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Abstract

In this paper, we make use of channel symmetry properties to determine the capacity region of three
types of two-way networks: (a) two-user memoryless two-way channels (TWCs), (b) two-user TWCs
with memory, and (c) three-user multiaccess/degraded broadcast (MA/DB) TWCs. For each network,
symmetry conditions under which a Shannon-type random coding inner bound (under independent
non-adaptive inputs) is tight are given. For two-user memoryless TWCs, prior results are substantially
generalized by viewing a TWC as two interacting state-dependent one-way channels. The capacity of
symmetric TWCs with memory, whose outputs are functions of the inputs and independent stationary
and ergodic noise processes, is also obtained. Moreover, various channel symmetry properties under
which the Shannon-type inner bound is tight are identified for three-user MA/DB TWCs. The results
not only enlarge the class of symmetric TWCs whose capacity region can be exactly determined but

also imply that interactive adaptive coding, not improving capacity, is unnecessary for such channels.

Index Terms

Network information theory, two-way channels, capacity region, inner and outer bounds, channel

symmetry, multiple access and broadcast channels, channels with memory, adaptive coding.

I. INTRODUCTION

Shannon’s two-way channel (TWC) [3], which allows two users to exchange data streams in a

full-duplex manner, is a basic component of communication systems. To mitigate the interference
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Fig. 1: Block diagrams of the two-way networks considered: (a) point-to-point memoryless
TWC with two channel inputs X; and X, and two channel outputs Y; and Y5; (b) point-to-
point TWC with memory, where F; and F), are deterministic functions and (Z;, Z5) is a time-
correlated channel noise pair generated from a joint stationary and ergodic process; (c) three-user
memoryless MA/DB TWC, where X; and Y; respectively denote channel input and output at
user j for j =1,2,3.

incurred from two-way simultaneous transmission, TWCs are often used in conjunction with
orthogonal multiplexing [4]. With increasing demands for fast data transmission, many industrial
standards have enabled the use of non-orthogonal multiplexing to accommodate more users [3],
[6]. From an information-theoretic viewpoint, the challenge is how each user can effectively
maximize its individual transmission rate over the shared channel and concurrently provide
sufficient feedback to help the other users’ transmissions. These competing objectives impose
on each user the challenging task of optimally adapting their inputs to the previously received
signals of the other users. As finding such an optimal coding procedure is still elusive, the exact
characterization of the capacity region of general TWCs remains open [7], [8, Section 17.5].
This paper revisits this open problem by finding larger classes of TWCs whose capacity region
can be exactly obtained. Our approach is to identify channel symmetry properties under which a
Shannon-type random coding inner bound (under independent non-adaptive inputs) is tight, thus

directly determining the capacity region. As a result, we identify TWCs for which interactive
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adaptive coding is useless in terms of improving the users’ transmission rates. In particular,
we focus on three two-way networks which we depict in Fig. [I] The two-user (point-to-point)
memoryless TWC in Fig. [[(a)] models device-to-device communication [9]. The simplified TWC
with memory in Fig. which is a generalization of additive-noise TWC in [1]], can capture
the effect of time-correlated channel noise which commonly arises in wireless communications.
The three-user memoryless multiaccess/degraded broadcasting (MA/DB) TWC [24] in Fig.
models the communication between two mobile users and one base station, where the shared
channel in the users-to-base-station (uplink) direction acts as a multiple-access channel (MAC)
while the reverse (downlink) direction acts as a degraded broadcast channel (DBC). For these
networks, we derive conditions under which the Shannon-type inner bound is optimal in terms of
achieving channel capacity. Such a result also has a practical significance since communication

without adaptive coding simplifies system design.

