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Abstract

Three hybrid digital-analog (HDA) systems, denoted by HDADA* and HDA-II, for the coding of a
memoryless discrete-time Gaussian source over a disiimeteadditive memoryless Gaussian channel under
bandwidth compression are studied. The systems employesimpar coding in their analog component and
superimpose their analog and digital signals before cHararesmission. Information-theoretic upper bounds
on the asymptotically optimal mean squared error distortibthe systems are obtained under both matched
and mismatched channel conditions. Allocation schemegigtributing the channel input power between the
analog and the digital signals are also examined. It is shtbatsystems HDAand HDA-Il can asymptoti-
cally achieve the optimal Shannon-limit performance umdatched channel conditions. Low-complexity and
low-delay versions of systems HDA-I and HDA-II are next desid and implemented without the use of error
correcting codes. The parameters of these HDA systemshvemigloy vector quantization in conjunction
with binary phase-shift keying modulation in their digipelrt, are optimized via an iterative algorithm similar
to the design algorithm for channel-optimized vector gizams. Both systems have low complexity and low
delay, and guarantee graceful performance improvemenksgb CSNRs. For memoryless Gaussian sources
the designed HDA-II system is shown to be superior to the HIdAsigned system. When applied to a Gauss-
Markov source under Karhunen-Loeve processing, the HD#stiesn is shown to provide considerably better

performance.

Index Terms. Hybrid digital-analog coding, joint source-channel coding, vectomtjmation, broadcasting,

robustness, linear analog coding.
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1 Introduction

We consider the problem of transmitting a discrete-time analog-valued sovgca discrete-time memoryless
channel. Due to the often lacking channel information at the transmitteruatrefpstem is desirable for a wide
range of channel conditions. In terms of the used modulation technigugtenss can be generally categorized
as analog, digital or hybrid digital-analog (HDA).

One of the main advantages of digital communication systems is that they casidpeatito (asymptotically)
achieve the theoretical optimal performance for a fixed channel sigmalise ratio (CSNR) via the separate
design of optimal source and channel codes [27], [4]. Systems asbised on this principle are often referred
to astandem source-channel codisgstems. There are, however, two fundamental disadvantages &sgocia
with digital tandem systems. One is tti@eshold effectthe system typically performs well at the design CSNR,
while its performance degrades drastically when the true CSNR falls belodetign CSNR. This effect is due
to the quantizer’s sensitivity to channel errors and the eventual boeskdf the employed error correcting code
at low CSNRs (no matter how powerful it is). The other trait islheling-off effectas the CSNR increases, the
performance remains constant beyond a certain threshold. This is deetartirecoverable distortion introduced
by the quantizer which limits the system performance at high CSNRs.

The threshold effect can be partly remedied via digital joint sourcerai@oding (JSCC). By jointly design-
ing the source and channel codes, many results (e.g., [9], [17]) $tadwoticeable gain can be obtained in terms
of coding efficiency, reconstructed signal quality, coding delay amapdexity. In particular, JSCC schemes are
more robust than tandem systems at low CSNRs. However, such JS@@sill suffer from the leveling-off
effect at high CSNRs, since being digital systems, they employ quantizatidigitze” the source. On the other
hand, the leveling-off effect is not a problem for analog systems (W clscrete-time system analog if it uses
an analog modulation technique such as amplitude modulation); actually, thfeimpance can strictly increase
as the CSNR increases. However, it is usually hard to incorporate effi@gnal compression schemes in analog
systems, particularly when channel bandwidth change is required ahd/source has memory.

Schemes that exploit the advantage of analog systems are studied by Rantstaid co-authors in [16],
[10], [6], [5], and [11]. These are based on the so-called dimatce-channel mapping technique: the output of a
source scalar/vector quantizer is mapped directly to a channel symbglarsfog (or nearly analog) modulation,
i.e., amplitude modulation a¥/-ary quadrature amplitude modulation (QAM) with > 1. The direct source-
channel codes also enjoy graceful degradation performance at3®RE. In [16], a robust image coding system

is presented which combines subband coding and QAM. This system aliwsis compression levels based



on block-wise classification. An improved image coding system is proposi]; iit utilizes both bandwidth
compression and bandwidth expansion mappings, where the bandwidthsexp mapping employs a scalar
guantizer and transmits both the quantized value and the quantization exoemtRy, a JSCC technique known
as the 2:1 Shannon mapping was investigated in [11] and shown to provideobest performance. It employs
the Archimedean spiral to approximately map a point in a plane onto a point og. &Rlelated works on analog
coding methods include [31] and [32].

To exploit the advantages of both analog and digital systems, one can alibef phe system to use digital
modulation to improve robustness against severe channel conditions, lettiilg another part of the system
use analog signaling to obtain a graceful improvement at high CSNRsrabexeent works have investigated
such systems. In [19], a family of HDA systems are introduced and studéeddtically; they are shown to offer
better distortion performance than purely digital systems, have a grgeefatmance improvement and (asymp-
totically) achieve the Shannon limit. An HDA system design based on vectaotigation (VQ) for bandwidth
expansion is investigated in [28], where an algorithm to design optimized @ukperformance evaluation are
presented. In [29], an HDA system for Gauss-Markov sources veitfulwidth compression/expansion is given.
It employs the Karhunen-lave transform to decorrelate the source, Turbo error correctinggaulits digital
part to improve the system performance at low CSNRs, and superpositiimgoof the analog and digital sig-
nals. This system allows for both linear and non-linear mappings in its anatoganent. In [26], systematic
JSCC is studied and is demonstrated to be optimal for a wide class of sondcelsaannels. In [23], an inner dis-
tortion bound for broadcasting a single Gaussian source to two listergra @aussian broadcast channel with
bandwidth expansion is derived. This bound is obtained based on arclilAg scheme, which includes one of
the HDA systems of [19] and the systematic coding scheme of [26] as twaabpases. In [25], systems using
an HDA approach, a progressive transmission approach, and gesjhien coding approach are compared for
a slowly-varying fading additive white Gaussian noise (AWGN) chanmnéd.dhown that the HDA approach has
better performance than the other two methods. Most of the gain of this Hp@agh is due to the presence of
the linear analog part. Other HDA-based techniques are studied in 203][22], and [12] and [2]; in particular,
the works of [12] and [2] study the distortion exponent (where thevddriesults are asymptotic in both CSNR
and source dimension) for HDA coding over multiple-input multiple-outputlbfading channels.

In this work, we study the transmission of memoryless Gaussian souraesro®@/GN channel with band-
width compression. We investigate this problem within the HDA coding framew@f& consider three HDA

systems. The first system (referred to as HDA-I) is based on thetreek in [29]. For this HDA system, we



first obtain an information-theoretical (mean squared) distortion upperdifor the optimal HDA-I system with
a linear analog part. As a direct consequence, we obtain a similar distodiiomd Bor the mismatched HDA-I
system where the encoder does not know the true CSNR. An optimal pdaeation formula between the digi-
tal and the analog parts is obtained for this mismatched system. The secterd, d¢DA*, and the simpler third
HDA system, HDA-II, are both shown to asymptotically achieve the Shannonftimi properly chosen power
allocation between the analog and digital parts of the systems. Distortion $fomthese two systems under
CSNR mismatch are also provided.

