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Abstract

In response to the growing demand for mobile digital personal communication ser-
vices, future wireless products will provide multimedia information transmission. In
such applications voice, text, image and video data need to be reliably and efficiently
transmitted over wireless communication channels. These channels are typically very
noisy (high BER) and often exhibit memory. Based on Shannon’s separation prin-
ciple, source coding and channel coding are often treated as separate entities and
interleaving techniques are used to render the channel memoryless. However, these
operations limit the optimality that the system can achieve and often introduce ad-

ditional complexity and delay.

This thesis addresses the technique of joint source-channel coding for image trans-
mission over channels with memory as an alternative to the so-called tandem coding
schemes. The channel model considered is a discrete binary additive noise channel,
where the noise process is generated via stationary homogeneous Markov chains. The
proposed Discrete Cosine Transform (DCT) based system consists of a channel op-
timized quantization scheme which exploits the channel memory by incorporating
the characteristics of the correlated noise in the quantizer design. Experimental re-
sults show that this simple system  which employs a fixed bit allocation table
provides significant improvements over traditional tandem systems, especially dur-
ing bad channel conditions (high bit error rate and noise correlation). The loss of
optimality due to the use of the fixed bit allocation method is also assessed. It is

shown that the loss is very small for various images; this suggests that a reduction in
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the encoder/decoder complexity and the system bandwidth requirements can also be

achieved.
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Chapter 1

Introduction

1.1 Shannon’s Separation Principle

One important problem addressed by the communication engineer is the achievement
of reliable and efficient transmission of data signals from one point to another over
an inherently noisy medium. Data signals may represent various types of information
such as text, speech, image, video, or combination of these. Transmission usually
takes place in space or time (storage) and the medium is often referred to as the
communication channel which can be wired (twisted wire pair, cable) or wireless

(satellite or radio channels).

Typically, a data source is compressed through a source encoder to remove its
inherent redundancy; this results in reducing the bandwidth requirements. Such
procedure is called source coding. Source redundancy is usually manifested by the
source memory or the non-uniformity of its distribution, or a combination of both
(e.g., an asymmetric Markov source). Unfortunately this removal of the redundancy
can, in turn, introduce a great deal of sensitivity to transmission noise. Therefore,
the role of the channel encoder is to add controlled redundancy into the output of the

source encoder in order to combat the channel noise. This procedure is called channel



coding. The output of the channel encoder is then sent over a digital channel *. The
digital channel output is subsequently decoded via a channel decoder and a source
decoder. A replica of the originally sent message is produced but often with distortion.
Given a source, a channel, and a distortion measure, the goal of a communication
system engineer is to minimize the overall distortion under various constraints (on the
system delay, spectrum, complexity, etc.). A communication system formed in this
way is called a tandem source-channel coding system. In a tandem system, source and
channel coders are separately designed and concatenated to form a complete system.

Its optimality is justified by Shannon’s source-channel separation principle [39], [40].

Shannon’s source-channel separation principle is the direct consequence of his
source and channel coding theorems. Assume we are transmitting a discrete, station-
ary and ergodic source over a discrete memoryless channel. According to Shannon’s
source coding theorem, there exists a mapping between the source samples and the
reproduction codewords such that for a given distortion D, R(D) bits per source
sample are sufficient to enable the reconstruction of the source samples with an av-
erage distortion not exceeding D when we operate on source blocks with arbitrarily
long length. Thus R(D) provides a theoretical lower bound for the source coding
rate R at given fidelity D. Conversely, if R is the given source coding rate, D(R)
is the minimum possible average distortion. Here R(D) is called the rate-distortion
function and its inverse D(R) is called the distortion-rate function [6]. According
to Shannon’s channel coding theorem, information can be transmitted reliably (with
asymptotically vanishing probability of decoding error) at rate R below a so-called
capacity C of the channel. Conversely, if the information rate is greater than the
channel capacity (R > C'), then the probability of decoding error will approach one.
Combining both source and channel coding theorems, we get the information trans-

mission theorem [24], [31] which states that when information is transmitted over a

3

xA digital (or discrete) channel consists of the modulator, the waveform channel, and the demod-
ulator. This thesis only considers digital channels.



noisy channel, it is possible to obtain a reconstruction with fidelity D, provided that
its capacity C' is greater than R(D), i.e., C > R(D). The significance of this theorem
justifies the Shannon’s separation principle since the channel only controls the rate

of the source but not the accuracy.

1.2 Literature Review

A tandem system based on Shannon’s separation principle has a noticeable drawback:
both source and channel coding theorems suggest we need to operate on codes with
arbitrarily long block length in order to achieve optimality. In practice, this translates
into large delay and complexity. In other words, the optimality of the tandem system
is constrained by the encoder/decoder delay and complexity. This drawback has
motivated some researchers to investigate the design of source codes and channel codes
jointly. By joint design, we mean that some characteristics of the source, channel and
distortion measure are incorporated into the design procedure. A system in which the
source and channel codes are jointly designed is called a joint source-channel coding
system.

Joint source-channel coding can in general be classified into three categories [34]:
(1) unequal error protection approach; (2) zero-redundancy channel coding approach;
and (3) combined source-channel coding approach.

In the unequal error protection approach, the basic idea is to treat the information
bits unequally and to use channel coding in such a way that the added bits provide
the highest protection to the most important class of bits, provide the second highest
protection to the second most important class of bits, and so on. In some cases, the
least significant bits are left totally unprotected. As an example in [32], Modestino
and Daut used 2-D PCM as the source encoder and provided selective error control
protection on those bits which contribute most significantly to the image reconstruc-

tion. In a similar work in [33] the authors applied the same idea for images with

3



transform coding techniques. In that case, since not all transform coefficients carry

the same amount of information, they are unequally channel coded.

In zero-redundancy channel coding, as the name implies, no channel coding tech-
nique is provided. Instead, it uses the residual redundancy from the source encoder
output to combat the channel noise. In [38], the residual redundancy in the DPCM
system was studied and used in a proposed joint source-channel coding system. As
a result, significant improvements were gained over other reference tandem systems,
especially at bad channel conditions. The only trade-off is an added complexity at

the decoder.

In the above two approaches, no channel information is used in the design of the
joint source-channel coding system. In the combined source-channel coding approach,
both the characteristics of the source and the channel are incorporated into the design

of a single code. This single code replaces both the source and channel codes.

Combined source-channel coding is sometimes called channel-optimized or channel-
matched coding and it has received considerable attention recently. In the late 60’s,
Kurtenbach and Wintz [26] followed the work of Lloyd [28] and Max [30] by deriv-
ing the necessary conditions of an optimal scalar quantizer design for noisy channels.
Later Farvardin and Vaishampayan [12] conducted similar studies. After the dis-
covery of Vector Quantization (VQ) [21], [27] in the early 80’s, Kumazawa et al.
[25] extended Kurtenbach and Wintz’s work on the design of scalar quantizers for
noisy channels to the kth dimension. The resulting vector quantizer is often called
COVQ (Channel-Optimized-Vector-Quantizer). Farvardin et al. extensively stud-
ied the complexity and design issues related to COVQ [14] [13]. Similar techniques
were used in the design of the Trellis waveform coder [5] and channel-matched Multi-
Stage VQ and Tree-Structured VQ [35]. A salient feature of a COVQ system is that
by incorporating the channel characteristics into the quantizer design, the resulting

quantizer trades higher quantization distortion for smaller channel distortion such



that the overall distortion is minimized.

The boundary between the unequal error protection approach and the zero-
redundancy coding approach can sometimes be blurred. In [3], [48], the authors used
both the source encoder output residual redundancy and unequal error protection
techniques to combat the channel noise. This raises the question on how to distribute
the total number of available bits between the source codes and the channel codes
for a tandem coding system. However, in general, no such guideline exists. Recent
work by Goldsmith [20] addressed the problem of optimal bit distribution between
the source encoder and channel encoder. For a joint source-channel coding system,
such question may not exist (e.g., combined source-channel coding). In most of
the previous joint source-channel coding work addressed above, the authors reported
that good performance was obtained with joint source-channel coding schemes. The
performance degradation of the system designed jointly was not as severe as that
of the tandem coding system under bad channel conditions. Thus the joint source-

channel coding system becomes an attractive alternative in wireless communication

application where the BER rates are usually high.

Almost all of the previous work on joint source-channel coding assumed a mem-
oryless Binary Symmetric Channel (BSC) model with the exception of [47], [36],
[23]. The assumption of this simple channel model is sometimes too optimistic for
most practical wireless communication channels which often exhibit memory. One
such example is the fading channel caused by multi-path propagation. Traditionally,
interleaving techniques are often used to render the channel memoryless. However
interleaving/de-interleaving are known to lower the channel capacity and introduce
extra delay into the system. In contrast, this thesis addresses the utilization of the
channel memory, an unfavorable condition, and its incorporation into the design of

the quantizers.

In a related work, Kumazawa et al. [25] studied the COVQ performance on real



images over the BSC and showed that greater performance results can be obtained
compared to a conventional vector quantizer which does not take into account the
channel characteristics. In [41], the authors developed a combined source/channel
coding scheme in which rate-compatible punctured convolutional codes are used for
channel error protection to transmit still images over noisy channels using subband
coding. More recently, Chen and Fisher [9] proposed an all-pass filtering technique to
design a robust COSQ (Channel Optimized Scalar Quantizer) system for the trans-
mission of transform and subband coded images. The purpose of the all-pass filter
is to transform any of a wide class of source distributions into a near-Gaussian dis-
tribution which has good pdf-optimized COSQ performance. All the previous work
in this area rely on the simple binary symmetric channel model in spite of the fact

that real-life communication channels have memory. This thesis deals with image

compression and transmission over noisy channels with memory.

1.3 Contributions

The contributions of this thesis are as follows:

(i) Channel optimized vector quantizers (COVQ) are designed for channels with
additive Markov noise. It incorporates the memory of the channel into the quantizer
design to obtain performance gains over COV(Q systems that employ interleaving.
Numerical results for generalized Gaussian sources and experimental results for image

sources are obtained.

(ii) A simple fixed bit allocation Discrete Cosine Transform (DCT) based COSQ
combined source-channel coding system is proposed for transmitting grey-level images
over a binary Markov channel. Experimental results are obtained for numerous images
demonstrating both objectively and subjectively that such a system can achieve a

superior performance over traditional tandem coding systems.



(iii) An integer programming technique is derived to obtain the optimal bit allo-
cation of the DCT coefficients such that the overall distortion of the COSQ system
is minimized. The performance loss due to the incorporation of the fixed bit alloca-
tion scheme in the COSQ system, as opposed to the use of optimal bit allocation, is

investigated.

1.4 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we introduce the basic
channel models, in particular a binary additive channel with memory. This chapter
also includes a detailed description of quantization techniques, with emphasis on chan-
nel optimized quantizer design. In Chapter 3, we present the basic theory of transform
coding and address the problem of optimal bit allocation of DCT coefficients in the
context of noisy channels. A DCT-based combined source-channel coding system for
image transmission over Markov channels is proposed and implemented in Chapter
4. We summarize the results and discuss various issues for future investigation in

Chapter 5.



Chapter 2

Channel Optimized Quantization

2.1 Channel Models

2.1.1 Discrete Memoryless Channels

A discrete (discrete-time, finite-alphabet) communication channel with input X and
output Y is characterized by: a finite input alphabet X, a finite output alphabet ),

and a set of transition probabilities

p(y|z) = PriYy=ylX =2}, z€X, andye) (2.1)

which indicate the probability of observing {Y = y} at the output of the channel given
that input {X = z} is transmitted. More generally, for a sequence of n input variables
X = (X, Xy, ..., X,) and a corresponding output sequence Y = (V7,Y5,...,Y},), the

channel is governed by a sequence of n-dimensional distributions:

p(ylx) = Pr{Y = y|X = x} (2.2)

where x € X" and y € Y".
A discrete memoryless channel (DMC) is a discrete channel with the property that

given the channel input at time £, the corresponding channel output is independent

8



Figure 2.1: Binary symmetric channel model

of the channel inputs and outputs other than at time k. More specifically, if we are
given a sequence of n successive inputs, x = (z1, %9, ..., x,) with the corresponding
output sequence y = (y1,¥2,.-.,Yn), then for a DMC, we can write the conditional

probability of y given x as

p(ylx) = H (Ye|zk). (2.3)

One simple yet important discrete memoryless channel model is the binary sym-
metric channel (BSC) (Figure 2.1) with channel cross-over probability €, where X' =
Y ={0,1} and p(0[1) = p(1(0) = e.

