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Abstract

In this work, we analyze the capacity of discrete-time �nite-alphabet channels with

memory subject to an input cost constraint. More speci�cally, we consider modulo-q

additive noise channels, where the noise process is a stationary Markov source of order

k.

We begin by investigating the capacity-cost function (C (�)) of such additive noise

channels without feedback. Since C (�) does not admit a closed-form expression, we

estimate it numerically. This is achieved by implementing two existing bounds to

C (�) (one from below and one from above). The lower bound consists of the n

th

capacity-cost function C

n

(�) for any given block length n. The upper bound, which

is due to Alajaji, is the counterpart to the Wyner-Ziv lower bound to the rate-

distortion function of sources with memory. Both bounds, which are asymptotically

tight with increasing block length, are calculated using the Blahut algorithm for the

computation of channel capacity. In the case of channels with binary alphabet, we use

Mrs. Gerber's Lemma as a means to improve the lower bound on C (�). Numerical

examples indicate that the three bounds form a tight envelope on C (�).

We next examine the e�ect of output feedback on the capacity-cost function of

additive Markov noise channels. We establish a lower bound to the capacity-cost func-

tion with feedback (C

FB

(�)). We show (both numerically and analytically) that for

a particular feedback encoding strategy and a class of Markov noise sources, the lower
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bound to C

FB

(�) is strictly greater than the upper bound to C (�). This demon-

strates that feedback can increase the capacity-cost function of discrete channels with

memory.
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Chapter 1

Introduction

Within the �eld of information theory, numerous questions remain unanswered with

regards to the capacity of constrained channels with feedback and memory. In this

discourse, we will examine and implement some established techniques for bounding

the constrained capacity, or capacity-cost function { C (�) [2, 8, 20]. Then we will use

these bounds to prove that feedback can increase the capacity-cost function for some

q-ary addition channels for which a Markov chain generates the data corruption.

In this chapter we present the literature review of articles upon which our research

is based. We then specify the main contributions of this thesis. Finally, we outline

the general ow of the thesis.
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Figure 1.1: Generalized Channel Model without Feedback.
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1.1 Literature Review

A number of important results and observations regarding the capacity-cost function

and the rate-distortion function direct and guide our present research goals:

� to analyze the capacity-cost function of channels with memory,

� to implement tight bounds on the capacity-cost function for channels with ad-

ditive Markov noise,

� and to demonstrate that feedback can increase the capacity-cost function of

such channels.

Our �rst aim is aided by the work of Shannon, Wyner, Ziv, Blahut and Alajaji.

Shannon �rst remarked in [24] that there \is a curious and provocative duality be-

tween the properties of a source with a distortion measure and those of a channel.

This duality is enhanced if we consider channels in which there is a `cost' associ-

ated with the di�erent input letters, and it is desired to �nd the capacity subject to

the constraint that the expected cost not exceed a certain quantity." The functions

Shannon describes have no closed form in general, and their speci�cation is limited to

bounding techniques. Wyner and Ziv discovered two key bounds. Their lower bound

on R(D) ([26]) helps our search indirectly by inspiring a dual upper bound by Alajaji

on C (�) ([2]). Wyner and Ziv also derived a lower bound known as Mrs. Gerber's

Lemma [27]

1

to the capacity-cost function of binary channels with independent input

and noise sequences. Blahut's contribution is an algorithm for the computation of the

constrained channel capacity, for a memoryless channel with �nite input and output

symbol sets [8]. This result was also discovered independently by Arimoto in [4].

1 In this thesis we actually present a more general proof due to Shamai and Wyner [20] of which

Mrs. Gerber's Lemma is a consequence.
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Our analytical and numerical results on feedback channels draw on the ideas of

Shannon and Alajaji, but are also encouraged by the results of Cover and Pombra.

Shannon proved in [22] that feedback does not increase the capacity (or the capacity-

cost function) of discrete memoryless channels. In [23] he goes on to prove the same

result for discrete memoryless channels with side information (generalized feedback).

Alajaji improved the scope of this result by extending it to discrete channels with

arbitrary (not necessarily stationary ergodic) additive noise [1]. A question remained

as to the e�ect of feedback on the capacity-cost function. Cover and Pombra showed

in [10] that for continuous power constrained channels with non-white Gaussian noise

feedback does help.

1.2 Contribution

The contribution of this thesis has both numeric and analytic signi�cance. The nu-

meric results ow from the implementation of Blahut's algorithm for the n

th

capacity-

cost function, and from algebraic manipulations on discrete alphabet Markov chains.

A C++ program in the thesis performs the following tasks:

� computes Blahut's lower bound and Alajaji's upper bound for the capacity-cost

function of non-feedback mod q Markov noise channels,

� computes Mrs. Gerber's Lemma for binary addition channels,

� solves for the stationary distribution of an arbitrary discrete stationary ergodic

Markov process of order k and alphabet q such that q

k

� 16.

As well, we derive analytically the following results for modulo channels with additive

Markov noise.
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� We establish a lower bound to the capacity-cost function of Markov noise chan-

nels with feedback. This bound can be numerically evaluated using Blahut's

algorithm.

� We present a feedback strategy and a set of Markov noise sources for which the

capacity-cost function with feedback is greater than the non-feedback capacity-

cost function.

1.3 Thesis Overview

This thesis is organized in the following manner.

Chapter 2 presents background analysis needed to understand the arguments pre-

sented later. Our results concern channels with additive Markov noise; so we start

by introducing the properties of a discrete Markov process. We proceed by de�ning

the discrete channel in general and the notion of an average cost constraint on chan-

nel input symbols. The capacity-cost function C (�) as well as the n

th

capacity-cost

function are de�ned and some of their properties are stated. We close by formulating

the di�erent channel models that will be used in the subsequent chapters. We also

derive an expression for the actual capacity C of a mod q channel corrupted by a

�nite state Markov process.

Chapter 3 is devoted to the derivation and computation of existing bounds on the

capacity-cost function. A tight lower bound which can be computed by an algorithm

due to Blahut [8] converges slowly as the channel block length n increases, and is

improved when used jointly with Mrs. Gerber's Lemma, a special case of the Binary

Analog to the Power Entropy Inequality [20]. The upper bound, due to Alajaji [2], is

a direct analogy to the rate-distortion function lower bound by Wyner and Ziv [26].

In the instance where the memory in the noise process is computable for both �nite

4



and in�nite random sequences (Markov chains �t this description), Alajaji's upper

bound converges to Blahut's lower bound showing that both bounds are tight in the

limit as n!1. These bounds are then implemented on a number of discrete Markov

channels.

Chapter 4 focuses on additive noise channels with feedback, and develops a class of

channels for which nonlinear feedback increases the capacity-cost function. To allow

the previous de�nitions and algorithms to apply to feedback channels, some inter-

pretation of terms is essential. Feedback can be viewed either as changing the noise

process on the channel or as re-encoding the message sequence. To fully understand

feedback in relation to the capacity-cost function, we must take both of these views

simultaneously. For instance, the per letter cost in the non-feedback case is deter-

mined solely by the source probabilities. Under a feedback rule, the costs of channel

input codewords can only be determined probabilistically using both the input prob-

abilities and the channel noise process. Using the new costs, Blahut's algorithm can

still be employed to evaluate a lower bound to the feedback capacity-cost function.

By choosing an appropriate feedback scheme, a class of channels is provided, whose

capacity-cost function is increased by feedback. The examples from previous chapters

are incorporated to numerically illustrate this result.
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Figure 1.2: Discrete Channel Model with Feedback.

Chapter 5 summarizes our �ndings and points to future work and related problems

that may be addressed by a similar approach.

The thesis concludes with two appendices. Appendix A presents the necessary

5



background in information theory for a reader to follow the text. Appendix B is a

complete proof of the Blahut-Arimoto algorithm for the n

th

capacity-cost function

C

n

(�).
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Chapter 2

The Capacity-Cost Function C (�)

Before embarking on presenting our results, covering a certain amount of background

is necessary. We start by de�ning and characterizing the notion of a Markov process,

of a discrete addition channel, of a cost constraint and of a capacity-cost function.

The capacity-cost (C (�)) itself was �rst proposed by Shannon in his inaugural

papers on information theory [21, 24]. Not only did Shannon invent the language

of modern communications, he also proposed and solved many of the fundamental

problems. Among them are the limit on the compressibility of a data source, the

limit on the transmission rate of information across a noisy channel without memory,

and the ability to separately design source and channel coding schemes without loss

of optimality. Since Shannon's work, other researchers have extended his results by

deriving the capacity formula - i.e. the maximum rate at which information can be

reliably transmitted - for more general channel models. In this chapter, we introduce

the concepts necessary for discussing a constrained capacity, i.e., the capacity subject

to a maximum allowable average cost on the input sequence. As implementation

is also an important aspect of this work, we will also introduce some examples of

additive channels with memory that will be used to illustrate previous results and

our new �ndings.
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2.1 Markov Sources of Order k

A k

th

order Markov process is one whose present value depends only on the previous

k values, and is conditionally independent of any older ones. Exploring questions of

channels with memory calls for a selection of noise sources that are both general and

easy to analyze. Finite order Markov chains �t this description.

We now introduce the properties of discrete k

th

order Markov sources with alpha-

bet size q. The following de�nitions are a synthesis of those found in the books by

Cover and Thomas [11], and Grimmett and Stirzaker [14]. The formulas for solv-

ing the stationary distribution were derived independently, and are necessary for the

computer implementation required in the thesis.

De�nition 2.1 A discrete stochastic process fZ

i

g

1

i=1

with �nite state space Z =

f0; 1; : : : ; q � 1g is said to be a Markov process of order k if,

Pr(Z

n

= z

n

jZ

n�1

=z

n�1

; Z

n�2

=z

n�2

; : : : ; Z

1

=z

1

) =

Pr(Z

n

= z

n

jZ

n�1

=z

n�1

; Z

n�2

=z

n�2

; : : : ; Z

n�k

=z

n�k

); (2.1)

for all z

n

2 Z = f0; 1; : : : ; q � 1g, and for all n 2 fk + 1; k + 2; : : :g.

De�nition 2.2 A stochastic process is said to be stationary if the joint distribution

of any subset of the sequence of random variables is invariant with respect to shifts

in the time index, i.e.,

Pr(Z

1

=z

1

; Z

2

=z

2

; : : : ; Z

n

=z

n

) = Pr(Z

1+l

=z

1

; Z

2+l

=z

2

; : : : ; Z

n+l

=z

n

); (2.2)

for every time shift l and for all z

i

2 Z; i 2 f1; 2; : : :g.

If we denote the random k-tuple (Z

n�k

; Z

n�k+1

; : : : ; Z

n�2

; Z

n�1

) by S

n

, the state

at time n, then the state transition probabilities are related to Pr(�j�) as follows

Pr(S

n+1

jS

n

) = Pr(Z

n

; Z

n�1

; : : : ; Z

n�k+1

jZ

n�1

; Z

n�2

; : : : ; Z

n�k

) (2.3)
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= Pr(Z

n

jZ

n�1

; Z

n�2

; : : : ; Z

n�k

): (2.4)
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Figure 2.1: k

th

Order Markov Process in State S

n

= (Z

n�1

; : : : ; Z

n�k

).

It is easily seen that the states fS

n

g, form a new �rst order Markov process with

S

n

= (Z

n�k

; : : : ; Z

n�1

) 2 Z

k

, indexed for time n > k. If the cardinality of the noise

process is q (denoted jZj = q) we get a q

k

� q

k

state transition matrix�

(n)

built from

the q

k+1

conditional probabilities, Pr(Z

n

jZ

n�1

; Z

n�2

; : : : ; Z

n�k

)

1

,

�

(n)

= [Pr(S

n+1

jS

n

)] = [Pr(Z

n

jZ

n�1

; : : : ; Z

n�k

)] ; (2.5)

indexed along its rows by vectors in Z

k

representing the present channel state and

along its columns by vectors in Z

k

representing the next channel state. Since the

cardinality of the set of all noise states is q

k

, we can assign an integer value l to any

state s

n

= (z

n�k

; : : : ; z

n�1

) according to the following rule

l(s

n

)

4

= z

n�k

q

k�1

+ z

n�k+1

q

k�2

+ � � �+ z

n�2

q

1

+ z

n�1

=

k

X

i=1

z

n�i

q

i�1

; (2.6)

where z

i

2 f0; 1; : : : ; q� 1g for all integers i > 0. In the computer implementation of

Blahut's algorithm all n-tuples are indexed in this manner.

1The remaining q

k

(q

k

�q) entries in the matrix are set to zero, as they represent impossible state

transitions of the form

Pr(Z

n

=z

n

; Z

n�1

=ẑ

n�1

; : : : ; Z

n�k+1

=ẑ

n�k+1

jZ

n�1

=z

n�1

; : : : ; Z

n�k

=z

n�k

);

where at least one of the ẑ

i

6= z

i

for i = n� k + 1; : : : ; n� 1.
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De�nition 2.3 A Markov chain is said to be time invariant (or homogeneous) if the

conditional probability Pr(S

n+1

jS

n

) of the Markov states does not depend on n. More

speci�cally,

Pr(S

n+1

= bjS

n

= a) = Pr(S

2

= bjS

1

= a) (2.7)

for all a; b 2 Z

k

and for all times n 2 f1; 2; : : :g, which implies that

�

(n)

= �: (2.8)

We will assume throughout this thesis that the conditional probabilities are ho-

mogeneous.

We now classify the Markov chain de�ned by � on the state space S = Z

k

,

according to the conventions given in [14]. Our immediate goal is a general algorithm

for the stationary probability distribution of the states.

De�nition 2.4 State i is called persistent (or recurrent) if

Pr(S

n

= i for some n > 1jS

1

= i) = 1: (2.9)

Literally, the probability of eventual return to i, having started from i, is 1. If this

probability is strictly less than 1, i is called a transient state.

As we are interested in state transitions, let

f

ij

(n) = Pr(S

2

6= j; : : : ; S

n�1

6= j; S

n

= jjS

1

= i) (2.10)

be the probability that the �rst visit to state j, starting from state i, takes place at

time n. Let

p

ij

(n) = Pr(S

n

= jjS

1

= i) (2.11)

be the probability that state j occurs n� 1 steps after state i.

10



De�nition 2.5 ([14]) A persistent state i is called null if

X

n

nf

ii

(n) =1: (2.12)

Otherwise we say that the persistent state is non-null (or positive).

Theorem 2.1 ([14]) A persistent state is null i� p

ii

(n)! 0 as n!1; if this holds

then p

ji

(n)! 0 for all j.

De�nition 2.6 The period d(i) of a state i is de�ned by

d(i) = gcdfn : p

ii

(n) > 0g; (2.13)

the greatest common divisor of the epochs at which return is possible. We call i

periodic if d(i) > 1 and aperiodic if d(i) = 1. That is to say, p

ii

(n) = 0 unless n is a

multiple of d(i).

De�nition 2.7 We say i communicates with j, written i ! j if the chain may

ever visit state j with positive probability, starting from state i. That is, i ! j if

p

ij

(m) > 0 for some m � 1. We say i and j intercommunicate if i! j and j ! i, in

which case we write i$ j. If i 6= j, then i! j i�

P

n

f

ij

(n) > 0.

Remark: it is simple to demonstrate that i$ j is an equivalence relation.

� Clearly i$ i since p

ii

(1) = 1.

� By de�nition, i$ j implies j $ i.

� If i$ j at step m and j $ k at step n then p

ik

(m+n) � p

ij

(m)p

jk

(n) > 0. So

i$ k, and the relation is transitive and the class is closed.

Therefore, the state space S can be partitioned into the equivalence classes of $.

11



Theorem 2.2 ([14]) If i$ j then

a) i and j have the same period,

b) i is transient i� j is transient,

c) i is null persistent i� j is null persistent.

De�nition 2.8 A set of states B is called

a) closed if p

ij

= 0 for all i 2 B, j =2 B,

b) irreducible if i$ j for all i; j 2 B.

A �nite-alphabet stationary Markov process fZ

i

g

1

i=1

is ergodic i� it is irreducible

(i.e. any state is achievable with positive probability from any other state in a �nite

number of steps); furthermore, it is mixing i� it is irreducible and aperiodic [6].

In this thesis, we require stationary mixing noise. Therefore, our Markov processes

must be at least irreducible and aperiodic. We will now show that these are su�cient

conditions to guarantee the existence of a stationary distribution as well.

De�nition 2.9 The vector � is called a stationary distribution of the chain if � has

components (�

j

: j 2 S) such that

a) �

j

� 0 for all j, and

P

j

�

j

= 1,

b) � = ��, which is to say that �

j

=

P

i

�

i

�

ij

for all j.

Theorem 2.3 (Perron-Frobenius) If � is the transition matrix of a �nite irre-

ducible chain with period d then

a) �

1

= 1 is an eigenvalue of �,

12



b) the d complex roots of unity

�

1

= !

0

; �

2

= !

1

; : : : ; �

d

= !

d�1

; (2.14)

where ! = exp(2�i=d), are eigenvalues of �,

c) the remaining eigenvalues �

d+1

; : : : ; �

N

satisfy j�

j

j < 1.

Theorem 2.4 For a �nite-alphabet, irreducible and aperiodic Markov chain with

transition matrix �, the stationary probability distribution � on the states j 2 S is

unique, and solved by �(I

jSj

��) = 0 with the normalizing constraint

P

j

�

j

= 1.

Proof of Theorem 2.4 Applying Theorem 2.3 to an aperiodic process (i.e., d = 1)

results in a single left eigenvector solution to

� = ��; (2.15)

�(�

1

I

jSj

��) = 0; (2.16)

where �

1

= 1 and I is the identity matrix of appropriate size. The solution to (2.16)

is unique under the normalizing constraint

P

j

�

j

= 1. 2

The computer algorithm that solves for the steady-state probabilities in �, makes

the following observations for an irreducible aperiodic Markov chain on the state space

S = Z

k

.

� � has a unique left eigenvector solution, therefore K = (I

q

k � �) has rank

2

equal to the number of columns minus one: Rank(K) = q

k

� 1.

� If any proper subset of columns C � K were linearly dependent, then the

states corresponding to columns in C would constitute a separate equivalence

class under$. This implies reducibility, but our chain is irreducible. Therefore,

2The rank of a matrix is de�ned as the number of linearly independent rows or columns. For

more precise de�nitions please see any text on linear algebra , for example [17].

13



any subset containing q

k

�1 columns of K = (I

q

k��) is a linearly independent

set.