For the HDA-I system, a low-complexity and low-delay version is next desigand implemented without
the use of Turbo error correcting codes (unlike the scheme of [2€]issshown to be robust over a wide range of
CSNRs. These characteristics may be particularly appealing for telemeditingensor networks applications
where sensitive image data need to be reliably communicated from remote Isdatispective of the channel
environment. The digital part of the HDA-I scheme is formed with a VQ castatith a binary phase-shift
keying (BPSK) modulated hard-decision decoded AWGN channel. As8ih fiee HDA-I system parameters (in
both the digital and analog components) are optimized using an iterative ahgaitthilar to that for channel-
optimized vector quantizer (COVQ) design. The HDA-II system is also desigind implemented without the
use of channel coding; it uses a COVQ in its digital component. Simulatiofts@sdicate that while the HDA-I
system provides an inferior performance to the HDA-II system for melessyGaussian sources, its performance
is significantly better for Gauss-Markov sources (decorrelated viaufen-Loeve processing). Comparisons are
also made with purely analog and purely digital systems, as well as the sys{2@j.in

The rest of this paper is organized as follows. In Section 2, a genesaligtion of the HDA systems are
given and information-theoretic bounds on the distortion are derivedePallocation schemes for distributing
the channel input power between the system’s analog and digital contpdaehoth systems are also obtained.
In Section 3, the HDA-I system design is examined in detail. Simulation resultg\ene in Section 4. Finally,
conclusions are stated in Section 5.

Throughout the paper we will use the following notation. Vectors are t@enby bold-faced characters
superscripted by their dimensions. Upper-case letters are used fmmarariables and lower-case letters for
their realizations. For a given vectaf = (z1,---,z,)", we let[x"]f and[x"]},, denote the subvectors
XM & (@1, ap)” and X7, £ (Tg41,- -+ @a)T respectively, wherd' denotes transpositionE (X)

denotes the expectation of random variakle



2 Information-Theoretic Consider ations

2.1 HDA-I System

The block diagram for the HDA-I system with bandwidth compression is tegim Fig.1.(a). Samples of a
memoryless Gaussian sour¢d;} with zero mean and varianeg? > 0 are grouped into blocks of size
(denoted byX™) and sent to a source encoder. The discrete outparhich is taken from a finite set of indices,
is then fed to a channel encoder/modulator which produdesliisnensional channel symbdf, wherek < n.
Heres} is taken from a finite set of possible symbols and sati#figh ||> < k(1 —t) P, whereP is the constraint
on the total input power per channel use ar&l|0, 1] is the power allocation coefficient for the analog part. The
source encoder and the channel encoder/modulator together will afteafdyred to as tandem source-channel
encoder/modulator. The output indéis also sent to a source decoder to form a reconstruction vECtawhich

is subtracted fronX"™ to form an error vectoE™. The firstk components oE™ are further sent to a linear
(analog) encoder which performs simple scaling so thaktHenensional output/” satisfies a power constraint
E|VF||? < ktP. Now s} andV* are superposed and sent over a channel with AW@RNwith per symbol
noise varianceV. The channel outptR®, which is given byR* = st + V¥ + W*, is sent to a channel decoder.
The discrete outpuf is sent to the source decoder resulting in veégr Simultaneously, a channel symbol is
chosen according td, which is subtracted frorR*. The resultV” is fed to the linear (analog) decoder to form
an estimaték. The remaining: — kK components of the error vector are filled with zeros to procﬁjncwhich is
then added té(AVn to form an estimatX”. The overall coding rate of this HDA-I systemiis= k/n < 1 channel

uses per source sample. The system normalized mean squared erE)rdistSrtion is

~nll2
Dp(N) = —E X" — X

n

g | @

For the purpose of analysis, we first consider the system’s asymptotictidistd (N) = nlir{:o D, (N), as the
block lengthn grows without bound (assuming that the limit exists). The rate-distortiortitmtor the memo-
ryless Gaussian source under the squared-error distortion meagivendy R(D) = max (0, (1/2)log, "—D2>
(bits/source sample) for any distortion valie> 0 [27], [1]. The capacity of the AWGN channel with input
power constrainf> and noise varianc’ is given byC(N) = (1/2)log, (1 + %) (bits/channel use) [27], [4].
From Shannon’s lossy JSCC theorem [27], [4] for the memorylessggausource-channel pair, we know that if
a code has asymptotic distortidn thenR(D) < rC(N) must hold. By lettingR(D) = rC(N), a lower bound
on the asymptotic distortion of any code can be obtained. This bound is gismpadically achievable (under

the assumption that the noise variangeis known by both the transmitter and the receiver), and is generally



referred to as the optimal performance theoretically attainable (OPTA)gilteés by

52
Dopta(N) £ (1—1—783)T' (2)
N

By examining the structure of the proposed HDA-I system in Fig.1.(a), wedbtain an upper bound dn(V)

for optimally designed HDA-I systems.

Proposition 1 (Upper bound) For a memoryless Gaussian source with zero mean and varignead an
AWGN channel with noise varianc®¥ (whereN is known at both the transmitter and the receiver), given fixed

r, P andt, there exists a sequence of HDA-I systems with asymptotic distoRjgg; (N) given by

Dian(N
Dhaan(N) = 2en W) D), 3)
1+ 5
where
A o?
Dtan(N) - 2 . (4)

1-)P\"
(1+ &ix)
Proof. The proof is given in the Appendix.

Remark: It is easy to show thabDj,q,1 (N) = Dopa(NN) if and only if ¢ = 0. Furthermore Dpgq1(N) =
Dopta(N) fort =r = 1.

We next examine the realistic situation where the AWGN variaxdg not known at the encoder. We assume
that the encoder only knows a range of values in which the true noisengarg, lies; in particular, it chooses
the encoding operation for a fixed design noise varidvgg. The receiver, on the other hand, has full knowledge
of Ny, and adapts the decoding accordingly. For this mismatched HDA-I system, tivadrue noise variance
Ny, satisfiesNVy,. < Nyes, the linear decoder can adapti@,, resulting in a distortion given b% The
asymptotic performance of the tandem coder part is still the same. We thém thigtéollowing uppe;Tbound on

the distortion:

DZL;;l(NtTv Ndes) S r + (1 - 7G)Dtan(]\fdes) (5)

whereD,,,,(N) is given in (4).
We now consider the power allocation problem for this mismatched HDA-1 sysii¢h the encoder designed
for N4, while the true noise variance 1%;,.. The best power allocation coefficienthat minimizes (5) is given

by the following lemma.



Proposition 2 For N, < Ngs, P andr, the power allocation coefficieritwhich minimizes the distortion
expression (5) alvy, is given by
1 + 4(Htr—’ides) _ 1

(177‘)”des
QHtT

t=1t; &

: (6)

wherer, = % is the true CSNR and.; = ﬁ is the design CSNR.

