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Abstrat

Channel optimized vetor quantization (COVQ), as a joint soure-hannel oding

sheme, has proven to perform well in ompressing a soure and making the resulting

quantizer odebook robust to hannel noise. Unfortunately like its ounterpart in the

noiseless hannel ase, the vetor quantizer (VQ), the COVQ enoding omplexity

is inherently high. Sample adaptive produt quantization was reently introdued

by Kim and Shro� to redue the omplexity of the VQ while ahieving omparable

distortions, even for moderate quantization dimensions. In this thesis, we investigate

the SAPQ for the ase of noisy memoryless hannels and employ the joint soure-

hannel approah of optimizing the quantizer design by taking into aount both

soure and hannel statistis. It is shown that, like its ounterpart in the noiseless

ase, the hannel optimized SAPQ ahieves omparable performane results to the

COVQ (within 0.2-0.8 dB), while maintaining onsiderably lower enoding omplexity

(half of that of COVQ) and storage requirements.
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Chapter 1

Introdution

1.1 Joint Soure-Channel Coding

Reently, Kim and Shro� introdued in [11, 12℄ a onstrained vetor quantizer stru-

ture alled the sample adaptive produt quantizer (SAPQ) that ahieves ompa-

rable performanes to the vetor quantizer (VQ) [25, 1, 2, 3, 4℄ while maintaining a

lower enoding omplexity (refer also to [13, 14, 23, 24, 29℄ for previous related work).

Yet, as with most data ompression shemes that solely remove soure redun-

dany, the ompressed soure tends to be more sensitive to hannel noise. Tradi-

tionally, tandem soure-hannel oding was used to ahieve reliable transmission

of information by separately designing the soure and hannel odes. Independently

designing the soure and hannel enoder is justi�ed by Shannon's Separation

priniples, [35, 36℄. Shannon's separation priniples state that with a noisy hannel

of apaity C it is possible to obtain a reonstrution signal with �delity, or dis-

tortion, D, provided that the apaity C is greater than R(D), i.e C > R(D); where

R(D) is the rate-distortion funtion.

1
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However the above result assumes the availability of unlimited oding/deoding

delay and omplexity. It is known that when there are delay and omplexity on-

straints, it is more advantageous to employ joint soure-hannel oding where

the soure and hannel odes are designed in ohesion (e.g., [5℄, [15℄{[17℄,[20, 22℄,

[30, 31, 37℄). There are three main approahes to joint soure-hannel oding: the

unequal error protetion approah, the zero-redundany hannel oding ap-

proah, and the ombined soure-hannel oding approah.

In the unequal error protetion approah, the output of the soure enoder is given

unequal protetion based on the e�et of their error in the reonstruted sequene.

Work related to this method inludes that of [28℄, where Modestino and Daut use 2D-

PCM as the soure enoder and provide seletive error ontrol protetion on those

bits whih ontribute most signi�antly to the image reonstrution. Unequal error

protetion is also used in digital wireless ommuniation systems suh as the Global

System for Mobile (GSM) ommuniations [32℄.

In zero-redundany hannel oding, hannel oding is removed and instead residual

redundany of the soure enoder output is used to ombat noise. In [33℄ residual

redundany in DPCM systems was studied and used to propose a zero-redundany

hannel oding system that signi�antly improved gains over other tandem systems

with the expense of higher omplexity at the deoder.

In this thesis, we fous on the third approah, where both hannel noise and soure

statistis are inluded in the design of the soure oders. VQ's designed in suh a

way are labeled hannel optimized vetor quantizers (COVQ's). COVQ has

reeived a onsiderable amount of attention due to its improvement in performane

over VQ in the presene of hannel noise (e.g., [16, 30℄). However, COVQ still inurs

high enoding omplexity. In this thesis, we study the design of SAPQ for noisy
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memoryless hannels, or hannel optimized SAPQ (CO-SAPQ), in order to �nd a

less omplex alternative to COVQ.

1.2 Contributions

The ontributions of this thesis are as follows:

1. The sample adaptive produt quantizer (SAPQ) design of Kim and Shro� [11℄

is generalized to inlude hannel statistis. In this way, this thesis is intended

to hannel optimize the design of the SAPQ resulting in the so alled hannel

optimized sample adaptive produt quantizer (COSAPQ). Countering [11℄ we

will design and implement two hannel optimized SAPQs, namely the COm-

SAPQ and the CO1-SAPQ.

2. This thesis inludes numerial results produed in order to ompare the perfor-

manes of the COSAPQ against the COVQ and the hannel optimized produt

quantizer (COPQ). Through the numerial results we illustrate the advantages

of using a COm-SAPQ for memoryless Gaussian soures, and a CO1-SAPQ for

Gauss-Markov (orrelated) soures.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

In Chapter 2, we study traditional quantizers suh as vetor quantizer (VQ) and

produt quantizer (PQ). Furthermore we study their hannel optimized extensions,

namely hannel optimized vetor quantizer (COVQ) and hannel optimized produt
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quantizer (COPQ). Neessary onditions for optimality, and design algorithms are

derived for eah of the quantizers.

In Chapter 3, we introdue the sample adaptive produt quantizer (SAPQ). We

study the model of SAPQ and derive its neessary onditions for optimality. The

enoding omplexity and storage requirements are then studied for SAPQ, VQ, and

PQ. These enoding omplexities and storage requirements of SAPQ, VQ and PQ

are then ompared. The advantages of SAPQ are highlighted in the numerial results

setion.

In Chapter 4, we introdue the hannel optimized sample adaptive produt quan-

tizer (COSAPQ), and study its model and neessary onditions for optimality in de-

tail. We investigate tehniques to further redue the enoding omplexity of COSAPQ

using enoding simpli�ations illustrated in [16℄. Then the enoding omplexities and

storage requirements of COSAPQ, COVQ, and COPQ are studied and ompared too,

with their performanes under various hannel onditions.

Finally we onlude the thesis in Chapter 5 with a summary of the work done and

disussion on future related work.



Chapter 2

Channel Optimized Quantization

2.1 Vetor Quantizers (VQ)

A vetor quantizer (VQ) is a lossy data ompression system based on the priniple

of blok oding. In 1980, Linde, Buzo, and Gray (LBG) [25℄ proposed a VQ design

algorithm based on two neessary onditions for quantizer optimality. In this setion

we will review the basi onepts of vetor quantization and the LBG algorithm. Note

that, throughout this thesis we will use the following notation: given any natural

number n 2 N then J

n

is de�ned as the set

J

n

= f1; : : : ; ng:

2.1.1 VQ Model

A (k,N) vetor quantizer (VQ) is a mapping from the Eulidean spae R

k

to a �nite

set C = f

i

g

N

i=1

, of N elements. The set C is referred to as the odebook and its

5
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elements 

i

are alled odevetors, hene

VQ : R

k

! C where C = f

i

g

N

i=1

� R

k

: (2.1)

A soure sample vetor x 2 R

k

is quantized, or approximated, by a (k,N) vetor

quantizer by mapping the soure sample vetor x into one of the elements in the

odebook C. The mapping of soure sample vetors x 2 R

k

into odevetors is done

using the N partition regions of R

k

formed by the (k,N) VQ. A partition region S

i

of the (k,N) VQ is de�ned as

S

i

= fx 2 R

k

: VQ(x) = 

i

g

for i = 1; : : : ; N . These partition regions fS

i

g are also referred to as enoding regions

sine we an de�ne an enoding funtion (E) as

E(x) = i if and only if x 2 S

i

for i = 1; : : : ; N . Then a orresponding deoding funtion (G) needs to be de�ned as

G(i) = 

i

for i 2 J

N

= f1; : : : ; Ng:

Hene the VQ mapping of sample vetors x 2 R

k

into odevetors an be broken

down into a omposite of funtions: the enoding funtion (E) and deoding funtion

(G) as

VQ(x) = G(E(x)) :

The enoding is governed by the �delity riteria or distortion measure used. A dis-

tortion measure is a funtion that assigns a non-negative number to any two elements

x and x̂ of R

k

d(x; x̂) � 0 where x; x̂ 2 R

k

:
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In this thesis we will only onentrate on the square-error distortion measure

d(x; x̂) = kx� x̂k

2

where x; x̂ 2 R

k

:

With a (k,N) VQ, eah sample vetor x 2 R

k

an be represented by one of the N

odevetors in odebook C, hene the rate or the resolution of a (k,N) VQ is

R =

log

2

N

k

bits/soure sample: (2.2)

2.1.2 VQ Neessary Conditions for Optimality

An optimal VQ is one that minimizes the expeted distortion subjet to a rate on-

straint.

Distortion: For a soure X with a probability density funtion p(x), the expeted

squared-error distortion inurred by a (k,N) VQ with odebook C = f

i

g

N

i=1

and

partition regions fS

i

g

N

i=1

is

D

VQ

= Efd(X; )g (2.3)

=

N

X

i=1

Efd(X; 

i

)jX 2 S

i

gP(X 2 S

i

) (2.4)

=

N

X

i=1

Z

S

i

kx� 

i

k

2

p(x)dx: (2.5)

From the expeted squared-error distortion (2.5) of the VQ, the optimal odevetors

of the odebook C = f

i

g

N

i=1

and the optimal enoding regions fS

i

g

N

i=1

need to be

determined. Unfortunately optimality onditions for a VQ are not known. The

neessary onditions for optimality are, on the other hand, known. The neessary

onditions are divided into the optimal enoding ondition and the optimal deoding

ondition.
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Optimal Enoding: To �nd the optimal enoding ondition one has to onsider

the following: Given the optimal odebook C = f

i

g

N

i=1

, how an we determine the

optimal enoding regions fS

i

g

N

i=1

, of a (k,N) VQ, so as to minimize the expeted

square-error distortion (2.5)?

Consider a (k,N) VQ with odebook C and a soure sample x 2 R

k

and

VQ(x) = y 2 C:

Then

d(x; y) = kx� yk

2

� min

y2C

kx� yk

2

:

In other words the VQ mapping that minimizes (2.5) is

VQ(x) = arg min

y2C

kx� yk

2

:

Hene the optimal enoding regions an be derived to be

S

i

= fx 2 R

k

: kx� 

i

k

2

� kx� 

j

k

2

8j 2 J

N

g (2.6)

for i = 1; : : : ; N , and thus the optimal enoding funtion is

E(x) = arg min

i2J

N

kx� 

i

k

2

: (2.7)

Optimal Deoding: Now assuming the set of enoding regions fS

i

g

N

i=1

of a (k,N)

VQ are given, then the set of optimal odevetors of the odebook C an be derived

from the distortion (2.5). This is done by separating the l

th

odevetor 

l

of the

odebook C, from the expeted squared-error distortion of the (k,N) VQ

D

VQ

=

N

X

i=1

Z

S

i

kx� 

i

k

2

p(x)dx

=

Z

S

l

kx� 

l

k

2

p(x)dx +

X

i 6=l

Z

S

i

kx� 

i

k

2

p(x)dx:
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Taking the partial derivatives with respet to 

l

and setting the result to zero, we get

0 =

Z

S

l

f�x + 

l

gp(x)dx:

Solving for 

l

we get the optimal deoding ondition



l

=

R

S

l

xp(x)dx

R

S

l

p(x)dx

: (2.8)

The optimal odevetors f

l

g

N

l=1

de�ned by (2.8) are referred to as entroids sine



l

= arg min

y2R

k

EfkX� yk

2

jX 2 S

l

g for l = 1; : : : ; N:

2.1.3 LBGVQ Design Algorithm

The obvious approah to designing a suboptimal (k,N) VQ is to iterate through

the neessary onditions of optimality until the distortion of the resulting (k,N) VQ

onverges to a value within a presribed threshold. Almost all quantizers are designed

using suh an iterative algorithm. Their di�erene lies in their starting points, or

initializations. In [25℄ Linde, Buzo, and Gray (LBG) studied the VQ and proposed

an algorithm to design a (k,N) VQ, with a partiular starting point. This LBG

algorithm will be used throughout this thesis.

(k,N) LBG-VQ algorithm

1. Set parameters k, N , the stopping threshold Æ, the splitting onstant �, the

maximum number of iterations Maxiter, and M the total number of training

vetors fx

f

g

M

f=1

. Start o� with � = 1, � = 0, and



(0)

1

=

1

M

M

X

f=1

x

f
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as the initial odevetor and

D

(0)

[1℄ =

1

kM

M

X

f=1

kx

f

� 

(0)

1

k

2

as the initial mean squared-error distortion.

2. If � � N stop otherwise split eah odevetor using



(�)

i

= 

(�)

i

(1 + �) and 

(�)

i+�

= 

(�)

i

(1� �)

for i = 1; : : : ; � , then double � = � �2 and set � = 0. Note that � is a ounter for

the iterations and � is a ounter for the number of odevetors. At this point

we have � odevetors C

(�)

= f

(�)

i

g

�

i=1

.

3. For eah f , enode x

f

into an index using (2.7) as

E

(�)

(x

f

) = argmin

i2J

�

kx� 

(�)

i

k

2

where J

�

= f1; : : : ; �g.

4. One x

f

has been enoded, put x

f

into the appropriate partition ell (2.6). So

if x

f

was enoded into E

(�)

(x

f

) = i

�

2 J

�

, then

x

f

2 S

(�)

i

�

and the resulting distortion is then

D

(�)

[x

f

; � ℄ = kx

f

� 

(�)

i

�

k

2

:

5. Repeat steps 3 and 4 for all f = 1 : : : ;M . One all the partitions have been

made, update the odebook C

(�)

using



(�)

l

=

P

x

f

:x

f

2S

(�)

l

x

f

P

x

f

:x

f

2S

(�)

l

; for l = 1; : : : ; N:



11

Finally alulate the overall distortion using

D

(�)

[� ℄ =

1

kM

M

X

f=1

D

(�)

[x

f

; � ℄:

6. Chek

D

(��1)

[� ℄�D

(�)

[� ℄

D

(�)

[� ℄

� Æ or � � Maxiter, if so then go to step 2; otherwise

� = � + 1 and go to step 3.

2.2 Channel Optimized Vetor Quantizer (COVQ)

A hannel optimized vetor quantizer (COVQ) is a quantizer that also uses blok

oding and is designed under the assumption of a noisy hannel. A COVQ is modeled

and strutured in similar ways to the vetor quantizer, with the exeption of inluding

a noisy hannel into the design, instead of assuming a noiseless hannel. In this setion

we study the (k,N) COVQ.

2.2.1 COVQ Model

Codebook: A (k,N) hannel optimized vetor quantizer (COVQ) produes a set of

N odevetors 

i

alled the odebook C

C = f

i

g

N

i=1

where 

i

2 R

k

for i = 1; : : : ; N: (2.9)

Struture: Figure 2.1 depits how a soure sample vetor x 2 R

k

is quantized

by a (k,N) COVQ into a odevetor 

j

. The COVQ is broken down into an enoder

funtion (E), index assignment funtion (b) and the deoder funtion (G). The COVQ

enoder E enodes a soure sample vetor x into an index l, that is then transmitted

over a noisy hannel using the index assignment funtion b(). At the deoder G the

reeived index j is deoded into 

j

.
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-

x

E

-

l

b()

-

b(l)

Channel

-

j

G

-



j

Figure 2.1: Model of a (k,N) COVQ.

Enoder: The enoder funtion E of the COVQ enodes the soure x into an index

l 2 J

N

= f1; : : : ; Ng. This enoding is done using the enoding regions, or partition

ells, S

l

for l = 1; : : : ; N of the COVQ, suh that

E(x) = l if and only if x 2 S

l

where

S

N

l=1

S

l

= R

k

.

Channel: After enoding the soure sample x into an index l, the index l is transmit-

ted over the noisy hannel using the index assignment funtion b, where b : J

N

! J

N

.

The index assignment funtion rearranges the indies assoiated with the enoding

regions. After applying the index assignment funtion on the enoder output of the

soure sample x, b(l) is transmitted over the hannel. The hannel onsidered in

this thesis is the simplest form of a disrete memoryless hannel, that is the binary

symmetri hannel (BSC). Using a BSC with a ross over probability �, the transition

probabilities of the hannel are, [7℄,

P(jjb(l)) = (1� �)

n�d

H

(j;b(l))

(�)

d

H

(j;b(l))

(2.10)

where d

H

(j; b(l)) is the Hamming distane between the log

2

N -bit binary odewords

of j and b(l) and n = log

2

N .

Deoder: The deoder funtion G simply deodes the reeived index j into the

appropriate index vetor 

j

G(j) = 

j

for j 2 J

N

:
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Note that the deoder funtion inverts the ombined enoder funtion and the index

assignment funtion

E : R

k

! J

N

b : J

N

! J

N

G : J

N

! C � R

k

:

Rate: Eah soure sample vetor x 2 R

k

is enoded into an index l 2 J

N

, and the

binary representation of the index l requires log

2

N bits. Hene the rate of a (k,N)

COVQ is

R =

log

2

N

k

bits/soure sample:

2.2.2 COVQ Neessary Conditions for Optimality

Distortion: Given a soure X with probability density funtion p(x), let Y be the

output of the deoder when X is quantized by a COVQ. Using the de�nition of an

enoding region S

l

S

l

= fx 2 R

k

: E(x) = lg for l = 1; : : : ; N

the expeted squared-error distortion of a (k,N) COVQ, given the set of enoding

regions fS

l

g

N

l=1

and the odebook C = f

j

g

N

j=1

, an be found to be

D

COVQ

= Efd(X;Y)g

=

N

X

l=1

N

X

j=1

P(jjb(l))Efd(X; 

j

)jX 2 S

l

gP(X 2 S

l

)

=

N

X

l=1

Z

S

l

N

X

j=1

P(jjb(l))





x� 

j





2

p(x)dx:
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Optimal Enoding: Given the optimal odebook C = f

i

g

N

i=1

, how an we deter-

mine the optimal enoding funtion so as to minimize the expeted squared-error

distortion when a soure sample x is enoded into an index l, using a (k,N) COVQ

enoder?

Let Y be the reprodution, or the output of the deoder, of a soure vetor x and

let x 2 S

l

then

Efd(x;Y)g =

N

X

j=1

P(jjb(l))





x� 

j





2

� min

l

N

X

j=1

P(jjb(l))





x� 

j





2

:

Hene the optimal enoding funtion is

E(x) = argmin

l

N

X

j=1

P(jjb(l))





x� 

j





2

:

The distortion inurred by mapping the soure x into the index l is

D

l

(x) =

N

X

j=1

P(jjb(l))





x� 

j





2

and the optimal enoding regions beome

S

i

= fx 2 R

k

: i = argmin

l

D

l

(x)g (2.11)

= fx 2 R

k

:

N

X

j=1

P(jjb(i))





x� 

j





2

�

N

X

j=1

P(jjb(l))





x� 

j





2

8 l 2 J

N

g (2.12)

for i = 1; : : : ; N .

Optimal Deoding: Now assume that the optimal enoding regions fS

i

g

N

i=1

de�ned

by (2.12) are given, then the optimal odevetors f

l

g

N

l=1

of odebook C need to be

derived. This is done by using the distortion

D

COVQ

=

N

X

i=1

Z

S

i

N

X

j=1

P(jjb(i))





x� 

j





2

p(x)dx:
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Take the partial derivative of the above with respet to 

l

by separating the l

th

ode-

vetor in the above as follows

D

COVQ

=

N

X

i=1

Z

S

i

(

P(ljb(i)) kx� 

l

k

2

+

X

j 6=l

P(jjb(i))kx� 

j

k

2

)

p(x)dx:

Setting the derivative to zero we get

0 =

N

X

i=1

Z

S

i

P(ljb(i)) f�x + 

l

gp(x)dx:

Solving for 

l

we get



l

=

P

N

i=1

R

S

i

P(ljb(i)) xp(x)dx

P

N

i=1

R

S

i

P(ljb(i)) p(x)dx

: (2.13)

The optimal odevetors f

l

g

N

l=1

de�ned by (2.13) are also referred to as entroids

sine



l

= arg min

y2R

k

EfkX� yk

2

jV = lg

for l = 1; : : : ; N and V is the random index output of the hannel.