We now explain the algorithm for the computation of �. Deleting any column of

K = I

q

k �� above results in a reduced system of equations that is linearly indepen-

dent. Let us delete the right most column of K to form matrix

c

K. Substituting

c

K

into (2.16) yields

[�

0

; : : : ; �

q

k

�1

]

c

K = 0 (2.17)

where

c

K equals

3

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1� P

SjS

(0j0) �P

SjS

(1j0) � � � �P

SjS

(q

k

� 2j0)

�P

SjS

(0j1) 1� P

SjS

(1j1) � � � �P

SjS

(q

k

� 2j1)

.

.

.

.

.

.

.

.

.

.

.

.

�P

SjS

(0jq

k

� 2) �P

SjS

(1jq

k

� 2) � � � 1� P

SjS

(q

k

� 2jq

k

� 2)

�P

SjS

(0jq

k

� 1) �P

SjS

(1jq

k

� 1) � � � �P

SjS

(q

k

� 2jq

k

� 1)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: (2.18)

Column reduction on this new matrix leads to:

[�

0

; : : : ; �

q

k

�1

]

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 � � � 0

0 1 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 � � � 1

��

0

��

1

� � � ��

q

k

�2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

= 0 (2.19)

where it can be seen that

�

i

= �

i

�

q

k

�1

(2.20)

for i 2 f0; 1; : : : ; q

k

� 2g. Notice, however, that

q

k

�1

X

i=0

�

i

= �

q

k

�1

+

q

k

�2

X

i=0

�

i

�

q

k

�1

= 1: (2.21)

3We now de�ne P

SjS

(ijj)

4

= Pr(S = ijS = j).
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Therefore,

�

q

k

�1

=

0

@

1 +

q

k

�2

X

i=0

�

i

1

A

�1

: (2.22)

This value can then be substituted back into Equation (2.20) for all i 2 f0; 1; : : : ; q

k

�

2g to complete the computation of the stationary distribution.

In the above algorithm we could have rearranged terms to delete any particular

column, i, and solved the equations for �

i

instead of �

q

k

�1

without loss of generality.

Now that the stationary distribution � of the Markov chain has been determined,

we can compute the entropy of the chain assuming stationary initial conditions. The

following derivation assumes a rudimentary knowledge of information theory. For a

description of basic information theory concepts please refer to [11] or [18].

Theorem 2.5 The entropy rate of a stationary Markov process fZ

i

g

1

i=1

is

H(Z

1

) = H(Z

k+1

jZ

k

; : : : ; Z

1

) (2.23)

= �

X

l;m2Z

k

�

l

�

l;m

log(�

l;m

); (2.24)

where �

l;m

represents the state transition probability Pr(S

2

= mjS

1

= l), and where

�

l

is the l

th

component of the stationary distribution vector �.

Proof of Theorem 2.5

H(Z

1

) = lim

n!1

1

n

H(Z

1

; Z

2

; : : : ; Z

n

) (2.25)

= lim

n!1

H(Z

n

jZ

n�1

; : : : ; Z

1

) (2.26)

= H(Z

k+1

jZ

k

; : : : ; Z

1

): (2.27)

The �rst equality is simply the de�nition of entropy rate. The second equality follows

from Theorem 4:2:1 in [11], which is a well known result for the entropy rate of any

stationary stochastic process. The �nal step is simply an application of the de�nition
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of a stationary Markov chain. We express this in terms of our state notation and

compute the conditional entropy as

H(Z

1

) = H(S

2

jS

1

) (2.28)

= �

X

l;m2Z

k

�

l

�

l;m

log(�

l;m

): (2.29)

2

2.2 Discrete Channels with Cost Constraints

A discrete channel is characterized by an input process fX

i

g

1

i=1

with �nite alphabet

X , an output process fY

i

g

1

i=1

with �nite alphabet Y, and a set of block transition

distributions

n

P

Y

n

jX

n

(y

1

; y

2

; : : : ; y

n

jx

1

; x

2

; : : : ; x

n

)

4

=

Pr(Y

1

=y

1

; Y

2

=y

2

; : : : ; Y

n

=y

n

jX

1

=x

1

; X

2

=x

2

; : : : ; X

n

=x

n

)g

1

n=1

; (2.30)

where x

i

2 X , y

i

2 Y and i = 1; 2; : : : ; n. When jX j = r and jYj = t (i.e. the

cardinality of X and Y are r and t) we denote each set as f0; 1; : : : ; r � 1g and

f0; 1; : : : ; t� 1g respectively.

Furthermore, letting x

n

4

= (x

1

; x

2

; : : : ; x

n

) represent a block of inputs to the chan-

nel and y

n

4

= (y

1

; y

2

; : : : ; y

n

) a block of outputs, the channel transition distributions

satisfy

P

Y

n

jX

n

(y

n

jx

n

) � 0; 8 x

n

2 X

n

; y

n

2 Y

n

; (2.31)

X

y

n

2Y

n

P

Y

n

jX

n

(y

n

jx

n

) = 1; 8 x

n

2 X

n

: (2.32)

For convenience, the transition probabilities are written in matrix form. Setting

the size of the input alphabet jX j = r and the output alphabet jYj = t, we can de�ne

Q

4

=

h

P

Y

n

jX

n

(y

n

jx

n

)

i

(2.33)
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as an r

n

� t

n

matrix indexed along its rows by vectors in X

n

and along its columns

by vectors in Y

n

. Note that throughout this thesis almost all alphabets will have

cardinality q. The only exception being the super-alphabets over which we will index

either the input, noise and output n-tuples, or the order k Markov states, which will

have cardinality q

n

and q

k

respectively.

The `n' inputs are instances of the input process fX

i

g

1

i=1

, X

i

2 X , and are rep-

resented probabilistically by the random vector X

n

4

= (X

1

; X

2

; : : : ; X

n

) with joint

probability mass function

P

X

n

(x

n

)

4

= Pr(X

1

=x

1

; X

2

=x

2

; : : : ; X

n

=x

n

): (2.34)

Outputs are similarly represented with probability distribution

P

Y

n

(y

n

)

4

= Pr(Y

1

=y

1

; Y

2

=y

2

; : : : ; Y

n

=y

n

): (2.35)

The discrete channel is further subject to a constraint imposed on the inputs. For

each x 2 X , let b(x) denote the non-negative cost associated with transmitting letter

x. We assume that

b

max

4

= max

x2X

b(x) (2.36)

is �nite. As we intend to make use of the channel many times in succession, we

interpret the cost of sending x

n

= (x

1

; x

2

; : : : ; x

n

) as an additive cost; i.e.,

b(x

n

) =

n

X

i=1

b(x

i

): (2.37)

In general, the probability of sending each possible input vector, x

n

, need not be

equal. We de�ne the \average" or \expected" cost of a given input distribution to be

E [b(X

n

)] =

X

x

n

2X

n

P

X

n

(x

n

)b(x

n

) (2.38)

=

n

X

i=1

E [b(X

i

)] : (2.39)
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A means of comparing block codes of varying length is achieved by scaling the average

cost by 1=n, which leads to the following de�nition.

De�nition 2.10 An n-dimensional random vector X

n

= (X

1

; X

2

; : : : ; X

n

) is said to

be �-admissible if it satis�es

1

n

E [b(X

n

)] � � (2.40)

The set of all n-dimensional �-admissible input distributions is denoted by �

n

(�):

�

n

(�) = fP

X

n

(x

n

) :

1

n

E [b(X

n

)] � �g: (2.41)

Relating this to our channel model in Fig 1.1, the inputs to the channel are

themselves outputs of the source-channel coding block. In this sense, x

n

can be

viewed as a channel codeword.

De�nition 2.11 A channel block code of length n over X is a subset of X

n

, C =

fc

(1)

; : : : ; c

(jCj)

g, where each c

(i)

is an n-tuple. The rate of the code is R =

1

n

log

2

jCj

bits per channel symbol.

4

The code is �-admissible if b(c

(i)

) � n� for i = 1; 2; : : : ; jCj.

If the encoder wants to transmit message W , where W is uniform over f1; 2; : : : ; jCjg,

it sends the codeword c

(W )

. (This process is represented in Figure 1.1 by the function

X

n

= f(W ) = f

2

(f

1

(W )).) At the channel output, the decoder receives Y

n

and

chooses as estimate of the message

c

W = g(Y

n

), where g(�) is a decoding rule. The

(average) probability of decoding error is then P

(n)

e

= Prfg(Y

n

) 6=Wg.

2.3 Capacity-Cost Function

A discrete channel is stationary if for every stationary input process fX

i

g

1

i=1

, the

resultant input-output process fX

i

; Y

i

g

1

i=1

is stationary. Similarly, a discrete channel

4We assume throughout this thesis that the logarithms log are in base 2.
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is ergodic if for every ergodic input process fX

i

g

1

i=1

an ergodic input-output process

fX

i

; Y

i

g

1

i=1

results.

De�nition 2.12 The capacity-cost function C (�) and the capacity C of discrete

stationary channels with memory are respectively de�ned by [18]

C (�) = sup

n

C

n

(�) = lim

n!1

C

n

(�) ; (2.42)

where C

n

(�) is the n

th

capacity-cost function given by

C

n

(�)

4

= max

P

X

n
(x

n

)2�

n

(�)

1

n

I(X

n

;Y

n

); (2.43)

and

C = sup

n

C

n

= lim

n!1

C

n

; (2.44)

where C

n

is the is the n

th

capacity given by

C

n

4

= max

P

X

n
(x

n

)

1

n

I(X

n

;Y

n

); (2.45)

where I(X

n

;Y

n

) is the block mutual information between the input vector X

n

and

the output vector Y

n

.

Strictly speaking, the fact that the limits are equal to the supremums in Equa-

tions (2.42) and (2.44) is a non-trivial result. In Theorem A.3 of Appendix A we

demonstrate this result.

The capacity-cost function C (�) has an operational signi�cance for channels sat-

isfying certain regularity conditions (e.g., a stationary ergodic channel, a discrete

channel with stationary mixing additive noise, or an information stable channel

[13, 19, 25]). More speci�cally, C (�) represents the supremum of all rates R for

which there exist sequences of �-admissible block codes with vanishing probability of

error as n grows to in�nity (achievable codes). Equivalently, C(�) is the maximum
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amount of information that can be transmitted reliably over the channel such that

the expected cost per symbol is � �. If b (x) = 0 for every letter x 2 X , C (�) reduces

to the channel capacity C.

We next discuss the properties of C

n

(�) and C (�) for a given discrete channel

and a cost function [18]. We �rst observe that if we de�ne

�

min

= min

x2X

b (x) ; (2.46)

then

1

n

E [b (X

n

)] � �

min

; this implies that C

n

(�) and C (�) are de�ned only for

� � �

min

.

Lemma 2.1 C

n

(�) and C (�) are concave and non-decreasing functions of �, for

� � �

min

.

Proof of Lemma 2.1 See Appendix B.

Since C

n

(�) and C (�) are concave, they are also continuous for � � �

min

. If we

de�ne

�

(n)

max

4

= min

�

1

n

E [b (X

n

)] :

1

n

I(X

n

;Y

n

) = C

n

�

; (2.47)

and

�

max

4

= lim

n!1

�

(n)

max

(2.48)

then clearly

C

n

(�) = C

n

for all � � �

(n)

max

(2.49)

and

C (�) = C for all � � �

max

: (2.50)

Remark: For a discrete q-ary channel with additive stationary noise fZ

i

g

1

i=1

and

linear cost function on the input { i.e. b(i) = i, i 2 f0; 1; : : : ; q � 1g { we get that

�

min

= 0;
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�

(n)

max

= �

max

=

q � 1

2

;

C (�

min

) = 0;

C

�

�

(n)

max

�

= C

n

= log

2

(q)�

1

n

H(Z

n

);

and

C (�

max

) = C = log

2

(q)�H(Z

1

);

where

1

n

H(Z

n

) is the normalized block noise entropy and H(Z

1

) = lim

n!1

1

n

H(Z

n

)

is the noise entropy rate.

Corollary 2.1 C

n

(�) is strictly increasing in � for �

min

� � � �

(n)

max

. Therefore,

C (�) is strictly increasing in � for �

min

� � � �

max

.

Proof of Corollary 2.1 See Appendix B.

2.4 Computation of Capacity for Discrete Markov

Channels

A number of relatively general additive noise channels with memory are now developed

to illustrate the above results and de�nitions, and to demonstrate the computation

of channel capacity. These examples will be referred to in the following chapters.

All of our examples use stationary ergodic additive Markov noise as the corrupting

process. The examples are di�erentiated by the order of the Markov chain and by the

cardinality of the input alphabet. The �rst three additive channels are all examples

of modulo-q channels with �rst order Markov memory in the noise. The �nal example

uses a binary channel with a 2

nd

order Markov noise. Our additive noise channels are

described by

Y

i

= X

i

� Z

i

; (2.51)
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where Z

j

is independent of X

i

for all i; j 2 f1; 2; : : :g.

The independence of the noise process and the input sequence induce a symmetry

in the channel transition matrix Q

4

=

h

P

Y

n

jX

n

(y

n

jx

n

)

i

. By the invertibility of �, the

conditional probabilities become

P

Y

n

jX

n

(y

n

jx

n

) = P

Z

n

(y

n

	 x

n

): (2.52)

Thus all rows or columns of Q are simply permutations of each other. Channels

conforming to this pattern are known as symmetric channels. We now state the

following de�nition from [11].

De�nition 2.13 A channel is said to be symmetric if the rows of the channel tran-

sition matrix

h

P

Y

n

jX

n

(y

n

jx

n

)

i

are permutations of each other, and the columns are

permutations of each other. A channel is said to be weakly symmetric if every row of

the transition matrix

h

P

Y

n

jX

n

(�jx

n

)

i

is a permutation of every other row, and all the

column sums

P

x

n

P

Y

n

jX

n

(y

n

jx

n

) are equal.

For such symmetric additive channels the conditional entropy H(Y

n

jX

n

) is equal to

H(Z

n

), and the capacity, C = sup

n

C

n

is achieved by an iid uniformly distributed

input process. The following is a generalization of the theorem in [18].

Theorem 2.6 If a weakly symmetric channel has r

n

inputs and s

n

outputs, its n

th

capacity is achieved with equiprobable inputs, i.e., P

X

n

(x

n

) = 1=r

n

, for all x

n

2 X

n

,

and the n

th

capacity is

C

n

= log(s)�

1

n

H(p

0

; p

1

; : : : ; p

s

n

�1

); (2.53)

where (p

0

; p

1

; : : : ; p

s

n

�1

) is any row of the transition matrix. For modulo addition

channels, (p

0

; p

1

; : : : ; p

s

n

�1

) consists of the probability distribution on the set of all

possible noise n-tuples P

Z

n

(z

n

).
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Proof of Theorem 2.6 By the de�nition of block mutual information,

1

n

I(X

n

;Y

n

) =

1

n

H(Y

n

)�

1

n

H(Y

n

jX

n

): (2.54)

We can expand the second term in the sum as

1

n

H(Y

n

jX

n

) =

1

n

X

x

n

H(Y

n

jX

n

= x

n

)P

X

n

(x

n

): (2.55)

But since every row is a permutation of every other row,

H(Y

n

jX

n

= x

n

) =

X

y

n

P

Y

n

jX

n

(y

n

jx

n

) logP

Y

n

jX

n

(y

n

jx

n

) (2.56)

= H(p

0

; p

1

; : : : ; p

s

n

�1

); (2.57)

and is independent of x

n

. A well known result (c.f. Theorem 1:1 [18]) tells us that

1

n

H(Y

n

) � log s, with equality i� P

Y

n

(y

n

) =

1

s

n

for all y

n

. Fortunately, the condition

on the columns of the transition matrix guarantees that, if P

X

n

(x

n

) =

1

r

n

for all x

n

,

then P

Y

n

(y

n

) =

1

s

n

for all y

n

. Substituting this observation back into Equation (2.54)

maximizes the block mutual information, so

C

n

= max

P

X

n
(x

n

)

1

n

I(X

n

;Y

n

) = log(s)�

1

n

H(p

0

; p

1

; : : : ; p

s

n

�1

): (2.58)

To convince ourselves that (p

0

; p

1

; : : : ; p

s

n

�1

) really is the distribution of P

Z

n

(z

n

),

let us recall that � is a one-to-one operation and that

H(Y

n

jX

n

) = H(Z

n

�X

n

jX

n

) = H(Z

n

): (2.59)

2

We next determine the capacity of mod q additive Markov noise channels.

C = lim

n!1

C

n

(2.60)

= lim

n!1

(

max

P

X

n
(x

n

)

1

n

I(X

n

;Y

n

)

)

(2.61)
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= lim

n!1

1

n

(

max

P

X

n
(x

n

)

[H(Y

n

)�H(Y

n

jX

n

)]

)

(2.62)

= lim

n!1

1

n

(

max

P

X

n
(x

n

)

[H(Y

n

)�H(X

n

� Z

n

jX

n

)]

)

(2.63)

= lim

n!1

1

n

(

max

P

X

n
(x

n

)

[H(Y

n

)�H(Z

n

)]

)

(2.64)

= lim

n!1

1

n

(

max

P

X

n
(x

n

)

H(Y

n

)

)

� lim

n!1

H(Z

1

): (2.65)

We next observe that since mod q additive noise channels are symmetric, H(Y

n

)

is maximized for a uniform input distribution which also yields a uniform output

distribution. From Theorem 2.5 on the entropy rate of stationary Markov processes

of order k, H(Z

1

) is nothing more than H(Z

n

jZ

n�1

; : : : ; Z

n�k

). Therefore, for all

q-ary channels with this type of additive noise,

C = lim

n!1

C

n

= lim

n!1

1

n

8

<

:

�

q

n

�1

X

i=0

1

q

n

log

1

q

n

9

=

;

�H(Z

n

jZ

n�1

; : : : ; Z

n�k

)

= log(q) +

q

k

�1

X

l;m=0

�

l

�

l;m

log(�

l;m

); (2.66)

where, �

l

is the stationary probability that state l occurs and �

l;m

is the noise state

transition probability from state l to state m, using the indexing function de�ned in

(2.6).

Example 2.1 Binary Alphabet Channel with 1

st

Order Markov Noise.

The mod 2 �rst order Markov channel, is characterized by two states (0; 1) and the

noise state transition probabilities � and % from 0! 1 and 1! 0 respectively, where

0 < � < 1 and 0 < % < 1 (c.f. Figure 2.2). Solving for the stationary distribution

� = [P

Z

(0); P

Z

(1)] is straightforward.