Proof. The minimizingt can be easily found by setting the derivativel®f'i*, (N¢-, Naes) With respect ta to

zero. The unique solutiahe [0, 1] is the optimal value since a direct calculation shows that the second degivati

& Dys (Nip, Nes) > 01f 7 < 1and Ny < Nyes. O
Since the optimat is a function ofV;,., it is also unavailable at the encoder. However, via a numerical study

(see below) one can choose a value wfich performs well for a large range of CSNRg. In Fig. 2, we plot

the optimalt for different system parameters as a function of the true CES)NRWe observe the following.

e Itis readily seen that as the true CSNR increasest approaches 0. Furthermore, it is also easily seen from
(6) that the rate of decay @fto 0 is less than that of /x,. It is easy to see that as, — oo, the distortion
performance of the mismatched HDA-I system (5) approaches the colistan) Dy, (Nges). Curves (a),

(), (b) and (c) present the best power allocation for an HDA-I systérate 0.5, with design CSNR,;.; of O
dB, 5dB, 10 dB and 15 dB, respectively. They indicate that, for a systiéimhigh design CSNR (which is the
case when performance at high CSNRs is the main concern), the best altweation coefficient at various
CSNR pairs(kqes, k) IS smaller than that for the low design CSNR case, i.e., the analog part of the HD

system incrementally turns off ag. increases without bound.

e As k. approaches,.;, t approaches. Thus the optimal performance at the design CSNR is obtained by a
“purely digital” design, or equivalently, by an optimal tandem coder whightains an optimal source code
and an optimal channel code, as predicted by Shannon’s theory [27].

e Curves (e), (f) and (g) show the bedor x4.; = 5 dB and coding rate df.75, 0.5 and0.25, respectively. These
curves demonstrate thatlecreases as the coding ratdecreases. Indeed, aslecreases, less components of
gquantization error vectors are further coded via the analog part, wdtices the importance of the analog
part relative to that of the tandem coding part.

In our system implementations, we fix a desigh CSiR and choose an adjusted valuet afhich is good

over a large range of true CSNR§. (> k4es); See Section 4 for details.



2.2 HDA* and HDA-Il Systems

We note that the HDA-I system can be improved by allowing two separateesemcoders in its digital com-
ponent. In particular, the source vec®f is first split into two subvectors of dimensiom and (1 — r)n,
respectively, which are sent to two source encoders. The outpute gbtirce encoders are concatenated and
fed to the (digital) channel encoder. Furthermore, the quantization subwector resulting from encoding the
first source subvector of dimension is transmitted using the analog part (as in the HDA-I system). With this
modified source encoding structure in the system, which we denote by HBAquantization distortion is now
determined by two source codes, unlike in the HDA-I system where a siogieesencoder is used. Specifically,
two different per-sample quantization distortions are realized in the digithbpthe HDA* system: distortion

D, for the first source encoder (of dimensiamn), and distortionD, for the second source encoder (of dimension
(1 — r)n). It can be shown (using a proof along the same lines as that of Propokjtithat for a given noise

varianceN (known at both the transmitter and the receiver), fixed, andt > 0 such that

1+ L)y -1
t<t* 2 % (7)
N
we can choos#; and D, to satisfy
D
Dy=—"g
1+ty
and
o2 1-r o2 (1-t)P
g} —1 —1 1+ -7
ngD BN ngD 0g2< +tP+N> (8)

with D1 < 2. Then the overall asymptotic distortion (@agrows to infinity), Dj4.+(N), is given by

D,

A
tha*(N) :T1—|—%

+ (1 — T)DQ = Ds.

SubstitutingD; = D5 (1 + t£) into (8) yieldsDy = ﬁ so that
N

_ 9
(1+ %)

2
Dpga+(N) = >
which is the OPTA distortiorD,,:,(N). Thus for allt < ¢* there exists a sequence of HDAystems that
asymptotically achieves the OPTA distortion. In particular, the chbieet* results inD; = o2, which means
that the firstor components of the source need not be quantized at all.
Furthermore, under channel mismatch (where the encoder is desigreefided design noise varian@é,.

while the receiver knows the true noise variaég, with N;,. < Ng.,), the HDA*® system’s distortion bound is



given by

o2

7813(1—7”%—7"04), (9)

Djtize(Niys Naes) = T
Ndes

where
1 + tP

A " Naes
- tP

a

and

1+ ) —1
ogtgtzé%.
Ndcs

In Fig. 3, we compare the (asymptotic) performance of the HDA-I and HBystems under channel mis-

(10)

match (withr = 1/2, rges = 5-— = 10 dB andx;, = 5— = 20 dB) by evaluating (5) and (9) for different
values of the analog power allocation The performance is in terms of the source signal-to-distortion ratio
(SDR), which is defined by SDR= 101log;,(c2/D) whereD is the MSE distortion. We remark from Fig. 3
that the HDA system also considerably outperforms the HDA-I system under chamgelatch. Note that the
expressions of the analog power coefficients that maximize the SDR in the,figdor system HDA-I and,

for system HDA, are given by (6) and (10), respectively.

Although system HDA provides superior (asymptotic) performance over system HDA-I, it iscgirally
more complex as it requires the use of two source encoders in its digital cemipoOn the one hand, this
means that the encoding complexity of HDA less than that of HDA-I (searching in a product codebook is
faster than in an unstructured codebook). On the other hand, the jdimtizgtion of the system components is
already quite complex in the the conceptually simpler HDA-I system (see Se&jti@amd the presence of two
codebooks makes this joint optimization procedure even more difficult fgk*HBor this latter reason, we will
only implement a simplified version of the HDAystem, called HDA-II, which is depicted in Fig. 1.(b).

In this system, instead of quantizing the first source symbols and sending the quantization error via the
analog part, the firstn symbols ofX™ are directly transmitted using analog coding (without the quantization
part). The last1—r)n source symbols are (as in the HD#ystem) quantized and sent over the digital component
of the system (see Fig. 1.(b)). Analogously to systems HDA-I and H@he can show that the following
distortion, D442 (N ), can be asymptotically achieved by the HDA-II system:

2 2

Og _ Os
hdaQ(N) - Tl + tP + (1 1”) (1-t)P = (11)
N <1 + %)
1+5

Remark:Note that system HDA-II can still (asymptotically) achieve the OPTA distortipnsettingt = ¢*,

we obtain thatDy,g.2(N) = Dopta(N).



Furthermore, the channel mismatch distortion bound for the HDA-II systegives by

2 2
o o

) A
Didas(Nir; Naes) = 'r@ + (1) (1—i)P = (12)
tr 1 + Nies
I+

whereN;, < Nyes.

3 HDA-I System Design
We next consider a concrete implementation of the HDA-I scheme in Fig. Tr(a$. system, which has low-
complexity and low-delay as it avoids the use of channel coding in its digital isadepicted in Fig. 4, and it

employs VQ cascaded with BPSK modulation in the digital part, and uses lindaigdo the analog part.

3.1 System Description

The upper part, referred to as the digital part, is formed by a VQ cadeeitlea binary symmetric channel (BSC)
without the use of channel coding. An output inderf the k-bit n-dimensional VQ encoder is assigned a
k-dimensional channel symbsj from a set{s’} of 2* possible symbols. The indexalso chooses a vectaf
from theencoder codeboo{z! }, which is subtracted frorX™ to form the error vectoE".

In the ideal case, for a memoryless source, the optimal source code §ertbe of asymptotically achieving
the rate-distortion curve) splits source vectors into two asymptotically orttedgomponents, the quantizer out-
put and the quantization error (see, e.g., [19]). Furthermore, for mgassrGaussian sources, the distribution of
the quantization error is also approximately Gaussian-as oo (see Appendix). In the HDA-I system with linear
analog coding, since the output of the linear analog encoder is just a seagon of the quantization error, we
model (as discussed in the Appendix) the output of the linear encodevéstar of independent Gaussian ran-
dom variable with varianceP which is independent of the source. Hence, for the digital part, a BS€alzed

by using hard decision decoding on the BPSK-modulated AWGN channelmnpitit power(1 — ¢) P and noise

variancetP + Ny.s. Consequently, if the BPSK signals take valuegin,/(1 — ¢)P, —/(1 — t) P}, the tran-
sition probabilities{ P ;(j|i)} of the BSC areP;;(ji) = q#)(1 — q)*~# (09, wheredy (i, j) denotes the
Hamming distance between the binary representations of the integedg, andg = Q(,/Ra4:4) iS the crossover

A (1_t)ﬂdes

probability, wheres4;; = T is the effective CSNR of the digital part adi{z) =

= [ e 2t We
remark that any memoryless modulation constellation can be used besidesBiskation. We choose BPSK
modulation because it is simple and it performs comparatively well at low CSNRs

Given an input error vectdE™, the mappingx simply takes the firsk components oE™ and forms a scaled

vectorV* (to satisfy the average power constraint), which is addesi emd sent over the AWGN channel. The

9



received vectoR” is first fed to decoded; (which is a simple binary hard-decision demodulator), resulting in
index.J, and the corresponding reproductighis chosen through a lookup table. The channel syrdpd:ﬂ then
subtracted fronR* and scaled by a constatforming an estimatQk. The mappings expands the messaug?éC
back ton dimensions, by padding it with zeros in the corresponding locations. 'Elnlétircgﬁn is added back to

y’; to form the reproductioDAKn.

