
Soft-Decision COVQ for M-ary PAM Modulated
AWGN and Rayleigh Fading Channels

by

Cynthia E. Thomas

A thesis submitted to the

Department of Mathematics and Statistics

in conformity with the requirements for

the degree of Master of Science (Engineering)

Queen’s University

Kingston, Ontario, Canada

October, 2005

Copyright c© Cynthia E. Thomas, 2005



Abstract

Developments in vector quantization based joint source-channel coding have pro-

duced codes which efficiently and reliably transmit data signals over noisy channels.

Further advancements through soft-decision decoding have shown improvements in

signal-to-distortion ratio (SDR) over hard-decoding. We present a q-bit soft decision

demodulator for the vector quantization of Gaussian and Gauss-Markov sources over

M -Pulse Amplitude Modulated (M -PAM) additive white Gaussian noise (AWGN)

channels and Rayleigh fading channels. Observations are made on the transition

probability matrix of the equivalent channel corresponding to the concatenation of

the modulator, physical channel and soft-decision demodulator. Gains of almost 0.5

and 0.45 dB in SDR are noted for the AWGN channel and the Rayleigh fading chan-

nel, respectively. We observe that most of the gain is achieved by increasing the

demodulator resolution from q = 1 to q = 2, and that the gain is negligible for q > 2.

Our system has a higher storage requirement at the decoder to store codewords. The

system’s decoding complexity is dependent on q but is still lower than other soft

decoding schemes.
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Chapter 1

Introduction

In modern-day communications, typical problems faced by communication engineers

involve data compression and signal protection against noise. The goals of an engineer

are to minimize the overall distortion and maximize the performance of a system, all

the while negotiating complexity and storage. Finding a reliable means of sending

data whilst remaining efficient continues to be the motivation of many researchers.

Data compression allows information to be represented efficiently, beneficial to both

the transmission and storage of the data. The transformation of data into an efficient

form by removing redundancies is called source coding. The removal of such redun-

dancies can cause the data to become more vulnerable to channel noise or storage

device errors. Channel coding aims to make signals robust, often by adding controlled

redundancy.

1



CHAPTER 1. INTRODUCTION 2

1.1 Literature Review

Typically, data is passed through a source encoder followed by channel encoder, to

apply source and channel coding, respectively. The independent and separate design

and treatment of data in preparation for transmission is called a tandem system.

Shannon’s separation principle justifies the optimality of a tandem system through the

following theorems. Shannon’s source coding theorem says that allowing distortion

D, the minimum rate needed to represent the source is R(D) bits per sample, also

known as the rate-distortion function. Shannon’s channel coding theorem states that

if the transmission rate R is less than the capacity of the channel C, then there

exists a channel code with this rate whose probability of error approaches zero for a

large enough block length n. On the other hand, if R > C, the probability of error is

bounded away from zero for any channel code [9]. Unfortunately, optimality comes at

the cost of very large (unbounded) block length, and in turn, very large (unbounded)

encoding/decoding delay.

In practical systems where delay and complexity are limited, joint source-channel

coding outperforms tandem coding systems, especially vector quantizers designed for

noisy channels [25]. Combining source and channel coding may also be simpler for

design and implementation [3].

The development of channel optimized vector quantization (COVQ) started with

the necessary conditions for minimizing the squared-error distortion measure for scalar

quantizers, which were established by Lloyd [22] and Max [24]. The design of quantiz-

ers was extended to k-dimensional vectors, known as vector quantizers [23]. Kurten-
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bach and Wintz incorporated channel noise into the design of scalar quantizers in [20].

This work was extended to vector quantizers by Kumazawa et al. [19]. This design

scheme eventually became known as COVQ. Farvardin and Vaishampayan [14], who

studied the complexity of COVQ, found that the encoding complexity is proportional

to the number of encoding regions, which is lower than the codebook size for noisy

channels.

Recent works by Alajaji and Phamdo [1], [25] presented a soft-decision COVQ sys-

tem which shows performance gain over hard-decision decoding (basic COVQ). The

scheme has a higher encoding complexity than COVQ, and higher storage require-

ment. On the other hand, their scheme has a lower encoding complexity compared to

other soft-decision schemes such as the Hadamard-based soft decoding of Skoglund

[28]. Skoglund [30] also presented a suboptimal soft decoding scheme which lowers

encoding/decoding complexity.

1.2 Contributions

The contributions of this thesis are as follows:

1. A soft-decision COVQ system is designed for both M -ary Pulse Amplitude

Modulated (M -PAM) additive white Gaussian noise (AWGN) and Rayleigh

fading channels. The work of Alajaji and Phamdo in [1] and [25] is extended to

include any number of constellation signals M = 2h, h ∈ N, in one dimension.

The design includes the channel transition probability matrix, contingent on the

number of M-ary PAM signals, channel model, and soft-decision demodulator.
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2. The numerical results of the soft-decision COVQ system were obtained and com-

pared to hard-decision decoding (basic COVQ). Results in the form of capacity

values and signal-to-distortion ratio (SDR) are presented for varying constella-

tion sizes, source vector dimension k, and COVQ rate r, for both AWGN and

Rayleigh fading channels. Results for both memoryless Gaussian and Gauss-

Markov memory sources are presented.

1.3 Thesis Outline

The following thesis chapters are organized as follows. In Chapter 2, we begin by

stating source and channel models to be used in our system design. We continue

by introducing some terminology and concepts from information theory. We dis-

cuss quantizers and recall their necessary conditions for optimality. Additionally in

Chapter 3, we study COVQ and techniques for codebook initialization. Previously

studied soft-decision decoding algorithms are presented, followed by a summary of

Blahut’s algorithm for calculating capacity. In Chapter 4, we present the design of

our soft-decision COVQ system for M-ary PAM modulated channels, including the

channel transition probability matrix for both AWGN and Rayleigh fading channels.

We present the numerical results of our soft-decision COVQ system and discuss their

implications in Chapter 5. Capacity values of our system are tabulated against hard-

decision COVQ values. Performances measured in SDR are plotted to show gains

in our soft-decision design over hard-decision COVQ. Finally, we conclude the thesis

with closing remarks in Chapter 6.



Chapter 2

Background

2.1 Source and Channel Models

A source is thought to be the producer of signals which may be in the form of a

sequence or waveform. A discrete memoryless source (DMS) can be represented

mathematically by a random variable V , with finite alphabet V and probability mass

function p(v) = Pr{V = v}, v ∈ V. A discrete random process is a sequence of

random variables {Vt; t ∈ T }, indexed according to time T = {0, 1, 2, . . .}. A discrete

time process is said to be independent and identically distributed (i.i.d.) if each sample

in the sequence has the same distribution function and all samples are independent.

A source with a continuous alphabet is said to be Gaussian if the samples in the

sequence are Gaussian random variables. Thus, each sample is drawn according to

the Gaussian probability density function (pdf), V ∼ N (µ, σ2):

fV (v) =
1√

2πσ2
e−(v−µ)2/2σ2

5
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where µ is the mean and σ2 is the variance of V . In this thesis, the memoryless source

considered is the Gaussian source.

A source where a sample is dependent on previous samples is said to have memory.

One such example is the first order Gauss-Markov source, of the form

Vt = ρVt−1 +
√

1 − ρ2Nt

where Vt represents the Gauss-Markov source at time t, ρ is the correlation coefficient

such that 0 ≤ ρ < 1, and the {Nt} are i.i.d., Nt ∼ N (0, σ2). The source with memory

used in this thesis is the first order Gauss-Markov source. We will see that our scheme

outlined in Chapter 4 and others [1] have a better gain for sources with memory, due

to redundancy in the source.

A source is said to be stationary if the joint distribution of any subset of the

sequence of random variables is invariant under time shifts; i.e.,

Pr{V1 = v1, V2 = v2, . . . , Vn = vn} = Pr{V1+m = v1, V2+m = v2, . . . , Vn+m = vn}

for any time shift m and all v1, v2, . . . , vn ∈ V. In this thesis, stationary sources are

assumed.

A discrete communication channel is a system with a finite input alphabet X ,

finite output alphabet Y, and transition distribution p(y|x). The distribution p(y|x)

represents the probability of receiving output symbol y, given input symbol x was

sent [9]. Typically, the transition probabilities are stored in a channel transition prob-

ability matrix. Figure 2.1 shows a block diagram of such a communication channel.

The encoder and decoder blocks in the diagram represent several possible operations

applied to the source which will be discussed in the upcoming sections. Without
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Encoder
Channel
p(y|x) Decoder- - - -

V V̂Xn Y n

Source Estimate
of source

Figure 2.1: A communication channel.

loss of generality, for transmitted sequence X = (X1, X2, . . . , Xn) and corresponding

output sequence Y = (Y1, Y2, . . . , Yn), the channel transition probability matrix can

be written as the n-dimensional distribution

p(y|x) , Pr{Y = y|X = x}, x ∈ X n, and y ∈ Yn. (2.1)

Also generally speaking, the input and output alphabets do not necessarily have the

same size. Thus, transition probabilities may be stored in matrices that are not

necessarily square, as in our soft-decision demodulation scheme.

A discrete memoryless channel (DMC) has output symbols that are only statisti-

cally dependent on the corresponding input symbols at the time of transmission. It

is independent of symbols previously sent or received. For example, the probability

function of receiving symbol yk, given symbol xk was sent, at time k is

p(yk|x1, . . . , xk, y1, . . . , yk−1) = p(yk|xk). (2.2)

Also, if the channel does not have feedback, the channel input symbols do not

depend on past output symbols. Thus, the channel transition probability of a discrete

memoryless channel without feedback is given by

p(y|x) =

n
∏

k=1

p(yk|xk). (2.3)
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Herein, when referring to a DMC, the discrete memoryless channel without feedback

with finite input and output alphabets is implied.

2.1.1 AWGN Channel

One widely-known channel model that emulates the physical characteristics of a chan-

nel is the additive white Gaussian noise (AWGN) channel, shown in Figure 2.2. It is

a time-discrete channel with continuous input and output alphabets. Its output at

time t is simply defined as

Yt = Xt + Nt, Nt ∼ N (0, σ2). (2.4)

The noise Nt is assumed to be independent of the sent signal Xt and has a Gaussian

distribution with variance σ2. The AWGN channel is useful for modeling radio and

satellite communication channels, though it does not describe distortion due to fading.

-

��
��
+ -

Xt Yt
?

Nt

Figure 2.2: The Gaussian channel.
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2.1.2 Rayleigh Fading Channel

Another channel model representing the physical effects of communication channels

is the Rayleigh fading channel. Typically, signal fading occurs due to multipath

propagation in mobile communication. Thus, an attenuation factor At denotes the

fading that may occur to a signal. The Rayleigh fading channel is represented by

Yt = AtXt + Nt. (2.5)

The noise component Nt has a Gaussian distribution with zero-mean and σ2 vari-

ance, just like the AWGN channel. The attenuation factor At has a Rayleigh distri-

bution whose pdf is given by

fA(a) =















2ae−a2
, if a > 0

0, otherwise.

(2.6)

Note that {Nt} and {At} are i.i.d. processes that are independent of each other, and

independent of {Xt} as well. Also note that E[Ai
2] = 1.

2.2 Fundamentals from Information Theory

The first important concept from information theory is entropy. Entropy represents

the amount of uncertainty of a random variable. The entropy H(X) of a discrete

random variable X is defined as [9]

H(X) = −
∑

x∈X
p(x) log p(x), (2.7)

where the probability mass function p(x) = Pr{X = x}, x ∈ X .
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This definition leads us to Shannon’s first coding theorem - the lossless source

coding theorem. According to Shannon’s Source Coding theorem, if H is the entropy

of a discrete memoryless source, then the source output sequences can be represented

without any loss of information by binary sequences of varying length with an average

length arbitrarily close to, but not fewer than H binary digits per source digit [16].

Thus, the entropy of a source can represent the ultimate lossless data compression

rate.

For sources with memory, such as Markov sources, the entropy rate describes

how the entropy of a sequence grows with n when the sequence contains n random

variables. Formally, the entropy rate of a source {Xi} is defined as [9]

H{Xi} = lim
n→∞

1

n
H(X1, X2, . . . , Xn) (2.8)

when the limit exists. Note, in the i.i.d. case, that H(X1, X2, . . . , Xn) = nH(X1),

thus H{Xi} = H(X1).

The single most important parameter in communication theory is channel capac-

ity. The capacity of a channel describes the ultimate transmission rate per channel

use and can be made a mathematical entity from the noise characteristics of the

channel.

In order to understand the definition of channel capacity, one must be introduced

to the mutual information between two random variables X and Y . Suppose X is the

random variable at the channel input, and Y is the received random variable. The

mutual information is defined as the relative entropy between the joint distribution
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p(x, y) and the product distribution p(x)p(y), such that

I(X; Y ) =
∑

x∈X

∑

y∈Y
p(x, y) log

p(x, y)

p(x)p(y)
. (2.9)

In terms of the entropy and the conditional entropy of the random variable X,

the mutual information between X and Y can be written as

I(X; Y ) = H(X) − H(X|Y ) (2.10)

where H(X|Y ) = −∑x∈X
∑

y∈Y p(x, y) log p(y|x) is the conditional entropy of X,

given Y .

This equation form allows us to interpret the mutual information between the

channel input X and output Y as the average amount of uncertainty in X resolved

by the observation of the outcome Y [16]. Thus, mutual information can represent

a measure of the amount of information transferred between a channel’s input and

output.

This leads us to the definition of capacity. The capacity C of a DMC is defined as

the largest mutual information I(X; Y ) that can be transmitted over the channel in

one use, maximized over all input probability assignments. Written mathematically,

C = max
p(x)

I(X; Y ) (2.11)

where the maximum is taken over all possible input distributions p(x). The above

definition is specifically the “information” capacity. The rate R is the number of bits

per transmission and is called achievable if information can be sent at rate R with an

arbitrarily low probability of error. The “operational” capacity of a channel is defined
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as the supremum of all achievable rates. Shannon’s second theorem confirms that the

“information” channel capacity is equal to the “operational” channel capacity [9].

Now that we have defined capacity and rate, we must understand the usefulness of

such parameters in communication. Shannon presented the channel coding theorem

in his 1948 paper [26] which states a benchmark for reliable transmission rates over

noisy channels. The channel coding theorem states that for each fixed rate R < C,

there exists a code of such rate with arbitrarily small probability of error.

In most cases, (2.11) does not have an analytic solution for the maximizing p(x).