(1��) �

0

+ % �

1

= �

0

(2.67)

% �

1

= ��

0

; (2.68)
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Figure 2.2: Two-State Markov Process.

together with �

0

+ �

1

= 1 yields

� =

"

%

�+ %

;

�

� + %

#

: (2.69)

Using (2.66) on this particular example, the general capacity is derived as

C = log(2) +

1

X

l=0

�

l

1

X

m=0

�

l;m

log�

l;m

(2.70)

= log(2)�

%

� + %

h(�) +

�

� + %

h(%) (2.71)

= 1�

% h(�) + �h(%)

� + %

; (2.72)

where h(p) = �p log p� (1�p) log(1�p) is the binary entropy function.

Example 2.2 Ternary Alphabet Channel with 1

st

order Markov Noise
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Figure 2.3: Three-State Markov Process.

We can see from Figure 2.3 that the level of variability is dramatically increased

from the binary case. The result of Equation (2.66) can be applied to the ternary
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(three letter) alphabet channel as well. Solving for � = [�

0

; �

1

; �

2

] using column

reduction on I

3

�� with the third column removed occurs as follows,

[�

0

; �

1

; �

2

]

2

6

6

6

6

6

6

4

P

ZjZ

(0j0) P

ZjZ

(1j0) P

ZjZ

(2j0)

P

ZjZ

(0j1) P

ZjZ

(1j1) P

ZjZ

(2j1)

P

zjZ

(0j2) P

ZjZ

(1j2) P

ZjZ

(2j2)

3

7

7

7

7

7

7

5

= [�

0

; �

1

; �

2

]: (2.73)

For convenience, label the probabilities in the �rst row as �

0

; �

1

; �

2

, those in the

second row as %

0

; %

1

; %

2

and those in the third row as 

0

; 

1

; 

2

. We then conveniently

employ the fact that each row sums to 1, thereby obtaining the matrix of Figure 2.3.

Bring all terms onto the left hand side gives

[�

0

; �

1

; �

2

]

2

6

6

6

6

6

6

4

(�

1

+�

2

) ��

1

��

2

�%

0

(%

0

+%

2

) %

2

�

0

�

1

(

0

+

1

)

3

7

7

7

7

7

7

5

= [0; 0; 0]: (2.74)

Now let us remove the third column of the matrix and column reduce to get

[�

0

; �

1

; �

2

]

2

6

6

6

6

6

6

4

1 0

0 1

�A

0

�A

1

3

7

7

7

7

7

7

5

= [0; 0]; (2.75)

where

�A

0

= �

�



0

�

1

+�

2

+

%

0

�

1

+�

2

� A

1

�

(2.76)

�A

1

= �

 

�

1

(

0

+ 

1

) + �

2



1

�

2

(%

0

+ %

2

) + �

1

%

2

!

: (2.77)

We can already see how complicated the equations get as the alphabet size increases.
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Solving for P

z

(Z) using Equation (2.22) and Equation (2.20):

2

6

6

6

6

6

6

4

�

0

�

1

�

2

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

A

0

=(1 + A

0

+ A

1

)

A

1

=(1 + A

0

+ A

1

)

1=(1 + A

0

+ A

1

)

3

7

7

7

7

7

7

5

: (2.78)

As we use this type of channel in future chapters, the formula in Equation (2.66)

will provide a C (�

max

) value that we can compare with the results of our bounding

algorithms.

Example 2.3 Quaternary Alphabet Channel with First order Markov Noise
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Figure 2.4: Four-State Markov Process.

The diagram in Figure 2.4 clearly shows that all transitions are possible between

the four states. From the calculations in Example 2.2 we can see that the quaternary

channel also has a known capacity C but that the form of the stationary probabilities

as a function of parameters of � is di�cult to calculate by hand. Still, the algorithm

for computing the stationary distribution is valid, and the computer implementation

component of this thesis uses the generalized algorithm on all user speci�ed noise

processes.

Example 2.4 Binary Alphabet Channel with 2

nd

Order Markov Noise.
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Figure 2.5: Second Order Binary (Four-State) Markov Process.

As is apparent from the diagrams and matrices in Figure 2.4 and Figure 2.5, the

second order binary Markov process can be seen as a special case of the �rst order

quaternary Markov process. To ease comparison with the �rst order binary model,

we have labeled the 4 variables in �

2

2

using a simple symmetry. We label the state

at time t by S

t

= (Z

t�2

; Z

t�1

). Since this is a stationary time invariant system, we

need only concern ourselves with S

1

and S

2

. Notice that (0; 0) and (1; 1) are states

with return loops (a 1-loop) that are not mutually joined (a two-loop), while (0; 1)

and (1; 0) are states with a 2-loop but no 1-loop. Let 1� �

ij

be the probability that

state (i; j) might enter a 1- or 2-loop, and let �

ij

be the probability that the state

(i; j) will not reoccur in the next two time steps. This notation helps simplify the

computation of the stationary distribution P

S

(s). At �rst it may seem as though

there is a problem with the periodicity of this chain, but the greatest common divisor

of return times is indeed 1 for all states, since 2 and 3 are relatively prime, so long as

0 < �

ij

< 1 for all i; j 2 f0; 1g.

While we have previously seemed interested in P

Z

(z), for a stationary �rst order

Markov process, the distribution on the noise samples is identical to the distribution

on the states P

Z

(z) = P

S

(s) = �. Now that we are dealing with higher order chains,

a small amount of additional work is required to get both. Applying Equation (2.18)
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to the matrix in Figure 2.5, we form the reduced matrix

2

6

6

6

6

6

6

6

6

6

6

4

�

00

��

00

0

0 1 ��

01

�

10

� 1 ��

10

1

0 0 ��

11

3

7

7

7

7

7

7

7

7

7

7

5

; (2.79)

which we then column reduce to get

2

6

6

6

6

6

6

6

6

6

6

4

1 0 0

0 1 0

0 0 1

�A

00

�A

01

�A

10

3

7

7

7

7

7

7

7

7

7

7

5

; (2.80)

where

�A

00

=

��

10

�

11

�

00

(1� �

01

+ �

01

�

10

)

(2.81)

and

�A

01

= �A

10

=

��

11

1� �

01

+ �

01

�

10

: (2.82)

The stationary distribution on the states is then solved as

2

6

6

6

6

6

6

6

6

6

6

4

�

00

�

01

�

10

�

11

3

7

7

7

7

7

7

7

7

7

7

5

=

1

v

2

6

6

6

6

6

6

6

6

6

6

4

�

10

�

11

�

00

�

11

�

00

�

11

�

00

(1� �

01

+ �

01

�

01

)

3

7

7

7

7

7

7

7

7

7

7

5

; (2.83)

where

v = �

00

(1� �

01

+ �

01

�

10

) + 2�

11

�

00

+ �

10

�

11

: (2.84)
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The formulas for computing P

Z

(z) given a stationary distribution on the states are

not complicated:

P

Z

(0) =

1

X

i;j=0

Pr(Z

n

= 0jZ

n�2

= i; Z

n�1

= j)P

Z

2

(i; j) (2.85)

=

1

X

i;j=0

P

SjS

(j0jij)�

ij

) (2.86)

= (1� �

00

)�

00

+ (1� �

01

)�

01

+�10�

10

+ �11�

11

(2.87)

P

Z

(1) =

1

X

i;j=0

P

SjS

(j1jij)�

ij

: (2.88)

In subsequent chapters, we use the analytically determined value for C in (2.66) to

verify the recursively determined value for C

n

(�

max

)+M

n

in the C++ implementation

of Alajaji's Bound. In the next chapter we will de�ne M

n

as the di�erence between

the per symbol entropy of the noise process and the entropy rate of the noise process.

The next chapter focuses on de�ning and computing bounds for the types of

channels discussed in this section.

30



Chapter 3

Additive Noise Channels without

Feedback

We consider q-ary additive noise channels of the type discussed in Chapter 2, where

the noise process is stationary. Shannon �rst noticed that an interesting and fun-

damental duality exists between the rate-distortion function of a source (R(D)) and

the capacity-cost function of a channel (C(�)) [24]. Using methods analogous to

those of Wyner and Ziv, who found a lower bound to the Rate-Distortion function,

Alajaji established a tight upper bound to the capacity of input constrained additive

noise channels with memory [2]. Using the asymptotically tight lower bound for the

capacity-cost function, given by direct computation of Blahut's algorithm, in conjunc-

tion with Alajaji's upper bound, numerical results indicate that a tight envelope is

formed on the channel capacity-cost function. In the case of binary alphabet channels

an additional bound can also be employed to better estimate the true capacity-cost

function. This bound is an application of Mrs. Gerber's Lemma [20], which lower

bounds C (�) using some clever algebraic manipulations and the pseudo-invertibility

of the binary entropy function.

In this chapter, we fully develop the mathematical framework behind these three
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bounding techniques before implementing them (where applicable) on the examples

introduced in Section 2.4.

3.1 Existing Lower Bounds to the Capacity-Cost

Function

Lower bounds on the capacity-cost function can be formed in two ways. By simply

�nding the per letter capacity-cost for the associated block memoryless channel

1

with

input blocks of a �xed block length n, we can bound C (�) from below:

C (�) = sup

n�1

C

n

(�) � C

n

(�) : (3.1)

Blahut's algorithm is ideally suited to this type of computation, where a channel

transition matrix Q provides the probability of receiving Y

n

given that X

n

was trans-

mitted. Another lower bound exists for the capacity-cost function in the binary case.

If we take the inputs to be iid and the alphabet to be binary, we can apply Mrs. Ger-

ber's Lemma in [20] to obtain a lower bound on C (�). As we are dealing primarily

with q-ary channels, we use the C

n

(�) lower bound in all cases except the binary case

where we also apply Mrs. Gerber's bound. The C (�) lower bound is in fact dual to

the upper bound on the rate-distortion function R(D) also computed by Blahut in

[8].

3.1.1 Blahut's Algorithm

As part of his 1971 doctoral dissertation at Cornell University, R. Blahut reformu-

lated the computation of both R

n

(D) and C

n

(�) in nats, as a convex programming

problem on the block mutual information between source and receiver, I(X

n

;Y

n

).

1By this we mean that the memory between noise blocks is ignored.
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Conversion from nats (information measured with natural logarithms) to bits (infor-

mation measured with base 2 logarithms) is performed using division by a factor of

ln 2. We will now state Blahut's results concerning the constrained channel capacity

as found in [8]. The proofs of all the theorems appear in Appendix B.

To facilitate reference to Blahut's very general paper, let us examine a block length

n channel with di�ering source and receiver alphabets. The per symbol input alphabet

X = f0; 1; : : : ; r�1g is expanded to interpret the entire block as a single entity (called

a word for convenience) j 2 f0; 1; : : : ; r

n

� 1g. Let N = r

n

be the size of the new

input dictionary. Similarly, the per symbol output alphabet Y = f0; 1; : : : ; t � 1g is

expanded to interpret the entire block as a single word k 2 f0; 1; : : : ;M � 1g, where

M = t

n

is the size of the new output dictionary. The cost function is also reinterpreted

according to this new indexing set on possible input words. If x

n

= (x

1

; x

2

; : : : ; x

n

)

is represented by word j in the new dictionary, then let

e

j

4

=

1

n

b (x

n

) =

1

n

n

X

i=1

b (x

i

) : (3.2)

As before, the N �M forward channel transition matrix Q contains, in row j and

column k, the conditional probability Q

kjj

= Pr(Y

n

= kjX

n

= j). We also denote by

p

j

the probability that block X

n

= j is transmitted: p

j

= Pr(X

n

= j).

We can now rewrite the block mutual information in nats under this new notation.

I(X

n

;Y

n

) = H(X

n

)�H(X

n

jY

n

) (3.3)

=

X

j;k

P

X

n

;Y

n

(j; k) ln

 

P

X

n

jY

n

(jjk)

P

X

n

(j)

!

(3.4)

=

X

j;k

p

j

Q

kjj

ln

P

jjk

p

j

= I(p;Q) (3.5)

where P

jjk

is an element of the reverse channel transition matrix from the output
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word Y

n

= k to the input word X

n

= j. A reformulation of C

n

(�) is also possible:

C

n

(�) = max

p2�

n

(�)

1

n

I(p;Q) = max

p2�

n

(�)

1

n

X

j;k

p

j

Q

kjj

ln

P

jjk

p

j

; (3.6)

where �

n

(�) is rede�ned in an updated version of Equation (2.41) as

�

n

(�) = fp 2 P

N

:

X

j

p

j

e

j

� �g;

where

P

N

4

=

8

<

:

p = [p

1

; p

2

; : : : ; p

N

] 2 R

n

: p

j

� 0;

N

X

j=1

p

j

= 1

9

=

;

: (3.7)

Applying the results in Appendix B

2

, this can be rewritten as

C

n

(�) = max

p

1

n

2

4

X

j;k

p

j

Q

kjj

log

Q

kjj

P

j

p

j

Q

kjj

� s(

X

j

p

j

e

j

� �)

3

5

(3.8)

where

� =

X

j

p

�

j

e

j

; (3.9)

where p

�

is the distribution on the input words that achieves the above maximum,

and where s is the �rst derivative (slope) in nats per unit cost of C

n

(�) with respect

to �.

Under this restatement of the problem, the n

th

capacity-cost function is a maxi-

mization over all possible input vectors p, parameterized by s. A recursive algorithm

for obtaining p found independently by Arimoto and Blahut, is given in the following

theorem.

Theorem 3.1 Let s 2 [0;1) be given, and for any p 2 P

N

let

c

j

(p) = exp

 

1

n

X

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� se

j

!

: (3.10)

2Appendix B contains proofs for all subsequent theorems in this section, using this notation. In

[8] some proofs were omitted and others were cited from texts.
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Then if p

0

is any probability vector in P

N

with all components strictly positive, the

sequence of vectors resulting from

p

r+1

j

= p

r

j

c

r

j

P

j

p

r

j

c

r

j

(3.11)

has the properties that

1

n

I(p

r

;Q)! C

n

(�

s

) ; as r !1; (3.12)

e(p

r

)! �

s

; as r !1; (3.13)

where �

s

is the average per letter cost of the point parametrized by s, and I(�; �) and

C

n

(�) are measured in nats.

The stopping rule for the algorithm bounds C

n

(�) above and below, using con-

vergent functions of c

j

.

Theorem 3.2 Let the left derivative of a point on C

n

(�) be speci�ed by parameter

s. Assuming p is any probability vector, we let

c

j

= exp

 

1

n

X

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� se

j

!

: (3.14)

Then, for cost � =

P

j

p

j

e

j

,

a)

C

n

(�) � C

L

n

(�)

4

= s� +

X

j

p

j

ln c

j

; in nats; (3.15)

b)

C

n

(�) � C

U

n

(�)

4

= s� + lnmax

j

c

j

; in nats: (3.16)
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Figure 3.1: Constrained Capacity Algorithm from [8] for C

n

(�) in bits.

Notice that the n

th

capacity-cost function algorithm is only valid for a discrete block

memoryless channel with conditional probability mass function P

Y

n

jX

n

(y

n

jx

n

), where

each input or output block is treated as a single channel symbol. Within a block y

n

=

x

n

+ z

n

, for instance, the inter-symbol dependence of the noise letters is accounted

for explicitly, but the inter-word dependence of the noise process is not taken into

account. Let (�; C

L

n

(�)) be a pair determined by the algorithm for slope s. Now

recall that (�; C

L

n

(�)) is within � of the n

th

capacity-cost function in nats.

C (�) � C

n

(�) � C

L

n

(�) : (3.17)

We can see then, that Blahut's algorithm provides a block length lower bound to
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C

n

(�) (and therefore, C (�)) for an additive channel with a Markov noise process.

3.1.1.1 Implementation Issues

As can be seen from Figure 3.1, there are a number of �xed parameters that must be

set in addition to the input parameter s, before the algorithm is operational.

� Specifying the Conditional Probability Distribution Matrix Q

For additive channels, we see that a non-zero entry at Q(y

n

; x

n

) is equal to

P

Z

n

(z

n

= y

n

� x

n

). We have already shown how to determine the stationary

distribution of fZ

i

g

1

i=1

given an ergodic time invariant Markov process with

state transition matrix �. The program implemented in this thesis allows the

user to specify the input alphabet size q, the order k of the Markov chain, and

a Markov transition probability matrix� on states (z

n�k

; : : : ; z

n�1

) 2 A

k

q

. This

matrix can be speci�ed either during execution or from an input �le.

� Stopping Criteria

The halting rule computes an upper bound C

U

n

(�) and lower bound C

L

n

(�) on

the n

th

capacity-cost function C

n

(�) after each iteration of the algorithm. If

the di�erence between the bounds is less than a �xed amount �, then C

n

(�)�

C

L

n

(�) < � also. The program implements an additional check as well. Setting

� = 10

�6

, the program executes until jI

L

� I

U

j < � or the number of iterations

equals 10 000. For mod q channels, for instance, each loop of the algorithm

requires 2q

2n�1

additions, 2q

2n

+ q

n

multiplications, 2q

n

divisions, and q

n

sub-

tractions, logs and exponents. This has the potential to introduce numerical

error into the loop. For this reason, the algorithm is stopped after 10 000 itera-

tions and the result of the subtraction is returned. If the di�erence is an order

of magnitude smaller than what is required, the point has acceptable error for
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plotting. There have been few instances thus far, where the error is greater

than 5 � 10

�5

after 10 000 iterations. Such instances are expected to be more

probable with increasing block length and alphabet size. The increases in the

capacity-cost function with feedback are all at least on the order of 10

�3

, so

accuracy of our results is assured.

� Cost Function

For all results presented in this thesis, the cost function used is a linear cost

constraint { b (x

i

) = x

i

, where x

i

2 f0; 1; : : : ; q� 1g { on the input letters. The

C++ code as written, however, supports any cost constraint on either letters or

blocks. In the case of the binary channel, the linear cost constraint is identical

to the power cost constraint { b (x

i

) = x

2

i

.

� Parameter s

Our choice of parameterization over input blocks of length n requires that we

specify the slope s, in nats per unit cost, of C

n

(�) at a desired cost �. The

program inputs various s and then scales the output into bits by multiplication

of C

L

n

(�) and C

U

n

(�) by

1

ln 2

. These values are plotted by gnuplot for various

Markov chains, alphabet sizes and block lengths.

Used alone, Blahut's lower bound is sometimes loose for high values of �. The

next section discusses another bound on binary channels, that squeezes the envelope

for � close to �

(n)

max

.