3.2 System Design

For a total input powerP, a fixed power allocatiom and a design noise varian@€,.;, we derive an iterative
training algorithm to optimize the source digital transmitter (both source enemdesource decoder) and both
the digital decoder codebook and the analog decoder. Given an grieitreodee, {z' }, {s;'}, {y} }, anda and

b, the end-to-end average distortion can be expressed as

1 —~
Dn(Ndes) = EEHXn - Xn”2
2

:l[@ X" B ME—1Z708) + s + WF — )
" [Xn]kJrl Y5l k+1 0
e — iyl b( (X7~ 2718 + 5 + W= ) [ L B X T~ W3l 13)
(Ndes) 7D72L(Nd65)

To considerably simplify the derivation of our results, we make the followssymptions. We assume thais

chosen such that the power constraint
n i 2
a’E X"} — [Z715 || = ktP (14)

is satisfied, thatv* is uncorrelated with botfy”]% and[s}]¥ and thatZ2[W*|.J] = 0. It is worthwhile to point out
that the last two assumptions are valid when the channel is noiseless;thepgeovide good approximations in
the high CSNR regime and their merit will be assessed when evaluating tloerpanice of the resulting HDA-I

system design in Section 4.

Then
DM(Naws) = %EH{X”H—[yﬁ]’f—b(a([x”]’f—[Z?]’f)+5‘?+W’“—S§)H2
- 1EHx”—[ym'f—b<s’;—s§>—ba<[ - R as)
=[x - stk - s - |+ ey [Z?]’THQ
~2ab B | (0 - I3 - b0 - s’}))T([x"J’f—[z?J’f)]+§62Ndes (16)



2k
+ thP

= k[ - - o - )
~2ab B | (0 - [y - 008 - s’;)) (0t = )| + SN @D

where (15) follows from our assumption that* is uncorrelated fronfy”]% and[s?]%.

Lemmal Fix a set of encoder region);} of e;. For any digital decoder codebogl’/} andb, the digital

source decoder codebogke?]¥} that minimizes the average distortion (13) is given by

[z =5 b~ ), i=0,- 2"~ 1. (18)
For any{[z?]}}, the average distortion (13) is minimized by choosirand{y’ } as follows:

B [(xm)s - B [[x" | )" U]

S Nt EIUE 49
2k—1 2k_1
i1l = Z Pry(ilj) (IR115 = ba(IRy1E — 12219)) - b(Z Priy(ilg)s; —s§>,j =0,--,2°~1, (20)
1=0
2k 1
Vil = ZPIU @)X, G=0,---,2" =1, (21)
where
U2 a ((X7)E - EB[XF | ] - Z0E + B[ J]) +5 - —E[sf s [ ], (22)
XPAEXY T =i] = / X p(X")dX", (23)
X"eQ;
2k—1 2k—1
Vi EENG | T=i]= Y PuGly;, $2E[§1=i] =3 Pulls, (24)
j=1 j=1
Py (ilj) =PI =i|J = j) = Py (jli)Pr(i)/ Py (j), (25)
2k _1
Pi(i) 2Pl = i) =PX" € Q)), Py()) 2PHJ =5) = > Pr(i)Py(jli), (26)

andp(x™) is the pdf ofx™.
Proof. We first focus on how the digital source decoder codebd(®g4} should be chosen to minimize the

distortionD,,(Nges) (note that the[z']}} | } are not needed since we only transmit the firstror components).

We note that the only term in (17) that can be influenced by char{gh;i‘@ff} is the third one. We have
| (0 - gl - st - ) (X7t - 1) |
= (e et) - B(pen ) < | (o - ) (k- )| @

2k 1

ol H -2 A0 (( b - ) (Ielk - 205 - e
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— & | (X1t - it - o - o) (X7t - ) @9)

< VBT~ 5715~ otsh - )" Bxs — 2 @0

where (28) holds from the fact thet"|} — i — [y”]}, s} forms a Markov chain, and (30) holds by the Cauchy-
Schwarz inequality. For arbitrary givefy}} andb, equality holds when we choogéz|%} as in (18), thus
minimizing the distortionD} (N4.s). Next, consider how the digital decoder codebgyk} should be chosen to

minimize the average distortial,, (NV4s) in (13). Recall that

D} (Nucs) = VB[ (X715 — ba((X"1E — (2716) — b(sf — &+ Wh) — . @)
D2 (Naeo) = S E[[XJEy — B3 (32)

Thus, for arbitrary{[z?]}} andb, the {y7} which minimize the average distortion (13) are obtained by letting

{y?} represent the minimum mean square error (MMSE) estimator

I = X - ba((XE — [2f1f) - bsf - s+ W) |7 = ]

2k_1 2k_—1
= > PusGl) (x5 — ba(x71E - (20D)) - b(Z Py (ilj)st - sk) (33)
1=0 1=0
2k—1
Vil = EXNa 1T =4] = 3 Prli)R . (34)
=0

where (33) follows from our assumption thafw*|.J] = 0. Choosing(y’ } as above, and defining® as in (22),

the distortion can be rewritten as

D (Nies) = %EHX" —EX" | J]|]” - %2&@, {([X"]’f - %E[[X”]’f | J})TU’“} + %bQEHUkW + %bQNdes.
Minimizing the above distortion by solvin%% = 0 yields the expression éfgiven by (19). O
Lemma 2 For a fixed digital decoder codebogl }, a andb, fixed {[z*]%} as in (18), the optimal encoder
regions{Q;} for ¢; are given as follows:

2k —1

Q= {x e m s = argun ({0~ 12018~ 4+ 3 (X - TRl Paln) | @9
j=0

where

h 2 E |5k + o(sk = )P 1 T =1] - B [[|iz5)]. (36)
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Proof. The distortionD} (Ny.,) in (13) can be written as
1 _ 1 nk nik(2 L nik sksk21 ak12 . Koo
Dy (Naes) = EEH[X 11—+ EEH[YJ]l +b(s] —sj)||” — EEH[ZIhH + 55 Nes
1 . o\ (1vn n 1 n n
—2abE [([X"Vf ~ [l - bisF =) (IX"]E - [Zﬂ’f)] + = a?WE|| (X"} - [z

= (ab— 1E]| X"~ I+ Bl + o - I ]+ SN
= 2kz—l 1/ {(ab _ 1)2H[Xn]k _ [Zn]kHZ + h}p([xn]k) d[Xn]k + észd (37)
—~ n Jg, 1 111 1 1 1 n es

whereh; is defined as (36). CombininB. (Ny.,) above withD?2 (N) in (13) yields

2k 1
n n n T 2
Dn(Nies) = Z/ d[x"]} p([x ]’f){(ab—l)zH[X = ZEI +
=0 i
2k 1 )
S~ W PGl |+ RPN (@)
7=0
Therefore, the optimal encoder regions are given by (35). O

3.3 Some Special Cases

In Proposition 2, we derived the optimal power allocation coefficiefuwith respect taD}5(Ny,., Nys)) as a
function of the design CSNR,.s. Here we discuss the special cases of high anddgwregimes and examine
how the power allocation coefficiehtand the system distortion change witf; from the design point of view.