2.2.3 COVQ Enoding Simpli�ations

In [16℄ Farvardin and Vaishampayan study the performane of the hannel optimized

vetor quantizer and illustrate how the enoding omplexity of the COVQ an be

redued. Consider the optimal enoder funtion of the (k,N) COVQ

E(x) = argmin

l

N

X

j=1

P(jjb(l))





x� 

j





2

= argmin

l

N

X

j=1

P(jjb(l))

�

kxk

2

� 2<x; 

j

>+ k

j

k

2

	

where <x; y> is the inner produt over R

k

. This funtion an be simpli�ed by intro-

duing the funtions

y() =

N

X

j=1

P (jjb())

j

and �() =

N

X

j=1

P (jjb())







j





2

: (2.14)
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Substituting the above funtions into the enoder funtion we get

E(x) = argmin

l

f�(l)� 2<x; y(l)>g:

Given the set of vetors fy()g

N

=1

and the set of salars f�()g

N

=1

, the enoding

omplexity of a (k,N) COVQ is now proportional to N .

2.2.4 COVQ Initial Codebook Design

Let X and

^

X be the input and output, respetively, of a quantizer and let  be the

output of the deoder as in Figure 2.2. For suh a setup the total end-to-end expeted

squared-error distortion an be found to be

D

total

= EkX� k

2

(2.15)

= Ek(X�

^

X +

^

X� )k

2

(2.16)

= EkX�

^

Xk

2

| {z }

�

2

q

+Ek

^

X� k

2

| {z }

�

2



+2Ef<X�

^

X;

^

X� >g

| {z }

ross-term

: (2.17)

In a related work [38℄, Totty and Clark studied the reonstrution error in waveform

transmission for salar quantizers. The authors showed that if the odevetors of

the quantizer, above, satis�ed the entroids ondition (2.8), then the ross-term in

equation (2.17) an be eliminated. A detailed proof is also outlined in [9℄ by Cheng.

Hene, assuming the entroids ondition is satis�ed, the total end-to-end distortion

an be redued to the sum of only the quantization distortion �

2

q

and the hannel

distortion �

2



.

Considering a partiular quantizer with odebook C = f

i

g

N

i=1

and enoding re-

gions fS

i

g

N

i=1

, the above quantization distortion an be formulated to

�

2

q

=

N

X

i=1

Z

S

i

kx� 

i

k

2

p(x)dx
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Figure 2.2: Model of a general quantizer and a noisy hannel.

where p(x) is the probability density funtion of X. Furthermore onsidering the

binary assignment funtion b(), where b : C! J

N

and J

N

= f1; : : : ; Ng, the hannel

distortion an be formulated to be

�

2



=

N

X

j=1

N

X

i=1

P(

i

)P(b(

j

)jb(

i

))

�

k

i

� 

j

k

2

	

where P(

i

) is the a priori probability of the odevetor 

i

; P(

i

) = P(X 2 S

i

). In view

of this analysis and as suggested by Farvardin in [15℄, we an fous on minimizing the

hannel distortion �

2



by appropriately hoosing the index assignment funtion b().

To hoose an appropriate index assignment funtion b(), we use a tehnique alled

simulated annealing.

Simulated annealing belongs to a lass of randomized algorithms, [34℄, where the

next state on�guration is generated randomly and \hill limbing" is allowed. \Hill

limbing" is a move that results in a state with higher energy or ost (in this ase

the ost is �

2



(b)) than the urrent one aepted, suh a move is used to avoid loal

minimums. In the �eld of Information Theory, simulated annealing has been also

used to �nd good hannel odes [18℄. The simulated annealing algorithm tuned for

the purpose of minimizing the hannel distortion �

2



(b)

�

2



(b) =

N

X

j=1

N

X

i=1

p(

i

)P(b(

j

)jb(

i

))

�

k

i

� 

j





2

uses states de�ned as b = (b(

1

); : : : ; b(

N

)), for a N odevetor quantizer, and a
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temperature shedule given by

T

k

= �T

k�1

where 0 < � < 1: (2.18)

The algorithm is desribed below.

Simulated Annealing Algorithm

1. Set Maxper, the maximum number of perturbations, and the e�etive temper-

ature to an initial T

0

. Randomly hoose an initial state b.

2. Choose the next state b

0

randomly and alulate the hange in 'energy' Æ�

2



=

�

2



(b

0

)� �

2



(b). If Æ�

2



(b) < 0, replae b with b

0

, and goto step 3, else replae b by

b

0

with probability expf�Æ�

2



=T

k

g and goto step 3. Note that as the temperature

dereases the probability of replaing a state b with one that has a higher ost

or energy �

2



(b), beomes lower.

3. If after Maxper number of perturbations, no energy drop ours, goto step 4.

Otherwise goto step 2.

4. Lower the e�etive temperature aording to (2.18). If the temperature T is

below a presribed freezing temperature T

f

or the system appears to be stable,

stop with b as the �nal state. Otherwise goto step 2.

Table 2.1, tabulates the set of presribed parameters used in the simulated annealing

algorithm. These parameters were suggested in [9℄, [18℄ and [15℄.

In view of the result (2.17)

D

total

= �

2

q

+ �

2



one an suggest a 'hannel optimized' tandem soure-hannel oding system where

the odebooks of a quantizer are designed using the LBG algorithm of setion 2.1.3
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T

0

10.0

T

f

0.00025

� 0.97

Maxper 200

Table 2.1: Suggested parameters for Simulated Annealing Algorithm.

and the index assignment funtion designed using the simulated annealing algorithm.

In [15℄ Farvardin illustrates the advantages of using an initial odebook thus designed

as initial points to the design of a COVQ. Suh a method of initializing the design of

a COVQ was shown to be superior, in ahieving lower distortions, than designs that

used the splitting method or random initialization method.

2.2.5 Design Algorithm of a (k,N) COVQ

Now that the initial odebook C

(0)

and index assignment funtion b() an be found

using the analysis of Setion 2.2.4, the (k,N) COVQ an be designed using a simple

algorithm that iterates through the neessary onditions (2.12) and (2.13).

(k,N) COVQ Algorithm

1. Set parameters k, N , the design BSC error rossover probability �

d

, the stopping

threshold Æ, the maximum number of iterations Maxiter, and M the total

number of training vetors fx

f

g

M

f=1

. Initialize � = 0, and initialize the odebook

C

(0)

= f

(0)

i

g

N

i=1

and index assignment funtion b(), from Setion 2.2.4.

2. Calulate the N vetors fy

(�)

()g

N

=1

and the N salars f�

(�)

()g

N

=1

using ode-

book C

(�)

and funtions (2.14).



20

3. For eah f , enode x

f

using

E

(�)

(x

f

) = arg min

i2J

N

�

�

(�)

(i)� 2<x

f

; y

(�)

(i)>

	

where J

N

= f1; : : : ; Ng.

4. Put x

f

into the appropriate enoding regions, (2.12). So if E

(�)

(x

f

) = i

�

then

x

f

2 S

(�)

i

�

with the distortion

D

(�)

(x

f

) =

N

X

l=1

P(ljb(i

�

))







x

f

� 

(�)

l







2

where the transition probabilities are alulated using (2.10) and �

d

.

5. Repeat steps 3 and 4 for f = 1; : : : ;M . Then update the odebook to C

(�+1)

using



(�+1)

l

=

P

N

i=1

P(ljb(i))

P

x

f

:x

f

2S

(�)

i

x

f

P

N

i=1

P(ljb(i))

P

x

f

:x

f

2S

(�)

i

:

Finally alulate the overall distortion

D

(�)

=

1

kM

M

X

f=1

D

(�)

(x

f

):

6. Chek

D

(��1)

�D

(�)

D

(�)

� Æ or � � Maxiter, if so then stop, otherwise � = �+ 1 and

go to step 2.

2.3 Produt Quantizer (PQ)

The sample adaptive produt quantizer (SAPQ), to be desribed in Chapter 3, is

based on the produt quantizer (PQ). The PQ is an alternative to the vetor quan-

tizer (VQ), that ahieves a lower enoding omplexity at the expense of a loss in
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m
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Figure 2.3: Model of a (k,m,N) PQ.

performane (lower signal-to-distortion ratio). In this setion the (k,m,N) PQ will

be desribed and studied.

2.3.1 PQ Model

Codebook: The odebook C of a (k,m,N) produt quantizer (PQ) is a produt of

a set of m odebooks fC

j

g

m

j=1

. Eah odebook C

j

is a set of N odevetors f

[j℄

i

g

N

i=1

and a subset of R

k

suh that

C = C

1

� : : :� C

m

where C

j

= f

[j℄

i

g

N

i=1

and 

[j℄

i

2 R

k

: (2.19)

Struture: Figure 2.3 depits how a soure sample vetor x = (x

1

; : : : ; x

m

), where

x

s

2 R

k

for s = 1; : : : ; m, is quantized by a (k,m,N) PQ. As depited the PQ is

broken down into a produt enoder (PE), and a deoder (G).

Enoder: A (k,m,N) PQ enoder is referened here as a produt enoder (PE). A

produt enoder is a vetor funtion that enodes a soure sample x = (x

1

; : : : ; x

m

)
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into a vetor of indexes I. The onstituent funtion of the produt enoder are

enoder funtions (E

s

, for s = 1; : : : ; m) suh that

PE(x) = (E

1

(x

1

); : : : ;E

m

(x

m

)) = I where E

s

(x

s

) = i

s

2 J

N

= f1; : : : ; Ng

and I = (i

1

; : : : ; i

m

) 2 J

m

N

:

Deoder: At the deoder the index vetor I = (i

1

; : : : ; i

m

) produed by the produt

enoder (PE) is deoded into odevetors. The deoding funtion is also a vetor

funtion (G) that has m omponent funtions fg

s

g

m

s=1

, suh that

G(I) = (g

1

(i

1

); : : : ; g

m

(i

m

)) = (

[1℄

i

1

; : : : ; 

[m℄

i

m

):

Note that enoder funtion E

s

and deoder funtion g

s

are related by odebook C

s

,

for s = 1; : : : ; m. In other words a (k,m,N) PQ an be thought of as a row of m

(k,N) vetor quantizers. Eah one of the m (k,N) VQ quantizes its orresponding

omponent soure sample x

s

for s = 1; : : : ; m of x.

Rate: For a soure sample vetor x = (x

1

; : : : ; x

m

), where x

s

2 R

k

for s = 1; : : : ; m,

the produt enoder funtion (PE) of the (k,m,N) PQ produes an index vetor

I = (i

1

; : : : ; i

m

), where i

s

2 J

N

for s = 1; : : : ; m, when it enodes x. Hene there are

m indexes i

s

that are produed for every km soure samples x = (x

1

; : : : ; x

m

). Eah

index i

s

an be represented by a log

2

N -bit odeword. Hene the rate of a (k,m,N)

PQ is

R =

m log

2

N

km

=

log

2

N

k

bits/soure sample.

2.3.2 PQ Neessary Conditions for Optimality

Distortion: For a (k,m,N) PQ, the partition ells or enoding regions, are de�ned

as

S

[j℄

i

= fx 2 R

k

: E

j

(x) = ig (2.20)
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where i = 1; : : : ; N , j = 1; : : : ; m and E

j

is the j

th

enoding funtion of the (k,m,N)

PQ. With the enoding regions de�ned the mean squared distortion of the (k,m,N)

PQ an be found. Let  be the output of the deoder when a soureX = (X

1

; : : : ;X

m

),

with probability density funtion p(x) = p(x

1

; : : : ; x

m

), as input. Then the mean

squared distortion is

D

PQ

= Efd(X; )g

=

m

X

t=1

N

X

i

t

=1

P(X

t

2 S

[t℄

i

t

)EfkX

t

� 

[t℄

i

t

k

2

jX

t

2 S

[t℄

i

t

g

=

m

X

t=1

N

X

i

t

=1

Z

S

[t℄

i

t

kx� 

[t℄

i

t

k

2

p

t

(x)dx

where for t = 1; : : : ; m, p

t

(x) is the marginal probability density funtion of X

t

,

p

t

(x) =

Z

x

1

2R

k

: : :

Z

x

m

2R

k

| {z }

no x

t

p(x)dx:

Optimal Enoding: Let y be the output of the deoder when soure sample x =

(x

1

; : : : ; x

m

) is quantized by a (k,m,N) PQ, and let x

t

2 S

[t℄

z

t

, for t = 1; : : : ; m and

z

t

2 J

N

, then

d(x;y) =

m

X

t=1

kx

t

� 

[t℄

z

t

k

2

� min

Z=(z

1

;:::;z

m

)2J

m

N

m

X

t=1

kx

t

� 

[t℄

z

t

k

2

:

Hene the optimal produt enoding funtion (PE) of a (k,m,N) PQ is

PE(x) = arg min

Z=(z

1

;:::;z

m

)2J

m

N

m

X

t=1

kx

t

� 

[t℄

z

t

k

2

and naturally the optimal omponent enoding funtion is

E

t

(x) = arg min

z2J

N

kx� 

[t℄

z

k

2

(2.21)
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for t = 1; : : : ; m. From the above formulation of the optimal enoding funtions,

and from the de�nition of the enoding regions of a (k,m,N) PQ (2.20), the optimal

enoding regions an be found to be

S

[j℄

i

= fx 2 R

k

: kx� 

[j℄

i

k

2

� kx� 

[j℄

z

k

2

8z 2 J

N

g (2.22)

for i = 1; : : : ; N and j = 1; : : : ; m.

Optimal Deoding: To �nd the optimal set of odevetors f

[j℄

i

g, the expeted mean

squared distortion of the (k,m,N) PQ is manipulated in order to �lter out odevetor



[j℄

l

, the l

th

odevetor of odebook C

j

where l 2 J

N

and j 2 J

m

, as follows

D

PQ

=

m

X

t=1

N

X

i

t

=1

Z

S

[t℄

i

t

kx� 

[t℄

i

t

k

2

p

t

(x)dx

=

N

X

i=1

Z

S

[j℄

i

kx� 

[j℄

i

k

2

p

j

(x)dx +

X

t6=j

N

X

i

t

=1

Z

S

[t℄

i

t

kx� 

[t℄

i

t

k

2

p

t

(x)dx

where fS

[t℄

i

g is given and de�ned as in (2.22), for i = 1; : : : ; N and t = 1; : : : ; m.

Taking the partial derivative of the above with respet to 

[j℄

l

, and setting the resultant

derivative to zero we get

0 =

Z

S

[j℄

l

f�x + 

[j℄

l

gp

j

(x)dx:

Solving for 

[j℄

l

we get



[j℄

l

=

R

S

[j℄

l

x p

j

(x)dx

R

S

[j℄

l

p

j

(x)dx

: (2.23)

Note that this is the same as �nding the optimal l

th

odevetor of the j

th

(k,N) vetor

quantizer, (2.24).
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2.3.3 Design Algorithm of (k,m,N) PQ

As desribed by Gersho and Gray in [19℄, the (k,m,N) PQ an be thought of a

ombination of m parallel and independent (k,N) vetor quantizers, suh that

PQ(x) = (VQ

1

(x

1

); : : : ;VQ

m

(x

m

)) (2.24)

where x = (x

1

; : : : ; x

m

), and x

j

2 R

k

and VQ

j

is a (k,N) VQ, for j = 1; : : : ; m. With

this in mind, we an design a (k,m,N) PQ using an algorithm that designs eah VQ

j

,

or odebook C

j

, using the LBG-VQ algorithm of Setion 2.1.3 for j = 1; : : : ; m.

(k,m,N) PQ Algorithm

1. Set parameters k, m, N , the stopping threshold Æ, the splitting onstant �, the

maximum number of iterations Maxiter, and M the total number of training

vetors fx

f

= (x

1;f

; : : : ; x

m;f

)g

M

f=1

. Initialize j = 1, this is the ounter that

keeps trak of the m odebooks.

2. Start o� with � = 1, � = 0, and



[j℄;(0)

1

=

1

M

M

X

f=1

x

f

as the initial odevetor of odebook C

j

and

D

(0)

j

[1℄ =

1

kM

M

X

f=1

kx

j;f

� 

[j℄;(0)

1

k

2

as the initial mean squared-error distortion for the vetor quantizer VQ

j

.

3. If � � N goto step 8 otherwise double the odevetors in odebook C

j

using



[j℄;(�)

i

= 

[j℄;(�)

i

(1 + �) and 

[j℄;(�)

�+i

= 

[j℄;(�)

i

(1� �)
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for i = 1; : : : ; � then double � = � � 2 and set � = 0. Note that � is a ounter

for the iterations and � is a ounter for the number of odevetors in odebook

C

j

. At this point we have � odevetors C

(�)

j

= f

[j℄;(�)

i

g

�

i=1

.

4. For eah f , enode x

j;f

into an index using (2.21) as

E

(�)

j

(x

j;f

) = argmin

i2J

�

kx

j;f

� 

[j℄;(�)

i

k

2

where J

�

= f1; : : : ; �g.

5. One x

j;f

has been enoded, put x

j;f

into the appropriate partition ells (2.22).

So if x

j;f

was enoded into E

(�)

j

(x

j;f

) = i

�

, then

x

f

2 S

[j℄;(�)

i

�

and the resulting distortion is then

D

(�)

j

[x

j;f

; � ℄ = kx

j;f

� 

[j℄;(�)

i

�

k

2

:

6. Repeat steps 4 and 5 for all f = 1 : : : ;M . One all the partitions have been

made, update the odebook C

(�)

�

using



[j℄;(�)

l

=

P

x

j;f

:x

j;f

2S

[j℄;(�)

l

x

j;f

P

x

j;f

:x

j;f

2S

[j℄;(�)

l

:

Finally alulate the overall distortion of VQ

j

using

D

(�)

j

[� ℄ =

1

kM

M

X

f=1

D

(�)

j

[x

j;f

; � ℄:

7. Chek

D

(��1)

j

[� ℄�D

(�)

j

[� ℄

D

(�)

j

[� ℄

� Æ or � � Maxiter, if so then go to step 3 otherwise

inrement � = �+ 1 and go to step 4.
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8. If j � m then alulate the overall distortion as

D

overall

=

1

m

m

X

j=1

D

(Maxiter)

j

[N ℄

and stop, otherwise inrement j = j + 1 and goto step 2.

2.4 Channel Optimized Produt Quantizer (COPQ)

Just as the produt quantizer (PQ), is a building blok for the sample adaptive

produt quantizer (SAPQ), the hannel optimized produt quantizer (COPQ) serves

as a building blok for the hannel optimized sample adaptive produt quantizer

(COSAPQ). In this setion the (k,m,N) COPQ will be desribed and studied.

2.4.1 COPQ Model

Codebook: The odebook C of a (k,m,N) hannel optimized produt quantizer

(COPQ) is a produt of a set of m odebooks fC

j

g

m

j=1

. Eah onstituent odebook

C

j

is a set of N odevetors f

[j℄

i

g

N

i=1

and a subset of R

k

suh that

C = C

1

� : : :� C

m

where C

j

= f

[j℄

i

g

N

i=1

and 

[j℄

i

2 R

k

: (2.25)

Struture: Figure 2.4 depits how a soure sample vetor x = (x

1

; : : : ; x

m

) is quan-

tized by a (k,m,N) COPQ. Like the COVQ the COPQ inludes the noise statistis

and hene the hannel is inluded in the model of the COPQ.

Enoder: A (k,m,N) COPQ takes in a soure sample x = (x

1

; : : : ; x

m

) and enodes

it into a vetor of indexes I = (i

1

; : : : ; i

m

) using a produt enoder funtion (PE).

The produt enoder funtion (PE) is a vetor of enoding funtions fE

s

g

m

s=1

suh

that
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l

m

)

Figure 2.4: Model of a (k,m,N) COPQ.