3.1.2 Mrs. Gerber's Lemma

One advantage of Blahut's lower bound for additive Markov channels is its agreement

with C (�) at �

min

, i.e. C

L

n

(�

min

) = C (�

min

). If we were to use an additional lower
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bound C

L

1

(�) whose performance at large � was superior, the maximization

C

L�

n

(�) = max(C

L

n

(�) ; C

L

1

(�)) (3.18)

over both lower bounds would help form a much tighter envelope on the capacity-cost

function at block length n. One such additional bound, due to Shamai and Wyner

[20], and valid for mod 2 additive binary channels only, is a direct analogy of the

Entropy Power Inequality.

Theorem 3.3 ([20]) Let fX

i

g

1

i=1

and fZ

i

g

1

i=1

be independent stationary binary ran-

dom sources with entropy rates H(X

1

) and H(Z

1

) respectively. Denote the binary

entropy function as

h(�) = �� log�� (1� �) log(1� �); (3.19)

where 0 � � � 1. Let �(X) = h

�1

(H(X

1

)) and let �(Z) = h

�1

(H(Z

1

)), where

h

�1

(!) = minf� : ! = h(�)g: (3.20)

Let Y

i

= X

i

� Z

i

. Then

�(Y ) � �(X) � �(Z); (3.21)

where �(Y ) = h

�1

(H(Y

1

)), and a � b

4

= a(1� b) + (1� a)b.

For the case when fZ

i

g

1

i=1

is independent identically distributed (iid), this theorem

reduces to \Mrs. Gerber's Lemma" due to Wyner and Ziv [27]. We will now state

(with slight modi�cations) the proof of the above binary analog to the Entropy-Power

Inequality [20].

Proof of Theorem 3.3 We express the conditional entropy of output Y

n+1

as

H(Y

n+1

jY

n

) � H(Y

n+1

jY

n

; X

n

; Z

n

) (3.22)

= H(Y

n+1

jX

n

; Z

n

) (3.23)
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=

X

x

n

2A

n

2

P

X

n

(x

n

)

X

z

n

2A

n

2

P

Z

n

(z

n

)

�H(Y

n+1

jX

n

= x

n

; Z

n

= z

n

); (3.24)

where the inequality results from the fact that conditioning reduces entropy, the

�rst equality follows from Y

n

= X

n

� Z

n

, and the second equality is due to the

independence of fX

i

g

1

i=1

and fZ

i

g

1

i=1

. Let us now expand the �nal term of (3.24) as

H(Y

n+1

jx

n

; z

n

) = �

X

i2f0;1g

Pr(Y

n+1

= ijx

n

; z

n

) log Pr(Y

n+1

= ijx

n

; z

n

): (3.25)

We can remove all reference to Y

n+1

from the right hand side of Equation (3.24) by

rewriting Pr(Y

n+1

= 1jx

n

; z

n

) as

Pr(Y

n+1

= 1jx

n

; z

n

) = �̂(x

n

)(1� ̂(z

n

)) + (1� �̂(x

n

))̂(z

n

) = �̂(x

n

) � ̂(z

n

); (3.26)

where

�̂(x

n

)

4

= P

X

n+1

jX

n

(x

n+1

= 1jx

n

); (3.27)

̂(z

n

)

4

= P

Z

n+1

jZ

n

(z

n+1

= 1jz

n

); (3.28)

and then substituting in (3.25) yields

H(Y

n+1

jX

n

= x

n

; Z

n

= z

n

) = h(�̂(x

n

) � ̂(z

n

)): (3.29)

Now de�ne

�(x

n

)

4

= min[�̂(x

n

); 1� �̂(x

n

)] (3.30)

(z

n

)

4

= min[̂(z

n

); 1� ̂(z

n

)] (3.31)

and notice that the binary entropy is not a�ected:

h(�̂(x

n

) � ̂(z

n

)) = h(�(x

n

) � (z

n

)): (3.32)
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Also

�(x

n

) = h

�1

(H(X

n+1

jX

n

= x

n

)); (3.33)

(z

n

) = h

�1

(H(Z

n+1

jZ

n

= z

n

)): (3.34)

Substituting these observations into (3.24) yields

H(Y

n+1

jY

n

) �

X

z

n

2A

n

2

P

Z

n

(z

n

)

X

x

n

2A

n

2

P

X

n

(x

n

)h

h

(z

n

) � h

�1

(H(X

n+1

jX

n

= x

n

))

i

: (3.35)

From Lemma 2 of [27] we know that the function

f(u) = h(p

0

� h

�1

(u)); 0 � u � 1; (3.36)

with p

0

2 (0;

1

2

] �xed, is convex in u. The proof itself is lengthy, but demonstrates

that the convexity of p

0

�h

�1

(u) is su�cient to overcome the concavity of h(�). Hence

if we apply Jensen's inequality to the inner sum in (3.35), we obtain

X

x

n

P

X

n

(x

n

) h

h

(z

n

) � h

�1

(H(X

n+1

jX

n

= x

n

))

i

� h

h

(z

n

) � h

�1

(H(X

n+1

jX

n

))

i

; (3.37)

since

X

x

n

P

X

n

(x

n

)H(X

n+1

jX

n

= x

n

) = H(X

n+1

jX

n

): (3.38)

Summing over z

n

and applying Jensen's inequality again, for H(X

n+1

jX

n

) �xed,

results in

H(Y

n+1

jY

n

) � h

h

h

�1

(H(X

n+1

jX

n

)) � h

�1

(H(Z

n+1

jZ

n

))

i

: (3.39)

Letting n!1 and taking the limit gives us the useful form

H(Y

1

) = lim

n!1

H(Y

n+1

jY

n

) � h

h

h

�1

(H(X

1

)) � h

�1

(H(Z

1

))

i

: (3.40)
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Taking h

�1

of both sides completes the proof. 2

We apply this result to our bounding problem. Let P

X

(x

i

= 1)

4

= �̂ be the

marginal distribution of an iid input process such that E[b(X

i

)] = �, then

C (�) � C

L

1

(�)

4

= h

h

� � h

�1

()

i

�H(Z

1

); (3.41)

where h(�) is the binary entropy function, a�b

4

= a(1�b)+(1�a)b, �

4

= minf�̂; 1��̂g

and 

4

= minfH(Z

1

); 1�H(Z

1

)g. We have already explained how to compute the

entropy rate of the noise and so this generalization of Mrs. Gerber's Lemma can be

readily applied to our binary � examples.

3.2 An Upper Bound to C (�)

Consider a discrete channel with memory, with common input and noise q-ary alpha-

bet and an output alphabet described by the following equation: Y

i

= X

i

� Z

i

, for

i 2 f1; 2; : : :g where:

� � represents modulo q addition.

� The random variables X

i

, Z

i

and Y

i

are respectively the input, noise and output

of the channel.

� fX

i

g ? fZ

i

g, i.e. the input and noise sequences are independent from each

other.

� The noise process fZ

i

g

1

i=1

is stationary.

The channel is non-symmetric for � < �

max

. Thus the formula of C (�) given by

Equation (2.42) will not have a closed form. We will then use the results of Alajaji [2]

to derive an upper bound to C (�).
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In [26], Wyner and Ziv derived a lower bound to the rate-distortion function

(R(D)) of stationary sources:

R(D) � R

1

(D)� �

1

; (3.42)

where

� R

1

(D) is the rate-distortion function of an associated memoryless source with

distribution equal to the marginal distribution P

X

(�) of the stationary source.

� �

1

4

= H(X

1

) � H(X

1

), is the amount of memory in the source. H(X

1

) is

the entropy of the associated memoryless source with distribution P

(1)

X

(�) and

H(X

1

) is the entropy rate of the original stationary source.

This lower bound was later tightened by Berger [5]:

R(D) � R

n

(D)� �

n

� R

1

(D)� �

1

; (3.43)

where R

n

(D) is the nth rate-distortion function of the source, R

1

(D) is as de�ned

above and �

n

=

1

n

H(X

n

)�H(X

1

).

In light of the striking duality that exists between R(D) and C (�), Alajaji proved an

equivalent upper bound to the capacity-cost function of a discrete additive channel.

Theorem 3.4 ([2]) Consider a discrete channel with additive stationary noise pro-

cess fZ

i

g

1

i=1

. Let P

Z

n

(�) denote the n-fold probability distribution function of the

noise process. Then for N = kn, k; n 2 f1; 2; : : :g,

C

N

(�) � C

n

(�) + �

nN

� C

1

(�) + �

1N

; (3.44)

where

� C

n

(�) is the n-fold capacity-cost function of the channel as de�ned in (2.43).
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� C

1

(�) is the capacity-cost function of the associated discrete memoryless chan-

nel (DMC) with iid additive noise process whose distribution is equal to the

marginal distribution � = (�

0

; : : : ; �

q�1

) of the stationary noise process.

� �

nN

4

=

1

n

H(Z

n

)�

1

N

H(Z

N

) with Z

i

= (Z

1

; Z

2

; : : : ; Z

i

), i = n or N , and �

1N

=

H(Z

1

) �

1

N

H(Z

N

), where H(Z

1

) is the entropy of the iid noise process of the

associated DMC.

For the sake of completeness, we reproduce the proof of the above theorem.

Proof of Theorem 3.4 The proof uses a dual generalization of Wyner and Ziv's

proof of the lower bound to the rate-distortion function. We �rst need to use the

following expression

I(X

N

;Y

N

) �

k

X

i=1

I(X

n

(i)

;Y

n

(i)

) +N�

nN

; (3.45)

where X

N

= (X

n

(1)

; X

n

(2)

; : : : ; X

n

(k)

) and Y

N

= (Y

n

(1)

; Y

n

(2)

; : : : ; Y

n

(k)

) with

X

n

(i)

= (X

1;(i)

; X

2;(i)

; : : : ; X

n;(i)

);

and

Y

n

(i)

= (Y

1;(i)

; Y

2;(i)

; : : : ; Y

n;(i)

):

Proving the above inequality goes as follows:

k

X

i=1

I(X

n

(i)

;Y

n

(i)

) +N�

nN

� I(X

N

;Y

N

)

=

k

X

i=1

h

H(Y

n

(i)

)�H(Y

n

(i)

jX

n

(i)

)

i

+

N

n

H(Z

n

)�H(Z

N

)

�H(Y

N

) +H(Y

N

jX

N

) (3.46)

=

k

X

i=1

h

H(Y

n

(i)

)�H(Z

n

(i)

)

i

+ kH(Z

n

)�H(Z

N

)�H(Y

N

) +H(Z

N

) (3.47)
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=

k

X

i=1

H(Y

n

(i)

)�H(Y

N

) (3.48)

=

k

X

i=1

H(Y

n

(i)

)�

k

X

i=1

H(Y

n

(i)

jY

n

(i�1)

; Y

n

(i�2)

; : : : ; Y

n

(1)

) (3.49)

�

k

X

i=1

H(Y

n

(i)

)�

k

X

i=1

H(Y

n

(i)

) (3.50)

= 0; (3.51)

where, the �rst equality is true by the de�nitions of N�

nN

and I(X

n

;Y

n

). Both the

third and �nal steps are algebraic manipulations and the fourth is merely the chain

rule for entropy. The inequality arises since conditioning reduces entropy, leaving the

second equality as the only place to limit the scope of our expression. Therefore,

the inequality is valid whenever the noise entropy is exactly equal to the conditional

entropy of the input-output process:

H(Y jX) = H(Z):

This is true for all invertible noise processes, including those in our examples.

Let P

X

N
(x

N

) 2 �

N

(�) where �

N

(�) is described in (2.41). For this input distribu-

tion, we denote �

i

4

=

1

n

E

h

b

�

X

n

(i)

�i

for i = 1; 2; : : : ; k; thus

1

k

k

X

i=1

�

i

=

1

N

E

h

b

�

X

N

�i

� �: (3.52)

By (3.45), we obtain with this P

X

N
(x

N

):

1

N

I(X

N

;Y

N

) �

1

N

k

X

i=1

I(X

n

(i)

;Y

n

(i)

) + �

nN

; (3.53)

but

1

n

I(X

n

(i)

;Y

n

(i)

) � C

n

(�

i

) for i = 1; 2; : : : ; k. Thus

1

N

I(X

N

;Y

N

) �

1

k

k

X

i=1

C

n

(�

i

) + �

nN

: (3.54)
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By concavity of C

n

(�), we have

1

k

k

X

i=1

C

n

(�

i

) � C

n

 

1

k

k

X

i=1

�

i

!

(3.55)

and since C

n

(�) is strictly increasing we have that C

n

�

1

k

P

k

i=1

�

i

�

� C

n

(�). Therefore

1

N

I(X

N

;Y

N

) � C

n

(�) + �

nN

; (3.56)

or

max

P

X

N

(x

N

)2�

N

(�)

1

N

I(X

N

;Y

N

) = C

N

(�) � C

n

(�) + �

nN

: (3.57)

Thus the �rst inequality in (3.44) is proved. To prove the second inequality in (3.44),

we need to show that C

n

(�) � C

1

(�)+�

1n

, or C

k

(�) � C

1

(�)+�

1k

. This is shown

using the �rst inequality in Equation (3.44) and letting n = 1. 2

Using Equations (3.44) and (2.42), we obtain the following tight upper bound on

C (�).

Corollary 3.1 ([2]) Consider the channel described in Theorem 3.4, with the as-

sumption that the noise process is stationary. Then

C (�) � C

n

(�) +M

n

� C

1

(�) +M

1

; (3.58)

where

� C

n

(�) and C

1

(�) are as de�ned in Theorem 3.4.

� M

n

4

= �

n1

=

1

n

H(Z

n

) � H(Z

1

), and M

1

4

= �

11

= H(Z) � H(Z

1

) is the

amount of memory in the noise process.

The bound given above is asymptotically tight with n, and we can see that by applying

Blahut's algorithm to determine the upper bound C

U

n

(�) on C

n

(�),

C

ub

n

(�)

4

= C

U

n

(�) +M

n

� C

n

(�

s

) +M

n

� C (�) ; (3.59)
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where s is the slope of both the upper and lower bounds at �

s

. This will become

apparent through experimentation as well. Blahut's lower bound will converge to

Alajaji's upper bound since M

n

! 0 as n!1.

3.3 Numerical Results

In this section we implement the bounding techniques of this chapter in C++ code on

a SUN ULTRA SPARC 1 workstation. It soon becomes obvious that the computation

time required for the evaluation of C

n

(�) grows extremely fast both in the block

length n of the input vectors and in the input alphabet size q. While this e�ect is

being explored we also witness the convergence of the envelope between the Blahut-

Arimoto, and the Alajaji bounds. This distance becomes important in Chapter 4

where we use the Blahut-Arimoto lower bound on feedback channels and the Alajaji

upper bound on non-feedback channels (both responding to the same noise process)

to show improvement of C (�) with feedback.

Let us now compute these bounds for the examples introduced in Chapter 2.

Example 3.1 Binary Alphabet Channel with 1

st

Order Markov Noise. We wish to

evaluate the memory element, M

n

, and C

L

n

(�) for the mod 2 channel with �rst order

noise state transitions give by

� =

2

6

6

4

1� � �

% 1� %

3

7

7

5

=

2

6

6

4

:95 :05

:20 :80

3

7

7

5

(3.60)

and with stationary distribution given by

[�

0

; �

1

] =

"

%

� + %

;

�

� + %

#

= [:8; :2]: (3.61)
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Applying the results of Equation (2.24) in Theorem 2.5, we can express H(Z

1

)

as H(Z

2

jZ

1

). This yields

M

n

=

1

n

H(Z

n

)�H(Z

2

jZ

1

) (3.62)

= �

1

n

2

n

�1

X

z

n

=0

P

Z

n

(z

n

) logP

Z

n

(z

n

) +

1

X

l=0

1

X

m=0

�

l

�

l;m

log�

l;m

(3.63)

= �

1

n

2

n

�1

X

z

n

=0

P

Z

n

(z

n

) logP

Z

n

(z

n

)�

%h(�) + �h(%)

� + %

; (3.64)

where

P

Z

n

(z

n

) = �

z

1

n�1

Y

i=1

�

z

i

;z

i+1

: (3.65)

This closed form solution to the memory remaining after blocking n input symbols

is a key aspect to our analysis. Table 3.1 shows the decrease in M

n

for a number of

di�erent binary Markov matrices �.

(�; %) �

1

n = 1 n = 2 n = 3 n = 6 n = 9 n = 12

(:05; :2) :2 :348425 :174212 :116142 :058071 :038714 :029035

(:1; :4) :2 :152542 :076271 :050847 :025424 :016949 :012712

(:15; :6) :2 :039866 :019933 :013289 :006644 :004430 :003322

(:175; :7) :2 :010457 :005229 :003486 :001743 :001162 :000871

(:225; :9) :2 :012775 :006387 :004258 :002129 :001419 :001065

(:05; :45) :1 :111961 :055980 :037320 :018660 :012440 :009330

(:05; :075) :4 :645388 :322694 :215129 :107565 :071710 :053782

Table 3.1: First-order binary Markov noise: M

n

in bits for di�erent values of n and

(�; %); �

1

=

�

�+%

.

This memory element M

n

plus the di�erence (C

U

n

(�) � C

L

n

(�)) distinguishes

Blahut's lower bound C

L

n

(�) from Alajaji's upper bound C

ub

n

(�). Computation of
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both bounds requires forming the corresponding memoryless channel Y

n

= X

n

� Z

n

with channel transition matrix Q = [P

Y

n

jX

n

(y

n

jx

n

)]. Let us now explicitly demon-

strate how this is done by the simulation program.