The most significant parameter associated with any channel is a number called the
channel capacity (or operational capacity) and is denoted by C. The significance of
the capacity C' is manifested through Shannon’s noisy channel coding theorem, which
states that reliable transmission of information at a fized data rate R is possible over
a channel if and only if R < C [39]. In order to characterize the channel capacity C
of a DMC, we need first to define the term “mutual information”. If X = x is sent

over the channel and Y = y is received, then the mutual information between events

{X ==z} and {Y = y} is defined by

PWT) e PElY)
p(y) " (@)

9
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The mutual information can be considered as a measure of the amount of informa-
tion that is transferred from the channel input to the channel output. More generally,

the mutual information I(X;Y) between random variables X and Y is given by:

[1>

I(X;Y)

Z Z p(z, y) log, p(yya:)

zeX yey p(

]
= Y bl y) log, 2

zeX yey p(gj)

(2.5)

From the definition of entropy and conditional entropy [11], we can write the

mutual information defined in Equation (2.5) as

[(X;Y) = H(Y) - HY|X) = H(X) — H(X|Y). (2.6)

The two conditional entropies, H(X|Y) and H(Y|X), have important physical
meanings. H(X|Y), often called equivocation, can be interpreted as the amount of
uncertainty about the input X given the received channel output Y; while H(Y|X)
can be considered as the amount of the noise entropy added to the channel (in case
of additive noise channels). Formally, the capacity of a discrete memoryless channel

is given by

C' =maxI(X;Y)

p(z)

(2.7)

where the maximum is taken over all possible input distributions p(x). Note that
Equation (2.7) is the definition of the information capacity of the channel. Shannon’s
noisy coding theorem establishes that for a DMC the information capacity is equal
to its operational capacity, which is defined as the maximum rate (in bits per channel
use) at which information can be transmitted with arbitrarily low probability of error.
In general, the calculation of the channel capacity given by Equation (2.7) doesn’t
always enjoy closed form expressions; numerical techniques are often employed for

the capacity computation such as the ones described in [7].
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For a BSC, its capacity C'gsc can be expressed via a simple closed form expression

CBSC =1- hb(ﬁ) (28)

3

where ¢ is the channel cross-over error probability and h,(-) is the binary entropy

function, hy(e) = —elogy e — (1 —€) logy(1 —€).

2.1.2 Channels with Memory

The assumption of “memorylessness” often contradicts the experimental data in real
life communication channels: the channel error sequences are typically bursty. In
practice the techniques of interleaving and de-interleaving are often employed to ren-
der the channel memoryless. However, it is well known that such operations may
lower the channel capacity value (in the case of information stable channels [2]) and
thus impose lower limits on the maximum data rate which can be reliably transmit-
ted. In addition, the interleaving and de-interleaving operations can never be ideal;
they often introduce delay into the system.

One large class of channels with memory is the class of finite-state channels [16],
which includes the Gilbert-Elliott model [19], and is often used to model many realistic
channels such as fading channels and channels with inter-symbol interference (ISI).
In this thesis, we consider a more explicit family of channels with memory where
the channel memory is exhibited via an additive noise process. More specifically, we

consider a binary channel with additive noise described by

for i = 1,2,3,..., where @ represents modulo 2 addition, and X;, Z;, and Y, are
the channel input, noise and output respectively. The input and noise sequences are
assumed to be independent of each other. The noise process {Z;}°, is generated by

the finite-memory contagion urn model described in [2]. According to this model,

11



the noise process {Z;}2, is a stationary ergodic Markov process of order M, i.e., for

i>M+1,

PT{Zz' = ez'|Zze1 =€ 1,-., 41 = 61} = PT{Zz' = €i|Zi71 =€ 1, Lim= €zeM}
(2.10)
where ¢; € {0,1}. Furthermore, {Z,;} depends only on the sum of the M previous

noise samples, and the noise transition probability is given by, for : > M + 1,

€+ ( ;QLMGJ')(S
14+ Mo

PT{ZZ':1|ZifM:eifM;---;Z’ifl 26171}: (211)

where e; € {0,1}, for j =i —M,...,i—1, and € is the channel bit error rate (BER),

which determines the marginal distribution of the noise process,

Pr{Z;=1} =e=1- Pr{Z; = 0}. (2.12)

The non-negative parameter ¢ in Equation (2.11) determines the amount of corre-
lation in {Z;} and it’s a measure of the burstiness within the noise samples. The
higher the noise correlation ¢ is , the more bursty the channel becomes. The corre-
lation coefficient of the noise process is given by % [2]. Note that when § = 0, the
channel model reduces to the (memoryless) binary symmetric channel (BSC) with
cross-over probability e. We further observe that the above channel can be entirely
described with only three parameters (¢, 4, and M). This channel model offers a
possible alternative to finite-state channels such as the Gilbert-Elliott noise model
[19].

In this thesis, we only consider the first-order (M = 1) Markov noise process case;

the noise transition probability can be found from Equation (2.11)

€+ ed

PT{ZZ':1|ZZ',1:€}: 1—}—(57

(2.13)

12



where e € {0, 1}, or written in matrix form, the state transition probability becomes

1—e+40 €
1—¢ €+0
Q(O[1) Q(11) T iys
The capacity of this first-order Markov channel can be calculated as [2]
) 1
C = lim max—I(X";Y") (2.15)
n—00 p(z") n
1
= lim max—|H((Y") - H(Y"| X" 2.16
T ma [ HO) = HO) (2.16)
.1 n
= 1— lim ;H(Z ) (2.17)

where X" 2 (X,, Xy,..., X)), Y* £ (V},Ys,...,Y,) and H(Z,|Z;) is the entropy
rate of the first-order Markov noise process. H(Zy|Z;) can be calculated by using the

method from [11], and we get

e+0

C=1 |1 e)hy s

) + ehy(

€
535 ). (2.19)
Again, hy(+) is the binary entropy function and the capacity is achieved with input
distribution p*(z™) = (3)" Vn. Note that the capacity of this channel model is
monotonically increasing with ¢ (for fixed €¢) and is monotonically decreasing with
¢ (for fixed 0), see Figure 2.2. When the noise correlation 0 increases, the channel
becomes more bursty; in the extreme case when § — oc, the noise process becomes

deterministic (H(Z|Z1) goes to zero) and the channel becomes noiseless. When the

noise correlation § = 0, we obtain (as expected) the capacity expression of the BSC

C =1 hyle). (2.20)
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Figure 2.2: Markov channel capacity C' versus noise correlation parameter § for vari-
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For an input block X = (X1, X, ..., X,,) and an output block Y = (Y7, Y5, ...,Y,),

the block channel transition probability matrix Pr{Y = y|X = x} is given by [2],

for n > 2,
A
PrY —yX=x} £ Qlyk) (2.21)
= Pr{Z=¢e} (2.22)
" le + 61;16 “ (]_ - E) + (]. - 62'71)(3 I
= Pr(Z, =
=555 [0
(2.23)
where e; = x; ® y;,0 = 1,2,...,n. This closed form channel distribution will be used

later for designing channel optimized vector quantizers (COVQs).

2.2 Source Coding and Quantization

2.2.1 Source Coding

The purpose of source coding (also known as data compression) is to remove the
redundant information in the source in order to reduce the bit rate requirements for
its storage or transmission. The source redundancy can be classified into statistical
redundancy and non-statistical redundancy. There are two types of data compression,
lossless and lossy depending on what kind of redundancy is removed. The statistical
redundancy is due to the source non-uniform distribution or the source memory or
a combination of both. In lossless data compression, the goal is to remove all the
statistical redundancy such that the recovered source has zero distortion with respect
to the original source. In the context of image sources, the non-statistical redundancy
can take the form of psycho-visual redundancy, thus certain properties of the human
visual system can be exploited. This is due to the fact that the human vision system

is insensitive to certain spatial frequencies. In lossy data compression, the goal is to
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obtain the best possible fidelity for the source with a given bit rate, or equivalently
to minimize the bit rate such that a specified fidelity is maintained. Lossy data
compression is achieved via quantization; this will be treated in great details in the
following subsections.

The statistical redundancy is related to the entropy or the entropy rate of the
source. For a discrete memoryless source (DMS), {X,}, the entropy of the source is
the entropy of its first (or any) output H(X;). The entropy of any random variable

X with alphabet X = {zy,29,..., 2y} with known probabilities p(x;) = Piyi =

1,2,..., N is defined as the expectation of its self-information:
A N
H(X) = EB[[(X)] =~ pxlog, pr. (2.24)
k=1

It can be shown that

0 < H(X) <log, N. (2.25)

H(X) measures the amount of randomness or uncertainty in the random variable
X. For sources with memory (e.g., Markov source), the term entropy rate H,,(X) is

usually used and it is defined as

1
Hoo(X) & Tim ~E[-log, p(X)] (2.26)
n—oo 7,
provided the limit exists, where X = (X, Xy,..., X)) . In general, for two sources

with identical alphabets and letter probabilities,

1 1
EH(X) |memory < gH(X) ‘memoryless S lOgQ N (227)

To see this,

[1>

1 1 n
_H(X) |memoryless _H(X ) |memoryless (228)
n n
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S H(X|X ..., X)) (2.29)

iH(Xi) (2.30)

i=1
— H(X)) (2.31)
< log, N, (2.32)
and
1 1
EH(X )‘memory — gZH(X’AXZ*l?/Xl) (233)
=1
1 n
< Y H(X) (2.34)
=
= H(X)), (2.35)

where the inequality follows from the fact that conditioning reduces entropy.
The total statistical redundancy that a discrete stationary source {X,} contains

can be expressed as

pr =logy N — Hoo(X). (2.36)

This is the total amount redundancy one can remove through lossless data compres-
sion. pr can further be decomposed into two types of redundancies: redundancy due

to the source non-uniform distribution pp; and redundancy due to the source memory

pm: pr = pp + pm, where

3

and

pu = H(X1) — Hoo(X). (2.38)

Shannon’s (lossless) block source coding theorem states that the entropy (entropy

rate) provides the theoretical lower bound for achieving minimum bit rate description
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for a discrete stationary source without (with) memory. We next state Shannon’s

source coding theorem for sources with memory [8].

Theorem: Consider a discrete stationary ergodic source { X, } with entropy rate
H.(X). It is possible to construct a (n, k) block encoder/decoder pair such that its
coding rate % is arbitrarily close to Hy(X) and the probability of decoding error is
arbitrarily close to zero for codes with sufficiently long block length. Conversely, if
E < H(X), then any (k,n) block encoder/decoder pair has probability of decoding

error close to one for codes with sufficiently large n.

In lossy coding schemes, the achievable minimum bit rate is a function of the
allowable distortion and this relationship is given by the rate distortion function
R(D). The information rate distortion function for a DMS X with distortion measure

d(X, X) is defined as

R'(D) = min  I(X;X), (2.39)

p(&[z): Bld(X,X)]<D
where minimization is over all p(&|x) for which the joint distribution p(z, &) satis-
fies the expected distortion constraint. Equivalently, the information distortion rate

function is defined as

DY(R)=  min_  E[d(X,X)]. (2.40)

p(&|z):1(X;X)<R

Shannon’s rate-distortion theorem can be simply stated as follows [11].

Theorem: For a DMS X with distribution p(z) and bounded distortion function
d(X, X), its operational rate-distortion R(D) equals its information rate-distortion

defined in Equation (2.39). That is R'(D) is the minimum achievable rate at distor-

tion D.
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2.2.2 Scalar Quantization

In many data-transmission systems, the conversion from continuous or discrete alpha-
bet data to an approximating value from a pre-determined set is called quantization.
In this subsection, we consider a simple memoryless and delayless scalar quantizer.
The delayed-decision quantizer or vector quantizer will be treated in the next subsec-
tion.

A rate R, N-output level (N = 2%) scalar quantizer ¢ is a mapping from the

real-line domain R to a set with finite number of elements,

¢:R—oC (2.41)

where

C = {yl;yQ;---:yN}- (242)

The set C is called the codebook and the elements of the codebook y,’s are called
the reproduction levels or the codewords. The real line R is partitioned into N

non-overlapping regions, S;,7 =1,2,..., N, described by

Si={r:zeR, qx)=y}, i=12...,N (2.43)

where S;’s satisfy

G S; =R, (2.44)
and
Si\Si=¢ (i#7) (2.45)

The mapping is performed as follows: Let x be the input to the quantizer ¢, then the

output of the quantizer g(x) is obtained as
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q(z) =vy; ifzesS;, i=1,2,...,N. (2.46)

Therefore an instantaneous memoryless scalar quantizer can be completely defined
by the codebook C and the partition set {S;}. To evaluate the performance of the
quantizer, we choose the mean square error (MSE) distortion measure: d(z,y) =
(z —y)*

Let the random variable X be the input to the scalar quantizer with a known
probability density function p(x). The average (statistical) distortion D between the

input X and the quantizer output ¢(X) is defined as

D = E[d(X, ¢(X))] = ; /Si(;c — y:)?p(x)dz. (2.47)

When the quantizer input source is stationary and ergodic, the time averaged distor-

tion converges to the statistical averaged distortion in probability, i.e.,

= lim — Zd zi, q(2;)) (2.48)

n—00 n

A classical quantization problem can often be described as follows. For a given
independent and identically distributed (i.i.d.) source with known distribution p(z),
a given distortion measure, say d(z,q(z)) = (x — q(z))?, and a given number of
quantizer output levels N (fixed rate R), we wish to find the codebook C and the
partition set {S;} such that the distortion defined in Equation (2.47) is minimized.
The following design procedure which provides the solution to the above problem is

the Lloyd-Max quantizer [28], [30].