PE(x) = (E

1

(x

1

); : : : ;E

m

(x

m

)) = I where E

s

(x

s

) = i

s

2 J

N

= f1; : : : ; Ng

and I = (i

1

; : : : ; i

m

) 2 J

m

N

:

Note that although the produt enoder (PE) of a (k,m,N) COPQ shares the same

name and desription as that of a (k,m,N) PQ, their formulations are di�erent. The

PE of the COPQ takes into onsideration the hannel noise whereas the PE of the

PQ does not. However both are a mapping from the Eulidean spae R

km

to the set

J

m

N

= f1; : : : ; Ng

m

, PE : R

km

! J

m

N

.

Channel: Transmission of the index vetor I = (i

1

; : : : ; i

m

) over a noisy hannel is

realized by onverting the indexes i

1

; : : : ; i

m

, of index vetor I, where i

s

2 J

N

, into

log

2

N -bit odewords and transmitting eah binary odeword one at a time. Thus

the hannel is used independently by eah transmitted index i

1

; : : : ; i

m

. Hene the

probability of reeiving L = (l

1

; : : : ; l

m

) given that I was transmitted is

P(LjI) =

m

Y

s=1

P(l

s

ji

s

): (2.26)

In this thesis the natural binary odeword (NBC) assignment will be used for the
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COPQ. So eah of the indexes i

1

; : : : ; i

m

, of index vetor I, are enoded into their

n-bit binary odeword equivalent, where n = log

2

N . These odewords are then

transmitted over a BSC with ross over probability �, suh that the hannel transition

probabilities resolve to

P(l

s

ji

s

) = (1� �)

n�d

H

(l

s

;i

s

)

(�)

d

H

(l

s

;i

s

)

for s = 1; : : : ; m (2.27)

where d

H

(l

s

; i

s

) is the Hamming distane between the n-bit binary odewords of i

s

and l

s

.

Deoder: At the deoder the index vetor L = (l

1

; : : : ; l

m

), reeived from the hannel

output, is deoded into odevetors. The deoding funtion is also a vetor funtion

(G) that has m omponent funtions fg

s

g

m

s=1

, suh that

G(I) = (g

1

(l

1

); : : : ; g

m

(l

m

)) = (

[1℄

l

1

; : : : ; 

[m℄

l

m

):

Just as the PQ, a (k,m,N) COPQ an be thought of as row of m (k,N) COVQ, where

eah (k,N) COVQ quantizes a omponent x

s

of x = (x

1

; : : : ; x

m

).

Rate: Like the (k,m,N) PQ, the rate of a (k,m,N) COPQ an be derived to be

R =

log

2

N

k

bits/soure sample.

2.4.2 COPQ Neessary Conditions for Optimality

Distortion: The mean squared distortion of a (k,m,N) COPQ an be derived by

using the de�nition of a partition ell or enoding region

S

[j℄

i

= fx 2 R

k

: E

j

(x) = ig (2.28)

for i = 1; : : : ; N and j = 1; : : : ; m. Let  be the output of a (k,m,N) COPQ for

a soure X = (X

1

; : : : ;X

m

) with probability density funtion p(x) = p(x

1

; : : : ; x

m

),
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then

D

COPQ

= Efd(X; )g

=

m

X

t=1

N

X

i

t

=1

P(X

t

2 S

[t℄

i

t

)Ef

N

X

l

t

=1

P(l

t

ji

t

)







X

t

� 

[t℄

l

t







2

jX

t

2 S

[t℄

i

t

g

=

m

X

t=1

N

X

i

t

=1

Z

S

[t℄

i

t

N

X

l

t

=1

P(l

t

ji

t

)







x� 

[t℄

l

t







2

p

t

(x)dx

where for t = 1; : : : ; m,p

t

(x) is the marginal probability density funtion of X

t

,

p

t

(x) =

Z

x

1

2R

k

: : :

Z

x

m

2R

k

| {z }

no x

t

p(x)dx:

Optimal Enoding: Again let Y be the output of the deoder when the soure

x = (x

1

; : : : ; x

m

) is quantized by a (k,m,N) COPQ. Let x

t

2 S

[t℄

z

t

for t = 1; : : : ; m then

Efd(x;Y)g =

m

X

t=1

N

X

l

t

=1

P(l

t

jz

t

)







x

t

� 

[t℄

l

t







2

� min

(z

1

;:::;z

m

)2J

m

N

m

X

t=1

N

X

l

t

=1

P(l

t

jz

t

)







x

t

� 

[t℄

l

t







2

:

Hene the optimal produt enoder funtion (PE) is

PE(x) = arg min

(z

1

;:::;z

m

)2J

m

N

m

X

t=1

N

X

l

t

=1

P(l

t

jz

t

)







x� 

[t℄

l

t







2

and the optimal omponent enoding funtion is

E

t

(x) = arg min

z2J

N

N

X

l=1

P(ljz)







x� 

[t℄

l







2

:

Thus the optimal enoding regions are

S

[j℄

i

= fx 2 R

k

:

N

X

l=1

P(lji)







x� 

[j℄

l







2

�

N

X

l=1

P(ljz)







x� 

[j℄

l







2

8z 2 J

N

g (2.29)
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for i = 1; : : : ; N and j = 1; : : : ; m.

Optimal Deoding: Separate the i

th

odevetor 

[j℄

i

of the j

th

odebook C

j

, from

the expeted squared-error distortion of a (k,m,N) COPQ as follows

D

COPQ

=

m

X

t=1

N

X

z

t

=1

Z

S

[t℄

z

t

N

X

l

t

=1

P(l

t

jz

t

)







x� 

[t℄

l

t







2

p

t

(x)dx

=

N

X

z=1

Z

S

[j℄

z

N

X

l=1

P(ljz)







x� 

[j℄

l







2

p

j

(x)dx

+

X

t6=j

N

X

z

t

=1

Z

S

[t℄

z

t

N

X

l

t

=1

P(l

t

jz

t

)







x� 

[t℄

l

t







2

p

t

(x)dx

and take the derivative of the above with respet to 

[j℄

i

. Setting the resultant to zero

we get

0 =

N

X

z=1

Z

S

[j℄

z

P(ijz)

n

�x + 

[j℄

i

o

p

j

(x)dx:

Solving for 

[j℄

i

we get



[j℄

i

=

P

N

z=1

P(ijz)

R

S

[j℄

z

x p

j

(x)dx

P

N

z=1

P(ijz)

R

S

[j℄

z

p

j

(x)dx

:

2.4.3 COPQ Enoding Simpli�ations

As in the theme of setion 2.2.3, the enoding funtion

E

t

(x) = arg min

z2J

N

N

X

l=1

P(ljz)







x� 

[t℄

l







2

= arg min

z2J

N

N

X

l=1

P(ljz)fkxk

2

� 2<x; 

[t℄

l

>+ k

[t℄

l

k

2

g

for t = 1; : : : ; m, of a (k,m,N) COPQ an be redued by using the funtions

y

j

() =

N

X

l=1

P (lj)

[j℄

l

and �

j

() =

N

X

l=1

P (lj)









[j℄

l







2

(2.30)
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for j = 1; : : : ; m. The resulting simpli�ed enoding funtion with a redued omplex-

ity is then

E

t

(x) = arg min

z2J

N

f�

t

(z)� 2<x; y

t

(z)>g:

2.4.4 Design Algorithm of a (k,m,N) COPQ

Just as in the ase of the (k,m,N) PQ, the (k,m,N) COPQ an be thought of as a

ombination of m (k,N) hannel optimized vetor quantizers

COPQ(x) = (COVQ

1

(x

1

); : : : ;COVQ

m

(x

m

))

where x = (x

1

; : : : ; x

m

), and x

j

2 R

k

and COVQ

j

is a (k,N) COVQ, for j = 1; : : : ; m.

Hene a (k,m,N) COPQ an be designed in the same way as a (k,m,N) PQ, where

the individual (k,N) hannel optimized vetor quantizers are designed independently,

using the algorithm of Setion 2.2.5. The initial odebooks used in this algorithm is

the odebook of a (k,m,N) PQ designed using the algorithm in Setion 2.3.3.



Chapter 3

Sample Adaptive Produt

Quantizer

The sample adaptive produt quantizer (SAPQ) [11℄ is based on adaptive quantiza-

tion. For every soure sample vetor, the SAPQ employs a odebook from a previously

designed set of 2

�

odebooks, available at both the enoder and the deoder. The

2

�

odebooks are atually odebooks of 2

�

produt quantizers. Note, the odebook

used an hange, or adapt, for every soure sample vetor. So when transmitting

the indexes, representing the odevetors or reonstrution vetors, the enoder must

also transmit an additional index indiating the odebook used for that soure sample

vetor. This hapter desribes the SAPQ, and through numerial results we illustrate

the advantages of the SAPQ.

33
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3.1 m-SAPQ Model

Codebook: A (k,m,N ,�) m-SAPQ is onstruted from a set of 2

�

odebooks fC

j

g

2

�

j=1

.

Eah odebook C

j

is a produt of m odebooks fC

s;j

g

m

s=1

that are subsets of R

k

with

ardinalityN . In other words, eah odebook C

s;j

ontains N odevetors 

[s;j℄

i

, where

i = 1; : : : ; N , that belong to R

k

C

j

= C

1;j

� : : :�C

m;j

suh that C

s;j

= f

[s;j℄

i

g

N

i=1

and 

[s;j℄

i

2 R

k

: (3.1)

For I 2 J

m

N

and j 2 J

2

�

, de�ne 

[j℄

I

to be a vetor of odevetors 

[s;j℄

i

s

that are ordered

as follows



[j℄

I

= (

[1;j℄

i

1

; : : : ; 

[m;j℄

i

m

) where I = (i

1

; : : : ; i

m

) and i

s

2 J

N

= 1; : : : ; N for s = 1; : : : ; m

Note that 

[j℄

I

2 C

j

, and 

[j℄

I

is referred to as a produt odevetor.

Struture: Figure 3.1 depits how a soure vetor x = (x

1

; : : : ; x

m

), where x

s

2 R

k

for s = 1; : : : ; m is quantized by a (k,m,N ,�) m-SAPQ. The m-SAPQ enoder enodes

the soure sample x into an index vetor I 2 J

m

N

and an overhead index j

�

2 J

2

�

.

Then the deoder deodes the index vetor I and overhead index j

�

into a produt

odevetor 

[j

�

℄

I

.

Enoder: At the m-SAPQ enoder the enoding of a soure vetor x is proessed

by a set of 2

�

vetor funtions alled produt enoders (PE), fPE

j

g

2

�

j=1

. Eah vetor

funtion PE

j

takes in a opy of the soure vetor x and enodes it using the produt

odebook C

j

. Furthermore eah PE

j

has m omponent enoding funtions, fE

s;j

g

m

s=1

,

suh that eah funtion E

s;j

enodes subvetor x

s

into an index i

s;j

using odebook

C

s;j

, for s = 1; : : : ; m. The onatenation of all the indexes i

s;j

for s = 1; : : : ; m,

forms the index vetor I

j

whih is the output of PE

j

PE

j

(x) = (E

1;j

(x

1

); : : : ;E

m;j

(x

m

)) = I

j

where E

s;j

(x

s

) = i

s;j

2 J

N
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and I

j

= (i

1;j

; : : : ; i

m;j

) 2 J

m

N

:

Hene the m-SAPQ enoder internally produes 2

�

index vetors fI

j

g

2

�

j=1

. However

only one index vetor I 2 fI

j

g

2

�

j=1

, is hosen to be transmitted to the deoder along

with the index j

�

representing PE

j

�

(the PE that enoded x into I). Details of

the enoding proess and the hoosing of index vetor I and overhead index j

�

are

desribed in Setion 3.2.2.

-

x

m-SAPQ Enoder

-

x

-

x
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1

-
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Figure 3.1: Figure of a (k,m,N ,�) m-SAPQ and the j

th

Produt Enoder PE

j

, where,

j = 1; : : : ; 2

�

, x = (x

1

; : : : ; x

m

) 2 R

km

, and I = (i

1

; : : : ; i

m

) 2 J

m

N

.
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Deoder: The deoder onsists of 2

�

vetor deoding funtions fG

j

g

2

�

j=1

. The vetor

deoding funtion G

j

onsists of m omponent deoding funtions, fg

s;j

g

m

s=1

. Eah

deoding funtion g

s;j

deodes an index i into the odevetor 

[s;j℄

i

( 

[s;j℄

i

2 C

s;j

). At

the deoder the hoie of whih vetor deoding funtion G

j

, out of the set fG

j

g

2

�

j=1

,

is determined by the reeived overhead index. When index vetor I and index j

�

are

reeived, the deoder deodes index vetor I using the vetor deoding funtion G

j

�

Deoder(I; j

�

) = G

j

�

(I) = (g

1;j

�

(i

1

); : : : ; g

m;j

�

(i

m

)) = (

[1;j

�

℄

i

1

; : : : ; 

[m;j

�

℄

i

m

) = 

[j

�

℄

I

:

Naturally the deoding funtions invert the enoding funtions

PE

j

: R

km

! J

m

N

and G

j

: J

m

N

! C

j

� R

km

E

s;j

: R

k

! J

N

and g

s;j

: J

N

! C

s;j

� R

k

for j = 1; : : : ; 2

�

and s = 1; : : : ; m.

Rate: The soure input vetor x = (x

1

; : : : ; x

m

), where x

s

2 R

k

for s = 1; : : : ; m,

has a total of km soure samples. The m-SAPQ enoder output for soure vetor x

is I = (i

1

; : : : ; i

m

) and j

�

. So eah i

s

2 J

N

, for s = 1; : : : ; m, an be represented by

a log

2

N -bit odeword and j

�

2 J

2

�

an be represented by a �-bit odeword. In total

there are m log

2

N + � bits needed to represent x. Hene the rate of a m-SAPQ is

R =

log

2

N

k

+

�

km

bits/soure sample: (3.2)

3.2 m-SAPQ Neessary Conditions for Optimality

3.2.1 m-SAPQ Distortion

To �nd neessary onditions for optimality of a (k,m,N ,�) m-SAPQ, the expeted

mean square distortion of the (k,m,N ,�) m-SAPQ needs to be alulated. To simplify
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the notation we de�ne the following terms for s = 1; : : : ; m

v

s

(I) = the s

th

index omponent of I = i

s

; v

s

: J

m

N

! J

N

(3.3)

u

s

(x) = the s

th

vetor omponent of x = x

s

; u

s

: R

km

! R

k

: (3.4)

Furthermore let S

[j℄

Z

be the enoding region for index vetor Z and index j of a

(k,m,N ,�) m-SAPQ, i.e,

S

[j℄

Z

= fx 2 R

km

: m-SAPQ Enoder(x) = (Z; j)g (3.5)

where Z 2 J

m

N

, and j 2 J

2

�

. In other words S

[j℄

Z

is the set of soure vetors x suh

that x is enoded into index vetor Z and overhead index j. In total there are 2

�

N

m

enoding regions S

[j℄

Z

.

Let  represent the reprodution, or the output of the deoder, of the m-SAPQ for

soure X with a probability density funtion p(x). Given the 2

�

N

m

enoding regions

of a m-SAPQ S

[j℄

Z

, and the odebooks fC

j

g

2

�

j=1

, the expeted mean square distortion

of a (k,m,N ,�) m-SAPQ an be found to be

D

m-SAPQ

= Efd(X; )g (3.6)

=

2

�

X

j=1

X

Z2J

m

N

Efd(X; 

[j℄

Z

)jX 2 S

[j℄

Z

gP(X 2 S

[j℄

Z

) (3.7)

=

2

�

X

j=1

X

Z2J

m

N

Z

S

[j℄

Z

m

X

s=1

ku

s

(x)� 

[s;j℄

v

s

(Z)

k

2

p(x)dx: (3.8)

Note that x and  are vetors of subvetors with their distortion de�ned to be the

sum of the squared distane between their orresponding subvetors. So if x 2 S

[j℄

Z

then

d(x; 

[j℄

Z

) =

m

X

s=1

ku

s

(x)� 

[s;j℄

v

s

(Z)

k

2

:
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3.2.2 m-SAPQ Optimal Enoding

We next onsider the following: given produt odebooks fC

j

g

2

�

j=1

, how an we de-

termine the optimal enoding funtion so as to minimize the mean square distortion

when a soure sample x is enoded into an index vetor I and index j

�

, using a

(k,m,N ,�) m-SAPQ enoder?

Let  be the reprodution, or output of the m-SAPQ deoder, of x and let x 2 S

[j℄

Z

,

then

d(x; ) =

m

X

s=1

ku

s

(x)� 

[s;j℄

v

s

(Z)

k

2

� min

Z2J

m

N

m

X

s=1

ku

s

(x)� 

[s;j℄

v

s

(Z)

k

2

� min

j

min

Z2J

m

N

m

X

s=1

ku

s

(x)� 

[s;j℄

v

s

(Z)

k

2

:

Hene there are two optimizations to be implemented. As a onsequene of the

struture of a m-SAPQ, the �rst optimization is done by eah produt enoder,for

j = 1; : : : ; 2

�

PE

j

PE

j

(x) = arg min

Z2J

m

N

m

X

s=1

ku

s

(x)� 

[s;j℄

v

s

(Z)

k

2

= I

j

(3.9)

= (arg min

z

1

2J

N

ku

1

(x)� 

[1;j℄

z

1

k

2

; : : : ; arg min

z

m

2J

N

ku

m

(x)� 

[m;j℄

z

m

k

2

) (3.10)

where Z = (z

1

; : : : ; z

m

), and eah onstituent enoder E

s;j

of PE

j

produes the s

th

index omponent of I

j

E

s;j

(u

s

(x)) = arg min

z

s

2J

N

ku

s

(x)� 

[s;j℄

z

s

k

2

= v

s

(I

j

) (3.11)

independently of eah other. The independene in enoding is again a onsequene of

the struture of the m-SAPQ. The mean squared distortion inurred by eah produt
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enoder PE

j

, and assoiated to I

j

, is

D

j

(x) = min

Z2J

m

N

m

X

s=1

ku

s

(x)� 

[s;j℄

v

s

(Z)

k

2

: (3.12)

Within the enoder we have 2

�

index vetors fPE

j

(x) = I

j

g

2

�

j=1

eah with an asso-

iated distortion of f(I

j

;D

j

(x))g

2

�

j=1

, for j = 1; : : : ; 2

�

. Out of the 2

�

index vetors

fI

j

g

2

�

j=1

, the index vetor I with the minimum distortion D

j

�

(x) = min

j

D

j

, is ho-

sen to be transmitted to the deoder. The PE that produed the index vetor I is

distinguished by transmitting the overhead index vetor j

�

along with I. Thus the

optimal enoding regions are given by

S

[j

�

℄

I

=

(

x 2 R

km

: j

�

= arg min

j2J

2

�

D

j

(x) and I = I

j

�

= PE

j

�

(x)

)

: (3.13)

With I and j

�

de�ned above, the optimal distortion given the odebooks fC

j

g

2

�

j=1

is

D

m-SAPQ

= Efmin

j

D

j

(x)g =

2

�

X

j

�

=1

X

I2J

m

N

Z

S

[j

�

℄

I

m

X

s=1

ku

s

(x)� 

[s;j

�

℄

v

s

(I)

k

2

p(x)dx: (3.14)

3.2.3 m-SAPQ Optimal Deoding

In the previous setion we assumed that the set fC

j

g

2

�

j=1

was given, in other words

the set of all odevetors f

[s;j℄

l

g was assumed to be given. We will now �nd the set

of all optimal odevetors assuming that the set of 2

�

N

m

optimal enoding regions

fS

[j

�

℄

I

g are given. The distortion with the enoding regions fS

[j

�

℄

I

g de�ned as in (3.13)

is

D

m-SAPQ

=

2

�

X

j

�

=1

X

I2J

m

N

Z

S

[j

�

℄

I

m

X

t=1

ku

s

(x)� 

[t;j

�

℄

v

t

(I)

k

2

p(x)dx:

Take the partial derivative with respet to the odevetor 

[s;j℄

i

by separating the i

th

odevetor of odebook C

s;j

, where s 2 J

m

, j 2 J

2

�

and i 2 J

N

, in the above distortion
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as follows

