus optimal. In [36], an HDA scheme is presented for the problem of sending a

parallel Gaussian source over a white Gaussian broadcast channel.

Related work on broadcasting correlated sources can be found in [3], [16], [37]–[44]. Lossless transmis-

sion of finite alphabet sources is considered in [37]–[41], [45], and uncoded transmission for broadcasting

correlated Gaussian sources is evaluated in [16]. It is shown in [16] that the uncoded scheme is optimal

below a certain CSNR-threshold. In [46], we introduce a layered HDA scheme for broadcasting a bivariate

Gaussian source with matched bandwidth. A complete characterization of the achievable distortion region

in sending a bivariate Gaussian source over bandwidth-matched Gaussian broadcast channel was recently

derived in [44]. In a recent manuscript [47], the problem of broadcasting two correlated Gaussian sources

using optimal separate source and channel codes is studied, where it is shown that the proposed scheme

is very competitive for any bandwidth compression/expansion scenario. However, as mentioned before,

separation based digital schemes suffer from the threshold effect while the HDA considered offer better

performance in the presence of CSNR mismatch. The problem of sending a pair of finite alphabet correlated

sources through a broadcast channel with correlated side information at the receivers is studied in [41]. A

lattice-based hybrid coding is proposed in [3] for broadcasting independent as well as correlated Gaussian

sources in the case of matched bandwidth. The authors in [3] show that their proposed scheme is optimal for

broadcasting independent sources and performs better than separate source/channel coding for broadcasting

correlated sources below a certain CSNR-threshold.

Our system model is illustrated in Fig. 2. We aim to determine achievable distortion regions using HDA
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schemes for two cases: 1) broadcasting with bandwidth compression, i.e., broadcasting with λ channel uses

per source sample, where λ < 1, and 2) broadcasting with bandwidth expansion, where λ > 1. To the

best of our knowledge, apart from [3], [16], [44] and the recent result of [47], in which the problem of

broadcasting correlated Gaussian sources is analyzed, there are no explicit distortion-regions in the literature

for broadcasting correlated Gaussian sources. We are also not aware of any prior work discussing HDA

schemes for broadcasting correlated Gaussian sources with bandwidth mismatch.

This paper reports on progress towards solving this difficult problem. We evaluate the performance of

layered coding schemes for broadcasting correlated Gaussian sources and provide explicit expressions for

the achievable distortion regions. Such schemes, which extend the HDA schemes of Wilson et al. [1]

and Prabhakaran et al. [2] for the broadcasting of a single common Gaussian source, judiciously mix

various coding strategies, ranging from HDA joint source-channel coding, Costa dirty paper coding [48],

and Wyner-Ziv coding. Although the distortions are derived explicitly (in closed-form expressions) for all

proposed schemes, a general and analytical performance comparison of those schemes is quite difficult.

In fact, the problem of finding an optimal power allocation policy among layers in order to optimize the

achievable overall end-to-end distortion pairs is still open. Instead, we numerically evaluate the achievable

distortion regions of different schemes and only present the best scheme in each bandwidth mismatch case.

In addition, we provide an outer bound for the achievable distortion region and compare the achievable

regions to that outer bound. In the case of bandwidth compression, a scheme combining analog transmission,

superposition and Costa coding is presented. For bandwidth expansion, we introduce a hybrid Wyner-Ziv

(HWZ) scheme, which consists of an analog layer and two layers each consisting of a Wyner-Ziv coder

followed by a channel coder. In [49] we showed that our HWZ scheme performs similarly to the adapted

Reznic-Feder-Zamir scheme, originally proposed in [20] for broadcasting a common Gaussian source to

two users. Numerical examples1 indicate that there is a gap between the achievable distortion regions and

the outer region for both bandwidth mismatch cases and the construction of new schemes that can close or

narrow this gap remains an interesting and challenging future direction.

