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Abstract

Three hybrid digital-analog (HDA) systems, denoted by HDA-I, HDA∗ and HDA-II, for the coding of a

memoryless discrete-time Gaussian source over a discrete-time additive memoryless Gaussian channel under

bandwidth compression are studied. The systems employ simple linear coding in their analog component and

superimpose their analog and digital signals before channel transmission. Information-theoretic upper bounds

on the asymptotically optimal mean squared error distortion of the systems are obtained under both matched

and mismatched channel conditions. Allocation schemes fordistributing the channel input power between the

analog and the digital signals are also examined. It is shownthat systems HDA∗ and HDA-II can asymptoti-

cally achieve the optimal Shannon-limit performance undermatched channel conditions. Low-complexity and

low-delay versions of systems HDA-I and HDA-II are next designed and implemented without the use of error

correcting codes. The parameters of these HDA systems, which employ vector quantization in conjunction

with binary phase-shift keying modulation in their digitalpart, are optimized via an iterative algorithm similar

to the design algorithm for channel-optimized vector quantizers. Both systems have low complexity and low

delay, and guarantee graceful performance improvements for high CSNRs. For memoryless Gaussian sources

the designed HDA-II system is shown to be superior to the HDA-I designed system. When applied to a Gauss-

Markov source under Karhunen-Loeve processing, the HDA-I system is shown to provide considerably better

performance.

Index Terms: Hybrid digital-analog coding, joint source-channel coding, vector quantization, broadcasting,

robustness, linear analog coding.
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1 Introduction

We consider the problem of transmitting a discrete-time analog-valued sourceover a discrete-time memoryless

channel. Due to the often lacking channel information at the transmitter, a robust system is desirable for a wide

range of channel conditions. In terms of the used modulation techniques, systems can be generally categorized

as analog, digital or hybrid digital-analog (HDA).

One of the main advantages of digital communication systems is that they can be designed to (asymptotically)

achieve the theoretical optimal performance for a fixed channel signal-to-noise ratio (CSNR) via the separate

design of optimal source and channel codes [27], [4]. Systems designed based on this principle are often referred

to astandem source-channel codingsystems. There are, however, two fundamental disadvantages associated

with digital tandem systems. One is thethreshold effect: the system typically performs well at the design CSNR,

while its performance degrades drastically when the true CSNR falls below thedesign CSNR. This effect is due

to the quantizer’s sensitivity to channel errors and the eventual breakdown of the employed error correcting code

at low CSNRs (no matter how powerful it is). The other trait is theleveling-off effect: as the CSNR increases, the

performance remains constant beyond a certain threshold. This is due to the non-recoverable distortion introduced

by the quantizer which limits the system performance at high CSNRs.

The threshold effect can be partly remedied via digital joint source-channel coding (JSCC). By jointly design-

ing the source and channel codes, many results (e.g., [9], [17]) showthat noticeable gain can be obtained in terms

of coding efficiency, reconstructed signal quality, coding delay and complexity. In particular, JSCC schemes are

more robust than tandem systems at low CSNRs. However, such JSCC systems still suffer from the leveling-off

effect at high CSNRs, since being digital systems, they employ quantization to“digitize” the source. On the other

hand, the leveling-off effect is not a problem for analog systems (we call a discrete-time system analog if it uses

an analog modulation technique such as amplitude modulation); actually, their performance can strictly increase

as the CSNR increases. However, it is usually hard to incorporate efficient signal compression schemes in analog

systems, particularly when channel bandwidth change is required and/orthe source has memory.

Schemes that exploit the advantage of analog systems are studied by Ramstadand his co-authors in [16],

[10], [6], [5], and [11]. These are based on the so-called direct source-channel mapping technique: the output of a

source scalar/vector quantizer is mapped directly to a channel symbol using analog (or nearly analog) modulation,

i.e., amplitude modulation orM -ary quadrature amplitude modulation (QAM) withM ≫ 1. The direct source-

channel codes also enjoy graceful degradation performance at low CSNRs. In [16], a robust image coding system

is presented which combines subband coding and QAM. This system allows various compression levels based
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on block-wise classification. An improved image coding system is proposed in[6]; it utilizes both bandwidth

compression and bandwidth expansion mappings, where the bandwidth expansion mapping employs a scalar

quantizer and transmits both the quantized value and the quantization error. Recently, a JSCC technique known

as the 2:1 Shannon mapping was investigated in [11] and shown to provide very robust performance. It employs

the Archimedean spiral to approximately map a point in a plane onto a point on a line. Related works on analog

coding methods include [31] and [32].

To exploit the advantages of both analog and digital systems, one can allow part of the system to use digital

modulation to improve robustness against severe channel conditions, whileletting another part of the system

use analog signaling to obtain a graceful improvement at high CSNRs. Several recent works have investigated

such systems. In [19], a family of HDA systems are introduced and studied theoretically; they are shown to offer

better distortion performance than purely digital systems, have a gracefulperformance improvement and (asymp-

totically) achieve the Shannon limit. An HDA system design based on vector quantization (VQ) for bandwidth

expansion is investigated in [28], where an algorithm to design optimized codes and performance evaluation are

presented. In [29], an HDA system for Gauss-Markov sources with bandwidth compression/expansion is given.

It employs the Karhunen-Lóeve transform to decorrelate the source, Turbo error correcting coding in its digital

part to improve the system performance at low CSNRs, and superposition coding of the analog and digital sig-

nals. This system allows for both linear and non-linear mappings in its analog component. In [26], systematic

JSCC is studied and is demonstrated to be optimal for a wide class of sources and channels. In [23], an inner dis-

tortion bound for broadcasting a single Gaussian source to two listeners over a Gaussian broadcast channel with

bandwidth expansion is derived. This bound is obtained based on an HDAcoding scheme, which includes one of

the HDA systems of [19] and the systematic coding scheme of [26] as two special cases. In [25], systems using

an HDA approach, a progressive transmission approach, and a superposition coding approach are compared for

a slowly-varying fading additive white Gaussian noise (AWGN) channel. It is shown that the HDA approach has

better performance than the other two methods. Most of the gain of this HDA approach is due to the presence of

the linear analog part. Other HDA-based techniques are studied in [13], [20], [22], and [12] and [2]; in particular,

the works of [12] and [2] study the distortion exponent (where the derived results are asymptotic in both CSNR

and source dimension) for HDA coding over multiple-input multiple-output block fading channels.

In this work, we study the transmission of memoryless Gaussian sources over an AWGN channel with band-

width compression. We investigate this problem within the HDA coding framework. We consider three HDA

systems. The first system (referred to as HDA-I) is based on the recent work in [29]. For this HDA system, we
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first obtain an information-theoretical (mean squared) distortion upper bound for the optimal HDA-I system with

a linear analog part. As a direct consequence, we obtain a similar distortion bound for the mismatched HDA-I

system where the encoder does not know the true CSNR. An optimal powerallocation formula between the digi-

tal and the analog parts is obtained for this mismatched system. The second system, HDA∗, and the simpler third

HDA system, HDA-II, are both shown to asymptotically achieve the Shannon limitfor a properly chosen power

allocation between the analog and digital parts of the systems. Distortion bounds for these two systems under

CSNR mismatch are also provided.

For the HDA-I system, a low-complexity and low-delay version is next designed and implemented without

the use of Turbo error correcting codes (unlike the scheme of [29]) and is shown to be robust over a wide range of

CSNRs. These characteristics may be particularly appealing for telemedicineand sensor networks applications

where sensitive image data need to be reliably communicated from remote locations irrespective of the channel

environment. The digital part of the HDA-I scheme is formed with a VQ cascaded with a binary phase-shift

keying (BPSK) modulated hard-decision decoded AWGN channel. As in [28], the HDA-I system parameters (in

both the digital and analog components) are optimized using an iterative algorithm similar to that for channel-

optimized vector quantizer (COVQ) design. The HDA-II system is also designed and implemented without the

use of channel coding; it uses a COVQ in its digital component. Simulation results indicate that while the HDA-I

system provides an inferior performance to the HDA-II system for memoryless Gaussian sources, its performance

is significantly better for Gauss-Markov sources (decorrelated via Karhunen-Loeve processing). Comparisons are

also made with purely analog and purely digital systems, as well as the system in[29].

The rest of this paper is organized as follows. In Section 2, a general description of the HDA systems are

given and information-theoretic bounds on the distortion are derived. Power allocation schemes for distributing

the channel input power between the system’s analog and digital components for both systems are also obtained.

In Section 3, the HDA-I system design is examined in detail. Simulation results aregiven in Section 4. Finally,

conclusions are stated in Section 5.

