
Pairwise Optimization of Modulation Constellations
for Non-Uniform Sources

by

Brendan F.D. Moore

A thesis submitted to the

Department of Mathematics and Statistics

in conformity with the requirements for

the degree of Master of Applied Science

Queen’s University

Kingston, Ontario, Canada

September, 2009

Copyright c© Brendan Moore, 2009

Abstract

The design of two-dimensional signal constellations for the transmission of binary

non-uniform memoryless sources over additive white Gaussian noise channels is in-

vestigated. The main application of this problem is the implementation of improved

constellations where transmitted data is highly non-uniform. A simple algorithm,

which optimizes a constellation by re-arranging its points in a pairwise fashion (i.e.,

two points are modified at a time, with all other points remaining fixed), is presented.

In general, the optimized constellations depend on both the source statistics and the

signal-to-noise ratio (SNR) in the channel. We show that constellations designed

with source statistics considered can yield symbol error rate (SER) performance that

is substantially better than rectangular quadrature amplitude modulation signal sets

used with either Gray mapping or more recently developed maps. SER gains as high

as 5 dB in Eb/N0 SNR are obtained for highly non-uniform sources.

Symbol mappings are also developed for the new constellations using a similar

pairwise optimization method whereby we assign and compare a weighted score for

each pair. These maps, when compared to the mappings used in conjunction with

ii

iii

the standard rectangular QAM constellation, again achieve considerable performance

gains in terms of bit error rate (BER). Gains as high as 4 dB were achieved over

rectangular QAM with Gray mapping, or more than 1 dB better than previously

improved mappings.

Finally, the uncoded Pairwise Optimized system is compared to a standard tandem

source and channel coding system. Neither system is universally better, and the trade-

offs between the systems are investigated.

Acknowledgments

I would like to thank my supervisors, Dr. Fady Alajaji and Dr. Glen Takahara, for

their ideas, suggestions, criticisms, edits and other help throughout this process.

The majority of my expenses were covered by funding supplied by the Natural Sci-

ences and Engineering Research Council of Canada, the H. K. Walter Award and the

R. S. McLaughlin Fellowship, and I am grateful for that support. Where that was

not enough, my parents happily (grudgingly?) helped with my tuition, rent and bills

when I needed it, and I am lucky to have had their support as well.

Thanks to everybody else for offering time and brains to improve the work, and

for tolerating me being in another city for two more years.

iv

Contents

Abstract ii

Acknowledgments iv

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Literature Review . 2

1.2 Problem Statement . 4

1.3 Contributions . 5

1.4 Thesis Outline . 6

2 Background 8

2.1 Source and Channel Models . 8

2.1.1 Non-Uniform I.I.D. Binary Source 9

2.1.2 AWGN Channel . 9

v

CONTENTS vi

2.2 Modulation and Demodulation . 11

2.2.1 Quadrature Amplitude Modulation 12

2.2.2 ML vs. MAP Decoding . 13

2.3 Source and Channel Coding . 15

2.3.1 Huffman Code . 16

2.3.2 Convolutional Channel Coding 17

3 Pairwise Optimization of M-ary Constellations 19

3.1 Pairwise Optimization Algorithm and Design 20

3.1.1 Algorithm . 24

3.2 Initial Constellations . 28

3.2.1 Rectangular QAM . 28

3.2.2 Concentric Circles . 28

3.2.3 Bad Constellations . 32

3.3 Results and Performance . 32

3.3.1 Impact of Initial Constellations 33

3.3.2 Binary and Quaternary Constellations 33

3.3.3 16-ary Constellations and Robustness 35

3.3.4 64-ary and 256-ary Constellations 39

4 Designing Maps for the PO Constellations 57

4.1 Initialization and Probability Constraint 58

CONTENTS vii

4.2 Objectives . 59

4.2.1 Defining the Neighbourhood and Weighted Hamming Score . . 60

4.3 Map Improvement Algorithm . 62

4.4 Results and Performance . 64

4.4.1 16-ary Constellations . 64

4.4.2 64-ary and 256-ary Constellations 66

5 Comparison to Source and Channel Coding 75

5.1 System for Comparison . 76

5.2 Performance Comparison . 78

5.3 Complexity Comparison . 81

6 Conclusions 86

6.1 Summary . 86

6.2 Future Work . 87

Bibliography 89

A Constellation Coordinates 92

B Source Code 104

B.1 Optimization . 104

B.1.1 Initializing a Constellation . 104

B.1.2 Setting Up and Running the GUI 105

CONTENTS viii

B.1.3 Optimizing Pairs . 106

B.2 Simulation . 108

B.2.1 Loading Constellations . 108

B.2.2 Running the Simulations . 109

B.2.3 Tandem Scheme . 110

List of Figures

3.1 Example circles over which ~s1 and ~s2 are optimized, with all other

points remaining constant. 22

3.2 Convergence of union upper bound of SER for PO16. 25

3.3 Convergence of union upper bound of SER for PO64. 26

3.4 Standard 16-QAM modulation constellation. 29

3.5 Constellation to minimize conditional probability of error for ~su. . . . 30

3.6 Initial constellation placing more likely points closer to the origin on

concentric circles (here M = 16). 42

3.7 PO4 constellation for p = 0.9. Designed for SNR = 0 dB. 43

3.8 Performance of size M = 4 constellations for p = 0.9. Optimized from

[10] and PO4 are both designed for SNR = 0 dB. 44

3.9 Pairwise optimized constellation for M = 16, p = 0.9 and design

SNR = 1 dB. 45

ix

LIST OF FIGURES x

3.10 Performance of size M = 16 constellations for p = 0.9 and design

SNR = 1 dB. Performance of a specialized constellation (i.e., with

design SNR identical to true SNR) also shown. 46

3.11 Pairwise optimized constellation for M = 16, p = 0.9 and design

SNR = 0 dB. 47

3.12 Pairwise optimized constellation for M = 16, p = 0.9 and design

SNR = −3 dB. 48

3.13 Pairwise optimized constellation for M = 16, p = 0.9 and design

SNR = −5 dB. 49

3.14 Pairwise optimized constellation for M = 16, p = 0.9 and design

SNR = −10 dB. 50

3.15 Pairwise optimized constellation for M = 16, p = 0.9 and design

SNR = −20 dB. 51

3.16 Pairwise optimized constellation for M = 16, p = 0.9 and design

SNR = 10 dB. 52

3.17 Performance of M = 16 constellations for varying values of p and design

SNR = 1 dB. 53

3.18 Pairwise optimized constellation for M = 64, p = 0.9 and design

SNR = 2 dB. 54

LIST OF FIGURES xi

3.19 Performance of constellations for M = 64, p = 0.9 and design SNR =

2dB and the pairwise optimized constellation for M = 256 with design

SNR = 4 dB. BPSK also shown for reference. 55

3.20 Pairwise optimized constellation for M = 256, p = 0.9 and design

SNR = 4 dB. 56

4.1 Standard 16-QAM modulation constellation with a Gray mapping. . . 60

4.2 Two example neighbourhoods are shown for PO16 (M = 16 and k = 4). 61

4.3 PO constellation for M = 16 with improved mapping. 68

4.4 BER Performance of 16-ary constellations. PO constellation simulated

with mapping seen in Fig. 4.3. 69

4.5 PO constellation for M = 64 with improved mapping. 70

4.6 PO constellation for M = 256 with improved mapping. 71

4.7 BER Performance of 64-ary constellations (and PO256). PO constel-

lations simulated with mappings seen in Fig. 4.5 and 4.6. 72

4.8 BER Performance of all M -ary PO constellations presented. 73

4.9 PO constellation for M = 8 (designed for p = 0.9 and SNR = 0 dB)

with symbol mapping. 74

5.1 State machine representing the convolutional channel code with con-

straint length k = 3 and rate r = 1/2. 77

LIST OF FIGURES xii

5.2 Performance of tandem source and channel coding scheme for vari-

ous block lengths. Selected PO constellation performance shown for

reference. 84

List of Tables

5.1 Fourth-order Huffman code used for the tandem scheme. 83

5.2 Average tail corruption length and occurrence rate (within the Viterbi

decoder) for various message block sizes. Results shown only at Crossover

SNR (the point at which the tandem scheme overall BER performance

matches that of PO4). The tandem scheme does not outperform PO4

for block size 12, so this Crossover SNR is where it surpasses PO16. . 85

A.1 Coordinates and bit mapping for PO4 constellation, for p = 0.9 and

design SNR of 0 dB. 92

A.2 Coordinates and bit mapping for PO8 constellation, for p = 0.9 and

design SNR of 0 dB. 93

A.3 Coordinates and bit mapping for PO16 constellation, for p = 0.9 and

design SNR of 1 dB. 93

A.4 Coordinates for PO16 constellation, for p = 0.5 and design SNR of 1 dB. 94

A.5 Coordinates for PO16 constellation, for p = 0.6 and design SNR of 1 dB. 95

xiii

LIST OF TABLES xiv

A.6 Coordinates for PO16 constellation, for p = 0.7 and design SNR of 1 dB. 95

A.7 Coordinates for PO16 constellation, for p = 0.8 and design SNR of 1 dB. 96

A.8 Coordinates and bit mapping for PO64 constellation, for p = 0.9 and

design SNR of 2 dB. 97

A.9 Coordinates and bit mapping for PO256 constellation, for p = 0.9 and

design SNR of 4 dB. 99

Chapter 1

Introduction

Communication in the modern world means digitizing and transmitting practically

every type of information imaginable. Data from a source is generally converted

into binary data (strings of ones and zeros) using a variety of methods for easier

manipulation across different systems. For various sources of information, the binary

data can end up with different proportions of bits being zero and one. When the

split is approximately 50/50 in the long run, we call this uniform data. Transmitting

data from uniform sources is fairly well understood, and there are many existing

schemes and modulation constellations for accomplishing the task, such as rectangular

quadrature amplitude modulation (QAM) using Gray mapping. When we consider

non-uniform data, however, these well-known constellations and maps are not optimal.

For these non-uniform sources, we wish to consider designing constellations which can

achieve better performance than the standard systems by exploiting our knowledge

1

CHAPTER 1. INTRODUCTION 2

of the non-uniformity of the source.

1.1 Literature Review

For uniformly distributed sources, rectangular QAM using Gray mapping is known to

perform well, and the Gray map is shown as the optimal map in terms of bit error rate

(BER) for high enough signal-to-noise ratios (SNR) [1]. As noted in [14], however,

there are many real world examples of data sources which are highly non-uniform,

such as text (email and instant/short messages), medical images and encoded voice

data [2]. Compression will often have residual redundancy in the output due to non-

ideal coding methods [3]. Rather than using traditional source and channel coding

(which can be sensitive to noise-related errors in decoding if optimal variable-length

source coding is used), we can choose instead to directly exploit the non-uniformity

of the source via the modulation scheme, while gaining noise-resiliency in many cases

and significantly reducing system complexity and delay [3]. Such an approach can be

quite attractive for complexity-constrained and delay-sensitive applications such as

wireless sensor networks. In these non-uniform situations, the performance of Gray

mapped M -ary rectangular QAM is sub-optimal, since regular discrete spacing does

not account for the source distribution [7]. One simple improvement is to exploit the

knowledge of symbol probability by implementing (optimal) maximum a posteriori

(MAP) decoding (instead of maximum-likelihood decoding) at the receiver.

In [14], new M1-mappings were developed to improve performance of M -ary rect-

CHAPTER 1. INTRODUCTION 3

angular QAM and phase-shift keying constellations. It is also noted in [14] that

performance can be improved by translating each mapped constellation so that it has

zero mean, which we confirm. Here we consider making further changes to the constel-

lations in order to achieve lower symbol error rate (SER). In [6], such a constellation

design problem was considered for uniform sources under additive white Gaussian

noise (AWGN). The uniformity of the source yields symmetric constellations, and

also tends to have equal separation between points within the constellations. This

is because the equiprobable points each get the same “share” of the available space.

When considering non-uniform symbols, one desires more distance between the likely

points and its neighbours to allow correct decoding in the presence of larger than

average noise.

The idea of exploring constellations for non-uniform data was originally consid-

ered in [8] for the two-point, one-dimensional constellation. In [8], they solve for the

optimal binary pulse amplitude modulation (BPAM) symbol amplitudes (the results

of our work presented within match these existing results). In [10, 5], optimal con-

stellations are considered for M = 4 (for non-uniform sources). [10] considers a

general non-uniform source, and presents constellations for various degrees of non-

uniformity as well as different levels of noise. We extend the ideas of these searches

for non-uniform constellations up to larger constellations, and compare the results of

our methods to those previously developed.

CHAPTER 1. INTRODUCTION 4

1.2 Problem Statement

We consider a memoryless source {Xn} which generates independent binary symbols

{0, 1} non-uniformly with p = Pr{Xn = 0} > 1
2
. We wish to transmit this data over

an AWGN channel with noise variance of N0

2
per dimension. We assume that an M -

ary two-dimensional (2-D) modulation scheme is to be used, and that it is desirable

to maximize data throughput per transmission while achieving the lowest possible

SER. For convenience, we assume M to be a power of two. Binary symbols are

grouped into sequences of log2M bits, forming a new symbol sequence {Yn} having

M distinct values {s1, s2, ..., sM} with probabilities {p1, p2, ..., pM}. The probabilities

are defined by the number of zeros in the bit sequence. If sequence si has ni zeros,

then pi = pni(1− p)log2M−ni . (In the constellation diagrams that come later, we refer

to equiprobable symbols by the number of zeros, n, they have in their corresponding

binary sequence.) Each channel symbol is then mapped to a signal point, ~si, in some

initial M -ary constellation, where ~si = (si,x, si,y). Our objective is then to change the

arrangement of the points in that constellation to achieve the lowest SER possible at

a given SNR Eb/N0, where Eb is the average energy per bit, Es/log2M .

The search space to be considered is continuous and consists of all collections of

points {~s1, ~s2, ..., ~sM} satisfying

(i) a zero mean constraint:
∑M

i=1 pi~si = 0; and

(ii) an average symbol energy constraint:
∑M

i=1 pi‖~si‖2 = E,

CHAPTER 1. INTRODUCTION 5

where the average energy, E, is given. Note that E and Eb are related by Eb = E
log2M

.

Our objective function is the SER. For M = 2, the optimal constellation was found

analytically in [8], but as the constellation size grows, so does the complexity of prob-

lem. In [10], the authors design optimal constellations for M = 4 by numerically

evaluating tight error bounds developed in [9]. Our first goal is to design signal point

arrangements (constellations) that are near-optimal for larger constellation sizes, such

as M = 16, 64, 256, under MAP decoding. Our second goal is to design appropriate

symbol maps for these new constellations to achieve the best performance when con-

sidering bit errors.

1.3 Contributions

The contributions of this thesis are as follows:

1. A Pairwise Optimization (PO) method is presented for developing new mod-

ulation constellations for transmitting data from non-uniform sources. Perfor-

mance (in terms of SER) is compared to standard modulation constellations for

sizes M = 2, 4, 16, 64, 256, as well as constellations from existing literature.

2. A method is introduced for designing good maps for the asymmetric and ir-

regular constellations created by the PO algorithm. Performance (in terms of

BER) is again compared to standard modulation constellations and maps, and

some previously improved maps.

CHAPTER 1. INTRODUCTION 6

3. Trade-offs (in terms of both performance and complexity) between this uncoded

transmission scheme and a tandem source and channel coded system are inves-

tigated.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:

In Chapter 2, we introduce the source and channel models we will be using in our

designs and simulations. We also describe the fundamentals of modulation and de-

modulation, and two metrics used for demodulation decisions. Included here are

descriptions of some standard constellations, which we will use for comparison. We

also present some basics of source and channel coding as groundwork for comparison

to a completely different type of system. In Chapter 3, we develop our PO process for

designing constellation for non-uniform sources. Before considering larger constella-

tions, we compare our findings to the existing literature for small constellations. From

there, we evaluate the performance of our system in terms of SER. In Chapter 4, we

describe an iterative method for designing symbol mappings for the PO constellations,

and compare the results to existing maps for traditional constellations. We compare

the uncoded PO constellations and maps to a coded system in Chapter 5, using a

tandem source and channel coding scheme (separately, but simultaneous). Finally, we

draw our conclusions in Chapter 6 and present some possible future work. Appendix

B includes some selected samples of important parts of our source code for running

CHAPTER 1. INTRODUCTION 7

the PO algorithm, as well as some descriptions of the use of the code. Appendix

A includes tables of point coordinates and symbol mappings for the constellations

presented in the earlier chapters.