Let us consider a quantizer with quantization regions of the form

Sl: dg Lig |y s (249)



Here we adopt the convention —oc = 2y < 1 < 29 < ... < xy = oo. The average

distortion can be written as

N
D= 2/ (& — y;)%p(x)d. (2.50)

i=1"%i-1
If we wish to minimize D for a fixed rate R, we can derive the necessary conditions

by differentiating D with respect to x; and y; and get two sets of equations

;m:%i¥i2 i=1,2,..., N1, (2.51)
Jei, wp(a)dz
Jely p(z)de
Equation (2.51) states that the threshold level z; should be the midway between

i =E[X|X €S, = i=1,2,...,N. (2.52)

two adjacent reconstruction levels. Equation (2.52) suggests that the optimal recon-
struction level y; is the centroid of the area under p(x) between x; 1 and z;. Thus the
problem of designing an “optimal” quantizer can be divided into two conceptually
independent problems: (i) Given the code book C, find the best partition of R; (ii)
Given the partition of the real line R, find the optimal codebook C such that the aver-
age distortion is minimized. Equations (2.51) and (2.52) can be solved iteratively for
xr’s and y;’s with the initial guess of y;. After each iteration step, the averaged dis-
tortion D is calculated. The algorithm continues until the relative decrease in D from
two consecutive iterations is less than a pre-defined threshold. The resulting quan-
tizer is called the Lloyd-Max Quantizer. It should be emphasized that the obtained
quantizer result is only a local optimal solution depending on the initial conditions.
Fleischer [15] later showed that these conditions specified in Equations (2.51) and
(2.52) are also sufficient conditions for source distributions which are log concave, i.e.
if 9%logp(x)/0z* is negative. This includes sources with Gaussian, Laplacian and
Rayleigh distributions. Hence the quantizer defined by Equation (2.51) and (2.52) is

globally optimal for such distributions.
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The above approach assumes the squared error distortion measure. Fortunately,
we can extend the results in Equations (2.51) and (2.52) to more general distortion
measures d(-,-). These two general necessary conditions are known as the Nearest

Neighbor Condition and the Generalized Centroid Condition [18].

e Nearest Neighbor Condition: For a given codebook C with its reproduction

levels y1, ya, . .., yn, the optimal partitions S;’s satisfy

e Generalized Centroid Condition: For a given set of partitions {S;}, and an

input random variable X, the optimal reproduction levels satisfy

Y = argmyinE[d(X, y)IX €S Vie{l,2,...,N}. (2.54)

These two generalized conditions can be used iteratively to obtain a locally op-
timal quantizer solution. The expectation operation within the generalized centroid
condition implies that the probability density distribution of the source is known. In
practice, training sequences from the source are used to obtain an empirical source
distribution.

The necessary conditions for an optimal quantizer design can be extended to
noisy channel quantizer design as well. Kurtenbach and Wintz [26] first expressed the
necessary conditions of the optimal quantizer design for discrete memoryless channels.
For a quantizer with rate I, the noisy channel quantizer can be treated as two separate

mappings, an encoder mapping ¢. and an decoder mapping qg,

@ R—>7T (2.55)

g I —C (2.56)
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where Z = {b(1),b(2),...,b(2")} is a set of binary sequence of R digits representing
the index of the reproduction level. After the index b(i) is transmitted through the
channel, index b(j) is received which may not be the same as b(i) due to channel
errors. Let p(b(7)|b(i)) be the probability that the index b(j) is received when the

index b(7) is sent. Then the mean square error distortion is written as

S Og

D=3 p(b() b)) [, pla)(e — yy)?da (2.57)

where the partition set S; for the index b(i) is described by

Si={z:x €R, qzr)=0(i), bi) €I} (2.58)

The necessary conditions for optimality become [26]

si—{mzzpw(mb(z) r ) S 0O ) vm}, (2.59)

), — S s aplada
TSR pG)b() Js, p(x)dz

If we rearrange the terms, Equation (2.57) can be rewritten as

(2.60)

D=3 [ S p00) M) = gy pla)de (2.61)

i

Comparing (2.61) with (2.47), we note that these two equations are identical except
that (2.61) uses a modified distortion measure d . Furthermore, when the channel be-
comes noiseless, (2.59) and (2.60) can be simplified to the general necessary conditions

for the noiseless case described by (2.53) and (2.54).
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2.2.3 Vector Quantization

Vector Quantization (VQ) is a data compression scheme which maps a sequence of
continuous or discrete vectors into one of finite number of pre-determined vectors
called reproduction levels. Vector Quantization has been used very successfully in
image and speech coding [21], [29], [18]. It can be shown that V(Q can offer various
advantages over scalar quantization as VQ exploits the statistical redundancy between
the source samples. Indeed the performance of V(Q approaches the rate-distortion
bound when the dimension of the sample block goes to infinity. A brief but formal
description of vector quantization is herein presented.

A vector x = (:171, Loy ... Tk) consisting of k£ source samples represents an element
of the Euclidean space R* with k-fold probability density function p(x). An N-
level, k-dimensional vector quantizer (VQ) is defined by the codebook, C = {y;,i =
1,..., N} with N reproduction vectors; and the partition set, S = {S;;i =1,..., N}

consisting of subspaces of the kth-dimension Euclidean space R¥. The operation of

VQ is essentially a mapping q(-),

(x)=y; if xe S, (2.62)

where y; = (Y1, Yi2, - - -, Yix) and the partition S satisfies

N
S =R S(S;=0. (2.63)
i=1

After the source vector is mapped to one of the reconstruction levels, the index of the

subspace to which the input vector x belongs is sent over the channel. The rate of

the quantizer is defined as

1
ok

Element by element square-error distortion is commonly used to evaluate the error

R log, N bits/sample. (2.64)

incurred by the quantizer when the input vector x is reconstructed as y
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k

d(x,y) = (i — )" (2.65)

i=1

To measure the performance of the VQ, we define the distortion per sample in the

mean square error semnse,

N

D= %; /Sz p(x)d(x,y;)dx. (2.66)
Thus, given the number of reproduction levels N, and the dimension of the source
sample block k, the goal is to find the codebook C* and the partition set S* such that
the mean square error distortion defined in Equation (2.66) is minimized.

The solution to the above problem was first proposed by Linde, Buzo and Gray
[27]. In this now classical paper, the authors provide an iterative algorithm to design
a locally optimum vector quantizer and the resulting VQ is often called LBG-VQ.
For a given partition set S, the necessary conditions for minimizing Equation (2.66)

without considering channel errors are

v, = Js, xp(x)dx
l fsip(X)dX .

If we assume the codebook C is given, when the channel errors are not considered,

(2.67)

then the partition set & which minimizes Equation (2.66) is given by

Equation (2.67) is the generalized centroid condition. When k& = 1, it reduces
to the scalar quantization condition given by Equation (2.52). The region defined in
Equation (2.68) is called Voronoi region. Equations (2.67) and (2.68) are used itera-
tively to update the codebook and the partition set. Note that after each iteration,
the distortion per sample decreases [27]; therefore, the LBG-VQ algorithm in general
converges to a locally optimal solution. The choice of the initial codebook plays an

important role in the LBG-V(Q algorithm. There are several methods to choose the
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initial codebook required by the algorithm. One method is to choose the first N
vectors in the training sequence; another widely used initializing technique is called
initial guessing by splitting [27]. In using the splitting algorithm on a training se-
quence, one starts with a one-level quantizer consisting of the centroid of the training
sequence. Then this vector is split into two vectors which are used for designing a
two-level quantizer. This process continues until we obtain the initial code vectors
for the desired N-level quantizer.

One obvious shortcoming of the LBG-VQ algorithm is that the delay and com-
putational complexity increase exponentially with kR since a full-search is needed to
map every input block to the best matching reconstruct vector. More practical VQs
such as Tree-Structured VQ or Multi-Stage VQ trade storage for reduced computa-

tional complexity, but they are sub-optimal [18].

2.3 Channel Optimized Vector Quantization

2.3.1 Introduction

The vector quantizer design is the generalization of the Lloyd-Max quantizer to the
k-th dimension. Channel optimized vector quantization (COVQ) described in this
section is the generalization of the noisy channel scalar quantizer studied by Kurtan-
bach and Wintz to the kth dimension. The basic idea of COVQ is to design a vector
quantizer by incorporating the various channel parameters into the design procedure.
The resulting quantizer trades quantization error for channel error such that the over-
all end-to-end distortion is minimized. In COVQ design, perfect a priori knowledge of
the channel state information is assumed. It has been shown that the vector quantizer
for noisy channel can achieve good performance without adding extra redundancy for
error protection, especially for very noisy channel environments. In a recent work by

Goldsmith et al. [20], the authors introduced an additional channel protection scheme

3
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that exploits the channel soft-decision information to the COV(Q output while main-
taining a fixed overall encoder bit rate to achieve better performance. In this thesis,
we do not consider such hybrid systems. COV(Q has been extensively studied for ideal
and image sources. Kumazawa et al. first formulated the necessary conditions for
the optimal COVQ solutions [25]. Later Farvardin and Vaishampayan studied the
performance and the complexities of the COV(Q system [14]. It was found that the
encoding complexity of the COVQ system is proportional to the number of encoding
regions. It is interesting to mention that when the channel gets extremely noisy, the
number of the encoding regions associated with the optimum system becomes smaller.
That is for a very noisy channel, certain encoding regions becomes empty such that
it is better not to send those indices associated with empty regions over the noisy
channel at all. In [13], Farvardin successfully applied a combinatorial optimization
technique called simulated annealing to the initial codebook design for the optimal
COVQ system. Most of the previous work in this area has been restricted to digital

memoryless channels. We will state the principle using this simple channel model and

extend the same principle for our Markov channel model.

2.3.2 COVQ Design Algorithm

Assume that the source to be encoded is a real-valued, stationary, and ergodic pro-
cess {Xy;t = 0,1,...} with zero mean and unit variance. The source is encoded
with a k-dimensional, N-output level vector quantizer and the output of the VQ
is transmitted over a discrete memoryless channel with input and output alphabets
J = {1,2,...,N}. The overall encoder-decoder operation, as illustrated in Figure
2.3, can be decomposed into three separate mappings, namely the encoding mapping,

v; the channel index mapping, b; and the decoding mapping, g

v:RF = J (2.69)
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Figure 2.3: Block diagram of a COV(Q system

b:J = J (2.70)

g:J — R". (2.71)

The encoding mapping, v is described in terms of the partition P = {S;,Ss,...,Sn}

of the k-dimensional Euclidean space R* according to

v(x)=1, if xe€S8;,ie€T (2.72)

where x = (.771,.772, ... ,mk) is a source output vector consisting of k£ source samples.
The channel index mapping, b is a one-to-one mapping, which assigns the encoder
output i an index i = b(i) € J and index 7 is sent over the DMC. The DMC
is characterized by the channel transition probability p(j|i') denoting the probability
that the index j is received given that i is transmitted. Finally, the decoding mapping

is described in terms of the codebook C = {y1,ys,. .-, vy~ } according to

3 ’

9(j) =y J€JT. (2.73)
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Let us denote the distortion caused by representing the source vector x by a codeword
y as d(x,y). The average overall distortion per source sample D((P,C);b) is described
by

>

-

D((P,C);b) (g:0) (2.74)

F 330 [, .y )dx (275)

where p(x) is the k-fold probability density function of the source. The encoding rate

is given by

1
R= T log, N bits/sample. (2.76)

For a given source, a DMC, a fixed dimension k£ and fixed rate R, we wish to find the
optimal C*, P* and b* to minimize D((P,C);b). According to [14] the importance of
the index mapping b is not significant in COVQ design as any changes in b(7) will
only result in relabeling of the index of the P*. To simplify the notation, we assume
that the index mapping is done according to b(i) = 7. Upon rearranging the terms in

Equation (2.75) we get

D(P,C) = %;/Sip(x){;p(ﬂi)d(x,yj)}dx. (2.77)

It is easy to see that the problem of distortion minimization specified in Equation
(2.77) is equivalent to the VQ design with modified distortion measure. For the

universal square-error distortion criterion

d(X,y) = HX_YHQJ (278)

it can be shown [25] that given the codebook C the optimal partition set can be

expressed as
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N N
s;—{x:zpw)uxw >l vilF vz} ieg. (1)
i=1 j=1

Similarly, the optimal codebook given the partition set is

gt — T 20l Js, xp(x)dx
T X (i) Js, p(x)dx

VASIVE (2.80)

In essence, Equations (2.79) and (2.80) are the generalized nearest neighbor and
centroid conditions with a modified distortion measure. In the cases where the source
distribution is unknown, training sequences can be used for the quantizer design and

Equations (2.77) and (2.80) can be modified as

p(J d(x¢,y;) (2.81)

T =

SR

t=1j=1

§|>—‘

and

y% _ Zfil p(]‘Z) Zl:zlesi Xl/n
g Y p(li)ISil/n

(2.82)

where n is the size of the training sequences and |S;| denotes the number of training
sequences belonging to subspace ;.

The COVQ design procedure is a straightforward extension of the LBG-V(Q design
algorithm. The algorithm starts with an initial codebook, C(®) to find the optimal
partition set P using Equation (2.79). With this newly computed P it uses
Equation (2.80) to update the optimal codebook C™M). This process continues until
the relative decrease in the average distortion is less than a specified threshold and the
algorithm converges to a locally optimal solution. In the next subsection we address

a technique to initialize the codebook C® for the COVQ design.
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2.3.3 Initial Codebook Design

As mentioned in the LBG-VQ design algorithm, the splitting technique is commonly
used to obtain the initial codebook C® for the design algorithm. Similarly, for COVQ
design, the choice of the initial codebook should be chosen carefully since this initial
condition can significantly impact the COVQ results. More elaborate methods should
be used instead of the simple splitting algorithm. Farvardin [13] proposed a method
based on simulated annealing to initialize the codebook for COVQ design. He showed
that the resulting COV(Q performance is better than the ones designed with the
splitting method or other random methods.

In general, the total end-to-end distortion can be expressed as the sum of the
distortion due to quantization €, distortion due to channel impairment €, and a
cross-term distortion €2. To see this, let us denote X and X as the input and output
sequence of the quantizer respectively, and Y as the received sequence. Assuming a

mean square error distortion, we can write the total distortion per source sample as

D s S (2.8)
- %E{||(X—X+X—Y||2} (2.84)

= (X XIP) 4+ B{X - Y[?}+ o B{(X - X)(X - Y)} (285)

v~ v~

= e2+e+e (2.86)

In a related work [43], Totty and Clark studied the reconstruction error in wave-
form transmission for scalar quantizers. The authors showed that if the quantizer is
the Lloyd-Max quantizer (optimal), the overall waveform distortion can be expressed
as the sum of the quantization distortion and the channel distortion. This suggests
that the cross-term in Equation (2.86) can be eliminated if the codewords we choose
satisfy the centroid conditions.