If n = 5, then let x

n

= (x

1

; x

2

; : : : ; x

n

) = (1; 0; 0; 1; 1) be the input word to the

channel. This is just one of 32 possible input words for the binary channel with

block length 5. At the receiver, any output could be observed. For the moment, let

y

n

= (1; 0; 1; 0; 1) be the output of the channel, and let us decipher what occurred.

y

n

= x

n

� z

n

; (3.66)

(1; 0; 1; 0; 1) = (1; 0; 0; 1; 1)� (z

1

; z

2

; z

3

; z

4

; z

5

); (3.67)

(z

1

; z

2

; z

3

; z

4

; z

5

) = (1; 0; 1; 0; 1)	 (1; 0; 0; 1; 1); (3.68)

(z

1

; z

2

; z

3

; z

4

; z

5

) = (0; 0; 1; 1; 0): (3.69)

Note that in the binary case � is equivalent to 	, but this is not true for a general

q-ary channel. The noise sequence is uniquely determined by the inputs and outputs

for additive channels, and we can determine this probability as we did above. Using

the chain rule for probability and the Markovity of fZ

i

g

1

i=1

;

P

Z

5

(0; 0; 1; 1; 0) = �

0

�

0;0

�

0;1

�

1;1

�

1;0

: (3.70)

To facilitate the indexing of these probability mass functions in the computer program

we label them as j = z

1

q

n�1

+ � � �+ z

n

q

0

. For q = 2 this allows us to write

x

n

= 19; y

n

= 21; z

n

= 6; (3.71)

in the above equation. Therefore,

P

Y

5

jX

5

(21=19) = P

Y

5

jX

5

((1; 0; 1; 0; 1)j(1; 0; 0; 1; 1)) (3.72)

= P

Z

5

((0; 0; 1; 1; 0)) (3.73)

= P

Z

5

(6): (3.74)
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Note also that the computer de�nes

P

Y

5

jX

5

((0; 0; 1; 1; 0)j(0; 0; 0; 0; 0)) = P

Z

5

(6): (3.75)

The computer program forms the matrix Q in exactly this fashion: by taking the

block probabilities P

Z

n

and cycling through all possible x

n

2 A

n

q

.

All that remains for the implementation of Blahut's algorithm is a choice of cost

function. For simplicity, we chose a linear cost function that assigns to each input

letter its nominative cost. For binary alphabets the costs are 0 and 1. For a ternary

alphabet the costs are 0, 1 and 2, and so on.

Figures 3.2 and 3.3 demonstrate the convergence (as n increases) of Blahut's bound

to C (�) from below, and the convergence of Alajaji's bound from above, respectively.

In Figure 3.4, we make use of Mrs. Gerber's Lemma (C

L

1

(�)) to improve the lower

bound, and also to show the tightness of the envelope on the capacity-cost function.

Unfortunately, this additional bound is only valid for binary noise processes. We can

use our example to illustrate the computation of Equation (3.41). Using the linear

cost constraint,

� = E [b(X

i

)] = b(0)P

X

(0) + b(1)P

X

(1) (3.76)

� = P

X

(1) (3.77)

for � � �

(n)

max

= �

max

=

1

2

. Substituting into (3.41) yields

C (�) = lim

n!1

max

P

X

n
(x

n

)2�

n

(�)

1

n

H(Y

n

)�H(Z

1

) (3.78)

� h

h

� � h

�1

()

i

�H(Z

1

); (3.79)

where  = minfH(Z

1

); 1�H(Z

1

)g is given by

H(Z

1

) =

%h(�) + �h(%)

� + %

:
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Example 3.2 Ternary Alphabet Channel with 1

st

Order Markov Noise. As in the

previous example we calculate the memory element, M

n

, and C

L

n

(�). The noise

process that corrupts our mod 3 channel has state transition probabilities given by

� =

2

6

6

6

6

6

6

4

1� �

1

� �

2

�

1

�

2

%

0

1� %

0

� %

2

%

2



0



1

1� 

0

� 

1

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

:8 :15 :05

:3 :5 :2

:3 :1 :6

3

7

7

7

7

7

7

5

(3.80)

and with stationary distribution given by

� = [P

Z

(0); P

Z

(1); P

Z

(2)] = [:6; :2167; :1833]: (3.81)

In keeping with the previous example, if n = 5 and x

n

= (x

1

; x

2

; : : : ; x

n

) is an input

word to the channel, we can index it as j = 3

4

x

1

+ � � �+ 3

1

x

4

+ x

5

. Recall that there

were 32 possible words at this stage in the binary example compared with 243 words

here. It is for this reason that we limit n to 5 in our graph for this example. Figure 3.5

shows that Blahut's algorithm can be successfully applied to a ternary alphabet as

well, but with reduced e�ectiveness due to computation time requirements.

Example 3.3 Quaternary Alphabet Channel with 1

st

Order Markov Noise. Calcula-

tion of the memory element, M

n

, and C

L

n

(�) is su�cient to bound C (�) from both

sides. The cost is still a linear cost constraint, b(i) = i, for i 2 f0; 1; 2; 3g, and the

noise process across our mod 4 channel has state transition probabilities given by

� =

2

6

6

6

6

6

6

6

6

6

6

4

�

00

�

01

�

02

�

03

�

10

�

11

�

12

�

13

�

20

�

21

�

22

�

23

�

30

�

31

�

32

�

33

3

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

4

:8 :1 :05 :05

:3 :5 :1 :1

:3 :05 :05 :6

:5 :05 :4 :05

3

7

7

7

7

7

7

7

7

7

7

5

; (3.82)
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where �

jk

is the conditional probability P

Z

i

jZ

i�1

(kjj). The stationary probabilities for

this particular example are

� = [P

Z

(0); P

Z

(1); P

Z

(2); P

Z

(3)] = [:6441; :1495; :0961; :1103]: (3.83)

The graph in Figure 3.6 shows the distance between the upper and lower bounds

using block length n = 4. The number of iterations of Blahut's algorithm required

for each point increases in n and q as does the number of computations within each

iteration.

Example 3.4 Binary Alphabet Channel with 2

nd

Order Markov Noise. In this ex-

ample we are again able to use Mrs. Gerber's Lemma to improve the lower bound

provided by Blahut's algorithm, C

L

n

(�). The upper bound, C

U

n

(�), is computed by

adding the memory element M

n

. The complication of higher order Markov noise is

not great. Rather than simply calculating the stationary distribution on the noise

symbols from the state transition matrix, we must assume this stationary distribution

for an initial state. Then for the �rst k � 1 noise samples, we use � to generate the

required probabilities.

We use the following transition matrix in this example:

� =

2

6

6

6

6

6

6

6

6

6

6

4

1� �

00

�

00

0 0

0 0 1� �

01

�

01

�

10

1� �

10

0 0

0 0 �

11

1� �

11

3

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

4

:95 :05 0 0

0 0 :25 :75

:90 :10 0 0

0 0 :1 :9

3

7

7

7

7

7

7

7

7

7

7

5

: (3.84)

The stationary distributions on the noise states s

i

= (z

i�2

; z

i�1

), where z

i

2 f0; 1g for

all j 2 f1; 2; : : :g, are given by

3

� = [�

00

; �

01

; �

10

; �

11

] = [:654; :036; :036; :272]; (3.85)

3The overline on a decimal number implies repeating digits unto in�nity (i.e., 0:028 =

0:028282828282 : : :).
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and the initial stationary distribution on the letters is

[P

Z

(0); P

Z

(1)] = [:690; :309]; (3.86)

respectively. The computation of these values is explained in Example 2.4.

Applying the results of Equation (2.24) in Theorem 2.5, we can express H(Z

1

)

as H(S

2

jS

1

). Thus

M

n

=

1

n

H(Z

n

)�H(S

2

jS

1

) (3.87)

= �

1

n

2

n

�1

X

z

n

=0

P

Z

n

(z

n

) logP

Z

n

(z

n

) +

X

l;m2A

2

2

�

l

�

l;m

log�

l;m

; (3.88)

where

P

(n)

Z

n

(z

n

) = �

z

1

;z

2

n

Y

i=3

Pr(Z

i

=z

i

jZ

i�1

=z

i�1

; Z

i�2

=z

i�2

) (3.89)

= �

z

1

;z

2

n

Y

i=3

�[(z

i�2

z

i�1

); (z

i�1

z

i

)] (3.90)

given the noise syndrome z

n

= (z

1

; z

2

; : : : ; z

n

), n � 2.

These terms and linear cost constraints are used as parameters in Blahut's algo-

rithm and Mrs. Gerber's Lemma to bound C (�) in the range of 0 � � � 1=2 (see

Figure 3.7).
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Figure 3.2: C

L

n

(�) for n = 1; 2; 3; 5 and 9 using 1

st

order binary Markov noise with

� = :05 and % = 0:2, �

max

= 1=2. Cost function: b (0) = 0; b (1) = 1.
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n

(�) for n = 1; 2; 3; 5 and 9 using 1

st

order binary Markov noise with

� = :05 and % = 0:2, �

max

= 1=2. Cost function: b (0) = 0; b (1) = 1.
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L

9

(�) and Mrs. Gerber's lower bound for a

�rst order binary Markov noise with � = :05 and % = :2. �

max

= 1=2. Cost function:
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Chapter 4

Additive Noise Channels with Feedback

Consider a q-ary alphabet channel with a large capacity, noiseless, delayless feedback

loop. The additive noise process is assumed to be a stationary mixing (hence ergodic)

Markov process of order k. The encoder is also assumed to have both su�cient storage

power for the received and transmitted symbols and su�cient computation power for

the analysis of the data. The question then becomes: does this additional information

help to increase the amount of information that can be transmitted subject to an input

cost constraint? We have already analyzed the computation of the capacity-cost

function for channels without feedback. We herein investigate the e�ect of feedback

on the capacity-cost function.

The �rst section of this chapter states some preliminary results to point out the

direction of our search for capacity-cost function increasing feedback schemes. We es-

tablish a lower bound (C

lb

(�)) to the capacity-cost function with feedback (C

FB

(�))

which can be computed via Blahut's algorithm. We next propose a non-linear feed-

back scheme and characterize a set of noise processes for which C

FB

(�) > C (�).

This is demonstrated analytically and via numerical bounds.
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4.1 Existing Feedback Results

A number of results concerning the usefulness or uselessness of feedback already

instruct us in our search. Shannon showed in [22] that side information (feedback

being a special case) does not increase the capacity of discrete memoryless channels.

For continuous channels, Cover and Pombra [10] showed that linear feedback over

non-white additive Gaussian noise channels allows for an increase of at most

1

2

bits

per transmission over the non-feedback capacity, C � C

FB

� C +

1

2

. No increase is

possible for white Gaussian noise channels. Ihara also provides general conditions on

the noise and average power of non-white Gaussian channels under which the capacity

is increased by feedback ([15, 16]). In [1], Alajaji extends Shannon's result to discrete

modulo addition channels with arbitrary noise (not necessarily stationary ergodic).

He also conjectures that while an increase in capacity is impossible with feedback, an

increase in the capacity-cost function may be evident.

This thesis is motivated by Alajaji's hypothesis, and the search initially involved

an attempt to extend Cover's linear feedback strategy to our discrete channels. Unfor-

tunately, the complexity of high order Markov systems makes them di�cult to study,

and linear feedback strategies mod q are too few in number for low order systems to

approximate the methods of Cover and Pombra. Nonlinear feedback techniques are

herein employed to show an increase in the constrained capacity.

4.2 A Lower Bound to the Feedback

Capacity-Cost Function

We now expand our description of a discrete channel from Chapter 2 to include

feedback. This description matches very closely with the notation in [2, 11].
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De�nition 4.1 A feedback channel block code with block length n and rate R con-

sists of the following

� An index set 	 = f1; 2; : : : ; 2

nR

g on the messages fWg.

� A sequence of encoding functions

f

i

: 	� Y

i�1

! X (4.1)

for i = 1; 2; : : : ; n.

� A decoding function,

g : Y

n

! 	; (4.2)

which is a deterministic rule assigning an estimate,

^

W , to each output vector.

Transmitting message W 2 f1; 2; : : : ; 2

nR

g, implies sending X

n

= (X

1

; X

2

; : : : ; X

n

)

symbol by symbol, where X

i

= f

i

(W;Y

1

; Y

2

; : : : ; Y

i�1

) for i = 1; 2; : : : ; n. The decoder

receives Y

n

= (Y

1

; Y

2

; : : : ; Y

n

) and guesses the original message to be g(Y

n

). We

assume the messages to be uniformly distributed over the indexing set.

The average probability of decoding error is then

P

(n)

e

=

1

2

nR

2

nR

X

k=1

Prfg(Y

n

) 6= kjW = kg (4.3)

= Prfg(Y

n

) 6= kjW = kg: (4.4)

In Section 2.2 we associated a cost with each channel input symbol, and required

that the average cost be less than the cost constraint �.

De�nition 4.2 A code rate R is said to be achievable at cost � if there exists a

sequence of �-admissible (cf. De�nition 2.11) feedback codes of block length n and

rate R such that

lim

n!1

P

(n)

e

= 0: (4.5)

62



The capacity-cost function with feedback C

FB

(�) is de�ned to be the supremum of

all such rates R.

A �-admissible feedback random vector has expected per letter costs given by

1

n

E [b (X

n

)] =

1

n

n

X

i=1

X

w

X

y

i�1

P

W;Y

i�1

(w; y

1

; : : : ; y

i�1

) b (f

i

(w; y

1

; : : : ; y

i�1

)) (4.6)

As our goal is the identi�cation of feedback strategies capable of increasing the

constrained capacity, we should characterize the various possibilities for the encoding

sequence ff

i

g, i = 1; 2; : : : ; n.

We begin by representing the random input message W by a random n-tuple

V

n

= (V

1

; V

2

; : : : ; V

n

). We assume that W and fZ

i

g are independent from each other.

At time i we transmit symbol

X

i

= f

i

(V

i

; Y

1

; Y

2

; : : : ; Y

i�1

); X

i

2 A

q

; i = 1; : : : ; n: (4.7)

For our additive noise channels, the Y

i

are given by

Y

i

= X

i

� Z

i

; (4.8)

and where Z

i

2 A

q

is drawn from a stationary ergodic Markov process fZ

i

g

1

i=1

. Since

� is an invertible operation, and since feedback provides the encoder with knowledge

of Y

1

; : : : ; Y

i�1

at time i, it can deduce Z

1

; Z

2

; : : : ; Z

i�1

from the equation

Z

j

= Y

j

	X

j

; j = 1; : : : ; i� 1:

Note as well that for a �nite memory system of order k, the feedback of terms more

than k time steps old provides no new information. Therefore, we can express the

feedback function in terms of the input components and noise state as

X

i

= f

i

(V

i

; Z

i�k

; : : : ; Z

i�1

): (4.9)
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In general, the feedback rule f

i

(V

i

; Z

i�k

; : : : ; Z

i�1

) is time varying and dependent on

both the input and the noise. In this thesis we restrict our study to time invariant

feedback rules.

Observe that the cost constraint is imposed on the input vector X

n

; i.e., it is

required that

1

n

E[b(X

n

)] � �: (4.10)

For this mod q channel with feedback, we de�ne C

lb

(�) using a �xed encoding rule

f

�

as

C

lb

(�) = sup

n

C

lb

n

(�) = lim

n!1

C

lb

n

(�) ; (4.11)

where

C

lb

n

(�) = max

P

V

n
(v

n

)2~�

n

(�)

1

n

I(V

n

;Y

n

); (4.12)

where

~�

n

(�) =

(

P

V

n

(v

n

) :

1

n

n

X

i=1

E [b (X

i

)] � �

)

; (4.13)

and where X

i

= f

�

(V

i

; Z

i�k

; : : : ; Z

i�1

).

Let us now demonstrate the achievability of C

lb

(�), thereby justifying its use as

a lower bound on C

FB

(�). The proof involves a use of the asymptotic equipartition

property, and requires a de�nition of jointly �-typical sequences [11].

De�nition 4.3 ([11]) Given jointly distributed random vectors (V

n

; Y

n

) with dis-

tribution P

V

n

;Y

n

(v

n

; y

n

), and � > 0, the set A

(n)

�

of jointly �-typical sequences (V

n

; Y

n

)

is de�ned by

A

(n)

�

4

=

�

(v

n

; y

n

) 2 V

n

� Y

n

:

�

�

�

�

�

1

n

logP

V

n

(v

n

)�H(V

1

)

�

�

�

�

� � (4.14)

�

�

�

�

�

1

n

logP

Y

n

(y

n

)�H(Y

1

)

�

�

�

�

� � (4.15)

�

�

�

�

�

1

n

logP

V

n

;Y

n

(v

n

; y

n

)�H(V

1

; Y

1

)

�

�

�

�

� �

�

; (4.16)
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where P

V

n

(v

n

) and P

Y

n

(y

n

) are the n-fold marginal distributions corresponding to

the joint p.m.f. P

V

n

;Y

n

(v

n

; y

n

). The set A

(n)

�

is then the set of n-sequences whose

empirical entropies are within � of the true entropies.

Theorem 4.1 (Achievability of C

lb

(�): C

FB

(�) � C

lb

(�)) Consider a q-ary

k

th

order additive Markov noise channel de�ned above with a �xed time invariant

feedback function f

�

. If C

lb

n

(�) is as de�ned in Equations (4.11) to (4.13), then there

exists a sequence of �-admissible feedback codes of block length n and rate R such

that P

(n)

e

! 0 as n!1 for all rates R < C

lb

(�).

Proof of Theorem 4.1 We use random coding by letting the indexed q-ary rep-

resentation of W , given by V

n

(1); V

n

(2); : : : ; V

n

(2

nR

), be independent identically

distributed n-vectors drawn from P

V

n

(v

n

), where P

V

n

(v

n

) achieves C

lb

(�) and is an

n-fold distribution of a stationary ergodic process.

Encoding: To send messageW , whereW is uniform over f1; 2; : : : ; 2

nR

g, the trans-

mitter sends X

n

(W;Z

n�1

) = (X

1

; X

2

; : : : ; X

n

), where X

i

= f

�

(V

i

; Z

i�k

; : : : ; Z

i�1

).

Since f

�

(�) is assumed to be a time invariant function of stationary ergodic processes

fV

i

g and fZ

i

g, then fX

i

g is also stationary ergodic.

Decoding: The receiver must process Y

n

= (Y

1

; Y

2

; : : : ; Y

n

), where Y

i

= X

i

�

Z

i

for i = 1; 2; : : : ; n. It decides that

^

W 2 f1; 2; : : : ; 2

nR

g must have been sent if

�

V

n

(

^

W ); Y

n

�

is the only jointly �-typical pair. Due to the random coding, we assume

without loss of generality that W = 1 was sent. Let

E

i

=

n

(V

n

(i); Y

n

) 2 A

(n)

�

o

; i = 1; 2; : : : ; 2

nR

; (4.17)

and let E

c

i

denote the complement of E

i

.