The remainder of this paper is organized as follows. In Section II, we present the system model

and problem statement. We derive the achievable distortion regions of HDA schemes with bandwidth

1Although in general the comparison for few examples may not provide a general insight into optimality, a similar behavior was observed
by evaluating the achievable distortion regions in many other examples with different system parameters.
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compression and expansion in Sections III and IV, respectively. An outer region for broadcasting correlated

Gaussian sources with mismatched bandwidth is provided in Section V. In Section VI, the boundaries

of the distortion regions for the presented HDA schemes as well as the outer bound in both bandwidth

mismatch cases are compared via numerical examples. An example involving our layered scheme with

analog transmission and Costa coding of [46] is also presented; it is observed that the layered scheme’s

achievable region matches the outer bound region, indicating its potential optimality. Conclusions are given

in Section VII.

II. PROBLEM STATEMENT

Consider broadcasting correlated Gaussian sources (or equivalently a bivariate Gaussian source) across

a two-user power-limited Gaussian broadcast channel. User i (i = 1, 2) receives the transmitted signal

corrupted by Gaussian noise with power Ni and aims to estimate source Si. We assume that N1 > N2 and

hence call user 1 the weak user and user 2 the strong user. Let S1 and S2 be correlated Gaussian random

variables and let {(S1(t), S2(t))}∞t=1 be a stationary Gaussian memoryless vector source with marginal

distribution that of (S1, S2). We assume that S1(t) and S2(t) have zero mean and variance σ2
S1

and σ2
S2

,

respectively, and correlation coefficient ρ ∈ (−1, 1).

We represent the first k instances of the first and second source components by the data sequences

Sk1 = (S1(1), S1(2), · · · , S1(k)) and Sk2 = (S2(1), S2(2), · · · , S2(k)), respectively. The two-user Gaussian

broadcast channel with receivers estimating the bivariate source components is shown in Fig. 2. Data

sequences Sk1 and Sk2 are jointly encoded to Xn = ϕ
(
Sk1 , S

k
2

)
, where the encoder function is of the form

ϕ : Rk × Rk → Rn. (3)

The bandwidth compression/expansion ratio is defined by λ = n
k

channel uses per source sample. We aim

to find achievable distortion regions of HDA schemes for broadcasting with bandwidth compression where

λ < 1 (we specifically concentrate on λ = 1
2
) and bandwidth expansion where λ > 1 (in particular we set

λ = 2). The transmitted sequence Xn is average-power limited to P > 0, i.e.,

1

n

n∑
t=1

E
[
|X(t)|2

]
≤ P. (4)

User i observes the transmitted signal X(t) corrupted by a Gaussian noise Vi(t) with power (variance) Ni,

so that at time t the receiver observes
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Yi(t) = X(t) + Vi(t), i = 1, 2 (5)

where Vi(t) ∼ N (0, Ni) are independently distributed over i and t, and are independent of X(t). Based

on the channel output Y n
i , receiver i provides an estimate Ŝi

k
of the ith component of the source, Ski . We

consider the average MSE distortion ∆i = 1
k
E[

k∑
t=1

|Si(t) − Ŝi(t)|2]. The reconstructed signal at receiver i

can be described by Ŝi
k

= ψi (Y
n
i ), where decoder functions are mappings

ψi : Rn → Rk, i = 1, 2. (6)

Let F (k,n) (P ) denote all encoder and decoder functions (ϕ, ψ1, ψ2) that satisfy (3)–(6). For a particular

coding scheme (ϕ, ψ1, ψ2), the performance is determined by the channel power constraint P and incurred

distortion pairs ∆1 and ∆2 at both receivers. For any given power constraint P , the distortion region D is

defined as the closure of the convex hull of the set of all distortion pairs (D1, D2) for which (P,D1, D2) is

achievable, where a power-distortion pair (P,D1, D2) is achievable if for any δ > 0, there exist sufficiently

large integers k and n = λk, encoding and decoding functions (ϕ, ψ1, ψ2) ∈ F (k,n) (P ), such that ∆i ≤

Di + δ (i = 1, 2).

III. DISTORTION REGION FOR BANDWIDTH COMPRESSION: LAYERING WITH ANALOG,

SUPERPOSITION AND COSTA CODING

We consider the problem of broadcasting a bivariate Gaussian source with 2:1 bandwidth compression.