Following the notation in Figure (2.3), we can write the average distortion per
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sample due to quantization € as

€ = %;/Sip(x)d(x,yi)dx (2.87)

and the average distortion per sample caused by the channel noise €2 as

&= 133 plydpb() )y, ) (2.88)

i=175=1

where p(y;) is the a priori probability of the codeword. Recall the mapping b :
J — J is one-to-one. The total overall distortion per sample caused by the vector

quantization and the channel is given by

& =1 X X pb)Ib) [ pex)dey;)dx. (2.89)

7

17

It can be shown (See Appendix A) that the overall distortion per sample can be

simplified as

e = 62 + € (2.90)

if the codeword y; is chosen as the centroid of the respective encoding region S;. It
is clear that this result is the direct extension of the work of Totty and Clark to
the kth dimension. Equation (2.90) basically states that the overall distortion can
be separated into the sum of the quantization distortion and the channel distortion.
We should emphasize that this nice property is also based on the assumption of the
squared error distortion measure. The above argument suggests that we should first
design a LBG-VQ, which uses the splitting algorithm to obtain the initial codebook
for VQ, and find the proper index assignment b such that the channel distortion €2 is
minimized. To achieve this task, we use a technique called simulated annealing (SA).

Simulated Annealing belongs to a class of randomized stochastic relaxation algo-
rithms. It was originally used by physicists in studying crystal growth in which the

material is first heated to the melting point and then the temperature is allowed to
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be cooled to form the crystal. This non-linear technique has been very useful to many
optimization problems. In the channel coding context, it has been successfully used
to find good channel codes [17].

In simulated annealing, the states of the systems are first defined. The next state
configurations are generated in probabilistic way to allow local “hill climbing” to evade
the local minima. It can be shown that if we allow a sufficiently slow cooling schedule,
the simulated algorithm indeed can converge to the global minimum in probability.

In practice, a more realistic faster cooling schedule is used, such as

T, = aTk,l, I<ax<xl (291)

where T is the effective temperature of the system. For our problem we define €2(b) as
our objective function to be minimized or the energy to be reduced for a hypothetical
system. We refer the index assignment (b(y1),0(y2),...,b(yn)) as the state of the
system. Formally, the simulated algorithm can be outlined as follows [13],

SA Algorithm

e step 1 Raise the effective temperature to an initial high temperature Ty and

randomly choose an initial state b.

e step 2 Choose the next state b randomly and calculate the change in ‘energy’
6€2 = e2(b') — €2(b). If §e2 < 0, replace b with b, go to step 3, else replace b by

c c

b with probability exp{—d¢?/T} and go to step 3.

e step 3 If after A/ number of perturbations, no energy drop occurs, go to step

4. Otherwise go to step 2.

e step 4 Lower the effective temperature according to Equation (2.91). If the
temperature 7" is below a prescribed freezing temperature 7 or system appears

to be stable, stop with b as our final state. Otherwise go to step 2.
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Th 10.0

Ty | 0.00025
o 0.97
N 200

Table 2.1: Simulated annealing algorithm parameters

The SA algorithm parameters used in this thesis are borrowed directly from [17]

[13] and are listed in Table (2.1).

2.3.4 Numerical Results

In this subsection we study the performance of COV(Q for memoryless ideal sources.
The channel model used here is the first-order (M = 1) finite-memory contagion
channel described in Section 2.1.2. The source under consideration is an i.i.d. source

whose p.d.f. is given by a class of generalized Gaussian distributions described by

o) = Dol o)), <o o
where
P CT0 )
n(a,B) =8 [?(1/04)] (2.93)

with @ > 0 describing the exponential decay rate and is often called the shaping
parameter, ( is a positive quantity representing a scale parameter, and 7 (-) is the

[o° y"le ¥dy. The variance of the associated random vari-

gamma function, 7 (z) =
able is given by 02 = 2. For a = 2, we get the Gaussian distribution, while for
a = 1 we get the Laplacian distribution. For values of « less than one, this gener-

alized Gaussian distribution provides a useful model for broad-tailed processes. We
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should also mention that when o — oo, this distribution reduces to the uniform

distribution.

We consider a k-dimensional, rate R bits/sample COVQ which is designed for a
given source and first-order Markov channel model using the method described in
Section 2.3.2. Again in COV(Q design we assume perfect knowledge of the channel
parameters (M, ¢, and €). For each block of k samples, the output kR bits of the
COVQ are sent over the Markov channel directly. In addition, we assume that kR
bits are large enough compared to M such that the memory in the channel can be
exploited in kR channel uses. Thus by incorporating the characteristics of the channel
into the COVQ design, we can exploit the intra-block memory of the channel but not

the inter-block memory.

First a k-dimensional, rate R vector quantizer (VQ) is designed (for noiseless chan-
nel) using LBG-V(Q algorithm in which 500,000 training vectors is used. The initial
codewords for COV(Q design for e = 0.005 is obtained by using simulated annealing
technique (described in Section 2.3.3) to permutate the index of the VQ codebook.
The final codebook for € = 0.005 is used as the initial codebook for ¢ = 0.01. This
process is continued until we reach the desired BER rate. Numerical results for COVQ
over Markov channel with 6 = 10 and M = 1 for the generalized Gaussian sources
with shaping parameter o = 2.0, @ = 1.0 and o = 0.5 are shown in Tables (2.2)-(2.4).
The performance is measured in signal-to-noise ratio (SNR) in decibels (dB) for rates
R =2,3,and 4 bits/sample and channel BER € = 0.0, 0.005,0.01,0.05,and 0.1. Here
we keep the kR value to a manageable number since COVQ design is a full-search

algorithm and the computational complexity grows exponentially with £R.

In these tables, the performance results of the COVQ system are compared with
another reference system called COVQ-IL using interleaving. In this thesis, we assume
that the interleaving and de-interleaving operations are ideal such that the Markov

channel is rendered memoryless. For the COVQ-IL system, a COVQ is first designed
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for a memoryless system with the same bit error rate as the corresponding Markov
channel. This COVQ is then used over the interleaved Markov channel (memoryless).
From the tables, we observe that when the channel becomes noisier, the SNR perfor-
mance for the COVQ does not degrade as sharply as that of the COVQ-IL system.
More specifically, in Table (2.2), For k = 2, R = 4 bits/sample, the gain due to
exploiting the intra-block channel memory can be as high as 5 dB.

Also included in the tables are the OPTA (Optimal Performance Theoretical At-
tainable) values. OPTA can be obtained by evaluating D(RC'), where D(-) is the
distortion-rate function of the source with squared-error distortion measure and C'

is the channel capacity in bits per channel use. The rate-distortion function for a

N (0, 0?) source with square error distortion is given by [11],

R(D)={ 2 7P =7 (2.94)

or expressed in terms of distortion-rate function

D(R) = 0°27 %%, (2.95)

where o2

is the variance of the source. In general, a closed form expression for
D(R) does not exist. However Blahut’s algorithm [7] can be used for the numerical
computation of D(R).

To obtain the results for the channel optimized scalar quantizer (COSQ), we
can simply set & = 1. Figure 2.4 illustrates the performance of the COSQ over

Markov channel for Generalized Gaussian sources with shaping parameters a = 2.0

and o = 0.5.
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R | k | System e=00|e=0.005]|e=0.01 | e=0.05|e=0.1

211 |COVQ-IL | 9.29 8.52 7.87 4.86 3.05
CcOovQ 9.29 8.64 8.11 D.72 5.92

2 | COVQ-IL | 9.51 8.70 8.06 0.44 3.86
CcovQ 9.51 8.97 8.41 7.08 6.62

3 | COVQ-IL | 9.87 8.94 8.29 2.70 3.99
CcOovQ 9.87 9.15 8.56 7.74 7.10

oo | OPTA 12.04 11.95 11.86 11.31 10.74

311 | COVQ-IL | 14.60 12.04 10.50 6.47 4.67

CcovQ 14.60 12.39 11.17 9.29 7.47

2 | COVQ-IL | 15.21 12.46 11.15 7.36 5.15

covQ 15.21 12.81 11.89 10.59 9.42

3 | COVQ-IL | 15.66 12.01 11.40 7.67 5.37

covQ 15.66 13.55 12.90 11.35 10.05

oo | OPTA 18.06 17.92 17.80 16.96 16.11

411 | COVQ-IL | 20.17 14.15 12.30 7.81 2.60

CcovQ 20.17 15.67 14.93 11.24 9.13

2 | COVQ-IL | 21.06 15.28 13.70 9.06 6.40

covQ 21.06 16.70 16.11 13.28 11.52

oo | OPTA 24.08 23.89 23.73 22.61 21.48

Table 2.2: SNR (dB) performance of COVQ and COVQ-IL over the Markov channel
with 6 = 10 and M = 1; Generalized Gaussian source with shaping parameter o =

2.0.
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R | k | System e=00|e=0.005]|e=0.01 | e=0.05|e=0.1

2 11 | COVQ-IL | 7.55 6.95 6.45 4.01 2.51
CcOovQ 7.55 6.99 6.54 4.53 4.52

2 | COVQ-IL | 8.83 8.03 7.41 4.75 3.31
CcovQ 8.83 8.09 7.57 6.70 5.86

3 | COVQ-IL | 9.48 8.50 7.80 5.13 3.59
CcOovQ 9.48 8.71 8.16 7.27 6.32

oo | OPTA 12.66 12.57 12.49 11.93 11.37
311 |COVQ-IL | 12.64 10.49 9.17 5.21 3.62

CcovQ 12.64 10.50 9.45 8.27 7.17

2 | COVQ-IL | 14.25 11.67 10.28 6.60 4.47

covQ 14.25 11.88 10.97 10.00 8.64

3 | COVQ-IL | 15.16 11.52 10.67 7.08 4.84

covQ 15.16 13.01 12.43 10.68 9.48

oo | OPTA 18.69 18.54 18.42 17.59 16.74

411 | COVQ-IL | 18.08 12.76 11.03 6.82 4.79

CcovQ 18.08 13.57 13.19 10.54 8.61
2 | COVQ-IL | 20.09 14.41 12.92 8.33 5.71

covQ 20.09 15.38 15.09 12.27 10.68

oo | OPTA 24.74 24.51 24.35 23.24 22.10

Table 2.3: SNR (dB) performance of COVQ and COVQ-IL over the Markov channel
with 6 = 10 and M = 1; Generalized Gaussian source with shaping parameter o =

1.0.
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R | k | System e=00|e=0.005]|e=0.01 | e=0.05|e=0.1

211 |COVQ-IL | 9.29 8.52 7.87 4.86 3.05
CcOovQ 9.29 8.64 8.11 D.72 5.92

2 | COVQ-IL | 9.51 8.70 8.06 0.44 3.86
CcovQ 9.51 8.97 8.41 7.08 6.62

3 | COVQ-IL | 9.87 8.94 8.29 2.70 3.99
CcOovQ 9.87 9.15 8.56 7.74 7.10

oo | OPTA 12.04 11.95 11.86 11.31 10.74

311 | COVQ-IL | 14.60 12.04 10.50 6.47 4.67

CcovQ 14.60 12.39 11.17 9.29 7.47

2 | COVQ-IL | 15.21 12.46 11.15 7.36 5.15

covQ 15.21 12.81 11.89 10.59 9.42

3 | COVQ-IL | 15.66 12.01 11.40 7.67 5.37

covQ 15.66 13.55 12.90 11.35 10.05

oo | OPTA 18.06 17.92 17.80 16.96 16.11

411 | COVQ-IL | 20.17 14.15 12.30 7.81 2.60

CcovQ 20.17 15.67 14.93 11.24 9.13

2 | COVQ-IL | 21.06 15.28 13.70 9.06 6.40

covQ 21.06 16.70 16.11 13.28 11.52

oo | OPTA 24.08 23.89 23.73 22.61 21.48

Table 2.4: SNR (dB) performance of COVQ and COVQ-IL over the Markov channel
with 6 = 10 and M = 1; Generalized Gaussian source with shaping parameter o =

0.5.
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Figure 2.4: COSQ performances for generalized Gaussian sources over the Markov

Channel (R =3, M =1).
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Chapter 3

Transform Coding and Optimal Bit

Allocation

3.1 Transform Coding

We consider blocks of k£ consecutive samples of a stationary random process and wish
to efficiently encode each block with a specified number of bits. The sample vector
is denoted by X = (X, Xy,..., X;)". In general, these samples have a substantial
amount of correlation (in space or time) and separate quantization of each sample
would be inefficient. The basic idea of transform coding is to perform a linear trans-
formation on X and obtain a new vector Y with the same number of components
called transform coefficients. There are two important characteristics associated with
the transform coefficients: (i) The transform coefficients are uncorrelated or nearly
uncorrelated compared to the original samples; (ii) The information in Y is much
more compactly contained; it is distributed among fewer coefficients than in X. Typ-
ically, these coefficients are then separately quantized at different rates with a bank
of scalar quantizers. Given a fixed number of bits for describing the transform coeffi-
cients, the problem of proper distribution of these bits to the coefficients constitutes
the bit allocation problem. In the next subsection, we address this topic in the context

of noisy channel transmission.
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Alternatively, one can directly perform vector quantization on each vector of k
samples and the performance of this coding scheme is guaranteed to be optimal by
the Shannon’s rate distortion theory when the & number of samples to be coded is
made infinitely large [40]. In real life applications such as image or speech coding,
the true distribution of the source is unknown. Training sequences are then used
to obtain the approximate underlying probability distribution function of the data
samples. However, due to the high computational complexity of the full-search VQ,

the number of samples k£ to be coded is usually limited to a manageable number.