In his 1972 paper [7], Blahut presents an algorithm for computing channel capacity

using numerical techniques. The algorithm finds channel input probability vectors it-

eratively until the sequence of probability vectors converges to the vector that achieves

capacity. The algorithm will be described in more detail in Section 3.4.

For non-discrete sources, the source sequence cannot be precisely reconstructed

using a finite number of bits. In order to evaluate an encoder for such a source,

both the encoding rate and some distortion measure must be taken into account.

The number of bits per source sample (i.e. the encoding rate) will depend on the

allowable distortion. A distortion measure is defined as a mapping

d : X × X̂ → R
+ (2.12)

from the source alphabet-reproduction alphabet pairs into the set of non-negative real

numbers [9], where the reproduction alphabet is denoted by X̂ . Thus, the distortion

measure denoted by d(X, X̂) measures the cost of representing the source X by its

estimate X̂, where X̂ is chosen from X̂ .
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The study of the minimum expected distortion at a particular rate is called rate

distortion theory. Rate distortion theory is pertinent to all lossy coding schemes (i.e.

those that allow distortion, thus cannot perfectly recover the original signal).

The rate distortion function R(D) is defined as the infimum of rates R achievable

at a given distortion D [9], where D is the expected distortion with respect to the

probability distribution of X. The information rate distortion function of a discrete

memoryless source X with given distortion measure d(X, X̂) is defined as [9]

R(I)(D) = min
p(x̂|x) :

P

(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D
I(X; X̂), (2.13)

where the minimization is over all conditional distributions p(x̂|x) for which the joint

distribution p(x, x̂) = p(x)p(x̂|x) satisfies the distortion constraint [9].

The information distortion rate function is defined as

D(I)(R) = min
p(x̂|x) : I(X;X̂)≤R

E[d(X, X̂)]. (2.14)

Shannon’s rate distortion theorem states that for an i.i.d. source X with distribu-

tion p(x) and bounded distortion function d(x, x̂), the rate distortion function R(D)

is equal to the information rate distortion function R(I)(D) [9].

2.3 Source and Channel Coding

As stated earlier, a communication system transmits data from a source to a destina-

tion. Before the data is sent over a channel, it may be transformed into an efficient

and/or reliable form through an encoder. After the signal is sent over the channel,

it is received and processed through a decoder, which attempts to reproduce the sent
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data as close as possible to the original. A generic view of a communication system

is shown in Figure 2.1. The encoder and decoder blocks could represent a host of

processes which compress, protect, and retrieve the data, while the channel block

could represent a noise disturbance model.

Two possible procedures encapsulated by the encoder block are source and channel

coding. Source coding consists of compressing data from the source output in order to

minimize the number of channel uses needed to transmit information. Channel coding

prioritizes accurate signal reproduction at the receiver. By dividing the encoder into

these two categories, we can view the system as a tandem communication system,

where source coding is first applied to the source output, followed by channel coding.

A block diagram of a tandem source-channel coding system is shown in Figure 2.3.

The optimality of separately-designed source and channel coders in a tandem system

is justified through Shannon’s source-channel separation principle [26], [27]. The con-

straints of Shannon’s source and coding theorems render large delay and complexity,

in practice.

Source
Encoder

Channel
Encoder

Channel
p(y|x)

Channel
Decoder

Source
Decoder

- - - - - -

V n W n Xn Y n Ŵ n V̂ n

Message Estimate
of message

Figure 2.3: A communication system with tandem encoding and decoding.
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2.4 Source Coding

Source signals are typically transmitted over communication channels or stored in

media, but initially must be transformed into a suitable form. Source coding extracts

vital information from source signals, either analog or digital, by removing redundan-

cies in the data. Representing the original signal as a binary sequence prepares it for

transmission or storage. Source coding is also known as signal compression.

There are two kinds of signal compression: lossy and lossless. Lossy compression

introduces a tolerable amount of distortion in order to achieve beneficial compression

rates; thus, it cannot perfectly reproduce the signal. Lossless compression does not

introduce any distortion; therefore, the precise original signal is recovered. Lossy

compression is inevitable when an analog or non-discrete source must be converted

into a digital form. Digital data is more reliable than analog data for transmission

over noisy channels when detection techniques such as matched filters are used [17].

Lossy compression can be achieved by sampling the source, quantizing the samples,

and converting the quantized samples into binary data. Quantization is one of the

most important and developed forms of lossy compression. Its advancements are

discussed in upcoming sections.

Mathematically speaking, the two types of compression can be determined by the

type of source redundancy removed. Lossless compression tackles statistical redun-

dancy - the redundancy due to a source’s non-uniform distribution, source memory,

or both. Lossy compression exploits both statistical and non-statistical redundancies.

Examples of non-statistical data include frequencies not captured by the human eye
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and ear in images and sound, respectively.

Statistical redundancy is related to the entropy or the entropy rate of the source

[8]. The total statistical redundancy can be expressed as

ρtot = log2 |X | − H{Xi} (2.15)

and can also be written as

ρtot = ρdist + ρmem (2.16)

where ρdist = log2 |X | − H(X1) is the redundancy due to a source’s non-uniform

distribution, while ρmem = H(X1)−H{Xi} is the redundancy due to source memory,

and H{Xi} is the entropy rate.

A useful tool in analyzing lossy compression is the rate-distortion function. To

recapitulate, the rate distortion function gives a measure for the minimum number

of bits required to allow a particular distortion.

2.4.1 Scalar Quantization

Quantization is the basis for analog-to-digital conversion. Simply speaking, quantiza-

tion is a type of lossy compression that takes a single number and selects the nearest

number from a predetermined finite set.

An N -point scalar quantizer Q is a mapping, typically from the real line R to a

finite set of values C, such that

Q : R → C. (2.17)
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The output set or codebook C is

C = {y1, y2, . . . , yN} ⊂ R (2.18)

and has size |C| = N . The elements or yi’s in the codebook are also known as output

points or codewords.

Every N -point quantizer has N quantization cells that form a partition of the real

line R. The quantization cells Si, i = 1, 2, . . . , N are described as

Si = {x ∈ R : Q(x) = yi} ≡ Q−1(yi), i = 1, 2, . . . , N. (2.19)

The important properties of the cells are

N
⋃

i=1

Si = R (2.20)

and

Si

⋂

Sj = ∅ for i 6= j. (2.21)

One important parameter of a scalar quantizer is the rate R, defined as

R = log2 N (2.22)

and it represents the number of bits needed to identify a specific quantized output.

Every quantizer can be viewed as two successive mappings: the encoder followed

by the decoder. The encoder-decoder structure of the N -point quantizer Q is shown

in Figure 2.4.

The encoder is defined as the mapping γ such that

γ : R → I where γ(x) = i iff x ∈ Si (2.23)
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Decoder
β(y)

- -

i yi

Encoder
γ(x)

- -

x i

Figure 2.4: Quantizer encoding and decoding structure.

where I = {1, 2, . . . , N} and the decoder β is defined as

β : I → C where β(i) = yi. (2.24)

Thus, a scalar quantizer can be completely defined by its codebook C and partition

{Si}.

In order to assess the performance of a quantizer, the overall quality degradation

can be quantified using a variety of distortion measures. The most popular distortion

measure is the squared error defined by

d(x, y) = (x − y)2. (2.25)

In general, the statistical average (expected) distortion is defined as

D = E[d(X, Q(X))] =

∫ ∞

−∞
d(x, Q(x))fX(x) dx (2.26)

where fX(x) is the pdf of X. The statistical average of the squared error distortion

measure, for a given input random variable X and N -point quantizer

Q = {yi, Si; i = 1, 2, · · · , N}, can be written as

D = E[(X − Q(X))2] =
N
∑

i=1

∫

Si

(x − yi)
2fX(x) dx. (2.27)
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The average squared error distortion measure is the most popular performance mea-

sure for a quantizer and is used in our design of a soft-decision channel-optimized

vector quantizer, outlined in Chapter 4.

If the input sequence is stationary and ergodic, and the statistical average dis-

tortion has value D, then the ergodic theorem implies with probability one, that the

limiting time average distortion is D, or [17]

lim
n→∞

1

n

n
∑

i=1

d(Xi, Q(Xi)) = D. (2.28)

Conditions for Optimality

From an engineering stand-point, improving performance is of the utmost impor-

tance. Since the rate function R is fixed for a scalar quantizer, the distortion is the

main focus. The distortion function is a single expression indicative of the signal

degradation due to quantization. Since the input is unknown, the source is assumed

to be a random variable, usually described by its pdf.

The goal of the scalar quantizer design is to minimize the distortion D, given a

fixed number of output levels N and a particular source pdf. The optimal quantizer

is hoped to be achieved by appropriately picking the reproduction levels yi and the

partition cells Si. In general, there are no known closed-form solutions to find the

optimal quantizer, but there are necessary conditions for optimality. Finding a par-

tition {Si} allows the quantizer to have an encoding rule, while a codebook C gives

the quantizer a decoding rule. Again, since there are no closed-form expressions for

optimality, the best we can do is optimize one rule, given the other one is provided.

The two necessary conditions for optimality were observed independently by Lloyd,
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originally in 1957 [22], and Max in 1960 [24]. Max states that to minimize D for fixed

N , the necessary conditions are derived by differentiating D with respect to endpoints

of the partition cells and output levels, then setting the equations equal to zero [24].

The first condition is the nearest neighbour condition, which produces the optimal

partition, given the codebook already exists.

Nearest Neighbour Condition

For a given codebook C with N output levels, the optimal partition cells satisfy

Si = {x : d(x, yi) ≤ d(x, yj); for all j 6= i}, ∀i (2.29)

so that the mapping Q becomes

Q(x) = yi if d(x, yi) ≤ d(x, yj) for all j 6= i, (2.30)

where the distortion function d(x, yj) could represent any distortion measure, includ-

ing the square Euclidean distance measure. For a quantizer with a finite output set,

the indexing of interval endpoints {xi} and output values {yi} are assumed to be

ordered according to

x0 < y1 < x1 < y2 < x2 < · · · < yN < xN . (2.31)

For square or absolute error, the endpoint of the partition cell that is implied by the

nearest neighbour rule is the midpoint between two output levels [24], i.e.,

xi = (yi + yi+1)/2, (2.32)

where xi represents the endpoint between cell Si and Si+1. To fully complete the

encoding rule, an arbitrary assignment rule is necessary for points on the cell bound-

ary, since the average distortion will not be affected [17]. A typical solution for
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boundary cell assignment is to define the partition cell as a half-closed interval, like

Si = {x : xi < x ≤ xi+1}.

The second necessary condition for optimality is the centroid condition, which

specifies the reproduction levels or codebook, given a partition.

Centroid Condition

For a given partition P = {Si; i = 1, . . . , N}, the optimal output levels, with

respect to the mean squared error (MSE) for a noiseless channel, satisfy

yi = cent(Si) =

∫

Si
xfX(x) dx

∫

Si
fX(x) dx

(2.33)

= arg min
yi

E[‖X − yi‖2|X ∈ Si] for all i = 1, . . . , N. (2.34)

Quantizers obeying the previous conditions are usually called Lloyd-Max quantiz-

ers. Additional conditions for optimality were given by Lloyd for the scalar quantizer

case with a discrete alphabet [17].

Generally, the two necessary conditions stated above are not sufficient. In specific

cases, the conditions can be shown to be sufficient, for example when log fX(x) is a

concave function of its argument [15]. One random variable with such a pdf is the

Gaussian random variable.

The design algorithm used to create quantizers is based on the two necessary

conditions for optimality derived by Lloyd, and also by Max [17]. The basic iteration

of the algorithm creates a new codebook, improving upon the older one. The Lloyd

algorithm, as outlined in [17], follows.
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Lloyd algorithm

Step 1. Begin with the initial codebook C1. Set m = 1.

Step 2. Given the codebook Cm, perform the following Lloyd iteration to generate

the improved codebook Cm+1:

• Given the codebook Cm = {yi}, find the optimal partition using the Nearest

Neighbour Condition:

Si = {x : d(x, yi) ≤ d(x, yj); for all j 6= i}.

• Using the Centroid Condition, compute the centroids for each of these cells

to create a new codebook Cm+1 = {cent(Si), i = 1, . . . , N}.

Step 3. Compute the average distortion for Cm+1. If it has changed by a small

enough distortion since the last iteration, then stop; else increment m by 1 and

go to step 2.

The centroid condition calls for the expectation operation, thus implying the source’s

pdf is known. For the case when it is not, the following result for empirical data

applies. By the strong law of large numbers, the empirical cdf converges with prob-

ability one to the actual cdf of the random input variable for n sufficiently large,

where n is the number of training points [17]. Thus, the Lloyd iteration can be used

to produce a quantizer that is nearly optimal for the true distribution of the input

random variable.
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2.4.2 Vector Quantization

Vector Quantization (VQ) generalizes the scalar case to allow the quantization of vec-

tors instead of quantizing just a real number. It extends the one-dimensional design

concept to multiple dimensions. A vector quantizer maps a sequence of continuous

or discrete vectors to a predetermined set of vectors, or codevectors. A typical use

for VQ is data compression, including image and audio data.

Vector quantization shows vast improvements in performance over scalar quanti-

zation, even if the source is memoryless [18, p.4]. The performance of VQ tends to

the rate-distortion bound as the block length approaches infinity [23]. Indeed, this is

not possible in practice but necessary conditions for optimality were extended from

the scalar case to apply to vector quantizers.

A k-dimensional vector quantizer Q is defined as a mapping of a vector in the

k-dimensional Euclidean space R
k to a finite set or codebook C = {yi, i = 1, . . . , N},

with N reproduction vectors, otherwise known as codewords. Thus, the vector quan-

tizer Q can be expressed as the mapping

Q : R
k → C. (2.35)

Every N -point VQ partitions the k-dimensional Euclidean space R
k into N cells

or regions. The i-th cell is defined as Si = {x ∈ R
k : Q(x) = yi}. Thus, the partition

P = {Si; i = 1, . . . , N} is a set of mutually exclusive subsets that cover R
k. With this

notation, the mapping Q(·) can also be written as

Q(x) = yi if x ∈ Si (2.36)
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and the partition P satisfies

⋃

i

Si = R
k, and Si

⋂

Sj = ∅ when i 6= j. (2.37)

One important measure of VQ performance is the rate function, which is defined as

R =
1

k
log2 N, (2.38)

otherwise known as the encoding rate with unit bits per source sample. Similar

to the scalar quantizer, a VQ can be regarded as a cascade of two operations: the

vector encoder and vector decoder operations. The encoder operation γ maps a vector

from R
k to the index set {1, 2, . . . , N}, defining the mapping as γ(x) = i if x ∈ Si.