A. Capacity Bounds for TWCs

We briefly review some general results on the capacity of TWCs. In [3l], Shannon derived
inner and outer capacity bounds in the form of a single-letter expression for two-user memoryless
TWCs. The inner bound is obtained via random coding where the users’ channel inputs are
independent (and non-adaptive), while the inputs are allowed to have arbitrary correlation in the
outer bound. In general, the two bounds do not coincide. Follow-up work in [[10]-[113]] was devoted
to improving Shannon’s inner bound by using adaptive coding. Two novel outer bounds [14],
[1S]], which restrict the dependency among channel inputs, were proposed to refine Shannon’s
result. Moreover, methods to efficiently utilize TWCs were investigated by studying the role
of feedback [16]]. In [17], directed mutual information [18], which is widely used in the study
of one-way channels with feedback [19]]-[23]], was used to characterize the capacity of TWCs,
but the obtained multi-letter expressions are often not computable. Recently, the Shannon-type
random coding scheme was shown to be optimal in several deterministic multi-user TWC settings
[24] such as MA/BC, Z, and interference TWCs, hence finding the channel capacity in these
cases. The channel capacity for a variant of these multi-user TWCs, called three-way channels,
was also investigated in different network setups such as three-way multi-cast finite-field or
phase-fading Gaussian channels [26] and three-way Gaussian channels with multiple unicast

sessions [27]. An additional capacity result for deterministic interference TWCs was derived in
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[25]. For TWCs with memory, Shannon provided a multi-letter capacity characterization in [3,

Section 16] which in general is incalculable.

B. Related Work

Channel symmetry properties, which are extensively investigated to simplify the computation
of the capacity of one-way channels, play a key role in determining the capacity region for TWCs.
The first channel symmetry property for TWCs was proposed by Shannon [3, Section 12]. Let
[Py, va|x1,x,(*; :|-, )] denote the channel transition matrix of a two-user discrete memoryless
TWC, where X; and Y; denote the channel input and output at user j, respectively. Shannon
gave two permutation invariance conditions on [Py, v,|x, x, (-, |-, -)] which guarantee the equality
of his inner and outer bounds (see Propositions 1 and 2 in Section II for details). A recent work
[28]] by Chaaban, Varshney, and Alouini (CVA) presented another tightness condition, where the
channel symmetry property is given in terms of conditional entropies for the marginal channel
distribution [Py;|x, x,(+|-, )] (see Proposition 3).

The above conditions delineate classes of two-user memoryless TWCs for which Shannon’s
capacity inner bound is tight, hence exactly yielding their capacity region. Examples include
Gaussian TWCs [13]], g-ary additive-noise TWCs [1]], and more general channel models such as
injective semi-deterministic TWCs (ISD-TWCs) [28], Cauchy [28] and exponential family type
TWCs [29]. It is worth mentioning that Hekstra and Willems [15] also presented a condition
under which Shannon’s inner bound is tight. However, their result is only valid for single-output
memoryless TWCs.

For three-user MA/BC memoryless TWCs, Cheng and Devroye [24] investigated a class of
symmetric TWCs. In particular, they considered deterministic, invertible, and alphabet-restricted
MA/BC TWCs, proving that the Shannon-type inner bound is tight for that class of channels.
However, to the best of our knowledge, symmetry properties for TWCs beyond these have not
been investigated. It is also important to point out that two-user TWCs with memory are not

well understood either.
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C. A Motivational Example and Proposed Approach
Consider a point-to-point binary-input and binary-output memoryless TWC with transition
probability matrix (see Section for the formal description of the channel model)

00 01 10 11
00( 0.783 0.087 0.117 0.013
~ 01 0.0417 0.3753 0.0583 0.5247

[Py yal X1, (5|5 0)] = ,
10| 0.261 0.609 0.039 0.091

111 0.2919 0.1251 0.4081 0.1749
where the rows and columns are indexed by the channel inputs and outputs, respectively. The

corresponding marginal channel transition matrices are

0.9 0.1 0.87 0.13
[PYQ\X17X2("'7 0)} - ) [PY1|X1,X2("07 )] -

0.3 0.7 0.417 0.583

0.1 0.9 0.87 0.13
[PYZ\XLXQ('|'71H - ) [PY1|X1,X2('|17')] -

0.7 0.3 0.417 0.583

A thorough examination reveals that for this TWC Shannon’s inner bound is actually exact due
to the symmetric structures of the channel’s marginal transition matrices. However, none of the
previously proposed symmetry conditions in the literature are satisfied.

We address this problem by viewing a TWC as two state-dependent one-way channels [3],
[30]. Taking the two-user setting as an example, the state-dependent one-way channel from
users 1 to 2 has input X, output Y5, state X5, and transition matrix given by [Py,x, x,(:|*;*)];
similarly, the one-way channel [Py, |x, x, (|, )] in the reverse direction has input X,, output Y},
and channel state X;. Note that this Viewpoin may also be useful for all previously mentioned
two-way networks. Another useful tool is the rich set of symmetry concepts for single-user one-
way channelsE] From this perspective, the two one-way channels now interact with each other
through the channel states. Clearly, this interaction could improve bi-directional transmission

rates by making use of adaptive coding.