In practice, the transform coding method is often used, particularly for efficient
image coding [10]. As in the case of the Fourier Transform (FT), the linear transform
converts the data samples from the time (space) domain to the frequency domain.
There is also a subjective reason why transform coding is important in many speech
and image applications. By nature, the human auditory and visual systems seem to
operate in the frequency domain; in particular they are insensitive to the low fre-
quency transformed components. Typically, low frequency coefficients carry more
energy (and hence information) than the high frequency ones; in general, they follow
different probability distribution functions. Distinct scalar quantizers can be em-
ployed to quantize each coefficient with more bits given to low frequency coefficients
and less bits to the high frequency coefficients. If some coefficients carry a signifi-
cantly small amount of information, they are often not coded at all. In this way, the
redundancies due to the human visual and auditory system are exploited. A typical
transform coding system is illustrated in Figure (3.1), in which the reconstructed ap-
proximation to the original vector, X is obtained by performing the inverse transform

on the quantized transform vector Y,

Y=T(X), Y=Q(Y), X=T'Y). (3.1)

Again, we assess the overall performance of the coding scheme using the universal
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Y

Figure 3.1: A transform coding system

squared error distortion

D =Y B[IX, - X, = B[[X - X|]’]. (3.2)

=1

Obviously, the performance of our transform coding system depends on the choice
of the transform matrix 7. We will consider a class of orthogonal transforms which
have the distance preserving property. A real-valued, k& x k orthogonal transform

matrix 71" satisfies the condition

T =T" (3.3)

or T* = T~ for complex-valued matrices, where T* denotes the conjugate transpose
of T. The above matrix is also called a unitary matriz. Unitary transformations
enjoy a nice geometric interpretation and can be thought as simply the rotation of the
vector in the original vector space. Alternatively, they can be thought as the rotation

of basis coordinates and the components of the new vector are the projection of the
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original vector on the new basis. This also implies that a unitary transformation
preserves the length of the vector in the multi-dimensional vector space, or the signal
energy. The distance preserving property can be easily shown with Equation (3.3)
[18]. Another important characteristic of the unitary transforms is that they do not
alter the determinant of the autocorrelation matrix of the input vector.

In theory, one important orthogonal transform is the Karhunen-Loeve transform
(KLT). In essence, it can achieve perfect de-correlation of the input vector X such
that the output of the transform Y = TX have pairwise uncorrelated components.
To see this, let Ryy = E[XX'] denote the autocorrelation matrix of the input vector
X and u; denote the eigenvectors of Rxx and A; be the corresponding eigenvalues.
Since any autocorrelation matrix is symmetric and non-negative definite, there are k
orthogonal eigenvectors and the corresponding eigenvalues are real and nonnegative.

We assume without loss of generality that

M >N > >N >0, (3.4)

then the KLT is defined as T" = U' where U = [u;, uy, ..., u;]. In other words, the
column vectors of U are the eigenvectors of the autocorrelation matrix Ryx. Then

the autocorrelation matrix of the output vector Y is given by

Ryy = E[YY']| = E[U'XX'U] = U'RxxU = diag(\;). (3.5)

It follows that the variances of the transform coefficients are the eigenvalues of the
autocorrelation matrix Ry x.

Despite its favorable theoretical properties, KLT is not used in practice. This is
mainly due to the fact that the basis functions depend on the autocorrelation matrix
of the input vector and there are no fast computational algorithms for their implemen-

tation. The class of orthogonal transformation includes the discrete Fourier transform
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(DFT), the discrete cosine transform (DCT), the Wash-Hadamard transform and oth-
ers. Among them DCT has been found to be the most effective, with a performance
close to that of KLT; it is hence widely used in image and video compression.

For a 1-D time (space) signal f(x), the 1-D discrete cosine transform C'(u) is

defined by
N-1 oF + 1
C(u) = a(u) Y f(z)cos [M] (3.6)
= 2N
foru=0,1,2,..., N — 1. The inverse DCT is defined by
N-1 or + 1
f(x) =" a(u)C(u) cos l%] (3.7)
u=0

forx =0,1,2,..., N — 1, where «(+) is given by

L foru=0
\/; (3.8)

2 _
~ foru=1,2,... N—1

au) =

The corresponding 2-D discrete cosine transform is given by

awmwwwﬁgéj@wm$”;Wﬂm$”;Wﬂ (39)

for u,v =0,1,2,...,N —1, and

o) = 32 3 alwa)Clu o) eos| EEDE con DT s0)

forx,y=0,1,2,...,N — 1.

The 2-D DCT is an invertible and separable orthogonal transform. By separable,
we mean that the 2-D complete orthonormal discrete basis function can be written
as the product of two 1-D complete orthonormal basis vectors.

The DCT is the most popular transformation scheme in transform coding since

it has a fixed ( data-independent ) basis function and can be efficiently computed
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via FFT algorithms. Like the KLT, it has excellent energy compaction properties for
correlated data and can result in highly uncorrelated transform coefficients. DCT has
also been adopted as an international standard by I'TU for JPEG image compression
[46].

The 2-D DCT operates on sub-blocks of an image to trade smaller number of
arithmetic operations for undesirable blocking artifacts. To see this, the number of
arithmetic operations to compute the n x n-point transform is O(n?log,n?). For
an image of size M x M, with DCT operating on image blocks of size N x N, it
can be shown that we can reduce the amount of arithmetic operation by a factor of
log, M/ log, N.

In addition to the above-mentioned advantages of DCT, 2-D DCT also has some
nice statistical characteristics. We name the (0,0)" transform coefficient as the DC
coefficient and the rest of the coefficients as the AC coefficients. Based on experimen-
tal evaluations for 2-D images [37], it has been shown that the DC coefficient roughly
follows a Gaussian distribution and that AC coefficients are roughly governed by a
Laplacian distribution; furthermore, these statistical properties are image indepen-
dent. Consequently we can incorporate these statistical models into our quantizer
design for each transform coefficient. It is also well known that inter-block DC co-
efficients are highly correlated [46]. In JPEG, predictive coding methods such as
differential pulse code modulation (DPCM) are used to encode the DC coefficients

more efficiently.

3.2 Optimal Bit Allocation

The optimal bit allocation problem is closely related to the optimal resource allocation
question raised in our everyday life. That is, given a finite amount of resources
(capital, time, etc.), we strive for an optimal solution to distribute these resources in

order to maximize the benefit or gain.
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For the transform coding system described in the previous subsection, the average
number of bits allocated to each transform coefficient determines the total number
of bits, or the resource we have since this parameter also defines the transmission
bandwidth requirements. As a rule of thumb, the transform coefficients that carry
the most information (energy) should be allocated with more bits (finer quantization);
and those transform coefficients considered less important should be given fewer bits
or none at all, while the total number of allocated bits remain fixed. Typically, the
outputs of the quantizers are coded and the indices of the codewords are sent over
a noisy channel. Our objective is to find an optimal bit assignment scheme under
certain imposed constraints such that the overall end-to-end distortion due to this

assignment is minimized.

We decompose this optimization problem for our image transmission system into
two parts: (i) To design optimal zero-memory quantizers by taking into considera-
tion the channel; (ii) To calculate the optimal bit allocation matrix by taking into
consideration both the source and the channel characteristics. The first task can be
achieved with the design of the channel optimized quantizers described in Chapter
2. We now concentrate on the second task and state our bit allocation problem as

follows.

For N x N image blocks transformed via DCT, we assume the DCT coefficients,
{Xmn},m,n = 0,1,...,N — 1 are governed by a zero mean, stationary stochastic
process. Let r,, be the required average number of bits per N x N image block
(B = 14, N? is the total number of bits per N x N image block). Denote D(r,,,) as
the distortion incurred in quantizing the random variable X,,, with r,, bits. The
optimal bit allocation problem becomes to find the bit allocation matrix r, such
that the total distortion Y- Y D(r,,,) is minimized subject to the constraints: (i)
S rmn < B, and (ii) 0 < 7pn < Finag, Where 7y, is the maximum number of bits

allowed to be allocated to each DCT coefficient.
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Optimal bit allocation occurs frequently in image and video applications. In many
practical cases, by invoking the high bit rate resolution approximation, assuming
noiseless channel conditions and no constraints, we can extend the standard 1-D

result from [18] to our 2-D problem as

4 Llog, T (3.11)
Tmn =T T 5108 ) .
2 0% p2
where
B

r=—, 3.12

= (312
and

1
o = ([T o2)%. (3.13)

where m,n = 0,1,...,N — 1, and K = N? is the total number of transform coeffi-

cients in each N x N block, and o2, denotes the variance of the mn' coefficient in
an N x N coefficient block. Note that the number of bits allocated to each coefficient
is proportional to the variance of that coefficient, or the energy that coefficient car-
ries. Despite the fact that this bit allocation scheme works well even under low bit
resolution cases, it has two major drawbacks: (i) the assigned number of bits to any
particular coefficient could be negative; (ii) the resulting bit could be a non-integer
number. The first difficulty could be dealt with by suppressing the negative number
of bits to zero. As for the second problem, if we perform round-off operation on the
non-integer bits, we will not be able to meet the constraints on the total number of
bits per image block (an integer). We now introduce an integer programming ap-
proach called the steepest descent algorithm to solve our bit allocation problem for
the case of noisy channels with memory.

The steepest descent algorithm belongs to a class of greedy algorithms. The basic

idea of this technique for our bit allocation problem is to start with the total number
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of available bits B for each N x N image transform coefficient block. We give away
one bit at a time to one of the coefficients such that the overall distortion is minimized
in each step till we run out of bits. Thus for an N x N image block, only finite BN?
steps are needed to calculate our ‘optimal’ bit allocation matrix. It is called steepest
descent since we maximize our benefit or minimize the distortion as much as possible
in each iteration. In a greedy sense this algorithm opts to minimize the distortion
while neglecting the global effect of such choice. In general such algorithms result
in sub-optimal solutions; however, as shown later, under certain conditions, steepest
descent algorithms will indeed result in an optimal solution for our problem. Another
obvious but less practical approach to the same problem is by exhaustive search. We
will not resort to such computation intensive methods in this thesis.

Steepest descent algorithms have been successfully applied in [44], [45]. Our
scheme is similar in spirit to the work in [45] but differ in the following aspects:
(i) A Markov channel model is considered instead of a memoryless BSC; (ii) DC and
AC transform coefficients are modeled separately as Gaussian and Laplacian distribu-
tion respectively; (iii) One motivation of our study is to examine the loss of optimality
due to fixed bit allocation methods (see Chapter 4).

We recast our optimal bit allocation problem as follows. Assume the source is
represented via a stationary stochastic process. Let X,,, denote the mn'" pixel of
each N x N image block and X, be the reconstructed pixel. The objective is
to minimize the end-to-end average distortion mean square error sense. That is to

minimize

1 N—1N-1 .
2
D=E z_jo Z[](an — Xonn) (3.14)
under the constraints,
N—1N-1
Z Z Tmn < B (3.15)
m=0 n=0



and

where 7,,, denotes the mn'® entry of an N x N bit allocation matrix r. B is the
total number of bits available for r. We also impose the maximum number of bits
Tmaex Which is allowed to be allocated to each transform coefficient. In this thesis, we
choose r,,,, = 8 bits.

Since 2-D DCT is a separable orthonormal transformation, it can be shown [24]

that Equation (3.14) is equivalent to

1 N—1N-1 .
2
D= NQE{ Zﬂ ;](Ymn — Youn) (3.17)

where Y,,,,, and }Afmn denote the mn' entry of a N x N transform coefficient block.
In Equation (3.17), since each summation term is a non-negative quantity, in

order to minimize D, it suffices to minimize each component of D. For a given

bit allocation matrix r, let d*, (r,,,) denote the minimum distortion when the mn®"

transform coefficient is quantized with r,,,, bits. Then the minimum average distortion

for a given bit allocation matrix r, denoted by D*(r), is
1 N-1N-
m=0

To solve the optimal bit allocation problem, we wish to find the bit allocation matrix

1
dr (Ton). (3.18)
0

n=

r* such that D*(r*) < D*(r) Vr, and r satisfies the constraints provided in Equations
(3.15) and (3.16).
We assume that the DC coefficient follows the Gaussian distribution and all AC

coefficients follow the Laplacian distribution, then Equation (3.18) can be written as

N—-1N-1

1
D*(I') = W{Ugodg(ﬁ]o, ].) + O'm Tmn 1)} (319)

m=1 n=1

S
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where df;(rop, 1) denotes the minimum distortion incurred when using rgy bits to
represent a sample governed by a unit variance Gaussian distribution. Similarly,
d} (Tmn, 1) denotes the minimum distortion incurred when using 7,,, bits to represent
a sample generated by a unit variance Laplacian distribution. Again, 0 < 7,,, < "nas

for m,n =0,..., N — 1. The steepest descent algorithm is as follows [45].
Steepest Descent Algorithm:

e step 1 Perform N x N forward DCT and estimate the variance o2,,;m,n =

e step 2 Compute df;(ro, 1) and d; (rmn, 1) for 1 < rog, Tomn < Trag;m,n =

e step3 Setk=0,7,,=0, mn=0,...,N—1.

e step 4 Set k =k + 1, find the index (myny) which satisfies

d:’lknk (ka”k) o d:ﬂk’ﬂk (rmkﬂk + 1) = Ogmrglag)%il{d:m(rmn) o d;knn (rmn + 1)}

e step 5 Set 1y, pn, = Tm,n, + 1, if £ < B, go to step 4, otherwise stop.