Throughout the paper we will use the following notation. Vectors are denoted by bold-faced characters

superscripted by their dimensions. Upper-case letters are used for random variables and lower-case letters for

their realizations. For a given vectorxn = (x1, · · · , xn)T , we let [xn]k1 and [xn]nk+1 denote the subvectors

[xn]k1 , (x1, · · · , xk)
T and [xn]nk+1 , (xk+1, · · · , xn)T respectively, whereT denotes transposition.E(X)

denotes the expectation of random variableX.
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2 Information-Theoretic Considerations

2.1 HDA-I System

The block diagram for the HDA-I system with bandwidth compression is depicted in Fig.1.(a). Samples of a

memoryless Gaussian source{Xi} with zero mean and varianceσ2
s > 0 are grouped into blocks of sizen

(denoted byXn) and sent to a source encoder. The discrete outputI, which is taken from a finite set of indices,

is then fed to a channel encoder/modulator which produces ak-dimensional channel symbolsk
I , wherek < n.

Heresk
I is taken from a finite set of possible symbols and satisfiesE‖sk

I‖2 ≤ k(1− t)P , whereP is the constraint

on the total input power per channel use andt ∈ [0, 1] is the power allocation coefficient for the analog part. The

source encoder and the channel encoder/modulator together will often be referred to as tandem source-channel

encoder/modulator. The output indexI is also sent to a source decoder to form a reconstruction vectorX̃
n
, which

is subtracted fromXn to form an error vectorEn. The firstk components ofEn are further sent to a linear

(analog) encoder which performs simple scaling so that thek-dimensional outputVk satisfies a power constraint

E‖Vk‖2 ≤ ktP . Now sk
I andVk are superposed and sent over a channel with AWGNWk with per symbol

noise varianceN . The channel outputRk, which is given byRk = sk
I + Vk + Wk, is sent to a channel decoder.

The discrete outputJ is sent to the source decoder resulting in vector̂̃X
n

. Simultaneously, a channel symbol is

chosen according toJ , which is subtracted fromRk. The result̂V
k

is fed to the linear (analog) decoder to form

an estimatêE
k
. The remainingn− k components of the error vector are filled with zeros to produceÊ

n
which is

then added tỗX
n

to form an estimatêX
n
. The overall coding rate of this HDA-I system isr = k/n < 1 channel

uses per source sample. The system normalized mean squared error (MSE) distortion is

Dn(N) =
1

n
E

∥∥∥Xn − X̂
n
∥∥∥

2
. (1)

For the purpose of analysis, we first consider the system’s asymptotic distortion,D(N) = lim
n→∞

Dn(N), as the

block lengthn grows without bound (assuming that the limit exists). The rate-distortion function for the memo-

ryless Gaussian source under the squared-error distortion measure isgiven byR(D) = max
(
0, (1/2) log2

σ2
s

D

)

(bits/source sample) for any distortion valueD > 0 [27], [1]. The capacity of the AWGN channel with input

power constraintP and noise varianceN is given byC(N) = (1/2) log2

(
1 + P

N

)
(bits/channel use) [27], [4].

From Shannon’s lossy JSCC theorem [27], [4] for the memoryless Gaussian source-channel pair, we know that if

a code has asymptotic distortionD, thenR(D) ≤ rC(N) must hold. By lettingR(D) = rC(N), a lower bound

on the asymptotic distortion of any code can be obtained. This bound is also asymptotically achievable (under

the assumption that the noise varianceN is known by both the transmitter and the receiver), and is generally
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referred to as the optimal performance theoretically attainable (OPTA). It isgiven by

Dopta(N) ,
σ2

s(
1 + P

N

)r . (2)

By examining the structure of the proposed HDA-I system in Fig.1.(a), we first obtain an upper bound onD(N)

for optimally designed HDA-I systems.

Proposition 1 (Upper bound) For a memoryless Gaussian source with zero mean and varianceσ2
s and an

AWGN channel with noise varianceN (whereN is known at both the transmitter and the receiver), given fixed

r, P andt, there exists a sequence of HDA-I systems with asymptotic distortionDhda1(N) given by

Dhda1(N) = r
Dtan(N)

1 + tP
N

+ (1 − r)Dtan(N), (3)

where

Dtan(N) ,
σ2

s(
1 + (1−t)P

tP+N

)r . (4)

Proof. The proof is given in the Appendix.

Remark: It is easy to show thatDhda1(N) = Dopta(N) if and only if t = 0. Furthermore,Dhda1(N) =

Dopta(N) for t = r = 1.

We next examine the realistic situation where the AWGN varianceN is not known at the encoder. We assume

that the encoder only knows a range of values in which the true noise varianceNtr lies; in particular, it chooses

the encoding operation for a fixed design noise varianceNdes. The receiver, on the other hand, has full knowledge

of Ntr and adapts the decoding accordingly. For this mismatched HDA-I system, when the true noise variance

Ntr satisfiesNtr < Ndes, the linear decoder can adapt toNtr, resulting in a distortion given byDtan(Ndes)

1+ tP

Ntr

. The

asymptotic performance of the tandem coder part is still the same. We then obtain the following upper bound on

the distortion:

Dmis
hda1(Ntr, Ndes) , r

Dtan(Ndes)

1 + tP
Ntr

+ (1 − r)Dtan(Ndes) (5)

whereDtan(N) is given in (4).

We now consider the power allocation problem for this mismatched HDA-I system with the encoder designed

for Ndes, while the true noise variance isNtr. The best power allocation coefficientt that minimizes (5) is given

by the following lemma.
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Proposition 2 For Ntr < Ndes, P and r, the power allocation coefficientt which minimizes the distortion

expression (5) atNtr is given by

t = t1 ,

√
1 + 4(κtr−κdes)

(1−r)κdes
− 1

2κtr
, (6)

whereκtr = P
Ntr

is the true CSNR andκdes = P
Ndes

is the design CSNR.

Proof. The minimizingt can be easily found by setting the derivative ofDmis
hda1(Ntr, Ndes) with respect tot to

zero. The unique solutiont ∈ [0, 1] is the optimal value since a direct calculation shows that the second derivative

d2

dt2
Dmis

hda1(Ntr, Ndes) > 0 if r < 1 andNtr < Ndes. 2

Since the optimalt is a function ofNtr, it is also unavailable at the encoder. However, via a numerical study

(see below) one can choose a value oft which performs well for a large range of CSNRsκtr. In Fig. 2, we plot

the optimalt for different system parameters as a function of the true CSNRκtr. We observe the following.

• It is readily seen that as the true CSNRκtr increases,t approaches 0. Furthermore, it is also easily seen from

(6) that the rate of decay oft to 0 is less than that of1/κtr. It is easy to see that asκtr → ∞, the distortion

performance of the mismatched HDA-I system (5) approaches the constant (1 − r)Dtan(Ndes). Curves (a),

(f), (b) and (c) present the best power allocation for an HDA-I system of rate 0.5, with design CSNRκdes of 0

dB, 5 dB, 10 dB and 15 dB, respectively. They indicate that, for a systemwith high design CSNR (which is the

case when performance at high CSNRs is the main concern), the best power allocation coefficient at various

CSNR pairs(κdes, κtr) is smaller than that for the low design CSNR case, i.e., the analog part of the HDA-I

system incrementally turns off asκdes increases without bound.

• As κtr approachesκdes, t approaches0. Thus the optimal performance at the design CSNR is obtained by a

“purely digital” design, or equivalently, by an optimal tandem coder which contains an optimal source code

and an optimal channel code, as predicted by Shannon’s theory [27].

• Curves (e), (f) and (g) show the bestt for κdes = 5 dB and coding rate of0.75, 0.5 and0.25, respectively. These

curves demonstrate thatt decreases as the coding rater decreases. Indeed, asr decreases, less components of

quantization error vectors are further coded via the analog part, which reduces the importance of the analog

part relative to that of the tandem coding part.