Sequentially, the decoder mapping β maps the index set to the codebook C with the

mapping β(i) = yi for i ∈ {1, 2, . . . , N} and yi ∈ C. The overall operation is described

by

Q(x) = β(γ(x)). (2.39)

VQ Optimality Conditions

The typical single letter distortion commonly used to measure VQ performance

is the squared error distortion. This per-letter distortion function calculates the

squared Euclidean distance between the source and quantized vectors and is defined

for x = (x1, . . . , xk) and y = (y1, . . . , yk) as

d(x,y) = ‖x − y‖2

=
k
∑

i=1

|xi − yi|2. (2.40)
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Given X is a random vector in R
k with a particular pdf fX(X), the average

distortion per sample for a particular VQ with a defined partition set and codebook

can be expressed as

D =
1

k
Ed(X, Q(X)) =

1

k

∫

Rk

d(x, Q(x)) fX(x) dx, (2.41)

=
1

k

N
∑

j=1

∫

Sj

d(x,yj) fX(x) dx, (2.42)

=
1

k

∫ N
∑

j=1

P (X ∈ Sj)d(x,yj) fX|j(x) dx, (2.43)

=
1

k

N
∑

j=1

P (X ∈ Sj)E[d(x,yj)|X ∈ Sj]. (2.44)

The goal of designing a VQ is to find a codebook and a partition set to improve the

overall performance, which can be assessed as one which minimizes distortion. Similar

to the scalar case, Linde et al. proposed a solution to finding an at least locally optimal

VQ through an iterative algorithm [23]. The algorithm is typically called the LBG

or the Generalized Lloyd-Max algorithm. It extends the necessary conditions for

optimality of the scalar quantizer case, and also uses them in the iterative algorithm.

In vector form, the necessary conditions for optimality are stated below.

Nearest Neighbour Condition

For a given codebook C with N k-dimensional reproduction vectors, the optimal

partition cells satisfy

Si = {x : d(x,yi) ≤ d(x,yj); for all j}, (2.45)

such that the mapping Q becomes

Q(x) = yi if d(x,yi) ≤ d(x,yj) for all j, (2.46)
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where the distortion function d(x,yj) could represent any distortion measure, includ-

ing the squared error distortion measure. The partition cell defined in the nearest

neighbour condition is also called a Voronoi region [17].

The second necessary condition for optimality in a VQ is the centroid condition,

which specifies the codevectors, or reproduction levels, given a partition.

Centroid Condition

For a given partition P = {Si; i = 1, . . . , N}, the optimal codevectors that mini-

mize the squared error distortion measure for a noiseless channel satisfy

yi = cent(Si) =

∫

Si
xfX(x) dx

∫

Si
fX(x) dx

(2.47)

= arg min
yi

E[‖X − yi‖2|X ∈ Si] for all i = 1, . . . , N. (2.48)

Note that in both necessary conditions for optimality of a VQ, the equations

simplify to those of the scalar quantizer case when the dimension of the vector is one,

i.e. k = 1. Though these two conditions are necessary for the optimality of a VQ,

they are not sufficient.

An iterative algorithm based on the necessary conditions for the optimality im-

proves the codebook, and hence the performance of VQ, and is the generalization

of Lloyd’s method for designing scalar quantizers [23]. The algorithm improves the

codebook and partition set based on a training sequence and is identical to the scalar

case, except vectors are used in place of real numbers.

The codebook that is used at the beginning of the algorithm presents another

discussion. Linde et al. use what they call a ‘splitting’ algorithm that shows improve-
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ment on the performance of an LBG-VQ compared to an arbitrary initial codebook.

This and other techniques for developing the initial codebook are discussed in Chap-

ter 3. The Generalized Lloyd-Max algorithm involves exhaustive codebook searches

which significantly contribute to the complexity of the algorithm. Gray [18] out-

lines alternate VQs which trade off performance to reduce computation or memory

requirements. Typically, these types of algorithms use suboptimal codebooks, encod-

ing rules, or constrained code structures to ease the searching or lessen the memory

required at the price of suboptimal performance. Examples of these VQs include

Tree-searched VQs, Multistage VQ, Product codes, and Lattice VQ.

2.5 Channel Coding

The primary purpose of source coding is to remove redundancies from the source

signal in order to compress it. On the other hand, channel coding adds controlled

redundancy to signals before they are transmitted over presumably noisy channels.

The purpose of channel coding is to protect the most vulnerable data from distortion

caused by channel noise. Channel codes are also referred to as error correcting codes,

and are generally categorized into block codes and convolutional codes. Block codes

combine data bits and redundant parity bits to create codewords. Convolutional codes

are described by their generator sequences or impulse responses, which are used to

generate the discrete-time convolution of the input data sequence [31]. Both types of

channel codes have practical applications in mobile communications.



Chapter 3

VQ-Based Joint Source-Channel

Coding

Though Shannon’s fundamental result allows the separation of source and channel

coding in order to achieve the optimal compression and transmission rates, these

limits are only achievable with very large block length, and thus, very large en-

coding/decoding complexity. Motivation for investigating joint source and channel

coding is drawn from avoiding complexity due to separately optimizing source and

channel coders. Methods of tackling the combined coding problem are modifying the

Lloyd-Max algorithm or assigning binary codewords to VQ codewords. Dunham and

Gray [10] proved that joint source and channel trellis encoding systems can perform

arbitrarily close to the source distortion-rate function at the channel capacity but

with no indication of how to design a trellis encoding system [3]. Ayanoglu and Gray

[3] applied joint source and channel coding to trellis waveform coders by using the

generalized Lloyd-Max algorithm. By using the squared error distortion measure and

28
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operating over an AWGN channel, Ayanoglu and Gray found jointly optimized codes

performing close to or better than optimized tandem systems under the same trellis

code conditions.

Kurtenbach and Wintz [20] incorporate source and channel coding where they ad-

dress the sources of error in the system and find the quantization levels that minimize

the total MSE. Kurtenbach and Wintz combine source and channel coding by extend-

ing the necessary conditions for optimality by Lloyd and Max for scalar quantization

to incorporate channel noise. The quantizer structure presented in [20] minimizes

the squared error distortion for any probability density on the input data fX(x) and

channel transition probability matrix p(y|x). Using notation from [20], the squared

error distortion of a scalar quantizer for noisy channels can be written as

ε2 = E(x − z)2 (3.1)

= ε2
q + ε2

c + εm (3.2)

where ε2
q represents the distortion due to representing x as quantization level y, ε2

c

represents the cost of making incorrect decisions at the receiver by choosing z instead

of y, and finally, εm is the mutual error. Totty and Clark [33] express these sources

of error mathematically as

ε2
q = E(x − y)2 (3.3)

ε2
c = E(y − z)2 (3.4)

εm = 2E[(x − y)(y − z)]. (3.5)

Totty and Clark also show that the mutual error εm vanishes when the quantizer levels

are chosen according to the optimal conditions from Max that minimize the squared
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error distortion. Kumazawa et al. [19] extend the scalar quantizer for noisy channels

to the case of vector quantizers. Their results are presented in the next section.

One method of improving quantizer performance is to incorporate the channel

transition matrix into the design of the quantizer, as previously discussed. Another

method is to systematically assign binary codewords to the reproduction vectors of a

VQ. This is also known as index assignment. It has been shown that index assignment

has an impact on system performance [12], and specifically, it improves performance

over randomly selected codewords [14].

3.1 Channel Optimized Vector Quantization

Joint source and channel coding has shown performance improvements over tan-

dem source and channel coders. Specifically, channel optimized vector quantization

(COVQ) incorporates channel knowledge into the design of the vector quantizer.

Basically, in the design of a COVQ, the source is described through its pdf and the

channel is described through the channel transition probability matrix. For the noise-

less channel, the transition matrix is the identity matrix, which reduces to the vector

quantization results.

Kurtenbach and Wintz [20] incorporated the channel information into the design

of a scalar quantizer. Kumazawa et al. [19] presented the multidimensional general-

ization of Kurtenbach and Wintz’s work when they designed a vector quantizer for

noisy channels.

Assume the source to be encoded is a real-valued, stationary, and ergodic process
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COVQ
Encoder

Channel
IA DMC

COVQ
Decoder

- - - - -
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k i b(i) j Y ∈ R

k

Figure 3.1: The COVQ system with channel index mapping.

{Xt; t = 0, 1, . . .} with zero-mean and variance σX
2. The source is to be encoded

via a vector quantizer and sent over a noisy channel. Consider a k-dimensional N -

level VQ and a DMC with input and output alphabets I = {1, 2, . . . , N} and J =

{1, 2, . . . , N}, respectively.

For now, we will assume the input and output alphabets are the same size. We

will see in the next section that this assumption is limiting. The generalization allows

the channel transition matrix to be non-square.

Figure 3.1 shows a block diagram of a COVQ communication system. The system

components include an encoder mapping γ, a channel index mapping b, and a decoder

mapping β. The encoder mapping γ : R
k 7→ I is described in terms of a partition P

such that

γ(x) = i, if x ∈ Si, i ∈ I, (3.6)

where x = (xnk, xnk+1, . . . , xnk+k−1) is a typical source output vector. The partition

P = {S1, S2, . . . , SN} is a set of disjoint subsets that cover the entire vector space R
k.

The channel index assignment (IA) mapping b : I 7→ I is a one-to-one mapping whose

purpose is to assign the encoder output to a non-random index to be transmitted over

the DMC. Thus, the index assignment mapping is described as i′ = b(i) ∈ I. The

DMC can be described by its channel transition probability matrix p(j|i′), whose



CHAPTER 3. VQ-BASED JOINT SOURCE-CHANNEL CODING 32

entries represent the probability that j is received, given i′ was sent.

The last mapping is the decoder mapping β : J 7→ R
k, which is described by the

codebook C = {y1,y2, . . . ,yN}, such that

β(j) = yj, j ∈ J . (3.7)

Again, the encoding rate is defined as

R =
log2 N

k
bits/source sample. (3.8)

We shall denote the distortion caused by representing a source vector x by a

codevector y as d(x,y), a non-negative distortion measure. The performance of the

COVQ system can be measured by the average distortion per sample D(P, C, b),

calculated according to the following equation [14]:

D(P, C, b) =
1

k

N
∑

i=1

N
∑

j=1

p(j|b(i))
∫

Si

d(x,yj)fX(x) dx. (3.9)

Thus, for a given source, noisy channel, dimension k, and fixed codebook size N ,

we wish to minimize D(P, C, b) by carefully choosing P, C, and b. Note, that this

distortion measure is just a modified version of that used to measure VQ performance.

For ease of notation, we shall omit the index assignment mapping b since a change

in b(i) only results in a relabeling of the partition P [14]. Thus, the average overall

distortion per source sample can be written as

D =
1

k

N
∑

i=1

∫

Si

{
N
∑

j=1

p(j|i)d(x,yj)}fX(x) dx. (3.10)

An algorithm based on simulated annealing that assigns binary codewords to the

codevectors of a VQ is presented in a later section.
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Kumazawa et al. [19] present the equations for the optimal reconstruction vectors

yj ∈ C = {y1,y2, . . . ,yN} and hence, one of the necessary conditions for minimizing

(3.9). Given the partition P = {S1, S2, . . . , SN}, the reconstruction vector of cell Si

that minimizes (3.9) is

yl =

∑N
i=1 p(l|i)

∫

Si
xfX(x) dx

∑N
i=1 p(l|i)

∫

Si
fX(x) dx

. (3.11)

The second necessary condition for minimizing (3.9) is as follows. Given the

reconstruction alphabet or codebook C, then the subset Sl that minimizes (3.9) is

[19]

Sl = {x :
N
∑

j=1

p(j|l)d(x,yj) ≤
N
∑

j=1

p(j|i)d(x,yj) for all i 6= l}. (3.12)

A discrete modification of the necessary conditions, with the mean square error

distortion measure explicitly stated are

yl =

∑N
i=1 p(l|i)∑v : xv∈Si

xv/n
∑N

i=1 p(l|i)|Si|/n
(3.13)

=

∑N
i=1 p(l|i)∑v : xv∈Si

xv
∑N

i=1 p(l|i)|Si|
, (3.14)

and

Sl = {x :

N
∑

j=1

p(j|l){‖x − yj‖2} ≤
N
∑

j=1

p(j|i){‖x− yj‖2} for all i 6= l} (3.15)

where {xv} is the training set, n is the total number of training vectors, and |Si| is

the number of training vectors in Si. This form is useful, especially when the source

distribution is not known and training sequences are used in the quantizer design.

The design of the COVQ follows the same format as the VQ design, with the

exception of the modified average distortion calculation and modified necessary con-

ditions for optimality. The initial codebook C1 used at the beginning of the design
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algorithm has been shown to heavily influence the performance of such a quantizer.

Techniques for developing a superior initial codebook are discussed in a later section.

It is interesting to note the result by Farvardin and Vaishampayan [14] concerning

the complexity of COVQ algorithms. Farvardin and Vaishampayan state that the

complexity of encoding is proportional to the number of nonempty encoding regions

in the partition P. This is an interesting fact, especially when combined with the

knowledge that the number of nonempty encoding regions drops below the cardinality

of the codebook at low SNR, where SNR is the signal-to-noise ratio. Thus, there is a

reduced encoding complexity at low SNR.

3.2 Soft-Decision COVQ

In much of the previous work on joint source and channel coding algorithms, discrete

memoryless channels were used with hard-decision demodulation assumed at the re-

ceiver. Vaishampayan and Farvardin began the use of soft decoders for VQs over noisy

channels in [34]. Similar to our scheme to be presented in Chapter 4, Vaishampayan

and Farvardin include the signal constellation in the design of the joint quantizer.

The difference lies in the encoder where in [34] a linear estimate-based decoder is

used. Liu et al. also use estimation theory to extend the soft decoding problem for

VQs by providing a nonlinear optimal decoder in [21].

A Hadamard-based soft decoder scheme was developed by Skoglund [29], which

also has an estimator-based decoder. Unfortunately, it has higher computational

complexity than hard-decision decoding; thus, in the same paper, Skoglund lowers
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complexity by developing suboptimal schemes. In [1] and [25], Alajaji and Phamdo

present a soft-decision scheme whose decoder is detection-based, with a look-up de-

coding table. Our scheme is based on that presented by Alajaji and Phamdo. It

should be noted that our scheme and the schemes in [1] and [25] trade complexity for

the storage requirement (for the codebook). Both Skoglund’s as well as Alajaji and

Phamdo’s schemes are briefly discussed below.