To show that the above algorithm indeed minimizes the objective function in
Equation (3.19) under the constraints given in Equations (3.15) and (3.16), we state

the following theorem (see [45] for proof).

Theorem:  If the minimum distortion functions d},, (r,.,) are convexr and strictly
non-increasing, then the bit allocation matrix r* obtained with the steepest descent
algorithm will minimize the distortion D in Equation (3.18) under the constraints
given in Equations (3.15) and (3.16).

Here by convexity, we mean that d(-) satisfies

ol



d(\z + (1= N)y) < Ad(@) + (1= N)d(y) YA€ [0,1]. (3.20)

Letting x =7 — 1, y =7+ 1, and A = 1/2 yields

A (1 — 1) = dppn (1) > dppn (1) — dpn (7 + 1), (3.21)

a property needed for the above theorem.

It should be emphasized that the minimum distortion d},, (r) is obtained via the
channel optimized quantizer design with respect to the source distribution and the
channel characteristics for the given quantizer bit rate r. Tables (3.1)-(3.6) list the
minimum distortion for unit variance Gaussian and Laplacian sources with various bit
rates and Markov channel conditions (e, ). The corresponding distortion versus rate
curves for e = 0.0005 and € = 0.1 are plotted in Figure 3.2. We observe that d,(roo, 1)
and d} (7mn, 1) are indeed convex and strictly non-increasing. Similar observations are
made for other BER rates.

We apply this integer programming approach to the popular image Lena (512 x
512), obtained from the USC image data base, for our Markov channel model with
M = 1. 8 x 8 image blocks are used in the DCT according to the JPEG standard.
The resulting optimal bit allocation matrices are presented in Tables (3.7)-(3.9) for
e = 0.0,0.005,0.01,and 0.1, and channel correlations § = 0.0, 5.0, and 10.0 for three
different bit rates, B = 76,58, and 24 bits. Several interesting observations can be
made by close examination of the bit allocation matrices. In all cases, most of the
bits are concentrated on the low frequency coefficients. This reflects the fact that
low frequency DCT coefficients carry more energy (variance) compared to the high
frequency ones. For fixed §, when the channel gets noisier, the first few coefficients
receive the highest protection with the maximum number of allowable bits (8 bits).
For fixed €, when the channel gets more bursty (high 0), bits are slightly spread out

to the next few DCT coefficients. Similar observations are made for other images but
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we will not exhaustively list the tables.
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Rate (bits) | e=0.0 | e=0.005| e=0.01 | e=0.05 | e=0.1
1 0.500234 | 0.510382 | 0.520032 | 0.595395 | 0.680555
2 0.175706 | 0.201662 | 0.226438 | 0.396853 | 0.561211
3 0.054390 | 0.089351 | 0.120960 | 0.320393 | 0.417480
4 0.015532 | 0.052444 | 0.083642 | 0.208550 | 0.331667
5t 0.004147 | 0.033015 | 0.048400 | 0.147958 | 0.281028
6 0.001088 | 0.021719 | 0.034078 | 0.136509 | 0.221164
7 0.000281 | 0.013271 | 0.021244 | 0.096742 | 0.186213
8 0.000068 | 0.009176 | 0.015243 | 0.064382 | 0.156570

channel with § = 0.0 and M = 1.

Table 3.1: Minimum distortion incurred for the Laplacian source over the Markov

Rate (bits) | e=0.0 | e=0.005| e=0.01 | e=0.05 | e=0.1
1 0.500234 | 0.510382 | 0.520032 | 0.595395 | 0.680555
2 0.175706 | 0.190567 | 0.204431 | 0.296277 | 0.383257
3 0.054390 | 0.069701 | 0.083717 | 0.172151 | 0.254452
4 0.015532 | 0.030663 | 0.043825 | 0.123954 | 0.180998
) 0.004147 | 0.021330 | 0.033032 | 0.082154 | 0.132266
6 0.001088 | 0.014987 | 0.023122 | 0.068755 | 0.103035
7 0.000281 | 0.010221 | 0.015689 | 0.044552 | 0.074372
8 0.000068 | 0.005906 | 0.009802 | 0.033140 | 0.056960

Table 3.2: Minimum distortion incurred for the Laplacian source over the Markov

channel with § = 5.0 and M = 1.
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Rate (bits) | e=0.0 | e=0.005| e=0.01 | e=0.05 | e=0.1
1 0.500234 | 0.510382 | 0.520032 | 0.595395 | 0.680555
2 0.175706 | 0.188207 | 0.200003 | 0.277932 | 0.352390
3 0.054390 | 0.064069 | 0.073249 | 0.133671 | 0.192102
4 0.015532 | 0.028096 | 0.039745 | 0.087388 | 0.134457
5t 0.004147 | 0.015967 | 0.022136 | 0.051928 | 0.084372
6 0.001088 | 0.011092 | 0.017427 | 0.039196 | 0.063550
7 0.000281 | 0.007457 | 0.009938 | 0.031986 | 0.049095
8 0.000068 | 0.004114 | 0.006415 | 0.018539 | 0.031833

channel with § = 10.0 and M = 1.

Table 3.3: Minimum distortion incurred for the Laplacian source over the Markov

Rate (bits) | e=0.0 | e=0.005| e=0.01 | e=0.05 | e=0.1
1 0.363666 | 0.376471 | 0.389076 | 0.484822 | 0.593322
2 0.117675 | 0.140689 | 0.163187 | 0.326655 | 0.495535
3 0.034686 | 0.062856 | 0.089716 | 0.211211 | 0.351710
4 0.009593 | 0.038767 | 0.055149 | 0.156847 | 0.259459
Y 0.002563 | 0.025799 | 0.038930 | 0.110204 | 0.210865
6 0.000677 | 0.014622 | 0.021715 | 0.083357 | 0.171253
7 0.000174 | 0.007823 | 0.012859 | 0.059256 | 0.137999
8 0.000044 | 0.005948 | 0.009705 | 0.052581 | 0.117087

Table 3.4: Minimum distortion incurred for the Gaussian source over the Markov

channel with § = 0.0 and M = 1.
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Rate (bits) | e=0.0 | e=0.005| e=0.01 | e=0.05 | e=0.1
1 0.363666 | 0.376471 | 0.389076 | 0.484822 | 0.593322
2 0.117675 | 0.128323 | 0.138668 | 0.213089 | 0.290937
3 0.034686 | 0.045160 | 0.055329 | 0.126484 | 0.199011
4 0.009593 | 0.021902 | 0.032826 | 0.099871 | 0.139869
5t 0.002563 | 0.012984 | 0.021026 | 0.059509 | 0.096052
6 0.000677 | 0.011936 | 0.018546 | 0.042729 | 0.073767
7 0.000174 | 0.006136 | 0.009822 | 0.033719 | 0.055171
8 0.000044 | 0.004471 | 0.007282 | 0.024245 | 0.040977

channel with § = 5.0 and M = 1.

Table 3.5: Minimum distortion incurred for the Gaussian source over the

Rate (bits) | e=0.0 | e=0.005| e=0.01 | e=0.05 | e=0.1
1 0.363666 | 0.376471 | 0.389076 | 0.484822 | 0.593322
2 0.117675 | 0.126027 | 0.134137 | 0.193063 | 0.255589
3 0.034686 | 0.041301 | 0.047772 | 0.094026 | 0.142325
4 0.009593 | 0.016589 | 0.023216 | 0.066068 | 0.110033
) 0.002563 | 0.011260 | 0.017477 | 0.046696 | 0.074954
6 0.000677 | 0.006197 | 0.009561 | 0.027250 | 0.042603
7 0.000174 | 0.003730 | 0.005866 | 0.017462 | 0.029549
8 0.000044 | 0.002582 | 0.004393 | 0.012069 | 0.020336

Markov

Table 3.6: Minimum distortion incurred for the Gaussian source over the Markov

channel with § = 10.0 and M = 1.

o6



0.8

distortion

distortion

Laplacian (d=0)

0.6

0.4}

0.2

Q

. €=0.005
o. o
0 00 .0 g
2 4 6 8
Gaussian (d=0)
0.8

o
oy

o
i

o
N

rate (bits)

Laplacian (d=5)

0.8
0.6

0.4}
e=0.1

o

0.2 ‘
s=0é)_05
0 O 000,
2 4 6 8
Gaussian (d=5)
0.8

rate (bits)

Laplacian (d=10)

0.8

Gaussian (d=10)

0.8
0.64
0.4 e=0.1
0.2

£=0.005

0 OO(’)m
2 4 6 8
rate (bits)

Figure 3.2: Distortion versus rate curves for generalized Gaussian sources.
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76 bits, or 1.19 bpp.

Table 3.7: Optimal bit allocation matrices for Lena at B
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58 bits, or 0.9 bpp.

Table 3.8: Optimal bit allocation matrices for Lena at B
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24 bits, or 0.375 bpp.

Table 3.9: Optimal bit allocation matrices for Lena at B
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Chapter 4

Experimental Results

4.1 An Image Transmission System

In this section, we propose a DCT-based combined source-channel coding system
to transmit grey-level images over the binary channel with additive Markov noise
described in Section 2.1.2. It consists of a channel optimized quantization scheme
that exploits the characteristics of the correlated noise in the quantizer design. A
block diagram of our proposed system is illustrated in Figure 4.1.

A grey-level (8 bpp or 256 levels) image is first subdivided into 8 x 8 blocks and
transformed via Forward Discrete Cosine Transform (FDCT) according to the JPEG
standard. As mentioned in Section 3.1, the purpose of the DCT is to ensure that the
transform coefficients are highly uncorrelated and to concentrate most of the energy
over a few low frequency coefficients. After proper normalization, higher frequency
DCT coefficients are zonally masked out since they are relatively insensitive to the
human visual system [42]. Fized bit allocation tables are used for each 8 x 8 image co-
efficient block. The inter-block DC coefficients are arranged in a zigzag sequence (See

Figure 4.2) and are subsequently quantized via a bank of channel optimized scalar
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quantizers (COSQ). Since the DC coefficient (the coefficient with zero frequency)
contains most of the energy in each image block, it is quantized with an 8-bit rate
quantizer; as for the AC coefficients, they are quantized at rates that correspond to
their level of activities. After quantization, the indices of the codebook are coded
via a Natural Binary Code (NBC) and sent over the binary channel. At the receiver
end, they are decoded and the reconstructed image is obtained through the Inverse
Discrete Cosine Transform (IDCT). A bank of COSQs are designed off line using the
method described in Section 2.3.2 and we have assumed a priori knowledge of the
channel conditions and the statistics of the quantizer input. The source distributions
are assumed to be Gaussian for the DC coefficients and Laplacian for all the AC coef-
ficients. In Section 4.3, we study the performance of the quantizer under mismatched

channel conditions.

The rationale to arrange the inter-block DC coefficients in a zigzag sequence is
as follows. It is well known that the inter-block DC coefficients are highly correlated
(p = 0.977 for Lena and p = 0.993 for Baboon [22]). By arranging them in a
zigzag fashion, it becomes desirable to exploit the memory within these transform
coefficients by using COVQ. Unfortunately, such an approach is not feasible for a
DCT-based coding system since the computational complexity of a full-search VQ
grows exponentially with £ and R. By taking £k = 2 and R = 8, the size of the
codebook can quickly become 2'°. In [34] [35], Phamdo et al. designed sub-optimal
Multi-Stage COVQ and Tree-Structured COVQ (TS-COVQ) for the BSC to reduce
the quantization complexity; however it is not trivial to apply these techniques directly

to our discrete channel model with memory. Nevertheless, there is one additional

advantage for arranging the inter-block DC (or even AC) coefficients in a zigzag

62



Image —— FDCT

Imagex <— IDCT

NORM

Y

A

DeNORM

Y

COSQ

COSQ

Y

Markov
Channel

A

COSQ
DeCODE

Figure 4.1: An image transmission system

order. In many image transmission applications, by sending the transform coefficients
in this fashion, one can minimize the information transmission delay. The user can
have an approximate version of the image without having received all the transform
coefficients and this is the basic idea behind progressive image coding. We should
also point out that we cannot resort to the variable length source coding method such

as the run-length and Huffman coding techniques used in JPEG [46]; this is because

the noisy channel can cause error propagation in the decoder.
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Figure 4.2: Zigzag sequence

4.2 Results with Fixed Bit Allocation Tables

Experimental results for this proposed system indicate that large improvement over
usual tandem schemes, which employ interleaving and are designed for the noiseless
channel, can be achieved. We performed the experiments on several images. To avoid
exhaustive listings, we only present the numerical results for Lena (512 x 512). In
Tables (4.2)-(4.4), the average PSNR values of the reconstructed Lena are displayed
for various values of the channel correlation §, BER ¢, and overall operational rate in

bits per pixel (bpp). The objective measure PSNR (in dB) is defined as

2552

E{(X;; — Xj5)*}

where X;; and Xij are, respectively, the transmitted and reconstructed ij" image

pixel.
All the numerical results were obtained by averaging over 25 experiments and
it was observed that the PSNR values do not vary too much from experiment to

experiment. Three overall operational rates were used and the fixed bit allocation
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B =76 B =58 B =24
8 76 43 000 8 76 40000 8§ 8 0000 O0O0
76 540000 76 500000 8 00 0 0O0O0O0
6 5400000 6 5000000 0000O0O0O00O0
4 4000000 400 00000 0000O0O0O00O0
30000000 000O0O0O0O0O© 0 000O0O0O0O0O© 0
000O0O0O0O0O© 0 000O0O0O0O0O© 0 000O0O0O0O0O© 0
000O0O0O0O0O© 0 000O0O0O0O0O© 0 000O0O0O0O0O© 0
0000O0O0O0°O0 0000O0O0O0°O0 0000O0O0O0°O0

Table 4.1: Global fixed bit allocation tables

tables are listed in Table (4.1). The total bits used for each 8 x 8 image block are 76,
58, and 24 bits (respectively yields rates 1.19, 0.9 and 0.375 bpp). The bit allocation
table for the 1.19 bpp system is adopted directly from [42]; and in the 0.375 bpp
system, only the first three transform coefficients are preserved and given the highest
level of protection. By fixed bit allocation table, we mean that we apply the same
table globally for any image under any channel condition. The advantage of using a
fixed bit allocation method over using an adaptive optimal bit allocation technique is
that the former one does not require overhead information; this results in a reduction
of the encoder/decoder complexity and the bandwidth requirement of the overall
system. The results obtained via this simple approach are not optimal. In Section

4.3, we study the loss of optimality by using such fixed bit allocation tables.