In our system implementations, we fix a design CSNRκdes and choose an adjusted value oft which is good

over a large range of true CSNRsκtr (> κdes); see Section 4 for details.
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2.2 HDA∗ and HDA-II Systems

We note that the HDA-I system can be improved by allowing two separate source encoders in its digital com-

ponent. In particular, the source vectorXn is first split into two subvectors of dimensionrn and (1 − r)n,

respectively, which are sent to two source encoders. The outputs of the source encoders are concatenated and

fed to the (digital) channel encoder. Furthermore, the quantization errorsubvector resulting from encoding the

first source subvector of dimensionrn is transmitted using the analog part (as in the HDA-I system). With this

modified source encoding structure in the system, which we denote by HDA∗, the quantization distortion is now

determined by two source codes, unlike in the HDA-I system where a single source encoder is used. Specifically,

two different per-sample quantization distortions are realized in the digital part of the HDA∗ system: distortion

D1 for the first source encoder (of dimensionrn), and distortionD2 for the second source encoder (of dimension

(1 − r)n). It can be shown (using a proof along the same lines as that of Proposition 1), that for a given noise

varianceN (known at both the transmitter and the receiver), fixedP , r, andt ≥ 0 such that

t ≤ t∗ ,
(1 + P

N )r − 1
P
N

(7)

we can chooseD1 andD2 to satisfy

D2 =
D1

1 + t P
N

and
r

2
log2

σ2
s

D1
+

1 − r

2
log2

σ2
s

D2
=
r

2
log2

(
1 +

(1 − t)P

tP +N

)
(8)

with D1 ≤ σ2
s . Then the overall asymptotic distortion (asn grows to infinity),Dhda∗(N), is given by

Dhda∗(N) , r
D1

1 + tP
N

+ (1 − r)D2 = D2.

SubstitutingD1 = D2

(
1 + t P

N

)
into (8) yieldsD2 = σ2

s

(1+ P

N
)

r , so that

Dhda∗(N) =
σ2

s(
1 + P

N

)r ,

which is the OPTA distortionDopta(N). Thus for all t ≤ t∗ there exists a sequence of HDA∗ systems that

asymptotically achieves the OPTA distortion. In particular, the choicet = t∗ results inD1 = σ2
s , which means

that the firstnr components of the source need not be quantized at all.

Furthermore, under channel mismatch (where the encoder is designed for a fixed design noise varianceNdes

while the receiver knows the true noise varianceNtr, with Ntr < Ndes), the HDA∗ system’s distortion bound is
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given by

Dmis
hda∗(Ntr, Ndes) ,

σ2
s

(1 + P
Ndes

)r

(
1 − r + rα

)
, (9)

where

α ,
1 + tP

Ndes

1 + tP
Ntr

and

0 ≤ t ≤ t2 ,
(1 + P

Ndes
)r − 1

P
Ndes

. (10)

In Fig. 3, we compare the (asymptotic) performance of the HDA-I and HDA∗ systems under channel mis-

match (withr = 1/2, κdes = P
Ndes

= 10 dB andκtr = P
Ntr

= 20 dB) by evaluating (5) and (9) for different

values of the analog power allocationt. The performance is in terms of the source signal-to-distortion ratio

(SDR), which is defined by SDR= 10 log10(σ
2
s/D) whereD is the MSE distortion. We remark from Fig. 3

that the HDA∗ system also considerably outperforms the HDA-I system under channelmismatch. Note that the

expressions of the analog power coefficients that maximize the SDR in the figure, t1 for system HDA-I andt2

for system HDA∗, are given by (6) and (10), respectively.

Although system HDA∗ provides superior (asymptotic) performance over system HDA-I, it is structurally

more complex as it requires the use of two source encoders in its digital component. On the one hand, this

means that the encoding complexity of HDA∗ is less than that of HDA-I (searching in a product codebook is

faster than in an unstructured codebook). On the other hand, the joint optimization of the system components is

already quite complex in the the conceptually simpler HDA-I system (see Section3), and the presence of two

codebooks makes this joint optimization procedure even more difficult for HDA∗. For this latter reason, we will

only implement a simplified version of the HDA∗ system, called HDA-II, which is depicted in Fig. 1.(b).

In this system, instead of quantizing the firstrn source symbols and sending the quantization error via the

analog part, the firstrn symbols ofXn are directly transmitted using analog coding (without the quantization

part). The last(1−r)n source symbols are (as in the HDA∗ system) quantized and sent over the digital component

of the system (see Fig. 1.(b)). Analogously to systems HDA-I and HDA∗, one can show that the following

distortion,Dhda2(N), can be asymptotically achieved by the HDA-II system:

Dhda2(N) , r
σ2

s

1 + tP
N

+ (1 − r)
σ2

s(
1 +

(1−t)P
N

1+ tP

N

) r

1−r

. (11)

Remark:Note that system HDA-II can still (asymptotically) achieve the OPTA distortion:by settingt = t∗,

we obtain thatDhda2(N) = Dopta(N).
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Furthermore, the channel mismatch distortion bound for the HDA-II system, isgiven by

Dmis
hda∗(Ntr, Ndes) , r

σ2
s

1 + tP
Ntr

+ (1 − r)
σ2

s
(

1 +
(1−t)P
Ndes

1+ tP

Ndes

) r

1−r

, (12)

whereNtr < Ndes.

3 HDA-I System Design

We next consider a concrete implementation of the HDA-I scheme in Fig. 1.(a).This system, which has low-

complexity and low-delay as it avoids the use of channel coding in its digital part, is depicted in Fig. 4, and it

employs VQ cascaded with BPSK modulation in the digital part, and uses linear coding in the analog part.

3.1 System Description

The upper part, referred to as the digital part, is formed by a VQ cascaded with a binary symmetric channel (BSC)

without the use of channel coding. An output indexI of thek-bit n-dimensional VQ encoderε1 is assigned a

k-dimensional channel symbolsk
I from a set{sk

i } of 2k possible symbols. The indexI also chooses a vectorzn
I

from theencoder codebook{zn
i }, which is subtracted fromXn to form the error vectorEn.

In the ideal case, for a memoryless source, the optimal source code (in thesense of asymptotically achieving

the rate-distortion curve) splits source vectors into two asymptotically orthogonal components, the quantizer out-

put and the quantization error (see, e.g., [19]). Furthermore, for memoryless Gaussian sources, the distribution of

the quantization error is also approximately Gaussian asn→ ∞ (see Appendix). In the HDA-I system with linear

analog coding, since the output of the linear analog encoder is just a scaled version of the quantization error, we

model (as discussed in the Appendix) the output of the linear encoder by avector of independent Gaussian ran-

dom variable with variancetP which is independent of the source. Hence, for the digital part, a BSC is realized

by using hard decision decoding on the BPSK-modulated AWGN channel withinput power(1 − t)P and noise

variancetP + Ndes. Consequently, if the BPSK signals take values in{+
√

(1 − t)P ,−
√

(1 − t)P}, the tran-

sition probabilities{PJ |I(j|i)} of the BSC arePJ |I(j|i) = qdH(i,j)(1 − q)k−dH(i,j), wheredH(i, j) denotes the

Hamming distance between the binary representations of the integersi andj, andq = Q(
√
κdig) is the crossover

probability, whereκdig ,
(1−t)κdes

tκdes+1 is the effective CSNR of the digital part andQ(x) = 1√
2π

∫∞
x e−t2/2dt. We

remark that any memoryless modulation constellation can be used besides BPSKmodulation. We choose BPSK

modulation because it is simple and it performs comparatively well at low CSNRs.

Given an input error vectorEn, the mappingα simply takes the firstk components ofEn and forms a scaled

vectorVk (to satisfy the average power constraint), which is added tosk
I and sent over the AWGN channel. The
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received vectorRk is first fed to decoderδ1 (which is a simple binary hard-decision demodulator), resulting in

indexJ , and the corresponding reproductionyn
J is chosen through a lookup table. The channel symbolsk

J is then

subtracted fromRk and scaled by a constantb, forming an estimatêV
k
. The mappingβ expands the messagêV

k

back ton dimensions, by padding it with zeros in the corresponding locations. The resultingÊ
n

is added back to

yn
J to form the reproduction̂X

n
.

3.2 System Design

For a total input powerP , a fixed power allocationt and a design noise varianceNdes, we derive an iterative

training algorithm to optimize the source digital transmitter (both source encoderand source decoder) and both

the digital decoder codebook and the analog decoder. Given an arbitrary encoderε1, {zn
i }, {sn

i }, {yn
j }, anda and

b, the end-to-end average distortion can be expressed as

Dn(Ndes) =
1

n
E‖Xn − X̂

n‖2

=
1

n
E

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




[Xn]k1

[Xn]nk+1


−




[yn
J ]k1

[yn
J ]nk+1


−




b
(
a([Xn]k1 − [zn

I ]k1) + sk
I + Wk − sk

J

)

0




∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

=
1

n
E

∥∥∥[Xn]k1 − [yn
J ]k1 − b

(
a([Xn]k1 − [zn

I ]k1) + sk
I + Wk − sk

J

)∥∥∥
2

︸ ︷︷ ︸
,D1

n(Ndes)

+
1

n
E
∥∥[Xn]nk+1 − [yn

J ]nk+1

∥∥2

︸ ︷︷ ︸
,D2

n(Ndes)

. (13)

To considerably simplify the derivation of our results, we make the following assumptions. We assume thata is

chosen such that the power constraint

a2
E
∥∥[Xn]k1 − [zn

I ]k1
∥∥2

= ktP (14)

is satisfied, thatWk is uncorrelated with both[yn
J ]k1 and[sn

J ]k1 and thatE[Wk|J ] = 0. It is worthwhile to point out

that the last two assumptions are valid when the channel is noiseless; hencethey provide good approximations in

the high CSNR regime and their merit will be assessed when evaluating the performance of the resulting HDA-I

system design in Section 4.