We desire to transmit k = 2n samples of a bivariate Gaussian source (Sk1 , S
k
2 ) in n uses of a power-limited

broadcast channel to two users. The two-user broadcast channel has the power constraint P . We split both

components of the bivariate Gaussian source into two equal length parts, i.e., we split 2n samples of each

source vector S2n
i into two vectors of length n: Sni,1 and Sni,2.

In this scheme, we will closely follow the notation and code constructions in [1]. Here we only give a

high-level description and analysis of the schemes without detailed proofs. In particular, in many steps of

the analysis we treat finite-blocklength coding schemes as idealized systems with asymptotically large

blocklengths. Detailed proofs can be given following arguments in [1], where a layering structure is

introduced for broadcasting a memoryless Gaussian source. Here, we adapt this scheme for broadcasting a

bivariate Gaussian source with a change in the structure of the second layer.
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In the first (analog) transmission layer, a linear combination of the first n samples of the bivariate Gaussian

source components are scaled such that the power of the transmitted signal in this layer Xn
a becomes Pa.

Here Xa(t) = α
2∑
i=1

aiSi,1(t), where α =
√

Pa

a21σ
2
S1

+a22σ
2
S2

+2a1a2ρσS1
σS2

. This layer is meant for both strong and

weak users. Now fix P1 and P2 to satisfy P = Pa + P1 + P2.

In the second and the third layers, we work on the remaining n samples of the source components, i.e.,

Sn1,2 and Sn2,2, respectively. In the second layer, we use two merged streams, Xn
11 and Xn

12. The second

part of the first component of the source, Sn1,2, is broadcasted to two users. The first source encoder is an

optimal source encoder with rate [4, Section 15.1.3] R′′1 = I(X11;Y1) = 1
2

log(1 + (1−γ)P1

γP1+Pa+P2+N1
), where

I(·; ·) denotes the mutual information. The second source encoder is an optimal encoder for the residual

error of the first encoder with rate R′′2 − R
′′
1 = I(X12;Y2|X11) = 1

2
log(1 + γP1

Pa+P2+N2
). Then, we encode

the quantization bits with capacity-achieving channel codes and transmit the resulting streams with powers

(1− γ)P1 and γP1, respectively.

In the third layer, which is meant for the strong user, n samples of the second component of the source,

Sn2,2 are Wyner Ziv coded using the estimate of Sn1,2 at the receiver as side information. The Wyner-Ziv

index, m2 ∈ {1, 2, · · · , 2nR
′
2}, is then encoded using Costa’s “dirty paper” coding that treats both Xn

a and

Xn
1 as interference and uses power P2 = P − Pa − P1. Let U2 be an auxiliary random variable given by

U2 = X2 +α2(Xa+X1), where X2 ∼ N (0, P2), X1 and Xa are independent of each other and α2 = P2

P2+N2
.

We generate a length n i.i.d. Gaussian codebook U2 with 2nI(U2;Y2) codewords, where each component of the

codeword is Gaussian with zero mean and variance P2 +α2
2(Pa +P1), and each codeword is then randomly

placed into one of 2nR
′
2 bins with R′2 = I(U2;Y2)− I(U2;Xa, X1) = 1

2
log(1 + P2

N2
) . Let i(Un

2 ) be the index

of the bin containing Un
2 . For a given m2, we look for an Un

2 such that i(Un
2 ) = m2 and (Un

2 , X
n
a , X

n
1 )

are jointly typical. Then, we transmit Xn
2 = Un

2 − α2(X
n
a +Xn

1 ). We linearly combine all three layers and

transmit Xn = Xn
a +Xn

1 +Xn
2 .

An achievable distortion-region can be obtained by varying Pa, P1 and P2 subject to P = Pa+P1+P2. For

a given Pa, P1 and P2, the achievable distortion pairs can be computed as follows. At the decoder, we look

for an Xn
11 that is jointly typical with Y n

1 . The weak user estimates Sk1 = (Sn1,1S
n
1,2) by MMSE estimation

from the received signal Y n
1 and the decoded Xn

11. The decoder reconstructs the sequence Sn1,2 as Ŝ1,2(i) =

k12X11(i). Then an estimate of the first component, Sn1,1, can be obtained as Ŝ1,1(i) = k11 (Y1(i)−X11(i))
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where k11 =
α(a1σ2

S1
+a2ρσS1

σS2
)

γP1+Pa+P2+N1
.