The performance results can be found in Tables (4.2)-(4.4) for decoded Lena. We
denote COSQ as our proposed scheme. The reference system chosen for comparison
purposes is SQ-IL which denotes the system with Lloyd-Max quantizer followed with
NBC codeword assignment over an interleaved Markov channel. In this case, we

assume that the Markov channel has been rendered memoryless (i.e. § = 0) via an
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ideal interleaver. We shall call this reference system the tandem coding system.

As shown from the PSNR tables, the data in the ¢ = 0 column represent the PSNR
values for compressed Lena with the given bit allocation table, in which the distortions
are exclusively due to the quantization errors. The data in the 6 = 0 row represent
the PSNR values for the BSC. It is apparent that the COSQ system outperforms the
reference system in all cases, especially in very noisy channel environments with high
noise correlation. More specifically, the improvement can be as high as 12 dB for
Lena with e = 0.1 and 6 = 10.0 at 1.19 bpp. As shown, the tandem coding scheme is
extremely sensitive to the channel BER (¢); its performance degrades very quickly as
the channel gets noisier. In contrast, when € increases, the performance of the COSQ
system degrades slowly and this is particularly true for channels with high correlation
parameter. Similar observations can be made for the systems with overall operation

bit rates at 0.9 bpp and 0.375 bpp.

In the context of image coding, no final judgment can be made without a subjective
performance measure. In Figure 4.3, we show the decoded Lena with our proposed
COSQ system and the tandem system SQ-IL. It can be seen that under very bad
channel conditions ¢ = 0.1, the quality of the image decoded with our proposed
COSQ system is still acceptable. Additional image results for Baboon, for Goldhill
at a medium bit rate, and for Peppers at a very low bit rate (0.375 bpp) are displayed
in Figures 4.4, 4.5, and 4.6 respectively. We conclude that the proposed COSQ system

outperforms the reference tandem coding scheme both objectively and subjectively.

We also observe that for a fixed €, the performance of the COS(Q scheme for

the channel with memory outperforms the COSQ scheme with zero noise correlation
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(interleaved system). Real life channels always exhibit some kind of memory. Tra-
ditionally the technique of interleaving/de-interleaving is used if one knows nothing
about the channel memory. The question is that if one can characterize the channel
memory (e.g. via Markov models), what kind of advantage does he have? One way
of showing this advantage is to incorporate the memory into the quantizer design and
the result can be seen from the PSNR values of decoded Lena. For e = 0.1, on average
there is an extra 3.45 dB gain for a channel with 6 = 5.0 over an interleaved system
(0 = 0). In Figure 4.8, we observe, for Lena, that more gains due to the channel
memory can be achieved in the noisy channel region. In Figure 4.7 we illustrate sub-
jectively the COSQ gain due to the channel memory for Lena at BER rates ¢ = 0.05
and € = 0.1. Thus we conclude that if we can characterize the channel statistics; it is
better to exploit the noise correlation rather than to destroy it by using interleaving.

The latter one introduces additional delay into the system.

4.3 Mismatch in the System Design

4.3.1 Bit Allocation Mismatch

As stated in Section 3.2, bit allocation addresses the proper distribution of the avail-
able bits to the transform coefficients. It determines which coefficients should be
kept for coding and transmission and how coarsely the retained coefficients should
be quantized [42]. Bit allocation is usually performed with either adaptive threshold
coding or zonal coding. Threshold coding is an adaptive method which is specified
in the JPEG image standard [46]. This coding scheme is based on the fact that dif-

ferent image blocks have different spectral and statistical behaviors so that adaptive
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bit allocation methods should be used for each image sub-block. In threshold cod-
ing, a quantization matrix is usually applied to the sub-block coefficient matrix and
only the coefficients with magnitudes above a certain threshold are retained. Thus
the bit allocation table will differ from sub-block to sub-block. A common strategy
in adaptive coding is to use a zig-zag sequence scan in conjunction with run-length
coding methods. In zonal coding, the locations for the coefficients which carry the
most information are retained via a zonal mask which is applied globally for each
image sub-block. The zonal bit allocation table is adaptively calculated for each in-
put image. In the presence of channel noise, zonal coding translates into adaptively
computing the optimal bit allocation tables by considering the channel parameters.

The bit allocation table is coded and transmitted along with the image coefficients.

In contrast, a simple fixed bit allocation scheme applies the same bit allocation
table for any image and under any channel condition. It results in reducing the
encoder/decoder complexity and does not require transmitting any overhead infor-
mation. Obviously a system which employs a fixed bit allocation scheme will not be
optimal. We herein evaluate the loss of optimality due to the incorporation of the
fixed bit allocation method in our proposed system. This is achieved by comparing it
to a similar system which employs an optimal bit allocation scheme which minimizes
the overall distortion. Here we have assumed that the exact optimal bit allocation
tables are available at the decoder. The method for calculating the optimal bit allo-
cation table in the context of the Markov channel model is described in Section 3.2
and the results are presented in Tables (3.7)-(3.9) for Lena at 1.19, 0.90, and 0.375
bpp at various channel conditions. The fixed bit allocation tables are listed in Table
(4.1).
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In Tables (4.5)-(4.7), COSQ-OPT denotes the schemes using the optimal bit allo-
cation table and COSQ-FIX denotes the fixed bit allocation schemes used in Section
4.2. Our results show that the loss of optimality by using the fixed bit allocation table
is small. In most cases, the loss is only about 1.0 dB; this gap narrows as the channel

conditions deteriorate. A similar behavior is observed for various other images.

4.3.2 Mismatch in channel parameters

In the design of the channel optimized quantizer, it is assumed that the knowledge of
the source distribution and the channel conditions are known a priori for the quantizer
design. In this thesis, we assumed that the DC and AC transform coefficients follow
the Gaussian and Laplacian distributions respectively. To study the source mismatch,
one can find out the shaping factor a of generalized Gaussian distribution by using
the Kolmogorov-Smirnov test [37], [41] for each image. This exercise can not be done
in real-time applications; however we believe the problem of the source mismatch
is minor in most cases. In this subsection we examine the mismatch under various

channel conditions for both ideal and image sources.

Channel mismatch results for the Gaussian and Laplacian sources are presented
in Tables (4.8)-(4.11) for the channel optimized scalar quantizer (COSQ) with two
different bit rates (R = 4 and R = 8). ¢, and ¢; denote the actual and designed BER;
Similarly d, and 0, denote the actual and designed noise correlation parameters.
For the Gaussian source, under noiseless matched condition, the performance goes
from 20.18 dB at R = 4 to 43.57 dB at R = 8 with 23.39 dB improvement. This
reflects the well-known result that for the Gaussian source, every bit results in a 6 dB

improvement. The tabulated data also illustrate the fact that the Gaussian source

69



outperforms the Laplacian source in pdf-optimized COSQ systems. For fixed ¢, the
quantizer performances indicate that the COS(Q) systems are relatively insensitive
to the channel BER mismatch provided that ¢; > ¢,. For the data in the row of
€, = 0.0, the performance degradation is entirely due to the quantization distortion.
As expected this degradation becomes large for larger bit rates and at larger ¢, values.
For fixed €, we observe that the system performance are not very sensitive to the
mismatch of the noise correlation. The similar performance behavior due to the
channel mismatch is shown in Tables (4.12) and (4.13) for Lena. We can conclude
from the results that it is in general better to overestimate the true parameters than

to underestimate them.

4.4 Results from Using COVQ

In this subsection, we present some experimental results by using COVQ directly on
Lena with the Markov channel. The dimension was chosen to be 4 x 2 pixels (or k = 8)
and a rate of 1 bpp was maintained. A set of training images (Goldhill, Airplane,
Tiffany, Peppers, and Sailboat) other than Lena were used to obtain the empirical
k-fold source distribution. Again the quantizers were assumed to be matched to both
the source distribution and the channel conditions. All results were obtained over
25 experiments and the PSNR performance for decoded Lena can be found in Table
(4.14). Here COV(Q denotes the system which employs COVQ and the outputs of
the COVQ are sent over the Markov channel directly. VQ-IL denotes the system
with VQ (designed for noiseless channel) and indices of the codebook are sent over an
ideal interleaved Markov channel. Similar observations can be made as the cases with

DCT-based COSQ systems. Channel optimized quantization schemes outperform the
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reference tandem systems in all cases, especially at bad channel conditions. A system
which exploits the channel memory has more gains compared against a system which
destroys the memory. By comparing the COV(Q PSNR values with those from COSQ
system with overall bit rate of 0.9 bpp in Table (4.3), we see that the performance
of the COVQ system is quite comparable. However it should be emphasized that
COVQ system will normally suffer from delays and depend on the training image
sequences, while the DCT-based COSQ system is delayless (scalar quantizer) and the

source distributions are image independent.
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0 | System | e=0 | e=0.005 | e=0.01 | e=0.05 | e=0.1

0 | COSQ | 32.33 | 30.42 29.50 | 25.18 | 22.42

0 | SQ-IL | 32.33 | 27.30 24.99 18.59 | 15.69

5 | COSQ | 32.33 | 31.06 30.32 | 27.43 | 25.87

5 | SQ-IL | 32.33 | 27.30 24.99 18.59 | 15.69

10 | COSQ | 32.33 | 31.41 30.83 | 28.98 | 27.74

10 | SQ-IL | 32.33 | 27.30 24.99 | 18.39 | 15.69

Table 4.2: Average PSNR (dB) of decoded Lena over the Markov channel (M = 1)

with BER € and correlation parameter § using fixed bit allocation table at 1.19 bpp.

0 | System | e=0 | e=0.005 | e=0.01 | €=0.05 | e=0.1

0 | COSQ | 3049 | 29.26 28.63 | 24.92 | 22.29

0 | SQ-IL | 30.49 | 26.57 24.56 | 18.50 | 15.68

5 | COSQ | 3049 | 29.58 29.01 26.93 | 25.58

5 | SQ-IL | 30.49 | 26.57 24.56 18.50 | 15.68

10 | COSQ | 30.49 | 29.85 2949 | 28.23 | 27.20

10 | SQ-IL | 30.49 | 26.57 24.56 | 18.50 | 15.68

Table 4.3: Average PSNR (dB) of decoded Lena over the Markov channel (M = 1)

with BER € and correlation parameter ¢ using fixed bit allocation table at 0.90 bpp.
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0 | System | e=0 | e=0.005 | e=0.01 | e=0.05 | e=0.1

0 | COSQ | 26.16 | 25.80 25.60 | 23.74 | 21.71

0 | SQ-IL | 26.16 | 24.37 23.06 | 18.19 | 15.58

5 | COSQ | 26.16 | 25.91 25.07 | 24.72 | 23.98

5 | SQ-IL | 26.16 | 24.37 23.06 | 18.19 | 15.58

10 | COSQ | 26.16 | 26.00 25.89 | 25.36 | 24.92

10 | SQ-IL | 26.16 | 24.37 23.06 18.19 | 15.58

Table 4.4: Average PSNR (dB) of decoded Lena over the Markov channel (M = 1)

with BER € and correlation parameter ¢ using fixed bit allocation table at 0.375 bpp.
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Original Lena (512 x 512) Decoded Lena with SQ-IL,

PSNR =15.84 dB

Compressed Lena at 1.19 bpp Decoded Lena with COSQ),

0 =10.0, PSNR =27.88 dB

Figure 4.3: Lena: Overall rate is 1.19 bpp; Markov channel with e = 0.1.
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Decoded Baboon with SQ-IL,

PSNR =16.52 dB

Compressed Baboon at 1.19 bpp Decoded Baboon with COSQ),

0 =10.0, PSNR =21.32 dB

Figure 4.4: Baboon: Overall rate is 1.19 bpp; Markov channel with e = 0.1.
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Decoded Goldhill with SQ-IL,

PSNR =16.32 dB

Compressed Goldhill at 0.90 bpp Decoded Goldhill with COSQ,

0 =10.0, PSNR =27.85 dB

Figure 4.5: Goldhill: Overall rate is 0.90 bpp; Markov channel with e = 0.1.
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Decoded Peppers with SQ-IL,

PSNR =15.82 dB

Compressed Peppers at 0.375 bpp Decoded Pepper with COSQ,

0 =10.0, PSNR =25.22 dB

Figure 4.6: Peppers: Overall rate is 0.375 bpp; Markov channel with e = 0.1.
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Decoded Lena with § = 0, Decoded Lena with 6 = 10.0,

e =0.05, PSNR =25.49 dB e =0.05, PSNR =29.16 dB

Decoded Lena with § = 0.0, Decoded Lena with 6 = 10.0,

e=0.1, PSNR =22.67 dB e=0.1, PSNR =27.88 dB

Figure 4.7: Lena: Overall rate is 1.19 bpp; COSQ over the Markov channel.
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0 | System e=0 | €e=0.005 | e=0.01 | e=0.05 | e=0.1

0 | COSQ-OPT 33.07 | 30.71 29.74 | 25.43 | 22.55

0 | COSQ-FIXED | 32.33 | 30.42 29.50 25.18 | 22.42

5 | COSQ-OPT 33.07 | 31.48 30.61 | 27.55 | 26.00

5 | COSQ-FIXED | 32.33 | 31.06 30.32 | 27.43 | 25.87

10 | COSQ-OPT 33.07 | 31.88 31.32 29.17 | 28.11

10 | COSQ-FIXED | 32.33 | 31.44 30.83 | 28.98 | 27.74

Table 4.5: Performance comparison between COSQ systems using fixed and optimal
bit allocation tables; PSNR (dB) of decoded Lena over the Markov channel with BER

€ and correlation parameter § at 1.19 bpp.