Assuming that the system is designed for a CSNR gf = P/N4.s and a power allocation coefficient

the digital channel has an effective CSNRugf, = (;;f)*fl , which means that the BSC transition probabilities

Pj1(ji) are calculated with the latter CSNR. Assume also fiaat, {[z']1}, {y7}, andb are chosen according

to the results of Section 3.2. We consider the following situations.

e Low noise case;g.; — oo. In this casefq;y ~ % and theP;;(j]7)’s no longer depend oR,.,. Since de-
coding the analog signal is dependent on the correct decoding of tited dignal, we can allocate more trans-
mission power to the digital part (decredyeo increasesy;,, as long asP > Ng.,. As aresult, the distortion
due to the digital transmission part decreases, which in turn makes the aaalogore useful. This choice of
t is consistent with the result of Proposition 2 (see Fig. 2). As more powdosated to the digital part (e.g.,
ast decreases)’;;(jli) — 0for j # i, hences} — s}, [z/1} — [y7]f — [y7]}, andb — <. As aresult, the
encoder regioqQ;} in (35) is simplified toQ; = {x” eR": ] = argmlin<H[x”m+1 — [y}‘]}gHHQ)} since
(ab — 1)2 — 0 andh; — 0. Thus the dominant distortion is the non-recoverable quantization ecrr tfre

rest of then — k components of the source vectors. This observation is also justified pp$tion 1, where
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the first term of (3) goes to zero a8/N — oo (note that asc4.s — oo, we also haves;,, — oo since we

assume that; > Kges)-

¢ High noise casesq.s — 0. In this casé — 0, which means that we will not decode the analog signal because

of its bad quality. Moreovefz;]i — [y7]{ in (18) andy? — = Py, (ilj)x; in (20), (21). Since
ZPI|J(i‘j)X? = ZPI\J(i\j)E[Xn\I =il = ZPI|J(i|j)E[Xn’I =1i,J = j] = E[X"|J = j],

we havey’; — E[X" | J], which means that the digital part approaches a COVQ [9]. In this casehest to

allocate all the power to the digital part.

3.4 Training Algorithm

The results of Lemmas 1 and 2 can be used to formulate an iterative trainimgratgas in [28, 33] for codebooks

design. The algorithm is summarized as follows: (1) Given the design naiEaeeN,., total powerP, power

allocation coefficient, and two thresholds, 72, calculate the corresponding transition probabilitigs; (i)

of the digital channel. Initialize the encoder regibf@;}; (2) Determine the encoder centroiie? } and the

probabilities{ P; (i)}, initialize [z}]} = [x*]¥, initialize a to satisfy the power constraint; (3) Iteratively compute

b, {y7} and{[z2]%} using Lemma 1, updateafter each iteration to satisfy power constraint, and stop when the

changes of the codebookg7 } and{[z']¥} fall below the threshold; (4) Redefine the encoder regiofQ;}

using Lemma 2, updateagain, and estimate the average distortion; (5) Repeat steps (3) amdi{thaichange

of the average distortion falls below the threshejd In the simulationsy; = 10~° and~y, = 10~® were used.

We have the following remarks.

e Optimizing{[z}]¥}, {y;?} andb jointly is very complex. Instead, in the design we use Lemma 1 for an iterative
approach similar to the one in [28]. First, we initiali]¥ = [x7]}. Then, we computé using (19), and
compute{y’} using (20) and (21). We next updaf&?]¥} using (18) with the new value df and {y}}.

The iterative algorithm is stopped when the changes of the coded¢mK§} and {y7} fall below a certain
threshold.

e In our derivation, we assume that the power constraint (14) is satisiibdegquality at all times. Strictly
speaking, there is no guarantee for this to hold at all iterations. Therefonvergence is not guaranteed. In
our design, the coefficientis updated after each computation{g#?]%} to satisfy the power constraint. Our

experimental studies suggest that the iterative algorithm does conveagtable solution.
'Here we use the Voronoi regions of a VQ trained for a noiseless chémke same source under consideration. An alternative way

is to use the encoder of a COVQ [9] trained for the same digital chgdhg} (j]7)}).
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e In our design, all the codebooks are precomputed off line. Duringdingpthe digital encoder find§®; }
using Lemma 2. It is easily seen from (35) thgl; } can be precomputed. Given the input veotbr most
of the computation needed to find the encoder region involves the full C@@€&search over the codebook
{y7} restricted to the last — & dimensions, i.e., we need to comp@?;?igl X", — [y?]ZHWPJH(jU).
Thus, we can see that when a moderate blockssizeused (e.gn = 24 is used in the simulation of Section
4), the digital encoding part has low computational complexity and low detaythé decoding part, since we
use hard-decision demodulation, and the digital decoder code{lygf}k's precomputed off line, we only need
to perform table-lookup decoding. Thus, the digital decoding complexityws A for the analog part, only

k multiplications are needed for linear encoding/decoding.

4 Simulation Results

We evaluate the SDR performance for the transmission of both i.i.d. Gaussi@es and Gauss-Markov sources
over the AWGN channel via the HDA-I and HDA-II systems, designed witlioe use of channel coding in their
digital component.

For the i.i.d. Gaussian source, the source samples are grouped intosveicttimensionn = 24, and
transmitted at an overall rate @f2 channel use per source sample. We implement the HDA-I design system
using the training algorithm described in the previous section. Specificallya fixed input power? = 1
and design noise variand€;.; = 0.1 (thuskges = P/Nges = 10), the training algorithm is implemented to
generate the source digital transmitter and both the digital decoder cddabhddhe analog decoder. In light of
Proposition 2 and curve (b) of Fig. 2, we choase 0.05 (this choice oft is expected to give good performance
in the true CSNR range of 12 to 20 dB for the asymptotically achievable systgrajt from this choice of, we
carried out simulations with other choicestof [0, 1] for the purpose of comparison. Motivated by a broadcast
scenario, we assume (e.g., as in [28]) that the encoder is optimized foeragpwer allocation and fixed design
CSNR ks, i.€.,e1 and{z}'} are designed for a fixed,.s, while the decoder knows the true CSNR. and
adapts to it, i.e.{y}} andb are adapted ta;,. We also implement the HDA-II system using a simple power
scaling encoder and MMSE decoding adapted to the true GSNR its analog component, and a rate-1 COVQ
source encoder (designed fof.; = P/N4.s = 10) and a COVQ decoder adaptedg in its digital component.