3.2.1 Soft-Decision Demodulation for COVQ

Alajaji and Phamdo proposed a scheme that used soft-decision information in the

design of the COVQ algorithm. The scheme was used for both AWGN and Rayleigh

fading channels where binary phase-shift keying (BPSK) modulation was used ([1],

[25]). For both memoryless Gaussian and Gauss-Markov sources, the results proved

the scheme performs better than hard-decision demodulation. A block diagram of the

soft-decision COVQ system from [1] is shown in Figure 3.2. The input source vector

COVQ
Encoder

r bits
sample

BPSK
Modulator

q-bit
Soft-Decis.
Demod.

Channel

COVQ
Decoder

- -

?

�� �

V ∈ R
k X ∈ {0, 1}kr W ∈ {−1, +1}kr

Z ∈ R
krY ∈ {0, 1}qkrV̂ ∈ R

k

Figure 3.2: The soft-decision COVQ system.
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V is a real k-tuple, while the COVQ encoder has a rate of r bits per source dimension.

The COVQ encoder produces a binary index vector X ∈ {0, 1}kr for each source vector

to be transmitted. The binary index is transmitted via a BPSK modulation; thus,

each of the kr bits is represented by a BPSK constellation signal W ∈ {−1, +1}. Once

the signal is modulated, it is sent over the noisy channel, which can be described by

its non-square transition matrix. The channel transition probability matrix describes

the concatenation of the modulator, channel, and demodulator.

At the receiver, the received vector Z ∈ R
kr is put through the q-bit soft-decision

demodulator, where the output is a binary vector Y ∈ {0, 1}qkr. A q-bit soft decision

demodulator takes soft information of signals transmitted over a channel and demod-

ulates the signals with a uniform scalar quantizer, producing q bits for every bit sent.

Thus, the transition matrix represents a 2kr-input 2qkr-output DMC.

The soft-decision demodulator output is passed to the COVQ decoder, where the

estimate V̂ is chosen from the COVQ codebook C = {c1, c2, . . . , c2qkr} according

to the binary index passed from the soft-decision demodulator. Note the notation

change, where previously Y represented the codeword, whereas now it represents the

binary index of the codeword cy. Also, X is the binary index to be sent over the

channel representing source random variable V.

The main feature of the soft-decision COVQ design is at the receiver. Each signal

in the BPSK constellation represents one bit. Since q bits are received for every bit

sent, there are 2(q−1)kr times as many codewords than there are indices sent. The

received signal is a real value; it is put through a scalar quantizer at the receiver

with 2q levels. The quantizer’s step-size ∆, or length of quantizer interval, at the
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receiver is predetermined according to the channel noise variance. The step-size

is numerically selected to maximize the capacity of the equivalent DMC resulting

from the concatenation of the modulation, the channel, and the q-bit soft-decision

demodulator. Two reasons for choosing the step-size ∆ in this manner are typically an

increase in channel capacity results in an overall system performance and optimizing

the soft-decision quantizer to maximize capacity is simpler than doing so to maximize

SDR [25].

The average squared-error distortion per sample used in [1] was the same function

in [14] stated in (3.10). The optimal reconstruction vectors cy and partition cells Si

were also the same as in (3.11) and (3.12), with the exception of the different size

input and output alphabets resulting in more codewords at the receiver than cell

indices at the transmitter. The soft-decision COVQ design uses the LBG algorithm

with the modified distortion and necessary conditions to find the optimal quantizer.

Note that for the case of BPSK modulation, the channel transition probability

matrix is weakly symmetric; i.e. it can be divided along its columns into symmetric

arrays. Symmetric arrays have rows and columns that are permutations of each other

[16]. This symmetry property allows easy computation of capacity by evaluating

I(X; Y ), the mutual information of the channel, using a uniform distribution on X.

For channel transition matrices without symmetric properties, closed-form expres-

sions for calculating capacity are not known. Blahut develops an iterative algorithm

for calculating the capacity of a channel using the transition matrix [7], which we will

take a closer look at in Section 3.4, as it is used in our soft-decision COVQ design.
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3.2.2 Hadamard-Based Soft-Decoding for VQ over Noisy

Channels

Skoglund has developed a soft decoding scheme for vector quantization over noisy

channels based on the Hadamard transform. The difference between ‘normal’ vector

quantizers for noisy channels and Skoglund’s scheme is in the decoder. The VQ

decoder in [28] interprets the soft channel output. Soft decoders map unquantized

(soft) channel output to source vector estimates. These scheme contains estimator-

based decoding, in contrast to detector-based decoding, which simply uses a table

lookup.

The Hadamard framework allows the source vector estimate to be described by

the estimates of the transmitted index’s individual bits [28]. The Hadamard matrix

comes into play in the expression for representing each encoding region’s centroid.

Skoglund’s Hadamard-based soft decoder, optimal in the minimum mean square error

(MMSE) sense, uses a priori index probability as well as channel information to

estimate the source vector. For further mathematical details, the reader is referred

to [28].

A disadvantage of this soft decoding scheme is its complexity. It has a higher

complexity compared to Alajaji and Phamdo’s table look-up scheme, and obviously

over the traditional hard-decision decoding of a ‘normal’ COVQ. On the other hand,

it has a lower memory requirement.

Skoglund’s follow-up paper on bit-estimate based decoders focused on improving
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flexibility and complexity [30]. The paper provides a structure for the soft decoder

using soft minimum mean-square error (MMSE) estimates for the transmitted bits.

3.3 Codebook Initialization Techniques

It is known that simply using iterative improvement algorithms to create codebooks

and partitions do not generally yield optimum codes, and may even result in poor

performance [18]. By looking at the breakdown of the distortion measure, it becomes

evident that codebook initialization techniques are needed for quantization and chan-

nel noise resilience. Certain codebook initialization techniques minimize distortion

by targeting specific distortion variables.

Recall the overall distortion of a scalar quantizer, in the squared error sense, can

be broken down into three terms:

ε2 = ε2
q + ε2

c + εm (3.16)

where the third term εm vanishes when each reconstruction vector ci of the quantizer

is the centroid of the corresponding encoding cell Si. Cheng [8] presents the VQ ex-

tension of the proof by Totty and Clark that shows the mutual cross-term εm vanishes

when the codewords are picked according to the centroid condition for optimality and

distortion is measured in the squared error sense. The other two terms represent the

distortion due to quantization (i.e. the error caused by representing source samples by

a predetermined finite set) and channel noise (i.e. the error incurred by poor decoding

decisions at the receiver).
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The two techniques for developing an initial codebook discussed in this section

are the splitting algorithm and simulated annealing. The purpose of each technique

is to influence the quantizer design to favour a good performance by picking an initial

codebook that tackles the two different types of distortion. The splitting algorithm

influences the distortion due to quantization ε2
q by finding the initial codebook for

VQ. Simulated annealing attempts to minimize ε2
c , or channel distortion, by finding

the best index assignment b.

3.3.1 Splitting Algorithm

One method for initializing a codebook is called the “initial guess by splitting” algo-

rithm presented by Linde, Buzo, and Gray [23]. The splitting algorithm is performed

on L-level quantizers with L = 2h, h = 0, 1, . . . until the initial guess for an N -level

quantizer is achieved. This thesis is limited to such quantizers where N = 2h, where

h is a positive integer.

The algorithm, as outlined in [23], follows below. Let L represent the number of

quantizer levels of the splitting algorithm, while Ĉ0 is the initial reproduction alphabet

or codebook.

Splitting Algorithm for Codebook Initialization

1. Splitting Algorithm Initialization: Set L = 1 and define the alphabet Ĉ0(1) as

the centroid of the random vector or the training sequence if a sample distribu-

tion is used (as in this thesis).

2. Split: The L vectors {yi; i = 1, . . . , L} in the alphabet Ĉ0(L) are “split” into
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two close vectors yi +ε and yi−ε, where ε is a randomly generated perturbation

vector. The result is a new alphabet C̃(L) containing 2L vectors {yi+ε,yi−ε; i =

1, . . . , L}. Replace L by 2L.

3. Condition: Is L = N? If so, set the codebook Ĉ0 = C̃(L) and stop: Ĉ0 will

be the initial reproduction alphabet for the N -level quantization algorithm. If

L 6= N , then the generalized Lloyd-Max algorithm should be run for the L-level

quantizer with the C̃(L) alphabet until a good codebook Ĉ0(L) is produced.

Return to step 2.

In the end, once the split algorithm is performed on a training sequence, initial

codebooks can be found for quantizers with 1, 2, 4, 8, . . . , N levels.

3.3.2 Simulated Annealing

An algorithm based on simulated annealing can be used to assign binary representa-

tions or codewords to the vector quantizer codevectors. Through proper codevector

index assignment, the distortion due to channel noise can be minimized, and improve-

ments over randomly selected codewords are shown in [13].

The annealing process was originally used in physics to grow crystals. Materials

were melted by increasing the temperature to its melting point, then slowly cooled

to allow crystal formation. In [13], the algorithm is also referred to as a Monte Carlo

Metropolis algorithm for solving combinatorial optimization problems and also proven

successful in designing source and channel codes, as shown in [11].

Let the MSE Dc(b) represent the cost function to be minimized, with index as-
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signment function b = (b(c1), b(c2), . . . , b(cN)). Maintaining the physical terminology,

the cost function will herein be referred to as the energy of the system and the index

assignment function b will be the state. The algorithm follows, as stated in [13].

Simulated Annealing Algorithm

1. Set the initial ‘effective temperature’ T as T = T0, and randomly choose an

initial state b.

2. Next, choose b′, a perturbation state of b, according to a random walk and let

δDc = Dc(b
′) − Dc(b).

(a) If δDc < 0, replace b by b′, proceed to step 3.

(b) If δDc ≥ 0, replace b by b′ with probability exp {−δDc/T}, proceed to step

3.

3. If the number of energy drops in step 2 exceeds a previously set number N or

if too many perturbations do not result in energy drops, go to step 4; else, go

to step 2.

4. Lower temperature by reducing factor α such that the new temperature is αT .

If the temperature falls below a freezing point Tf or a stable state is reached,

stop - with the final result being ‘state b’. Otherwise, go to step 2.

Both the splitting algorithm and simulated annealing are used to develop a promis-

ing initial codebook for our soft-decision COVQ scheme. Table 3.1 lists the parameters

used in the simulated annealing algorithm, as also chosen in [13].
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T0 10.0

Tf 2.5 × 10−4

α 0.97

N 200

Table 3.1: Simulated annealing parameters

3.4 Blahut’s Algorithm for Channel Capacity

The channel capacity is the maximum rate at which information can be reliably

transmitted. Easy computation of the channel capacity is not always possible because

the channel transition probability matrix does not always have facilitating properties.

Such a problem is encountered in our design of the soft-decision demodulation scheme

for COVQ with an M -PAM constellation. Blahut’s paper [7] gives an algorithm for

computing channel capacity without making assumptions on the size nor properties

of the channel transition matrix. By iteratively mapping the set of channel input

probability vectors onto itself, the sequence of probability vectors converges to a

vector that achieves the capacity of the given channel. The theorems and corollaries

from [7] that allow such an algorithm to exist are included in Appendix A.

The algorithm uses the following equation form for the capacity of a channel:

C = max
p∈Pn

I(p, Q) = max
p∈Pn

∑

j

∑

k

pjQk|j log
Qk|j

∑

a paQk|a
(3.17)

where

Pn = {p ∈ R
n : pj ≥ 0 ∀j;

∑

j

pj = 1}
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is the set of all possible probability distributions on the channel input and {Qk|j} is the

channel transition probability matrix. A flow diagram of the capacity computation

algorithm is shown in Figure 3.3.

Termination of the algorithm is decided based on two capacity-bound calculations.

When the upper and lower bounds of capacity converge within a set threshold, the

algorithm stops. These bounds are

C ≥ log
∑

j

pjcj, and (3.18)

C ≤ log(max
j

cj), (3.19)

where cj is defined as in Theorem A.4.

Independently and earlier than Blahut, Arimoto developed an iterative algorithm

that monotonically converged from below to the exact capacity. Arimoto proved

similar theorems in [2] that allows the capacity calculation.
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Figure 3.3: The Blahut algorithm for calculating capacity.



Chapter 4

Soft-Decision COVQ with M-PAM

Modulation

As was mentioned in Chapter 3, the characteristic component behind the soft-decision

scheme by Alajaji and Phamdo is the demodulator at the receiver. Their scheme

exploits soft-decision information by having more codewords received than indices sent

over the channel: receiving qkr bits per k-dimensional source vector represented (by

kr bits), where r is the encoding rate of the COVQ. The channel transition probability

matrix expresses this idea mathematically, considering the source dimension k, the

COVQ rate r, the q-bit soft-decision decoder, the type of modulation scheme used,

and finally, the type of channel over which signals are sent.

The design presented in this chapter extends the work of Alajaji and Phamdo from

the binary phase shift keying (BPSK) constellation to any power-of-two number of

symmetric constellation signals with varying amplitude in a one-dimensional signal

space. This linear modulation technique is otherwise known as M -ary Pulse Am-

46
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plitude Modulation (M-ary PAM), where M represents the number of signals. The

soft-decision COVQ using an M-ary PAM constellation is designed for both AWGN

and Rayleigh fading channels with the assumption that the statistical properties of

the channel are known at the encoder and receiver.

4.1 DMC Channel Model

A block diagram of the soft-decision COVQ system for M-ary PAM signals is shown

in Figure 4.1. For each k-dimensional source vector V ∈ R
k, the rate r COVQ

COVQ
Encoder

r bits
sample

M -PAM
Modulator

q-bit
Soft-Decis.
Demod.

AWGN or
Rayleigh fading

Channel

COVQ
Decoder

- -

?