Then

D1
n(Ndes) =

1

n
E

∥∥∥[Xn]k1 − [yn
J ]k1 − b

(
a([Xn]k1 − [zn

I ]k1) + sk
I + Wk − sk

J

)∥∥∥
2

=
1

n
E

∥∥∥[Xn]k1 − [yn
J ]k1 − b(sk

I − sk
J) − ba([Xn]k1 − [zn

I ]k1)
∥∥∥

2
+

1

n
b2E‖Wk‖2 (15)

=
1

n
E

∥∥∥[Xn]k1 − [yn
J ]k1 − b(sk

I − sk
J)
∥∥∥

2
+

1

n
b2a2

E
∥∥[Xn]k1 − [zn

I ]k1
∥∥2

−2ab
1

n
E

[(
[Xn]k1 − [yn

J ]k1 − b(sk
I − sk

J)
)T (

[Xn]k1 − [zn
I ]k1

)]
+
k

n
b2Ndes (16)

10



=
1

n
E

∥∥∥[Xn]k1 − [yn
J ]k1 − b(sk

I − sk
J)
∥∥∥

2
+
k

n
b2tP

−2ab
1

n
E

[(
[Xn]k1 − [yn

J ]k1 − b(sk
I − sk

J)
)T (

[Xn]k1 − [zn
I ]k1

)]
+
k

n
b2Ndes, (17)

where (15) follows from our assumption thatWk is uncorrelated from[yn
J ]k1 and[sn

J ]k1.

Lemma 1 Fix a set of encoder regions{Qi} of ǫ1. For any digital decoder codebook{yn
j } andb, the digital

source decoder codebook{[zn
i ]k1} that minimizes the average distortion (13) is given by

[zn
i ]k1 = [ȳn

i ]k1 + b(sk
i − s̄k

i ), i = 0, · · · , 2k − 1. (18)

For any{[zn
i ]k1}, the average distortion (13) is minimized by choosingb and{yn

j } as follows:

b =
E

[(
[Xn]k1 − E

[
[Xn]k1 | J

])T
Uk
]

kNdes + E||Uk||2
, (19)

[yn
j ]k1 =

2k−1∑

i=0

PI|J(i|j)
(
[x̄n

i ]k1 − ba([x̄n
i ]k1 − [zn

i ]k1)
)
− b

(
2k−1∑

i=0

PI|J(i|j)sk
i − sk

j

)
, j = 0, · · · , 2k − 1, (20)

[yn
j ]nk+1 =

2k−1∑

i=0

PI|J(i|j)[x̄n
i ]nk+1, j = 0, · · · , 2k − 1, (21)

where

Uk , a
(
[Xn]k1 − E

[
[Xn]k1 | J

]
− [zn

I ]k1 + E
[
[zn

I ]k1 | J
])

+ sk
I − sk

J − E
[
sk
I − sk

J | J
]
, (22)

x̄n
i , E [Xn | I = i] =

∫

xn∈Qi

xnp(xn)dxn, (23)

ȳn
i , E [yn

J | I = i] =
2k−1∑

j=1

PJ |I(j|i)yn
j , s̄k

i , E

[
sk
J | I = i

]
=

2k−1∑

j=1

PJ |I(j|i)sk
j , (24)

PI|J(i|j) , Pr(I = i|J = j) = PJ |I(j|i)PI(i)/PJ(j), (25)

PI(i) , Pr(I = i) = Pr(Xn ∈ Qi), PJ(j) , Pr(J = j) =
2k−1∑

i=1

PI(i)PJ |I(j|i), (26)

andp(xn) is the pdf ofxn.

Proof. We first focus on how the digital source decoder codebooks{[zn
i ]k1} should be chosen to minimize the

distortionDn(Ndes) (note that the{[zn
i ]nk+1} are not needed since we only transmit the firstk error components).

We note that the only term in (17) that can be influenced by changing{[zn
i ]k1} is the third one. We have

E

[(
[Xn]k1 − [yn

J ]k1 − b(sk
I − sk

J)
)T (

[Xn]k1 − [zn
I ]k1

)]

= E

(
[Xn]k1

T
[Xn]k1

)
− E

(
[Xn]k1

T
[zn

I ]k1

)
− E

[(
[yn

J ]k1 + b(sk
I − sk

J)
)T (

[Xn]k1 − [zn
I ]k1

)]
(27)

= E
∥∥[Xn]k1

∥∥2 −
2k−1∑

i=0

PI(i)

((
[ȳn

i ]k1 + b(sk
i − s̄k

i )
)T(

[x̄n
i ]k1 − [zn

i ]k1

)
− [x̄n

i ]k1
T
[zn

i ]k1

)
(28)

11



= E

[(
[Xn]k1 − [ȳn

I ]k1 − b(sk
I − s̄k

I )
)T (

[Xn]k1 − [zn
I ]k1

)]
(29)

≤
√

E
∥∥[Xn]k1 − [ȳn

I ]k1 − b(sk
I − s̄k

I )
∥∥2

E
∥∥[Xn]k1 − [zn

I ]k1
∥∥2

(30)

where (28) holds from the fact that[Xn]k1 → i→ [yn
j ]k1, s

k
j forms a Markov chain, and (30) holds by the Cauchy-

Schwarz inequality. For arbitrary given{yn
j } and b, equality holds when we choose{[zn

i ]k1} as in (18), thus

minimizing the distortionD1
n(Ndes). Next, consider how the digital decoder codebook{yn

j } should be chosen to

minimize the average distortionDn(Ndes) in (13). Recall that

D1
n(Ndes) =

1

n
E
∥∥([Xn]k1 − ba([Xn]k1 − [zn

I ]k1) − b(sk
I − sk

J + Wk)
)
− [yn

J ]k1
∥∥2
, (31)

D2
n(Ndes) =

1

n
E
∥∥[Xn]nk+1 − [yn

J ]nk+1

∥∥2
. (32)

Thus, for arbitrary{[zn
i ]k1} andb, the{yn

j } which minimize the average distortion (13) are obtained by letting

{yn
j } represent the minimum mean square error (MMSE) estimator

[yn
j ]k1 = E

[
[Xn]k1 − ba([Xn]k1 − [zn

I ]k1) − b(sk
I − sk

J + Wk) | J = j
]

=
2k−1∑

i=0

PI|J(i|j)
(
[x̄n

i ]k1 − ba([x̄n
i ]k1 − [zn

i ]k1)
)
− b

(
2k−1∑

i=0

PI|J(i|j)sk
i − sk

j

)
, (33)

[yn
j ]n

k+1
= E

[
[Xn]nk+1 | J = j

]
=

2k−1∑

i=0

PI|J(i|j)[x̄n
i ]nk+1, (34)

where (33) follows from our assumption thatE[Wk|J ] = 0. Choosing{yn
j } as above, and definingUk as in (22),

the distortion can be rewritten as

Dn(Ndes) =
1

n
E
∥∥Xn − E[Xn | J ]

∥∥2 − 1

n
2bE

[(
[Xn]k1 − 1

n
E
[
[Xn]k1 | J

])T
Uk

]
+

1

n
b2E
∥∥Uk

∥∥2
+
k

n
b2Ndes.