Chapter 2

Background

2.1 Source and Channel Models

A source can be anything that outputs data. This data can be text that is input by

a user, measurements observed by a thermometer, a voice signal on a mobile phone

or any other information stream. Sources can come from just about anywhere, and

be expressed in many different ways, but are mainly either analog signals or digitized

data.

A channel is any conduit or medium over which the information/data from a

source may be transmitted. Some common channels are the copper lines used for tra-

ditional telephones, fiber optic links used by major Internet connections, radio waves

used by your favorite music or news stations, or the higher frequency electromagnetic

waves used by your mobile phone.

8

CHAPTER 2. BACKGROUND 9

In general, we are concerned with data and transmission that might typically

be used in a wireless scenario. The specific source and channel models we will be

considering are explained here.

2.1.1 Non-Uniform I.I.D. Binary Source

In particular, we want to consider a non-uniform binary source. This means that

whatever form the data originally took, it has been converted into a binary stream

{X1, X2, · · · }, where Xi ∈ {0, 1}. The bits {Xi} are generated from independent and

identically distributed (i.i.d.) Bernoulli trials with probability p = Pr{Xi = 0} ≥ 1
2
.

When p = 1
2
, such a source is known as a uniform source, which has approximately

the same number of zeros and ones in a long sequence of bits. We are interested in

non-uniform sources, where p > 1
2

and the majority of bits in a long sequence are

zeros. As mentioned in Chapter 1, there are many examples of such non-uniform

data, such as uncompressed images (medical scans like MRI or x-ray), email and text

messages, and most sub-optimally compressed redundant sources [3].

For the purpose of our constellation designs and simulations, we generally consider

a source with probability p = 0.9 in what follows, except in Section 3.3.3.

2.1.2 AWGN Channel

To understand the fundamental ways that constellations can be designed when con-

sidering source statistics, the channel model we used is the relatively simple additive

CHAPTER 2. BACKGROUND 10

white Gaussian noise (AWGN) channel. This channel model essentially simulates

the background noise that can be expected when dealing with any wireless commu-

nications system but does not consider more specific obstacles, such as fading or

multipath interference. The AWGN channel works by perturbing each transmission

a single time with the addition of noise following a Gaussian distribution. That is to

say when the sender transmits signal X, the receiver will observe a signal Y , where

X + Z = Y, where Z ∼ N(0, N0).

Here, Z is the additive noise with a zero-mean Gaussian distribution having variance

N0, the noise power.

Since we generally consider 2D transmission in the work that follows, we employ

the 2D form of the above. Given total noise power of N0, the noise power per dimen-

sion will be N0

2
. When we transmit ~X = (xx, xy), we will observe a signal ~Y = (yx, yy),

where

~X + ~n = ~Y , where ~n = (nx, ny), and nx, ny ∼ N(0,
N0

2
).

This model allows us to use well understood approximations of the errors caused

by noisy transmission conditions during the design process. Additionally, it keeps

our simulations fairly straightforward while providing a reasonable measurement of

system performance.

CHAPTER 2. BACKGROUND 11

2.2 Modulation and Demodulation

Modulation is what is done to our source data to prepare it for transmission over the

channel. This is effectively converting the digital data into an analog waveform which

is modified in some pre-defined way so that it can carry data. For a given carrier

waveform, data may be added by modifying the phase, amplitude or frequency of the

wave, or any combination of the three. These modifications of the signal are limited

to a finite list of M symbols, {~s1, ~s2, · · · , ~sM}, known as the modulation alphabet.

The choice of M is decided by how many bits we want to send per transmission, m,

and is defined by M = 2m, so that each of the M symbols represents one of the 2m

unique sequences of m bits. For [hase and amplitube modulation, each of these M

symbols can be thought of as a point in the two-dimensional (2D) Cartesian plane,

where ~si = (si,x, si,y). It is possible to consider higher dimensional transmissions, but

this thesis is limited to the 2D case, which is most common.

Taken together, these M symbols form what is known as a modulation constellation

– the collection of points in the 2D plane we will be examining for the remainder of this

thesis. Our objective will be to design he modulation constellation (i.e., to specify the

M points in the plane) under appropriate constraints, so as to minimize the symbol

error rate (SER) for a given source distribution and noise power (Chapter 3). Given

an optimized constellation, a further design goal is to determine a good mapping

of bit sequences to constellation symbols so as to reduce the bit error rate (BER)

(Chapter 4).

CHAPTER 2. BACKGROUND 12

2.2.1 Quadrature Amplitude Modulation

Perhaps the most common modulation constellation used in practice are those of

quadrature amplitude modulation (QAM) is a 2D transmission scheme to transmit

data. As described in [12, §7.3.3], the two pieces of information carried by QAM can

be considered as either:

(i) the symbol amplitude (or, energy) and the symbol phase (or angle); or

(ii) the x-axis coordinate, and the y-axis coordinate.

For the purposes of both the design and simulation within this thesis, we choose the

latter option. During simulation, we transmit the x and y coordinates separately.

Since we are dealing with Gaussian noise with variance N0 in total, during simulation

our QAM transmissions experience noise power of N0

2
per dimension [9]. This applies

to both our new PO constellations as well as all of the standard constellations for

comparison.

For transmissions using QAM, standard constellations fall on a rectangular grid.

We call this rectangular QAM, and an example of such a constellation is shown in Fig.

3.4 for M = 16. The grid layout makes intuitive sense for uniform data, since points

are evenly spaced (no preference given) and which points lay closer to the origin is

not important. The idea presented in this thesis is to design new constellations which

do not use this grid, but instead have their points arranged to better exploit the

non-uniformity of the source data. This can be done both by using less energy in

CHAPTER 2. BACKGROUND 13

clever ways by placing more likely points nearer to the origin, and given more space

around likely points to reduce the conditional SER for those points.

2.2.2 ML vs. MAP Decoding

In an ideal world, a receiver would be able to observe exactly the same signal that

the transmitter sent. Unfortunately, we must deal with the fact that noise distorts

our transmissions and causes our receiver to detect a signal (hopefully) close to the

original symbol, but not necessarily exactly the same. The signal that is actually

received when ~si is sent is

~sr = ~si + ~n,

where ~n is the white Gaussian noise added by the channel. From that observation,

the receiver must pick which symbol from the alphabet it considers as the intended

symbol, and decode to the corresponding data. To accomplish this, there are many

possible methods.

Maximum likelihood (ML) decoding considers only the observed signal position,

~sr, and the positions of the points in the constellation. The signal decoded, ~sd, is that

which lies closest (in terms of Euclidian distance) to what was received. That is,

~sd = argmin
~su∈{ ~s1, ~s2,··· , ~sM}

‖~sr − ~su‖.

This is optimal (in terms of minimizing symbol decoding probability of error) for

uniform sources, since no point is weighted more heavily than any other. This type

of decoding is generally used with the standard rectangular QAM constellations we

CHAPTER 2. BACKGROUND 14

previously described, as well as many others created for uniform sources. But what

about non-uniform sources?

Maximum a posteriori (MAP) decoding takes into account both the distance to

the received signal (as in ML decoding) as well as the original symbol probabilities.

In this case, we want to weight our decision appropriately by the probability of each

possible symbol which may have been transmitted. Unlike the case of ML decoding,

we want to find the symbol ~su maximizing the probability of being sent conditional

on to the received signal. With MAP decoding it is assumed that the distribution of

the AWGN noise and the a priori symbol probabilities are known, and the decoded

symbol is chosen as

~sd = argmax
~su∈{ ~s1, ~s2,··· , ~sM}

pu · exp

(
−‖~sr − ~su‖2

N0

)
, (2.1)

where pu is the probability that symbol ~su is sent (without considering the received

signal) according to the source distribution.

The advantage of MAP decoding is that we favour more strongly those source

symbols which are more likely. Because of this, the constellation is able to withstand

greater noise during transmission of likely symbols. In designing our PO constella-

tions, we take further advantage of the MAP metric by placing more space around

the more likely symbols, greatly increasing the area of their decision regions, and

reducing the possibility of a decoding error for these high-probability symbols. For

a non-uniform source, MAP decoding is optimal; it reduces to ML decoding if the

source is in fact uniform.

CHAPTER 2. BACKGROUND 15

2.3 Source and Channel Coding

In Chapter 5 we compare the PO to a tandem source and channel coded system. Here

we explain what this means.

Source coding is the act of compressing the source symbols to remove redundancy

in the data, expressing the original message in the fewest possible bits by encoding

it using a dictionary of codewords corresponding to sequences of message bits. This

compression can be either lossless (the original message can be identically decoded)

or lossy (some aspects of the original message are lost, and some close approximation

is decoded). The output of an optimal compression scheme is (asymptotically) per-

fectly uniform data, exhibiting no residual redundancy. In practice, most compression

schemes are sub-optimal and have some level of residual redundancy.

Channel coding can be thought of as the opposite of source coding. Channel

coding adds bits to the message in a controlled manner which can be used to detect,

and possibly correct, errors incurred during transmission. As a very simple example,

consider the use of bit duplication. For each bit in the message to be transmitted,

we transmit that same bit twice rather than just once. If the receiver decodes two

different bits, it knows there must have been an error during transmission. In other

words, we added bits to protect the data from errors, and used those bits to detect a

problem.

The tandem scheme employed in Chapter 5 uses a fourth-order Huffman code,

together with a convolutional channel code. These are described here.

CHAPTER 2. BACKGROUND 16

2.3.1 Huffman Code

The Huffman code used here is a variable-length prefix code which minimizes the

expected codeword length
(∑M

i=1 pili

)
for the source alphabet being compressed. As

explained in [4, §5.6], it is constructed by iteratively grouping the two least likely

symbols (or groups) together under a branch of a binary tree (since we wish to have

binary data), until the last grouping unifies the entire alphabet, then assigns binary

codewords following the splits of the tree. By doing so, we arrive at a list of codewords

for our source symbols having the following properties:

1. No codeword is the prefix of any other codeword.

2. The lengths are inversely ordered with the symbol probabilities (i.e., if pi > pj,

then li ≤ lj).

3. The two longest codewords have the same length.

4. Two of the longest codewords differ only in the last bit and correspond to the

least likely symbols.

While there are other optimal codes, the Huffman code gives one optimal code [4,

§5.8]. For our comparison, we use a fourth-order Huffman code, meaning we consider

groups of four source bits at a time, resulting in the Huffman code represented in

Table 5.1 (tailored to our non-uniform source for p = 0.9).

CHAPTER 2. BACKGROUND 17

2.3.2 Convolutional Channel Coding

The convolutional channel code works by linking blocks of message bits together in

something that could be roughly described as discrete convolution. More specifically,

overlapping sequences of bits are used to generate parity bits, and these parity bits

are transmitted over the channel, rather than the message itself. The parity bits

are determined by a set of generator functions, and serve to indicate the next bit of

the message by representing a transition within a state machine, as explained in [11,

§8.2]. This state-transition method is advantageous because it becomes very unlikely

that individual errors during transmission lead to decoding errors.

The optimal decoder for the convolution code, which is a sequence ML decoder,

is known as the Viterbi decoder. Its function is to reconstruct the message data from

the received parity bits. It accomplishes this by calculating a metric for every possible

path through the state machine, based on the observed parity bits, and then working

backwards to reconstruct the most likely path. The details can be found in [11].

The Viterbi decoder is able to “smooth over” transmission errors by linking together

paths on either side of the error which are likely to match up. The Viterbi decoder we

implement uses soft decoding, meaning that it does not decode its observations into

bits before looking at the paths, but rather considers the actual received signals during

processing. It it known that this yields approximately 2 dB gain when compared to

an equivalent hard Viterbi decoder.

At high enough SNRs, the convolutional code performs much better for longer

CHAPTER 2. BACKGROUND 18

block lengths, since it allows the Viterbi decoder to measure greater differentiation

between individual path metrics. This is reflected in the data presented in Chapter 5.

Chapter 3

Pairwise Optimization of M-ary

Constellations

In this chapter, we consider a new method for developing improved signal constel-

lations for 2-D transmission. The possible constellations are essentially any set of

M -points in two dimensions. While the search space is continuous, the zero mean

and average power constraints may be used to reduce the search complexity. The zero

mean constraint is a necessary property of any optimal (in terms of minimal SER)

constellation with constrained average energy, since SER performance under MAP

decoding is not affected by translation or rotation of the constellation (e.g., [10]); it

is only affected by changing the relative distances between points. It is of note that

for non-uniform sources, rectangular (symmetric) constellations such as 16-, 64- and

19

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 20

256-QAM are not zero mean. Since the variance

M∑
i=1

pi‖~si − s‖2 =
M∑
i=1

pi(~si − s)T (~si − s)

=
M∑
i=1

pi(~si
T ~si − 2~si

T s + sT s)

= ‖s‖2 +
M∑
i=1

pi‖~si‖2 − 2sT

M∑
i=1

pi~si

=
M∑
i=1

pi‖~si‖2 − ‖s‖2 (3.1)

is constant under translations of the constellation, we minimize the average energy

in (3.1),
∑M

i=1 pi‖~si‖2, by shifting the constellation to be zero mean (i.e., ‖s‖2 = 0).

So, it is possible to improve such non-zero mean constellations slightly by translating

them to be zero mean and scaling them up to their original average energy. This will

increase the separation between all points, which subsequently improves the resiliency

of the constellation in the presence of noise.

3.1 Pairwise Optimization Algorithm and Design

For a given initial constellation, it is not possible to change the position of a single

point while still adhering to the zero mean and average energy constraints. Changing

the coordinates of a single point would certainly shift the left hand side of 3.2 to be

non-zero. Taking any pair of points, however, allows us to move those two points

around in concert while still adhering to both of the constraints we have imposed. If

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 21

~s1 and ~s2 are the two selected points, then the zero mean constraint

M∑
i=1

pi~si = 0 (3.2)

implies that

p1 ~s1 + p2 ~s2 = −
M∑
i=3

pi~si.

So, if we let ~b =
∑M

i=3 pi~si, then

~s1 =
1

p1

(−~b− p2 ~s2)

or

~s1 = ~a− c~s2

where ~a = − ~b
p1

and c = p2

p1
. Thus, the x and y coordinates (s1,x and s1,y) of ~s1 are

determined by the coordinates (s2,x, s2,y) of ~s2 by:

s1,x = ax − c · s2,x and s1,y = ay − c · s2,y. (3.3)

Then the average energy constraint

M∑
i=1

pi‖~si‖2 = E, (3.4)

where E is the average symbol energy, implies the following:

p1‖~s1‖2 + p2‖~s2‖2 = E −
M∑
i=3

pi‖~si‖2. (3.5)

Letting the constant d =
∑M

i=3 pi‖~si‖2 and substituting (3.3) in (3.5) yields

p1

(
(ax − c · s2,x)

2 + (ay − c · s2,y)
2
)

+p2(s
2
2,x + s2

2,y) = E − d. (3.6)

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 22

Expanding and completing the square gives us(
s2,x −

p1ax

p1 + p2

)2

+

(
s2,y −

p1ay

p1 + p2

)2

= r2 (3.7)

where r2 = p1(E−d)
p2(p1+p2)

− p3
1

p2(p1+p2)2

(
a2

x + a2
y

)
.

Figure 3.1: Example circles over which ~s1 and ~s2 are optimized, with all other points

remaining constant.

Under the imposed constraints, Eqn. (3.7) defines a circle, centered at
(

p1ax

p1+p2
, p1ay

p1+p2

)
with radius r, on which ~s2 may travel, and the relationship given by Eqn. (3.3) de-

fines a second, corresponding, circle for ~s1 to travel around. With (3.7), for each pair

of signals (~s1, ~s2), the problem of searching over four variables (s1,x, s1,y, s2,x, s2,y) is

effectively reduced to searching over a single variable, θ, which is the angle parame-

terizing the circle for ~s2, measured counterclockwise relative to the positive x-axis for

the center of the circle (see Fig. 3.1). For a given value of θ, ~s2 is defined, and ~s1 has

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 23

a corresponding position. It is over this parameter θ that each pair of points can be

optimized for performance.