! Another viewpoint for two-user TWCs is based on compound MACs, see |31, Problem 14.11] and [32].

2Channel symmetry properties for single-user one-way memoryless channels can be roughly classified into two types. One
type focuses on the structure of the channel transition probability such as Gallager symmetric channels [33]], weakly symmetric
and symmetric channels [34], and quasi-symmetric channels [35]]. The other type aims at the invariance of information quantities

including T-symmetric channels [36] and channels with input-invariance symmetry [37].
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Our approach is to study symmetry properties for state-dependent one-way channels that
imply that the capacity cannot be increased with the availability of channel state information
at the transmitter (in addition to the receiver). Such properties can potentially render interactive
adaptive coding useless in terms of enlarging TWC capacity. In the two-user memoryless set-
ting, we develop the following two important channel symmetry notions. The common optimal
input distribution condition identifies a state-dependent one-way channel that has an identical
capacity-achieving input distribution for all channel states. The invariance of input-output mutual
information condition then identifies a state-dependent one-way channel that produces the same
input-output mutual information for all channel states under any fixed input distribution. If a
TWC satisfies both conditions, one for each direction of the two-way transmission, the optimal
transmission scheme of one user is irrelevant to the other user’s transmission scheme, implying
that the interaction between the users does not increase their transmission rates and hence channel
capacity. In fact, the preceding motivational example illustrates this. More formally, we can prove
that under certain symmetry properties (identified by the derived conditions), any rate pair inside
Shannon’s outer bound region is always contained in the inner bound region, implying that the
latter bound is tight.

Furthermore, it should be expected that validating generalized channel symmetry properties
can be a very complex procedure. However, we show that such a verification can be greatly
simplified for some TWCs. For instance, the channel transition matrices [Py,|x, x,(:|,0)] and
[Py, 1x,,x5 (|-, 1)] in the above example are column permutations of each other and the matrices
[Py 1x,,x,(-0,-)] and [Py,|x, x,(:|1,-)] are identical. It turns out (as we will see later) that these
two symmetry properties imply that Shannon’s inner bound is tight. Therefore, we not only seek

general conditions but also look for conditions which are simple to verify.

D. Summary of Contributions

Most of the conditions that we establish in this paper comprise two parts, one for each direction
of the two-way transmission. Our contributions are summarized as follows.
e Point-to-Point Memoryless TWCs: six sufficient conditions (Theorems [I}4] and Corollaries
guaranteeing that Shannon’s inner and outer bounds coincide are derived. Three of these are
shown to be substantial generalizations of the Shannon and CVA conditions (in Theorems [5H7);
our simplest condition can be verified by only observing the channel marginal distributions.

Moreover, the capacity region of g-ary additive-noise TWCs with erasures, which subsume
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Fig. 2: The relationships between the results yielding the equality of Shannon’s capacity bounds
in point-to-point memoryless TWCs. Here, A — B indicates that result A subsumes result B,
and B -+ A indicates that result B does not subsume result A. For example, Prop. 3 — Prop. 1
and Prop. 1 - Prop. 3 mean that the CVA result in Prop. 3 is more general than the Shannon

result in Prop. 1.
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Fig. 3: The relationships between the results for point-to-point TWCs with memory. Here,
A "™ S B indicates that results A and B are combined in Theorem C' to determine the

capacity region.

several classical TWCs, is fully characterized by our conditions. Several examples illustrating the
difference between these conditions are provided. We also refine Shannon’s result to show that the
CVA condition is a strict generalization of the Shannon condition (Theorem [)), thus answering a
question raised in [28]]. Implications among our results (and prior results) are depicted in Fig.