Minimizing the above distortion by solving∂Dn(Ndes)
∂b = 0 yields the expression ofb given by (19). 2

Lemma 2 For a fixed digital decoder codebook{yn
j }, a andb, fixed {[zn

i ]k1} as in (18), the optimal encoder

regions{Qi} for ǫ1 are given as follows:

Qi =

{
xn ∈ R

n : i = argmin
l

(
(ab−1)2

∥∥[xn]k1 − [zn
l ]k1
∥∥2

+hl +
2k−1∑

j=0

∥∥[xn]nk+1 − [yn
j ]nk+1

∥∥2
PJ |I(j|l)

)}
(35)

where

hl , E

[∥∥[yn
J ]k1 + b(sk

I − sk
J)
∥∥2 | I = l

]
− E

[∥∥[zn
I ]k1
∥∥2
]
. (36)
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Proof. The distortionD1
n(Ndes) in (13) can be written as

D1
n(Ndes) =

1

n
E
∥∥[Xn]k1 − [zn

I ]k1
∥∥2

+
1

n
E
∥∥[yn

J ]k1 + b(sk
I − sk

J)
∥∥2 − 1

n
E
∥∥[zn

I ]k1
∥∥2

+
k

n
b2Ndes

− 1

n
2abE

[(
[Xn]k1 − [ȳn

I ]k1 − b(sk
I − s̄k

I )
)T(

[Xn]k1 − [zn
I ]k1

)]
+

1

n
a2b2E

∥∥[Xn]k1 − [zn
I ]k1
∥∥2

=
1

n
(ab− 1)2E

∥∥[Xn]k1 − [zn
I ]k1
∥∥2

+
1

n
E
∥∥[yn

J ]k1 + b(sk
I − sk

J)
∥∥2 − 1

n
E
∥∥[zn

I ]k1
∥∥2

+
k

n
b2Ndes

=

2k−1∑

i=0

1

n

∫

Qi

{
(ab− 1)2

∥∥[xn]k1 − [zn
i ]k1
∥∥2

+ hi

}
p([xn]k1) d[x

n]k1 +
k

n
b2Ndes (37)

wherehi is defined as (36). CombiningD1
n(Ndes) above withD2

n(Ndes) in (13) yields

Dn(Ndes) =
2k−1∑

i=0

∫

Qi

d[xn]k1 p([x
n]k1)

{
(ab− 1)2

∥∥[xn]k1 − [zn
i ]k1
∥∥2

+ hi

+
2k−1∑

j=0

∥∥[xn]nk+1 − [yn
j ]nk+1

∥∥2
PJ |I(j|i)

}
+ kb2Ndes. (38)

Therefore, the optimal encoder regions are given by (35). 2

3.3 Some Special Cases

In Proposition 2, we derived the optimal power allocation coefficientt (with respect toDmis
hda (Ntr, Ndes)) as a

function of the design CSNRκdes. Here we discuss the special cases of high and lowκdes regimes and examine

how the power allocation coefficientt and the system distortion change withκdes from the design point of view.

Assuming that the system is designed for a CSNR ofκdes = P/Ndes and a power allocation coefficientt,

the digital channel has an effective CSNR ofκdig = (1−t)κdes

tκdes+1 , which means that the BSC transition probabilities

PJ |I(j|i) are calculated with the latter CSNR. Assume also that{Qi}, {[zn
i ]k1}, {yn

j }, andb are chosen according

to the results of Section 3.2. We consider the following situations.

• Low noise case,κdes → ∞. In this case,κdig ≈ 1−t
t and thePJ |I(j|i)’s no longer depend onκdes. Since de-

coding the analog signal is dependent on the correct decoding of the digital signal, we can allocate more trans-

mission power to the digital part (decreaset) to increaseκdig, as long astP ≫ Ndes. As a result, the distortion

due to the digital transmission part decreases, which in turn makes the analogpart more useful. This choice of

t is consistent with the result of Proposition 2 (see Fig. 2). As more power is allocated to the digital part (e.g.,

ast decreases),PJ |I(j|i) → 0 for j 6= i, hence,̄sk
I → sk

I , [zn
I ]k1 → [ȳn

I ]k1 → [yn
I ]k1, andb → 1

a . As a result, the

encoder region{Qi} in (35) is simplified toQI =
{

xn ∈ R
n : I = argmin

l

(∥∥[xn]nk+1 − [yn
l ]nk+1

∥∥2
)}

since

(ab − 1)2 → 0 andhl → 0. Thus the dominant distortion is the non-recoverable quantization error from the

rest of then − k components of the source vectors. This observation is also justified by Proposition 1, where
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the first term of (3) goes to zero astP/N → ∞ (note that asκdes → ∞, we also haveκtr → ∞ since we

assume thatκtr > κdes).

• High noise case,κdes → 0. In this caseb→ 0, which means that we will not decode the analog signal because

of its bad quality. Moreover,[zn
I ]k1 → [ȳn

I ]k1 in (18) andyn
j →∑

i
PI|J(i|j)x̄n

i in (20), (21). Since

∑

i

PI|J(i|j)x̄n
i =

∑

i

PI|J(i|j)E[Xn|I = i] =
∑

i

PI|J(i|j)E[Xn|I = i, J = j] = E[Xn|J = j],

we haveyn
J → E[Xn | J ], which means that the digital part approaches a COVQ [9]. In this case, itis best to

allocate all the power to the digital part.

3.4 Training Algorithm

The results of Lemmas 1 and 2 can be used to formulate an iterative training algorithm as in [28, 33] for codebooks

design. The algorithm is summarized as follows: (1) Given the design noise varianceNdes, total powerP , power

allocation coefficientt, and two thresholdsγ1, γ2, calculate the corresponding transition probabilitiesPJ |I(j|i)

of the digital channel. Initialize the encoder regions1{Qi}; (2) Determine the encoder centroids{x̄n
i } and the

probabilities{PI(i)}, initialize [zn
I ]k1 = [x̄n

I ]k1, initialize a to satisfy the power constraint; (3) Iteratively compute

b, {yn
j } and{[zn

i ]k1} using Lemma 1, updatea after each iteration to satisfy power constraint, and stop when the

changes of the codebooks{yn
j } and{[zn

i ]k1} fall below the thresholdγ1; (4) Redefine the encoder regions{Qi}

using Lemma 2, updatea again, and estimate the average distortion; (5) Repeat steps (3) and (4) until the change

of the average distortion falls below the thresholdγ2. In the simulations,γ1 = 10−5 andγ2 = 10−8 were used.

We have the following remarks.

• Optimizing{[zn
i ]k1}, {yn

j } andb jointly is very complex. Instead, in the design we use Lemma 1 for an iterative

approach similar to the one in [28]. First, we initialize[zn
I ]k1 = [x̄n

I ]k1. Then, we computeb using (19), and

compute{yn
j } using (20) and (21). We next update{[zn

i ]k1} using (18) with the new value ofb and{yn
j }.

The iterative algorithm is stopped when the changes of the codebooks{[zn
i ]k1} and{yn

j } fall below a certain

threshold.

• In our derivation, we assume that the power constraint (14) is satisfied with equality at all times. Strictly

speaking, there is no guarantee for this to hold at all iterations. Therefore, convergence is not guaranteed. In

our design, the coefficienta is updated after each computation of{[zn
i ]k1} to satisfy the power constraint. Our

experimental studies suggest that the iterative algorithm does converge toa stable solution.
1Here we use the Voronoi regions of a VQ trained for a noiseless channel for the same source under consideration. An alternative way

is to use the encoder of a COVQ [9] trained for the same digital channel{PJ|I(j|i)}).
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• In our design, all the codebooks are precomputed off line. During encoding, the digital encoder finds{Qi}

using Lemma 2. It is easily seen from (35) that,{hl} can be precomputed. Given the input vectorxn, most

of the computation needed to find the encoder region involves the full COVQ-type search over the codebook

{yn
j } restricted to the lastn− k dimensions, i.e., we need to compute

∑2k−1
j=0

∥∥[xn]nk+1 − [yn
j ]nk+1

∥∥2
PJ |I(j|l).

Thus, we can see that when a moderate block sizen is used (e.g.,n = 24 is used in the simulation of Section

4), the digital encoding part has low computational complexity and low delay. For the decoding part, since we

use hard-decision demodulation, and the digital decoder codebook{yn
j } is precomputed off line, we only need

to perform table-lookup decoding. Thus, the digital decoding complexity is low. As for the analog part, only

k multiplications are needed for linear encoding/decoding.

4 Simulation Results

We evaluate the SDR performance for the transmission of both i.i.d. Gaussian sources and Gauss-Markov sources

over the AWGN channel via the HDA-I and HDA-II systems, designed without the use of channel coding in their

digital component.

For the i.i.d. Gaussian source, the source samples are grouped into vectors of dimensionn = 24, and

transmitted at an overall rate of1/2 channel use per source sample. We implement the HDA-I design system

using the training algorithm described in the previous section. Specifically, for a fixed input powerP = 1

and design noise varianceNdes = 0.1 (thusκdes = P/Ndes = 10), the training algorithm is implemented to

generate the source digital transmitter and both the digital decoder codebook and the analog decoder. In light of

Proposition 2 and curve (b) of Fig. 2, we chooset = 0.05 (this choice oft is expected to give good performance

in the true CSNR range of 12 to 20 dB for the asymptotically achievable system).Apart from this choice oft, we

carried out simulations with other choices oft ∈ [0, 1] for the purpose of comparison. Motivated by a broadcast

scenario, we assume (e.g., as in [28]) that the encoder is optimized for a given power allocation and fixed design

CSNRκdes, i.e., ε1 and{zn
i } are designed for a fixedκdes, while the decoder knows the true CSNRκtr and

adapts to it, i.e.,{yn
j } andb are adapted toκtr. We also implement the HDA-II system using a simple power

scaling encoder and MMSE decoding adapted to the true CSNRκtr in its analog component, and a rate-1 COVQ

source encoder (designed forκdes = P/Ndes = 10) and a COVQ decoder adapted toκtr in its digital component.