D

m-SAPQ

=

X

I2J

m

N

Z

S

[j℄

I

m

X

t=1

ku

t

(x)� 

[t;j℄

v

t

(I)

k

2

p(x)dx

+

X

j

�

:j

�

6=j

X

I2J

m

N

Z

S

[j

�

℄

I

m

X

t=1

ku

t

(x)� 

[t;j

�

℄

v

t

(I)

k

2

p(x)dx

=

X

I2J

m

N

Z

S

[j℄

I

(

ku

t

(x)� 

[s;j℄

v

s

(I)

k

2

+

X

t:t6=s

ku

t

(x)� 

[t;j℄

v

t

(I)

k

2

)

p(x)dx

+

X

j

�

:j

�

6=j

X

I2J

m

N

Z

S

[j

�

℄

I

m

X

t=1

ku

t

(x)� 

[t;j

�

℄

v

t

(I)

k

2

p(x)dx:

Setting the resultant derivative to zero we get

0 =

X

I:v

s

(I)=i

Z

S

[j℄

I

�u

s

(x) + 

[s;j℄

i

p(x)dx:

Solving for 

[s;j℄

i

we get the entroids



[s;j℄

i

=

R

S

[s;j℄

i

u

s

(x)p(x)dx

R

S

[s;j℄

i

p(x)dx

(3.15)

where the partition ells S

[s;j℄

i

are de�ned to be

S

[s;j℄

i

=

[

I:v

s

(I)=i

S

[j℄

I

(3.16)

= fx 2 R

km

: m-SAPQ Enoder(x) = ((i

1

; : : : ; i

m

); j) and i

s

= ig:(3.17)

Note that there are 2

�

Nm partition ells S

[s;j℄

i

, one for eah odevetor 

[s;j℄

i

, and there

are 2

�

N

m

enoding regions S

[j

�

℄

I

. Due the inherent nature of the m-SAPQ, although

there are 2

�

Nm odevetors, when enoding we have a hoie of 2

�

N

m

enoding

regions S

[j

�

℄

I

or produt odevetors 

[j

�

℄

I

.
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3.3 Example of a (k,m,N ,�) m-SAPQ

This example is intended to better illustrate the notation, and the enoding and

deoding proess of a m-SAPQ. Consider a (1,2,2,1) m-SAPQ with a odebook as

depited in Figure 3.2. Consider a sample of the soure vetor x = (x

1

; x

2

) loated as

shown in Figure 3.2. When this soure sample x is enoded by the (1,2,2,1) m-SAPQ

with odebooks fC

1

;C

2

g, the output of the produt enoders is:

PE

1

(x) = (E

1;1

(x

1

);E

2;1

(x

2

)) = (1; 1) = I

1

PE

2

(x) = (E

1;2

(x

1

);E

2;2

(x

2

)) = (1; 1) = I

2

:

The set of produt enoder funtions fPE

1

;PE

2

g and the set of enoder funtions

fE

1;1

;E

2;1

;E

1;2

;E

2;2

g are formulated by (3.10) and (3.11) respetively. The resulting

distortions of eah produt enoder is

D

1

(x) = (x

1

� 

[1;1℄

1

)

2

+ (x

2

� 

[2;1℄

1

)

2

= kx� 

[1℄

(1;1)

k

2

D

2

(x) = (x

1

� 

[1;2℄

1

)

2

+ (x

2

� 

[2;2℄

1

)

2

= kx� 

[2℄

(1;1)

k

2

:

Clearly x is loser to produt odevetor 

[1℄

(1;1)

then produt odevetor 

[2℄

(1;1)

, hene

the output of this m-SAPQ enoder is

m-SAPQ Enoder(x) = ((1; 1); 1) = (I

1

; 1):

At the deoder, there are two deoding funtions fG

1

; G

2

g. Sine in this ase the

overhead index is 1, the deoder output is

Deoder((1; 1); 1) = G

1

(1; 1) = (g

1

(1); g

1

(1)) = (

[1;1℄

1

; 

(2;1)

1

):

Hene the m-SAPQ takes in the soure sample x = (x

1

x

2

) and reprodues it as

(

[1;1℄

1

; 

(2;1)

1

).



42

-

6

x



[1℄

(1;1)

x



[1℄

(1;2)

x



[1℄

(2;1)

x



[1℄

(2;2)

x



[2℄

(1;1)

x



[2℄

(1;2)

x



[2℄

(2;1)

x



[2℄

(2;2)

+



[1;1℄

1

+



[1;1℄

2

+



[2;1℄

1

+



[2;1℄

2

+



[1;2℄

1

+



[1;2℄

2

+



[2;2℄

1

+



[2;2℄

2

.

.

.

.

:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . . .. . . .

. . .

. . . . . . .

C

1

= C

1;1

� C

2;1

= f

[1℄

(1;1)

; 

[1℄

(1;2)

; 

[1℄

(2;1)

; 

[1℄

(2;2)

g

C

2

= C

1;2

� C

2;2

= f

[2℄

(1;1)

; 

[2℄

(1;2)

; 

[2℄

(2;1)

; 

[2℄

(2;2)

g

C

1;1

= f

[1;1℄

1

; 

[1;1℄

2

g

C

2;1

= f

[2;1℄

1

; 

[2;1℄

2

g

C

1;2

= f

[1;2℄

1

; 

[1;2℄

2

g

C

2;2

= f

[2;2℄

1

; 

[2;2℄

2

g

*

x

. . . .. .

+

x

2

.

:

.

+

x

1

Figure 3.2: Example of a (1,2,2,1) m-SAPQ.
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3.4 1-SAPQ

The 1-SAPQ is a partiular ase of a m-SAPQ. In the ase of the (k,m,N ,�) m-

SAPQ, the 2

�

odebooks of (3.1), were produts of m individual odebooks that

an be di�erent from eah other. For the (k,m,N ,�) 1-SAPQ, the 2

�

odebooks

are produts of the same odebook. The (k,m,N ,�) 1-SAPQ only requires a set of

odebooks fC

j

g

2

�

j=1

, where eah odebook C

j

is a subset of R

k

of ardinality N ; i.e.

C

j

= f

[j℄

i

g

N

i=1

suh that 

[j℄

i

2 R

k

:

The struture of a (k,m,N ,�) 1-SAPQ is depited in Figure 3.3. The soure sample

vetor x = (x

1

; : : : ; x

m

), is enoded into an index vetor by a set of 2

�

vetor funtions

alled repeated enoders (RE), fRE

j

g

2

�

j=1

. Eah repeated enoder RE

j

enodes x into

an index vetor I

j

, by using the same enoder funtion E

j

on eah subvetor x

s

of x,

for s = 1; : : : ; m. Out of the set fI

j

g

2

�

j=1

, produed by the 2

�

repeated enoders, only

one index vetor I

j

�

with the minimum distortion is hosen and transmitted to the

deoder, along with an index indiating whih of the 2

�

repeated enoders produed

I

j

�

. The deoder then simply inverts the enoding funtions.

Distortion: Given the odebooks fC

j

g

2

�

j=1

and enoding regions fS

[j℄

Z

g, the distortion

of a (k,m,N ,�) 1-SAPQ an be derived to be

D

1-SAPQ

= Efd(X; )g (3.18)

=

2

�

X

j=1

X

Z2J

m

N

Efd(X; 

[j℄

Z

)jX 2 S

[j℄

Z

gP (X 2 S

[j℄

Z

) (3.19)

=

2

�

X

j=1

X

Z2J

m

N

Z

S

[j℄

Z

m

X

s=1

ku

s

(x)� 

[j℄

v

s

(Z)

k

2

p(x)dx: (3.20)

Optimal Enoding: Given the odebooks fC

j

g

2

�

j=1

, the residual distortion inurred
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Figure 3.3: Figure of a (k,m,N ,�) 1-SAPQ and the j

th

Repeated Enoder RE

j

, where,

j 2 J

2

�

, x = (x

1

; : : : ; x

m

) 2 R

km

, and I = (i

1

; : : : ; i

m

) 2 J

m

N

by eah repeated enoder RE

j

is given by

D

j

(x) = min

Z2J

m

N

m

X

s=1

ku

s

(x)� 

[j℄

v

s

(Z)

k

2

: (3.21)

Then the optimal enoding regions of a (k,m,N ,�) 1-SAPQ an be derived to be

S

[j

�

℄

I

=

(

x 2 R

km

: j

�

= arg min

j2J

2

�

D

j

(x) and I = I

j

�

= RE

j

�

(x)

)

(3.22)

where I 2 J

m

N

, j

�

= 1; : : : ; 2

�

,

RE

j

(x) = arg min

Z2J

m

N

m

X

s=1

ku

s

(x)� 

[j℄

v

s

(Z)

k

2

= I

j

(3.23)

= (arg min

z

1

2J

N

ku

1

(x)� 

[j℄

z

1

k

2

; : : : ; arg min

z

m

2J

N

ku

m

(x)� 

[j℄

z

m

k

2

) (3.24)
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, and

E

j

(u

s

(x)) = arg min

z

s

2J

N

ku

s

(x)� 

[j℄

z

s

k

2

= v

s

(I): (3.25)

Optimal Deoding: Now given the enoding regions fS

[j

�

℄

I

g de�ned as in (3.22),

the optimal odevetors an be found, as in Setion 3.2.3, to be



[j℄

i

=

P

m

t=1

R

S

[t;j℄

i

u

t

(x)p(x)dx

P

m

t=1

R

S

[t;j℄

i

p(x)dx

(3.26)

where i = 1; : : : ; N , j = 1; : : : ; 2

�

, and for t = 1; : : : ; m

S

[t;j℄

i

=

[

I:v

t

(I)=i

S

[j℄

I

(3.27)

= fx 2 R

km

: 1-SAPQ Enoder(x) = ((i

1

; : : : ; i

m

); j) and i

t

= ig:(3.28)

3.5 Enoding Complexity and Storage Requirements

Let us now ompare the enoding omplexity and storage requirements for eah of the

following quantizers: VQ, PQ, m-SAPQ, and 1-SAPQ. We de�ne the enoding om-

plexity to be the total amount of multipliations required to enode a soure sample

(omplexity=total multipliations required for enoding/soure sample). The storage

requirements are measured as the total number of salar values that are required to

be stored at the enoder and deoder, in order to implement the quantizer in ques-

tion (storage=total salars required for implementation).The results are summarized

in Table 3.1.
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3.5.1 (k

1

,N

1

) VQ

Enoding Complexity: From Setion 2.1.2, the (k

1

,N

1

) VQ enoding funtion is

E(x) = arg min

i2J

N

1

kx� 

i

k

2

(3.29)

where J

N

1

= f1; : : : ; N

1

g and x 2 R

k

1

. This enoding funtion (3.29) requires k

1

multipliations to be performed N

1

times for a soure sample x of dimension k

1

.

Thus the enoding omplexity of a (k

1

,N

1

) VQ is

(k

1

,N

1

) VQ Complexity =

k

1

N

1

k

1

= N

1

:

Storage Requirements: In order to implement the (k

1

,N

1

) VQ only the odebook,(2.1)

, of the quantizer needs to be stored, this is a total of k

1

N

1

salars, bringing the storage

requirements to

(k

1

,N

1

) VQ Storage = k

1

N

1

:

3.5.2 (k

2

,m

2

,N

2

) PQ

Enoding Complexity: From Setion 2.3.2, the onstituent enoding funtion of a

(k

2

,m

2

,N

2

) PQ is

E

t

(x) = arg min

z2J

N

2

kx� 

[t℄

z

k

2

(3.30)

where J

N

2

= f1; : : : ; N

2

g, x 2 R

k

2

and t = 1; : : : ; m

2

. This operation (3.30) requires

k

2

multipliations to be performed N

2

times. There are m

2

suh enoding funtions

E

t

(x), eah enoding a omponent of the soure sample x = (x

1

; : : : ; x

2

), where x

t

2

R

k

2

. This is a total of k

2

m

2

N

2

multipliations for k

2

m

2

salar soure samples. Hene

the enoding omplexity is

(k

2

,m

2

,N

2

) PQ Complexity =

k

2

m

2

N

2

k

2

m

2

= N

2

:
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Storage Requirements: Only the odebook of the (k

2

,m

2

,N

2

) PQ needs to be

stored to implement it. This is a total of k

2

m

2

N

2

salars aording to (2.19). Thus

the storage requirements are

(k

2

,m

2

,N

2

) PQ Storage = k

2

m

2

N

2

:

3.5.3 (k

3

,m

3

,N

3

,�

3

) m-SAPQ

Enoding Complexity: From Setion 3.2.2, the s

th

enoder funtion of the j

th

produt enoder PE

j

for a (k

3

,m

3

,N

3

,�

3

) m-SAPQ is

E

s;j

(u

s

(x)) = arg min

z

s

2J

N

3

ku

s

(x)� 

[s;j℄

z

s

k

2

(3.31)

where J

N

3

= f1; : : : ; N

3

g, x 2 R

k

3

m

3

, and s = 1; : : : ; m

3

and j = 1; : : : ; 2

�

3

. The

operation (3.31) requires k

3

multipliations done N

3

times to enode k

3

soure salar

samples (u

s

(x) 2 R

k

3

). There are m

3

suh enoding funtions in eah of the 2

�

3

produt enoders PE

j

. Thus eah PE

j

(x) requires k

3

m

3

N

3

multipliations to enode

k

3

m

3

soure samples (x 2 R

k

3

m

3

). There are 2

�

3

of these produt enoders PE

j

(x),

in a (k

3

,m

3

,N

3

,�

3

) m-SAPQ. Hene the enoding omplexity is

(k

3

,m

3

,N

3

,�

3

) m-SAPQ Complexity = 2

�

3

k

3

m

3

N

3

k

3

m

3

= 2

�

3

N

3

:

Storage Requirements: To store the odebook of a (k

3

,m

3

,N

3

,�

3

) m-SAPQ we

require k

3

m

3

N

3

2

�

3

salars. Thus the storage requirements are

(k

3

,m

3

,N

3

,�

3

) m-SAPQ Storage = k

3

m

3

N

3

2

�

3

:

To keep the omplexity of a (k

3

,m

3

,N

3

,�

3

) m-SAPQ less than that of a (k

1

,N

1

) VQ,

of the same rate, the parameters (k

3

,m

3

,N

3

,�

3

) must be hosen so that 2

�

3

N

3

< N

1

while keeping R =

log

2

N

3

k

3

+

�

3

k

3

m

3

=

log

2

N

1

k

1

equal. In [11℄, it is also further advised to

keep � =

m

3

N

3

as high as possible.
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Quantizer Complexity Storage

(k

1

,N

1

) VQ N

1

k

1

N

1

(k

2

,m

2

,N

2

) PQ N

2

k

2

m

2

N

2

(k

3

,m

3

,N

3

,�

3

) m-SAPQ 2

�

3

N

3

k

3

m

3

N

3

2

�

3

(k

4

,m

4

,N

4

,�

4

) 1-SAPQ 2

�

4

N

4

k

4

N

4

2

�

4

Table 3.1: Table of Enoding Complexity and Storage Requirements for Quantizers

designed under noiseless onditions.

3.5.4 (k

4

,m

4

,N

4

,�

4

) 1-SAPQ

Enoding Complexity: The enoding omplexity of the (k

4

,m

4

,N

4

,�

4

) 1-SAPQ is

derived in the same way as the (k

3

,m

3

,N

3

,�

3

) m-SAPQ to be

(k

4

,m

4

,N

4

,�

4

) 1-SAPQ Complexity = 2

�

4

k

4

m

4

N

4

k

4

m

4

= 2

�

4

N

4

:

This is the same as a (k

4

,m

4

,N

4

,�

4

) m-SAPQ.

Storage Requirements: The advantage of the (k

4

,m

4

,N

4

,�

4

) 1-SAPQ is a lesser

storage requirement than that of a (k

4

,m

4

,N

4

,�

4

) m-SAPQ. This is beause the same

odebook C

j

, for j = 1; : : : ; 2

�

4

, is repeated within eah repeated enoder RE

j

. The

storage requirements are then

(k

4

,m

4

,N

4

,�

4

) 1-SAPQ Storage = k

4

N

4

2

�

4

whih is

1

m

4

less than that of a (k

4

,m

4

,N

4

,�

4

) m-SAPQ.

3.6 Design Algorithm for SAPQs

The design algorithm for the m-SAPQ is next desribed. This design with be based

on the derivations of the neessary onditions for optimality (3.13) and (3.15). In
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this algorithm we iterate over the neessary onditions for optimality in the similar

fashion to the Lind-Buzo-Gray (LBG) algorithm.

(k,m,N ,�) m-SAPQ Algorithm

1. Set parameters k, m, N , �, the stopping threshold Æ, the splitting onstant k-

dimensional vetor � = (�; : : : ; �), the maximum number of iterations Maxiter,

and M the total number of training vetors fx

f

= (x

1;f

; : : : ; x

m;f

)g

M

f=1

. Start

o� with � = 1, � = 0, and initial odebooks fC

(0)

s;�

g

m

s=1

.

2. If � � 2

�

stop otherwise split the odebooks using

C

(�)

s;j

= C

(�)

s;j

� � and C

(�)

s;j+�

= C

(�)

s;j

+ �

for s = 1; : : : ; m and j = 1; : : : ; � then double � = � � 2 and set � = 0. Note

that � is a ounter for the iterations and � is a ounter for the odebooks . At

this point we have � odebooks fC

(0)

j

g

�

j=1

where C

(0)

j

= C

(0)

1;j

� : : :� C

(0)

m;j

.

3. For eah f , enode x

f

into an index vetor I and index j

�

using the produt

enoders fPE

(�)

j

g

�

j=1

. This is done by enoding x

f

with eah PE

(�)

j

PE

(�)

j

(x

f

) = I

j

= arg min

Z2J

m

N

m

X

s=1

ku

s

(x

f

)� 

[s;j℄;(�)

v

s

(Z)

k

2

:

Then the optimal index vetor I and overhead index j

�

is hosen to be

j

�

= arg min

j2J

�

min

Z2J

m

N

m

X

s=1

ku

s

(x

f

)� 

[s;j℄;(�)

v

s

(Z)

k

2

I = I

j

�

= PE

(�)

j

�

(x

f

):

4. One x

f

is enoded, x

f

an be put into the appropriate ells, (3.17). So if x

f

is

enoded into ((i

1

; : : : ; i

m

); j

�

) then

x

f

2 S

[1;j

�

℄;(�)

i

1

; : : : ;x

f

2 S

[m;j

�

℄;(�)

i

m

:
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The resulting distortion is

D

(�)

[x

f

; � ℄ =

m

X

s=1

ku

s

(x

f

)� 

[s;j

�

℄;(�)

v

s

(I)

k

2

:

5. Repeat steps 3 and 4 for all f = 1 : : : ;M . One all the partitions have been

made, alulate the entroids using



[s;j℄;(�+1)

i

=

P

x:x2S

[s;j

�

℄;(�)

i

u

s

(x)

P

x:x2S

[s;j

�

℄;(�)

i

and update the odebooks to fC

(�+1)

j

g

�

j=1

using the new entroids. Finally

alulate the overall distortion using

D

(�)

[� ℄ =

1

kmM

M

X

f=1

D

(�)

[x

f

; � ℄:

6. Chek

D

(��1)

[� ℄�D

(�)

[� ℄

D

(�)

[� ℄

� Æ or � � Maxiter, if so then go to step 2 otherwise

� = � + 1 and go to step 3.

This algorithm assumes an initial set of odebooks C

(0)

1

for the (k,m,N ,�) m-

SAPQ whih is obtained from a (k,m,N) PQ, using the design algorithm of Se-

tion 2.3.3. Similarly the (k,m,N ,�) 1-SAPQ algorithm starts o� with only one ode-

book C

(0)

1

whih an be obtained from a (k,N) VQ, designed using the LBG algorithm

of Setion 2.1.3. The algorithm for the design of the (k,m,N ,�) 1-SAPQ odebooks

is easily dedued from the above design.