Thus, the overall distortion seen at the weak user is [1]:

D1 =
n

k
D11 + (1− n

k
)D12 =

1

2
D11 +

1

2
D12, (7)

where D1j (j = 1, 2) is the MMSE distortion in estimating Sn1,j from Y n
1 and Un

1 . Since in the second layer

we require a rate of one channel use per source symbol, and the Gaussian source is successively refinable,

by combining the Gaussian rate-distortion function with the pairs of achievable rates for a broadcast channel

(R
′′
1 , R

′′
2), the corresponding achievable distortion pairs are: σ2

S1
2−2R

′′
1 and σ2

S1
2−2R

′′
2 . The weak user forms

an MMSE estimate of S2n
1 with the following distortion:

D1 =
1

2

(
σ2
S1
−
α2(a1σ

2
S1

+ a2ρσS1σS2)
2

γP1 + Pa + P2 +N1

)
+

1

2

σ2
S1

1 + (1−γ)P1

γP1+Pa+P2+N1

. (8)

At the strong user, based on joint typicality, first an estimate of Sn1,2 can be obtained as Ŝ1,2(i) = kX12(i)

within distortion
D∗12 =

1

1 + γP1

Pa+P2+N2

×
σ2
S1

1 + (1−γ)P1

γP1+Pa+P2+N1

.

This estimate acts as side information for obtaining the estimate of Sn2,2 using the decoded Wyner-Ziv bits.

The resulting distortion for the strong user is thus given by

D2 =
1

2

(
σ2
S2
−
α2(a2σ

2
S2

+ a1ρσS1σS2)
2

Pa + P2 +N2

)
+

1

2
σ2
S2

(
1− ρ2

(
1− D∗12

σ2
S1

))(
1 +

P2

N2

)−1
. (9)

Finally, note that if we set ρ = 1 and σ2
S1

= σ2
S2

, then the results of [1], [22], which currently appear to

be the best known results for broadcasting a Gaussian source with bandwidth compression, are obtained.

IV. DISTORTION REGION FOR BANDWIDTH EXPANSION: LAYERING WITH ANALOG AND WYNER-ZIV

CODING (HWZ SCHEME)

We want to transmit k samples of a bivariate Gaussian source Sk = (Sk1 , S
k
2 ) in n = λk uses of a

power-limited broadcast channel to two users where λ > 1 (we specifically concentrate on λ = 2). The

two-user broadcast channel has the power constraint P . We propose an HDA scheme, which we refer to as

the HWZ scheme, and provide an achievable distortion region. In [49] we also adapt the proposed HDA

scheme for broadcasting a common source by Reznic, Feder and Zamir [20] to the problem of broadcasting



10

correlated sources. Numerical examples indicate that both schemes have similar performance.

This scheme comprises three layers, an analog layer and two layers each consisting of a Wyner-Ziv coder

followed by a channel coder. The scheme is similar to the one proposed in [1] for broadcasting a single

memoryless Gaussian source with bandwidth compression except for the following: 1) Here we consider

broadcasting correlated Gaussian sources. 2) The second layer in the scheme of [1] is an HDA Costa

coding while here it is a Wyner-Ziv coder followed by a channel coder. 3) Since we consider broadcasting

with bandwidth expansion, only the codewords of the second layer and the third layer (digital layers) are

merged together, and then the transmitted sequence is obtained by multiplexing the codeword of the analog

layer with the codeword of the digital layer, while in [1] the codewords of all three layers are merged as

bandwidth compression is examined.