e Point-to-Point TWCs with Memory: a Shannon-type inner bound and an outer bound for
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the capacity of TWCs with memory under certain invertibility and alphabet size constraints are
derived (Lemmas [I}{2] and Corollaries [3}{5). Two sufficient conditions for the tightness of the
bounds are given (Theorems [9] and [I0). The first condition is derived for TWCs with strict
invertibility and alphabet size constraints, characterizing channel capacity in single-letter form.
The other condition is specialized for injective semi-deterministic TWCs with memory The
obtained results are related as shown in Fig. [3] We also illustrate via a simple example that
when the channel’s memory is strong, the Shannon-type random coding scheme does not achieve
capacity and adaptive coding is useful.
e Three-User Memoryless MA/DB TWCs: we establish a Shannon-type inner bound and
an outer bound for the capacity region of MA/DB TWCs (Theorems and where both
bounds admit a common rate expression but have different input distribution requirements. Three
sufficient conditions (based on different techniques) for these bounds to coincide are established
(Theorems [I3H{I5). The first condition involves the existence of independent inputs that can
achieve the outer bound (similar to the CVA approach). The second condition is derived from
the viewpoint of two interacting state-dependent one-way channels. The last one focuses on
the permutation invariance structure of the channel transition matrix (mirroring the Shannon
symmetry method). The obtained results extend the results in [24] and readily provide the
capacity region for a larger class of MA/DB TWCs. While the channel model here is admittedly
simplified, we note that our intention is to illustrate a potential methodology for determining the
capacity regions of multi-user two-way channels and to motivate future work in this area.

The rest of the paper is organized as follows. In Section [IlI, point-to-point memoryless TWCs
are investigated. TWCs with memory are studied in Section |[II, and memoryless MA/DB TWCs

are examined in Section Concluding remarks are given in Section

II. POINT-TO-POINT MEMORYLESS TWCS

In this section, we study two-user memoryless two-way networks. We first formally describe
the general model for point-to-point TWCs (not necessarily memoryless) in Section [[I-Al and
then review the prior results for the memoryless case in Section New symmetry conditions

are derived in Section [II-C, and we demonstrate how to apply these conditions to finding the

3ISD-TWC model with memoryless noise were introduced in [28]. Here, we merely extend this setting by allowing noise

processes with memory.
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Fig. 4: The information flow of point-to-point two-way transmission.

channel capacity in Section Comparisons between prior results and our conditions are
also presented in Section [[I-El and the relationship between Shannon’s condition and the CVA

condition is examined in Section [I-H

A. General Channel Model

In point-to-point two-way communication as shown in Fig. f] two users exchange messages
M; and M> via n channel uses. Here, M; and M5 are assumed to be independent and uniformly
distributed on the finite sets M; = {1,2,...,2"%} and My £ {1,2, ..., 2"%2}, respectively, for
some %, Ry > 0. Let X; and ); be the channel input and output alphabets, respectively for
Jj=1,2.Fort=1,2,...,n,let X;;, € X; and Y}; € ); denote the channel input and output of
user j at time 7, respectively. The joint probability distribution of all random variables for the

entire transmission period is given by

n
Panan xp xp v vy = Pan Pa, - (IIle,ithYfl> |
=1

where X! £ (X1, X;s,...,X;;) and Y} £ (Y}1,Y]2,...,Y};) for j = 1,2. The n transmissions
over a point-to-point TWC can be then described by the sequence of conditional probabilities
{Pyl,i,yu\X{,X;,Yf*,ygfl}?=1-

Definition 1: An (n, Ry, Ry) code for a TWC consists of two message sets M; = {1,2,...,
2rf1 Y and My = {1,2,...,2"f2}, two sequences of encoding functions fI* = (fi1, fi2, - - - fin)
and fI' 2 (fo1, f22,- - fo.n) such that

X1 = fia(My), Xi;= fri(M, Y™

Xog = for(Ms), Xoi= foi(My, Y5 )
for i = 2,3,...,n, and two decoding functions ¢; and g» such that M, = g1(My,Y]") and
My = go( My, Y7").

January 30, 2019 DRAFT



When messages M and M, are encoded via an (n, Ry, R2) channel code, the probability of
decoding error is defined as Pe(n)(ff, I3 g1, 92) = Pr{ My # My or My # M,}.

Definition 2: A rate pair (R;, Ry) is said to be achievable if there exists a sequence of
(n, Ry, Ro) codes with lim,,_,., P = 0.

Definition 3: The capacity region C of a point-to-point TWC is defined as the closure of the

convex hull of all achievable rate pairs.