3.7 Numerial Results

In order to illustrate the advantages of the sample adaptive produt quantizers

(SAPQ) over the generi quantizers, suh as the vetor quantizer (VQ) and the
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produt quantizer (PQ), numerial results were produed. The design algorithms

of Setions 2.1.3, 2.3.3 and 3.6, were used to design the VQ, PQ, m-SAPQ and 1-

SAPQ. In all ases 200,000 training soure samples were used to design eah odebook.

The soures onsidered were the unit variane and zero mean Gauss-Markov soure

and the memoryless Gaussian soure. A Gauss-Markov soure is a sequene fX

i

g

desribed by the reursion

X

i

= �X

i�1

+U

i

where fU

i

g is a sequene of independent and identially distributed (i.i.d) Gaus-

sian random variables, and � is the orrelation oeÆient. A memoryless Gaussian

sequene and a Gauss-Markov sequene was generated by setting the orrelation o-

eÆient to � = 0:0 and � = 0:9, respetively. The designed odebooks of the VQ,

PQ, m-SAPQ and 1-SAPQ were tested by implementing the quantizers shown in

Figure 3.4:

1. The quantizer is designed using the algorithms of Setions 2.1.3,2.3.3, and 3.6

with the design parameters: splitting onstant � = 0:001, stopping threshold

Æ = 0:001 and maximum number of iterations Maxiter = 200. Note that all

the quantizers are designed using the same design parameters, and the same

training sequene fx

f

g. The �nal distortion of the quantizers is D[final℄.

2. The odebookC produed by the design algorithm is then used to implement the

enoder. The enoder is then used to enode the testing sequene f
^
x

f

g 6= fx

f

g;

a sequene that is entirely di�erent from the training sequene.

3. The odebook produed from Step 1 is also used to implement a deoder. The

resultant reonstrution of the testing sequene is fy

f

g. The distortion of the
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Maxiter, Æ, �

?

fx

f

g

-

1.Design

Quantizer

-

D[final℄

?

Codebook C or C

?

-

f
^
x

f

g

2.Implement

Enoder

-

C or C

?

4.Implement

Deoder

-

fy

f

g

Figure 3.4: Blok Diagram illustrating the validation of quantizers.

implemented quantizer an then be alulated as

D =

X

f

k
^
x

f

� y

f

k

2

:

The performane of the hannel optimized quantizers is measured using the signal-

to-distortion ratio (SDR) whih is equal to SDR = �10 log

10

(D[final℄) or SDR =

�10 log

10

(D). When omparing the VQ, PQ and SAPQ of the same rate R, the ri-

teria used for omparison is three-fold: namely the performane (SDR), the enoding

omplexity (omplexity=total multipliations required for enoding/soure sample),

and the storage requirements (storage=total salars required for implementation).

3.7.1 Comparing the VQ, m-SAPQ, and 1-SAPQ

Tables 3.6, and 3.7, show the performanes (SDR = �10 log

10

(D[final℄)) of the

VQ, the m-SAPQ and the 1-SAPQ at rates R = 1:5; 2:5 and 3:5, for memoryless

Gaussian and Gauss-Markov soures, respetively. The enoding omplexities and

storage requirements are alulated using Table 3.1. These results are then tested



53

as in Figure 3.4, and their validated performanes (SDR = �10 log

10

(D)) are then

tabulated in Tables 3.8, and 3.9.

Memoryless Gaussian Soures: In Table 3.6 we see that for rates R = 1:5; 2:5; 3:5,

for every (2,2

2R

) VQ, we an �nd a 1-SAPQ and a m-SAPQ of omparable perfor-

mane and less enoding omplexity and storage requirements: ompare the (2,8) VQ

with the (1,2,2,1) 1-SAPQ and m-SAPQ, ompare the (2,32) VQ with the (1,4,4,2)

1-SAPQ and m-SAPQ, ompare the (2,128) VQ with the (1,4,8,2) 1-SAPQ and m-

SAPQ. Note that as the rate gets higher the advantage of the 1-SAPQ and m-SAPQ

over VQ inreases. This is espeially true for m-SAPQ. In order to attain an advan-

tage of using the m-SAPQ over the VQ and 1-SAPQ, the dimension km must be high

enough (km > 2).

Gauss-Markov Soures: For Gauss-Markov soures, Table 3.7 illustrates that for

every rate R and (2,2

2R

) VQ, we an �nd a 1-SAPQ of the same omplexity and lower

storage requirements, that outperforms the (2,2

2R

) VQ. Compare the (2,8) VQ with

the (1,4,2,2) 1-SAPQ, ompare the (2,32) VQ with the (1,6,4,3) 1-SAPQ, ompare

the (2,128) VQ with the (1,8,8,4) 1-SAPQ. Note that the dimensions km of these

1-SAPQ's are higher than that of the VQ's, of the same rate, but their enoding

omplexity is the same and their storage requirements are lower.

3.7.2 Comparing PQ, m-SAPQ and 1-SAPQ

Tables 3.2 and 3.3 tabulate the performanes of the PQ and the least omplex m-

SAPQ and 1-SAPQ of rates R = 2:0; 3:0; 4:0 and 5:0. These results are validated in

Tables 3.4 and 3.5. From Tables 3.2, and 3.3 we see that in all ases the m-SAPQ

outperforms the PQ. The performane gain of the m-SAPQ over the PQ inreases as

the rate R inreases (0.77-0.24 dB) for memoryless Gaussian soures, Tables 3.2. For
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memoryless Gaussian soures the advantage of the 1-SAPQ over the PQ is realized

as the rate inreases (R � 4:0). But when the soure is Gauss-Markov the 1-SAPQ

has an advantage over the PQ when the rate is low (R < 4:0).

3.7.3 Comparing m-SAPQ and 1-SAPQ

In Tables 3.6, 3.7, 3.2, and 3.3, we see that the (k,m,N ,�) m-SAPQ always performs

equal to, or greater than, the (k,m,N ,�) 1-SAPQ. The m-SAPQ outperforms the

1-SAPQ. Though the (k,m,N ,�) m-SAPQ always has the disadvantages of having

m times the storage requirement than the (k,m,N ,�) 1-SAPQ. Note that the above

onlusion is only ontradited by one result: namely in Table 3.7 ompare (1,8,8,4)

1-SAPQ and the (1,8,8,4) m-SAPQ. The poor performane of the (1,8,8,4) m-SAPQ

may have been due to the limitations in the size of the training sequene (200,000

samples). This hypothesis is supported by omparing Tables 3.7 and 3.9, where the

di�erene in the performane of the (1,8,8,4) m-SAPQ with the testing sequene over

the training sequene is exeptionally great (0.22 dB). A longer training sequene

may have been required in order to design the odebook of the (1,8,8,4) m-SAPQ.

3.7.4 The E�et of � = m=N

At a given rate R we an learly see from Tables 3.6 and 3.7, that the higher � = m=N

is, the better are the performanes of the m-SAPQ and the 1-SAPQ. Of ourse the

inrease of � = m=N inreases the enoding omplexity and storage requirements of

the m-SAPQ and 1-SAPQ. Though just as a guideline, when trying to determine the

best hoie of parameters k, m, N and � of a SAPQ, one should always aim for a

high � = m=N .
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km Quantizer R = 2:0 R = 3:0 R = 4:0 R = 5:0

2 PQ Codebook (N) 4 8 16 32

k = 1 SNR (dB) 9.27 14.57 20.18 25.95

Complexity 4 8 16 32

Storage 8 16 32 64

2 1-SAPQ Codebook (N) 2 4 8 16

k = 1,� = 1 SNR (dB) 8.72 14.49 20.28 26.24

Complexity 4 8 16 32

Storage 4 8 16 32

� = m=N 1 1/2 1/4 1/8

2 m-SAPQ Codebook (N) 2 4 8 16

k = 1,� = 1 SNR (dB) 9.51 15.03 20.84 26.72

Complexity 4 8 16 32

Storage 8 16 32 64

� = m=N 1 1/2 1/4 1/8

Table 3.2: SDR (dB) performanes omparison of the (k,m,N) PQ, the (k,m,N ,�)

1-SAPQ, and the (k,m,N ,�) m-SAPQ, at rates R, designed using 200,000 memoryless

Gaussian training samples.
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km Quantizer R = 2:0 R = 3:0 R = 4:0 R = 5:0

2 PQ Codebook (N) 4 8 16 32

k = 1 SNR (dB) 9.28 14.57 20.18 25.98

Complexity 4 8 16 32

Storage 8 16 32 64

2 1-SAPQ Codebook (N) 2 4 8 16

k = 1,� = 1 SNR (dB) 12.50 15.22 19.84 25.40

Complexity 4 8 16 32

Storage 4 8 16 32

� = m=N 1 1/2 1/4 1/8

2 m-SAPQ Codebook (N) 2 4 8 16

k = 1,� = 1 SNR (dB) 12.50 15.36 20.61 26.22

Complexity 4 8 16 32

Storage 8 16 32 64

� = m=N 1 1/2 1/4 1/8

Table 3.3: SDR (dB) performanes omparison of the (k,m,N) PQ, the (k,m,N ,�) 1-

SAPQ, and the (k,m,N ,�) m-SAPQ, at rates R, designed using 200,000 Gauss-Markov

training samples.
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km Quantizer R = 2:0 R = 3:0 R = 4:0 R = 5:0

2 PQ Codebook (N) 4 8 16 32

k = 1 SNR (dB) 9.29 14.60 20.21 25.94

2 1-SAPQ Codebook (N) 2 4 8 16

k = 1,� = 1 SNR (dB) 8.74 14.50 20.25 26.20

2 m-SAPQ Codebook (N) 2 4 8 16

k = 1,� = 1 SNR (dB) 9.52 15.02 20.81 26.67

Table 3.4: SDR (dB) performanes testing designs of the (k,m,N) PQ, the (k,m,N ,�)

1-SAPQ, and the (k,m,N ,�) m-SAPQ, at rates R, using 200,000 memoryless Gaussian

testing samples.

km Quantizer R = 2:0 R = 3:0 R = 4:0 R = 5:0

2 PQ Codebook (N) 4 8 16 32

k = 1 SNR (dB) 9.32 14.63 20.26 26.00

2 1-SAPQ Codebook (N) 2 4 8 16

k = 1,� = 1 SNR (dB) 12.54 15.27 19.87 25.47

2 m-SAPQ Codebook (N) 2 4 8 16

k = 1,� = 1 SNR (dB) 12.54 15.41 20.63 26.23

Table 3.5: SDR (dB) performanes testing designs of the (k,m,N) PQ, the (k,m,N ,�)

1-SAPQ, and the (k,m,N ,�) m-SAPQ, at ratesR, using 200,000 Gauss-Markov testing

samples.



58

km Quantizer R = 1:5 R = 2:5 R = 3:5

2 VQ Codebook (N) 8 32 128

SNR (dB) 6.94 12.40 18.14

Complexity 8 32 128

Storage 16 64 256

2 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 1 SNR (dB) 6.86 12.25 17.87

Complexity 4 8 16

Storage 4 8 16

� = m=N 1 1/2 1/4

2 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 1 SNR (dB) 6.86 12.25 17.87

Complexity 4 8 16

Storage 8 16 32

� = m=N 1 1/2 1/4

4 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 2 SNR (dB) 6.95 12.57 18.25

Complexity 8 16 32

Storage 8 16 32

� = m=N 2 1 1/2

4 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 2 SNR (dB) 7.08 12.60 18.42

Complexity 8 16 32

Storage 32 64 128

� = m=N 2 1 1/2

6 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 3 SNR (dB) 6.61 12.79 18.64

Complexity 16 32 64

Storage 16 32 64

� = m=N 3 3/2 3/4

6 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 3 SNR (dB) 7.34 12.90 18.80

Complexity 16 32 64

Storage 96 192 384

� = m=N 3 3/2 3/4

8 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 4 SNR (dB) 6.95 12.86 18.85

Complexity 32 64 128

Storage 32 64 128

� = m=N 4 2 1

8 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 4 SNR (dB) 7.52 13.15 19.13

Complexity 32 64 128

Storage 256 512 1024

� = m=N 4 2 1

Table 3.6: SDR (dB) performanes omparing the (k,N) VQ, the (k,m,N ,�) 1-SAPQ,

and the (k,m,N ,�) m-SAPQ, at rates R, designed using 200,000 memoryless Gaussian

training samples.
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km Quantizer R = 1:5 R = 2:5 R = 3:5

2 VQ Codebook (N) 8 32 128

SNR (dB) 10.79 16.25 21.89

Complexity 8 32 128

Storage 16 64 256

2 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 1 SNR (dB) 8.01 12.43 17.63

Complexity 4 8 16

Storage 4 8 16

� = m=N 1 1/2 1/4

2 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 1 SNR (dB) 8.01 13.67 17.63

Complexity 4 8 16

Storage 8 16 32

� = m=N 1 1/2 1/4

4 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 2 SNR (dB) 10.90 13.91 18.65

Complexity 8 16 32

Storage 8 16 32

� = m=N 2 1 1/2

4 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 2 SNR (dB) 11.00 15.81 19.12

Complexity 8 16 32

Storage 32 64 128

� = m=N 2 1 1/2

6 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 3 SNR (dB) 11.56 16.55 19.57

Complexity 16 32 64

Storage 16 32 64

� = m=N 3 3/2 3/4

6 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 3 SNR (dB) 11.78 16.82 19.70

Complexity 16 32 64

Storage 96 192 384

� = m=N 3 3/2 3/4

8 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 4 SNR (dB) 11.55 16.85 22.29

Complexity 32 64 128

Storage 32 64 128

� = m=N 4 2 1

8 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 4 SNR (dB) 12.46 17.43 22.27

Complexity 32 64 128

Storage 256 512 1024

� = m=N 4 2 1

Table 3.7: SDR (dB) performanes omparing the (k,N) VQ, the (k,m,N ,�) 1-SAPQ,

and the (k,m,N ,�) m-SAPQ, at rates R, designed using 200,000 Gauss-Markov train-

ing samples.
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km Quantizer R = 1:5 R = 2:5 R = 3:5

2 VQ Codebook (N) 8 32 128

SNR (dB) 6.96 12.42 18.07

2 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 1 SNR (dB) 6.87 12.42 17.90

2 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 1 SNR (dB) 6.87 12.27 17.90

4 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 2 SNR (dB) 6.83 12.27 18.22

4 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 2 SNR (dB) 7.07 12.58 18.40

6 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 3 SNR (dB) 6.59 12.77 18.62

6 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 3 SNR (dB) 7.31 12.83 18.65

8 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 4 SNR (dB) 6.30 12.82 18.81

8 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 4 SNR (dB) 7.45 12.98 18.84

Table 3.8: SDR (dB) performanes testing designs of the (k,N) VQ, the (k,m,N ,�)

1-SAPQ, and the (k,m,N ,�) m-SAPQ, at rates R using 200,000 memoryless Gaussian

testing samples.
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km Quantizer R = 1:5 R = 2:5 R = 3:5

2 VQ Codebook (N) 8 32 128

SNR (dB) 10.82 16.24 21.84

2 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 1 SNR (dB) 8.04 13.74 17.70

2 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 1 SNR (dB) 8.04 13.74 17.70

4 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 2 SNR (dB) 10.94 16.01 18.70

4 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 2 SNR (dB) 11.04 16.18 19.13

6 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 3 SNR (dB) 11.61 16.60 18.62

6 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 3 SNR (dB) 11.80 16.81 19.62

8 1-SAPQ Codebook (N) 2 4 8

k = 1,� = 4 SNR (dB) 11.57 16.86 22.26

8 m-SAPQ Codebook (N) 2 4 8

k = 1,� = 4 SNR (dB) 12.45 17.32 22.05

Table 3.9: SDR (dB) performanes testing designs of the (k,N) VQ, the (k,m,N ,�) 1-

SAPQ, and the (k,m,N ,�) m-SAPQ, at rates R, using 200,000 Gauss-Markov testing

samples.



Chapter 4

Channel Optimized Sample

Adaptive Produt Quantizer

In this hapter the onepts of a sample adaptive produt quantizer are extended to a

hannel optimized sample adaptive produt quantizer (COSAPQ), where the hannel

statistis are inluded in the design of the quantizer. Both the m-SAPQ and 1-SAPQ

are extended to a COm-SAPQ and CO1-SAPQ, respetively. In this hapter the

hannel onsidered is the binary symmetri hannel (BSC).

4.1 COm-SAPQ Model

Codebook: A (k,m,N ,�) COm-SAPQ is onstruted from a set of 2

�

odebooks

fC

j

g

2

�

j=1

. Eah odebook C

j

is a produt of m odebooks fC

s;j

g

m

s=1

that are subsets

of R

k

, of ardinality N . In other words, eah odebook C

s;j

ontains N odevetors
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[s;j℄

i

, where i = 1; : : : ; N , that belong to R

k

:

C

j

= C

1;j

� : : :�C

m;j

suh that C

s;j

= f

[s;j℄

i

g

N

i=1

and 

[s;j℄

i

2 R

k

: (4.1)

For I 2 J

m

N

and j 2 J

2

�

, de�ne 

[j℄

I

to be a vetor of odevetors 

[s;j℄

i

s

that are ordered

as follows



[j℄

I

= (

[1;j℄

i

1

; : : : ; 

[m;j℄

i

m

) where I = (i

1

; : : : ; i

m

), i

s

2 J

N

= f1; : : : ; Ng for s = 1; : : : ; m:

Note that 

[j℄

I

2 C

j

for j = 1; : : : ; 2

�

, and 

[j℄

I

is referred to as a produt odevetor.

Struture: Figure 4.1 depits how a soure vetor x = (x

1

; : : : ; x

m

), where x

s

2 R

k

for s = 1; : : : ; m, is quantized by a (k,m,N ,�) COm-SAPQ. The COm-SAPQ enoder

enodes the soure sample x into an index vetor I 2 J

m

N

and an overhead index

j

�

2 J

2

�

. The index vetor I and index j

�

are then transmitted over a noisy hannel.

At the deoder, the reeived index vetor L 2 J

m

N

and index j

0

2 J

2

�

are deoded into

a produt odevetor 

[j

0

℄

L

.

Enoder: At the COm-SAPQ enoder the enoding of a soure vetor x is proessed

by a set of 2

�

vetor funtions alled produt enoders (PE), fPE

j

g

2

�

j=1

. Eah vetor

funtion PE

j

takes in a opy of the soure vetor x and enodes it using the odebook

C

j

. Furthermore eah PE

j

has m omponent enoding funtions, fE

s;j

g

m

s=1

, suh that

eah funtion E

s;j

enodes subvetor x

s

into an index i

s;j

, for s = 1; : : : ; m. The

onatenation of all the indexes i

s;j

for s = 1; : : : ; m, forms the index vetor I

j

whih

is the output of PE

j

PE

j

(x) = (E

1;j

(x

1

); : : : ;E

m;j

(x

m

)) = I

j

where E

s;j

(x

s

) = i

s;j

2 J

N

and I

j

= (i

1;j

; : : : ; i

m;j

) 2 J

m

N

:

Hene the COm-SAPQ enoder internally produes 2

�

index vetors fPE

j

(x) =

I

j

g

2

�

j=1

. However only one index vetor I 2 fI

j

g

2

�

j=1

, is hosen to be transmitted
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over the hannel along with the index j

�

2 J

2

�

representing PE

j

�

(the PE that en-

oded x into I). Details of the enoding proess and the hoosing of index vetor I

and overhead index j

�

are desribed in Setion 4.2.2.
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Figure 4.1: Figure of a (k,m,N ,�) COm-SAPQ and the j

th

Produt Enoder PE

j

where, j = 1; : : : ; 2

�

, x = (x

1

; : : : ; x

m

) 2 R

km

, I = (i

1

; : : : ; i

m

) 2 J

m

N

, L =

(l

1

; : : : ; l

m

) 2 J

m

N

, and j

�

2 J

2

�

.
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Figure 4.2: Figure of the transmission of binary odewords over the BSC.