Block diagrams of the encoder and the decoder are shown in Fig. 3. In the first layer, the analog

transmission layer, a linear combination of the k samples of the bivariate Gaussian source components

are scaled such that the power of the transmitted signal, Xk
a , in this layer is P . Thus at time t we have

Xa(t) = α
2∑
i=1

aiSi(t) where α =
√

P
a21σ

2
S1

+a22σ
2
S2

+2a1a2ρσS1
σS2

. In the second layer, n− k = k samples of the

first component of the source, Sk1 are Wyner Ziv coded at rate R′1 = I(X1d;Y1d) = 1
2

log(1 + P1

P2+N1
) using

an estimate of Sk1 at the receiver as side information. The Wyner-Ziv index, m′1 ∈ {1, 2, · · · , 2kR
′
1} is then

encoded treating the third layer message as a noise and the codeword Xn−k
1d with power P1 is transmitted.

In the third layer, which is meant for the strong user, the second component of the source, Sn2 , is also

Wyner Ziv coded at rate R′2 = I(X2d;Y2d|X1d) = 1
2

log(1 + P2

N2
) using the estimate of Sn2 at the receiver

as side information. The Wyner-Ziv index, m′2 ∈ {1, 2, · · · , 2kR
′
2}, is then encoded that treats Xn−k

1d as

interference and uses power P2 such that P1 + P2 = P . As shown in Fig. 3, the transmitted sequence is

obtained by multiplexing (in time) the codeword of the analog layer Xk
a with the codeword of the digital

layer, Xn−k
d = Xn−k

1d +Xn−k
2d . Thus, the transmitted sequence can be represented as Xn = [Xk

a , X
n−k
d ].

At the decoder, from the received first k components of Y n
1 = [Y k

1a, Y
n−k
1d ], an MMSE estimate of Sk1 as

Ŝk1a can be obtained with an average distortion

D11 = σ2
S1|Ŝ1a

= σ2
S1
−
α2(a1σ

2
S1

+ a2ρσS1σS2)
2

P +N1

,

where Ŝ1a(i) = E[S1(i)|Y1a(i)] = k1Y1a(k) and k1 =
α(a1σ2

S1
+a2ρσS1

σS2
)

P+N1
. Since the Wyner-Ziv index m

′
1
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must be decoded by the weak user, it is imposed that

k

2
log

(
D11

D1

)
=
n− k

2
log

(
1 +

P1

P2 +N1

)
. (10)

Therefore, the overall average distortion at the weak user can be expressed as

D1 = D11

(
1 +

P1

P2 +N1

)1−λ

. (11)

At the strong user we want to make use of all transmitted layers. Since the transmitted sequence of the

second layer (which carries information about S1) should be decoded by both the weak and the strong

users, we ensure that we are able to obtain an estimate of S1 at the strong user as Ŝ12. However, at the

strong user, our aim is to obtain an estimate of the second component of the source, S2. Based on both the

analog and the third layer transmitted sequences, and also the available side information at the strong user

(i.e., Ŝ12), we obtain an estimate of S2.

At first, from the analog layer, the strong user forms an estimate of the first component of the source,

Sk1 with MMSE distortion

D∗11 = σ2
S1
−
α2(a1σ

2
S1

+ a2ρσS1σS2)
2

P +N2

. (12)

Then, an estimate of the first component of the source can be obtained within distortion

D∗1 = D∗11

(
1 +

P1

P2 +N1

)1−λ

. (13)

This estimate acts as side information that can be used in obtaining the estimate of Sn2 for the strong user

using the decoded Wyner-Ziv bits. Using the decoding condition for the Wyner-Ziv index m
′
2, the overall

distortion for the strong user in estimating Sk2 can be obtained as

D2 = D∗2

(
1 +

P2

N2

)1−λ

, (14)

where

D∗2 = σ2
S2

(
1− ρ2

(
1− D∗1

σ2
S1

))
. (15)

V. OUTER BOUND REGION

In [3], [16], [50], by assuming the knowledge of Sk1 at the receiver of the strong user, outer bounds

for broadcasting correlated Gaussian sources with matched bandwidth were developed. By making minor
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modifications to the proof of Theorem 1 in [3], the following result can be obtained:

Lemma 1: The distortion region for broadcasting correlated Gaussian sources with bandwidth mismatch

ratio λ consists of all pairs (D1, D2) such that D1 ≥ σ2
S1

(
1 + (1−η)P

ηP+N1

)−λ
D2 ≥ σ2

S2
(1− ρ2)

(
1 + ηP

N2

)−λ (16)

where η ∈ [0, 1].