B. Prior Results for Memoryless TWCs

A point-to-point TWC is said to be memoryless if its transition probabilities satisfy

PYl,i,Yzz‘IX{,)(;’,Yf’l,YQF1 = Py valx1, %,

for all + > 1. For a memoryless TWC with transition probability Py, y;|x,, x, and input distribution

Px, x5, let R(Px, x,, Py, v,|x,,x,) denote the set of all rate pairs (R;, Ry) constrained by
R, < [(Xl; Ylez) and Ry < I(X2;Y1\X1)- (D

In [3], Shannon showed that the capacity region of a discrete memoryless point-to-point TWC

is inner bounded by

CI(PY17Y2|X1,X2) £ co U R(PX1PX2’ PY1,Y2|X17X2) )

Px, Px,

and outer bounded by

Co(Pyyaxixe) 200 [ | R(Px,x0 Pavaixix) |

PleX2
where ¢o(-) denotes taking the closure of the convex hull. In general, C; and Co are not matched
to each other, but if they coincide, then the exact capacity region is obtained. Our objective is
to develop general conditions under which the two bounds coincide.

In the following, the Shannon [3] and CVA [28] conditions that imply the equality of C;
and Co are summarized. In short, the Shannon condition focuses on the permutation invariance
structure of the channel transition matrix [Py, v,|x, x, (", |-, )], while the CVA condition involves
the existence of independent inputs which can achieve the outer bound. Throughout the paper,
we use 10 (X;;Y;X;) and HY(Y;| X}, X;) to denote the conditional mutual information and
the conditional entropy evaluated under input distribution P)(Q x, for j,k = 1,2 with j # k.
For P)((li X = P)((Z)P)((li‘ X, with j # k, the conditional entropy H"(Y;|X;) is evaluated using the

J
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marginal distribution PS(/?|XJ_ (yjlzj) = >, P)((lilXj (wr|zj) Py x,; x, (Yj]75, 71). Also, for a finite
set A, let 7 : A — A denote a permutation (bijection), and for any two symbols @’ and a” in
A, let 7';/‘7&,/ : A — A denote the transposition which swaps a’ and a” in A, but leaves the other
symbols unaffected. Finally, let P(X;) denote the set of all probability distributions on X, and
define P}gj as the uniform probability distribution on & for j = 1, 2.

Proposition 1 (Shannon’s One-Sided Symmetry Condition [3|]): For a memoryless TWC with
transition probability Py, yv,|x, x,, we have that C = C; = Co if for any pair of distinct input
symbols ', ¥/ € X}, there exists a pair of permutations (7' [z, /], 72[2}, z]) on ) and Vs,

respectively, (which depend on x) and z!) such that for all 1, x5, y1, yo,

Py, o[ X1, Xe (Y1, Yol w1, 22) = Py o X1, Xe (Wyl [xllv xll/] (v1), w2 [x/la Ill/] (y2) |Tx/‘/jl,x’1/(x1)a ). (2)

Under this condition, the capacity region is given by

c=c | R(P}jl Py, PYhYQ‘XLXQ) . 3)

Px,

In [3], the proof of Proposition [I] is only sketched. To make the paper self-contained and
facilitate the understanding of a technique used to derive one of our results (Theorem [15]), we
provide a full proof in Appendix Note that Proposition |I| describes a channel symmetry
property with respect to the channel input of user 1, but an analogous condition can be obtained
by exchanging the roles of users 1 and 2. The proposition below immediately follows from
Proposition 1.

Proposition 2 (Shannon’s Two-Sided Symmetry Condition [3|]): For a memoryless TWC with
transition probability Py, y,|x,,x,, we have that C = C; = Co if the TWC satisfies the one-sided
symmetry condition with respect to both channel inputs. In this case, the capacity region is
rectangular and given by C = R(PY, Py, Py, vy x1,x2)-

Proposition 3 (CVA Condition [28]): For a memoryless TWC with transition probability
Py, v,|x,,x,> We have that C = C; = Co if H(Y;|X1,X3), j = 1,2, does not depend on Px,|x,
for any fixed Px, and Py, x, x,, and for any P)((ll)’ Xy = P)((IZ)P)((II)| x, there exists le € P(X)
such that HM(Y;|X;) < HO(Yj|X;) for j = 1,2, where P{) = Py, P{).