Channel: Transmission of the index vetor I = (i

1

; : : : ; i

m

) and index j

�

over a noisy

hannel is realized by onverting the indexes i

1

; : : : ; i

m

, of index vetor I, and j

�

into

binary odewords and transmitting eah binary odeword one at a time. Thus the

hannel is used independently by eah transmitted index i

1

; : : : ; i

m

and j

�

. Hene the

probability of reeiving L = (l

1

; : : : ; l

m

) and j

0

given that I and j

�

were transmitted,

formulates to

P(L; j

0

jI; j

�

) = P(j

0

jj

�

)P(LjI) = P(j

0

jj

�

)

m

Y

s=1

P(l

s

ji

s

): (4.2)

In this hapter the natural binary odeword (NBC) assignment is used. So eah of

the indexes i

1

; : : : ; i

m

, of index vetor I, are enoded into their n-bit binary odeword

equivalent, where i

s

2 J

N

and n = log

2

N , and j

�

is enoded into its �-bit binary

odeword equivalent. These odewords are then transmitted over a BSC with ross

over probability � as in Figure 4.2 suh that the hannel transition probabilities resolve

to

P(l

s

ji

s

) = (1� �)

n�d

H

(l

s

;i

s

)

(�)

d

H

(l

s

;i

s

)

for s = 1; : : : ; m (4.3)

P(j

0

jj

�

) = (1� �)

��d

H

(j

0

;j

�

)

(�)

d

H

(j

0

;j

�

)

(4.4)

where d

H

(l

s

; i

s

) is the Hamming distane between the n-bit binary odewords of i

s



66

and l

s

, and similarly d

H

(j

0

; j

�

) is the Hamming distane between the �-bit binary

odewords of j

�

and j

0

.

Deoder: The deoder onsists of 2

�

vetor deoding funtions fG

j

g

2

�

j=1

. Eah vetor

deoding funtion G

j

onsists of m omponent deoding funtions, fg

s;j

g

m

s=1

. Eah

deoding funtion g

s;j

deodes an index i into the odevetor 

[s;j℄

i

( 

[s;j℄

i

2 C

s;j

). At

the deoder the hoie of whih vetor deoding funtion G

j

to use, out of the set

fG

j

g

2

�

j=1

, is determined by the reeived overhead index j

0

. When index vetor L and

index j

0

are reeived, the deoder deodes index vetor L using the vetor deoding

funtion G

j

0

Deoder(L; j

0

) = G

j

0

(L) = (g

1;j

0

(l

1

); : : : ; g

m;j

0

(l

m

)) = (

[1;j

0

℄

l

1

; : : : ; 

[m;j

0

℄

l

m

) = 

[j

0

℄

L

:

Naturally the deoding funtions invert the enoding funtions

PE

j

: R

km

! J

m

N

and G

j

: J

m

N

! C

j

� R

km

E

s;j

: R

k

! J

N

and g

s;j

: J

N

! C

s;j

� R

k

for j = 1; : : : ; 2

�

and s = 1; : : : ; m.

Rate: The soure input vetor x = (x

1

; : : : ; x

m

), where x

s

2 R

k

for s = 1; : : : ; m,

has a total of km soure samples. The COm-SAPQ enoder output for soure vetor

x is I = (i

1

; : : : ; i

m

) and j

�

. So eah i

s

2 J

N

, for s = 1; : : : ; m, an be represented by

a log

2

N -bit odeword and j

�

2 J

2

�

an be represented by a �-bit odeword. In total

there are m log

2

N + � bits needed to represent x. Hene the rate of a COm-SAPQ is

R =

log

2

N

k

+

�

km

bits/soure sample: (4.5)
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4.2 COm-SAPQ Neessary Conditions for Opti-

mality

4.2.1 COm-SAPQ Distortion

To �nd neessary onditions for optimality of a (k,m,N ,�) COm-SAPQ, the expeted

mean square distortion of the (k,m,N ,�) COm-SAPQ needs to be alulated. To

simplify notation we reuse (3.3) and (3.4).

Furthermore let S

[j℄

Z

be the enoding region for index vetor Z and index j of a

(k,m,N ,�) COm-SAPQ, i.e

S

[j℄

Z

= fx 2 R

km

: COm-SAPQ Enoder(x) = (Z; j)g (4.6)

where Z 2 J

m

N

, and j 2 J

2

�

. In total there are 2

�

N

m

enoding regions S

[j℄

Z

.

Let  represent the reprodution, or the output of the deoder, of the COm-SAPQ

for soure X with a probability density funtion p(x). Given the set S

[j℄

Z

of 2

�

N

m

enoding regions of a COm-SAPQ, and the odebooks fC

j

g

2

�

j=1

, the expeted mean

square distortion of a (k,m,N ,�) COm-SAPQ an be found to be

D

COm-SAPQ

= Efd(X; )g

=

2

�

X

j=1

X

Z2J

m

N

2

�

X

j

0

=1

X

L2J

m

N

P(j

0

jj)P(LjZ)Efd(X; 

[j

0

℄

L

)jX 2 S

[j℄

Z

gP(X 2 S

[j℄

Z

)

=

2

�

X

j=1

X

Z2J

m

N

Z

S

[j℄

Z

2

�

X

j

0

=1

X

L2J

m

N

P(j

0

jj)P(LjZ)

m

X

t=1







u

t

(x)� 

[t;j

0

℄

v

t

(L)







2

p(x)dx:

The above an be simpli�ed using

X

L2J

m

N

P(LjZ)

m

X

t=1







u

t

(x)� 

[t;j

0

℄

v

t

(L)







2

=

m

X

t=1

N

X

v

t

(L)=1

P(v

t

(L)jv

t

(Z))







u

t

(x)� 
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0

℄

v

t

(L)







2

:



68

from Appendix A, to be

D

COm-SAPQ

=

2

�

X

j=1

X

Z2J

m

N

Z

S

[j℄

Z

2

�

X

j

0

=1

P(j

0

jj)

m

X

t=1

N

X

v

t

(L)=1

P(v

t

(L)jv

t

(Z))







u

t

(x)� 

[t;j
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℄

v

t

(L)







2

p(x)dx:

4.2.2 COm-SAPQ Optimal Enoding

We next onsider the following: given produt odebooks fC

j

g

2

�

j=1

, how an we de-

termine the optimal enoding funtion so as to minimize the mean square distortion

when a soure sample x is enoded into an index vetor I and index j

�

, using a

(k,m,N ,�) COm-SAPQ enoder?

Let  be the reprodution, or the output of the deoder, of a soure vetor x and

let x 2 S

[j℄

Z

, then

Efd(x; )g =

2

�

X

j

0

=1

P(j

0

jj)

m

X

t=1

N

X

v

t
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(L)jv

t
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:

Hene there are two optimizations to be implemented. As a onsequene of the

struture of a COm-SAPQ, the �rst optimization is done by eah produt enoder

PE

j

PE

j

(x) = arg min

Z2J

m

N

2

�

X

j

0

=1

P(j

0

jj)

m

X

t=1

N

X

v
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(L)jv

t
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℄

v
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(L)







2

= I

j

for j = 1; : : : ; 2

�

and eah onstituent enoder E

s;j

of PE

j

produes the s

th

index
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omponent of I

j

E

s;j

(u

s

(x)) = arg min

z

s

2J

N

2

�

X

j

0

=1

P(j
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jj)

N

X
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s

(L)=1
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s

(L)jz

s
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u

s
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0

℄

v

s

(L)







2

= v

s

(I

j

)

(4.7)

independent of eah other, for s = 1; : : : ; m and where Z = (z

1

; : : : ; z

m

). The mean

squared distortion inurred by eah produt enoder PE

j

that is assoiated to I

j

is

D

j

(x) = min

Z2J

m

N

2

�

X

j
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jj)
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: (4.8)

Within the enoder we have 2

�

index vetors fPE

j

(x) = I

j

g

2

�

j=1

eah with an asso-

iated distortion of f(I

j

;D

j

(x))g

2

�

j=1

, for j = 1; : : : ; 2

�

. Out of the 2

�

index vetors

fI

j

g

2

�

j=1

, the index vetor I, I 2 fI

j

g

2

�

j=1

, with the minimum distortion D

j

�

(x) =

min

j

D

j

, is hosen to be transmitted over the hannel. The PE that produed the

index vetor I is distinguished by transmitting the overhead index vetor j

�

over the

hannel along with I. Thus the optimal enoding regions are given by

S

[j

�

℄

I

=

(

x 2 R

km

: j

�

= arg min

j2J

2

�

D

j

(x) and I = I

j

�

= PE
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�

(x)

)

: (4.9)

With I and j

�

de�ned above, the optimal distortion given the odebooks fC
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4.2.3 COm-SAPQ Optimal Deoding

In the previous setions we assumed that the set of odebooks fC

j

g

2

�

j=1

were given, in

other words the set of all odevetors f
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g were assumed to be given. We will now
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�nd the set of all optimal odevetors f
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where I = (i
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(4.11)

= fx 2 R

km

: COm-SAPQ Enoder(x) = ((i

1
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) and i
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= ig: (4.12)

Solving for 
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4.3 CO1-SAPQ

Just as the 1-SAPQ, the CO1-SAPQ is a partiular ase of the COm-SAPQ. A

(k,m,N ,�) CO1-SAPQ only requires 2
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Figure 4.3 depits how a soure vetor x = (x

1

; : : : ; x

m

), where x

s

2 R

k

for s =

1; : : : ; m, is quantized by a (k,m,N ,�) CO1-SAPQ. Note the the repeated enoders

(RE) of a CO1-SAPQ, are still vetor funtions with the same onstituent enoding

funtions, E

j

for eah RE

j

, where j = 1; : : : ; 2

�

. The di�erene between the repeated

enoders of a CO1-SAPQ and that of Setion 3.4, is the inlusion of hannel statistis

(4.4) and (3.3) in the RE funtion of the CO1-SAPQ.

Distortion: Given the odebooks fC
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g
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and enoding regions fS
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Hene the optimal enoding regions of a (k,m,N ,�) CO1-SAPQ are de�ned by
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Optimal Deoding: Given the enoding regions fS

[j

�

℄

I

g de�ned as in (4.16), the

optimal odevetors of a (k,m,N ,�) CO1-SAPQ an be derived to be
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where l = 1; : : : ; N , j = 1; : : : ; 2

�

, and for t = 1; : : : ; m

S

[t;j

�

℄

i

=

[

I : v

t

(I)=i

S

[j

�

℄

I

(4.19)
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= ig: (4.20)
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Figure 4.3: Figure of a (k,m,N ,�) CO1-SAPQ and the j

th

Repeated Enoder
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4.4 Enoding Simpli�ations

Enoding omplexity is measured as the total number of multipliations required to

enode a salar soure sample. In proessing, it is far simpler to add then to multiply

and hene multipliation is taken as a reasonable measure of omplexity.
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4.4.1 COm-SAPQ Enoding Simpli�ations
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requires only k multipliations per z

s
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. So a total of Nk multipliations are

required to enode k soure samples u
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(x) into an index v
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) using (4.22). This

brings the enoding omplexity of the enoding funtion E
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down to
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per sample.
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When enoding a soure sample x, within the (k,m,N ,�) COm-SAPQ enoder there
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4.4.2 CO1-SAPQ Enoding Simpli�ations

Consider a (k,m,N ,�) CO1-SAPQ with soure sample x, the onstituent enoder
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Now given f�
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requires only k multipliations per z

s

2 J

N

. So a total of Nk multipliations are

required to enode k soure samples u

s

(x) into an index v

s

(I

j

) using (4.27). This

brings the enoding omplexity of the enoding funtion E

j

down to

Nk

k

per sample.

4.5 Enoding Complexity and Storage Requirements

Let us now ompare the enoding omplexity and storage requirements for eah of

the following hannel optimized quantizers: COVQ, COPQ, COm-SAPQ, and CO1-

SAPQ. We de�ne the enoding omplexity to be the total amount of multipliations
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required to enode a soure sample (omplexity=total multipliations required for en-

oding/soure sample). The storage requirements are measured as the total number

of salar values that are required to be stored at the enoder and deoder, in order to

implement the quantizer in question (storage=total salars required for implementa-

tion). The results are summarized in Table 4.1.

4.5.1 (k

1

,N

1

) COVQ

Enoding Complexity: From Setion 2.2.3 a (k

1

,N

1

) COVQ enoder, enodes a

soure sample x 2 R

k

1

, using the following funtion

E(x) = arg min

l2J

N

1

f�(l)� 2<x; y(l)>g (4.28)

where J

N

1

= f1; : : : ; N

1

g, and funtions y() and �() are de�ned as in (2.14). This

operation (4.28) requires k

1

multipliations done N

1

times to enode x 2 R

k

1

into an

index in J

N

1

. Hene a total of k

1

N

1

multipliations are required for soure x 2 R

k

1

,

whih brings the omplexity to

(k

1

,N

1

) COVQ Complexity =

k

1

N

1

k

1

= N

1

:

This is the same as a the omplexity of a (k

1

,N

1

) VQ.

Storage Requirements: In order to implement (4.28) the sets fy(l)g

N

1

l=1

and f�(l)g

N

1

l=1

,

need to be pre-alulated, and stored at the enoder. Calulating the vetors of y(l)

for l = 1; : : : ; N

1

gives us N

1

vetors, eah of dimension k

1

using (2.14). Calulating

the salars �(l) for l = 1; : : : ; N

1

gives us N

1

salars to be stored. Hene from both

sets fy(l)g

N

1

l=1

and f�(l)g

N

1

l=1

we have a total of k

1

N

1

+N

1

salars to store at the en-

oder. Then at the deoder we require k

1

N

1

salars to be stored for the odebook C,
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(2.9). This brings the storage requirements of the (k

1

,N

1

) COVQ to be

(k

1

,N

1

) COVQ Storage = 2k

1

N

1

+N

1

:

4.5.2 (k

2

,m

2

,N

2

) COPQ

Enoding Complexity: From Setion 2.4.3, the produt enoder (PE) of a (k

2

,m

2

,N

2

)

COPQ is a vetor funtion of m

2

enoder funtions that perform the following oper-

ation

E

t

(x) = arg min

z2J

N

2

f�

t

(z)� 2<x; y

t

(z)>g (4.29)

where J

N

2

= f1; : : : ; N

2

g, x 2 R

k

2

, t = 1; : : : ; m

2

, and funtions y

t

() and �

t

() are

de�ned as in (2.30). This operation (4.29) requires k

2

N

2

multipliations for eah

soure subvetor x 2 R

k

2

. There are m

2

suh enoders E

t

(x), eah enoding a soure

subvetor x

t

from vetor x = (x

1

; : : : ; x

m

2

) 2 R

k

2

m

2

. Hene a total of m

2

k

2

N

2

mul-

tipliations are required to enode m

2

soure vetors of dimension k

2

, bringing the

omplexity to

(k

2

,m

2

,N

2

) COPQ Complexity =

m

2

k

2

N

2

m

2

k

2

= N

2

:

Storage Requirements: Just as in the ase of the (k

1

,N

1

) COVQ, the sets fy

t

(z)g

N

2

z=1

and f�

t

(z)g

N

2

z=1

, need to be alulated for t = 1; : : : ; m

2

. For eah t, y

t

(z) when pre-

alulated for z = 1; : : : ; N

2

produes N

2

vetors of dimension k

2

. Hene there are

m

2

k

2

N

2

salars needed to store the results of the m

2

sets fy

t

(z)g

N

2

z=1

. Similarly the

funtion �

t

(z) produes N

2

salars for z = 1; : : : ; N

2

. There are m

2

sets f�

t

(z)g

N

2

z=1

,

hene a total of m

2

N

2

salars need to be stored. All the m

2

k

2

N

2

salars and m

2

N

2

salars for y

t

() and �

t

(), respetively, are stored at the enoder. At the deoder we

need to store an additional k

2

m

2

N

2

salars for the odebook (2.25), bringing the total
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to

(k

2

,m

2

,N

2

) COPQ Storage = 2k

2

m

2

N

2

+m

2

N

2

:

4.5.3 (k

3

,m

3

,N

3

,�

3

) COm-SAPQ

Enoding Complexity: In Setion 4.4, we learly desribe the enoding omplexity

for the s

th

enoder funtion of j

th

produt enoder PE

j

E

s;j

(u

s

(x)) = arg min

z

s

2J

N

3

f�

s;j

(z

s

)� 2<u

s

(x); y

s;j

(z

s

)>g (4.30)

where now for the (k

3

,m

3

,N

3

,�

3

) COm-SAPQ x 2 R

k

3

m

3

, J

N

3

= f1; : : : ; N

3

g, s =

1; : : : ; m

3

, j = 1; : : : ; �

3

and funtions �

s;j

() and y

s;j

() are de�ned in (4.21) with a

soure sample x 2 R

k

3

m

3

. We showed the enoding omplexity to be

k

3

N

3

k

3

, given

the set f�

s;j

()g

N

3

=1

and fy

s;j

()g

N

3

=1

. In eah produt enoder PE

j

we have m

3

suh

enoding funtions proessing soure samples of dimension k

3

, u

s

(x) 2 R

k

3

. Eah PE

j

proesses k

3

m

3

soure samples x 2 R

k

3

m

3

using these m

3

enoding funtions hene

the total number of multipliations per soure sample for eah PE

j

is

k

3

m

3

N

3

k

3

m

3

. In a

(k

3

,m

3

,N

3

,�

3

) COm-SAPQ there a 2

�

3

suh PE

j

, bringing the omplexity to

(k

3

,m

3

,N

3

,�

3

) COm-SAPQ Complexity = 2

�

3

k

3

m

3

N

3

k

3

m

3

= 2

�

3

N

3

:

Storage Requirements: As desribed above, in order for the omplexity of equa-

tion (4.30) to be low we need to pre-alulate and store the sets f�

s;j

()g

N

3

=1

and

fy

s;j

()g

N

3

=1

for s = 1; : : : ; m

3

and j = 1; : : : ; 2

�

3

. Eah set fy

s;j

()g

N

3

=1

is a set of

N

3

vetors of dimension k

3

. In total we need k

3

m

3

N

3

2

�

3

salars for sets fy

s;j

()g

N

3

=1

where s = 1; : : : ; m

3

and j = 1; : : : ; 2

�

3

. Similarly the sets f�

s;j

()g

N

3

=1

ontain

N

3

salars for s = 1; : : : ; m

3

and j = 1; : : : ; 2

�

3

. Hene at the enoder we require
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k

3

m

3

N

3

2

�

3

+m

3

N

3

2

�

3

salars. At the deoder we need to store the odebook (4.1)

whih is a total of k

3

m

3

N

3

2

�

3

salars, bringing the storage requirements to

(k

3

,m

3

,N

3

,�

3

) COm-SAPQ Storage = 2k

3

m

3

N

3

2

�

3

+m

3

N

3

2

�

3

:

So to keep the enoding omplexity of a (k

3

,m

3

,N

3

,�

3

) COm-SAPQ lower then that

of a (k

1

,N

1

) COVQ of the same rate, we need 2

�

3

N

3

< N

1

. This is aomplished by

arefully hoosing the parameters of the (k

3

,m

3

,N

3

,�

3

) COm-SAPQ. When hoosing

the parameters of (k

3

,m

3

,N

3

,�

3

) COm-SAPQ, a balane must be kept between keeping

the rate R =

log

2

N

3

k

3

+

�

3

k

3

m

3

=

log

2

N

1

k

1

equal and trying to ahieve the inequality

2

�

3

N

3

< N

1

.

4.5.4 (k

4

,m

4

,N

4

,�

4

) CO1-SAPQ

Enoding Complexity: The derivation of the enoding omplexity of the (k

4

,m

4

,N

4

,�

4

)

CO1-SAPQ is exatly the same as that of the (k

3

,m

3

,N

3

,�

3

) COm-SAPQ, using se-

tion 4.4. It an be derived to be

(k

4

,m

4

,N

4

,�

4

) CO1-SAPQ Complexity = 2

�

4

k

4

m

4

N

4

k

4

m

4

= 2

�

4

N

4

whih is the same enoding omplexity as a (k

4

,m

4

,N

4

,�

4

) COm-SAPQ.