It is interesting to consider why it is we get these circles. In dealing with M

constellation points, we are optimizing in 2M dimensions. The zero mean constraint

restricts two of those dimensions, leaving a 2M − 2 dimensional hyperplane. The

average energy constraint similarly represents a 2M dimensional ellipsoid, the inter-

section of which with the hyperplane is a smaller ellipsoid. The circles over which

we are performing our pairwise search come from taking the 2−D projection of this

higher dimensional ellipsoid.

With regard to the performance for a potential constellation, we consider the union

upper bound on the SER Ps. The union bound can be inaccurate for low SNRs, but

it is fairly tight for medium to high SNRs. The tight upper and lower bounds of [9]

can also be used to improve the accuracy of SER calculated during the design stage.

However, since the union bound is used only during the iterative design stage (not to

evaluate performance), it is accurate enough for our purposes and has the additional

benefit of computational speed and simplicity:

Ps =
M∑

u=1

P (ε|~su)P (~su) (3.8)

=
M∑

u=1

P

(⋃
i6=u

εiu

)
P (~su)

≤
M∑

u=1

∑
i6=u

P (εiu)P (~su) (3.9)

where ε is the event indicating any decoding error has occurred, εiu is the event that

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 24

~si is decoded erroneously given that ~su is transmitted,

P (εiu) = Q

(
‖~si − ~su‖√

2N0

+

√
2N0ln

P (~su)
P (~si)

2‖~si − ~su‖

)

(as in [9]) and Q(x) = 1√
2π

∫∞
x

e−y2/2dy is the Gaussian Q-function. Note that P (εiu)

is the probability that ~si has a larger MAP decoding metric (refer back to (2.1)) than

~su given that ~su was sent.

When considering only the pair of points ~s1 and ~s2, we can ignore the terms in

Eqn. (3.9) for u 6= 1, 2 and i 6= 1, 2 as they will remain constant even as ~s1 and ~s2

move about their respective circles. The remaining terms we need to use to calculate

the upper bound are

F12 =
∑

i6=1 P (εi1)P (~s1) +
∑

i6=2 P (εi2)P (~s2)

+
∑M

u=3 P (~su) (P (ε1u) + P (ε2u)) (3.10)

which is the objective function to be minimized for each pair of points being optimized.

3.1.1 Algorithm

The Pairwise Optimization (PO) algorithm is implemented as follows:

1. Configure some initial constellation, ensuring it adheres to the zero mean and

average energy constraints.

2. Randomly (uniformly) select a pair of points (~s1, ~s2).

3. Calculate the constrained circles from (3.7) and (3.3).

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 25

4. Find the positions of (~s1, ~s2) minimizing (3.10).

5. Go back to Step 2 and repeat until the constellation stabilizes.

Whereas earlier treatments of this topic typically used gradient search methods

[5, 6, 10], we instead employ our randomized pairwise search. While the gradient

search is effective for smaller constellations, it becomes increasingly troublesome for

larger constellations, as the number of local optima which can catch the gradient

search increases significantly. Using this random pair selection allows us to be more

robust against local solutions, by letting the pair of symbols in the constellation take

bigger jumps at each iteration.

Figure 3.2: Convergence of union upper bound of SER for PO16.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 26

Figure 3.3: Convergence of union upper bound of SER for PO64.

The initial constellation used in Step 1 contains the source information implicitly

through the symbol probabilities. Tests using different initial constellations (rectan-

gular, circular, asymmetric) all yielded similar results, although with quite varying

convergence rates (bad constellations were slower). The initial constellations chosen

will be discussed in more detail in Section 3.2. In Step 4, we calculate the circle

noted in Eqn. (3.7) and set angle θ to be 0 relative to the x-axis, and take discrete

steps counterclockwise. At each step of θ, F12 is calculated using the corresponding

~s1 and ~s2 on their respective circles, and the design SNR (Eb/N0), which is set as a

constant. This is a simple and brute-force approach, but it works well enough for our

intentions. The complexity of the algorithm can be approximated by the number of

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 27

times we calculate the Gaussian Q-function. For each pair of points being optimized,

we calculate F12 for 50 steps of θ, each of which requires 4M calls to Q(·) as in (3.10),

or 200M calls per pair. We need roughly 2M2 pairs before good constellations are

achieved, for a total of 400M3 calls (each call takes approx. 3 µs on our 3.0 GHz

AMD hardware, for M = 16). The convergence to a stable union upper bound of

SER can be seen in Fig. 3.2 for PO16 and in Fig. 3.2 for PO64. When executed, our

algorithm stabilizes in a matter of seconds for sizes up to M = 16, and scales up to

three or four hours for M = 256.

Stabilization, as used in Step 5, means visual inspection of the constellation at

this point. When considering the speed of convergence, it is difficult to be precise,

since we do not know what the optimal constellation looks like, nor the final PO

constellation for larger sizes. In general, the more likely symbols settle quickly, but

the large number of unlikely symbols in large constellations tend to continue rear-

ranging themselves (with better performance at each step) for much longer. The PO

algorithm must converge on a final constellation (possibly a local minimum) since

each iteration can only decrease the union upper bound, and SER in a non-negative

quantity. Since we have that UnionBound(i) ≥ 0 for all i and the PO algorithm

is such that UnionBound(i) ≥ UnionBound(i + 1), we must have the union bound

converging to some stable value as the number of iterations goes to infinity.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 28

3.2 Initial Constellations

The PO algorithm needs to have some starting constellation given as input before it

can begin to optimize individual pairs. With that in mind, we must consider what

types of constellations we will use to initialize the algorithm.

3.2.1 Rectangular QAM

One obvious place to begin is with a constellation used in standard implementations:

rectangular QAM.

In Fig. 3.4 we can see the geometry of the rectangular 16-QAM constellation.

This constellation puts uniform spacing between adjacent points, and adheres to a

grid pattern which allows for a simpler hardware implementation. However, it was

designed with a uniform source (i.e., with p = 0.5) in mind. While in [14] new maps

were presented which considers the non-uniformity of the source, the constellation

itself is not changed. The results of this rigidity is a non-zero mean constellation for

non-uniform sources. As discussed, a trivial improvement to these constellations is to

translate them to zero mean, and to scale them up to their original average energy.

3.2.2 Concentric Circles

Here we intend to present some heuristic improvements to the initial constellation,

which will generally be in line with our expectation for the final results. In order to

get the most out of the average energy constraint, we feel that it makes sense as a

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 29

Figure 3.4: Standard 16-QAM modulation constellation.

general design principle to place symbols with higher probabilities closer to the center

of the constellation. This will “free up” some of the available energy, and allow the

lower probability symbols to sit farther away from the origin and other points.

More specifically, consider the individual conditional probabilities of error which

contribute to the total SER shown in (3.8). How can we try to minimize P (ε|~su) for

a given symbol ~su? If we only care about minimizing the errors associated with ~su,

we should try to keep it as far from the other symbols as possible, subject to the

constraints and MAP decoding. Our first instinct here is to put ~su by itself on the

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 30

positive x-axis, and cluster the remaining M − 1 points together at a common point

on the negative x-axis. For a uniform source, this constellation would minimize the

conditional probability of error. For a nonuniform source, however, we can do better.

Figure 3.5: Constellation to minimize conditional probability of error for ~su.

Since, in general, some of those clustered points have higher probability than

others in the cluster, the MAP decoding decision boundary to dominate will be that

corresponding to the most likely point in the cluster, which we will call ~s0. That is

to say, the MAP decoding metric (see (2.1)) of ~s0 will be greater than that of any of

the other clustered symbols, regardless of the received signal. In order to minimize

the conditional probability, we can move some of those lower probability symbols

closer to ~su until we have coincident MAP decision boundaries for every other point,

resulting in a constellation as seen in Fig. 3.5, where ~su lies du from the origin. If this

is then done for each symbol, we have a set of distances {d1, ..., dM} where du = di

for pu = pi, for i = 1, ...,M .

We can argue this as the optimal constellation to minimize the conditional prob-

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 31

ability of error for ~su, P (ε|~su), as follows. In general, a larger decoding region will

lead to a smaller conditional probability of error for that symbol. So, we wish to

maximize the decoding region for ~su. This immediately implies that we must have

all other symbols lying along a line passing through ~su (without loss of generality, we

take this line to be the x-axis) and must all be on one side of ~su (as seen in Fig. 3.5).

If any point were to be moved off the x-axis, then its decision boundary could cut a

diagonal through the constellation and reduce the decision region for ~su. Similarly,

if any point were to lay on the opposite side of ~su from the rest of the points, then

the decision region for ~su would be reduced to a vertical strip in the plane, instead

of the entire right side. As to the spacing of points, we have already mentioned that

the error is dominated by the decision boundary closest to ~su. In order to maximize

the decision region, we must move the closest boundary farther away from ~su. Since

we are bound by the average energy constraint, we must move some other symbol ~sj

closer to ~su (and subsequently its decision boundary will get closer to ~su) in order

to move ~s0 (or any other symbol) and its decision boundary farther from ~su. The

termination of this procedure is when all of the decision boundaries are coincident, at

which point no symbol may be moved farther from ~su without requiring some other

point be moved closer.

We then use the distances {d1, ..., dM} to create an initial constellation, as seen

in Fig. 3.6, of concentric circles of symbols. Within a given layer, all points are

equiprobable. The most likely point(s) is nearest the origin, and the least likely

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 32

points are the farthest away from the origin, lying on correspondingly larger circles.

It is our expectation that the optimal constellation for a non-uniform source will at

least resemble this constellation, with the ordering of points conserved (i.e., more

likely points lie closer to the origin).

3.2.3 Bad Constellations

As a test of the robustness of the algorithm, we will also test using some deliberately

bad constellations, of the type seen in Fig. 3.5, which favours a single symbol, but

ignores the performance for the rest. All symbols, except one, will be clustered

near one another (even laying coincident), with just a single symbol removed to a

distance. It is our expectation that the algorithm will produce good output even

from this state.1

3.3 Results and Performance

We consider the memoryless non-uniform binary source with Pr0 = p for transmission

over an AWGN channel using constellation sizes of M = 2, 4, 16, 64, 256 and compare

the SER performance (via simulations), under symbol-by-symbol MAP decoding, of

our pairwise optimized constellations (which are denoted by PO2, PO4,· · · , PO256)

1The algorithm will fail if all points lie in exactly the same spot, since this is not really a

constellation, and there is no energy available to be redistributed once it is centered to be zero

mean.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 33

to existing constellations. We use p = 0.9 in all of the simulations, except for the

discussion in Section 3.3.3. In the plots of our constellations for this chapter, we note

the symbol probabilities using n, the number of zeros in the corresponding binary

sequence.

3.3.1 Impact of Initial Constellations

The configuration of the initial constellation does not appear to contribute towards

deciding the geometry of the constellation reached by the PO algorithm. However,

the initial constellation does affect the time until convergence. Starting with bad

constellations (those which have many closely clustered points) forces many early

iterations to be spent spreading those symbols apart. Initial constellations with all

symbols well-spaced essentially give the PO algorithm a head start, allowing pairs to

be optimized immediately, or much sooner. While the impact of this delay is minimal

for small constellations, it becomes a considerable time cost for larger constellations

(such as M = 64 and M = 256).

3.3.2 Binary and Quaternary Constellations

We begin by comparing our results with the known optimal constellation presented

in [8] for M = 2. Our algorithm directly arrives at the same final constellation as

the work in [8], as shown in Eqn. (3.6) with both ~a = ~0 and d = 0 (since we have no

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 34

symbols beyond ~s1 and ~s2):

p
(
(−c · s2,x)

2 + (−c · s2,y)
2
)

+ (1− p)(s2
2,x + s2

2,y) = E

and we choose the point with s2,y = 0. Thus

p(−c · s2,x)
2 + (1− p)s2

2,x = E

s2,x =

√
E

pc2 + (1− p)
=

√
E · p

(1− p)

s1,x = −c · s2,x = −

√
E · (1− p)

p

which is the result obtained in [8]. Note that for M = 2, the union bound in (3.9)

yields the exact SER. While the pairwise algorithm is not limited to one dimension,

the results are equivalent after rotation. Simulation confirms an exact SER perfor-

mance match, as expected. There is no consideration of design SNR for M = 2

because the constraints alone fix the relative positions of ~s1 and ~s2, and we have no

other points with respect to which we may optimize.

We next consider the constellations found in [10] for M = 4. When the pairwise

optimization stabilizes, the resulting constellation, seen in Fig. 3.7, is nearly identical

to those arrived at in [10] for the given design parameters (in this case p = 0.9 and

SNR = 0 dB), up to a rotation and/or reflection. In Fig. 3.8, it is clear that the

pairwise optimized constellation PO4 performs identically to the optimized M = 4

constellation of [10]. Both constellations perform considerably better than quaternary

phase shift keying (QPSK) for highly non-uniform sources, with nearly 5 dB gain

for SER ≤ 10−2. The above results indicate that the algorithm does in fact tend

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 35

toward optimal constellations, and we may proceed to apply it to larger modulation

constellations, where optimal constellations are not known.

3.3.3 16-ary Constellations and Robustness

Before investigating large constellations, we will examine the performance of the 16

point constellation. The PO constellation is shown in Fig. 3.9. In Fig. 3.10, the

M1 mapping of [14] already improves the performance of (rectangular) 16-QAM by

approximately 1 dB. We can also see that the pairwise optimized constellation PO16

achieves a further improvement of 2dB over the M1 mapping, for a total gain of 3dB

over Gray mapped 16-QAM. This PO16 constellation was designed for a noise level

of SNR = 1dB, but perhaps overall performance across all noise levels is not as good

as it could be. To examine this, also included in Fig. 3.10 is the performance at

each true SNR step of a specialized constellation designed specifically for that noise

level. It is clear that this specialized configuration does not provide considerable

gains over a constellation designed at a single SNR that is carefully selected (in this

case, 1 dB) and used for transmission across all noise levels. This shows that a

constellation designed using a single appropriately chosen design SNR can provide

robust performance vis-à-vis changes in the true SNR, and that it is not necessary to

have a set of constellations tuned to every channel noise level.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 36

Effect of Design for Decreasing SNR

We have just mentioned that is it sufficient to design a PO constellation using a

single, well chosen SNR. It is interesting to consider, though, what happens to the

constellations when designed at very low SNR (i.e., in the presence of a great deal

of noise). We will consider the constellation of Fig. 3.9 a starting point, as this is

essentially the constellation that emerges for any design SNR above 1 dB. We first

take a small step down to design at SNR = 0dB, and arrive at the constellation seen

in Fig. 3.11. We do not see many differences yet, only small discrepancies in symbol

placement. Dropping down to design SNR = −3 dB we start to see some changes,

shown in Fig. 3.12. Here we see one of the lower probability points has been placed

in close proximity to the most likely point near the center of the constellation. As

this point gets closer to the origin, it will effectively never be decoded, since the most

likely symbol should always have a higher MAP metric. In Fig. 3.13, the design SNR

has been lowered again to −5 dB. While the general geometry of the constellation

remains the same, we see more of the clustering phenomenon that was originally noted

in [15]. In this constellation, there are two lower probability symbols clustered near

the most likely point, both of which will rarely be the decoded symbol.

At design SNR = −10 dB, Fig. 3.14 shows that the resulting constellation is

now quite different than previous examples. The less likely point clustered at the

center is effectively coincident to the most likely symbol. As such, it will never be

decoded. We also see that there is clustering among the less likely symbols farther

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 37

from the center. Instead of being more evenly spread out, they are gathered into

small groups that are farther apart. As [15] notes, and we are inclined to agree, this

allows the errors between groups to be greatly reduced at the expense of more likely

errors within a cluster. Since we are dealing with a highly non-uniform source, we

have the advantage of being able to err on the safe side with MAP decoding, and will

simply decode the most likely symbol of a given cluster.

Our final constellation for this discussion, shown in Fig. 3.15, has been designed

at SNR = −20 dB. It is quite similar to the previous constellation, but with three

symbols clustered towards the center as seen earlier. Again we see the clustering

throughout most of the other points. These constellations are not particularly useful

in practice, however, as no constellation is going to perform well in the presence of

such high noise power; but, they will considerably outperform standard Gray-mapped

QAM constellations.