For the Gauss-Markov source, we first employ Karhuneaviegrocessing to the source vector. The HDA-I
system then transmits the first 12 error symbols with the largest varianceevan#iiog part. For the HDA-II
system, the first 12 source coefficients with largest variance are csilegithe digital method, the remaining 12

coefficients are transmitted using the analog coding; since this is slightlyatiffelom the original structure of
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HDA-II introduced in Section 2, we refer to it as HDAElIn the simulation results presented in Fig. 10 (note that

HDA-11* performs better than HDA-II for the case of a Gauss-Markov source)

We present simulation results for the optimized HDA-I system with various pall@cation coefficients
and the HDA-II system, as well as an unoptimized HDA-I system, a purely tgyiséem, a purely analog system
and the HDA-Turbo system of [29]. All systems have a transmission ratg2o¢hannel use per source sample.
e The optimized HDA-I system performance is shown in Figs. 5-10:fgf =10 dB and various values of
e The HDA-II system performance is shown in Figs. 9 and 10«fgt =10 dB andt = 0.1.

e The unoptimized HDA-I system uses the Linde-Buzo-Gray (LBG) algoritt8hto design the digital encoder
e1 and{z}'}, and applies a linear encoder to the analog part. The digital decodesamidy’ } is adapted
to the true CSNRs,.,and a linear MMSE decoder (also assuming knowledge,9fis applied to the analog
part; its performance is shown in Fig. 7 fo= 0.07.

e The purely digital system, which solely employs the digital part of the HDAskay, uses a COVQ source
encoder [9] and a COVQ decoder codeb({gg%} adapted to the true CSNR,; its performance is shown in
Fig. 7 for kg.s=10 dB.

e The purely analog system, which solely employs the analog part of the HEAtem, transmits only half
of each source vector using linear coding and employs a linear MMSEdeedgth knowledge of the true
CSNR; its performance is shown in Fig. 7.

e For the HDA-Turbo system of [29], the digital part consists of a 24-disi@ral 6-bit VQ designed using the
LBG algorithm, and a high-delay:(= 768, n = 1536) rate1/2 Turbo encoder with generator (37,21) (punc-
tured to ratel /2) and a random interleaver, and the analog part employs the same methbdspasposed
HDA-I schemes. The digital decodgy, } and the analog decoder also has knowledge;qfits performance

is shown in Fig. 8 fot = 0.1 and¢ = 0.3 and in Fig. 10 for = 0.1.

All systems are trained with 300,000 vectors, and tested with a differenf $480,000 vectors. For comparison
purposes, we also present the following theoretical curves: the OB €2) for the memoryless Gaussian
source (shown in Figs. 7-9) and the OPTA curve for the Gauss-Mas&arce (shown in Fig. 10); the HDA-I
bounds for both matched and mismatched cases (shown in Figs. 7-Qipbdddor a givent by (3) and (5),
respectively; and the HDA-II bounds for both matched and mismatchexs$ ¢alsown in Fig. 9), described for a
givent by (11) and (12), respectively. We can observe the following:

e Figs. 5-6 indicate that the power allocation plays an important role in the peafare of the optimized HDA-

| system, especially for CSNRs above the design CSNR of 10 dB. Althowglkhsoset = 0.05 based
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on Proposition 2¢ = 0.07 turns out to be the best power allocation shown by the simulation results. In
particular, the SDR increases @asicreases fromt = 0 (which is equivalent to the purely digital system) to
aboutt = 0.07 (see Fig. 5) and then declinesiagaries fromt = 0.07 to ¢ = 1 (which is equivalent to the
purely analog system). While the optimal power allocation provided by Pitpog is derived for the ideal
case (which assumes infinite block size), and the above numerical regultsraved using a block size of 24,
we note that the best choice (aroune- 0.07) obtained by the numerical study is consistent with the value
t = 0.05 suggested by Fig. 2. Another interesting observation is that when the 8N&alls below 10 dB
(k4es), the SDR performance gets bettertaacreases. This is because the digital part degrades drastically
when kg, < kges (Usually, the better the digital part performs at the design CSNR, the mas#idis its

performance degradation for lower CSNRs).

We observe from Fig. 7 that far= 0.07, the optimized HDA-I system outperforms the unoptimized HDA-I
system at all CSNRs. Moreover, it obtains a gain of 1 dB over the unoptintiZ¥-1 system, and is within
0.3 dB of the performance bound for the mismatched HDA-I system at highRSSe.g., for CSNR> 30
dB). The HDA-I systems present a smooth and robust performaneedsr CSNRs, and provide substantial
improvements over the purely digital system from medium to high CSNRs. Tlkeyatperform the purely
analog system for a wide range of CSNRs. We also note that the perfoersaturates at around 35 dB.

In Fig. 8, we compare the optimized HDA-I system with the HDA-Turbo systéf29] for ¢ = 0.1 and

t = 0.3. We remark that for a proper choice gfe.g., fort = 0.1, the optimized HDA-I system outperforms
the HDA-Turbo system for CSNR 13 dB, and obtain a large gain for medium to high CSNRs. This behavior
can be explained as follows. During the linear encoding process, wardibalf of the components of each
guantization error vector. For memoryless sources, all components@frtresectors have approximately the
same variance. Since the optimized HDA-I system has higher quantizatiotnaat¢hat of the HDA-Turbo
system (the HDA-I scheme does not employ channel coding while the HDBeTsystem uses a ratg?2
Turbo code), each component of the quantization error vector hasleskwaiance than the corresponding
quantization error component in the HDA-Turbo system. As a result, thatitistintroduced in the optimized
HDA-I system by this dropping-off process in the analog part is lesersethan that for the HDA-Turbo
system. On the other hand, the Turbo code plays an important role for €&iiging from 5 to 10 dB.
For CSNRs over 10 dB, channel coding becomes superfluous andomthst system distortion is due to
guantization noise. Fig. 8 shows that in the CSNR range of 25 to 40 dB, theingd HDA-I system has a

gain around 1.5 dB over the HDA-Turbo system.
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e In Figs. 9 and 10, we compare the HDA-I and the HDA-II/HDA-Bystems witht = 0.1 for both i.i.d.
Gaussian and Gauss-Markov sources. As predicted by the theocetieas of Fig. 3, the HDA-II bounds are
superior to the HDA-I bounds for the memoryless Gaussian source {ewagh both simulated systems do
not use channel coding). Note from the figure, that for CSNB dB, curve (b) of the HDA-II bound (11)
meet the OPTA performance (curve (a)). This is indeed expected foostiady in Section 2, since at for this
CSNR, we obtain from (7) that = 0.1, and hence we should have thi3;,2(N) = Dgpta(N). Furthermore,
in the simulation results, the HDA-II system (curve (f) in Fig. 9), outperi®the HDA-I system (curve (Q))
for a wide range of CSNR, with about a 0.6 dB SDR gain for CSNR varyiog 20 to 40 dB.

However, in the simulation result for the Gauss-Markov source, the HDAystem is inferior to the HDA-I

system for CSNRs above 11 dB; compare curves (d) and (b) in FigTH®.SDR gain of HDA-I over HDA-

II* is substantial for high CSNR’s (about 2.5 dB). Furthermore, the HDAyktem performs worse than the
HDA-Turbo system for CSNRs above 14 dB. We conclude that for the mdess Gaussian source, the HDA-
Il performs better than the HDA-I system, while for the Gauss-Markovamuhe HDA-I system provides a
superior performance. Thus if the source is known to be Gaussiaihjbnbt known whether it is memoryless
or Gauss-Markovian, the HDA-I system would serve as a good compedmis low-complexity and robust

HDA system.