Storage Requirements: The advantage of the (k

4

,m

4

,N

4

,�

4

) CO1-SAPQ over the

(k

3

,m

3

,N

3

,�

3

) COm-SAPQ is in the storage requirements. The enoding funtion

(4.27) requires the pre-alulation of the sets f�

j

()g

N

4

=1

and fy

j

()g

N

4

=1

for j =

1; : : : ; 2

�

4

. This is N

4

vetors of dimension k

4

for the set fy

j

()g

N

4

=1

and N

4

salars

for the set f�

j

()g

N

4

=1

. The total at the enoder is hene k

4

N

4

2

�

4

+ N

4

2

�

4

stored

salars. At the deoder the odebook (4.14) requires only k

4

N

4

2

�

4

salars, bringing
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Quantizer Complexity Storage

(k

1

,N

1

) COVQ N

1

2k

1

N

1

+N

1

(k

2

,m

2

,N

2

) COPQ N

2

2k

2

m

2

N

2

+m

2

N

2

(k

3

,m

3

,N

3

,�

3

) COm-SAPQ 2

�

3

N

3

2k

3

m

3

N

3

2

�

3

+m

3

N

3

2

�

3

(k

4

,m

4

,N

4

,�

4

) CO1-SAPQ 2

�

4

N

4

2k

4

N

4

2

�

4

+N

4

2

�

4

Table 4.1: Table of Enoding Complexity and Storage Requirements for Quantizers

designed with noisy memoryless hannels (BSC).

the storage to

(k

4

,m

4

,N

4

,�

4

) CO1-SAPQ Storage = 2k

4

N

4

2

�

4

+N

4

2

�

4

whih is

1

m

4

less than the storage requirements of a (k

4

,m

4

,N

4

,�

4

) COm-SAPQ.

4.6 Design Algorithm for CO-SAPQs

The design algorithm for the COm-SAPQ is next desribed. This design with be

based on the derivations of the neessary onditions for optimality (4.9) and (4.13).

In this algorithm we iterate over the neessary onditions for optimality in the similar

fashion to the Lind-Buzo-Gray (LBG) algorithm. This design is derived in order to

attain a loal minimum using a designed initial odebook.

(k,m,N ,�) COm-SAPQ Algorithm

1. Set parameters k, m, N , �, the design BSC error rossover probability �

d

, the

stopping threshold Æ, the splitting onstant k-dimensional vetor � = (�; : : : ; �),
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the maximum number of iterations Maxiter, and M the total number of train-

ing vetors fx

f

= (x

1;f

; : : : ; x

m;f

)g

M

f=1

. Initialize � = 1, � = 0, and the initial

set of odebooks C

(0)

1

= C

(0)

1;1

� � � � � C

(0)

m;1

.

2. If � � 2

�

stop; otherwise split the odebooks using

C

(�)

s;j

= C

(�)

s;j

� � and C

(�)

s;j+�

= C

(�)

s;j

+ �

for s = 1; : : : ; m and j = 1; : : : ; � , then double � = � � 2 and set � = 0. At this

point we have � sets of odebooks fC

(�)

j

g

�

j=1

.

3. For s = 1; : : : ; m, j = 1; : : : ; � and  = 1; : : : ; N alulate the �Nm vetors

fy

(�)

s;j

()g and values f�

(�)

s;j

()g as in (4.21), using the odebooks fC

(�)

j

g

�

j=1

. For

eah x

f

, enode x

f

with eah fPE

(�)

j

g

�

j=1

as in (4.24). This will give us the

set of index vetors fI

j

g

�

j=1

. The PE

(�)

j

�

that produes the index vetor I with

minimum distortion is hosen using (4.25).

4. One x

f

is enoded, x

f

an be put into the appropriate ells, (4.12). So if x

f

is

enoded into ((i

1

; : : : ; i

m

); j

�

) then for

x

f

2 S

[1;j

�

℄;(�)

i

1

; : : : ;x

f

2 S

[m;j

�

℄;(�)

i

m

:

The resulting distortion is

D

(�)

[x

f

; � ℄ =

�

X

j

0

=1

P(j

0

jj

�

)

m

X

s=1

N

X

l=1

P(lji

s

)ku

s

(x

f

)� 

[s;j

0

℄;(�)

l

k

2

:

5. Repeat Steps 3 and 4 for f = 1; : : : ;M . Then alulate the entroids, using



[s;j℄;(�+1)

l

=

P

2

�

j

�

=1

P

N

i=1

P(jjj

�

)P(lji)

P

x:x2S

[s;j

�

℄;(�)

i

u

s

(x)

P

2

�

j

�

=1

P

N

i=1

P(jjj

�

)P(lji)

P

x:x2S

[s;j

�

℄;(�)

i
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and update the set of odebooks to fC

(�+1)

j

g

�

j=1

using the new entroids. Finally

alulate the overall distortion

D

(�)

[� ℄ =

1

kmM

M

X

f=1

D

(�)

[x

f

; � ℄:

.

6. Chek

D

(��1)

[� ℄�D

(�)

[� ℄

D

(�)

[� ℄

� Æ or � � Maxiter, if so then go to Step 2; otherwise set

� = � + 1 and go to Step 3.

This algorithm assumes an initial set of odebooks C

(0)

1

for the (k,m,N ,�) COm-

SAPQ whih is obtained from a (k,m,N) COPQ designed for the same �

d

using the

algorithm of Setion 2.4.4. The algorithm for the design of the (k,m,N ,�) CO1-SAPQ

odebooks is easily deduible from the above design. Similarly the (k,m,N ,�) CO1-

SAPQ algorithm starts o� with only one odebook whih an be obtained from a

(k,N) COVQ, again designed with the same �

d

using the algorithm of Setion 2.2.5.

4.7 Numerial Results

Numerial results were produed in order to ompare the performanes of the hannel

optimized sample adaptive produt quantizer (COSAPQ) over other generi hannel

optimized quantizers suh as the hannel optimized vetor quantizer (COVQ), of

Setion 2.2.5, and the hannel optimized produt quantizer (COPQ), of Setion 2.4.4.

The design algorithms of Setions 2.2.5, 2.4.4, and 4.6 were used to design the COVQ,

COPQ, COm-SAPQ and CO1-SAPQ. The design parameters used to generate the

numerial results of this setion were: a maximum number of iterations Maxiter =

200, a splitting onstant � = 0:001, and a stopping threshold Æ = 0:001. The same
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�

d

, Maxiter, Æ, �

?

fx

f

g

-

1.Design

Quantizer

-

D[final℄

?

�

d
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?

-

f
^
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f
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Enoder

-

3.Simulate

BSC with �



-

Codebook C or C

?

4.Implement

Deoder

-

fy

f

g

Figure 4.4: Blok Diagram illustrating the validation of hannel optimized quantizers.

design parameters were used for designing the odebooks of the COVQ, COPQ, COm-

SAPQ and CO1-SAPQ. Furthermore 200,000 training soure samples were used to

design eah odebook. The soures onsidered were the unit variane zero mean,

Gauss-Markov and the memoryless Gaussian soures. A Gauss-Markov soure is a

sequene fX

i

g desribed by the reursion

X

i

= �X

i�1

+U

i

where fU

i

g is a sequene of independent and identially distributed (i.i.d) Gaus-

sian random variables, and � is the orrelation oeÆient. A memoryless Gaussian

sequene and a Gauss-Markov sequene was generated by setting the orrelation o-

eÆient to � = 0:0 and � = 0:9, respetively. In some ases the designed odebooks

of the COVQ, COPQ, COm-SAPQ and CO1-SAPQ were tested by implementing the

quantizers as in Figure 4.4. Figure 4.4 depits how

1. The hannel optimized quantizer is designed using the algorithms of Setion 2.2.5,

Setion 2.4.4, and Setion 4.6 with: design BSC ross over probability �

d

, split-
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ting onstant � = 0:001, stopping threshold Æ = 0:001 and maximum number

of iterations Maxiter = 200. The quantizers are designed using the training

sequene fx

f

g. The �nal distortion of the quantizers is D[final℄.

2. The odebook C produed by the design algorithm and �

d

is then used to imple-

ment the enoder by alulating and storing the sets: fy

(�)

s;j

()g and f�

(�)

s;j

()g

as in (4.21), or fy

(�)

j

()g and f�

(�)

j

()g as in (4.26), or fy

(�)

j

()g and f�

(�)

j

()g

as in (2.30), or fy

(�)

()g

N

=1

and f�

(�)

()g

N

=1

as in (2.14). The enoder is then

used to enode the testing sequene f
^
x

f

g 6= fx

f

g; a sequene that is entirely

di�erent to the training sequene.

3. The output of the enoder is feed into a simulated BSC with ross over proba-

bility �



.

4. The odebook produed from Step 1 is also used to implement a deoder that

deodes the output of the simulated BSC. The resultant reonstrution of the

testing sequene is fy

f

g. The distortion of the implemented quantizer an then

be alulated as

D =

X

f

k
^
x

f

� y

f

k

2

:

The performane of the hannel optimized quantizers is measured using the signal-

to-distortion ratio (SDR) whih is equal to SDR = �10 log

10

(D[final℄) or SDR =

�10 log

10

(D). The omparison of the hannel optimized quantizers is done by om-

paring the performane, the enoding omplexity and the storage requirement of eah

hannel optimized quantizer at the same rate. The riteria here is three-fold that is:

performane (SDR), enoding omplexity (omplexity=total multipliations required

for enoding/soure sample), and storage requirement (storage=total salars required

for implementation).
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4.7.1 Comparing COVQ, COPQ, COm-SAPQ and CO1-SAPQ

Tables 4.2 and 4.3 tabulate the performanes (SDR) of COVQ, COPQ, COm-SAPQ

and CO1-SAPQ, respetively, at rates R = 1:0; 2:0 and 3:0 for memoryless Gaussian

and Gauss-Markov soures. The enoding omplexities and storage requirements

were alulated using Table 4.1 and the performanes were alulated using SDR =

�10 log

10

(D[final℄). Note that sine produt quantizers are being ompared with

quantizers, km is used to measure the dimension of the quantizers; m = 1 for all

hannel optimized vetor quantizers (COVQ).

Memoryless Gaussian Soure: In Table 4.2 ompare COVQ and COm-SAPQ for

rates R = 1:0; 2:0 and 3:0. For memoryless Gaussian soures and �

d

> 0, COm-

SAPQ performs within 0.2 dB of COVQ of the same rate R and design BSC ross

over probability �

d

. The performane of COm-SAPQ an exeed that of COVQ by

up to 0.19 dB; ompare (2,64) COVQ and (1,2,2,4) COm-SAPQ at rate R = 3:0

and �

d

= 0:005. This performane gain by COm-SAPQ over COVQ, is also mathed

by a degradation of up to 0.16 dB over COVQ; ompare (4,64) COVQ and (2,2,2,2)

COm-SAPQ at rate R = 1:0 and �

d

= 0:005. Still in all ases COm-SAPQ attains a

SDR within 0.2 dB of that of COVQ with an enoding omplexity equal to half that

of COVQ at the same rate R, and a lower (

3

5

to

5

9

) storage requirement to that of

COVQ at the same rate R.

In Table 4.2, if we ompare the least omplex CO1-SAPQ to COPQ of the same

rate R, we see that CO1-SAPQ out-performs COPQ only at rates R = 1:0 and

2:0, and when �

d

� 0:050. The performane gain is in the range of 0.57-0.21 dB.

Otherwise, for rate R = 3:0 COPQ outperforms CO1-SAPQ by up to 0.46 dB.

Gauss-Markov Soures: In Table 4.3, we observe that for Gauss-Markov soures

COm-SAPQ performs 1.0-0.33 dB lower than COVQ of the same rate R and dimen-
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sion km. However when the dimension km of CO1-SAPQ is inreased, a performane

gain of up to 0.81 dB is ahieved over COVQ; ompare (2,64) COVQ and (1,4,4,4)

CO1-SAPQ at rate R = 3:0 and �

d

= 0:005. The gain over COVQ dereases as �

d

in-

reases. However at times COVQ does perform up to 0.23 dB better than CO1-SAPQ.

Still CO1-SAPQ attains SDRs of up to 0.81 db more than COVQ while maintaining

a lower (

3

5

to

1

3

) storage requirement then COVQ of the same rate R.

Note that in Table 4.3, the least omplex CO1-SAPQ always outperforms COPQ

at the same rate. The performane gains of the least omplex CO1-SAPQ is in the

range of 3.08-1.12 dB.

4.7.2 Comparing 'noisy' and 'noiseless' quantizers

As in [16℄ Tables 4.4{4.9 ompare the performanes of the hannel optimized quantiz-

ers to the quantizers designed under noiseless onditions. Note that the LBGVQ(+sim.annl.)

is the LBGVQ design as in Setion 2.2.4. Thus this LBGVQ(+sim.annl.) does in-

lude some joint hannel-soure oding in its design. All the quantizers were designed

and tested as desribed in Figure 4.4 with �



= �

d

, and the performane is measured

using SDR = �10 log

10

(D). As in [16℄ the same onlusion an be derived, that is

the performane gain of the hannel optimized sample adaptive produt quantizers

over the sample adaptive produt quantizers inreases when the hannel noise �



is

inreased, when the dimension km is inreased, when the rate R is inreased, and

when the orrelation � is inreased.



88

4.7.3 Comparing COSQ and COSAPQ

Sine the hannel optimized salar quantizer (COSQ), is onsidered for image oding

[8, 10℄ we ompare the performane gain of COSAPQ over COSQ in Tables 4.10 and

4.11. Note that a rate R = 1:0, COSAPQ annot be ompare to a COSQ, sine for

R = 1:0 if k = 1 of the (k,m,N ,�) COSAPQ then 1:0 �

�

m

= log

2

N . In Table 4.10

there is a de�nite gain of COm-SAPQ over COSQ. A gain by COm-SAPQ of 1.57-0.27

dB over COSQ of the same rate R is observed. In Table 4.11 there is a de�nite gain

by the least omplex CO1-SAPQ of 3.08-1.12 dB over COSQ of the same rate R.

4.7.4 Mismath Conditions

Tables 4.4{4.9 test the results of Tables 4.2 and 4.3 by implementing the quantizers

as in Figure 4.4 with �



= �

d

. The ondition (�



= �

d

) where the design BSC ross

over probability perfetly mathes the 'realized' BSC ross over probability is an

ideal ondition. Normally the odebooks of the quantizers are designed using an

estimate of the ross over probability of the BSC to be used for transmission. Hene

a more realisti insight to the performane of the quantizers an be obtained by

implementing the quantizers as in Figure 4.4, but with �



6= �

d

. This is the mismath

onditions that are depited in Figures 4.5{4.16 for memoryless Gaussian and Gauss-

Markov soures. In Figures 4.5{4.7 the �

d

= 0:005 and the soure is memoryless

Gaussian. In Figures 4.8{4.10 the �

d

= 0:050 and the soure is memoryless Gaussian.

Similarly for Figures 4.11{4.13 the �

d

= 0:005 and the soure is Gauss-Markov, and

in Figures ,4.14{4.16 the �

d

= 0:050 and the soure is Gauss-Markov.

Memoryless Gaussian Soures: For memoryless Gaussian soures Figures 4.5{

4.10 illustrate that COm-SAPQ performs within 0.2 dB of COVQ designed with the
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same �

d

and at the same rate R, when the hannel noise �



� 0:001. But as the hannel

gets noisier (�



� 0:050), the performane of COm-SAPQ onverges to within 0.05

dB to that of COVQ designed with the same �

d

and at the same rate R.

Gauss-Markov Soures: For Gauss-Markov soures Figures 4.11{4.13 illustrate

an up to 0.2 dB gain by CO1-SAPQ of higher km over COVQ designed with the same

�

d

and of the same rate R. But as the hannel is antiipated to be noisier (i.e �

d

is

greater) and as the hannel does get noisier (�



� 0:050), CO1-SAPQ performane

approahes (within 0.02 dB) that of COVQ designed with the same �

d

and at the

same rate R. Although if the hannel is antiipated to be noisy and the hannel in

reality is not as noisy (�



� 0:01), a gain of up to 0.5 dB is attained by CO1-SAPQ

of higher km, over COVQ designed with the same �

d

and at the same rate R.

4.7.5 Summary of Numerial Results

Our numerial results illustrate that when the soure is memoryless Gaussian, and

when the hannel being used is antiipated to be noisy (�

d

> 0), COm-SAPQ will

perform within 0.2 dB of the performane of a COVQ, designed with the same design

parameters. As the hannel gets noisier (�



� 0:050), COm-SAPQ's performane

onverges loser to that of COVQ (within 0.05 dB). These performanes are attained

with half the enoding omplexity and lower (

3

5

to

5

9

) storage requirements then COVQ

at the same rate R and dimension km. In all ases COm-SAPQ outperforms COPQ

and COSQ.

Furthermore if the soure is Gauss-Markov, CO1-SAPQ with a higher dimension

km, but the same enoding omplexity, as COVQ, at the same rate R, will outperform

COVQ designed with the same design parameters by 0.2 dB. As the hannel gets
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noisier (�



; �

d

� 0:050) CO1-SAPQ performane onverges to within 0.02 dB of that

of COVQ, of the same rate R and enoding omplexity, but with CO1-SAPQ having

the advantage of lower (

3

5

to

5

9

) storage requirements then COVQ. But when the

hannel gets noisier (�

d

� 0:050) and the hannel atually used for transmission is

not as noisy as antiipated (�



< 0:01) then CO1-SAPQ will have a gain of up to 0.5

dB over COVQ of the same rate R. At all times CO1-SAPQ outperforms COPQ and

COSQ when the soure is Gauss-Markov.
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�

d

R km Quantizer 0:000 0:005 0:010 0:050 0:100 0:150 omplexity storage

3.0 2

COVQ

k = 2;N = 64

15.23 12.19 11.07 7.35 5.11 3.78 64 320

COPQ

k = 1;N = 8

14.57 12.00 10.47 5.62 4.65 3.48 8 48

COm-SAPQ

k = 1;N = 2; � = 4

15.07 12.38 11.04 7.20 5.14 3.75 32 192

CO1-SAPQ

k = 1;N = 2; � = 4

13.59 11.54 10.29 6.48 4.35 3.13 32 96

4

CO1-SAPQ

k = 1;N = 4; � = 4

15.19 12.41 10.92 6.61 4.47 3.18 64 192

2.0 2

COVQ

k = 2;N = 16

9.64 8.71 8.02 5.52 3.82 2.71 16 80

COPQ

k = 1;N = 4

9.27 8.50 7.86 4.85 3.04 1.99 4 24

COm-SAPQ

k = 1;N = 2; � = 2

9.51 8.71 8.10 5.48 3.86 2.79 8 48

CO1-SAPQ

k = 1;N = 2; � = 2

8.72 8.04 7.50 5.16 3.61 2.50 8 24

3

CO1-SAPQ

k = 1;N = 2; � = 3

8.92 8.16 7.58 5.06 3.45 2.45 16 48

1.0 4

COVQ

k = 4;N = 16

4.66 4.44 4.24 3.14 2.26 1.61 16 144

COPQ

k = 2;N = 4

4.38 4.16 3.96 2.72 1.75 1.14 4 40

COm-SAPQ

k = 2;N = 2; � = 2

4.47 4.28 4.09 3.13 2.26 1.61 8 80

CO1-SAPQ

k = 2;N = 2; � = 2

4.41 4.15 3.95 2.81 1.96 1.44 8 40

6

CO1-SAPQ

k = 2;N = 2; � = 3

4.53 4.25 4.01 2.73 1.95 1.39 16 80

Table 4.2: SDR (dB) performanes, enoding omplexity and storage requirement

omparisons for the (k,N) COVQ, the (k,m,N) COPQ, the (k,m,N ,�) COm-SAPQ,

and the (k,m,N ,�) CO1-SAPQ, at rates R and dimension km, designed using 200,000

memoryless Gaussian training samples and BSC ross over probability �

d

.
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�

d

R km Quantizer 0:000 0:005 0:010 0:050 0:100 0:150 omplexity storage

3.0 2

COVQ

k = 2;N = 64

19.03 14.50 13.58 9.36 6.80 5.13 64 320

COPQ

k = 1;N = 8

14.57 12.00 10.47 5.60 4.63 3.46 8 48

COm-SAPQ

k = 1;N = 2; � = 4

16.62 14.22 12.75 8.43 6.07 4.62 32 192

CO1-SAPQ

k = 1;N = 2; � = 4

17.24 14.02 12.65 8.68 6.25 4.58 32 96

4

CO1-SAPQ

k = 1;N = 4; � = 4

19.72 15.31 13.85 9.51 6.88 5.19 64 192

2.0 2

COVQ

k = 2;N = 16

13.54 11.39 10.04 7.27 5.27 3.82 16 80

COPQ

k = 1;N = 4

9.28 8.50 7.85 4.83 3.02 1.96 4 24

COm-SAPQ

k = 1;N = 2; � = 2

12.50 10.76 9.71 6.26 4.53 3.37 8 48

CO1-SAPQ

k = 1;N = 2; � = 2

12.50 10.76 9.71 6.26 4.53 3.37 8 24

3

CO1-SAPQ

k = 1;N = 2; � = 3

13.95 11.81 10.68 7.08 5.21 3.93 16 48

1.0 4

COVQ

k = 4;N = 16

10.20 9.15 8.36 6.24 4.64 3.42 16 144

COPQ

k = 2;N = 4

7.89 7.35 6.87 4.41 2.81 1.84 4 40

COm-SAPQ

k = 2;N = 2; � = 2

9.66 8.78 8.17 5.63 4.08 3.10 8 80

CO1-SAPQ

k = 2;N = 2; � = 2

9.52 8.63 8.01 5.55 4.11 3.09 8 40

6

CO1-SAPQ

k = 2;N = 2; � = 3

9.99 9.11 8.51 6.09 4.58 3.50 16 48

Table 4.3: SDR (dB) performanes, enoding omplexity and storage requirement

omparisons for the (k,N) COVQ, the (k,m,N) COPQ, the (k,m,N ,�) COm-SAPQ,

and the (k,m,N ,�) CO1-SAPQ, at rates R and dimension km, designed using 200,000

Gauss-Markov training samples and BSC ross over probability �

d

.