The receiver declares an error if any of the four following events occur:

� there is no jointly �-typical pair

�

V

n

(

^

W ); Y

n

�

,
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� there is more than one such pair,

�

^

W 6= W = 1,

� or the �-admissibility constraint is violated. We de�ne this possibility by the

event

E

0

=

(

1

n

n

X

i=1

b (X

i

(1)) > �

)

: (4.18)

The probability of the �rst three events can be simpli�ed into

Pr(

^

W 6= 1jW = 1) = Pr(E

c

1

[ E

2

[ E

3

[ � � � [ E

2

nR jW = 1): (4.19)

Cover ([11]) explains how this allows us to write the overall probability of error as

P

(n)

e

= Pr(E

0

) + Pr(

^

W 6= 1jW = 1) (4.20)

= Pr(E

0

) + Pr(E

c

1

[ E

2

[ E

3

[ � � � [ E

2

nR
jW = 1) (4.21)

� Pr(E

0

) + Pr(E

c

1

jW = 1) +

2

nR

X

i=2

Pr(E

i

jW = 1): (4.22)

We intend to show that each of the three terms in Equation (4.22) becomes neg-

ligibly small as n ! 1. Since the codewords are drawn according to a stationary

ergodic distribution that achieves C

lb

(�), Pr(E

0

) < � for n su�ciently large by the

law of large numbers. We now prove as a lemma, a variation of Theorem 8.6.1 from

[11].

Lemma 4.1 (Joint AEP) Given the joint sequence (V

n

; Y

n

) of length n de�ned

above, the following results hold.

a)

jA

(n)

�

j � 2

n[H(V

1

;Y

1

)+�]

: (4.23)
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b) For n su�ciently large,

Pr

�

(V

n

; Y

n

) 2 A

(n)

�

�

� 1� �: (4.24)

c) If

~

V

n

and

~

Y

n

are independent with the same marginals as P

V

n

;Y

n

(v

n

; y

n

), then

for n su�ciently large

(1� �)2

�n[

1

n

I(V

1

;Y

1

)+3�]

� Pr

�

(

~

V

n

;

~

Y

n

) 2 A

(n)

�

�

� 2

�n[

1

n

I(V

1

;Y

1

)�3�]

(4.25)

Proof of Lemma 4.1 We refer to [11] for the proofs of parts a) and c) above, and

prove the result in b) as follows. Since

Y

i

= f

�

(V

i

; Z

i�k

; : : : ; Z

i�1

)� Z

i

; (4.26)

fY

i

g is a time-invariant function of the stationary ergodic processes fV

i

g and fZ

i

g.

Hence fY

i

g is stationary ergodic.

Pr

�

(V

n

; Y

n

) =2 A

(n)

�

�

(4.27)

� Pr

�

�

�

�

�

�

1

n

logP

V

n

(V

n

)�H(V

1

)

�

�

�

�

> �

�

+Pr

�

�

�

�

�

�

1

n

logP

Y

n

(Y

n

)�H(Y

1

)

�

�

�

�

> �

�

+Pr

�

�

�

�

�

�

1

n

logP

V

n

;Y

n

(V

n

; Y

n

)�H(V

1

; Y

1

)

�

�

�

�

> �

�

: (4.28)

The �rst term on the right-hand side of (4.28) is � �=3 for n su�ciently large since

fV

i

g is stationary ergodic. Similarly, the second term is � �=3 for n su�ciently large

since fY

i

g is stationary ergodic. Let us now examine the third term. First note that

P

V

n

;Y

n

(v

n

; y

n

) (4.29)

= P

Y

n

jV

n

(y

n

jv

n

)P

V

n

(v

n

) (4.30)

= P

V

n

(v

n

)

n

Y

i=1

P

Y

i

jY

i�1

;V

n
(y

i

jy

i�1

; v

n

) (4.31)
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= P

V

n

(v

n

)

n

Y

i=1

P

Z

i

jZ

i�k

;:::;Z

i�1

(z

i

jz

i�k

; : : : ; z

i�1

) (4.32)

= P

V

n

(v

n

)P

Z

n

(z

n

); (4.33)

where z

n

= (z

1

; : : : ; z

n

) and z

i

= y

i

	 f

�

(v

i

; y

i�1

), i = 1; : : : ; n. Therefore,

�

1

n

logP

V

n

;Y

n

(v

n

; y

n

) = �

1

n

logP

V

n

(v

n

)�

1

n

logP

Z

n

(z

n

): (4.34)

By the same rationale,

H(V

1

; Y

1

) = H(V

1

) +H(Y

1

jV

1

) (4.35)

= H(V

1

) +H(Z

1

): (4.36)

However,

�

1

n

logP

V

n

(V

n

)

n!1

�! H(V

1

) (4.37)

in probability, and

�

1

n

logP

Z

n

(Z

n

)

n!1

�! H(Z

1

) (4.38)

in probability, which implies that

�

1

n

logP

V

n

(V

n

)�

1

n

logP

Z

n

(Z

n

)

n!1

�! H(V

1

) +H(Z

1

): (4.39)

Therefore,

Pr

�

�

�

�

�

�

1

n

logP

V

n

;Y

n

(V

n

; Y

n

)�H(V

1

; Y

1

)

�

�

�

�

> �

�

<

�

3

(4.40)

for n su�ciently large. Substituting back into Equation (4.28) yields

Pr

�

(V

n

; Y

n

) =2 A

(n)

�

�

< � (4.41)

for n su�ciently large; this completes the proof of b). 2

Now, by Part b) of Lemma 4.1

Pr(E

c

1

) = Pr

�

(V

n

; Y

n

) =2 A

(n)

�

�

< �; (4.42)
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for n su�ciently large.

Part c) of Lemma 4.1 refers to the probability that an independent distribution

will also generate pairs in the jointly �-typical set. Therefore, for i 6= 1

Pr(E

i

jW = 1) = Pr

�

(

~

V

n

;

~

Y

n

) 2 A

(n)

�

�

(4.43)

� 2

�n[

1

n

I(V

1

;Y

1

)�3�]

(4.44)

= 2

�n[C

lb

(�)+3�]

; (4.45)

since P

V

n

(v

n

) is drawn from the stationary ergodic distribution that achieves C

lb

(�).

Therefore, Equation (4.22) reduces to

P

(n)

e

� 2�+ (2

nR

� 2)2

�n[C

lb

(�)+3�]

� 3� (4.46)

if n is su�ciently large and R < C

lb

(�). Therefore, C

lb

(�) is achievable and consti-

tutes a lower bound to C

FB

(�). 2

4.3 Nonlinear Feedback where C

FB

(�) > C (�)

In this section we develop a nonlinear feedback scheme and a set of noise processes

for which a uniform input distribution results in a uniform output distribution, and

feedback capacity is achieved at an expected cost

~

�

lb

< �

max

. This implies that

feedback increases C (�) for such channels.

We begin by describing the particular feedback encoding function f

�

that we

intend to use. We then show that for a particular type of Markov noise, the feed-

back channel transition probabilities are equal to the non-feedback channel transition

probabilities. This allows us to verify that

C

lb

(�) = C

FB

(�) = log q �H(Z

1

) (4.47)

for � � �

max

.
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For a channel with q-ary k

th

order additive Markov noise, consider the following

time invariant feedback encoding function f

�

(�).

X

i

= V

i

if i � k; (4.48)

X

i

= f

�

(V

i

; S

i

)

4

=

8

>

>

<

>

>

:

V

i

; S

i

6= ~s

0; S

i

= ~s;

if i > k; (4.49)

where S

i

4

= (Z

i�k

; Z

i�k+1

; : : : ; Z

i�1

) is the random vector describing the state of the

noise process at time i, ~s is some preselected state.

Under linear or power cost constraints this feedback strategy asks the transmitter

to monitor the noise state, S. If the encoder detects a particular bad state ~s (i.e., one

whose transition probabilities are nearly uniform) at step i then the transmitter is

instructed to send the least expensive word irrespective of the current message symbol

V

i

. In our examples the least expensive letter has b(0) = 0.

Let us now apply this feedback strategy to a q-ary channel with a particular

additive Markov noise of order k.

Lemma 4.2 Consider a q-ary channel with stationary ergodic additive Markov noise

of order k with and without the feedback rule given in Equation (4.48) above. If for

a particular noise state ~s the conditional probabilities of the current noise sample are

uniformly distributed, i.e.,

P

Z

i

jS

i

(z

i

j~s) =

1

q

; 8 z

i

2 A

q

; (4.50)

then the conditional probabilities of y

n

given v

n

are equal for both the feedback and

non-feedback channels, i.e.,

P

Y

n

jV

n

(y

n

jv

n

) = P

FB

Y

n

jV

n

(y

n

jv

n

); (4.51)

for all y

n

; v

n

2 A

k

q

.
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Proof of Lemma 4.2 The transition probabilities for the non-feedback channel are

given by

P

Y

n

jV

n

(y

n

jv

n

) = P

Z

n

(z

n

= y

n

	 v

n

) (4.52)

= P

Z

k(y

1

	 v

1

; y

2

	 v

2

; : : : ; y

k

	 v

k

)

�

n

Y

i=k+1

P

Z

i

jS

i

(y

i

	 v

i

js

i

); (4.53)

where s

i

= (z

i�k

; z

i�k+1

; : : : ; z

i�1

) is the state of the Markov chain at step i for a given

input-output pair (v

n

; y

n

). Using the same notation but with a superscript to denote

the feedback channel, the transition probabilities are given by

P

FB

Y

n

jV

n

(y

n

jv

n

) = P

Z

k(y

1

	 v

1

; y

2

	 v

2

; : : : ; y

k

	 v

k

)

�

n

Y

i=k+1

P

�

Z

i

jS

i

(y

i

	 f

�

(v

i

; s

i

)js

i

); (4.54)

where

P

�

Z

i

jS

i

(y

i

	 f

�

(v

i

; s

i

)js

i

) =

8

>

>

<

>

>

:

P

Z

i

jS

i

(y

i

	 v

i

js

i

); if s

i

6= ~s

P

Z

i

jS

i

(y

i

js

i

); if s

i

= ~s:

(4.55)

Notice that Equations (4.53) and (4.54) are identical except possibly when noise state

~s occurs. But P

ZjS

(zj~s) =

1

q

for all z 2 f0; 1; : : : ; q � 1g, which implies that

P

Z

i

jS

i

(y

i

j~s) = P

Z

i

jS

i

(y

i

	 v

i

j~s) =

1

q

: (4.56)

Therefore, P

Y

n

jV

n

(y

n

jv

n

) = P

FB

Y

n

jV

n

(y

n

jv

n

) for the feedback encoding scheme in (4.48)

if the conditional probabilities of Z

i

given S

i

= ~s are uniform. 2

Lemma 4.2 implies that since the non-feedback channel is symmetric, then so is

the feedback channel. From Theorem 2.6

1

we can infer that a uniform distribution

on the input blocks V

n

induces a uniform distribution on the output blocks Y

n

.

1Actually, Theorem 2.6 only requires a weakly symmetric channel.
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We have now shown that for a particular type of Markov noise, our feedback rule

has no e�ect on the conditional distribution. It does, however, a�ect the cost of

individual input blocks. The following lemma compares the expected cost of non-

feedback distributions with feedback distributions using our strategy.

Lemma 4.3 Consider the non-feedback and feedback channels described above, with

feedback strategy given in Equation (4.48), and P

ZjS

(zj~s) =

1

q

for all z. Let P

�

V

n

(v

n

)

be a stationary input distribution that achieves C

n

(�) for � > �

min

2

. Then

C

lb

n

�

�

lb

n

�

� C

n

(�) (4.57)

where �

lb

n

is the expected per letter cost of P

�

V

n

(v

n

) under the feedback encoding

strategy given by

�

lb

n

=

"

1�

n� k

n

P

S

(~s)

#

� (4.58)

Proof of Lemma 4.3 By Corollary B.3, for the non-feedback channel

� =

1

n

X

v

n

P

�

V

n

(v

n

)b (v

n

) (4.59)

=

X

v

P

V

(v)b (v) (4.60)

since P

�

V

n

(v

n

) is a stationary input distribution that achieves the non-feedback ca-

pacity-cost function. For the feedback channel we charge costs to the channel input

letters after applying the feedback rule f

�

. Thus

�

lb

n

=

1

n

E [b (X

n

)] =

1

n

n

X

i=1

E [b (X

i

)] (4.61)

=

1

n

k

X

i=1

E [b (X

i

)] +

1

n

n

X

i=k+1

E [b (X

i

)] (4.62)

2The existence of a stationary input distribution that achieves the capacity-cost is shown in [9].
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=

1

n

k

X

i=1

X

v

P

V

(v

i

)b (X

i

) +

1

n

n

X

i=k+1

E [b (f

�

(v

i

; s

i

))] (4.63)

=

k

n

� +

n� k

n

X

v

X

s

P

S

(s)P

V

(v)b (f

�

(v; s)) (4.64)

=

k

n

� +

n� k

n

"

X

v

P

S

(~s)P

V

(v)b (0)

+

X

s 6=~s

X

v

P

S

(s)P

V

(v)b (v)

3

5

(4.65)

=

k

n

� +

n� k

n

X

s 6=~s

P

S

(s)� (4.66)

=

"

1�

n� k

n

P

S

(~s)

#

�; (4.67)

where s

i

= (z

i�k

; : : : ; z

i�1

). Note that, since we are dealing with stationary mixing

noise processes, P

S

(~s) > 0 and thus �

lb

n

< �. Now, by Lemma 4.2 above, the channel

transition probabilities are identical for the feedback and non-feedback channel. Using

P

�

V

n

(v

n

) as a particular input distribution,

C

lb

n

�

�

lb

n

�

�

1

n

X

v

n

;y

n

P

�

V

n

(v

n

)P

FB

Y

n

jV

n

(y

n

jv

n

) log

P

FB

Y

n

jV

n

(y

n

jv

n

)

P

v

n

P

�

V

n

(v

n

)P

FB

Y

n

jV

n

(y

n

jv

n

)

(4.68)

=

1

n

X

v

n

;y

n

P

�

V

n

(v

n

)P

Y

n

jV

n

(y

n

jv

n

) log

P

Y

n

jV

n

(y

n

jv

n

)

P

v

n

P

�

V

n

(v

n

)P

Y

n

jV

n

(y

n

jv

n

)

(4.69)

= C

n

(�) : (4.70)

2

Let us de�ne

~

�

lb

n

such that

C

lb

n

�

~

�

lb

n

�

= C

n

(�

max

) = log q �

1

n

H(Z

n

): (4.71)

Alajaji has shown in [1] that feedback cannot increase channel capacity. Since we

already know that a uniform input distribution achieves capacity for the non-feedback
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channel, Lemmas 4.2 and 4.3 imply that a uniform input distribution also achieves

capacity for the feedback channel. We can now �nd �

max

for the non-feedback channel,

and use the above lemma to determine

~

�

lb

. Using the linear cost function b(i) = i,

we already know from Section 2.3 that for the non-feedback channel:

�

max

= �

(n)

max

=

q � 1

2

; 8 n: (4.72)

Therefore, for the channel with feedback,

~

�

lb

4

= lim

n!1

~

�

lb

n

(4.73)

= lim

n!1

(

k

n

�

max

+

n� k

n

[1� P

S

(~s)]�

max

)

(4.74)

= lim

n!1

(

k

n

+ (1� P

S

(~s))

n� k

n

)

q � 1

2

(4.75)

= (1� P

S

(~s))

q � 1

2

: (4.76)

Since the Markov noise is irreducible and aperiodic, P

S

(~s) > 0 which implies that

~

�

lb

< �

max

. We observe here, as in Lemma 4.3 that our feedback channel attains

capacity at a � strictly less than that for the non-feedback channel. We summarize

these observations in the following theorem.

Theorem 4.2 Consider the q-ary non-feedback and feedback channels with station-

ary mixing additive Markov noise and feedback rule described above. Let P

Z

i

jS

i

(z

i

j~s

i

) =

1

q

for all z

i

2 A

q

. Then for 0 < � < �

max

,

C

FB

(�) > C (�) : (4.77)

Proof of Theorem 4.2 This theorem follows easily from Lemmas 4.2 and 4.3. Re-

call that C

n

(�) is strictly increasing on � < �

max

(c.f. Corollary 2.1). For input

distribution P

�

V

n

(v

n

) that achieves C

n

(�) for the non-feedback channel,

�

lb

n

=

 

k

n

+

n� k

n

[1� P

S

(~s)]

!

� (4.78)
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and if P

~s

> 0, then by Lemma 4.3

C

n

(�) � C

lb

n

�

�

lb

n

�

: (4.79)

Therefore, taking the limit as n !1 on (4.79), and using the fact that the limit of

a concave function is concave and thus continuous, yields

C

lb

�

�

lb

�

� C (�) ; (4.80)

where �

lb

= lim

n!1

�

lb

n

= (1 � P

S

(~s))�: Since C(�) is strictly increasing in �; we

obtain

C

lb

(�

lb

) > C

�

�

lb

�

; (4.81)

which implies that

C

FB

(�

lb

) > C(�

lb

) (4.82)

for 0 < �

lb

< �

max

. 2

This analytic result proves that, for some types of Markov noise, the capacity-cost

function of mod q channels can be increased by feedback. In the next section, we

apply our strategy to demonstrate the result numerically.

4.4 Numerical Examples

We continue with the four examples of the previous chapters, to demonstrate our new

results. In some instances we use a channel with a uniformly poor state ~s, and in

others we use a nearly uniformly poor state. In both instances we see an increase in

the capacity-cost function with feedback for some range of the costs.

Example 4.1 Binary Alphabet Channel with 1

st

Order Markov Noise. We introduce

a channel with a particular type of binary Markov noise. As can be seen in Figure 4.1,

the probability of witnessing Z

i

= 1 given that Z

i�1

= 1 is exactly

1

2

.
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Figure 4.1: Two-State Markov Chain: state 1 is uniformly bad.

As we proved in the previous section, there is nothing to be gained by transmitting

V

i

if the present channel state uniformly poor. Let ~s = 1. By the nonlinear feedback

rule given in (4.48) we save a factor of [1 � P

S

(~s)] on the expected cost of sending

message W = (V

1

; V

2

; : : : ; V

n

) as n ! 1. We now implement this strategy and

observe in Figure 4.2 that when � = :2, a very noisy channel, the gains in C

FB

(�)

over C (�) are very apparent at block length n = 8. Notice that

~

�

lb

n

for the feedback

channel is precisely,

~

�

lb

n

=

(q � 1)

2

"

1

n

+

(n� 1)

n

(1� �

~s

)

#

(4.83)

which for this channel is

~

�

lb

8

=

1

2

�

1

8

+

7

8

(1�

2

7

)

�

(4.84)

=

3

8

= :375; (4.85)

a cost savings of 25 percent.