5 Conclusion

Three HDA joint source-channel systems with bandwidth compressidhdaeliable communication of Gaus-
sian sources over AWGN channels are studied. All systems have a simpledimgag coding component.
Information-theoretic distortion upper bounds (under both matched and tatseaechannel conditions) for the
case of memoryless Gaussian sources are established. It is showrotbattier HDA systems (HDAand HDA-
II) can asymptotically achieve OPTA under matched channel conditiorgptonally chosen power allocations
between the analog and digital parts of the systems, thus theoretically outpiad the first scheme, HDA-I.
Then, a practical HDA-1 scheme which employs a VQ cascaded with BPSKulawtozh in the digital part is
designed and implemented. A training algorithm is presented to iteratively optineizsetince digital transmitter
(both source encoder and source decoder) and both the digitalademmiEbook and the analog decoder. A sys-
tem design of the HDA-II scheme is also conducted. Both implemented HDA-H&A-1I schemes are similar
to the system considered in [29], but they are simpler as they do not use &iwor-correcting coding. Numerical

results show that both HDA schemes offer a robust and gracefudrpasthce improvement for a wide range of
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CSNRs (medium to high CSNRs), and substantially outperforms purely digidgbarely analog systems for a
large range of CSNRs. The HDA-II is superior to the HDA-I system ferntemoryless Gaussian source; how-
ever, for the Gauss-Markov source, the HDA-I system performstanbally better than the HDA-II system. The
advantages of the HDA schemes are as follows: (1) they have low compdexdtiow delay; (2) they guarantee
a graceful performance improvement for high CSNRs; (3) for the HBystem, the joint source-channel design
of the codebooks enables smooth degradation for medium CSNRs. I6japter 3], an image communication
application that illustrates the effectiveness of HDA coding is presentambimpining the HDA-I system with
the bandwidth expansion system of Skoglatél [28].

Appendix: Proof of Proposition 1

First we give an informal derivation of the upper bound, and then weige the outline of a rigorous derivation

which uses common randomization at the encoder and the decoder. Soigletfsingard but tedious details

will be omitted. For the source encoder and decoder in the upper “digitai’opdhe system |e(¢g”>, goén))

be a sequence of source codes (vector quantizers) with enp&’aer R® — {1,...,2""} and decode@&”) :

{1,...,2"%} — R, having rateR = glog<1 + (tlpfj)li,t)) bits per source sample. We chodse™ @&”)) so that

it asymptotically achieves the distortion-rate function at fatef the i.i.d. Gaussian source with zero mean and

variancer?. Thus lettingX " = o (o{ (X™)) andD,, £ LE|x™ — X"||2, we have

T n

2
lim D, =022 2R=_— % ____ D, (N). (39)

— (l—t)P T
e (1 + tP+N>

The output index! = goﬁ") (X™) from the source encoder is fed to the channel encoder which operates

on blocks ofk = rn channel symbols. The sequence of channel ccﬁdé@,wfik)) with encodemék) :

{1,...,2"%} -~ R*and decodelzj((f) :RF — {1,...,2"%} has rate

n, R 1 (1—-t)P
ER_?_§log(1+7tP+N)

bits per channel use. This is the capacity of an AWGN channel with noideneatP + N and input power
constraint(1 — t) P, and we choose the channel code to satisfy this power constraint ahdtst its error
Sn

probability is asymptotically (i.e., d— oo) zero when itis used on this AWGN channel. LettEig= X" —X ",

the linear encoder-decoder p&ir™ , 3(") is defined as

o P an s ook VIPD, ckr o e
vk 2 o f )(E): F[E ]’19’ E éﬁ( )(V):<tP+N(V )T,(O k)T> (40)

where [E"]} denotes the firsk components oE™. Since the source code asymptotically achieves the rate-

distortion function, one can easily show using a standard information tieargument that the normalized
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relative entropy (Kullback Leibler divergence) [4] betwdeh and ann-dimensional Gaussian random vector
with i.i.d. components of zero mean and variatigg, (N) converges to zero as— oo. This indicates that the
distribution ofE” is well approximated by that of the Gaussian vector for largh is also easy to show th&t*
andX" are (asymptotically) uncorrelated (see, e.g., [19, Lemma 1]). To simplify foenial derivation, let us
assume that the following stronger versions of these approximations Hoit: i6 independent ok "; (ii) E™ is
Gaussian with independent components of zero mean and equal vafiance

Note that sincd is a function ofX ", these assumptions imply that the channel codewrbrd: wék) (I)is

independent of/* = | /%[E”]’f, and furthermore,
1 & 4 k|2 1 &2 1 k(2
%EH 7+ V| = %E[H 717+ %E[HV <A —-t)P+tP (41)

so that the total input power constraifiton the channel is met. By assumptions (i) and (ii) the actual channel
noiseV* + W* at the channel decoder can be regarded as an AWGN vector withmetesaariance P + N
which is independent of the channel encoder input. Under these atisnsihe channel code has asymptotically
vanishing error probability, i.e.,

nh_)rgO Pr{I #J} =0. (42)

It is well known that for the i.i.d. Gaussian source an asymptotically optimateaode can be chosen such that

its codevectors lie on a sphere of radiys.(¢2 — Dy, (N)), i.€., we can assunﬂ;anEl") (1)||? = 02 — Dyan(N)

for all i. Using this fact and noting that (42) is equivalentiia,, ... Pr{)N(n # X } =0, we obtain

lim LE|X" ~ X |* = 0. (43)

n—oo n

-n

For simplicity we in fact assume that' = X for largen. In this case, the average distortion can be written as

n

1 n < 2_l ~n n_gn ~n 2_l n_ g"2
—E[[X" =X = —E[[(XT +E") - (X +E)|" = ~E[[E" —E7[", (44)

On the other hand, from (40) we have

. \/tPDnka
L tP+ N

1 n =N 1 n 1 nan
—E[E" - E I = || [E"] +—||E Jia|l” (45)

whereV" = VF 1 Wk 4+ sk — &, Itis well known that the channel codewords can be chosen to lie oheaespf
radius,/k(1 — t) P (such an equi-energy codebook is often called a Gaussian codelSoég (42) is equivalent

to limy,_ o, Pr{s} # s%} = 0, we obtain
1 )
Jim —Esf — sj||* = 0. (46)
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Again, for simplicity we actually assumi; = sf“] o] that\A/k = V¥ + WF (for largen). Using (40), (45), and the

assumption in (i) that the componentstsf have equal variancB,,, we obtair

lim LE|X" - X"|° = lim LE|[E" —E"|] (47)
n—oo n n—oo n
= lim <r DntP +(1- T)Dn> (48)
n—o0 1 + 5
_ D) t“”g ) + (1 = 7)Dyan(N) (49)
1+

as desired. The preceding argument in fact forms the basis of a rigproaf. The crucial point is to prove (42),
i.e., the existence of a channel code of r&e- having vanishing error probability which also meets the total
power constraint as in (41). Indeed, assuming (42) holds, we clearty/(d3) and (46). Itis then straightforward

to show that (43) implies (47), and that (46) implies (48) as long as we have

tim +E[|[E,4]* = Dian(N). (50)

n—oo

It is easy to make sure (50) holds. L&be a positive integer which divides and assume the-dimensional
source code is the/¢-fold product of ar-dimensional vector quantize)®) having rater (i.e., Q¥ is used
n/{-times when encoding”). If £ — oo, then the rate-distortion performance (39) can be achieveg(Byand
if in addition we have//n — 0, then (50) clearly holds.

Thus the entire proof hinges on the existence of channel codes with aigalty vanishing error probability
(42) under the power constraift. In the remainder of the proof we show that such codes exist if one allows
common randomization at the encoder and decoder. Common randomizatadyalised in the context of both
source and channel coding (see, e.g., [34], [7], [8] and [3Bu&ss that the total input power meets the power
constraint and also makes the transmitted channel codeword and the’“Wéise W* independent. In what
follows we first show that the average channel niiﬁk{’“ + W¥|| is concentrated near its expectatidh + N
with large probability, and then use this fact in showing that the desirechehande exists.