Effect of Design for Higher SNR

When designing constellations for higher SNR, the PO algorithm creates constella-

tions similar to the one seen in Fig. 3.9 for mid to high SNR values. As we move

up to quite high SNR, however, the resulting configure tends to rely less and less

on the source distribution, since all points are very likely to be decoded correctly,

regardless of placement. This situation essentially turns into ML decoding (since the

probabilities do not significantly affect the MAP metric for very small noise), and

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 38

the resulting constellation reflects this by having points placed equidistant from one

another. For design at 10 dB, the constellation is shown in Fig. 3.16, and is nearly

identical to the constellation seen in Fig. 6(d) of [6].

Gains for Other Source Distributions

While we have been using p = 0.9 for all optimizations and simulations so far, there

are also gains achieved over Gray-mapped 16-QAM by PO16 for smaller values of

p. Looking at Fig. 3.17, we can see that this is the case. For p = 0.5 (a uniform

binary source), the gain achieved was negligible. This is exactly as expected, since

a uniform source does not allow us to take advantage of the source characteristics

in the constellation design. With a small step up to p = 0.6, the gain achieved

is about 0.25 dB. There is not much non-uniformity to take advantage of. For

p = 0.7 and p = 0.8, more significant gains of 0.5 dB and 1.5 dB are achieved,

respectively. Again, this is in line with expectations, since the greater non-uniformity

in the source provides more opportunities to exploit in the constellation design. The

combined effect of allowing more likely points to have more space around them with

the increased noise recovery of MAP decoding greatly improves results for the most

likely points in the constellation. We will continue to use p = 0.9 for the remaining

results to show the largest gain possible, but this demonstrates that the method is

viable for lower values.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 39

Practical Considerations

When considering the possibility of designing for a range of both p and SNR values, we

must address the practicality of doing so. Since we have shown the PO constellations

to be robust over a reasonable range of true SNRs using only a single design SNR, we

could arguably provide constellations suited to large steps in noise power. Both the

transmitter and receiver would need to know the constellations in advance, and be

capable of measuring noise power in the channel (e.g., using a pilot tone) and signaling

when a constellation switch should happen. This can be accomplished with a very

small overhead scheme which transmits the constellation to be used after every several

thousand transmissions, using only a few bits each time (i.e., a single transmission)

to do so. Similarly, we can implement multiple constellations to address a range of

source distributions for reasonable steps in p. Doing so we would arrive at a set of

constellations for each of a small number of SNRs and perhaps five to ten different

p-values. This array of solutions would allow the best performance gains possible

for the current source and channel characteristics, using only a small transmission

overhead to signal the switches. This switching scheme has not been implemented in

this thesis, but is a viable option for any real-world implementation.

3.3.4 64-ary and 256-ary Constellations

The result of pairwise optimization of a 64 point constellation using design SNR =

2 dB is shown in Fig. 3.18. Again we see the tendency of more likely points to lay

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 40

closer to the origin. This keeps the average energy low, allowing less likely points

to sit farther away, thus creating more distance between points overall. In Fig. 3.19,

we compare the performance of this constellation to 64-QAM with the M1 and Gray

mappings. The M1 64-QAM mapping developed in [14] already outperforms Gray

mapped 64-QAM by approximately 3.5dB for any given SER. The pairwise optimized

constellation we develop here, PO64, outperforms 64-QAM with M1 mapping by

another 1.5 dB at a given SER, for a total improvement of about 5 dB over 64-QAM

with Gray mapping. It is interesting to note that for medium and high SNRs (above

4 dB), the PO64 constellation achieves better SER than the BER of binary phase

shift keying (BPSK). It is likely that the BER of PO16 will be lower than that of

BPSK for sufficiently high values of p. The performance of the pairwise optimized

constellation for M = 256 (PO256 in Fig. 3.20) is better than 64-QAM with Gray

map by approximately 2 dB for any SER (see Fig. 3.19). Note that PO256 has

both a higher data rate (two more bits per symbol) and a lower SER than Gray

mapped rectangular 64-QAM at all SNRs, thus improving both system performance

and throughput.

It is worth noting that the relative SER performance of the various PO constella-

tion was monotonic with respect to M . That is, as the size of the constellation, M ,

increases, so does the SER (meaning worse performance), with increasing step sizes

between the larger constellations. This pattern is to be expected, since the larger

constellations correspond to higher transmission rates (source bits per channel use),

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 41

so more power is needed to achieve the same SER performance. This is interesting

to note here for SER, because it is not the case when we move to considering symbol

mapping and measuring BER, as we will do in the next chapter.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 42

Figure 3.6: Initial constellation placing more likely points closer to the origin on concentric

circles (here M = 16).

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 43

Figure 3.7: PO4 constellation for p = 0.9. Designed for SNR = 0 dB.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 44

Figure 3.8: Performance of size M = 4 constellations for p = 0.9. Optimized from [10]

and PO4 are both designed for SNR = 0 dB.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 45

Figure 3.9: Pairwise optimized constellation for M = 16, p = 0.9 and design SNR =

1 dB.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 46

Figure 3.10: Performance of size M = 16 constellations for p = 0.9 and design SNR =

1 dB. Performance of a specialized constellation (i.e., with design SNR identical to true

SNR) also shown.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 47

Figure 3.11: Pairwise optimized constellation for M = 16, p = 0.9 and design SNR =

0 dB.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 48

Figure 3.12: Pairwise optimized constellation for M = 16, p = 0.9 and design SNR =

−3 dB.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 49

Figure 3.13: Pairwise optimized constellation for M = 16, p = 0.9 and design SNR =

−5 dB.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 50

Figure 3.14: Pairwise optimized constellation for M = 16, p = 0.9 and design SNR =

−10 dB.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 51

Figure 3.15: Pairwise optimized constellation for M = 16, p = 0.9 and design SNR =

−20 dB.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 52

Figure 3.16: Pairwise optimized constellation for M = 16, p = 0.9 and design SNR =

10 dB.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 53

Figure 3.17: Performance of M = 16 constellations for varying values of p and design

SNR = 1 dB.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 54

Figure 3.18: Pairwise optimized constellation for M = 64, p = 0.9 and design SNR =

2 dB.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 55

Figure 3.19: Performance of constellations for M = 64, p = 0.9 and design SNR = 2dB

and the pairwise optimized constellation for M = 256 with design SNR = 4 dB. BPSK

also shown for reference.

CHAPTER 3. PAIRWISE OPTIMIZATION OF M-ARY CONSTELLATIONS 56

Figure 3.20: Pairwise optimized constellation for M = 256, p = 0.9 and design SNR =

4 dB.

Chapter 4

Designing Maps for the PO

Constellations

In the previous chapter, we developed a method for designing improved modula-

tion constellations for non-uniform sources, based on the SER performance of those

constellations. But, knowing the probability of each symbol is not enough to allow

implementation. In order to be able to use these constellations in any real systems

involving binary streams of data, we must have a direct mapping for each possible

log2M -bit symbol. In this chapter, we wish to design maps for the PO constella-

tion we have designed in order to assign a specific bit pattern to each point in the

constellation.

The terms “point” and “symbol” were used somewhat interchangeably in the pre-

vious chapter. Now we must be careful to distinguish them. When we say point,

57

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 58

we are referring to a Cartesian coordinate pair which has been selected for transmis-

sion by the PO algorithm. Symbol now refers to a binary sequence of log2M bits,

corresponding to data from the source.

The PO constellations themselves only determine the points where the set of

symbols of a given probability should lay, but not the arrangement amongst those

equiprobable symbols. When rearranging the individual symbols, we need only con-

sider moving any symbol to another point in the same set. We must now consider

exactly how to arrange these points within each set to achieve the best possible BER

performance.

4.1 Initialization and Probability Constraint

By the nature of the PO algorithm, the mapping can be initiated and modified under

a fairly strong (and helpful) constraint. For a given symbol, we know from its source

probability that we can immediately reduce the possible mappings for that symbol

to a subset of the points found in the PO constellation – those corresponding to the

same source probability.

For each constellation treated, the map is initialized arbitrarily, but such that it

conforms to the probability constraint. We define a layer as a set of binary sym-

bols taken together with a set of constellation points which are equiprobable. For

our binary non-uniform source with source distribution Pr{0} = p, and an M -ary

constellation, the symbols (bit patterns) in layer l will each have l zeros in their bi-

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 59

nary sequences. Layer l will also have exactly
(

m
l

)
symbols, each with probability

pl(1 − p)m−l, where m = log2M is the number of bits in each symbol. During the

initialization of the map optimization procedure (described later), the symbols and

points within each layer are assigned randomly.

4.2 Objectives

Our guiding objective is to minimize the BER of the constellation and mapping pair.

We aim to achieve a BER much lower than the SER by trying to minimize the

number of bit errors that occur, even in the presence of noise which causes a symbol

error. We can achieve this by minimizing the Hamming distance of each symbol to

its neighbours. For a uniform source, using rectangular QAM, this can be achieved

using Gray mapping, as seen in Fig. 4.1 [14]. This mapping is arranged such that the

Hamming distance of any symbol to any of its neighbours is always one. To exploit

the source statistic of the non-uniform source, improved mappings were developed in

[14] without modifying the geometry of the underlying constellation. The challenge

we face when dealing with the non-uniform source and our PO constellations is that

we have neither equiprobable nor equidistant (in terms of the Euclidian distance)

neighbours. We still wish to create a “Gray-like” mapping, but it is not so simple

as the rectangular QAM case. If not all nearby points are equidistant (Euclidian

distance-wise), how do we choose which points we will consider as neighbours? Since,

however we select them, those neighbours will not necessarily be equiprobable, we

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 60

Figure 4.1: Standard 16-QAM modulation constellation with a Gray mapping.

must consider how to measure the Hamming distance to the entire neighbourhood.

4.2.1 Defining the Neighbourhood and Weighted Hamming

Score

We must first decide and define what symbols we will consider as neighbours. We

initially considered setting the neighbourhood of a point ~su to be all points which lay

inside a circle of radius r (i.e., all points ~si such that ‖~su − ~si‖ ≤ r). But how do

we choose an appropriate r? Should it change depending on the probability of the

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 61

Figure 4.2: Two example neighbourhoods are shown for PO16 (M = 16 and k = 4).

symbol being considered? Without a way to determine what r should be, we moved

on to the idea of selecting some k points which lay closest (in terms of Euclidian

distance) to ~su (i.e., the k nearest neighbours). This method provided a natural

solution to the flexible radius problem, as we would always include the closest k

points, despite those points laying farther away for the less likely symbols towards

the outside of the constellation. Looking at the PO constellations we had obtained

so far, we selected k =
√

M as the neighbourhood size. This value provided a good

balance between limiting the neighbourhood to those points which would most likely

be decoded in error, but which also would include enough points to ensure we indeed

had an appropriate neighbourhood “around” the symbol in question. For example,

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 62

two neighbourhoods of different points in the PO16 constellation can be seen in Fig.

4.2.

Now we must define the Weighted Hamming Score we will use when considering

the suitability of a given symbol for its neighbourhood. To do this, we disregard

the Euclidian distance between the symbol and each of its neighbours, and instead

consider the Hamming distance and probability of each other point. For symbol ~su

and its k nearest neighbours (indexed by {n1, ..., nk}), the Weighted Hamming Score,

WHS(·), is then defined as:

WHS(~su) =
k∑

i=1

pni
d(bni

, bu) (4.1)

where pni
is the probability of ~sni

, d(·, ·) is Hamming distance and bni
is the binary

sequence (symbol) currently assigned to ~sni
.

4.3 Map Improvement Algorithm

The Map Improvement algorithm is implemented as follows:

1. Configure some initial mapping (as described above).

2. Loop through set of all layers several times.

2.1. Loop through each layer individually, proceeding outwards.

2.1.1. For current layer, generate many pairs of symbols.

2.1.1.1 For each pair of symbols, determine both neighbourhoods.

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 63

2.1.1.2 Compare total Weighted Hamming Score with and without switch-

ing the symbol assignment, using (4.2).

2.1.1.3 If switching the symbol assignment decreases WHS, then switch

the mapping of binary sequences to selected points.

As described above, the initial mapping of Step 1 is arbitrary aside from conform-

ing to the probability requirements. For Steps 2 through to 2.1.1, we adjusted the

number of times to repeat each loop to achieve what appeared to be the best results.

The values used in our code were as follows:

We looped through the set of all layers 4m times for Step 2, where m = log2M is

the number of bits in each sequence (and is also the number of layers). When step-

ping through each individual layer in Step 2.1, we start with the center and proceed

outwards. We only “loop” each layer once per overall loop, since repeating a single

layer immediately would be equivalent to simply generating more pairs. Finally, for

Step 2.1.1, we achieved favourable results when considering 2L2 pairs, where L =
(

m
l

)
is the number of symbols in layer l (members of which have l zeros in their binary

sequences).

When checking each pair of symbols in Step 2.1.1.2 to see if they should be

switched, we calculate the sum of the WHD for each symbol in both neighbourhoods

((nu,1, ..., nu,k) is the neighbourhood of ~su, and (nv,1, ..., nv,k) is the neighbourhood of

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 64

~sv). We want to know if

k∑
i=1

(
pnu,i

d(bnu,i
, bu) + pnv,i

d(bnv,i
, bv)

)
>

k∑
i=1

(
pnu,i

d(bnu,i
, bv) + pnv,i

d(bnv,i
, bu)

)
(4.2)

and, if so, we switch the mappings bu and bv for ~su and ~sv.

4.4 Results and Performance

The results of this procedure are now considered. For small constellation sizes, the

mapping is not particularly important. For M = 2, there is no map to be considered

at all – the symbols are exactly determined by the constellation. For M = 4, the

only consideration is the placement of the mapping 01 versus 10. Indeed these are

different, but the resulting BER is identical, since each configuration has identical

Hamming distance to its neighbours. As such, we immediately move to considering

16-ary constellations and larger.

4.4.1 16-ary Constellations

We present the result of the mapping improvement algorithm in Fig. 4.3 for the

PO constellation we developed in the previous chapter. We can see immediately

that the Hamming distance between many close neighbours is 2, where the Gray had

put all distances to just 1. By the design of the PO constellations, we cannot achieve

distances as small as those of the Gray map. This is because we force symbols of equal

probability to be near one another. For instance, consider the layer l = 3 in Fig. 4.3.

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 65

All symbols in this layer have exactly three zeros in their binary sequences (there are

four of these symbols). Since they must be a neighbour to at least one other point

in their own layer, and we do not have any repeated symbols, the Hamming distance

of these close neighbours must be 2. However, you will also find that this mapping

also has a maximum Hamming distance of 2, aside from the distance involving the

symbol 1111 to layer l = 3 (which cannot be avoided, again by the design of the PO

constellation). Despite having greater Hamming distance between some neighbours,

the PO constellation with the associated map performs very well.

Looking at Fig. 4.4, the performance improvement on the PO constellation with

its designed map is clear. There are considerable gains over the standard rectangular

QAM constellation with both maps considered. While the optimized M1 maps of

[14] achieve approximately 1dB gain of the Gray map, the PO constellation and map

makes a further improvement of more than 2 dB over the M1, where the difference

is greatest. This best improvement occurs at mid-range SNRs of 2 to 5 dB, and is

approximately in line with the gains we saw when considering SER performance. It

is also interesting to note that the SER performance of PO16 is in fact superior to

the BER performance of both rectangular 16-QAM maps for mid-high SNRs, so even

without the map improvement procedure, the BER of PO16 would be considerably

better than the standard constellations.

We can also see that the performance difference between the BER and SER of

PO16 shrinks as SNR increase to high levels. This is to be expected, as when the

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 66

noise is very small compared to the signal, we will make very few errors on the most

likely symbols, and this is where the reducing bit errors has the greatest impact.

4.4.2 64-ary and 256-ary Constellations

We see the resulting maps for the PO64 and PO256 constellations in Figures 4.5

and 4.6, respectively. Looking first at Fig. 4.5, again we see Hamming distances

of close neighbours larger than those seen in a Gray map (as we saw for the PO16

constellation). But we also see again that most symbols (especially the group of more

likely symbols near the center) are assigned so that they are quite similar to their

neighbours. Many of the most likely symbols have a Hamming distance of only 1 or 2

to their neighbours, but we also have the Hamming distance between any neighbours

being at most 3. For the 256-ary PO constellation and mapping in Fig. 4.6, we see

the same situation in general. There are some neighbours with greater Hamming

distances, but most are kept quite low (2 or 3), especially when compared to the

longer sequence length (8 bits) of symbols in this constellation.