�� �

V ∈ R
k X ∈ {0, 1}kr W = (W1, . . . , Wl)

Z = (Z1, . . . , Zl)Y ∈ {0, 1}qkrV̂ ∈ R
k

Figure 4.1: An SD-COVQ system with an M-ary PAM constellation.

encoder produces a binary vector X ∈ {0, 1}kr. This kr-bit index represents the

cell region in which the source vector belongs. Once the kr bits are output from

the COVQ encoder, they are M-PAM modulated for channel transmission. When an

M-ary PAM constellation is used, each of the M signals in {s0, . . . , sM−1} represents

log2 M bits; thus, kr/ log2 M signals are sent per source vector V. We shall denote
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the number of signals per source vector as l such that l = kr/ log2 M . The kr value

is assumed to be a multiple of log2 M ; thus, l is always an integer. Thus, W is the

l-dimensional vector (W1, . . . , Wl) ∈ {s0, . . . , sM−1}l representing the signals sent per

source vector V.

The signals in the M -PAM constellation {s0, . . . , sM−1} have an average signal

energy given by

E[W 2] =
M−1
∑

i=0

p(si)si
2 , Es (4.1)

where p(si) is the probability of signal si. The constellation signals have the form

si = [2i − (M − 1)]a for all i = 0, . . . , M − 1 (4.2)

where

a =

√

M
∑M−1

i=0 (2i − (M − 1))2
(4.3)

is chosen such that Es = 1 if the signals are uniformly distributed.

The M -ary PAM constellations used for M = 2, M = 4, and M = 8 were labeled

using the natural ordering. These constellations are shown in Figures 4.2, 4.3, and

4.4, with the signals depicted as ×.

The M -PAM modulator, channel, and demodulator produce a 2kr-input, 2qkr-

output DMC. Since the noise is i.i.d., the probability of receiving a codeword index,

given an encoding index was sent is just the product of l “transmission” probabilities.

The “transmission” probabilities correspond to the probability of receiving a partic-

ular demodulator index, given a particular M -PAM signal was sent. For example,
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Figure 4.2: Signal constellation bit labels for M = 2.
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Figure 4.3: Signal constellation bit labels for M = 4.

when M = 4 and k = r = q = 2, p(11010110|1100) = p(1101|11)p(0110|00). Thus,

the channel is equivalent to an M -input M q-output DMC used l times.

The channel transition matrix entries πi,j = Pr(J = j|I = i) are determined by

the type of channel and the quantizer thresholds Tj at the receiver, where I is the

index of the sent M-PAM signal and J is the index of the received signal’s region.
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Figure 4.4: Signal constellation bit labels for M = 8.

The channel transition matrix entries can be written as

πi,j , Pr(J = j|I = i), i ∈ I, j ∈ J (4.4)

= Pr{Z ∈ (Tj−1, Tj)|W = si} (4.5)

where W = si is the sent M-PAM signal, I is the index of the sent M-PAM signal,

with I = {0, 1, . . . , M − 1}, J is the index of the region in which the received signal

lies, with J = {0, 1, . . . , M q − 1}, Tj are the thresholds defined in Equation (4.7),

and finally Z is the received M-PAM signal. The thresholds distinguish the partition

cells of the decoder and are dependent on the type of modulation used to send the

signals, the number of bits at which the soft-decision demodulator operates (q bits),

and the uniform scalar quantizer step-size ∆ at the receiver.

At the soft-decision demodulator, the received signal is decoded with the uniform

scalar quantizer α(·) with step-size ∆ such that

α(z) = j, if z ∈ (Tj−1, Tj) (4.6)
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where the thresholds of the quantizer cells are defined as

Tj =































−∞, if j = −1

(j + 1 − Mq

2
)∆, if j = 0, 1, . . . , M q − 2

+∞, if j = M q − 1.

(4.7)

The thresholds Tj are dependent on the uniform quantizer step-size ∆. At a

particular channel noise variance σ2, the ∆ is chosen to maximize the capacity of

the channel because i) there is a correlation between an increase in capacity and

an increase in the overall system SDR, and ii) optimizing the system in terms of

maximizing capacity is easier than in terms of maximizing SDR, as stated in [25]. The

transition matrix entries (dependent on the thresholds, thus ∆) are used to calculate

the channel capacity. Therefore, the step-size ∆ is chosen to yield the maximum

capacity of the M -input M q-output DMC. The capacity is calculated through the

iterative algorithm by Blahut, outlined in Section 3.4.

Figure 4.5 illustrates a soft-decision demodulator for a specific example where

M = 4 signals are in the M-ary PAM constellation, depicted as ×. In this example,

log2 M = 2 bits per signal are sent, but q log2 M = 4 bits are received per M-PAM

signal sent, and k = r = 2. Thus, the received signal is demodulated into one of 16

cells. The quantizer step-size ∆ = 0.22 to provide a capacity of C = 1.15 bits/channel

use over an AWGN channel with EN = −6.0 dB. The noise power is defined as

EN , 10 log10 σ2 (dB) (4.8)

where σ2 is the channel noise variance.

At the receiver, the elements of the received vector Z ∈ R
l represent the soft
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Figure 4.5: A soft-decision demodulator. For M = 4, k = r = q = 2, and EN = −6.0

dB, ∆ = 0.22 over an AWGN channel.

information of each M-ary PAM signal received. The soft-decision demodulator uses

the soft information to produce q log2 M bits per M-ary PAM signal received. Since

l = kr/ log2 M signals are sent per source vector,

kr

log2 M

signals

source vector
× q log2 M

bits

signal
= qkr

bits

source vector
. (4.9)

Thus, the soft-decision demodulator produces qkr bits per k-dimensional source vec-

tor. Technically speaking, each M-ary PAM signal is demodulated into q log2 M bits

through a uniform scalar quantizer with step-size ∆. Pertaining to each source vector,

l signals are received this way, to be concatenated into a qkr-bit word Y ∈ {0, 1}qkr

through the soft-decision demodulator. The qkr bits represent an index correspond-

ing to one of 2qkr codewords V̂ ∈ R
k. This conversion is done through the COVQ

decoder using a look-up table or codebook, predetermined through COVQ training.

4.2 SD-COVQ Design

The soft-decision COVQ design (used to determine the optimal partition P and code-

book C) is similar to the iterative algorithm presented in [23], using equations from
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[14] and the channel transition matrix Π.

For a real-valued i.i.d. source V = {Vi}∞i=1 with pdf f(v), the COVQ encoder

produces kr bits for each k-dimensional sequence. The kr bits are to be transmit-

ted over the 2kr -input, 2qkr-output DMC with transition probability distribution

P (y|x) =
∏l

h=1 πxh,yh
, where x ∈ I l and y ∈ J l.

Figure 4.6 illustrates a generic block diagram of a COVQ system. As we recall

from Chapter 3, the COVQ encoder and decoder blocks represent encoder and decoder

functions.

COVQ
Encoder

DMC
COVQ
Decoder

- - - -

V ∈ R
k X Y V̂ ∈ R

k

Figure 4.6: A generic block diagram of the COVQ system.

The encoder mapping γ : R
k 7→ I l can be described by the partition P = {Sx ⊂

R
k : x ∈ I l}, which divides R

k into 2kr subsets since |I l| = 2kr. The encoder mapping

is defined as γ(v) = x if v ∈ Sx,x ∈ I l, where v = (v1, v2, . . . , vk) is a block of k

successive source samples. The 2kr-input 2qkr-output DMC maps the kr-bit sequence

x to a qkr-bit sequence y and is described by the channel transition probability

matrix P (y|x). The decoder mapping, denoted as β, is described by the codebook

C = {cy ∈ R
k : y ∈ J l} which is previously obtained through COVQ training using

Lloyd’s algorithm. The decoder mapping is expressed as β(y) = cy,y ∈ J l.

The encoding rate of the COVQ system is r bits per sample and its average
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squared-error distortion per sample is given by [14]

D =
1

k

∑

x

∫

Sx

{

∑

y

P (y|x)‖ − cy‖2

}

f(v) dv (4.10)

where f(v) is the k-dimensional source pdf. The discrete form of this equation, as

used in the design of the practical system, is

D =
1

n

1

k

∑

x

∑

v∈Sx

{

∑

y

P (y|x)‖v − cy‖2

}

(4.11)

where n is the number of training vectors. For a given source, channel, k and r, we

wish to minimize D by finding the most suitable P and C.

For a fixed C, the optimal P = {Sx} that minimizes (4.10) is [14]

Sx =

{

v :
∑

y

P (y|x)‖v − cy‖2 ≤
∑

y

P (y|x̃)‖v − cy‖2 ∀x̃ ∈ I l

}

(4.12)

for x ∈ X kr. The optimal codebook C = {cy} for a given partition is [14]

cy =

∑

x P (y|x)
∫

Sx

vf(v) dv
∑

x P (y|x)
∫

Sx

f(v) dv
. (4.13)

In discrete form, the codewords are calculated as

cy =

∑

x P (y|x)
∑

v∈Sx

v Pr(v)
∑

x P (y|x) Pr(v ∈ Sx)
(4.14)

=

∑

x P (y|x)
∑

v∈Sx

v
∑

x P (y|x)|Sx|
. (4.15)

The two equations (4.12) and (4.15) are used to derive the partition and codebook

in the generalized Lloyd-Max algorithm. The above design can be easily extended for

the case of sources with memory.
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4.3 SD-COVQ with M-PAM Signals over AWGN

Channels

For an AWGN Channel, the received signal Zt is

Zt = Wt + Nt, t = 0, . . . , l (4.16)

where Wt is the sent signal from the M-ary PAM constellation and Nt is the i.i.d.

noise process, distributed as N (0, σ2), and independent of Wt.

The thresholds of the soft-decoder at the receiver take into account which modu-

lation scheme is used and the number of bits at which the soft-decision demodulator

operates, which is q. For the AWGN channel, the thresholds are exactly as presented

in Equation (4.7). If I = {0, 1, . . . , M − 1} and J = {0, 1, . . . , M q − 1}, then the

channel transition matrix Π is given by

Π = [πi,j], i ∈ I, j ∈ J . (4.17)

The matrix entries are calculated as follows.

πi,j = P (J = j|I = i)

= P (Z > Tj−1 and Z < Tj|W = si)

= P (W + N > Tj−1 and W + N < Tj|W = si)

= P (N < Tj − si) − P (N < Tj−1 − si)

= Q

(

(Tj−1 − si)

√

1

σ2

)

− Q

(

(Tj − si)

√

1

σ2

)

(4.18)

where si is the modulated signal sent with index i, Q(x) = 1√
2π

∫∞
x

exp{−t2/2} dt,

and σ2 is the channel noise variance.
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We can show that the channel transition matrix is centrosymmetric, meaning the

elements are symmetric about the center of the matrix such that

ai,j = am−1−i,n−1−j (4.19)

where ai,j are the entries of an m × n matrix indexed i = 0, . . . , m − 1 and j =

0, . . . , n − 1. The following facts are used in upcoming proofs of centrosymmetric

matrices. The signal amplitudes are symmetric in the sense that sM−1−i = −si for

i = 0, . . . , M − 1: from our definition of si in Equation (4.2),

sM−1−i = [2(M − 1 − i) − (M − 1)]a

= [2M − 2 − 2i − M + 1]a

= [−2i + M − 1]a

= −[2i − (M − 1)]a

= −si.

Also, the thresholds are symmetric in the sense that TMq−1−j = −Tj for j = 0, . . . , M q−

1: from our definition of Tj in Equation (4.7),

TMq−1−j =

(

(M q − 1 − j) + 1 − M q

2

)

∆

=

(

2M q

2
− M q

2
− 1 + 1 − j

)

∆

= −
(

j − M q

2

)

∆

= −
(

(j − 1) + 1 − M q

2

)

∆

= −Tj−1.
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We next prove the centrosymmetric property for the AWGN channel; i.e., that πi,j =

πM−1−i,Mq−1−j, beginning with Equation (4.18).

Lemma 4.3.1. The channel transition matrix of a soft-decision M-PAM demodulated

AWGN channel is centrosymmetric.

Proof. For the case when i = 0, . . . , M − 1 and j = 1, . . . , M q − 2,

πi,j = Q

(

(Tj−1 − si)

√

1

σ2

)

− Q

(

(Tj − si)

√

1

σ2

)

= Q

(

(−TMq−1−j − si)

√

1

σ2

)

− Q

(

(−TMq−2−j − si)

√

1

σ2

)

since TMq−1−j = −Tj−1

= Q

(

(−TMq−1−j + sM−1−i)

√

1

σ2

)

− Q

(

(−TMq−2−j + sM−1−i)

√

1

σ2

)

since sM−1−i = −si

= Q

(

−(TMq−1−j − sM−1−i)

√

1

σ2

)

− Q

(

−(TMq−2−j − sM−1−i)

√

1

σ2

)

= Q

(

−(TMq−2−j − sM−1−i)

√

1

σ2

)

− Q

(

−(TMq−1−j − sM−1−i)

√

1

σ2

)

since Q(x1) − Q(x2) = Q(−x2) − Q(−x1)

= Q

(

(T(Mq−1−j)−1 − sM−i−1)

√

1

σ2

)

− Q

(

(TMq−1−j − sM−i−1)

√

1

σ2

)

= πM−1−i,Mq−1−j.
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For the case of i = 0, . . . , M − 1 and j = 0, using Equation (4.7),

πi,0 = Q

(

(T−1 − si)

√

1

σ2

)

− Q

(

(T0 − si)

√

1

σ2

)

= 1 − Q

(

(T0 − si)

√

1

σ2

)

= Q

(

−(T0 − si)

√

1

σ2

)

since 1 − Q(x) = Q(−x)

= Q

(

−(−TMq−2−j − si)

√

1

σ2

)

since TMq−1−j = −Tj−1

= Q

(

−(−TMq−2−j + sM−i−1)

√

1

σ2

)

since sM−1−i = −si

= Q

(

(TMq−2−j − sM−i−1)

√

1

σ2

)

= πM−1−i,Mq−1.

Similarly, for i = 0, . . . , M − 1 and j = M q − 1:

πi,Mq−1 = Q

(

(TMq−2 − si)

√

1

σ2

)

− Q

(

(TMq−1 − si)

√

1

σ2

)

= Q

(

(TMq−2 − si)

√

1

σ2

)

= 1 − Q

(

−(TMq−2 − si)

√

1

σ2

)

since 1 − Q(x) = Q(−x)

= 1 − Q

(

(−TMq−2 + si)

√

1

σ2

)

= 1 − Q

(

(T0 + si)

√

1

σ2

)

since TMq−1−j = −Tj−1

= 1 − Q

(

(T0 − sM−1−i)

√

1

σ2

)

since sM−1−i = −si

= πM−1−i,0.
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4.4 SD-COVQ with M-PAM Signals over Rayleigh

Fading Channels

Recall the construction of a Rayleigh fading channel as

Zt = AtWt + Nt, t = 0, . . . , l (4.20)

where At denotes the attenuation factor and Nt is the noise process, an i.i.d. Gaussian

random process with zero-mean and σ2 variance; Nt, At, and Wt are all independent

of each other. The attenuation factor At itself is also i.i.d. with Rayleigh pdf

fA(a) =















2ae−a2
, if a > 0

0, otherwise.