0 | System e=0 | €=0.005 | e=0.01 | e=0.05 | e=0.1

0 | COSQ-OPT 31.76 | 29.87 29.05 | 25.07 | 22.40

0 | COSQ-FIXED | 30.49 | 29.26 28.63 24.92 | 22.29

5 | COSQ-OPT 31.76 | 30.40 29.62 | 27.12 | 25.75

5 | COSQ-FIXED | 30.49 | 29.58 29.01 26.93 | 25.58

10 | COSQ-OPT 31.76 | 30.83 30.25 | 28.65 | 27.43

10 | COSQ-FIXED | 30.49 | 29.85 2949 | 28.23 | 27.20

Table 4.6: Performance comparison between COSQ systems using fixed and optimal
bit allocation tables; PSNR (dB) of decoded Lena over the Markov channel with BER

e and correlation parameter § at 0.9 bpp.
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0 | System e=0 | €=0.005 | e=0.01 | e=0.05 | e=0.1

0 | COSQ-OPT 2791 | 26.85 2641 | 23.81 | 21.74

0 | COSQ-FIXED | 26.16 | 25.80 25.60 | 24.74 | 21.71

5 | COSQ-OPT 2791 | 27.00 26.76 | 25.24 | 24.29

5 | COSQ-FIXED | 26.16 | 25.91 25.70 24.72 | 23.98

10 | COSQ-OPT 2791 | 27.44 27.14 | 26.22 | 25.39

10 | COSQ-FIXED | 26.16 | 26.00 25.89 25.36 | 24.92

Table 4.7: Performance comparison between COSQ systems using fixed and optimal
bit allocation tables; PSNR (dB) of decoded Lena over the Markov channel with BER

e and correlation parameter 6 at 0.375 bpp.

GdZO.O GdZO.Ol EdZO.l

€,=0.0 | 20.18 | 20.02 17.35

R=4|¢=001|11.86 |16.34 15.47

€,=0.1 | 2.48 8.78 9.58

€,=0.0 | 43.57 | 31.01 25.98

R =8 1¢,=0.011]12.09 | 23.57 23.55

€,=0.1 | 2.09 14.65 16.92

Table 4.8: Channel mismatch results in SNR (dB) for the Gaussian source with R = 4

and R = 8, k = 1: Mismatch in BER (d,=0,=10.0).

81



64=0.0 | 6,=5.0 | 6,=10.0

0,=0.0 | 12.58 | 9.52 8.91

R=4]6,=5.0 |11.60 | 14.84 | 14.92

0,=10.0 | 11.51 | 15.97 | 16.34

0,=0.0 |20.13 | 14.04 | 12.72

R=8]6,=5.0 | 14.12 | 21.38 | 20.92

0,=10.0 | 14.32 | 23.54 | 23.57

Table 4.9: Channel mismatch results in SNR (dB) for the Gaussian source with R = 4

and R = 8, k = 1: Mismatch in § (¢,=€4=0.01).

€d:0.0 €d:0.01 EdZO.]_

€,=0.0 | 18.09 | 17.75 14.72

R=4]¢=0.01 1896 14.01 13.51

€,=0.1 |-0.54 6.32 8.71

€,=0.0 | 41.67 | 28.67 24.00

R =8]¢=0.01]8.28 21.93 21.60

€,=0.1 |-1.74 13.11 14.97

Table 4.10: Channel mismatch results in SNR (dB) for the Laplacian source with

R =4 and R =8, k = 1: Mismatch in BER (6,=0,=10.0).
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04=0.0 | 94=5.0 | 94=10.0

0,=0.0 | 10.77 | 7.34 6.94

R=4]6,=50 |9.74 13.58 | 12.80

0,=10.0 | 9.61 14.87 | 14.01

0,=0.0 | 18.17 | 12.60 | 10.21

R=8]6,=5.0 |11.26 |20.08 | 19.41

0,=10.0 | 11.67 | 21.93 | 21.93

Table 4.11: Channel mismatch results in SNR (dB) for the Laplacian source with

R =4 and R =8, k = 1: Mismatch in § (¢,=€4=0.01).

6,120.0 6,120.01 €q — 0.1

€,=0.0 | 32.33 | 31.88 31.02

€,=0.01 | 24.97 | 30.83 30.52

€,=0.1 | 15.63 | 26.28 27.74

Table 4.12: Performance (in dB) of decoded Lena under mismatch in € ( §, = 04 =

10.0).
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6,=0.0 | 6,=5.0 | 6, = 10.0

9,=0.0 | 29.50 | 26.29 | 24.85

9,=5.0 | 26.33 | 30.32 | 30.01

9,=10.0 | 26.66 | 30.82 | 30.83

Table 4.13: Performance (in dB) of decoded Lena under mismatch in § (¢, = ¢4 =

0.01).

0 | System | e=0 | e=0.005 | e=0.01 | €=0.05 | e=0.1

0 | COVQ | 30.07 | 29.27 28.37 | 2443 | 21.83

0 | VQ-IL | 30.07 | 22.24 19.67 | 13.56 | 11.23

5 | COVQ | 30.07 | 30.01 29.30 | 26.49 | 25.07

5 | VQ-IL | 30.07 | 22.24 19.67 13.56 | 11.23

10 | COVQ | 30.07 | 30.04 29.73 | 27.84 | 26.54

10 | VQ-IL | 30.07 | 22.24 19.67 | 13.56 | 11.23

Table 4.14: Average PSNR (dB) of decoded Lena over the Markov channel (M = 1)

using COVQ with dimension = 4 x 2, R = 1 bit per sample.
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Chapter 5

Conclusions and Future Work

5.1 Summary

In chapter 2 we described channel optimized quantization and designed a COVQ sys-
tem which is applied for generalized Gaussian sources and an additive channel model
with memory. In designing the COVQ systems, we exploit the intra-block memory of
the channel by incorporating the knowledge of the noise correlation parameter into
the quantizer design. With this scheme, significant improvements have been achieved
over interleaved systems. The moral to be drawn from this work is that it is best to
make good use of the channel memory, if such information exists, instead of trying
to destroy it through interleaving.

Chapter 3 addresses the problem of optimal bit allocation in the context of trans-
form coding and transmission over noisy channels with memory. An integer program-
ming technique called steepest descent algorithm is successfully applied to find the
optimal bit allocation tables such that the end-to-end distortion is minimized.

A DCT-based combined source-channel coding system is proposed in Chapter 4 for

transmitting grey-level images over a binary channel with additive Markov noise. It
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consists of a channel optimized quantization scheme described in Chapter 2. Extensive
experimental results show that this simple system  which employs a fixed zonal
coding bit allocation technique — provides significant improvements over traditional
tandem systems, especially during bad channel conditions. The loss of optimality
due to the use of fixed bit allocation tables is also examined. The loss is shown to
be very small for various images; this suggests that a reduction in complexity and
bandwidth requirements can further be achieved. Experiments are performed under
various channel mismatched conditions, it is shown that the proposed system is fairly
robust under certain conditions.

The purpose of this thesis is to propose a combined source-channel coding system
for image transmission over very noisy channels with memory. It is worthwhile to
point out that the tandem system we choose in Chapter 4 is not the best reference
system. For comparison purposes, we kept the quantizer complexity fixed and did not
allow room for additional error control codes. In a recent work [20], Goldsmith et al.
address the problem of optimal bit allocation between source and channel encoders
so that forward error correction (FEC) codes can be used in conjunction with the
channel optimized quantizers. They consider an additive white Gaussian channel
(AWGN) which is used with BPSK modulation. However it is not entirely clear that
the performance gains over the COV(Q system are due to the so-called optimal tandem

system or due to the fact that their channel decoder employs soft-decision decoding.

5.2 Future Work

There are several directions for future work. For now, we have been working with the

channel modeled by the Polya contagion urn [2]. We plan to use COVQ as a vehicle
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to work with other channel models with memory, such as the Gilbert channel model.
More specifically we wish to use COVQ to evaluate how well the Markov channel can
model the Gilbert channel. We believe good results may be obtained by increasing
the order of the Markov channel model.

In order to fully exploit the high correlation among inter-block DC coefficients, a
COVQ system must be employed. However due to the complexity of the full-search
VQ algorithm, we are not able to implement this feature. Omne approach to this
problem is to design a sub-optimal COVQ scheme. Phamdo et al. [34], [35] studied
this problem but only for the BSC model. We plan to extend this technique to
channels with memory.

In this thesis, DCT is chosen in the source encoder process for the sake of its
simplicity and popularity. Parallel results can also be obtained for subband coding
methods. We expect the result for subband coded system to be slightly better than
the DCT system. In addition, more powerful data compression schemes such as
wavelet method can also be studied in the frame work of combined source-channel
coding. This thesis only deals with image compression and transmission over channel
with memory; similar work can also be extended to video applications. We also plan
to incorporate a soft-decision decoding technique into the proposed combined source-
channel coding system to obtain extra gains. This is inspired by the recent work in

14].
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Appendix A

Quantification of Reconstruction Errors

{x) s [T W)

ply|x) ———

Figure A.1: Block diagram for a simple transmission system

Let X be the n-dimensional input vector to the vector quantizer (VQ), and X be the
reconstructed vector taking values from the alphabet {c;,cs,...,cy}. The output of
the VQ is transmitted over a noisy channel described by the block channel transition
probability p(y|X). The received vectors Y have the same alphabet as X (see Figure

2

A.1). The total end-to-end mean square error distortion € can be expressed as

e = B{|X-Y]) (A1)

= E{|X-X+X-Y |}



= E{|X - X|}+E{|X - Y[’} +2E{X'X - X'Y - XX + X'Y}

€2

oo

€

5
_ 2 2 2
= €, T € T e,

where € is the distortion due to the vector quantization; and €, is the distortion due
to the noisy channel. We wish to find out the condition under which the cross-term €2

becomes zero. To do this, we need to find out the joint probability density functions

p(x,%), p(x,y) and p(x,y). According to the VQ operation, we have

M&:Q}:Af&MX (A.2)

where p(x) is the n-fold probability density function of x. We define p;(x) as

m@y—éf@m@) (A.3)

Now let the block channel transition probability F;; be

Pij:PT{y:Cj|)A(:Ci} (A4)

which is the probability that the received code vector is ¢; given that the vector ¢; is

sent. We also define p;(x) as

xX) x €5
pi(x) = v xe (A.5)

0 otherwise.

With the above notations, it is straightforward to write the joint probability den-

sity functions of x and x as

plx.%) = Y 6(% — cpi(x) (A.6)
where §(-) denotes the Kronecker delta function which is defined as
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1 if x=
S(x — y) 2 Y (A7)

0 otherwise,

satisfying

/ f(x)o(x — x¢)dx = f(xo). (A.8)

To obtain the density function of the VQ output x, we can integrate p(x,x) with

respect to x and get

p(x) = / p(x, %)dx (A.9)
— '/‘nZ(S(}A{—ci)pi(x)dx (A.10)

= Z 5(% — ¢;)pi(x). (A.11)

The other joint density functions can be simply expressed as

= Z‘S(y Zpy Pji, (A.12)

and

Z sz x)Pj6(x = ¢i)d(y — ¢;). (A.13)

Now we can evaluate the individual cross term expectations as

E{X'X} = / /R . thczi:é(fc—ci)pi(x)dxdi (A.14)
_ /R," xt{; /R," %6(% — ci)pi(x)dfc}dx (A.15)
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= /nthpi(X)CidX (A.16)

_ Z/S xtp(x)dx c;, (A.17)

and
B{IX P = [ %% 3 6(x - c)m(x)dx (A18)
= Zciczm (A.19)
= Zcfpi(x)ci, (A.20)

and
E{X'Y} = //nxtyZ(S(y—ci)ij(X)Pjidxdy (A.21)
= Z/nxtzp]‘(X)PjiCidX, (A22)

and

E(X'Y} = [[ %yY S nxIPox - c)oly - o)dxdy  (A.23)
J. 5
= > ni(x)Pycic;. (A.24)
(]
Now let the reconstruction vector c¢; be the centroid of the corresponding encoding

region S;

o — Js, xp(x)dx
Z Js, p(x)dx
Substituting (A.25) into (A.17), (A.20), (A.22), and (A.24) respectively, yields

(A.25)

E{X'X} = E{X'X} (A.26)
E{X'Y} = E{X'Y}. (A.27)
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Thus we conclude if the VQ is designed to be optimal, we can write the total end-

to-end distortion €* as the sum of distortion due to quantization €, and distortion

2

c*

due to channel error €
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