The BER performance of the 64- and 256-ary PO constellations is shown in Fig.

4.7. We can see that the 64-QAM M1-map of [14] provides gains of approximately 3dB

over Gray mapped 64-QAM, and even 0.25 dB over BPSK. The PO64 constellation

with the improved map further provides more than 1 dB over the BER performance

of the M1-mapped QAM. Again, we find that this is approximately in line with the

gains seen when examining SER performance. Interestingly, we can see that the

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 67

PO256 constellation and map has better BER performance than Gray mapped 64-

QAM, despite the constellation density and the larger Hamming distances seen in

PO256. As was the case with SER performance, PO256 also simultaneously achieves

superior BER performance and higher data throughput.

As a final note, we present in Fig. 4.8 all the BER performance curves of the PO

constellations and maps developed here. It is interesting to note that PO4 outper-

forms PO2 for all tested SNRs. This is important because it has achieved better BER

performance while simultaneously doubling the data rate. We cannot justify this phe-

nomenon definitively, but have two plausible explanations. First, when moving from

M = 2 to M = 4, there is “plenty of space” available on the plane, so the additional

points do not suffer much from the “crowding” that larger constellations experience.

Second, PO4 cuts its SER in half when considering BER, since any probable decode

error would have only one of two bits wrong (11 would be erroneously decoded to 00

very rarely, and vice-versa), while PO2 sees no gain by considering BER. Not only

is PO4 superior to PO2 at all noise levels, but in fact PO8 (which we did not look

at closely, but is shown in Fig. 4.9) also has superior BER performance to PO2 for

sufficiently high SNR (above 2 dB), and has triple the data throughput of PO2.

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 68

Figure 4.3: PO constellation for M = 16 with improved mapping.

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 69

Figure 4.4: BER Performance of 16-ary constellations. PO constellation simulated with

mapping seen in Fig. 4.3.

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 70

Figure 4.5: PO constellation for M = 64 with improved mapping.

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 71

Figure 4.6: PO constellation for M = 256 with improved mapping.

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 72

Figure 4.7: BER Performance of 64-ary constellations (and PO256). PO constellations

simulated with mappings seen in Fig. 4.5 and 4.6.

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 73

Figure 4.8: BER Performance of all M -ary PO constellations presented.

CHAPTER 4. DESIGNING MAPS FOR THE PO CONSTELLATIONS 74

Figure 4.9: PO constellation for M = 8 (designed for p = 0.9 and SNR = 0 dB) with

symbol mapping.

Chapter 5

Comparison to Source and

Channel Coding

Thus far we have only compared our PO system to similar transmission schemes:

mainly BPSK and rectangular QAM. We have been considering only the case of

transmitting directly the modulated source symbols, without trying to compress the

source, or protect the message with parity.

We will now consider another possible transmission scheme: using in tandem both

source and channel coding on the data (separate source and channel coding) to first

compress the message, and then protect it during transmission. Using this tandem

scheme has a trade-off relative to our uncoded system, and different performance

profiles. We will explore these differences in this chapter.

75

CHAPTER 5. COMPARISON TO SOURCE AND CHANNEL CODING 76

5.1 System for Comparison

We begin by describing the tandem coding scheme to which we will compare the PO

system. The goal is to compare to a system that is reasonably representative of real

world systems employing such tandem coding schemes.

As in all of the test cases, we generate bits according to the source distribution.

For each of T trials, we generate messages in blocks of N bits at a time to be processed.

The message will first be compressed (losslessly) using a fourth-order Huffman code.

This means we will look at four bit symbols from our non-uniform binary source, and

design a Huffman code for them. For p = 0.9, the resulting Huffman code is as seen

in Table 5.1. Using this Huffman code results in an average code rate of 0.49255.

This code rate is close to the entropy of our binary source, which is 0.46, so we know

this code is appropriate. Given this code rate close to 0.5, the compressed message

will be approximately N
2

bits long.

The channel code we will be using is a convolutional code with constraint length

k = 3 and rate r = 1/2. The generator functions used for the convolutional code are

G0 = 101 and G1 = 111, in binary representation form [11, pp 470-477]. This leads

the output to follow the state machine described in Fig. 5.1. The states represent

the two previous input bits, Xn−1Xn−2, and the transition labels indicate the current

input bit and the two channel coded parity bits which will be transmitted, Xn/g0g1.

To allow us to know how the transmission begins, we always reset the initial state

to 00 at the beginning of each message block, and record the transitions from there

CHAPTER 5. COMPARISON TO SOURCE AND CHANNEL CODING 77

Figure 5.1: State machine representing the convolutional channel code with constraint

length k = 3 and rate r = 1/2.

forward. So for each compressed message bit to be sent, two coded parity bits are sent

representing the state change. The channel coded bits are transmitted using BPSK

with AWGN, and the receiver collects the observed voltages in the channel.

Once the entire block (approximately N bits) has been received, the observed

voltages are passed to a soft Viterbi decoder to recover the transmitted message. The

output of the Viterbi algorithm is a best guess of the bit sequence (by minimizing the

sequence error probability) which comprises the encoded message (approximately N
2

bits). This binary sequence is then passed to the Huffman decoder to be converted

back into the original message (N bits long). Note that the overall rate of this tandem

coding system is 1 source bit per channel use.

CHAPTER 5. COMPARISON TO SOURCE AND CHANNEL CODING 78

5.2 Performance Comparison

We will now examine the performance of this tandem coding scheme in comparison

to our uncoded PO system. To test the tandem coded system, messages of N source

bits were generated and passed through the system described in Section 5.1. Tests

were conducted for a range of values of N , as the performance of the Viterbi decoder

does indeed depend heavily on the length of the blocks received. Other values were

tested, but the values we have selected for interesting performance comparison to the

PO systems are N = 12, 100, 200, 800, 5000. For smaller values of N , more trials (T)

were performed to simulate approximately ten to twenty million bits1 total for each

SNR.

Looking at the data presented in Fig. 5.2, we first notice that performance is quite

poor at low SNR for all block sizes, but is slightly worse for larger N . For small block

length (N = 12) we see that the tandem scheme does not outperform PO2 and PO4

even at relatively high SNR, and in fact only beats out PO16 at a mid-high SNR of

5 dB. Keep in mind that at that level of noise, PO16 is communicating four times as

much data as the tandem scheme. Stepping the block size up to N = 100, we start

to get performance approaching PO2 and PO4 for mid-high SNRs. In fact, at 3 dB,

the tandem scheme with N = 100 matches the performance of PO4 (which is already

slightly better than PO2), but then fails to overtake it. To beat out PO4 completely,

1For N = 5000, the total number of bits simulated was considerably higher (approx. 100M rather

than 20M), since the results produced were inconsistent using only a few thousand trials.

CHAPTER 5. COMPARISON TO SOURCE AND CHANNEL CODING 79

we must further increase block size.

Once we move up to N = 800, we note that it is possible to beat the perfor-

mance of PO4. Here the tandem scheme surpasses the BER performance of PO4 at

slightly above 3 dB, and remains superior from then on. Considering N = 5000, we

see the tandem scheme surpassing the performance of PO4 just beyond 4 dB, and

subsequently surpassing the tandem scheme for N = 800 at approximately 4.5 dB.

These results indicate that PO4 is clearly superior in performance for low and mid-

range SNRs. At mid-high SNRs and beyond, it is possible for the tandem scheme to

surpass the performance of PO4 for sufficiently long block sizes. It should be noted,

however, that the gains over PO4 are less than 1 dB at SNR around 5 dB, even for

a very large block size, and that PO4 is achieving twice as much data throughput for

its performance.

There are some additional trade-offs to be considered here. The relative complex-

ity will be discussed in the next section, but there are performance trade-offs to be

considered, as well. For instance, the long block length necessary to beat the perfor-

mance of PO4 entails a considerable amount of decoder delay. The receiver must wait

for the entire block to be transmitted before passing the observations to the Viterbi

decoder, which then must process the data. The long block length, while resulting

in better BER performance overall, is susceptible to long runs of corrupted data in

individual messages. That is, when the Viterbi decoder outputs an incorrect bit, the

message from that point onward (the tail) is heavily corrupted (high concentration

CHAPTER 5. COMPARISON TO SOURCE AND CHANNEL CODING 80

of bit errors) due to desynchronization of the Huffman decoder.

The average corruption run lengths measured during simulation (at the Viterbi

deocder output) are shown in Table 5.2. The average lengths presented are over the

number of transmissions where an extended data corruption has occurred (rather

than average over all trials). The rate of the appearance of these types of errors is

given by the occurrence rate. So for N = 800, in 0.5% of trials, there were long runs

of corrupted data which had an average length of 184 bits. For N = 5000, the average

corrupted run length was 1285 bits, occuring in 0.2% of trials. While this is a rare

occurances in both cases, it is a considerable portion of the message when it does

happen – over 20% of the message (the tail end) is corrupted on average. While the

PO constellation has a higher BER at high SNRs, it does not suffer from these long

runs of corrupted data, and instead has its bit errors spread more evenly throughout

the messages. Whether this concentration of errors is important depends entirely

on the specific application, and the tolerance or sensitivty towards different types of

failures.

The careful reader will note that manipulation of the average corruption run length

and occurrence rate in Table 5.2 does not yield the same average bit error rate as

the data presented in Fig. 5.2. This is not a data discrepancy, but rather one of

presentation. For Table 5.2, we have a view inside the machine, and are able to check

when the Viterbi decoder has made a bit error in the sequence it returns, and consider

the message bits decoded from that point onward to be corrupted (high probability

CHAPTER 5. COMPARISON TO SOURCE AND CHANNEL CODING 81

of error). The actual result of such a bit error has two possible manifestations. The

less likely case is that the error causes the Huffman decoder to decode an incorrect

codeword of the same length as the intended codeword. It will then continue to decode

the rest of the message correctly as if there were no error. The more likely scenario

is that the Viterbi bit error will cause the Huffman decoder to decode an incorrect

codeword of a different length than the intended codeword. This causes the Huffman

decoder to become out of synchronization with the true data, but continues to decode

incorrect codewords until near the end of the message, when it may find a non-existent

codeword. It is likely, given the source distribution under consideration, that the

corrupted output will still have many of the bits of the original message correct (the

zeros). Since this is essentially the decoder getting lucky with its mistakes, we have

considered the entire tail of the message to be corrupted when such a Viterbi bit

error occurs, as the decoded message is unreliable and contains a higher-than-normal

concentration of bit errors, but the measurement of BER for Fig. 5.2 considers only

the individual bits (the lucky bits are counted as correct data).

5.3 Complexity Comparison

The most fundamental difference between the two systems is one of hardware complex-

ity versus software complexity. The PO system requires more complicated hardware

design (in the transmitter), whereas the tandem source and channel coding needs a

processor capable of the calculations required to run the system.

CHAPTER 5. COMPARISON TO SOURCE AND CHANNEL CODING 82

The PO constellation might increase the hardware requirements in terms of need-

ing strongly linear power amplifiers, since the constellation points can be quite far

apart (in a constellation designed for a highly non-uniform source) and can thus re-

sult in a high peak-to-average power ratio for signals sent over successive modulation

intervals. The tandem scheme is simplified in hardware as it employs conventional

BPSK.

The tandem scheme is relatively quite complicated in software implementation.

The PO system requires only simple instructions to translate the source data to

a constellation point, and a fairly straightforward system for MAP demodulation

at the receiver. The tandem scheme requires considerable processing, particularly

the receiver for performing the Viterbi calculations to detect the encoded message

sequence. This processing could be quite taxing for a small wireless node running off

limited battery power, such as those found in a wireless sensor network.

CHAPTER 5. COMPARISON TO SOURCE AND CHANNEL CODING 83

Symbol Codeword Codeword Length Frequency

0000 0 1 0.6561

1000 101 3 0.0729

0100 110 3 0.0729

0010 111 3 0.0729

0001 1000 4 0.0729

1100 100111 6 0.0081

1010 1001000 7 0.0081

1001 1001001 7 0.0081

0110 1001010 7 0.0081

0101 1001011 7 0.0081

0011 1001100 7 0.0081

1110 100110101 9 0.0009

1101 100110110 9 0.0009

1011 100110111 9 0.0009

0111 1001101000 10 0.0009

1111 1001101001 10 0.0001

Table 5.1: Fourth-order Huffman code used for the tandem scheme.

CHAPTER 5. COMPARISON TO SOURCE AND CHANNEL CODING 84

Figure 5.2: Performance of tandem source and channel coding scheme for various block

lengths. Selected PO constellation performance shown for reference.

CHAPTER 5. COMPARISON TO SOURCE AND CHANNEL CODING 85

Block Size, N Crossover SNR Average Corruption Length Occurrence

12 5 dB 4 0.02%

100 3 dB 9 0.35%

800 3 dB 184 0.50%

5000 4 dB 1285 0.205%

Table 5.2: Average tail corruption length and occurrence rate (within the Viterbi decoder)

for various message block sizes. Results shown only at Crossover SNR (the point at which

the tandem scheme overall BER performance matches that of PO4). The tandem scheme

does not outperform PO4 for block size 12, so this Crossover SNR is where it surpasses

PO16.

Chapter 6

Conclusions

6.1 Summary

It is clear that the pairwise optimized constellations offer significant gains over tradi-

tional (rectangular QAM) modulation constellations for highly non-uniform sources.

This is especially true for high rate constellations where a great deal of energy is

“wasted” by placing likely symbols far from the origin. We recognize that asymmetric

non-rectangular constellations introduce additional complexity both in the hardware

of the transmitter (for modulation) and in the calculations required for demodulation.

Smaller improvements can be easily obtained by re-centering the traditional rectan-

gular constellations to be zero mean, and scaling them up to their original average

energy.

The gains achieved when considering SER were not only sustained, but improved,

86

CHAPTER 6. CONCLUSIONS 87

as good maps were designed for the PO constellation and BER performance was

measured. Despite higher Hamming distances between neighbouring symbols, the

BER performance of the PO constellation was significantly better than standard

Gray-mapped rectangular QAM.

When comparing the uncoded PO system to a tandem source and channel coded

system, neither was universally superior. PO was general better at low SNR, while the

tandem scheme (for large enough block size) was superior at high SNRs. Where the

BER performance of the two systems matched, it is notable that the PO constellations

transmitted at a higher rate. Each system had its advantages and disadvantages, and

making a choice between them for implementation would depend entirely on the

application.

6.2 Future Work

Here we present some areas where the work we have described in this paper could be

improved or advanced in some way. Some of these would be relatively simple steps,

such as improving the approximation of the SER used to design the PO constellations

in Chapter 3. As it stands, we employed the Union Upper Bound to the SER, which

can be loose for low SNRs. We deemed this acceptable since we did not need an

accurate measure of the SER, just some indication of where to place signal points

to try to improve SER performance, and we needed it to be very fast to keep the

speed reasonable for the repeated iterations. It would be interesting to learn if the

CHAPTER 6. CONCLUSIONS 88

extra computational cost of a closer approximation would yield significantly different

constellations.

Additionally, some of the larger constellations are quite irregular in appearance.

Several points, particularly in PO256, are placed out of line with the overall layer

pattern. It might be possible to massage these constellations manually to make them

more regular in appearance. This would not be simply for aesthetic value. If the

constellation were slightly adjusted in places with the intent of aligning small sets

of points, it would be possible to simplify a hardware implementation by sharing

amplifiers for multiple points.

Furthermore, we suggest in Chapter 3 that the optimum constellation for a nonuni-

form source will obey the strict ordering of points by probability (more likely points

lie closer to the origin). We were unsuccessful in our attempts to prove this, but could

not construct a counterexample. It would certainly be of value to prove this order-

ing, since it would considerably reduce the search space when looking for optimum

constellations.

Finally, it would be interesting to explore the continuity of the optimal constella-

tion (in terms of SER performance) with respect to changes in p, to determine if a

continuous path of optimal constellations exists.