For the Gauss-Markov source, we first employ Karhunen-Loéve processing to the source vector. The HDA-I

system then transmits the first 12 error symbols with the largest variance via the analog part. For the HDA-II

system, the first 12 source coefficients with largest variance are codedusing the digital method, the remaining 12

coefficients are transmitted using the analog coding; since this is slightly different from the original structure of
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HDA-II introduced in Section 2, we refer to it as HDA-II∗ in the simulation results presented in Fig. 10 (note that

HDA-II ∗ performs better than HDA-II for the case of a Gauss-Markov source).

We present simulation results for the optimized HDA-I system with various power allocation coefficientst

and the HDA-II system, as well as an unoptimized HDA-I system, a purely digital system, a purely analog system

and the HDA-Turbo system of [29]. All systems have a transmission rate of1/2 channel use per source sample.

• The optimized HDA-I system performance is shown in Figs. 5-10 forκdes =10 dB and various values oft.

• The HDA-II system performance is shown in Figs. 9 and 10 forκdes =10 dB andt = 0.1.

• The unoptimized HDA-I system uses the Linde-Buzo-Gray (LBG) algorithm[18] to design the digital encoder

ε1 and{zn
i }, and applies a linear encoder to the analog part. The digital decoder codebook{yn

j } is adapted

to the true CSNRκtr,and a linear MMSE decoder (also assuming knowledge ofκtr) is applied to the analog

part; its performance is shown in Fig. 7 fort = 0.07.

• The purely digital system, which solely employs the digital part of the HDA-I system, uses a COVQ source

encoder [9] and a COVQ decoder codebook{yn
j } adapted to the true CSNRκtr; its performance is shown in

Fig. 7 forκdes=10 dB.

• The purely analog system, which solely employs the analog part of the HDA-Isystem, transmits only half

of each source vector using linear coding and employs a linear MMSE decoder with knowledge of the true

CSNR; its performance is shown in Fig. 7.

• For the HDA-Turbo system of [29], the digital part consists of a 24-dimensional 6-bit VQ designed using the

LBG algorithm, and a high-delay (k = 768, n = 1536) rate1/2 Turbo encoder with generator (37,21) (punc-

tured to rate1/2) and a random interleaver, and the analog part employs the same methods asthe proposed

HDA-I schemes. The digital decoder{yj} and the analog decoder also has knowledge ofκtr; its performance

is shown in Fig. 8 fort = 0.1 andt = 0.3 and in Fig. 10 fort = 0.1.

All systems are trained with 300,000 vectors, and tested with a different setof 100,000 vectors. For comparison

purposes, we also present the following theoretical curves: the OPTA curve (2) for the memoryless Gaussian

source (shown in Figs. 7-9) and the OPTA curve for the Gauss-Markov source (shown in Fig. 10); the HDA-I

bounds for both matched and mismatched cases (shown in Figs. 7-9), described for a givent by (3) and (5),

respectively; and the HDA-II bounds for both matched and mismatched cases (shown in Fig. 9), described for a

givent by (11) and (12), respectively. We can observe the following:

• Figs. 5-6 indicate that the power allocation plays an important role in the performance of the optimized HDA-

I system, especially for CSNRs above the design CSNR of 10 dB. Although we chooset = 0.05 based
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on Proposition 2,t = 0.07 turns out to be the best power allocation shown by the simulation results. In

particular, the SDR increases ast increases fromt = 0 (which is equivalent to the purely digital system) to

aboutt = 0.07 (see Fig. 5) and then declines ast varies fromt = 0.07 to t = 1 (which is equivalent to the

purely analog system). While the optimal power allocation provided by Proposition 2 is derived for the ideal

case (which assumes infinite block size), and the above numerical results are derived using a block size of 24,

we note that the best choice (aroundt = 0.07) obtained by the numerical study is consistent with the value

t = 0.05 suggested by Fig. 2. Another interesting observation is that when the true CSNR falls below 10 dB

(κdes), the SDR performance gets better ast increases. This is because the digital part degrades drastically

whenκtr < κdes (usually, the better the digital part performs at the design CSNR, the more drastic is its

performance degradation for lower CSNRs).

• We observe from Fig. 7 that fort = 0.07, the optimized HDA-I system outperforms the unoptimized HDA-I

system at all CSNRs. Moreover, it obtains a gain of 1 dB over the unoptimized HDA-I system, and is within

0.3 dB of the performance bound for the mismatched HDA-I system at high CSNRs (e.g., for CSNR≥ 30

dB). The HDA-I systems present a smooth and robust performance formost CSNRs, and provide substantial

improvements over the purely digital system from medium to high CSNRs. They also outperform the purely

analog system for a wide range of CSNRs. We also note that the performance saturates at around 35 dB.

• In Fig. 8, we compare the optimized HDA-I system with the HDA-Turbo system of [29] for t = 0.1 and

t = 0.3. We remark that for a proper choice oft, e.g., fort = 0.1, the optimized HDA-I system outperforms

the HDA-Turbo system for CSNR≥ 13 dB, and obtain a large gain for medium to high CSNRs. This behavior

can be explained as follows. During the linear encoding process, we discard half of the components of each

quantization error vector. For memoryless sources, all components of theerror vectors have approximately the

same variance. Since the optimized HDA-I system has higher quantization ratethan that of the HDA-Turbo

system (the HDA-I scheme does not employ channel coding while the HDA-Turbo system uses a rate1/2

Turbo code), each component of the quantization error vector has a smaller variance than the corresponding

quantization error component in the HDA-Turbo system. As a result, the distortion introduced in the optimized

HDA-I system by this dropping-off process in the analog part is less severe than that for the HDA-Turbo

system. On the other hand, the Turbo code plays an important role for CSNRs ranging from 5 to 10 dB.

For CSNRs over 10 dB, channel coding becomes superfluous and mostof the system distortion is due to

quantization noise. Fig. 8 shows that in the CSNR range of 25 to 40 dB, the optimized HDA-I system has a

gain around 1.5 dB over the HDA-Turbo system.
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• In Figs. 9 and 10, we compare the HDA-I and the HDA-II/HDA-II∗ systems witht = 0.1 for both i.i.d.

Gaussian and Gauss-Markov sources. As predicted by the theoreticalcurves of Fig. 3, the HDA-II bounds are

superior to the HDA-I bounds for the memoryless Gaussian source (eventhough both simulated systems do

not use channel coding). Note from the figure, that for CSNR= 19 dB, curve (b) of the HDA-II bound (11)

meet the OPTA performance (curve (a)). This is indeed expected from our study in Section 2, since at for this

CSNR, we obtain from (7) thatt∗ = 0.1, and hence we should have thatDhda2(N) = Dopta(N). Furthermore,

in the simulation results, the HDA-II system (curve (f) in Fig. 9), outperforms the HDA-I system (curve (g))

for a wide range of CSNR, with about a 0.6 dB SDR gain for CSNR varying from 20 to 40 dB.

However, in the simulation result for the Gauss-Markov source, the HDA-II∗ system is inferior to the HDA-I

system for CSNRs above 11 dB; compare curves (d) and (b) in Fig. 10.The SDR gain of HDA-I over HDA-

II∗ is substantial for high CSNR’s (about 2.5 dB). Furthermore, the HDA-II∗ system performs worse than the

HDA-Turbo system for CSNRs above 14 dB. We conclude that for the memoryless Gaussian source, the HDA-

II performs better than the HDA-I system, while for the Gauss-Markov source, the HDA-I system provides a

superior performance. Thus if the source is known to be Gaussian, butit is not known whether it is memoryless

or Gauss-Markovian, the HDA-I system would serve as a good compromise for a low-complexity and robust

HDA system.

5 Conclusion

Three HDA joint source-channel systems with bandwidth compression forthe reliable communication of Gaus-

sian sources over AWGN channels are studied. All systems have a simple linear analog coding component.