(4.21)

The thresholds of the quantizer follow from Equation (4.7). If I = {0, 1, . . . , M−1}

and J = {0, 1, . . . , M q − 1}, then the channel transition matrix Π is given by

Π = [πi,j], i ∈ I, j ∈ J . (4.22)

The following is a breakdown of the channel transition matrix entries.
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First, for si > 0, we have

πi,j = P (J = j|I = i)

= P (Z > Tj−1 and Z < Tj|W = si)

= EA[P (A · W + N > Tj−1 and A · W + N < Tj|W = si)]

= EA[P (N < Tj − A · W |W = si) − P (N < Tj−1 − A · W |W = si)]

= EA[P (N < Tj − A · si) − P (N < Tj−1 − A · si)]

= EA[P (N < Tj − A · si)] − EA[P (N < Tj−1 − A · si)] (4.23)

= EA

[

P

(

N

si

<
Tj

si

− A

)]

− EA

[

P

(

N

si

<
Tj−1

si

− A

)]

(4.24)

where si is the modulated signal sent with index i. From [32],

EA[Pr{N ≤ z − A}] = 1 − 1

2
erfc

(

z√
2σ2

)

− 1√
2σ2 + 1

×
[

1 − 1

2
erfc

(

z
√

2(2σ2 + 1)σ2

)]

e−z2/(2σ2+1) (4.25)

where erfc(x)
4
= (2/

√
π)
∫∞

x
e−t2 dt. Since Q(x) = 1

2
erfc

(

x√
2

)

,

Λ(z, σ) , EA[Pr{N ≤ z − A}] = 1 − Q

(

z√
σ2

)

− 1√
2σ2 + 1

×
[

1 − Q

(

z
√

(2σ2 + 1)σ2

)]

e−z2/(2σ2+1). (4.26)

Thus, the matrix entries can be written as

πi,j = Λ

(

Tj

si
,
σ

si

)

− Λ

(

Tj−1

si
,
σ

si

)

, for si > 0. (4.27)
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To get the expression for πi,j when si < 0, beginning with Equation (4.23), we obtain

πij = EA[P (N < Tj − A · si)] − EA[P (N < Tj−1 − A · si)]

= EA

[

P

(

N

si
>

Tj

si
− A

)]

− EA

[

P

(

N

si
>

Tj−1

si
− A

)]

= EA

[

1 − P

(

N

si

<
Tj

si

− A

)]

− EA

[

1 − P

(

N

si

<
Tj−1

si

− A

)]

= EA

[

P

(

N

si
<

Tj−1

si
− A

)]

− EA

[

P

(

N

si
<

Tj

si
− A

)]

= Λ

(

Tj−1

si

,
σ

si

)

− Λ

(

Tj

si

,
σ

si

)

, si < 0. (4.28)

We next prove the centrosymmetry property of πi,j for the Rayleigh fading case.

Since we will be using the fact that sM−1−i = −si, we will start with the expression

for negative si and end at the expression for positive si. Thus, we will prove cen-

trosymmetry for i = 0, . . . , M
2
− 1. A similar proof can be done for i = M

2
, . . . , M − 1.

Lemma 4.4.1. The channel transition matrix of a soft-decision M-PAM demodulated

Rayleigh fading channel is centrosymmetric.

Proof. Note, since TMq−1−j = −Tj−1 and sM−1−i = −si,

Tj−1

si
=

TMq−1−j

sM−1−i
(4.29)

and

(

σ

si

)2

=

(

σ

sM−1−i

)2

. (4.30)
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For the case when i = 0, . . . , M
2
− 1 and j = 1, . . . , M q − 2 and using Equation (4.28),

πi,j = Λ

(

Tj−1

si

,
σ

si

)

− Λ

(

Tj

si

,
σ

si

)

= 1 − Q

(

Tj−1/si
√

(σ/si)2

)

− 1
√

2(σ/si)2 + 1

×
[

1 − Q

(

Tj−1/si
√

(2(σ/si)2 + 1)(σ/si)2

)]

e−(Tj−1/si)2/[(σ/si)2+1]

− 1 + Q

(

Tj/si
√

(σ/si)2

)

+
1

√

2(σ/si)2 + 1

×
[

1 − Q

(

Tj/si
√

(2(σ/si)2 + 1)(σ/si)2

)]

e−(Tj/si)
2/[(σ/si)

2+1]

= 1 − Q

(

TMq−1−j/sM−1−i
√

(σ/sM−1−i)2

)

− 1
√

2(σ/sM−1−i)2 + 1

×
[

1 − Q

(

TMq−1−j/sM−1−i
√

(2(σ/sM−1−i)2 + 1)(σ/sM−1−i)2

)]

× e−(TMq−1−j/sM−1−i)
2/[(σ/sM−1−i)

2+1]

− 1 + Q

(

TMq−2−j/sM−1−i
√

(σ/sM−1−i)2

)

+
1

√

2(σ/sM−1−i)2 + 1

×
[

1 − Q

(

TMq−2−j/sM−1−i
√

(2(σ/sM−1−i)2 + 1)(σ/sM−1−i)2

)]

× e−(TMq−2−j/sM−1−i)
2/(σ/[sM−1−i)

2+1]

= Λ

(

TMq−1−j

sM−1−i
,

σ

sM−1−i

)

− Λ

(

TMq−2−j

sM−1−i
,

σ

sM−1−i

)

= πM−1−i,Mq−1−j ,

where the last equality follows from the expression of the transition probability for a

positive si in Equation (4.27) since sM−1−i > 0.
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For the case where i = 0, . . . , M
2
− 1 and j = 0, since si < 0, we have

πi,0 = Λ

(

T−1

si

,
σ

si

)

− Λ

(

T0

si

,
σ

si

)

= 1 − 1 + Q

(

T0/si
√

(σ/si)2

)

+
1

√

2(σ/si)2 + 1

×
[

1 − Q

(

T0/si
√

(2(σ/si)2 + 1)(σ/si)2

)]

e−(T0/si)2/[(σ/si)2+1]

= 1 − 1 + Q

(

TMq−2/sM−1−i
√

(σ/sM−1−i)2

)

+
1

√

2(σ/sM−1−i)2 + 1

×
[

1 − Q

(

TMq−2/sM−1−i
√

(2(σ/sM−1−i)2 + 1)(σ/sM−1−i)2

)]

× e−(TMq−2/sM−1−i)
2/[(σ/sM−1−i)

2+1]

= Λ

(

TMq−1

sM−1−i
,

σ

sM−1−i

)

− Λ

(

TMq−2

sM−1−i
,

σ

sM−1−i

)

= πM−1−i,Mq−1,

where, again, the last equality follows from the transition probability expression for

a positive si since sM−1−i > 0.
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For the case where i = 0, . . . , M
2
− 1 and j = M q − 1, since si < 0, we have

πi,Mq−1 = Λ

(

TMq−2

si

,
σ

si

)

− Λ

(

TMq−1

si

,
σ

si

)

= 1 − Q

(

TMq−2/si
√

(σ/si)2

)

− 1
√

2(σ/si)2 + 1

×
[

1 − Q

(

TMq−2/si
√

(2(σ/si)2 + 1)(σ/si)2

)]

e−(TMq−2/si)2/[(σ/si)2+1]

= 1 − Q

(

T0/si
√

(σ/sM−1−i)2

)

− 1
√

2(σ/sM−1−i)2 + 1

×
[

1 − Q

(

T0/sM−1−i
√

(2(σ/sM−1−i)2 + 1)(σ/sM−1−i)2

)]

× e−(T0/sM−1−i)
2/[(σ/sM−1−i)

2+1]

= Λ

(

T0

sM−1−i
,

σ

sM−1−i

)

− Λ

(

T−1

sM−1−i
,

σ

sM−1−i

)

= πM−1−i,0,

where the last line is the transition probability for a positive si since sM−1−i > 0.

Similar proofs hold for i = M
2
, . . . , M − 1 where si > 0.



Chapter 5

Numerical Results and Discussion

The soft-decision COVQ (SD-COVQ) system design presented in the previous chapter

was implemented over AWGN and Rayleigh fading channels. In this chapter, we

will present the numerical results and discuss them. Various values of the source

vector dimension k, COVQ rate r, number of modulation signals M , and soft-decision

decoder rate q were combined to form COVQ systems for analysis. Both sources with

and without memory were tested. The performance of the M-ary PAM modulated

SD-COVQ systems in this thesis were measured in overall source signal-to-distortion

ratio (SDR).

5.1 Design Parameters

This section discusses the parameters used in the design of the M-ary PAM modu-

lated SD-COVQ system. For a particular M , k, r, and q, the quantizer at the receiver

is determined by selecting the step-size ∆ which maximizes the capacity at specified

65
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noise variances. Recall that ∆ is chosen this way because increases in capacity typ-

ically yield increases in SDR and it is easier than finding ∆ under the maximum

SDR criterion [25]. The capacity is calculated using Blahut’s algorithm, described

in Chapter 3. Once ∆ is determined, the channel transition probability matrix is

computed using Equations (4.18) or (4.27). The transition matrix, along with other

variables, is used in the codebook training process in computing the overall distortion

function to be minimized.

At each specified noise variance σ2, the codebooks are trained using 100, 000 k-

dimensional vectors, using a memoryless Gaussian source, or a Gauss-Markov source

with correlation coefficient ρ = 0.9. The first codebook is initialized using the splitting

algorithm described in Chapter 3 until 2qkr codewords are computed with just the

knowledge of the training source vectors.

Next, simulated annealing [13] is performed on the codebook to determine a good

decoder index-codeword pairing. Simulated annealing perturbs the index-codeword

assignment by interchanging a random index pair in order to minimize the cost func-

tion, which is the overall distortion in Equation (4.10). According to [4], the cost

function can be further reduced to

2kr−1
∑

i=0

p(i)

2qkr−1
∑

j=0

p(j|i)〈cb(j), (cb(j) − 2mi)〉 (5.1)

where 2kr is the number of encoding regions, 2qkr is the number of codewords at the

receiver, p(j|i) is the probability of receiving index j given i was sent, mi is the cen-

troid of encoding region Si, cj is the j-th codeword at the receiver, 〈c,m〉 =
∑

i cimi

is the inner product function and finally, b : {0, . . . , 2qkr − 1} → {0, . . . , 2qkr − 1} is



CHAPTER 5. NUMERICAL RESULTS AND DISCUSSION 67

the one-to-one decoder index mapping to be altered in simulated annealing. The

cost function in Equation (5.1) is used during simulated annealing prior to codebook

training.

Once simulated annealing is applied to the initial codebook of the lowest noise

power, a method similar to that used in [14] is used to train soft-decision COVQ

codebooks at specified noise powers. In [14], Farvardin and Vaishampayan use the

idea of passing trained codebooks for channels with small to large pe, where pe is

the crossover probability of a binary symmetric channel. This method is also used

for training codebooks in [4], except with high-to-low-to-high channel SNRs. Our

codebook initialization begins with the lowest specified noise power EN ; codebooks

are trained using the generalized Lloyd-Max algorithm and the resulting codebook

is passed to act as initial codebooks for channels with higher noise variances. The

process is repeated with descending noise power. At each noise variance, the gen-

eralized Lloyd-Max algorithm terminates once the relative distortion falls below a

certain threshold ε, chosen to be ε = 10−3 in our simulations. The performance of

the system is measured in terms of source SDR, with numerical results obtained from

the training set.

5.2 Experimental Results

The capacity of the SD-COVQ system is computed using the channel transition prob-

ability matrix. An observed centrosymmetric transition matrix is given below with
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approximate entries for a 4 × 16 DMC with AWGN, where M = 4 and q = 2 at

EN = −6.0 dB.

Π =

























0.4 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.4

























.

(5.2)

5.2.1 Results for AWGN Channels

We list the capacity for various AWGN soft-decision COVQ system parameters at

specified noise powers in Tables 5.1 to 5.3. Since the capacity is only dependent on

the M × M q transition matrix, the capacity values for a given number of modulated

signals M are the same for all acceptable k and r. For all q, the capacity approaches

log2 M bits per channel use as the channel noise variance σ2 decreases; this is expected

since each signal sends log2 M bits at each channel use. Tables 5.1 to 5.3 show that

most of the capacity gain occurs in going from q = 1 to q = 2. Only a small increase in

capacity is seen from q = 2 to q = 3. As q increases, the general trend of improvement

in channel capacity suggests a similar trend for the source SDR of the soft-decision

COVQ system.