We now repeat this experiment for a binary channel with �rst order Markov noise

de�ned by � = :18 and % = :45, using the same ~s and feedback strategy. This noise

process has stationary distribution equal to the one above. Figure 4.3 shows that we

obtain a numerical increase in C

lb

8

(�) over C

ub

8

(�) even if the state ~s is not uniformly

corrupting.
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Example 4.2 Ternary Alphabet Channel with 1

st

Order Markov Noise. For the case

where state ~s is uniformly corrupting, we have analytically shown a strict increase in

the capacity-cost function as n !1 using our simple feedback scheme as the lower

bound. We use the following Markov chain and block length n = 5 to create the

graphs in Figure 4.4 and Figure 4.5:

� =

2

6

6

6

6

6

6

4

:70 :05 :25

:71 :04 :25

:333334 :333333 :333333

3

7

7

7

7

7

7

5

: (4.86)

The state probabilities for this example are

� = [�

0

; �

1

; �

2

] =

h

0:6012; 0:1260; 0:27

i

; (4.87)

where state ~s is de�ned by the event Z

i�1

= 2. The resultant noise process given

that Z

i�1

= 2 is not exactly uniform, but we do see a distinct increase in C

lb

5

(�) over

C

ub

5

(�). This increase grows as n!1. As well,

~

�

lb

5

= 0:7818 while

~

�

lb

= 0:72, which

would also serve to increase the gap between the bounds.

Example 4.3 Quaternary Alphabet Channel with 1

st

Order Markov Noise. The

maximum block length for which Blahut's algorithm would converge in a reason-

able amount of time (2 days for 100 data points) was n = 4. We use the following

Markov chain to create the graphs in Figure 4.6 and Figure 4.7:

� =

2

6

6

6

6

6

6

6

6

6

6

4

:55 :10 :10 :25

:55 :10 :10 :25

:55 :10 :10 :25

:25 :25 :25 :25

3

7

7

7

7

7

7

7

7

7

7

5

: (4.88)

The state probabilities for this example are

� = [�

0

; �

1

; �

2

; �

3

] = [0:475; 0:1375; 0:1375; 0:25] ; (4.89)
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where state ~s is de�ned by the event Z

i�1

= 3. As n !1 we experience additional

increase in C

lb

(�) due to memory decrease to zero (M

4

= :017), and due to cost

decrease from

~

�

lb

4

= 1:219 down to

~

�

lb

= 1:125.

Example 4.4 Binary Alphabet Channel with 2

nd

Order Markov Noise. As with the

�rst order mod 2 case, in the second order case we are also able to compute a high

enough block length to see a substantial increase in the feedback capacity-cost func-

tion. As such, we wish to demonstrate this increase for two channels not explicitly

suggested by our feedback rule in Section 4.3. In both channels we apply the feedback

rule to two states ~s

0

and ~s

00

as follows.

X

i

= f

�

(V

i

; S

i

)

4

=

8

>

>

<

>

>

:

V

i

; S

i

2 f(00); (10)g

0; S

i

2 f(01); (11)g;

(4.90)

where ~s

1

= (01) and ~s

2

= (11). Applying this feedback strategy to the channel with

state transition matrix

� =

2

6

6

6

6

6

6

6

6

6

6

4

:80 :20 0 0

0 0 :50 :50

:78 :22 0 0

0 0 :50 :50

3

7

7

7

7

7

7

7

7

7

7

5

(4.91)

and with stationary probabilities

� = [:565; :145; :145; :145]; (4.92)

results in the strict increase seen in Figure 4.8. We now alter the state transition prob-

abilities slightly, so that we no longer have a uniform distribution on the probabilities
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P

Z

i

jS

i

(z

i

j~s

0

). More speci�cally,

�

�

=

2

6

6

6

6

6

6

6

6

6

6

4

:80 :20 0 0

0 0 :45 :55

:80 :20 0 0

0 0 :50 :50

3

7

7

7

7

7

7

7

7

7

7

5

(4.93)

and with stationary probabilities

�

�

= [:563; :141; :141; :155]: (4.94)

We have not proven analytically that this channel must experience an increase in

constrained capacity with feedback, but we can see in Figure 4.9, as in Figure 4.3

for the �rst order case, that a numerical increase is achieved despite the fact that no

increase is guaranteed.

Remark: These numerical examples are not the best we can do. Using the closed

form expressions for

~

�

lb

and the capacity C, we can improve the lower bound to

C

FB

(�): In fact, for � >

~

�

lb

= (1 � P

S

(~s))�

max

we have that C

FB

(�) = C: Further-

more, by the strict concavity of the capacity-cost function, the tangent line from the

point (

~

�

lb

; C) to the graph of C

lb

n

(�) also represents an improvement in the lower

bound. As we achieved our goal of demonstrating the increase in the capacity-cost

function with feedback, we need not further complicate the following graphs.
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Figure 4.2: Nonlinear Feedback Increase: C
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8

(�) > C

ub

8

(�) for � <

~

�

lb

8

= :375, using

�rst order binary Markov noise (� = :2 and % = :5) and cost function: b(0) = 0; b(1) =

1.
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Chapter 5

Conclusions and Future Work

5.1 Summary

In this thesis we have implemented the bounding techniques of Alajaji and Blahut for

modulo q channels with stationary ergodic �nite alphabet Markov noise. Numerical

results verify that both bounds are tight, yet converge slowly in block length. An

additional block length independent bound, Mrs. Gerber's Lemma, was also imple-

mented on mod 2 channels. Computation of the bounds for block length n provided

an envelope on the capacity-cost function.

A model for channels with time invariant feedback was then developed. We derived

a lower bound to the capacity-cost function of this channel by showing achievability.

This bound is also a computable by Blahut's algorithm. We also developed one

feedback scheme and a class of Markov noise sources which result in an increase in

the capacity-cost function. We show analytically that this feedback scheme gives

C

FB

(�) > C (�) (5.1)

for 0 < � < �

max

. Numerically, we are able to show

C

lb

n

(�) > C

ub

n

(�) (5.2)
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for 0 < �

1

< � < �

2

< �

max

, where C

lb

n

(�) is the lower bound on the n

th

capacity-

cost function of the feedback channel and C

ub

n

(�) is Alajaji's upper bound on the n

th

capacity-cost function of the non-feedback channel. Therefore, we can now state that

in some instances, feedback increases the capacity-cost function of discrete additive

Markov channels.

All the numerical results were obtained with a C++ program capable not only

of computing Blahut's algorithm for arbitrary input and output alphabets, but also

of computing the stationary distribution of a k

th

order Markov noise process with q

k

states.

5.2 Future Work

This thesis leads naturally into some other areas of information theory research.

� A generalization of this result to all stationary Markov noise processes is still

necessary.

� Treating the case of real addition channels with feedback may show an increase

in the channel capacity.

� Expanding the results on the e�ect of feedback to the channel reliability function

of channels with memory.

In preparing this thesis, a large amount of e�ort went into examining other types

of Markov noise with few results. By searching over all possible feedback strategies,

we may be able to �nd an increase in the capacity-cost function in general.

The questions surrounding real addition channels were investigated. The feedback

strategy employed for the mod q channel is not e�ective for the real adder channel

since it is not symmetric. It is postulated, however, that feedback should increase
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the actual capacity of these channels. One new direction with potential would be to

examine variable length feedback codes for the real adder channel.

Computation of the channel reliability function is given in [3]. Using bounding

techniques discussed in [7], it could be possible to prove that feedback increases the

reliability function of channels with memory.
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Appendix A

Basic Information Theory Concepts

In this Appendix, we review some key information theory de�nitions and theorems.

A.1 Information Theory De�nitions [11]

De�nition A.1 The entropy H(X) of a discrete random variable X is de�ned by

H(X) = �

X

x2X

P

X

(x) logP

X

(x): (A.1)

De�nition A.2 The joint entropy of a pair of discrete random variables (X; Y ) with

a joint distribution P

X;Y

(x; y) is de�ned as

H(X; Y ) = �

X

x2X

X

y2Y

P

X;Y

(x; y) logP

X;Y

(x; y): (A.2)

De�nition A.3 If (X; Y ) is a pair of discrete random variables with joint distribution

P

X;Y

(x; y), then the conditional entropy H(Y jX) is de�ned as

H(Y jX) =

X

x2X

P

X

(x)H(Y jX = x) (A.3)

= �

X

x2X

P

X

(x)

X

y2Y

P

Y jX

(yjx) logP

Y jX

(yjx): (A.4)
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De�nition A.4 The relative entropy between two probability mass functions p(x)

and q(x) is de�ned as

D(pjjq) =

X

x2X

p(x) log

p(x)

q(x)

: (A.5)

De�nition A.5 Consider two random variables X and Y with a joint probability

mass function P

X;Y

(X; Y ). The mutual information I(X;Y ) is the relative entropy

between the joint distribution and the product distribution P

X

(x)P

Y

(y), i.e.,

I(X;Y ) = D(P

X;Y

(x; y)jjP

X

(x)P

Y

(y)) (A.6)

=

X

x2X

X

y2Y

P

X;Y

(x; y) log

P

X;Y

(x; y)

P

X

(x)P

Y

(y)

: (A.7)

These de�nitions can be conveniently described in the following Venn diagram.

I(X;Y )H(XjY ) H(Y jX)

H(X; Y )

H(X) H(Y )

Figure A.1: The relationship between entropy and mutual information.

A.2 Theorems

Theorem A.1 ([11]) H(X) � log jX j, where jX j denotes the number of elements

in the range of X, with equality if and only if X has a uniform distribution of X .
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Theorem A.2 ([11]) For any two random variable X and Y ,

I(X;Y ) � 0 (A.8)

with equality if and only if X and Y are statistically independent (i.e., P

X;Y

(x; y) =

P

X

(x)P

Y

(y)).

We now wish to present a �nal result concerning the de�nition of the capacity-cost

function given in Equation (2.42). It is not obvious that the limit as n!1 of C

n

(�)

is equivalent to the supremum over all n, and so we shall now prove it. We begin by

stating the following lemma.

Lemma A.1 ([12]) Let fa

N

g, N 2 f0; 1; : : :g be a bounded sequence of numbers

and let

�a = sup

N

a

N

(A.9)

and

a = inf

N

a

N

: (A.10)

(By a bounded sequence we mean that �a < 1 and a > �1.) Assume that for all

n � 1, and N > n,

a

N

�

n

N

a

n

+

N � n

N

a

N�n

; (A.11)

then

lim

N!1

a

N

= �a: (A.12)

Conversely, if for all n � 1, and N > n,

a

N

�

n

N

a

n

+

N � n

N

a

N�n

; (A.13)

we have

lim

N!1

a

N

= a: (A.14)
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The following theorem and proof are exactly dual to the results concerning R

L

(d

�

)

in Chapter 9 of [12]. It asserts that the limit in Equation (2.42) exists and also that,

for any N , C

N

(�) is a lower bound to C (�).

Theorem A.3 For a discrete (�nite alphabet) stationary channel

sup

N

C

N

(�) = lim

N!1

C

N

(�) : (A.15)

Proof of Theorem A.3 First observe that fC

N

(�)g is a bounded sequence since

0 � C

N

(�) � log jX j; 8 N: (A.16)

Let l and n be arbitrary positive integers and, for a given � � �

min

, let P

�

X

l

and

P

�

X

n

be �-admissible input distributions that achieve C

l

(�) and C

n

(�) respectively.

Furthermore, let N = n+ l, and choose

P

X

N (x

N

) = P

�

X

n

(x

n

)P

�

X

l

(x

l

); (A.17)

where x

N

= (x

1

; : : : ; x

N

), x

n

= (x

1

; : : : ; x

n

) and x

l

= (x

n+1

; : : : ; x

N

), and where X

N

,

X

n

and X

l

are the respective random vectors of these sequences. Let Y

N

, Y

n

and Y

l

be the corresponding output random vectors. Since P

X

N (x

N

) is not necessarily the

input distribution that achieves C

N

(�), we have

NC

N

(�) � I(X

n

X

l

;Y

n

Y

l

)

= I(X

n

;Y

n

Y

l

) + I(X

l

;Y

n

Y

l

jX

n

) (A.18)

The �rst term in (A.18) is lower bounded by

I(X

n

;Y

n

Y

l

) � I(X

n

;Y

n

) = nC

n

(�) (A.19)

since P

�

X

n

(x

n

) achieves the n

th

capacity-cost. The second term in (A.18) can be

rearranged as

I(X

l

;Y

n

Y

l

jX

n

) = I(X

l

;Y

n

Y

l

X

n

)� I(X

l

;X

n

) (A.20)
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= I(X

l

;Y

n

Y

l

X

n

) (A.21)

� I(X

l

;Y

l

): (A.22)

The second equality uses the statistical independence of X

n

and X

l

from (A.17).

Since the channel is understood to be stationary, the joint probability mass function

on X

l

and Y

l

is invariant to time shifts, and P

�

X

l

(x

l

) achieves the l

th

capacity-cost.

Therefore

I(X

l

;Y

l

) = lC

l

(�) : (A.23)

Using (A.19) and (A.23) in (A.18), we have

NC

N

(�) � nC

n

(�) + lC

l

(�) (A.24)

or

C

N

(�) �

n

N

C

n

(�) +

N � n

N

C

N�n

(�) : (A.25)

Applying the results of Lemma A.1 proves the theorem. 2
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Appendix B

Justi�cation of Blahut's Algorithm

In Blahut's published paper [8], much of the justi�cation for the capacity cost function

algorithm was cited either as a trivial modi�cation on proofs found elsewhere [12] or

as trivial modi�cation on proofs found within di�erent sections of the paper itself.

Since we are interested in applying the algorithm to channels with memory, a block

approach is required. The n

th

capacity-cost function of a block length n channel with

input alphabet of size r and output alphabet of size t is equal to the capacity-cost

function of a corresponding memoryless channel with input alphabet of size r

n

and

output alphabet of size t

n

. It is both useful and necessary that we incorporate into

this appendix a complete bottom up proof for the legitimacy of the n

th

capacity-cost

function algorithm, which bounds C

n

(�) from above by C

U

n

(�) and from below by

C

L

n

(�). Continuing with the notation introduced in Section 3.1.1, we index the input

vectors using j 2 f0; 1; : : : ; N � 1g where N = r

n

, and we index the output n-tuples

using k 2 f0; 1; : : : ;M � 1g where M = t

n

. Throughout this appendix, the units for

mutual information and capacity-cost functions are in nats.

96



De�nition B.1 An expense schedule for a channel is a vector e of length N whose

j

th

component

e

j

4

=

1

n

b (x

n

= j) =

1

n

n

X

i=1

b (x

i

) (B.1)

is called the per symbol expense of using the j

th

channel input word whose block

representation is x

n

= (x

1

; : : : ; x

n

).

De�nition B.2 The n

th

capacity at cost � is

C

n

(�) =

1

n

max

p2�

n

(�)

X

j;k

p

j

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

(B.2)

where

�

n

(�) = fp 2 P

N

:

X

j

p

j

e

j

� �g; (B.3)

and where

P

N

4

=

8

<

:

p = [p

1

; p

2

; : : : ; p

N

] 2 R

n

: p

j

� 0;

N

X

j=1

p

j

= 1

9

=

;

: (B.4)

A few obvious observations can be made with regards to these de�nitions using

the notation in Chapters 2 and 3. Equation (B.2) is a maximum and not a supremum

since �

n

(�) is compact so long as it is nonempty. Therefore, I(p;Q), in Equation (3.5),

attains its maximum on �

n

(�).

We can also assume without loss of generality that �

min

= 0 and thus C

n

(�) is

de�ned for all � � 0. This is equivalent to assuming that b

min

= 0. Were that not the

case, an appropriate scalar constant added to all letter costs would shift the graph of

C

n

(�) along the horizontal axis.

Lemma 2.1 C

n

(�) and C (�) are concave and non-decreasing functions of �, for

� � �

min

.
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Proof of Lemma 2.1 We begin by showing the results for C

n

(�). If �

0

> � then we

have �

n

(�) � �

n

(�

0

) and C

n

(�) � C

n

(�

0

), making C

n

(�) a monotonic nondecreasing

function.

We now demonstrate concavity. C

n

(�) is concave if

C

n

(��

0

+ (1� �)�

00

) � �C

n

(�

0

) + (1� �)C

n

(�

00

) ; (B.5)

where �

0

; �

00

� �

min

, and � 2 [0; 1]. Allow p

0

and p

00

to achieve (�

0

; C

n

(�

0

)) and

(�

00

; C

n

(�

00

)) respectively. If p

�

= �p

0

+ (1 � �)p

00

, then the expected per letter cost

of p

�

is

X

j

[�p

0

j

+ (1� �)p

00

j

]e

j

� ��

0

+ (1� �)�

00

: (B.6)

This implies that p

�

2 �

n

(��

0

+ (1� �)�

00

) so that C

n

(��

0

+ (1� �)�

00

) �

1

n

I(p

�

;Q).

Hence

C

n

(��

0

+ (1� �)�

00

)� �C

n

(�

0

)� (1� �)C

n

(�

00

) (B.7)

�

1

n

[I(p

�

;Q)� �I(p

0

;Q)� (1��)I(p

00

;Q)] (B.8)

=

1

n

2

4

�

X

j;k

p

0

j

Q

kjj

ln

P

j

p

0

j

Q

kjj

P

j

p

�

j

Q

kjj

+ (1��)

X

j;k

p

00

j

Q

kjj

ln

P

j

p

00

j

Q

kjj

P

j

p

�

j

Q

kjj

3

5

(B.9)

�

1

n

2

4

�

0

@

X

j;k

p

0

j

Q

kjj

�

X

j;k

p

�

j

Q

kjj

1

A

+ (1��)

0

@

X

j;k

p

00

j

Q

kjj

�

X

j;k

p

�

j

Q

kjj

1

A

3

5

(B.10)

= 0 (B.11)

where the second inequality follows from the fact that ln(x) � 1�

1

x

.

The results follow for C (�) since the limit of a sequence of non-decreasing concave

functions is itself non-decreasing and concave. 2

Corollary B.1 C

n

(�) and C (�) are continuous except at �

min

.

Proof of Corollary B.1 C

n

(�) and C (�) are monotonic and convex. 2
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Corollary B.2

lim

�!�

(n)

max

C

n

(�) = C

n

(B.12)

where C

n

is the n

th

channel capacity, �

(n)

max

=

P

j

p

�

j

e

j

, and p

�

achieves capacity.