Information-theoretic distortion upper bounds (under both matched and mismatched channel conditions) for the

case of memoryless Gaussian sources are established. It is shown that two of the HDA systems (HDA∗ and HDA-

II) can asymptotically achieve OPTA under matched channel conditions foroptimally chosen power allocations

between the analog and digital parts of the systems, thus theoretically outperforming the first scheme, HDA-I.

Then, a practical HDA-I scheme which employs a VQ cascaded with BPSK modulation in the digital part is

designed and implemented. A training algorithm is presented to iteratively optimize the source digital transmitter

(both source encoder and source decoder) and both the digital decoder codebook and the analog decoder. A sys-

tem design of the HDA-II scheme is also conducted. Both implemented HDA-I and HDA-II schemes are similar

to the system considered in [29], but they are simpler as they do not use Turbo error-correcting coding. Numerical

results show that both HDA schemes offer a robust and graceful performance improvement for a wide range of
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CSNRs (medium to high CSNRs), and substantially outperforms purely digital and purely analog systems for a

large range of CSNRs. The HDA-II is superior to the HDA-I system for the memoryless Gaussian source; how-

ever, for the Gauss-Markov source, the HDA-I system performs substantially better than the HDA-II system. The

advantages of the HDA schemes are as follows: (1) they have low complexityand low delay; (2) they guarantee

a graceful performance improvement for high CSNRs; (3) for the HDA-I system, the joint source-channel design

of the codebooks enables smooth degradation for medium CSNRs. In [33,Chapter 3], an image communication

application that illustrates the effectiveness of HDA coding is presented bycombining the HDA-I system with

the bandwidth expansion system of Skoglundet al. [28].

Appendix: Proof of Proposition 1

First we give an informal derivation of the upper bound, and then we provide the outline of a rigorous derivation

which uses common randomization at the encoder and the decoder. Some straightforward but tedious details

will be omitted. For the source encoder and decoder in the upper “digital” part of the system let(ϕ(n)
e , ϕ

(n)
d )

be a sequence of source codes (vector quantizers) with encoderϕ
(n)
e : R

n → {1, . . . , 2nR} and decoderϕ(n)
d :

{1, . . . , 2nR} → R
n, having rateR = r

2 log
(
1 + (1−t)P

tP+N

)
bits per source sample. We choose(ϕ

(n)
e , ϕ

(n)
d ) so that

it asymptotically achieves the distortion-rate function at rateR of the i.i.d. Gaussian source with zero mean and

varianceσ2
s . Thus lettingX̃

n
= ϕ

(n)
d (ϕ

(n)
e (Xn)) andDn , 1

nE‖Xn − X̃
n‖2, we have

lim
n→∞

Dn = σ2
s2

−2R =
σ2

s(
1 + (1−t)P

tP+N

)r = Dtan(N). (39)

The output indexI = ϕ
(n)
e (Xn) from the source encoder is fed to the channel encoder which operates

on blocks ofk = rn channel symbols. The sequence of channel codes(ψ
(k)
e , ψ

(k)
d ) with encoderψ(k)

e :

{1, . . . , 2nR} → R
k and decoderψ(k)

d : R
k → {1, . . . , 2nR} has rate

n

k
R =

R

r
=

1

2
log
(
1 +

(1 − t)P

tP +N

)

bits per channel use. This is the capacity of an AWGN channel with noise variancetP + N and input power

constraint(1 − t)P , and we choose the channel code to satisfy this power constraint and such that its error

probability is asymptotically (i.e., ask → ∞) zero when it is used on this AWGN channel. LettingEn , Xn−X̃
n
,

the linear encoder-decoder pair(α(n), β(n)) is defined as

Vk , α(n)(En) =

√
tP

Dn
[En]k1, Ê

n
, β(n)(V̂

k
) =

(√
tPDn

tP +N
(V̂

k
)T , (0n−k)T

)T

(40)

where [En]k1 denotes the firstk components ofEn. Since the source code asymptotically achieves the rate-

distortion function, one can easily show using a standard information theoretic argument that the normalized
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relative entropy (Kullback Leibler divergence) [4] betweenEn and ann-dimensional Gaussian random vector

with i.i.d. components of zero mean and varianceDtan(N) converges to zero asn → ∞. This indicates that the

distribution ofEn is well approximated by that of the Gaussian vector for largen. It is also easy to show thatEn

andX̃
n

are (asymptotically) uncorrelated (see, e.g., [19, Lemma 1]). To simplify the informal derivation, let us

assume that the following stronger versions of these approximations hold: (i) En is independent of̃X
n
; (ii) En is

Gaussian with independent components of zero mean and equal varianceDn.

Note that sinceI is a function ofX̃
n
, these assumptions imply that the channel codewordsk

I = ψ
(k)
e (I) is

independent ofVk =
√

tP
Dn

[En]k1, and furthermore,

1

k
E‖sk

I + Vk‖2 =
1

k
E[‖sk

I‖2] +
1

k
E[‖Vk‖2] ≤ (1 − t)P + tP (41)

so that the total input power constraintP on the channel is met. By assumptions (i) and (ii) the actual channel

noiseVk + Wk at the channel decoder can be regarded as an AWGN vector with per sample variancetP + N

which is independent of the channel encoder input. Under these assumptions the channel code has asymptotically

vanishing error probability, i.e.,

lim
n→∞

Pr{I 6= J} = 0. (42)

It is well known that for the i.i.d. Gaussian source an asymptotically optimal source code can be chosen such that

its codevectors lie on a sphere of radius
√
n(σ2

s −Dtan(N)), i.e., we can assume1n‖ϕ
(n)
d (i)‖2 = σ2

s −Dtan(N)

for all i. Using this fact and noting that (42) is equivalent tolimn→∞ Pr{X̃
n 6= ̂̃X

n

} = 0, we obtain

lim
n→∞

1

n
E
∥∥X̃

n − ̂̃X
n∥∥2

= 0. (43)

For simplicity we in fact assume that̃X
n

=
̂̃X

n

for largen. In this case, the average distortion can be written as

1

n
E
∥∥Xn − X̂

n∥∥2
=

1

n
E
∥∥(X̃n

+ En) − (
̂̃X

n

+ Ê
n
)
∥∥2

=
1

n
E
∥∥En − Ê

n∥∥2
. (44)

On the other hand, from (40) we have

1

n
E
∥∥En − Ê

n∥∥2
=

1

n

∥∥∥∥[E
n]k1 −

√
tPDn

tP +N
V̂

k
∥∥∥∥

2

+
1

n

∥∥[En]nk+1

∥∥2
(45)

whereV̂
k

= Vk + Wk + sk
I − sk

J . It is well known that the channel codewords can be chosen to lie on a sphere of

radius
√
k(1 − t)P (such an equi-energy codebook is often called a Gaussian codebook). Since (42) is equivalent

to limk→∞ Pr{sk
I 6= sk

J} = 0, we obtain

lim
k→∞

1

k
E‖sk

I − sk
J‖2 = 0. (46)
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Again, for simplicity we actually assumesk
I = sk

J , so that̂V
k

= Vk + Wk (for largen). Using (40), (45), and the

assumption in (ii) that the components ofEn have equal varianceDn, we obtain2

lim
n→∞

1

n
E
∥∥Xn − X̂

n∥∥2
= lim

n→∞
1

n
E
∥∥En − Ê

n∥∥2
(47)

= lim
n→∞

(
r

Dn

1 + tP
N

+ (1 − r)Dn

)
(48)

= r
Dtan(N)

1 + tP
N

+ (1 − r)Dtan(N) (49)

as desired. The preceding argument in fact forms the basis of a rigorous proof. The crucial point is to prove (42),

i.e., the existence of a channel code of rateR/r having vanishing error probability which also meets the total

power constraint as in (41). Indeed, assuming (42) holds, we clearly have (43) and (46). It is then straightforward

to show that (43) implies (47), and that (46) implies (48) as long as we have

lim
n→∞

1

k
E
∥∥[En]k1

∥∥2
= Dtan(N). (50)

It is easy to make sure (50) holds. Letℓ be a positive integer which dividesn and assume then-dimensional

source code is then/ℓ-fold product of anℓ-dimensional vector quantizerQ(ℓ) having rateR (i.e.,Q(ℓ) is used

n/ℓ-times when encodingXn). If ℓ→ ∞, then the rate-distortion performance (39) can be achieved byQ(ℓ), and

if in addition we haveℓ/n→ 0, then (50) clearly holds.