Here, we have assumed that the receiver of the strong user has access to the other source component;

this is a reasonable assumption when the correlation coefficient is small. However, this outer bound might

not be tight for high values of the correlation coefficient. To extend this outer bound, we assume that the

decoder have access to a noisy version of the other source component, S ′1. Let S ′1 = γS1 + ν with ν being

independent of S1, σ2
ν = σ2

S1
(1− γ2) and γ ∈ [0, 1]. We obtain the following bound which includes (16)

as an special case where γ = 1:
D1 ≥ σ2

S1

(
1 + (1−η)P

ηP+N1

)−λ
D2 ≥ max

γ

{
σ2
S2

(1− γ2ρ2)
(

1 +
P(1−γ2(1−η))

N2

)−λ} (17)

VI. NUMERICAL RESULTS

Example 1 (Bandwidth Compression): We transmit k = 2n samples of a bivariate Gaussian source

(Sk1 , S
k
2 ) with the covariance matrix Λ =

1 ρ

ρ 1

 in n uses of a power-limited broadcast channel to two

users (weak and strong) with observation noise variances N1 = −5 dB and N2 = 0 dB, respectively. The

distortion region for the scheme presented in Section III is shown in Fig. 4 for two different correlation

coefficients, ρ = 0.2 and ρ = 0.8. For comparison, we also depict the outer bound given by (17) of Lemma 1

for the set of all achievable distortion pairs in broadcasting correlated Gaussian sources. The outer bound

is tight only for small values of the correlation coefficient and thus it is only shown for ρ = 0.2.

Example 2 (Bandwidth Expansion): We transmit k samples of a bivariate Gaussian source Sk = (Sk1 , S
k
2 )

with the covariance matrix Λ =

 1 ρ

ρ 1

 in n = 2k uses of a power-limited broadcast channel to two

users with observation noise variances N1 = −5 dB and N2 = 0 dB, respectively. The two-user broadcast
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channel has the power constraint P = 3 dB. The boundaries of the outer bound in (17) of Lemma 1 and

of the distortion region for the scheme of Section IV are shown in Fig. 5(a)-(b) for two different values

of the correlation coefficient, ρ = 0.2 and ρ = 0.8. We observe that there is a gap between the achievable

distortion region and the outer region.

Example 3 (Matched Bandwidth): We transmit n samples of a bivariate Gaussian source with covariance

matrix Λ =

 1 0.2

0.2 1

 in n uses of a power-limited broadcast channel to two users with observation noise

variances N1 = −5 dB and N2 = 0 dB, respectively. The broadcast channel has the power constraint

P = 0 dB. The boundaries of the distortion region for the layering with analog and Costa coding scheme

which we introduced in [46, Section III.B] as well as the lattice-based coding scheme of [3] are shown in

Fig. 6. The outer bound in (16) of Lemma 1 is also shown. We observe that layering with analog transmission

and Costa coding outperforms both uncoded transmission and lattice-based coding. Surprisingly, the outer

bound is exactly on the boundary of our scheme. Based on several additional numerical evaluations and also

by comparing the distortion region of our achievable scheme with the optimal distortion region, recently

derived in [44], we conjecture that the proposed HDA JSCC scheme an optimal transmission scheme.

VII. CONCLUSIONS

We considered HDA coding schemes for the transmission of a bivariate correlated Gaussian source over

a power-limited two-user Gaussian broadcast channel. In particular, layered JSCC schemes were analyzed

under mismatched bandwidth assumptions and their achievable distortion regions were derived. Variations

of these schemes have previously been used in the literature for broadcasting a single memoryless Gaussian

source. We also adapted the distortion outer bound of [3] in broadcasting correlated Gaussian sources

with matched bandwidth to the bandwidth mismatch case. Numerical examples reveal a gap between their

achievable distortion regions and the outer region. Further research is needed into developing improved

coding schemes to close this gap.
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Fig. 5. Achievable distortion region of the HWZ scheme and the outer bound region in broadcasting with bandwidth expansion. System
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]
, P = 3 dB, N1 = −5 dB and N2 = 0 dB.
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