Proof of Corollary B.2 The result follows using the de�nition of �

(n)

max

and the

continuity of C

n

(�). 2

Corollary 2.1 C

n

(�) is strictly increasing in � for �

min

� � � �

(n)

max

. Therefore,

C (�) is strictly increasing in � for �

min

� � � �

max

.

Proof of Corollary 2.1 The results follow by the concavity of C

n

(�) and C (�). 2

Corollary B.3 If p

�

achieves (�; C

n

(�)) and � � �

(n)

max

then

�(p

�

)

4

=

X

j

p

�

j

e

j

= �: (B.13)

Proof of Corollary B.3 C

n

(�) is strictly increasing if � � �

(n)

max

. 2

Theorem B.1 If p

0

and p

00

both achieve the point (�; C

n

(�)), then so will

p = �p

0

+ (1� �)p

00

; forall � 2 [0; 1]: (B.14)

Proof of Theorem B.1

�(p) =

X

j

[�p

0

j

+ (1� �)p

00

j

]e

j

= �� + (1� �)� = � (B.15)

hence, p 2 �

n

(�) and

C

n

(�) �

1

n

I(p;Q) �

1

n

[�I(p

0

;Q) + (1� �)I(p

00

;Q)] = C

n

(�) : (B.16)

2

We now develop the transition between non-parameterized and parameterized n

th

capacity-cost formulas, which allows us to perform our maximization over the entire

probability space instead of merely �

n

(�).
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Theorem B.2 For a �xed block length n and given 0 � � � �

(n)

max

, C

n

(�) can be

written in terms of a parameter s 2 [0;1) by

C

n

(�

s

) = s�

s

+ V

s

(B.17)

�

s

=

X

j

p

�

j

e

j

; (B.18)

where

V

s

= max

p2P

N

8

<

:

1

n

X

j;k

p

j

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� s

X

j

p

j

e

j

9

=

;

(B.19)

and p

�

achieves this maximum.

Proof of Theorem B.2 Clearly, any point (�

s

; C

n

(�

s

)) satisfying the above equa-

tions lies on the graph of C

n

(�). By showing that every point on C

n

(�) can be

expressed in this fashion we complete the proof.

By Lemma 2.1, C

n

(�) is concave, and di�erentiable except possibly at a countable

number of points. It also has a left and right derivative everywhere. Given a cost �,

let s be the left derivative of C

n

(�) at �. Then, using the concavity of C

n

(�), for

any �

0

C

n

(�

0

) � C

n

(�) + s(�

0

� �): (B.20)

Suppose the parameter s generates some point on C

n

(�) whose left derivative is s.

Label this point (�

s

; C

n

(�

s

)). Then

C

n

(�

s

)

= max

p2P

n

8

<

:

1

n

X

j;k

p

j

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� s

X

j

p

j

e

j

+ s�

s

9

=

;

(B.21)

� max

p2fp:

P

j

p

j

e

j

=�g

8

<

:

1

n

X

j;k

p

j

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� s

X

j

p

j

e

j

+ s�

s

9

=

;

(B.22)

= C

n

(�)� s� + s�

s

; (B.23)
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or

C

n

(�

s

) � C

n

(�) + s(�

s

� �): (B.24)

Therefore, C

n

(�

s

) = C

n

(�)+ s(�

s

��), which implies that either �

s

= � (in the case

of strict concavity) or they are connected by a line segment of slope s. 2

Corollary B.4 If C

n

(�) is strictly concave in the neighbourhood of some point, then

the value of s that generates this point generates only this point.

Corollary B.5 If s

1

and s

2

are the left and right derivatives at a point �, then s

generates (�; C

n

(�)) if and only if s 2 [s

1

; s

2

].

The above parameterization was used by Blahut to restate the problem from a

maximization over p 2 �

n

(�) to a maximization over all probability vectors. We now

derive Blahut's algorithm for a block memoryless channel of length n.

Theorem B.3 Let

J(p;Q; P ) =

1

n

X

j

X

k

p

j

Q

kjj

ln

P

jjk

p

j

� s

X

j

p

j

e

j

: (B.25)

Then

a)

C

n

(�) = s� +max

P

max

p

J(p;Q; P ); (B.26)

where

� =

X

j

p

�

j

e

j

(B.27)

and p

�

achieves the above maximum.

b) For �xed p, J(p;Q; P ) is maximized by

P

jjk

=

p

j

Q

kjj

P

j

p

j

Q

kjj

: (B.28)
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c) For �xed P , J(p;Q; P ) is maximized by

p

j

=

exp

n

P

k

Q

kjj

lnP

jjk

� nse

j

o

P

j

exp

n

P

k

Q

kjj

lnP

jjk

� nse

j

o

: (B.29)

Proof of Theorem B.3

a) We need only to demonstrate that

I(p;Q) = max

P

X

j;k

p

j

Q

kjj

ln

P

jjk

p

j

: (B.30)

Doing this requires an application of Bayes' rule to �nd a good guess P

�

for P ,

and also requires the determination of the output distribution q. Let

P

�

jjk

=

p

j

Q

kjj

P

j

p

j

Q

kjj

(B.31)

and

q

k

=

X

j

p

j

Q

kjj

(B.32)

which, if we have choosen P

�

correctly, allows us to write

I(p;Q) =

X

j;k

q

k

P

�

jjk

ln

P

�

jjk

p

j

: (B.33)

To justify our choice of P

�

, observe that

I(p;Q)�

X

j;k

p

j

Q

kjj

ln

P

jjk

p

j

=

X

j;k

q

k

P

�

jjk

ln

P

�

jjk

P

jjk

(B.34)

�

X

j;k

q

k

P

�

jjk

�

X

j;k

q

k

P

jjk

(B.35)

= 0 (B.36)

with equality i� P

jjk

= P

�

jjk

. The above inequality is an application of lnx �

1�

1

x

with equality i� x = 1.
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b) This is an obvious consequence of the equality condition in a) that was just

proved.

c) If for some k, P

jjk

= 0, then p

j

should be set equal to 0 in order to maximize J

as it is. Such a letter j can be omitted from further consideration. J(p;Q; P )

can now be maximized over p by temporarily ignoring the constraint p

j

� 0,

and using a Lagrange multiplier to constrain

X

j

p

j

= 1: (B.37)

Setting all partial derivatives equal to zero gives

@

@p

j

8

<

:

1

n

X

j;k

p

j

Q

kjj

ln

P

jjk

p

j

� s

X

j

p

j

e

j

+ �(

X

j

p

j

� 1)

9

=

;

= 0; (B.38)

or

�

1

n

ln p

j

�

1

n

+

1

n

X

k

Q

kjj

lnP

jjk

� se

j

+ � = 0: (B.39)

Hence

p

j

=

exp

�

P

k

Q

kjj

lnP

jjk

� nse

j

�

P

j

exp

�

P

k

Q

kjj

lnP

jjk

� nse

j

�

; (B.40)

where � is selected so that Equation (B.37) holds. Conveniently, p

j

is always

positive, so we need not concern ourselves with our previous simpli�cation on

the constraint p

j

� 0.

2

Theorem B.3 expresses the computation of C

n

(�) as a maximization problem over

p and P . The following corollary is stated here because it is an immediate consequence

of Theorem B.3 and because its convenient form motivates the remainder of this

appendix
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Corollary B.6 If p is a probability distribution acheiving the n

th

capacity at cost

�, then for some s 2 [0;1)

p

j

=

p

j

exp

�

P

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� nse

j

�

P

j

p

j

exp

�

P

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� nse

j

�

: (B.41)

Proof of Corollary B.6 This result follows from the conditions guaranteed by b)

and c) above. 2

The equation in Corollary B.6 suggests, under appropriate conditions, that any p

can be used on the right hand side to generate a better p on the left hand side.

Corollary B.7 As a function of the slope s, a parametric solution for the n

th

capa-

city-cost function is

C

n

(�

s

) = s�

s

+max

P

1

n

2

4

ln

X

j

exp

 

X

k

Q

kjj

lnP

jjk

� nse

j

!

3

5

(B.42)

�

s

=

X

j

e

j

exp

�

P

k

Q

kjj

lnP

�

jjk

� nse

j

�

P

j

exp

�

P

k

Q

kjj

lnP

�

jjk

� nse

j

�

; (B.43)

where P

�

jjk

achieves this maximum.

Proof of Corollary B.7 This point arises from the substitution of Theorem B.3c)

into Theorem B.3a). 2

Corollary B.8

C

n

(�) = min

s2[0;1)

max

P

2

4

s� +

1

n

ln

X

j

exp

 

X

k

Q

kjj

lnP

jjk

� nse

j

!

3

5

: (B.44)
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Proof of Corollary B.8 Let p

�

achieve C

n

(�) and let �

s

be the cost generated by

parameter s. Then

C

n

(�)�max

P

2

4

s� +

1

n

ln

X

j

exp

 

X

k

Q

kjj

lnP

jjk

� nse

j

!

3

5

(B.45)

= C

n

(�)� s� + s�

s

�max

P

2

4

s�

s

+

1

n

ln

X

j

exp

 

X

k

Q

kjj

lnP

jjk

� nse

j

!

3

5

(B.46)

= C

n

(�)� s� � C

n

(�

s

) + s�

s

(B.47)

=

1

n

X

j;k

p

�

j

Q

kjj

ln

Q

kjj

exp(�nse

j

)

P

j

p

�

j

Q

kjj

�max

p

1

n

X

j;k

p

j

Q

kjj

ln

Q

kjj

exp(�nse

j

)

P

j

p

j

Q

kjj

(B.48)

� 0: (B.49)

2

The conditions in Theorem B.4, commonly known as the Kuhn-Tucker conditions,

are necessary and su�cient for achievability of C

n

(�) by input word distribution p

[12].

Theorem B.4 The n

th

capacity is achieved at cost �

s

by a vector p 2 P

N

if and

only if there exists a number V such that

1

n

X

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� se

j

= V; p

j

6= 0 (B.50)

1

n

X

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� se

j

� V; p

j

= 0; (B.51)

(B.52)

where Q is the channel transition matrix, e is the expense vector and s parametrizes

the cost. The constant V = C

n

(�)� s�.
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Proof of Theorem B.4 We will show that these conditions are the Kuhn-Tucker

conditions, and are therefore, necessary and su�cient to prove achievability of the

capacity-cost function for a given cost �

s

. Since we wish to maximize

1

n

I(p;Q)� s

X

j

p

j

e

j

=

1

n

X

j;k

p

j

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� s

X

j

p

j

e

j

; (B.53)

we take partial derivatives with respect to the p

j

's to yield

@

@p

j

f

1

n

I(p;Q)� s

X

j

p

j

e

j

g =

1

n

X

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� se

j

: (B.54)

Since I(p;Q) is convex \ in p and since the partial derivatives are continuous, Theo-

rem 4:4:1 in [12] states that the Kuhn-Tucker conditions are valid. Therefore,

1

n

X

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� se

j

= V; p

j

6= 0 (B.55)

1

n

X

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� se

j

� V; p

j

= 0; (B.56)

(B.57)

where p achieves the capacity-cost. What remains is to �nd the appropriate constant

V . Taking the expected value of both sides with respect to p gives V = C

n

(�)� s�.

2

Corollary B.9 The original Kuhn-Tucker conditions can be rewritten in a more

illustrative form. Bringing terms to the right and taking exponents gives us

exp(�V ) exp

 

1

n

X

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� se

j

!

= 1; p

j

6= 0 (B.58)

exp(�V ) exp

 

1

n

X

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� se

j

!

� 1; p

j

= 0: (B.59)
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Theorem 3.1 Let s 2 [0;1) be given, and for any p 2 P

N

let

c

j

(p) = exp

 

1

n

X

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� se

j

!

: (B.60)

Then if p

0

is any probability vector in P

N

with all components strictly positive, the

sequence of vectors resulting from

p

r+1

j

= p

r

j

c

r

j

P

j

p

r

j

c

r

j

(B.61)

has the properties that

1

n

I(p

r

;Q)! C

n

(�

s

) ; as r !1; (B.62)

e(p

r

)! �

s

; as r !1; (B.63)

where �

s

is the average per letter cost of the point parametrized by s, and I(�; �) and

C

n

(�) are measured in nats.

Proof of Theorem 3.1 Letting

V (p) =

1

n

I(p;Q)� se(p) =

X

j

p

j

ln c

j

; (B.64)

we show that V (p

r

) is increasing in r. Let

W (p

r

) = V (p

r+1

)� V (p

r

) (B.65)

=

X

j

p

r

j

c

r

j

P

j

p

r

j

c

r

j

ln c

r+1

j

�

X

i

p

r

i

ln c

r

i

(B.66)

=

1

P

j

p

r

j

c

r

j

2

4

X

i

X

j

p

r

i

p

r

j

c

r

j

ln c

r+1

j

�

X

i

X

j

p

r

i

p

r

j

c

r

j

ln c

r

i

3

5

(B.67)

=

1

P

j

p

r

j

c

r

j

2

4

X

i

p

r

i

X

j

p

r

j

c

r

j

ln

c

r+1

j

c

r

i

3

5

(B.68)
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� 1�

X

j

p

r

j

c

r

j

c

r+1

j

(B.69)

with equality i�

c

r+1

j

c

r

i

= 1 8 i; j such that p

i

6= 0 6= p

j

: (B.70)

We now substitute the de�ning equation for c

j

to get

W (p

r

) � 1�

X

j

p

r

j

exp

 

1

n

X

k

Q

kjj

ln

P

j

p

r+1

j

Q

kjj

P

j

p

r

j

Q

kjj

!

(B.71)

= 1�

X

j

p

r

j

exp

2

4

X

k

Q

kjj

ln

 

P

j

p

r+1

j

Q

kjj

P

j

p

r

j

Q

kjj

!

1

n

3

5

(B.72)

� 1�

X

j

p

r

j

X

k

Q

kjj

exp

2

4

ln

 

P

j

p

r+1

j

Q

kjj

P

j

p

r

j

Q

kjj

!

1

n

3

5

(B.73)

= 1�

X

j

p

r

j

X

k

Q

kjj

 

P

j

p

r+1

j

Q

kjj

P

j

p

r

j

Q

kjj

!

1

n

(B.74)

� 1�

X

j

p

r

j

"

X

k

Q

kjj

P

j

p

r+1

j

Q

kjj

P

j

p

r

j

Q

kjj

#

1

n

(B.75)

� 1�

2

4

X

j

p

r

j

X

k

Q

kjj

P

j

p

r+1

j

Q

kjj

P

j

p

r

j

Q

kjj

3

5

1

n

(B.76)

= 1� (1)

1

n

= 0; (B.77)

where the inequality in (B.73) follows from Jensen's inequality, and where (B.75) and

(B.76) require the following lemma (which can be proved via Jensen's inequality).

Lemma B.1 ([12], pp. 523) Let p

i

and a

i

be non-negative numbers de�ned for

i = 1; 2; : : : ; N , and let

P

i

p

i

= 1. Then

X

i

p

i

a

�

i

�

 

X

i

p

i

a

i

!

�

; (B.78)

for � < 1 with equality if and only if the a

i

such that p

i

> 0 are constant.
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Thus V (p

r

) is increasing in r; furthermore, it is strictly increasing unless

c

r+1

j

= c

r

i

; 8 i; j such that p

i

6= 0 6= p

j

; (B.79)

which reduces to the �rst condition of Theorem B.4.

Since V (p

r

) is increasing and bounded by (C

n

(�) + s�), and since W (p

r

) =

V (p

r+1

) � V (p

r

) ! 0, then V (p

r

) converges to some number V (p

1

) � C

n

(�) + s�.

By the Bolzano-Weierstrass Theorem, a subsequence of the probability vectors fp

r

g

must also converge to some p

�

which is also the limit point of the sequence.

Now suppose that p

�

does not achieve capacity. Then by the su�ciency of the

Kuhn-Tucker conditions,

c

�

j

P

j

p

�

j

c

�

j

> 1 (B.80)

for some j, where c

�

j

= c

j

(p

�

).

Since a subsequence fp

r

k

g converges to p

�

, continuity requires that fc

r

k

j

g converges

to c

�

j

for all j. But,

p

r

j

= p

0

j

r

Y

n=0

b

n

j

(B.81)

where

b

n

j

=

c

n

j

P

j

p

n

j

c

n

j

(B.82)

and fb

n

j

g has a subsequence converging to a number greater than 1. But this means

that the sequence of partial products does not converge which contradicts our earlier

result that p

r

j

converges.

Therefore, p

�

achieves the n

th

capacity-cost function and V (p

1

) = C

n

(�) + s�.

This concludes the justi�cation for the algorithm. 2

What remains is to prove that terminating conditions exist for the algorithm.

Conditions do exist that allow us to approximate a point (�; C

n

(�)) as closely as we
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desire. The algorithm returns values measured in natural logarithms that can easily

be scaled into bits.

Theorem 3.2 Let the left derivative of a point on C

n

(�) be speci�ed by parameter

s. Assuming p is any probability vector, we let

c

j

= exp

 

1

n

X

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� se

j

!

: (B.83)

Then, for cost � =

P

j

p

j

e

j

,

a)

C

n

(�) � C

L

n

(�)

4

= s� +

X

j

p

j

ln c

j

; in nats; (B.84)

b)

C

n

(�) � C

U

n

(�)

4

= s� + lnmax

j

c

j

; in nats: (B.85)

Proof of Theorem 3.2

a) From the theorem statement, p is a probability vector yielding per letter cost

�. Therefore,

C

n

(�) �

1

n

I(p;Q) =

1

n

X

j

p

j

X

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

(B.86)

=

X

j

p

j

(ln c

j

+ se

j

) (B.87)

= s� +

X

j

p

j

ln c

j

: (B.88)

b) If p

�

achieves capacity parametrized by s, then by Corollary B.8

C

n

(�) � s� +

1

n

ln

X

j

p

�

j

exp

 

X

k

Q

kjj

ln

Q

kjj

P

j

p

j

Q

kjj

� nse

j

!

: (B.89)
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Subtracting s� + lnmax

j

c

j

from both sides gives

C

n

(�)� (s� + lnmax

j

c

j

) (B.90)

�
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j
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kjj
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� nse
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� n lnmax
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(B.91)

�

1
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kjj

ln
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kjj

P

j

p

�

j

Q

kjj
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We now use

n ln c
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so that
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= ln

X

j;k

p

j

Q

kjj

= 0; (B.96)

where the �nal inequality follows from Jensen's inequality.

2

This concludes the derivation of Blahut's algorithm for the computation of the

n

th

capacity-cost function C

n

(�) in nats for discrete channels.
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