Thus, if a TWC satisfies any one of the above conditions, the capacity region can be determined
by considering independent inputs: Py, x, = Px, Px,. This result implies that adaptive coding,
where channel inputs are generated by interactively adapting to the previously received signals,

cannot improve the users’ achievable rates and that Shannon’s random coding scheme is optimal.
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The class of memoryless ISD-TWCs [28]] satisfies the CVA condition (but do not necessarily sat-
isfy the Shannon condition) and hence adaptive coding is useless for such channels. A TWC with
independent g-ary additive noise [1] is an example of a channel that satisfies both the Shannon
and CVA conditions. Although the CVA condition does not require any permutation invariance
on the channel marginal distribution Py,|x, x,, the invariance requirement of H(Y;| X1, X3)’s in
Proposition 3| does in fact impose a certain symmetry constraint on Py;|x, x,. More details about

these conditions will be provided in the proof of Theorem (/| and Section [[I-H

C. Conditions for the Tightness of Shannon’s Inner and Outer Bounds

In this section, we present conditions that guarantee the tightness of Shannon’s inner bound
by considering a TWC as two interacting state-dependent one-way channels. For example, the
state-dependent one-way channel from user 1 to user 2 is governed by the marginal distribution
Py, x, x, (derived from the channel probability Py, v, x, x,), where X; and Y, are respectively
the input and the output of the channel with state X,.

Let Py and Py x be probability distributions on A" and ), respectively. To simplify the
presentation, we use

P, x
I(Px, Pyix) = ZPX ) Py x (y|z) log vix ()

D PX(ml)PY|X(y|$/)’

as an alternative way of writing the mutual information /(X;Y’) between input X (governed by

Px) and corresponding output Y of a channel with transition probability Py x. A useful fact is
that Z(-, -) is concave in the first argument when the second argument is fixed. Moreover, the con-
ditional mutual information I(X;;Y3| X, = x2) can be expressed as Z(Px,|x,=as, Pya| X1, Xo=22)-
Since the TWC is viewed as two state-dependent one-way channels, each of the following
theorems consists of two conditions, one for each direction of the two-way transmission. By
symmetry, these theorems are valid if the roles of users 1 and 2 are swapped.
Theorem 1: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then C; = Co.
(i) There exists Py, € P(X1) such that arg maxp oo I(X1;Y5]| Xy = x3) = Py, for all
Ty € Xo;
(i) Z(Px,,Py,|x,=z1,x,) does not depend on z; € X for any fixed Px, € P(X5).

Proof: For any PX1 X = PX2 P

X1 X2 let P)((?XQ = P)*QP)((I), where P)*(1 is given by (i). In

2

light of (i), we have

ID(X1;Y5]X,) = ZP)% (2) - TV (X1; V2| Xy = 1) )
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<> PY(@)- [ max  I(Xy; Ya| X = 22) (5)

Px | xy=xy
= Z P)((lg) (x2) 'I(P)*(l’ PY2|X17X2:z2> (6)
= Z Py B(X1; Ya| Xz = 25) 9
- I (X1;Y2|X2)‘ ®)

Moreover,

- Zpl) )((12)|X1 =z’ PYl\Xl m,Xz)

= ZP)@? (21) - Z(P ), oy Prlxi=st,x2) ©)
<z (Z P (@) Py X1 (x2|x1)aPY1X1::z’1,X2> (10)
= I(P)((lg), Pyl\Xlzx;,XQ)

—prl PX2>PY1|X1 xl,xg) (11)
= I ( Xy V1| Xy), (12)

where (9) holds by the invariance assumption in (ii) and x’l € A is arbitrary, holds since
the functional Z(-, -) is concave in the first argument, and (11)) is obtained from the invariance as-
sumption in (ii). Combining the above yields R(PY .. Py vax1,x2) € R(P%, Py Prnvaixi,xa)s
which implies that Co C Cf and hence C} = Cj. [ |

Instead of relying on the permutation invariance (row, column, or both) of the channel transition
matrix, the symmetry property in the theorem is characterized by a combination of two symmetry
properties for state-dependent one-way channels in terms of mutual information: (1) common
capacity-achieving input distribution; (2) invariance of input-output mutual information. A special
case where condition (i) of Theorem [I]trivially holds is when each one-way channel Py, x, x,=x,.
To € Xy, 18 T —symmetricﬂ [36]; in this case we have Py = P}YJl.

We next apply condition (ii) of Theorem [I] for both directions of the two-way transmission.