93

�



Quantizer 0:000 0:005 0:010 0:050 0:100 0:150

LBGVQ(+sim.annl.)

k = 2; N = 64

15.20 11.39 9.95 4.84 2.24 0.54

PQ

k = 1;m = 2; N = 8

14.60 12.03 10.32 4.96 2.17 0.52

m-SAPQ

k = 1;m = 2; N = 2; � = 4

15.09 11.97 10.17 4.58 1.86 0.28

1-SAPQ

k = 1;m = 2; N = 2; � = 4

13.59 11.21 9.64 4.41 1.80 0.25

1-SAPQ

k = 1;m = 4; N = 4; � = 4

15.16 12.16 10.44 4.78 2.07 0.50

COVQ

k = 2; N = 64

15.20 12.19 11.06 7.36 5.13 3.79

COPQ

k = 1;m = 2; N = 8

14.60 12.02 10.50 5.61 4.64 3.48

CO-m-SAPQ

k = 1;m = 2; N = 2; � = 4

15.09 12.39 11.04 7.21 5.16 3.74

CO-1-SAPQ

k = 1;m = 2; N = 2; � = 4

13.59 11.60 10.31 6.47 4.35 3.13

CO-1-SAPQ

k = 1;m = 4; N = 4; � = 4

15.16 12.47 10.92 6.55 4.46 3.15

Table 4.4: SDR (dB) performanes omparing the (k,N) COVQ, the (k,m,N) COPQ,

the (k,m,N ,�) COm-SAPQ, and the (k,m,N ,�) CO1-SAPQ, to the (k,N) LBGVQ,

with simmulated annealing, the (k,m,N) PQ, the (k,m,N ,�) m-SAPQ, and the

(k,m,N ,�) 1-SAPQ, at rate R = 3:0, using 200,000 memoryless Gaussian testing

samples and a simmulated BSC ross over probability �



.
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�



Quantizer 0:000 0:005 0:010 0:050 0:100 0:150

LBGVQ(+sim.annl.)

k = 2; N = 16

9.66 8.63 7.82 4.21 2.36 0.94

PQ

k = 1;m = 2; N = 4

9.29 8.47 7.82 4.59 2.42 1.02

m-SAPQ

k = 1;m = 2; N = 2; � = 2

9.52 8.68 7.97 4.56 2.36 0.94

1-SAPQ

k = 1;m = 2; N = 2; � = 2

8.73 8.01 7.40 4.26 2.16 0.77

1-SAPQ

k = 1;m = 3; N = 2; � = 3

8.89 8.09 7.42 4.16 2.03 0.62

COVQ

k = 2; N = 16

9.66 8.70 7.98 5.51 3.82 2.72

COPQ

k = 1;m = 2; N = 4

9.29 8.49 7.86 4.87 3.06 2.01

COm-SAPQ

k = 1;m = 2; N = 2; � = 2

9.52 8.73 8.10 5.50 3.88 2.81

CO1-SAPQ

k = 1;m = 2; N = 2; � = 2

8.73 8.05 7.51 5.18 3.63 2.60

CO1-SAPQ

k = 1;m = 3; N = 2; � = 3

8.89 8.14 7.55 5.06 3.47 2.46

Table 4.5: SDR (dB) performanes omparing the (k,N) COVQ, the (k,m,N) COPQ,

the (k,m,N ,�) COm-SAPQ, and the (k,m,N ,�) CO1-SAPQ, to the (k,N) LBGVQ,

with simmulated annealing, the (k,m,N) PQ, the (k,m,N ,�) m-SAPQ, and the

(k,m,N ,�) 1-SAPQ, at rate R = 2:0, using 200,000 memoryless Gaussian testing

samples and a simmulated BSC ross over probability �



.
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�



Quantizer 0:000 0:005 0:010 0:050 0:100 0:150

LBGVQ(+sim.annl.)

k = 4; N = 16

4.65 4.41 4.13 2.82 1.62 0.73

PQ

k = 2;m = 2; N = 4

4.38 4.15 3.95 2.62 1.43 0.56

m-SAPQ

k = 2;m = 2; N = 2; � = 2

4.46 4.26 4.05 2.80 1.66 0.80

1-SAPQ

k = 2;m = 2; N = 2; � = 2

4.41 4.15 3.91 2.47 1.24 0.37

1-SAPQ

k = 2;m = 3; N = 2; � = 3

4.52 4.23 3.95 2.33 1.03 0.14

COVQ

k = 4; N = 16

4.65 4.42 4.15 2.99 2.27 1.62

COPQ

k = 2;m = 2; N = 4

4.38 4.17 3.97 2.75 1.78 1.16

COm-SAPQ

k = 2;m = 2; N = 2; � = 2

4.46 4.26 4.07 2.94 2.25 1.61

CO1-SAPQ

k = 2;m = 2; N = 2; � = 2

4.41 4.14 3.94 2.81 1.96 1.45

CO1-SAPQ

k = 2;m = 3; N = 2; � = 3

4.52 4.23 4.00 2.74 1.95 1.35

Table 4.6: SDR (dB) performanes omparing the (k,N) COVQ, the (k,m,N) COPQ,

the (k,m,N ,�) COm-SAPQ, and the (k,m,N ,�) CO1-SAPQ, to the (k,N) LBGVQ,

with simmulated annealing, the (k,m,N) PQ, the (k,m,N ,�) m-SAPQ, and the

(k,m,N ,�) 1-SAPQ, at rate R = 1:0, using 200,000 memoryless Gaussian testing

samples and a simmulated BSC ross over probability �



.
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�



Quantizer 0:000 0:005 0:010 0:050 0:100 0:150

LBGVQ(+sim.annl.)

k = 2; N = 64

19.01 13.63 11.07 5.29 2.37 0.71

PQ

k = 1;m = 2; N = 8

14.64 12.01 10.39 5.01 2.25 0.57

m-SAPQ

k = 1;m = 2; N = 2; � = 4

16.65 12.82 10.74 4.85 2.09 0.48

1-SAPQ

k = 1;m = 2; N = 2; � = 4

17.26 12.87 10.74 4.74 1.97 0.38

1-SAPQ

k = 1;m = 4; N = 4; � = 4

19.71 13.42 10.98 4.55 1.69 0.05

COVQ

k = 2; N = 64

19.01 14.62 13.62 9.48 6.85 5.20

COPQ

k = 1;m = 2; N = 8

14.60 12.02 10.50 5.57 4.60 3.45

CO-m-SAPQ

k = 1;m = 2; N = 2; � = 4

16.64 14.30 12.75 8.45 6.10 4.66

CO-1-SAPQ

k = 1;m = 2; N = 2; � = 4

17.26 14.11 12.63 8.71 6.27 4.63

CO-1-SAPQ

k = 1;m = 4; N = 4; � = 4

19.71 15.27 13.94 9.52 6.91 5.21

Table 4.7: SDR (dB) performanes omparing the (k,N) COVQ, the (k,m,N) COPQ,

the (k,m,N ,�) COm-SAPQ, and the (k,m,N ,�) CO1-SAPQ, to the (k,N) LBGVQ,

with simmulated annealing, the (k,m,N) PQ, the (k,m,N ,�) m-SAPQ, and the

(k,m,N ,�) 1-SAPQ, at rate R = 3:0, using 200,000 Gauss-Markov testing samples

and a simmulated BSC ross over probability �



.
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�



Quantizer 0:000 0:005 0:010 0:050 0:100 0:150

LBGVQ(+sim.annl.)

k = 2; N = 16

13.56 11.30 9.86 4.82 2.18 0.57

PQ

k = 1;m = 2; N = 4

9.32 8.54 7.89 4.65 2.44 1.02

m-SAPQ

k = 1;m = 2; N = 2; � = 2

12.54 10.50 9.13 4.21 1.62 0.07

1-SAPQ

k = 1;m = 2; N = 2; � = 2

12.54 10.52 9.14 4.23 1.65 0.09

1-SAPQ

k = 1;m = 3; N = 2; � = 3

13.98 11.07 9.45 3.98 1.29 -0.26

COVQ

k = 2; N = 16

13.56 11.38 10.05 7.31 5.30 3.90

COPQ

k = 1;m = 2; N = 4

9.32 8.55 7.92 4.94 3.10 2.04

COm-SAPQ

k = 1;m = 2; N = 2; � = 2

12.54 10.78 9.74 6.32 4.60 3.44

CO1-SAPQ

k = 1;m = 2; N = 2; � = 2

12.54 10.79 9.74 6.33 4.60 3.44

CO1-SAPQ

k = 1;m = 3; N = 2; � = 3

13.98 11.78 10.69 7.12 5.37 3.98

Table 4.8: SDR (dB) performanes omparing the (k,N) COVQ, the (k,m,N) COPQ,

the (k,m,N ,�) COm-SAPQ, and the (k,m,N ,�) CO1-SAPQ, to the (k,N) LBGVQ,

with simmulated annealing, the (k,m,N) PQ, the (k,m,N ,�) m-SAPQ, and the

(k,m,N ,�) 1-SAPQ, at rate R = 2:0, using 200,000 Gauss-Markov testing samples

and a simmulated BSC ross over probability �



.
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�



Quantizer 0:000 0:005 0:010 0:050 0:100 0:150

LBGVQ(+sim.annl.)

k = 4; N = 16

10.21 9.10 8.26 4.50 2.13 0.59

PQ

k = 2;m = 2; N = 4

7.93 7.37 6.91 4.26 2.31 0.99

m-SAPQ

k = 2;m = 2; N = 2; � = 2

9.71 8.71 7.84 4.16 1.87 0.44

1-SAPQ

k = 2;m = 2; N = 2; � = 2

9.57 8.51 7.64 3.91 1.61 0.18

1-SAPQ

k = 2;m = 3; N = 2; � = 3

10.01 8.99 8.23 4.55 2.23 0.79

COVQ

k = 4; N = 16

10.21 9.15 8.30 6.20 4.63 3.40

COPQ

k = 2;m = 2; N = 4

7.93 7.37 6.93 4.51 2.90 1.93

COm-SAPQ

k = 2;m = 2; N = 2; � = 2

9.71 8.81 8.16 5.65 4.11 3.16

CO1-SAPQ

k = 2;m = 2; N = 2; � = 2

9.57 8.67 8.00 5.58 4.14 3.15

CO1-SAPQ

k = 2;m = 3; N = 2; � = 3

10.01 9.12 8.52 6.12 4.61 3.54

Table 4.9: SDR (dB) performanes omparing the (k,N) COVQ, the (k,m,N ,�) COm-

SAPQ, and the (k,m,N ,�) CO1-SAPQ, to the (k,N) LBGVQ, with simmulated an-

nealing, the (k,m,N) PQ, the (k,m,N ,�) m-SAPQ, and the (k,m,N ,�) 1-SAPQ, at

rate R = 1:0, using 200,000 Gauss-Markov testing samples and a simmulated BSC

ross over probability �



.
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�

d

Rate km Quantizer 0:000 0:005 0:010 0:050 0:100 0:150 omplexity storage

3.0 1

COSQ

k = 1; N = 8

14.50 12.00 10.47 5.63 4.66 3.48 8 8

2

COVQ

k = 2; N = 64

15.23 12.19 11.07 7.35 5.11 3.78 64 320

2

COm-SAPQ

k = 1; N = 2; � = 4

15.07 12.38 11.04 7.20 5.14 3.75 32 192

2

CO1-SAPQ

k = 1; N = 2; � = 4

13.59 11.54 10.29 6.48 4.35 3.13 32 96

4

CO1-SAPQ

k = 1; N = 4; � = 4

15.19 12.41 10.92 6.61 4.47 3.18 64 192

2.0 1

COSQ

k = 1; N = 4

9.28 8.50 7.86 4.85 3.04 1.99 4 4

2

COVQ

k = 2; N = 16

9.64 8.71 8.02 5.52 3.82 2.71 16 80

2

COm-SAPQ

k = 1; N = 2; � = 2

9.51 8.71 8.10 5.48 3.86 2.79 8 48

2

CO1-SAPQ

k = 1; N = 2; � = 2

8.72 8.04 7.50 5.16 3.61 2.50 8 24

3

CO1-SAPQ

k = 1; N = 2; � = 3

8.92 8.16 7.58 5.06 3.45 2.45 16 48

Table 4.10: SDR (dB) performanes, enoding omplexity and storage requirement

omparisons for the (1,N) COSQ, the (k,m,N ,�) COm-SAPQ, and the (k,m,N ,�)

CO1-SAPQ, at rates R = 2:0; 3:0, designed using 200,000 memoryless Gaussian train-

ing samples and BSC ross over probability �

d

.
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�

d

Rate km Quantizer 0:000 0:005 0:010 0:050 0:100 0:150 omplexity storage

3.0 1

COSQ

k = 1; N = 8

14.57 12.00 10.46 5.60 4.63 3.45 8 8

2

COVQ

k = 2; N = 64

19.03 14.50 13.58 9.36 6.80 5.13 64 320

2

COm-SAPQ

k = 1; N = 2; � = 4

16.62 14.22 12.75 8.43 6.07 4.62 32 192

2

CO1-SAPQ

k = 1; N = 2; � = 4

17.24 14.02 12.65 8.68 6.25 4.58 32 96

4

CO1-SAPQ

k = 1; N = 4; � = 4

19.72 15.31 13.85 9.51 6.88 5.19 64 192

2.0 1

COSQ

k = 1; N = 4

9.28 8.50 7.85 4.83 3.02 1.96 4 4

2

COVQ

k = 2; N = 16

13.54 11.39 10.04 7.27 5.27 3.82 16 80

2

COm-SAPQ

k = 1; N = 2; � = 2

12.50 10.76 9.71 6.26 4.53 3.37 8 48

2

CO1-SAPQ

k = 1; N = 2; � = 2

12.50 10.76 9.71 6.26 4.53 3.37 8 24

3

CO1-SAPQ

k = 1; N = 2; � = 3

13.95 11.81 10.68 7.08 5.21 3.93 16 48

Table 4.11: SDR (dB) performanes, enoding omplexity and storage requirement

omparisons for the (1,N) COSQ, the (k,m,N ,�) COm-SAPQ, and the (k,m,N ,�)

CO1-SAPQ, at rates R and dimension km, designed using 200,000 Gauss-Markov

training samples and BSC ross over probability �

d

.
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Figure 4.5: Graph of SDR (dB) performanes omparing the (k,N) COVQ, the

(k,m,N) COPQ, the (k,m,N ,�) COm-SAPQ, and the (k,m,N ,�) CO1-SAPQ at rate

R = 1:0, using 200,000 memoryless Gaussian testing samples and a simmulated BSC

ross over probability �
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Figure 4.6: Graph of SDR (dB) performanes omparing the (k,N) COVQ, the

(k,m,N) COPQ, the (k,m,N ,�) COm-SAPQ, and the (k,m,N ,�) CO1-SAPQ at rate

R = 2:0, using 200,000 memoryless Gaussian testing samples and a simmulated BSC

ross over probability �
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R = 1:0, using 200,000 Gauss-Markov testing samples and a simmulated BSC ross

over probability �
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Chapter 5

Conlusion

5.1 Summary of Work

In Chapter 2, we illustrated the neessary onditions for optimality of the vetor

quantizer and presented a design algorithm for VQ, namely the LBGVQ algorithm,

based on iterating over the neessary onditions for optimality. VQ design was then

extended to inlude hannel statistis, and the result was a joint soure-hannel oder

alled the hannel optimized vetor quantizer (COVQ). We then desribed the produt

quantizer (PQ) and its extension the hannel optimized produt quantizer (COPQ).

In Chapter 3 we introdued the sample adaptive produt quantizer (SAPQ) as

designed by Kim and Shro�. SAPQ was studied and numerial results were produed

to ompare SAPQ performanes with that of VQ and PQ. As a result, we saw that

there is a de�nite advantage of using m-SAPQ and 1-SAPQ over PQ and VQ, when

the soure is memoryless Gaussian, sine SAPQ attained performanes lose to that
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of VQ with half the enoding omplexity and lower storage requirements. For Gauss-

Markov soures we saw that for every VQ, we ould �nd a 1-SAPQ that outperforms

the VQ, while keeping the enoding omplexity equal to that of VQ, and having a

storage requirement less then that of VQ.

In Chapter 4, we extended the design of SAPQ to inlude hannel statistis. As

a results we designed a hannel optimized sample adaptive produt quantizer (COS-

APQ) whih was then tested and ompared to COVQ and COPQ. We disovered that

for memoryless Gaussian soures COm-SAPQ performed within 0.2 dB to COVQ,

and onverging to 0.05 dB as the hannel noise inreased. This performane of COm-

SAPQ was ahieved with half the enoding omplexity and lower storage requirements

then that of COVQ of the same rate. When the soure is Gauss-Markov we found that

CO1-SAPQ outperformed COVQ by 0.2-0.8 dB with the same enoding omplexity

but lower storage requirements. As the hannel got nosier CO1-SAPQ performanes

onverged to within 0.02 dB of COVQ, but still these performanes were ahieved

with less storage requirements then that of COVQ of the same rate.

5.2 Future Work

Future work on this thesis may inlude the study of other hannels suh as disrete

hannels with memory and BPSK-modulated Raleigh fading hannels. Improvements

in the design of the initial odebook is another possible diretion of future researh.



Appendix A

Distortion of COm-SAPQ

In the design of a COm-SAPQ, as formulated in (4.2), the distortion of a (k,m,N ,�)

COm-SAPQ is given by
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and hene we an manipulate
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