In the BPSK case where M = 2, the transition matrix of the DMC is weakly

symmetric [1]; thus, the maximum capacity is achieved by a uniform distribution on

the DMC’s input. In the M-ary PAM case where M = 2h with h as a positive integer

and h > 1, the absence of these symmetric properties implies a different probability



CHAPTER 5. NUMERICAL RESULTS AND DISCUSSION 69

distribution on the channel input vector. The input probabilities for M = 8 for each

noise variance σ2 are presented in Tables 5.4 to 5.6. Again, these input probabilities

maximize the capacity of the DMC for a particular noise power EN , q, and ∆. For

all q, the capacity-maximizing input distribution appears to favour the outer-most

signals when the channel is very noisy. For hard-decision decoding, i.e. when q = 1,

the input probabilities approach a uniform distribution for small noise powers. Similar

observations can be made for the M = 4 case.
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EN (dB)
q = 1 q = 2 q = 3

C C ∆ C ∆

3.0 0.206 0.267 1.281 0.284 0.723

2.0 0.252 0.322 1.124 0.341 0.633

1.0 0.306 0.385 0.985 0.406 0.553

0.0 0.369 0.455 0.860 0.477 0.482

-1.0 0.440 0.532 0.750 0.554 0.419

-2.0 0.518 0.612 0.652 0.634 0.363

-3.0 0.602 0.693 0.566 0.713 0.314

-4.0 0.687 0.770 0.491 0.788 0.272

-6.0 0.842 0.898 0.366 0.908 0.201

-8.0 0.947 0.971 0.272 0.975 0.147

-10.0 0.991 0.996 0.201 0.997 0.107

-12.0 0.999 1.000 0.195 1.000 0.065

-14.0 1.000 1.000 0.062 1.000 0.062

-16.0 1.000 1.000 0.005 1.000 0.002

Table 5.1: Capacity in bits per channel use and capacity-maximizing step-size ∆ of

an M × M q DMC for an AWGN channel with M = 2.
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EN (dB)
q = 1 q = 2 q = 3

C C ∆ C ∆

3.0 0.409 0.443 0.392 0.445 0.122

2.0 0.487 0.519 0.342 0.521 0.107

1.0 0.567 0.598 0.299 0.600 0.094

0.0 0.646 0.679 0.261 0.682 0.083

-1.0 0.723 0.758 0.229 0.760 0.074

-2.0 0.794 0.829 0.205 0.831 0.079

-3.0 0.856 0.895 0.236 0.899 0.073

-4.0 0.916 0.971 0.237 0.976 0.071

-6.0 1.050 1.149 0.219 1.157 0.065

-8.0 1.216 1.356 0.198 1.367 0.056

-10.0 1.427 1.576 0.179 1.590 0.049

-12.0 1.660 1.777 0.164 1.791 0.043

-14.0 1.856 1.916 0.152 1.926 0.039

-16.0 1.964 1.981 0.147 1.985 0.037

-18.0 1.996 1.998 0.148 1.999 0.034

-20.0 2.000 2.000 0.149 2.000 0.030

Table 5.2: Capacity in bits per channel use and capacity-maximizing step-size ∆ of

an M × M q DMC for an AWGN channel with M = 4.
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EN (dB)
q = 1 q = 2 q = 3

C C ∆ C ∆

3.0 0.513 0.530 0.120 0.530 0.021

2.0 0.596 0.609 0.106 0.609 0.018

1.0 0.678 0.690 0.094 0.690 0.015

0.0 0.756 0.767 0.086 0.767 0.013

-1.0 0.826 0.840 0.088 0.840 0.011

-2.0 0.891 0.913 0.081 0.913 0.011

-3.0 0.976 0.996 0.078 0.997 0.012

-4.0 1.064 1.088 0.072 1.089 0.011

-6.0 1.252 1.284 0.060 1.285 0.010

-8.0 1.437 1.492 0.060 1.493 0.008

-10.0 1.642 1.720 0.054 1.721 0.008

-12.0 1.834 1.956 0.055 1.958 0.008

-14.0 2.042 2.215 0.053 2.218 0.007

-16.0 2.293 2.483 0.050 2.488 0.007

-18.0 2.570 2.726 0.048 2.732 0.007

-20.0 2.809 2.896 0.046 2.901 0.006

-22.0 2.948 2.976 0.045 2.979 0.006

Table 5.3: Capacity in bits per channel use and capacity-maximizing step-size ∆ of

an M × M q DMC for an AWGN channel with M = 8.
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EN (dB) p(s1) p(s2) p(s3) p(s4) p(s5) p(s6) p(s7) p(s8)

3.0 0.474 0.023 0.003 0.001 0.001 0.003 0.023 0.474

2.0 0.475 0.021 0.002 0.001 0.001 0.002 0.021 0.475

1.0 0.473 0.022 0.003 0.001 0.001 0.003 0.022 0.473

0.0 0.470 0.024 0.004 0.002 0.002 0.004 0.024 0.470

-1.0 0.460 0.027 0.007 0.006 0.006 0.007 0.027 0.460

-2.0 0.432 0.033 0.016 0.019 0.019 0.016 0.033 0.432

-3.0 0.417 0.003 0.007 0.073 0.073 0.007 0.003 0.417

-4.0 0.387 0.004 0.009 0.100 0.100 0.009 0.004 0.387

-6.0 0.346 0.005 0.019 0.130 0.130 0.019 0.005 0.346

-8.0 0.296 0.021 0.066 0.117 0.117 0.066 0.021 0.296

-10.0 0.267 0.009 0.130 0.094 0.094 0.130 0.009 0.267

-12.0 0.228 0.043 0.129 0.100 0.100 0.129 0.043 0.228

-14.0 0.188 0.086 0.116 0.110 0.110 0.116 0.086 0.188

-16.0 0.161 0.108 0.116 0.115 0.115 0.116 0.108 0.161

-18.0 0.144 0.118 0.119 0.119 0.119 0.119 0.118 0.144

-20.0 0.132 0.123 0.123 0.123 0.123 0.123 0.123 0.132

-22.0 0.127 0.124 0.124 0.124 0.124 0.124 0.124 0.127

Table 5.4: Capacity-maximizing input probabilities of an 8×8 DMC with AWGN for

q = 1.
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EN (dB) p(s1) p(s2) p(s3) p(s4) p(s5) p(s6) p(s7) p(s8)

3.0 0.475 0.022 0.002 0.000 0.000 0.002 0.022 0.475

2.0 0.476 0.022 0.002 0.000 0.000 0.002 0.022 0.476

1.0 0.480 0.019 0.001 0.000 0.000 0.001 0.019 0.480

0.0 0.481 0.018 0.001 0.000 0.000 0.001 0.018 0.481

-1.0 0.492 0.000 0.000 0.008 0.008 0.000 0.000 0.492

-2.0 0.488 0.000 0.000 0.012 0.012 0.000 0.000 0.488

-3.0 0.489 0.000 0.000 0.011 0.011 0.000 0.000 0.489

-4.0 0.491 0.000 0.000 0.009 0.009 0.000 0.000 0.491

-6.0 0.368 0.121 0.011 0.000 0.000 0.011 0.121 0.368

-8.0 0.259 0.223 0.018 0.000 0.000 0.018 0.223 0.259

-10.0 0.222 0.253 0.025 0.000 0.000 0.025 0.253 0.222

-12.0 0.208 0.203 0.089 0.000 0.000 0.089 0.203 0.208

-14.0 0.203 0.000 0.297 0.000 0.000 0.297 0.000 0.203

-16.0 0.201 0.000 0.299 0.000 0.000 0.299 0.000 0.201

-18.0 0.202 0.000 0.298 0.000 0.000 0.298 0.000 0.202

-20.0 0.201 0.000 0.297 0.002 0.002 0.297 0.000 0.201

-22.0 0.199 0.000 0.266 0.035 0.035 0.266 0.000 0.199

Table 5.5: Capacity-maximizing input probabilities of an 8 × 82 DMC with AWGN

for q = 2.
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EN (dB) p(s1) p(s2) p(s3) p(s4) p(s5) p(s6) p(s7) p(s8)

3.0 0.475 0.022 0.002 0.000 0.000 0.002 0.022 0.475

2.0 0.476 0.022 0.002 0.000 0.000 0.002 0.022 0.476

1.0 0.480 0.019 0.001 0.000 0.000 0.001 0.019 0.480

0.0 0.481 0.018 0.001 0.000 0.000 0.001 0.018 0.481

-1.0 0.491 0.000 0.000 0.009 0.009 0.000 0.000 0.491

-2.0 0.487 0.000 0.000 0.013 0.013 0.000 0.000 0.487

-3.0 0.489 0.000 0.000 0.011 0.011 0.000 0.000 0.489

-4.0 0.491 0.000 0.000 0.009 0.009 0.000 0.000 0.491

-6.0 0.371 0.120 0.009 0.000 0.000 0.009 0.120 0.371

-8.0 0.259 0.223 0.018 0.000 0.000 0.018 0.223 0.259

-10.0 0.222 0.253 0.025 0.000 0.000 0.025 0.253 0.222

-12.0 0.208 0.204 0.088 0.000 0.000 0.088 0.204 0.208

-14.0 0.203 0.000 0.297 0.000 0.000 0.297 0.000 0.203

-16.0 0.201 0.000 0.299 0.000 0.000 0.299 0.000 0.201

-18.0 0.202 0.000 0.298 0.000 0.000 0.298 0.000 0.202

-20.0 0.201 0.000 0.297 0.002 0.002 0.297 0.000 0.201

-22.0 0.199 0.000 0.266 0.035 0.035 0.266 0.000 0.199

Table 5.6: Capacity-maximizing input probabilities of an 8 × 83 DMC with AWGN

for q = 3.
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In Figures 5.1 to 5.5, we measure the performance of the soft-decision COVQ

systems in terms of source SDR versus channel SNR, where

SNR , 10 log10

Es

σ2
(dB) (5.3)

and we compare it to the hard-decision demodulation case where q = 1. The results

are plotted for q = 1, 2, and 3. Performance improves as q increases; a majority of

the performance gain is achieved with q = 2, as foreshadowed by the capacity gains

listed in Tables 5.1 to 5.3.

Since a majority of SDR gain was seen between q = 1 and q = 2, we show the

maximum SDR gains due to increasing q from q = 1 and q = 2 in Table 5.7. In

this table, we show at which channel SNR the maximum gain is achieved for various

combinations of constellation size M , dimension k, and COVQ rate r, as inferred

from Figures 5.1 to 5.5. The relative SDR gain from q = 1 to q = 2, for all M = 4

cases, was around 10% near a channel SNR of 8 dB; for M = 8 case, the relative SDR

gain was almost 7% at around 14 dB. For all M over an AWGN channel, minimal

gain is observed between q = 2 and q = 3 and at high SNR (> 14 dB), the SDR

curves converge for all q.
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Figure 5.1: Performances using SD-COVQ with q = 1, 2, 3, and M = 2, k = r = 2,

over an AWGN channel with a memoryless Gaussian source.
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Figure 5.2: Performances using SD-COVQ with q = 1, 2, 3, and M = 4, k = r = 2,

over an AWGN channel with a memoryless Gaussian source.
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Figure 5.3: Performances using SD-COVQ with q = 1, 2, 3, and M = 4, k = 4, r = 1,

over an AWGN channel with a memoryless Gaussian source.
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Figure 5.4: Performances using SD-COVQ with q = 1, 2, 3, and M = 4, k = 2, r = 1,

over an AWGN channel with a memoryless Gaussian source.
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Figure 5.5: Performances using SD-COVQ with q = 1, 2, 3, and M = 8, k = 3, r = 1,

over an AWGN channel with a memoryless Gaussian source.
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M k r SNR (dB) SDR gain (dB)

2 2 2 2 0.60

4 2 2 8 0.48

4 4 1 8 0.28

4 2 1 8 0.25

8 3 1 14 0.20

Table 5.7: Approximate maximum SDR gains due to increasing q from q = 1 and

q = 2 for AWGN channels and memoryless Gaussian sources.

In Figures 5.4 and 5.6, we compare the performances of soft-decision COVQ be-

tween memoryless Gaussian sources and Gauss-Markov sources with correlation coeffi-

cient ρ = 0.9. Over an AWGN channel, we use k = 2 and r = 1 bits per source sample,

with M = 4 constellation signals. In the memoryless source case, the most gain was

evident at mid-to-high SNRs, with best improvement for q = 2 over hard-decision

demodulation at approximately 8.5 dB with a gain of 0.25 dB. For Gauss-Markov

sources with ρ = 0.9, larger gains were observed over the same SNR region. The

largest gains from q = 1 to q = 2 occur at approximately 8 dB with a gain of 0.42

dB. It was no surprise that the soft-decision COVQ system showed an improvement

on SDR for sources with high redundancy in the form of memory, as a similar result

was seen in [1] and [25].
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Figure 5.6: Performances using SD-COVQ with q = 1, 2, 3, and M = 4, k = 2, r = 1,

over an AWGN channel with a Gaussian-Markov source, correlation coefficient ρ =

0.9.
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5.2.2 Results for Rayleigh Fading Channels

Similar capacity increases hold for Rayleigh fading channels and are shown in Tables

5.9 to 5.11 for a varying number of constellation signals M and soft-decision received

bits q. Capacity improves over all q and approaches log2 M bits per channel use as

SNR increases, but with slower convergence than the AWGN channel.

Confirming trends suggested by the capacity increases, the SDR gains over Rayleigh

fading channels also show improvement as q increases. As with capacity gains seen

in Tables 5.9 to 5.11, most of the SDR gain is achieved by q = 2. Table 5.8 shows

the maximum SDR gain, the SNR at which the gain occurs, for various parameters

of M , k, and r for Rayleigh fading channels, as seen in Figures 5.7 to 5.11. Thus, for

all M = 4 cases, the approximate relative SDR gain between q = 1 and q = 2 is 10%

occurring near 12 dB. For the M = 8 case shown in Figure 5.11 when k = 3, r = 1,

the largest SDR gain of 0.11 dB occurs at 18 dB, with a relative SDR gain of 6%.