Thus the entire proof hinges on the existence of channel codes with asymptotically vanishing error probability

(42) under the power constraintP . In the remainder of the proof we show that such codes exist if one allows

common randomization at the encoder and decoder. Common randomization, already used in the context of both

source and channel coding (see, e.g., [34], [7], [8] and [3]), ensures that the total input power meets the power

constraint and also makes the transmitted channel codeword and the “noise” Vk + Wk independent. In what

follows we first show that the average channel noise1
k‖Vk + Wk‖ is concentrated near its expectationtP + N

with large probability, and then use this fact in showing that the desired channel code exists.

Recall thatDtan(N) = σ2
s2

−2R is the distortion-rate function at rateR of a memoryless Gaussian source

with varianceσ2
s . It is known (see., e.g., [24] or [15]) that one can chooseQ(ℓ) so that its codevectors lie on a

sphere of radius
√
ℓ(σ2

s −Dtan(N)) and it has asymptotically optimal distortionlimℓ→∞
1
ℓ E‖Xℓ−Q(ℓ)(Xℓ)‖2 =

Dtan(N), which implies (39) sinceDn = 1
ℓ E|Xℓ −Q(ℓ)(Xℓ)‖2 by the source code construction.

Since[En]k1 is the concatenation ofm′ = k/ℓ independent copies ofXℓ−Q(ℓ)(Xℓ), andVk =
√

tP
Dn

[En]k1, we

have that‖Vk‖2 is the sum ofm′ = k/ℓ independent random variables with meantP
Dn

E‖Xℓ−Q(ℓ)(Xℓ)‖2 = ℓtP .

2With these assumptions,
√

tPDn

tP+N
bV

k

becomes the MMSE estimate of[En]k1
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Thus if ℓ is fixed, the weak law of large numbers implies

lim
k→∞

Pr

{∣∣∣∣
1

k
‖Vk‖2 − tP

∣∣∣∣ > ǫ

}
= 0 (51)

for all ǫ > 0. Clearly, we can choose anℓ sequence such thatℓ→ ∞, ℓ/k = ℓ/(rn) → 0 and (51) still holds. For

the rest of the proof we assume thatℓ increases withn (andk) in this fashion. We have1k‖Vk+Wk‖2 = 1
k‖Vk‖2+

1
k‖Wk‖2 + 2

k (Vk)T Wk, where1
k‖Wk‖2, being the average ofk i.i.d. random variables of meanN , converges to

N in probability ask → ∞. A direct calculation shows thatE

[(
1
k (Vk)T Wk

)2]
= N

k2 E‖Vk‖2 = N
k tP, which

converges to zero ask → ∞, implying through Chebyshev’s inequality thatPr
{∣∣ 2

k (Vk)T Wk
∣∣ > ǫ

}
→ 0 as

k → ∞ for all ǫ > 0. Combining these facts with (51) we obtain that for allǫ > 0,

lim
k→∞

Pr

{∣∣∣∣
1

k
‖Vk + Wk‖2 − (tP +N)

∣∣∣∣ > ǫ

}
= 0. (52)

Now consider the fictitiousk-dimensional vector channel with input power constraintk(1− t)P and additive

noise which isindependentof the input and has the same distribution asVk + Wk. The key point is that (52)

allows us to use Theorem 1 in [14] which, when applied to our setup, states that given an additive noise channel

with power constraintk(1 − t)P and input-independent, possibly non-ergodic noise which satisfies (52), there

exists a sequence of channel codes(ψ
(k)
e , ψ

(k)
d ) which has rate12 log

(
1 + (1−t)P

tP+N

)
and equi-energy (Gaussian)

codebook and whose error probability on this channel approaches zero ask → ∞. (Thus, in effect, a channel

code designed for the worst case AWGN noise also works for non-Gaussian channel noise of equal power.)

We will use common randomization to apply(ψ
(k)
e , ψ

(k)
d ) to the real system whereVk+Wk is not independent

of the channel input. LetΠ denote a random permutation of the indices1, . . . , 2nR which is uniformly drawn

from the set of all(2nR)! permutations and is independent of the sourceXn and the channel noiseWk. Assume

thatΠ is know at both the encoder and the decoder. At the encoder applyΠ to the output indexI of the source

encoder before channel coding, so that the input to the channel encoder isΠ(I). At the decoder side, ifJ is the

output index at the channel decoder, thenΠ−1(J) is sent to the source decoder, whereΠ−1 denotes the inverse

of Π. It is easy to see that the channel with inputI and outputΠ−1(J) is statistically equivalent to the discrete

channel realized when(ψ(k)
e , ψ

(k)
d ) is used on the fictitious channel with a uniform distribution on its input index

set. Since(ψ(k)
e , ψ

(k)
d ) has asymptotically vanishing error probability on the fictitious channel, for thereal system

we also havelimk→∞ Pr{I 6= Π−1(J)} = 0. It remains to show that the total power input power on the channel

does not exceedP . Sincesk
Π(I) = ψ

(k)
e (Π(I)) is independent ofVk,

1

k
E‖sk

Π(I) + Vk‖2 =
1

k
E‖sk

Π(I)‖2 +
1

k
E‖Vk‖2 +

2

k
E[sk

Π(I)]
T

E[Vk] (53)
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where1
kE‖sk

Π(I)‖2 = (1 − t)P and 1
kE‖Vk‖2 = tP . Let mℓ , E[Xℓ −Q(ℓ)(Xℓ)]. Then

Dn =
1

n
E‖Xℓ −Q(ℓ)(Xℓ)‖2 =

1

ℓ
E‖Xℓ −Q(ℓ)(Xℓ) − mℓ‖2 +

1

ℓ
‖mℓ‖2 ≥ Dtan(N) +

1

ℓ
‖mℓ‖2

where the inequality holds sinceQ(ℓ)(Xℓ) + mℓ is a rateR quantizer forXℓ. This implieslimℓ→∞
1
ℓ‖mℓ‖2 = 0.

Since 1
ℓ‖mℓ‖2 tP

Dn
= 1

k‖E[Vk]‖2, applying Cauchy-Schwarz inequality yieldslimk→∞
1
kE[sk

Π(I)]
T

E[Vk] = 0.

Substituting this into (53) shows thatlimk→∞
1
kE‖sk

Π(I) + Vk‖2 = (1 − t)P + tP ; thus, the power constraint is

(asymptotically) satisfied. 2
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Figure 1: HDA systems with bandwidth compression (k < n): (a) HDA-I system; (b) HDA-II system.
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Figure 2: The best power allocationt (as a function of the true CSNRκtr) for different HDA-I system parameters.

For curves (a), (b) and (c),r = 0.5, κdes = 0 dB, 10 dB and 15 dB, respectively. For curves (e), (f) and (g),

κdes = 5 dB, r = 0.75, 0.5 and 0.25 respectively.
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the optimal analog power coefficients for systems HDA-I and HDA∗, respectively.

27



Xn

- ε1 -I {sk
i }

?

- δ1 -J yn
J{yn

j }

?
?

?
{zn

i }

?−

h+ - h+
?

Wk

-Rk

{sk
j }

?−

h+ -̂X
n

-
+

h+ -
En

α -
Vk

h×?

a 6

-
+

h+ - h×?

b

-
V̂

k β
Ê
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Figure 4: Proposed HDA-I system design with bandwidth compression.
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Figure 5: SDR performance (in dB) of optimized HDA-I systems for variouspower allocation coefficientst; i.i.d.

Gaussian source over the AWGN channel,κdes = 10 dB, r = 1/2 channel use/source sample.

29



0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

CSNR(dB)

S
D

R
(d

B
)

HDA−I design with various power
allocation schemes:
     a: t=0.07
     b: t=0.1
     c: t=0.15
     d: t=0.2
     e: t=0.3
     f:  t=1 (purely analog system)

a

b

d

c

e

f

Figure 6: SDR performance (in dB) of optimized HDA-I systems for variouspower allocation coefficientst; i.i.d.

Gaussian source over the AWGN channel,κdes = 10 dB, r = 1/2 channel use/source sample.
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Figure 7: SDR performance (in dB) of the optimized HDA-I, the unoptimized HDA-I, the purely digital and the

purely analog systems; i.i.d. Gaussian source over the AWGN channel,r = 1/2 channel use/source sample. For

the HDA-I and purely digital systems,κdes = 10 dB.
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Figure 8: SDR performance (in dB) of various HDA systems; i.i.d. Gaussiansource over the AWGN channel,

r = 1/2 channel use/source sample.
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Figure 9: SDR performance (in dB) of various HDA systems; i.i.d. Gaussiansource over the AWGN channel,

r = 1/2 channel use/source sample.
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Figure 10: SDR performance (in dB) of various HDA systems; Gaussian-Markov source (with correlation coef-

ficient 0.9) over the AWGN channel,r = 1/2 channel use/source sample.
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