Bibliography

[1] E. Agrell, E.G. Strom, and T. Ottossom. Gray Coding for Multilevel Con-

stellations in Gaussian Noise. IEEE Transactions on Information Theory, IT-

53(1):224–235, January 2007.

[2] F. Alajaji, N. Phamdo, and T. Fuja. Channel Codes that Exploit the Residual

Redundancy in CELP-Encoded Speech. IEEE Transactions on Speech Audio

Processing, 4:325–336, Sept. 1996.

[3] F. Behnamfar, F. Alajaji, and T. Linder. MAP Decoding for Multi-Antenna Sys-

tems with Non-Uniform Sources: Exact Pairwise Error Probability and Applica-

tions. IEEE Transactions on Communications, 57(1):242–254, January 2009.

[4] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-

Interscience, second edition, 2006.

[5] S. Emami and S. L. Miller. Nonsymmetric Sources and Optimum Signal Selec-

tion. IEEE Transactions on Communications, 44(4):440–447, April 1996.

89

BIBLIOGRAPHY 90

[6] G. J. Foschini, R. D. Gitlin, and S. B. Weinstein. Optimization of Two-

Dimensional Signal Constellations in the Presence of Gaussian Noise. IEEE

Transactions on Communications, COM-22(1):28–38, January 1974.

[7] J. Huang, S. Meyn, and M. Médard. Error Exponents for Channel Coding With

Applications to Signal Constellation Design. IEEE Journal on Selected Areas of

Communications, 24(8):1647–1661, August 2006.

[8] I. Korn, J. P. Fonseka, and S. Xing. Optimal Binary Communication With

Nonequal Probabilities. IEEE Transactions on Communications, 51(9):1435–

1438, September 2003.

[9] H. Kuai, F. Alajaji, and G. Takahara. Tight Error Bounds for Nonuniform

Signaling over AWGN Channels. IEEE Transactions on Information Theory,

46(7):2712–2718, November 2000.

[10] H. Nguyen and T. Nechiporenko. Quarternary Signal Sets for Digital Commu-

nications with Nonuniform Sources. IEEE CCECE/CCGEI, pages 2085–2088,

May 2005.

[11] J. G. Proakis. Digital Communications. McGraw-Hill, fourth edition, 2000.

[12] J. G. Proakis and M. Salehi. Communication Systems Engineering. Pearson

Prentice Hall, second edition, 2002.

BIBLIOGRAPHY 91

[13] Y. Sun. Stochastic Iterative Algorithms for Signal Set Design for Gaussian Chan-

nels and Optimality of the L2 Signal Set. IEEE Transactions on Information

Theory, 43(5):1574–1587, September 1997.

[14] G. Takahara, F. Alajaji, N. C. Beaulieu, and H. Kuai. Constellation Mappings

for Two-Dimensional Signaling of Nonuniform Sources. IEEE Transactions on

Communications, 51(3):400–408, March 2003.

[15] N. Wei and Y. Wan. Optimal Constellation for General Rectangular PAM/QAM

with Arbitrary Code Mapping. In Proceedings of IEEE International Conference

on Communications, pages 2749–2754, Glasgow, Scotland, June 24-28 2007.

Appendix A

Constellation Coordinates

Included here are tables listing the point coordinates and bit mappings assigned for

the PO constellation tested in this thesis. For the case of M = 16 where many design

SNRs were considered, we include only the “main” PO16 constellation compared to

the traditional constellations using.

Table A.1: Coordinates and bit mapping for PO4 constellation, for p = 0.9 and design SNR of 0 dB.

Probability X Coord. Y Coord. Bit Mapping

0.81 -0.2237 0.2702 00

0.09 2.1540 -0.2112 01

0.09 0.1465 -2.1067 10

0.01 -2.5832 -1.0291 11

92

APPENDIX A. CONSTELLATION COORDINATES 93

Table A.2: Coordinates and bit mapping for PO8 constellation, for p = 0.9 and design SNR of 0 dB.

Probability X Coord. Y Coord. Bit Mapping

0.729 -0.2073 -0.1505 000

0.081 1.3941 0.9974 001

0.081 -0.5297 1.7736 010

0.081 1.4689 -1.0913 100

0.009 -0.2304 -2.3443 110

0.009 -2.3356 0.6856 011

0.009 -2.0093 -1.2882 101

0.001 3.2953 0.1616 111

Table A.3: Coordinates and bit mapping for PO16 constellation, for p = 0.9 and design SNR of 1 dB.

Probability X Coord. Y Coord. Bit Mapping

0.6561 -0.1743 0.126 0000

0.0729 0.7246 1.3984 1000

0.0729 0.8259 -1.2234 0001

0.0729 -0.7552 -1.291 0010

0.0729 1.4862 0.0598 0100

0.0081 -2.1079 -0.5451 0110

0.0081 -1.1739 1.5154 1100

0.0081 -1.9892 0.626 0101

0.0081 -2.0126 -1.9601 1010

0.0081 -0.3329 2.4461 1001

0.0081 0.0828 -2.6222 0011

0.0009 3.0669 0.2873 1101

0.0009 2.3512 1.6216 1110

0.0009 2.6403 -1.2074 0111

Continued on next page

APPENDIX A. CONSTELLATION COORDINATES 94

Table A.3 – continued from previous page

Probability X Coord. Y Coord. Bit Mapping

0.0009 1.8417 -2.4818 1011

0.0001 1.4126 3.0828 1111

Table A.4: Coordinates for PO16 constellation, for p = 0.5 and design SNR of 1 dB.

Probability X Coord. Y Coord.

0.0625 -1.2032 0.0847

0.0625 1.2335 -0.13

0.0625 0.1746 0.3778

0.0625 -0.3461 0.4311

0.0625 -0.9965 -0.6428

0.0625 -0.4436 -1.0984

0.0625 0.678 0.1487

0.0625 -0.932 0.7585

0.0625 -0.1572 -0.5011

0.0625 0.3682 1.0974

0.0625 -0.3007 1.1351

0.0625 -0.546 -0.0978

0.0625 0.2633 -1.1483

0.0625 0.3614 -0.3469

0.0625 0.8686 -0.7887

0.0625 0.9776 0.7207

APPENDIX A. CONSTELLATION COORDINATES 95

Table A.5: Coordinates for PO16 constellation, for p = 0.6 and design SNR of 1 dB.

Probability X Coord. Y Coord.

0.1296 -0.2295 -0.1986

0.0864 -0.6293 0.3912

0.0864 0.3681 -0.3495

0.0864 -0.0184 0.6597

0.0864 0.5575 0.3436

0.0576 0.9057 -0.8426

0.0576 -0.9085 -0.7539

0.0576 1.1837 -0.1803

0.0576 -1.1531 -0.1366

0.0576 0.2607 -1.167

0.0576 -0.3621 -1.1069

0.0384 -0.786 1.1415

0.0384 0.7395 1.1516

0.0384 -0.0269 1.3746

0.0384 1.288 0.5646

0.0256 -1.4326 0.5514

Table A.6: Coordinates for PO16 constellation, for p = 0.7 and design SNR of 1 dB.

Probability X Coord. Y Coord.

0.2401 -0.1544 -0.1987

0.1029 -0.0897 0.832

0.1029 -0.7677 0.3916

0.1029 0.5599 -0.3815

0.1029 0.6111 0.5224

0.0441 -1.3246 -0.2084

Continued on next page

APPENDIX A. CONSTELLATION COORDINATES 96

Table A.6 – continued from previous page

Probability X Coord. Y Coord.

0.0441 -0.9503 -0.8764

0.0441 0.3442 -1.2997

0.0441 1.3927 0.0429

0.0441 -0.3538 -1.2426

0.0441 1.1422 -0.8746

0.0189 0.6228 1.5463

0.0189 1.362 0.9689

0.0189 -0.3359 1.6217

0.0189 -1.1765 1.1777

0.0081 -1.8702 0.4302

Table A.7: Coordinates for PO16 constellation, for p = 0.8 and design SNR of 1 dB.

Probability X Coord. Y Coord.

0.4096 -0.1362 -0.1846

0.1024 0.8053 -0.52

0.1024 0.7716 0.6373

0.1024 -1.0024 0.4216

0.1024 -0.1263 1.0628

0.0256 0.4889 -1.5915

0.0256 -0.3522 -1.4604

0.0256 -1.6432 -0.3512

0.0256 -1.0807 -1.0523

0.0256 1.5501 -0.9567

0.0256 1.739 0.267

0.0064 -1.6778 1.2254

0.0064 -0.8021 1.89

Continued on next page

APPENDIX A. CONSTELLATION COORDINATES 97

Table A.7 – continued from previous page

Probability X Coord. Y Coord.

0.0064 1.4251 1.5348

0.0064 0.4097 2.0307

0.0016 -2.4538 0.3331

Table A.8: Coordinates and bit mapping for PO64 constellation, for p = 0.9 and design SNR of 2 dB.

Probability X Coord. Y Coord. Bit Mapping Probability X Coord. Y Coord. Bit Mapping

0.531441 0.0376 -0.0845 000000 0.000729 1.5265 -2.325 010101

0.059049 0.8744 0.695 100000 0.000729 -0.3529 -2.9831 001101

0.059049 -0.0049 1.1104 000100 0.000729 -1.2423 -2.6314 001011

0.059049 1.0865 -0.3444 010000 0.000729 0.5765 2.9316 010110

0.059049 -0.8841 0.6711 001000 0.000729 2.8538 0.5536 111000

0.059049 -1.0774 -0.3131 000010 0.000729 3.0146 -0.2801 110001

0.059049 -0.3044 -1.1257 000001 0.000729 2.5637 1.4012 110010

0.006561 -2.0783 -0.2146 010010 0.000729 1.3493 2.6449 100110

0.006561 1.517 -1.2613 010100 0.000729 -2.6746 -1.1252 000111

0.006561 -0.2578 -2.0942 001001 0.000729 -2.8825 0.6296 011010

0.006561 -0.7973 1.7838 001100 0.000081 0.4801 3.8333 101110

0.006561 0.6541 -1.1171 010001 0.000081 -0.8479 3.8026 011110

0.006561 1.8988 0.5972 110000 0.000081 -1.2126 -3.5133 011011

0.006561 2.0525 -0.2929 011000 0.000081 2.3583 -2.8328 011101

0.006561 -1.8971 0.6481 001010 0.000081 -3.5106 1.3302 111010

0.006561 0.7711 1.8321 100100 0.000081 -3.6627 -1.0441 010111

0.006561 1.5779 1.4945 100010 0.000081 1.3513 -3.3348 100111

0.006561 -1.1376 -1.6919 100001 0.000081 -3.0006 2.2664 111100

0.006561 0.6667 -1.9069 000101 0.000081 3.0996 2.2522 110110

0.006561 -1.7187 -1.0957 000011 0.000081 3.2116 -1.8678 110101

Continued on next page

APPENDIX A. CONSTELLATION COORDINATES 98

Table A.8 – continued from previous page

Probability X Coord. Y Coord. Bit Mapping Probability X Coord. Y Coord. Bit Mapping

0.006561 -0.0484 2.1727 000110 0.000081 3.5861 -1.0021 111001

0.006561 -1.5769 1.4863 101000 0.000081 0.315 -3.7329 101101

0.000729 0.5691 -2.8256 101001 0.000081 3.5758 1.2715 110011

0.000729 2.2609 -1.8888 100101 0.000081 -1.7224 3.3658 001111

0.000729 2.0906 2.2706 110100 0.000081 -2.2429 -2.8696 101011

0.000729 -3.0274 -0.2339 010011 0.000009 -4.0779 0.3131 011111

0.000729 -1.9937 2.3444 101100 0.000009 1.794 3.5924 111110

0.000729 -2.1234 -1.9502 100011 0.000009 -0.5284 -4.1554 111101

0.000729 -2.5764 1.4582 101010 0.000009 -3.2663 -2.1555 110111

0.000729 -0.3873 3.0373 011100 0.000009 4.0121 0.3069 111011

0.000729 -1.1577 2.6547 001110 0.000009 -2.6927 3.2045 101111

0.000729 2.5521 -1.0764 011001 0.000001 2.8666 -3.7328 111111

APPENDIX A. CONSTELLATION COORDINATES 99

Table A.9: Coordinates and bit mapping for PO256 constellation, for p = 0.9 and design SNR of 4 dB.

Probability X Coord. Y Coord. Bit Mapping Probability X Coord. Y Coord. Bit Mapping

0.43046721 -0.0486 -0.0556 00000000 0.00006561 -1.417 3.0637 10001110

0.04782969 0.5378 0.6043 10000000 0.00006561 -2.9498 -1.4022 01100110

0.04782969 0.6671 -0.0058 00001000 0.00006561 0.0867 3.4766 10100011

0.04782969 -0.0859 0.6569 00000010 0.00006561 2.1126 -2.987 00011110

0.04782969 0.6032 -0.6578 00010000 0.00006561 -3.8447 -0.2313 00110101

0.04782969 -0.7714 -0.071 00000001 0.00006561 -0.504 2.8924 10100110

0.04782969 -0.0288 -0.7599 01000000 0.00006561 3.0395 1.653 11101000

0.04782969 -0.6633 -0.68 00100000 0.00006561 -1.0939 3.5761 10011100

0.04782969 -0.7059 0.5624 00000100 0.00006561 -3.2148 0.629 00011101

0.00531441 1.7884 0.5035 10100000 0.00006561 2.9243 -2.288 01011010

0.00531441 -1.8285 1.62 01000100 0.00006561 -1.6815 2.196 10000111

0.00531441 1.8263 -0.6386 00010001 0.00006561 -1.8164 2.7554 11000110

0.00531441 1.1222 1.6818 10000001 0.00006561 3.2331 -2.6756 00001111

0.00531441 1.2694 -0.1191 00011000 0.00006561 -0.3284 -3.6768 01110010

0.00531441 -1.2708 1.0766 00000011 0.00006561 -2.9872 -0.7666 01101100

0.00531441 0.4743 -1.3353 00010100 0.00006561 -3.4165 -1.6434 01001110

0.00531441 0.5485 1.7944 10010000 0.00006561 1.5211 -3.6955 01010110

0.00531441 1.1868 0.488 00010010 0.00006561 -3.0793 -2.0524 01011001

0.00531441 1.0667 -1.2848 01010000 0.00006561 0.1833 3.9638 00111001

0.00531441 -0.6626 -1.3567 01100000 0.00006561 -3.2942 -0.3711 00101101

0.00531441 -1.3192 -0.641 01000001 0.00006561 0.9041 4.0421 10110001

0.00531441 -0.5769 1.779 00000110 0.00006561 0.6685 3.4758 10011010

0.00531441 1.7243 1.6891 00001001 0.00006561 0.5819 2.9491 10010011

0.00531441 -0.6855 1.203 01000010 0.00006561 -0.4448 3.3895 10101010

0.00531441 -1.3853 0.4903 00000101 0.00006561 -0.9518 3.0535 10010110

0.00531441 -0.1172 1.2606 10000010 0.00006561 -3.3632 -1.095 00101110

0.00531441 -1.1713 1.706 10000100 0.00006561 3.1758 -1.3637 00101011

0.00531441 1.6967 1.0868 11000000 0.00006561 1.5965 -3.1777 00111100

Continued on next page

APPENDIX A. CONSTELLATION COORDINATES 100

Table A.9 – continued from previous page

Probability X Coord. Y Coord. Bit Mapping Probability X Coord. Y Coord. Bit Mapping