M k r SNR (dB) SDR gain (dB)

2 2 2 6 0.65

4 2 2 12 0.45

4 4 1 12 0.19

4 2 1 12 0.20

8 3 1 18 0.11

Table 5.8: Approximate maximum SDR gains due to increasing q from q = 1 and

q = 2 for Rayleigh fading channels and memoryless Gaussian sources.
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EN (dB)
q = 1 q = 2 q = 3

C C ∆ C ∆

3.0 0.150 0.198 1.393 0.213 0.789

2.0 0.180 0.237 1.244 0.254 0.703

1.0 0.215 0.280 1.115 0.298 0.628

0.0 0.256 0.329 0.995 0.349 0.560

-1.0 0.300 0.381 0.892 0.403 0.500

-2.0 0.347 0.435 0.803 0.458 0.449

-3.0 0.399 0.492 0.721 0.516 0.401

-4.0 0.451 0.548 0.651 0.572 0.361

-6.0 0.557 0.656 0.531 0.678 0.292

-8.0 0.656 0.749 0.436 0.769 0.238

-10.0 0.742 0.824 0.360 0.840 0.194

-12.0 0.811 0.880 0.297 0.892 0.158

-14.0 0.865 0.920 0.245 0.929 0.128

-16.0 0.906 0.947 0.202 0.954 0.104

-18.0 0.935 0.966 0.166 0.970 0.085

-20.0 0.955 0.978 0.136 0.981 0.069

-22.0 0.969 0.986 0.111 0.988 0.055

Table 5.9: Capacity in bits per channel use and capacity-maximizing step-size ∆ of

an M × M q DMC for a Rayleigh fading channel with M = 2.
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EN (dB)
q = 1 q = 2 q = 3

C C ∆ C ∆

3.0 0.289 0.324 0.453 0.326 0.140

2.0 0.342 0.376 0.406 0.379 0.126

1.0 0.397 0.431 0.366 0.434 0.114

0.0 0.457 0.491 0.327 0.494 0.102

-1.0 0.514 0.550 0.295 0.552 0.092

-2.0 0.569 0.606 0.267 0.608 0.084

-3.0 0.622 0.661 0.244 0.664 0.077

-4.0 0.670 0.712 0.246 0.716 0.081

-6.0 0.759 0.822 0.244 0.828 0.073

-8.0 0.845 0.936 0.224 0.943 0.065

-10.0 0.932 1.046 0.206 1.055 0.058

-12.0 1.018 1.147 0.191 1.158 0.053

-14.0 1.099 1.232 0.179 1.245 0.051

-16.0 1.169 1.300 0.171 1.314 0.048

-18.0 1.227 1.351 0.166 1.365 0.046

-20.0 1.271 1.387 0.163 1.402 0.045

-22.0 1.305 1.412 0.162 1.427 0.044

Table 5.10: Capacity in bits per channel use and capacity-maximizing step-size ∆ of

an M × M q DMC for a Rayleigh fading channel with M = 4.
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EN (dB)
q = 1 q = 2 q = 3

C C ∆ C ∆

3.0 0.364 0.385 0.143 0.385 0.024

2.0 0.423 0.441 0.130 0.441 0.021

1.0 0.481 0.498 0.119 0.498 0.019

0.0 0.542 0.556 0.111 0.557 0.016

-1.0 0.600 0.613 0.115 0.613 0.015

-2.0 0.653 0.670 0.085 0.671 0.013

-3.0 0.706 0.727 0.089 0.728 0.012

-4.0 0.768 0.785 0.080 0.786 0.012

-6.0 0.884 0.907 0.066 0.908 0.010

-8.0 0.998 1.029 0.055 1.030 0.009

-10.0 1.103 1.146 0.047 1.147 0.007

-12.0 1.197 1.256 0.041 1.257 0.008

-14.0 1.281 1.360 0.054 1.362 0.008

-16.0 1.359 1.457 0.053 1.459 0.008

-18.0 1.434 1.543 0.051 1.545 0.008

-20.0 1.503 1.615 0.050 1.619 0.008

-22.0 1.564 1.672 0.049 1.677 0.008

Table 5.11: Capacity in bits per channel use and capacity-maximizing step-size ∆ of

an M × M q DMC for a Rayleigh fading channel with M = 8.
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Figure 5.7: Performances using SD-COVQ with q = 1, 2, 3, and M = 2, k = r = 2,

over a Rayleigh fading channel with a memoryless Gaussian source.
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Figure 5.8: Performances using SD-COVQ with q = 1, 2, 3, and M = 4, k = r = 2,

over a Rayleigh fading channel with a memoryless Gaussian source.
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Figure 5.9: Performances using SD-COVQ with q = 1, 2, 3, and M = 4, k = 4, r = 1,

over a Rayleigh fading channel with a memoryless Gaussian source.
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Figure 5.10: Performances using SD-COVQ with q = 1, 2, 3, and M = 4, k = 2, r = 1,

over a Rayleigh fading channel with a memoryless Gaussian source.
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Figure 5.11: Performances using SD-COVQ with q = 1, 2, 3, and M = 8, k = 3, r = 1,

over a Rayleigh fading channel with a memoryless Gaussian source.
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5.3 Channel SNR Calculation

As previously stated, the plots throughout this chapter display the source SDR versus

the channel SNR. The channel SNR is dependent on the average signal energy Es. The

average signal energy was computed by measuring the M -PAM signal probabilities

p(si) empirically during training. Once the encoding region index was chosen for

each source vector, the M -PAM signals used to transmit the index were counted

to calculate p(si), with signals labeled according to Figures 4.2 to 4.4. Next, the

signal probabilities were used to compute the signal energy in Equation (4.1), and

consecutively the channel SNR using Equation (5.3).

In Tables 5.12 to 5.14, for all q we list the signal probabilities p(si), the average

signal energy Es, and the channel SNR, for a memoryless source over an AWGN

channel, with M = 4, k = 4, r = 1 for each EN . We notice that for all q, the signal

probabilities approach a uniform distribution as the SNR increases. The average

signal energies are well above one for high noise powers.

For a memoryless source sent over an AWGN channel and when M = 4, k = r = 2,

for all q the average signal energy is above one for high noise powers, is approximately

unit energy at around a channel SNR of 8 dB, and drops below one for low noise

powers. The same pattern holds true when M = 4, k = 2, r = 1, except the average

signal energy drops below one between channel SNRs 12 dB and 14 dB. For the M = 8

case where k = 3, r = 1, the actual average signal energy never drops below one, but

does gradually decrease as SNR increases.
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EN (dB) p(s1) p(s2) p(s3) p(s4) Es SNR (dB)

3.0 0.463 0.038 0.039 0.460 1.677 -0.76

2.0 0.453 0.048 0.049 0.450 1.645 0.16

1.0 0.444 0.058 0.058 0.440 1.614 1.08

0.0 0.436 0.066 0.066 0.432 1.589 2.01

-1.0 0.427 0.074 0.073 0.425 1.564 2.94

-2.0 0.418 0.083 0.083 0.416 1.533 3.86

-3.0 0.404 0.097 0.097 0.402 1.490 4.73

-4.0 0.385 0.116 0.116 0.384 1.429 5.55

-6.0 0.340 0.161 0.160 0.339 1.287 7.09

-8.0 0.303 0.194 0.200 0.303 1.170 8.68

-10.0 0.282 0.213 0.220 0.284 1.106 10.44

-12.0 0.266 0.231 0.235 0.268 1.055 12.23

-14.0 0.255 0.243 0.244 0.258 1.021 14.09

-16.0 0.248 0.248 0.250 0.254 1.004 16.02

-18.0 0.247 0.249 0.252 0.252 0.998 17.99

-20.0 0.247 0.249 0.253 0.251 0.997 19.99

-22.0 0.247 0.249 0.254 0.251 0.996 21.98

Table 5.12: Signal probabilities, average signal energies, and SNR for q = 1 and

M = 4, k = 4, r = 1 over an AWGN channel with a memoryless source.
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EN (dB) p(s1) p(s2) p(s3) p(s4) Es SNR (dB)

3.0 0.439 0.060 0.061 0.440 1.606 -0.94

2.0 0.432 0.066 0.067 0.434 1.586 0.00

1.0 0.426 0.073 0.073 0.428 1.566 0.95

0.0 0.421 0.078 0.079 0.422 1.549 1.90

-1.0 0.412 0.087 0.087 0.414 1.521 2.82

-2.0 0.400 0.099 0.100 0.401 1.481 3.71

-3.0 0.382 0.118 0.119 0.382 1.422 4.53

-4.0 0.361 0.139 0.139 0.361 1.356 5.32

-6.0 0.326 0.179 0.172 0.323 1.238 6.93

-8.0 0.304 0.200 0.192 0.304 1.173 8.69

-10.0 0.284 0.219 0.212 0.286 1.112 10.46

-12.0 0.268 0.235 0.226 0.272 1.063 12.27

-14.0 0.258 0.246 0.235 0.262 1.031 14.13

-16.0 0.254 0.250 0.239 0.258 1.018 16.08

-18.0 0.253 0.252 0.241 0.255 1.012 18.05

-20.0 0.253 0.252 0.241 0.254 1.011 20.05

-22.0 0.253 0.252 0.242 0.253 1.010 22.04

Table 5.13: Signal probabilities, average signal energies, and SNR for q = 2 and

M = 4, k = 4, r = 1 over an AWGN channel with a memoryless source.
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EN (dB) p(s1) p(s2) p(s3) p(s4) Es SNR (dB)

3.0 0.437 0.063 0.062 0.438 1.600 -0.96

2.0 0.431 0.069 0.068 0.432 1.580 -0.01

1.0 0.425 0.075 0.075 0.425 1.560 0.93

0.0 0.419 0.081 0.080 0.420 1.543 1.88

-1.0 0.411 0.090 0.087 0.412 1.517 2.81

-2.0 0.398 0.102 0.101 0.399 1.475 3.69

-3.0 0.380 0.120 0.119 0.381 1.418 4.52

-4.0 0.359 0.140 0.139 0.362 1.354 5.32

-6.0 0.323 0.182 0.174 0.321 1.230 6.90

-8.0 0.301 0.207 0.194 0.299 1.159 8.64

-10.0 0.283 0.224 0.215 0.279 1.098 10.41

-12.0 0.267 0.236 0.234 0.262 1.047 12.20

-14.0 0.259 0.243 0.246 0.252 1.017 14.07

-16.0 0.255 0.247 0.252 0.246 1.003 16.01

-18.0 0.254 0.248 0.252 0.245 0.999 18.00

-20.0 0.254 0.249 0.253 0.245 0.998 19.99

-22.0 0.234 0.259 0.257 0.250 0.974 21.89

Table 5.14: Signal probabilities, average signal energies, and SNR for q = 3 and

M = 4, k = 4, r = 1 over an AWGN channel with a memoryless source.
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As q approaches infinity, the soft-decision COVQ decoder converges to the optimal

soft decoder (i.e., the one which minimizes mean-square error), as noted in [6]. Cross-

over occurences of SDR curves for varying q seen in the figures suggest numerical

instability from simulations.

The advantage of the SD-COVQ system is low complexity, relative to other soft-

decision schemes; hence, there is minimal delay. Assuming that the channel conditions

are known, the channel transition probability matrix is needed at the encoder, while

the codeword look-up table is required at the decoder. The codebook is trained

before transmission; thus, there is minimal decoding complexity at the receiver. Con-

sequently, the system’s disadvantage is its need for storage. The transition matrix is

a 2kr × 2qkr matrix, whilst the look-up table consists of 2qkr k-dimensional vectors.

Since the decoding complexity is linear with q, and the storage increases exponentially

with q, our results show that there is not enough justification to increase q higher

than 2, as there was no significant gain beyond q > 2.

One possible improvement for showing more SDR gain is modifying the uniform

scalar quantizer in the soft-decision demodulator to better represent the noise endured

by sent signals. Another possible improvement would be to iteratively calculate the

signal probabilities and average signal energy, in order to adjust the signal constella-

tion accordingly.



Chapter 6

Conclusions

6.1 Summary

In Chapter 2, we presented typical source and channel models, introduced information

theoretic concepts, and stated the necessary conditions for optimality for VQ using the

MSE distortion measure. In Chapter 3, we presented algorithms used to combine data

compression and channel noise protection, namely COVQ. We introduced background

work on soft-decision COVQ and summarized algorithms used in the initialization of

our soft-decision COVQ system.

We proposed a soft-decision COVQ system for M-ary PAM modulated channels

in Chapter 4. More specifically, we stated the details of the system, including the

channel transition probability matrix for both AWGN and Rayleigh fading channels,

and the soft-decision demodulator at the receiver.

In Chapter 5, we tabulated and plotted the numerical results of several scenarios

for the number of constellation signals M , dimension of source vector k, COVQ
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rate r, soft-decision bits q, and Gauss-Markov sources with correlation coefficients

ρ = 0.0, 0.9. Trends seen in the increase in capacity were noticed in the SDR gain.

A majority of the gain over hard-decision decoding was achieved by q = 2, and

insignificant gain was achieved between q = 2 and q = 3. Since the system computes

the codebook prior to transmission, encoding and decoding complexity is low, but

storage requirements are high. Also, since complexity is exponential with q, q = 2 is

the most beneficial soft-decision COVQ system for SDR gain, since minimal gain was

seen between q = 2 and q = 3.

6.2 Future Work

Future work with soft-decision COVQ includes using the one-dimensional constella-

tion system as a basis for soft-decision COVQ over two-dimensional constellations,

such as quadrature amplitude modulation (QAM). Other possible work could en-

compass testing other codebook initialization techniques, including encoder index

assignments and codeword index mappings. Furthermore, the uniform scalar quan-

tizer at the soft-decision demodulator could be modified to account for channel noise

endured by the signals. The system’s resilience to channel mismatch could also be

investigated and is expected to be fairly robust, as channel-optimized quantization

schemes have shown robustness to channel mismatch [6].
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Appendix A

Capacity Algorithm Background

The following results presented by Blahut in [7] are the basis for the iterative algorithm

which computes the channel capacity (outlined in Chapter 3). Arimoto also developed

theorems allowing the monotonic convergence to the exact capacity in [2]. We shall

begin by stating definitions, using notation from [7].

A discrete channel is described by its probability transition matrix Q = [Qk|j] (not

necessarily square), where k is the k-th output letter received, and j is the j-th input

letter transmitted. The capacity of a channel is

C = max
p∈Pn

I(p, Q) = max
p∈Pn

∑

j

∑

k

pjQk|j log
Qk|j

∑

a paQk|a
, (A.1)

where

Pn = {p ∈ R
n : pj ≥ 0 ∀j;

∑

j

pj = 1}

is the set of all channel input probability distributions. I(p, Q) is the mutual infor-

mation between the channel input and output.

Theorem A.1. Suppose the channel transition matrix Q has dimension n × m. For
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any m × n transition matrix P , let

J(p, Q, P ) =
∑

j

∑

k

pjQk|j log
Pj|k
pj

.

Then the following is true.

a) C = maxp maxP J(p, Q, P ).

b) For fixed p, J(p, Q, P ) is maximized by

Pj|k =
pjQk|j

∑

a paQk|a
.

c) For fixed P , J(p, Q, P ) is maximized by

pj =
exp(

∑

k Qk|j log Pj|k)
∑

a exp(
∑

k Qk|a log Pa|k)
.

From Theorem A.1, we see that combining the last two parts, we find the following

corollary.

Corollary A.2. If p achieves capacity, then

pj =
pj exp

∑

k Qk|j log
Qk|j

P

a paQk|a

∑

b pb exp
∑

k Qk|b log
Qk|b

P

a paQk|a

.

This means a new input probability vector p can be generated from any older

vector. The following corollary comes from Theorem A.1, by substituting the last

part into the first.

Corollary A.3.

C = max
P

log
∑

j

exp(
∑

k

Qk|j log Pj|k).
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Finally, the following theorem uses the previous facts and forms the basis of the

capacity computation algorithm.

Theorem A.4. For any p ∈ Pn, let

cj(p) = exp
∑

k

Qk|j log
Qk|j

∑

a paQk|a
.

Then, if po is any element of Pn with all components strictly positive, the sequence

of probability vectors defined by

pr+1
j = pr

j

cr
j

∑

a pr
ac

r
a

is such that I(pr, Q) → C as r → ∞.

The proofs of the previous theorems and corollaries are detailed in [7].