Recall thatD,,,(N) = ¢227%% is the distortion-rate function at rate of a memoryless Gaussian source

with variances2. It is known (see., e.g., [24] or [15]) that one can cho@$€ so that its codevectors lie on a

sphere of radiug/¢(02 — Dy, (N)) and it has asymptotically optimal distortitim,_., $E[|X‘—Q®) (X?)[|2 =
Dyon(N), which implies (39) sincé,, = %1F£1|X‘Z — QW (X" by the source code construction.
Since[E"]} is the concatenation e’ = k/¢ independent copies o —Q (X*), andv* =, /L= [E"]}, we

have thaf|V*||? is the sum ofn’ = k/¢ independent random variables with meghE| X — Q) (X*)||* = ¢t P,

2With these assumptionsﬁgjl\;bvk becomes the MMSE estimate [&"]%
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Thus if ¢ is fixed the weak law of large numbers implies

lim Pr{
k—oo

1
EHV’“HQ - tP‘ > e} =0 (51)

for all e > 0. Clearly, we can choose drsequence such that— oo, {/k = ¢/(rn) — 0 and (51) still holds. For
the rest of the proof we assume thatcreases with (andk) in this fashion. We have||VF+W*||2 = 1||VF¥||2+

TIWE(2 4+ 2(VF)TW*, wherez |[WF |2, being the average @fi.i.d. random variables of meaN, converges to

2
N in probability ask — co. A direct calculation shows thm[(,};(vk)TW’f) } = SE|V*|? = &tP, which
converges to zero s — oo, implying through Chebyshev's inequality that{|Z(V*)TW*| > ¢} — 0 as

k — oo for all e > 0. Combining these facts with (51) we obtain that foreatt 0,
Jim Pr{’;HVkJerP(tPJrN)' > e} =0. (52)

Now consider the fictitious-dimensional vector channel with input power constréifit— ¢) P and additive
noise which isndependenbf the input and has the same distribution\es+ W¥*. The key point is that (52)
allows us to use Theorem 1 in [14] which, when applied to our setup, stakegitien an additive noise channel
with power constraink(1 — ¢) P and input-independent, possibly non-ergodic noise which satisfiest(&2g

exists a sequence of channel cowg),wék)) which has rate} log<1 + (tlgj)ﬁ) and equi-energy (Gaussian)

codebook and whose error probability on this channel approachesagé — oo. (Thus, in effect, a channel
code designed for the worst case AWGN noise also works for norsgeauchannel noise of equal power.)

We will use common randomization to apmyé’” , 1/1((1’“)) to the real system whek&" +W¥ is not independent
of the channel input. Lefl denote a random permutation of the indides. . , 2" which is uniformly drawn
from the set of al(2"?)! permutations and is independent of the sout€eand the channel nois&/*. Assume
thatII is know at both the encoder and the decoder. At the encoder &pfaythe output indexX of the source
encoder before channel coding, so that the input to the channedemisdI (/). At the decoder side, if is the
output index at the channel decoder, thign'(.J) is sent to the source decoder, whéie! denotes the inverse
of II. It is easy to see that the channel with inguand outputiI—!(.J) is statistically equivalent to the discrete
channel realized whe(n/)ék), zpfik)) is used on the fictitious channel with a uniform distribution on its input index
set. Since(wék), wflk)) has asymptotically vanishing error probability on the fictitious channel, forgthlesystem
we also havéimy,_,., Pr{I # II-!(J)} = 0. It remains to show that the total power input power on the channel

does not excee®. Sincesy; ;) = ) (11(1)) is independent oF¥,
LE|ish 1)+ VHI? = 1Ellsh | + TEIVEI® + SElsl ) |TEVA] (53)
k () L (I) k Lk (I
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whereE||sf; > = (1 - t)P and{E||V¥||* = tP. Letm’ £ E[X’ — Q1) (X")]. Then

1 1 1 1
D, = —IEHXE _ Q(f)(xf)‘P - ZEHXE — Q(@(xf) — mZHZ + ZHmeHZ > Dian(N) + Z\Ime\l2

n

where the inequality holds sin€@®) (X*) + m’ is a rateR quantizer forX‘. This implieslim,_., +[|m‘||? = 0.
Since ¢ |[m‘|* 5> = £I[E[V*]|]*, applying Cauchy-Schwarz inequality yieltlgn . zElsf )] E[V*] = 0.
Substituting this into (53) shows thitn, .o B[S ) + V*||* = (1 — )P + ¢ P; thus, the power constraint is
(asymptotically) satisfied. O
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Figure 1: HDA systems with bandwidth compressién{ n): (a) HDA-I system; (b) HDA-II system.
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Figure 2: The best power allocatioas a function of the true CSNR,.) for different HDA-I system parameters.
For curves (a), (b) and (c}, = 0.5, kqes = 0 dB, 10 dB and 15 dB, respectively. For curves (e), (f) and (g),
Kdes = 5 dB,r = 0.75, 0.5 and 0.25 respectively.
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Figure 3: SDR performance (in dB) under channel mismatch for the HEystem (curve hdal) and the improved
HDA* (curve hda) system withr = % desigh CSNRx4.; = 10 dB and true CSNR:;,. = 20 dB; ¢; andt, are
the optimal analog power coefficients for systems HDA-I and FiDaspectively.
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Figure 4: Proposed HDA-I system design with bandwidth compression.
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HDA-I design with various power
allocation schemes:

a: t=0.07

b: t=0.05

c: t=0.02

d: t=0.01

e: t=0 (purely digital system)

0 5 10 15 20 25 30 35 40
CSNR(dB)

Figure 5: SDR performance (in dB) of optimized HDA-I systems for varjpuser allocation coefficients i.i.d.
Gaussian source over the AWGN channgl,; = 10 dB, » = 1/2 channel use/source sample.
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HDA-I design with various power -
allocation schemes:
a: t=0.07

b: t=0.1

c: t=0.15 -
d: t=0.2

e: t=0.3

f: t=1 (purely analog system)

O | | | |
0 5 10 15 20 25 30 35 40

CSNR(dB)

Figure 6: SDR performance (in dB) of optimized HDA-I systems for varjpuser allocation coefficients i.i.d.
Gaussian source over the AWGN channgl,; = 10 dB, » = 1/2 channel use/source sample.
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Figure 7: SDR performance (in dB) of the optimized HDA-I, the unoptimizedd\H[the purely digital and the
purely analog systems; i.i.d. Gaussian source over the AWGN chanrel,/2 channel use/source sample. For
the HDA-I and purely digital systems ., = 10 dB.
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a: OPTA
b: HDA-I bound, t=0.1 7
c: Mis. HDA-I bound, t=0.1,k eS:lO dB
d: HDA-I (optimized), t=0.1, Kdes=10 dB
e: HDA-Turbo, t=0.3 —
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Figure 8: SDR performance (in dB) of various HDA systems; i.i.d. Gausssance over the AWGN channel,
r = 1/2 channel use/source sample.
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Figure 9: SDR performance (in dB) of various HDA systems; i.i.d. Gausssance over the AWGN channel,
r = 1/2 channel use/source sample.
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Figure 10: SDR performance (in dB) of various HDA systems; Gauddiarkov source (with correlation coef-

ficient 0.9) over the AWGN channel,= 1/2 channel use/source sample.
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