0.00531441 -1.4181 -0.0762 00100100 0.00006561 -0.8501 -3.6529 11100010

0.00531441 -0.0951 -1.4095 00110000 0.00006561 0.1306 -4.022 11110000

0.00531441 -1.2607 -1.2391 00100001 0.00006561 1.8565 3.269 11001001

0.00531441 1.0288 1.0743 10001000 0.00006561 2.5293 -2.676 01011100

0.00531441 1.235 -0.6976 01001000 0.00006561 -1.7212 -2.9448 01100011

0.00531441 0.444 1.2189 00001010 0.00006561 -2.2402 -2.8524 01010011

0.00531441 1.7089 -1.2456 00001100 0.00006561 0.6766 -3.1234 11010010

0.00531441 -0.0055 1.8375 00100010 0.00000729 -0.4259 -4.3091 10110110

0.00531441 1.7718 -0.0551 00101000 0.00000729 -2.7954 -3.7071 11110001

0.00059049 2.0642 2.2822 10001001 0.00000729 3.9004 -1.9574 01001111

0.00059049 2.2681 2.8663 10000011 0.00000729 4.6908 -0.7853 01111001

0.00059049 2.3827 0.1406 10011000 0.00000729 -0.1127 -4.9053 10110101

0.00059049 2.4245 -0.385 00111000 0.00000729 -4.5989 -1.1886 01101101

0.00059049 0.326 -2.7279 01010010 0.00000729 -2.3882 -4.0917 01100111

0.00059049 -0.0009 -1.9606 01110000 0.00000729 -0.8467 -4.7231 00110111

0.00059049 2.684 2.1621 00001011 0.00000729 2.7341 -3.6192 11011010

0.00059049 -1.254 -1.7679 01100001 0.00000729 -1.7492 4.1898 11011100

0.00059049 0.98 2.3823 10001010 0.00000729 2.9141 -3.0597 01011110

0.00059049 -2.4825 -1.8487 01001010 0.00000729 4.5749 1.3161 11110010

0.00059049 2.3851 1.6304 11000001 0.00000729 2.7892 -4.2216 00111101

0.00059049 -1.2729 2.4289 11000100 0.00000729 -3.5122 -2.6455 01011011

0.00059049 2.1891 -1.5783 00011001 0.00000729 2.5462 3.45 10011011

0.00059049 1.8212 -1.9934 01011000 0.00000729 3.3088 3.0581 11000111

0.00059049 -0.5915 -2.4952 01100010 0.00000729 2.8535 3.902 10001111

0.00059049 -0.9573 -2.1081 10100001 0.00000729 -1.7227 3.5885 11001110

0.00059049 -2.7262 0.3693 00010101 0.00000729 -1.3682 4.8561 10011101

0.00059049 2.2991 1.101 11001000 0.00000729 -3.1845 -3.0991 11101001

0.00059049 -2.3768 -1.2394 01001001 0.00000729 0.6565 4.6133 10111001

0.00059049 -1.882 1.0372 01000110 0.00000729 2.8609 2.9917 11011001

Continued on next page

APPENDIX A. CONSTELLATION COORDINATES 101

Table A.9 – continued from previous page

Probability X Coord. Y Coord. Bit Mapping Probability X Coord. Y Coord. Bit Mapping

0.00059049 -0.1135 -2.4431 00110010 0.00000729 -1.2572 4.1354 10101110

0.00059049 -0.173 2.4314 10100010 0.00000729 -4.2125 0.8918 01110101

0.00059049 1.2152 -2.2178 10010100 0.00000729 3.6955 -3.1969 00011111

0.00059049 -0.5436 -3.0462 00100110 0.00000729 -1.8151 -4.1604 11010011

0.00059049 -1.9075 -1.7075 01000011 0.00000729 4.5812 -0.194 01111010

0.00059049 3.004 -0.7756 00010011 0.00000729 4.1917 -0.6672 01110011

0.00059049 -1.9719 -0.2558 00100101 0.00000729 -3.5202 3.611 11010101

0.00059049 1.0394 -2.7529 00010110 0.00000729 -4.4177 -0.5008 11100101

0.00059049 1.6259 -2.5398 00011010 0.00000729 -2.6357 -3.1735 01101011

0.00059049 -2.4547 1.3351 01000101 0.00000729 4.8947 0.4289 11111000

0.00059049 1.4842 2.681 10010001 0.00000729 3.1033 2.6017 10101011

0.00059049 2.888 1.1463 11000010 0.00000729 -1.059 -4.1792 11100110

0.00059049 -1.9173 0.5261 00000111 0.00000729 -2.9423 3.6456 11001101

0.00059049 1.3893 -1.7325 00011100 0.00000729 1.3768 -4.4745 01111100

0.00059049 0.0778 -3.1958 10110000 0.00000729 2.0946 -4.0201 01011101

0.00059049 2.4016 -2.0974 00001110 0.00000729 4.1351 2.1198 00101111

0.00059049 -1.8362 -1.1896 01100100 0.00000729 -2.141 3.9654 11010110

0.00059049 -2.3411 0.7677 10000101 0.00000729 1.7214 4.2225 10110011

0.00059049 0.647 -2.3584 00110100 0.00000729 -0.2668 4.5221 10111100

0.00059049 -2.1815 2.2753 10001100 0.00000729 0.9136 -4.93 01110110

0.00059049 -1.2101 -2.6392 01010001 0.00000729 -2.4426 3.6144 10011110

0.00059049 -0.5131 -1.9109 00110001 0.00000729 2.2734 3.8174 10010111

0.00059049 2.6736 -1.3587 01001100 0.00000729 3.2265 2.1317 11001011

0.00059049 -2.4387 -0.6923 10100100 0.00000729 -3.1347 3.0896 10101101

0.00059049 -1.6264 -2.2017 00100011 0.00000729 -0.8922 4.6893 10100111

0.00059049 0.4113 2.4449 10010010 0.00000729 4.2077 0.0664 10111010

0.00059049 -2.6278 -0.1936 00101100 0.00000729 2.2295 -3.5783 00111110

0.00059049 2.9697 -0.1545 00101010 0.00000729 -4.2309 1.5143 01010111

0.00059049 -0.717 2.4056 10000110 0.00000729 3.688 2.4871 11100011

Continued on next page

APPENDIX A. CONSTELLATION COORDINATES 102

Table A.9 – continued from previous page

Probability X Coord. Y Coord. Bit Mapping Probability X Coord. Y Coord. Bit Mapping

0.00059049 -2.1821 0.1623 00001101 0.00000729 0.5037 -4.5472 11110100

0.00059049 2.9608 0.462 10101000 0.00000729 4.0104 1.5266 11101010

0.00059049 0.8897 -1.8333 01010100 0.00000729 -4.066 -1.6463 11101100

0.00059049 2.4247 0.6169 11100000 0.00000729 -3.8863 -2.2014 01101110

0.00059049 2.376 -0.9256 01101000 0.00000729 4.279 -1.3894 00111011

0.00059049 -1.9236 -0.7214 00101001 0.00000081 -2.7283 4.2552 11011110

0.00059049 0.4314 -1.9494 11010000 0.00000081 -0.056 5.124 10111011

0.00006561 -2.1183 -2.3875 11100001 0.00000081 4.1336 -2.8294 01011111

0.00006561 -3.3155 2.6617 10001101 0.00000081 -4.9748 -0.4399 10101111

0.00006561 1.4994 2.1951 10011001 0.00000081 -3.2235 -2.515 01101111

0.00006561 -2.3175 3.0375 11001100 0.00000081 2.1172 -4.5882 10111110

0.00006561 -1.4764 -3.5851 11010001 0.00000081 -1.5197 -4.8173 11110110

0.00006561 3.53 0.5921 10111000 0.00000081 2.2307 4.4161 11011011

0.00006561 0.0525 2.9815 10110010 0.00000081 1.2495 4.7906 10011111

0.00006561 3.6678 -1.3628 01101001 0.00000081 -4.0818 3.0454 11011101

0.00006561 3.7251 -0.8247 01111000 0.00000081 4.793 -1.8105 01111101

0.00006561 0.9087 -3.9864 10110100 0.00000081 5.4751 1.4035 11111010

0.00006561 -1.172 -3.221 00110011 0.00000081 -4.5569 -1.8304 11111100

0.00006561 -3.8001 -0.8226 10101100 0.00000081 3.7078 -2.4634 00111111

0.00006561 4.0332 0.6043 01101010 0.00000081 3.352 -3.7831 01111110

0.00006561 -0.5438 3.9604 10101001 0.00000081 -2.0595 -5 11110011

0.00006561 -2.8996 0.963 01000111 0.00000081 -4.2101 2.0803 11101101

0.00006561 -2.7599 -2.4954 01001011 0.00000081 -4.03 -3.2078 11010111

0.00006561 0.5128 -3.5586 00110110 0.00000081 -4.9497 0.2784 10111101

0.00006561 3.741 -0.2793 00111010 0.00000081 4.0804 4.2673 10110111

0.00006561 -3.5958 1.1413 01010101 0.00000081 4.7593 2.0023 11101011

0.00006561 -3.5545 1.8935 01100101 0.00000081 3.7293 3.4825 11001111

0.00006561 1.0696 3.1085 10001011 0.00000081 -3.0021 -4.4793 11111001

0.00006561 -2.9546 2.0739 11010100 0.00000081 4.842 3.584 11100111

Continued on next page

APPENDIX A. CONSTELLATION COORDINATES 103

Table A.9 – continued from previous page

Probability X Coord. Y Coord. Bit Mapping Probability X Coord. Y Coord. Bit Mapping

0.00006561 -3.6701 0.5711 00100111 0.00000081 -4.8791 0.9054 01110111

0.00006561 -2.5201 1.8641 11000101 0.00000081 -4.4793 -2.3754 11101110

0.00006561 -3.3116 0.1374 10100101 0.00000081 4.5419 -2.2344 01111011

0.00006561 3.4818 1.1454 11001010 0.00000081 -5.6384 -0.3315 11110101

0.00006561 1.0571 -3.4085 01110100 0.00000009 1.6651 -5.4917 11111110

0.00006561 -2.0661 -3.4774 01110001 0.00000009 5.3404 0.8641 11111011

0.00006561 -2.7651 2.6266 11100100 0.00000009 -3.9444 -2.7553 11101111

0.00006561 3.4856 0.0957 11011000 0.00000009 5.1786 -1.3959 01111111

0.00006561 3.5757 1.7936 11000011 0.00000009 4.3924 3.488 11011111

0.00006561 -4.115 0.2999 00010111 0.00000009 -4.4326 2.5487 11111101

0.00006561 3.1992 -1.8705 00011011 0.00000009 -5.6009 0.6667 10111111

0.00006561 -3.031 1.4423 01001101 0.00000009 -7.7859 1.4055 11110111

0.00006561 1.3385 3.6193 10010101 0.00000001 -5.4258 1.8394 11111111

Appendix B

Source Code

This Chapter describes and includes selected portions of the source code used in

designing and simulating the PO constellations. The Python Programming Lan-

guage was used and the code is commented throughout following the # character

(see www.python.org for more information).

B.1 Optimization

Code included here deals with creating the PO constellations.

B.1.1 Initializing a Constellation
#===================== INIT CONSTELLATION BLOCK ================

N = 16

print "N=",N

#number of bits needed

M = int(math.ceil(math.log(N,2)))

print "M=",M

probability of 0

P0=0.9

#Average energy (not sure this works properly right now, but needs to be set anyway)

104

APPENDIX B. SOURCE CODE 105

Pav=1.0

N_0 = 0.33

SNR = 2.0

N_0 = (Pav/(1.0*M)) / (10.0**(SNR/10.0))

print "N_0 =",N_0

os.chdir("saved-constellations")

#set initial constellation

C = initconst.newConst_circles(M,P0,Pav)

C = initconst.zeromeanCon(C)

C = initconst.avgenergyCon(C,Pav)

C2 = initconst.grid(M,P0)

C2 = initconst.zeromeanCon(C2)

C2 = initconst.avgenergyCon(C2,Pav)

ugly = [(0.85,-1.0,-1.0),(0.01,0.01,0.01),(0.01,0.02,0.02),(0.01,0.01,0.02),

(0.01,0.02,0.01),(0.01,0.03,0.01),(0.01,0.03,0.02),(0.01,0.01,0.03),

(0.01,0.03,0.03),(0.01,0.04,0.01),(0.01,0.02,0.04),(0.01,0.01,0.04),

(0.01,0.04,0.04),(0.01,0.05,0.01),(0.01,0.02,0.05),(0.01,0.01,0.05)]

ugly = initconst.zeromeanCon(ugly)

ugly = initconst.avgenergyCon(ugly,Pav)

#print C2

global con

con = C2

#con = ugly #C for circles, C2 for grid. circles better for small N, grid better for large N

#print "using UGLY!!"

print "Energy is",getEnergy(con)

B.1.2 Setting Up and Running the GUI

This is the code used to initialize and operate the display and interface which shows
the constellations changing over time and allows the user to stop/start/save/load
constellations.

#=================== SETTING UP GUI ======================

clen = len(con)

crange = range(0,clen)

canW = 1000

canH = 1000

g = math.floor(50.0/P0) #graphical scaling constant

g=100 #defaults value if not set/overwritten

ds = 3 #graphical dot size

x0 = math.floor(canW/2)

y0 = math.floor(canH/2)

#initialize tkinter GUI components

root = Tk()

canvas = Canvas(root,width=canW, height=canH)

canvas.pack()

#bind input events to canvas to allow user interaction

canvas.bind_all("<Key>",eventkeypress) #interrupt to deal with a keyboard key press

#set up canvas

bg = canvas.create_rectangle(0,0,canW,canH,fill="white")

xaxis = canvas.create_line(0,y0,canW,y0,fill="black")

yaxis = canvas.create_line(x0,0,x0,canH,fill="black")

#set up initial constellation display

pts = range(0,clen)

APPENDIX B. SOURCE CODE 106

labs = range(0,clen)

for i in crange:

pts[i] = canvas.create_oval(x0+con[i][1]*g - ds,y0-con[i][2]*g - ds,x0+con[i][1]*g + ds,

y0-con[i][2]*g + ds,fill="red")

prob = math.floor(con[i][0]*100000.0)/100000.0

labs[i] = canvas.create_text(x0+con[i][1]*g + ds,y0-con[i][2]*g + ds,anchor="nw",fill="black",text=prob)

#===

#start the app

print "\nKeyboard commands:"

print "Press g to start pairwise optimization"

print "Press s to stop operation"

print "Press o to save current constellation to txt/ps file pair"

print "Press i to load a constellation from txt file"

print "Press q to quit"

flag = 0

while flag>=0:

try:

canvas.update() #always update canvas

if flag==1: #if in optimization state,

doPair() #run optimize pair code

except tkinter.TclError:

print "You closed the display window. Exiting without error."

flag = -2 #set flag to not try closing window (user already closed)

pass

print "Exiting ... "

if flag!=-2: #do not try to close if user close manually already (flag -2)

canvas.destroy() #close the tkinter display to avoid window buildup

print "Goodbye."

B.1.3 Optimizing Pairs

The GUI code above repeatedly calls “doPair()” which is where the pair work hap-
pens. This function is another manager for the GUI (essentially updates the new
positions of the points once they have been optimized), but it does call the actual
optimization code, “optimizepair(),” for a random pair of points in the constellation.

def doPair():

global con

global N_0

s1 = random.randrange(0,clen)

s2 = random.randrange(0,clen)

while s2==s1:

s2 = random.randrange(0,clen)

con = optpair.optimizepair(con,N_0,Pav,s1,s2)

canvas.coords(pts[s1],x0+con[s1][1]*g - ds,y0-con[s1][2]*g - ds,

x0+con[s1][1]*g + ds,y0-con[s1][2]*g + ds)

canvas.coords(pts[s2],x0+con[s2][1]*g - ds,y0-con[s2][2]*g - ds,

x0+con[s2][1]*g + ds,y0-con[s2][2]*g + ds)

canvas.coords(labs[s1],x0+con[s1][1]*g + ds,y0-con[s1][2]*g + ds)

canvas.coords(labs[s2],x0+con[s2][1]*g + ds,y0-con[s2][2]*g + ds)

def optimizepair(con,N_0,Pav,s1,s2):

E=Pav

APPENDIX B. SOURCE CODE 107

conrange = range(0, len(con))

#measuring correct E

emeas=0.0

for i in conrange:

emeas += con[i][0]*normsq(con[i][1],con[i][2])

#pass

E = emeas

#perform 2-D minimization of SER moving only 2 points

#get circle of S2

rt2n = math.sqrt(2*N_0)

p1 = con[s1][0] #load data to local vars from con to simplify code

x1 = con[s1][1]

y1 = con[s1][2]

p2 = con[s2][0]

x2 = con[s2][1]

y2 = con[s2][2]

find vector a = b / p1, and energy of other pts d

ax = 0.0

ay = 0.0

d = 0.0

c = 1.0*p2/p1

for i in conrange:

if (i!=s1) and (i!=s2):

ax += -1.0*con[i][0]*con[i][1]/p1

ay += -1.0*con[i][0]*con[i][2]/p1

d += con[i][0]*normsq(con[i][1],con[i][2])

#pass

#pass

calculate centre and radius of circle for s2

xcen = (p1*ax*c)/(p1*c*c+p2)

ycen = (p1*ay*c)/(p1*c*c+p2)

h = p1*ax*ax - ((p1*ax*c)**2)/(p1*c*c+p2) + p1*ay*ay - ((p1*ay*c)**2)/(p1*c*c+p2)

r2 = (E-d-h)/(p1*c*c+p2)

#print E,d,h,(p1*c*c+p2)

#print "r2 is ",r2

r = math.sqrt(r2)

#optimize s1 s2 over the contrained circle (x2 - xc)^2 + (y2-yc)^2 = r^2,

and x1 = ax - c*x2, y1 = ay - c*y2

theta = math.atan((y2-ycen)/(x2-xcen))

maxtheta = theta + 2*math.pi

minflag = 1

min = 0.0

mintheta = 0.0

while theta <= maxtheta:

x2n = xcen + r*math.cos(theta)

y2n = ycen + r*math.sin(theta)

x1n = ax - c*x2n

y1n = ay - c*y2n

#get sum of SER parts that change as s1 s2 change location

sum1 = 0.0

sum2 = 0.0

sumi = 0.0

for i in conrange: #this is the calculation of F_12

if i!=s1:

if i==s2:

sum1+=p1*qfunc.normp((distance(x1n,y1n,x2n,y2n)/rt2n)

+ (rt2n*math.log(p1/p2)/(2*distance(x1n,y1n,x2n,y2n))))

else:

sum1+=p1*qfunc.normp((distance(x1n,y1n,con[i][1],con[i][2])/rt2n)

+ (rt2n*math.log(p1/con[i][0])/(2*distance(x1n,y1n,con[i][1],con[i][2]))))

APPENDIX B. SOURCE CODE 108

if i!=s2:

if i==s1:

sum2+=p2*qfunc.normp((distance(x2n,y2n,x1n,y1n)/rt2n)

+ (rt2n*math.log(p2/p1)/(2*distance(x2n,y2n,x1n,y1n))))

#pass

else:

sum2+=p2*qfunc.normp((distance(x2n,y2n,con[i][1],con[i][2])/rt2n)

+ (rt2n*math.log(p2/con[i][0])/(2*distance(x2n,y2n,con[i][1],con[i][2]))))

#pass

if (i!=s1) and (i!=s2):

sumi += con[i][0]*(qfunc.normp((distance(con[i][1],con[i][2],x1n,y1n)/rt2n)

+(rt2n*math.log(con[i][0]/p1)/(2*distance(con[i][1],con[i][2],x1n,y1n)))))

sumi += con[i][0]*(qfunc.normp((distance(con[i][1],con[i][2],x2n,y2n)/rt2n)

+(rt2n*math.log(con[i][0]/p2)/(2*distance(con[i][1],con[i][2],x2n,y2n)))))

#pass

#pass

sersum = sum1+sum2+sumi

if minflag == 1 :

min = sersum

mintheta = theta

minflag = 0

else:

if sersum < min:

min = sersum

mintheta = theta

theta+= math.pi/50.0

#size of divisor here has crucial role affecting speed and accuracy of process. (Larger is slower but better)

#pass

#print "min theta is ",mintheta," with min ",min

#replace old pair with new pair

x2new = xcen + r*math.cos(mintheta)

y2new = ycen + r*math.sin(mintheta)

x1new = ax - c*x2new

y1new = ay - c*y2new

newcon = replacepoint(con,s1,x1new,y1new)

newcon = replacepoint(newcon,s2,x2new,y2new)

#return new constellation

return newcon

B.2 Simulation

Code included here deals with the simulations used to test the PO constellations.

B.2.1 Loading Constellations

The following code is used to list the available constellation files in the working
directory that the user can choose to load for simulation.

#list constellations in load directory

print os.path

os.chdir("C:\Users\Brendan\Documents\Eclipse_Workspace\constellation\src\simulator\load-constellations")

#switch to input directory (may need to play with this for linux operation)

APPENDIX B. SOURCE CODE 109

dirList=os.listdir(os.path.curdir) #get list of files in input directory

print "Available Constellations:"

for i in range(0,len(dirList)): #show user a list of available files

print i,":",dirList[i]

#get user input to choose constellation to load, validate input

choice =-1

while (choice<0) or (choice>=len(dirList)):

print "Please enter choice [0 -",len(dirList)-1,"]:"

instr = raw_input() #get keyboard input

try:

choice = int(instr) #try to cast as integer

if (choice<0) or (choice>=len(dirList)):#check range of integer

print "Out of acceptable range."

except ValueError: #if input NOT integer, loop back

print "Enter integer values only, please."

choice = -1

filename = dirList[choice] #take filename according to user selection

print "Loading from file:",filename

#read saved constellation file

fileread = open(filename,"r") #open input file

rawcon = []

line = fileread.readline() #read first line

while line!="": #continue until end of file

rawcon.append(line[0:len(line)-1]) #store current line

line = fileread.readline() #read next line

#parse raw file data into constellation structure

con = []

for s in rawcon: #for each raw string...

p=0.0

x=0.0

y=0.0

c1=0

c2=0

for c in range(0,len(s)): #step through the raw string

if s[c]==’,’ and c1!=0: #tokenize with commas

c2=c

if s[c]==’,’ and c1==0:

c1=c

p = float(s[0:c1]) #set (p,x,y) from string sections

x = float(s[c1+1:c2])

y = float(s[c2+1:len(s)])

print "p=",p," x=",x," y=",y

con.append((p,x,y)) #add point to constellation

B.2.2 Running the Simulations

The following code is used for the BER simulations (it also reports SER performance)
for the constellation “con” being tested over the range of SNR set in the code.

lencon = len(con)

conrange = range(0,lencon)

Es = getEnergy(con) #get energy form constellation. Should be 1.0 in all our tests.

print "Es =",Es

Eb = Es / math.ceil(math.log(lencon,2))

print "Eb =",Eb

minSNR = 0.0

maxSNR = 12.0 #set SNR range to test over, and step size

APPENDIX B. SOURCE CODE 110

stepSNR = 1.0

numsym = 10000000 #number of symbols to simulate at each SNR step

print "Testing performance with",numsym,"points."

curSNR = minSNR

while curSNR <= maxSNR: #step up through reasonable SNR values

No = Eb / (10.0**(curSNR/10.0)) #set noise energy for this SNR

print "SNR =",curSNR," No=",No

errorcount = 0 #reset count of errors

symcount=0 #reset number of symbols for this SNR test

while symcount<numsym: #loops through numsym generated symbols

rnum = random.random() #random number

tsum = 0.0 #cumulative temporary sum to pick

pick=-1

while tsum<rnum: #loop through con until cumulative prob. hits random number

pick+=1

tsum+=con[pick][0]

pass

#print pick #pick is the selected symbol

xsent = con[pick][1] #set target x,y of transmitted pt

ysent = con[pick][2]

xrec = xsent + random.gauss(0,math.sqrt(No/2.0)) #add noise during transmission

yrec = ysent + random.gauss(0,math.sqrt(No/2.0)) #No/2 because of 2 dimensions

#decode the received x,y to a symbol

#rec = decodeML(con,xrec,yrec) #decode received with ML

rec = decodeMAP(con,No,xrec,yrec) #decode with MAP

if rec!=pick: #if decode does not match sent, error

errorcount+=1

symcount+=1 # go to next test symbol

print "Error rate =",((1.0*errorcount)/numsym) #print error rate at this SNR

curSNR+=stepSNR #step up to next SNR

pass

B.2.3 Tandem Scheme

These two bits of code were used to test the performance of the various tandem
scheme codes used. The main simulation code is shown first, followed by the code
used in the soft Viterbi decoder.

countoverallerrorruns = 0

totaloverallerrorruns = 0

SNR = float(startSNR)

while SNR<=stopSNR:

No = Eb / (10.0**(SNR/10.0))

averageBER = 0

totalcorrect = 0

trynum = 0

counterrorruns = 0

totalerrorruns = 0

while trynum<trials: #loop through number of trials indicated

#print "Trial #",trynum

#generate random message according to source distribution

message = "" #initialize message string

i=0

while i<N: #loop through message bits

rnum = random.random()

if rnum>p:

message = message + "1"

APPENDIX B. SOURCE CODE 111

else:

message = message + "0"

i+=1

#print "Message:",message

#compress (lossless) message with Huffman encoder

encodedmessage=""

byte = 0

while byte*nb <N: #loop through message one symbol at a time

word = message[byte*nb:(byte+1)*nb] #get next source symbol of nb bits

encodedmessage=encodedmessage+huffEncode[word] #encode using huffman code

byte+=1 #increment counter

#print "Encoded:",encodedmessage

#check statistics of encoded message

l=0

countzero=0

while l<len(encodedmessage):

if encodedmessage[l]=="0":

countzero+=1

l+=1

p0enc = 1.0*countzero/len(encodedmessage)

print "Compressed message has p=",p0enc

#encode compressed message with convolution encoder

encodedmessage2 = "00"+encodedmessage #init to state 00

convmessage=""

j=0

while j+2<len(encodedmessage2):

convinput=encodedmessage2[j:j+K]

bit1=int(convinput[0])*int(G1[2]) + int(convinput[1])*int(G1[1]) + int(convinput[2])*int(G1[0])

if bit1==0 or bit1==2:

convmessage=convmessage+"0"

else:

convmessage=convmessage+"1"

bit2=int(convinput[0])*int(G2[2]) + int(convinput[1])*int(G2[1]) + int(convinput[2])*int(G2[0])

if bit2==0 or bit2==2:

convmessage=convmessage+"0"

else:

convmessage=convmessage+"1"

j+=1

#print "Convo’d:",convmessage

#"transmit" the convolution encoded message over BPSK channel with AWGN

received = []

r = 0

while r<len(convmessage):

if convmessage[r]=="0":

r1 = -1.0 + random.gauss(0,math.sqrt(No/2))

else:

r1 = 1.0 + random.gauss(0,math.sqrt(No/2))

if convmessage[r+1]=="0":

r2 = -1.0 + random.gauss(0,math.sqrt(No/2))

else:

r2 = 1.0 + random.gauss(0,math.sqrt(No/2))

received.append((r1,r2))

r+=2

#print "Received:",received

probencmessage = viterbi.softViterbi(received)

#print "Viterbi:",probencmessage

#decode output of Viterbi algorithm with Huffman decode

APPENDIX B. SOURCE CODE 112

decodedmessage = ""

j=0

flagerrorrun = 0

errorrunstart = 0

while j<len(probencmessage):

if probencmessage[j]!=encodedmessage[j]:

errorrunstart=int(j)

flagerrorrun=1

j=len(probencmessage)

#counterrorruns+=1

#totalerrorruns+=len(message)-len(decodedmessage)

pass

j+=1

starthd = 0

endhd = starthd+1

while starthd<len(probencmessage) and (endhd-starthd)<11:

if flagerrorrun==1 and endhd > errorrunstart:

counterrorruns+=1

totalerrorruns+=len(message)-len(decodedmessage)

flagerrorrun=0

cword = probencmessage[starthd:endhd]

if cword in huffDecode:

decodedmessage = decodedmessage + huffDecode[cword]

starthd = endhd

endhd = starthd+1

else:

endhd+=1

if endhd-starthd==11:

#print "End of message is lost to noise corruption"

counterrorruns+=1

totalerrorruns+=len(message)-len(decodedmessage)

pass

#print "Decoded:",decodedmessage

#get BER of this trial

i=0

trialcorrect = 0

#startrunfailure = 0

while i<len(decodedmessage) and i<len(message):

if decodedmessage[i]==message[i]:

trialcorrect+=1

#startrunfailure+=1

i+=1

trialber = 1.0 - (1.0*trialcorrect/len(message))

#print "Trial BER =",trialber

#if startrunfailure<len()

totalcorrect +=trialcorrect

averageBER +=trialber

trynum+=1 #increment trial counter

averageBER = 1.0*averageBER/trials

#print "For SNR ",SNR,", Average BER =",averageBER #," or ",1.0-(1.0*totalcorrect/(N*trials))

#using totalcorrect not necessary, adding trialber is accurate

print "SNR = ",SNR

print averageBER

if counterrorruns>0:

print "Average block error length =",1.0*totalerrorruns/counterrorruns

print "(or, ",(1.0*totalerrorruns)/(trials*1.0),")"

pass

else: print "No run errors"

totaloverallerrorruns+=totalerrorruns

APPENDIX B. SOURCE CODE 113

countoverallerrorruns+=counterrorruns

SNR+=stepSNR

if countoverallerrorruns>0:

print "Overall average block error length =",1.0*totaloverallerrorruns/countoverallerrorruns

The input to the soft Viterbi decoder below is simply a list of observed voltages from
the channel after being disturbed by noise.

def softViterbi(obs):

states=[0,1,2,3]

possible_preds = [#[target][source]

[0,1],

[2,3],

[0,1],

[2,3]

]

#[source][target] expected voltages to be observed given transition from source to target

expected_obs = [

[(-1.0,-1.0), (None,None), (1.0,1.0), (None,None)],

[(1.0,1.0), (None,None), (-1.0,-1.0), (None,None)],

[(None,None), (-1.0,1.0), (None,None), (1.0,-1.0)],

[(None,None), (1.0,-1.0), (None,None), (-1.0,1.0)]

]

transition_bits = [#[from][to]

["0","","1",""],

["0","","1",""],

["","0","","1"],

["","0","","1"],

]

pathmetrics =[#know initial state is 0 (pad the message with two 0’s to get this)

[0],

[1000],

[1000],

[1000]

]

predecessors = [

[0],

[0],

[0],

[0],

]

time=1

while time<len(obs)+1:

for s in states:

possPMs = []

possPMpred = []

for posspred in possible_preds[s]:

possPMpred.append(posspred)

possPMs.append(pathmetrics[posspred][time-1]

+(obs[time-1][0]-expected_obs[posspred][s][0])**2+(obs[time-1][1]-expected_obs[posspred][s][1])**2)

if possPMs[0]<possPMs[1]:

pathmetrics[s].append(possPMs[0])

predecessors[s].append(possPMpred[0])

else:

pathmetrics[s].append(possPMs[1])

predecessors[s].append(possPMpred[1])

time+=1

APPENDIX B. SOURCE CODE 114

revmessage=""

trace = len(pathmetrics[0])-1

curstate = 0

minPM = 100000000

for s in states:

if pathmetrics[s][trace]<minPM:

curstate=s

minPM = pathmetrics[s][trace]

while trace > 0:

prevstate = predecessors[curstate][trace]

revmessage = transition_bits[prevstate][curstate]+revmessage

curstate = int(prevstate)

trace -= 1

#message=str(revmessage.reverse())

return revmessage

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Problem Statement
	Contributions
	Thesis Outline

	Background
	Source and Channel Models
	Non-Uniform I.I.D. Binary Source
	AWGN Channel

	Modulation and Demodulation
	Quadrature Amplitude Modulation
	ML vs. MAP Decoding

	Source and Channel Coding
	Huffman Code
	Convolutional Channel Coding

	Pairwise Optimization of M-ary Constellations
	Pairwise Optimization Algorithm and Design
	Algorithm

	Initial Constellations
	Rectangular QAM
	Concentric Circles
	Bad Constellations

	Results and Performance
	Impact of Initial Constellations
	Binary and Quaternary Constellations
	16-ary Constellations and Robustness
	64-ary and 256-ary Constellations

	Designing Maps for the PO Constellations
	Initialization and Probability Constraint
	Objectives
	Defining the Neighbourhood and Weighted Hamming Score

	Map Improvement Algorithm
	Results and Performance
	16-ary Constellations
	64-ary and 256-ary Constellations

	Comparison to Source and Channel Coding
	System for Comparison
	Performance Comparison
	Complexity Comparison

	Conclusions
	Summary
	Future Work

	Bibliography
	Constellation Coordinates
	Source Code
	Optimization
	Initializing a Constellation
	Setting Up and Running the GUI
	Optimizing Pairs

	Simulation
	Loading Constellations
	Running the Simulations
	Tandem Scheme