*A point-to-point one way channel is called T-symmetric if the optimal input distribution (that maximizes the channels’s

mutual information) is uniform.
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Theorem 2: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then C; = Co.
(i) Z(Px,, Pyy|x,,xo=2,) does not depend on x, € &; for any fixed Px, € P(X1);
(i) Z(Px,, Pvi|x1=x1,x,) does not depend on z; € &; for any fixed Py, € P(X5).
Proof: From conditions (i) and (i), we know that maxpy ¢ . I(X1;Y2| Xy = x9) has
a common maximizer Py, for all z; € A, and that maxp, | _ [ (X9;Y1| Xy = 21) has a
common maximizer Py, for all x; € &j. For any P)(<11), Xy = P)((ll)P)(;Q)| x,» let P)((Q1 )7 x, = Px, Px,-
Using the same argument as in (#)-(8), we conclude that 1M (X;; V5| X,) < I®(X; V5| X,) and
IV(Xy; Y1]X)) < IP(Xy;Y1|Xy). Thus, R(PY v, Privaxixs) © R(PE Py Prvalxxa)s
which yields C; = Co. [ |
To verify condition (i) in Theorem [I} one should find optimal input distributions for the
one-way channel from users 1 to 2 for each state zo € A5, say, via the Blahut-Arimoto
algorithm [38]]. This process can sometimes be simplified by testing whether the uniform input
distribution is optimal via the Karush-Kuhn-Tucker (KKT) conditions for one-way channel
capacity [33]. However, verifying condition (ii) in Theorem [I] may necessitate the evaluation
of Z(Px,, Py, x, x,(-|1,-)) for all Px, € P(X,) and z; € X;. In practice, such a verification
is often complex, especially when the size of the input alphabet is large. Similar difficulties
arise when ascertaining the conditions of Theorem [Z} In the following results, conditions that
are easier to check are presented.
Theorem 3: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then C; = Co.
(i) There exists Py, € P(X}) such that arg maxp . I(X1;Y5| Xy = x5) = Py, for all
T9 € X and I(P)*(l, Py2|X1’X2:mQ) does not depend on x5 € A5;
(i) There exists Py, € P(AX3) such that arg maxp, .o I(Xo; V1| Xy = x1) = Pk, for all
r1 € A1 and Z(Py,, Pyy|x,=s,,x,) does not depend on z; € A).

1 1 1
Proof: For any P)(ﬁ),XQ =P )(Q)P )((1)\X2’

consider P)((zl)’X2 = Pg Px,, where Py and
P%, are given by (i) and (ii), respectively. Following the same steps as in (@)-(8), we
obtain /(M (X ;Y| X,) < I®(X,:Y,|X,). By a similar argument, we obtain the inequality
IV(X; Y11X)) < IP(Xy;Y1]X)). Hence, R(PY) ., Privyixix,) © R(Pi, Piys Privalxuxs)
which implies C; = Co. |

Unlike condition (i1) of Theorem |1{ and the conditions in Theorem 2| Theorem |3 only requires

checking the existence of a common maximizer and testing whether Z(Px , Py,|x, xo=z,) 18

invariant with respect to x € X5 and Z(P%,, Py x,—a,,x,) is invariant with respect to z; € A7,
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thus siginificantly reducing the validation computational complexity vis-a-vis Theorems |1| and

The next two corollaries provide even simpler conditions. Let [Py,|x, x,(-|-, #2)] denote the
transition matrix of the channel from users 1 to 2 when the input of user 2 is fixed to be z5. The
matrix [Py, |x, x, (|-, 22)] has size |X}| x [)%| and its entry at the x1th row and y»th column is
Py, x,,x, (2|71, 22). Similarly, let [Py, x, x, (|21, )] denote the transition matrix of the channel
from users 2 to 1 when the input of user 1 is fixed to be x;.

Corollary 1: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then C; = Co.
(i) The channel with transition matrix [Py, x, x, (|-, z2)] is quasi—symmetricﬂ for all 25 € Ab;
(i) The matrices [Py, |x, x,(-|Z1,)], 1 € X1, are column permutations of each other.

Proof: Tt suffices to show that conditions (i) and (ii) imply the conditions of Theorem [I}
Under condition (i), we obtain a common maximizer given by Py, = P}ﬁl since the optimal
input distribution for a quasi-symmetric channel is the uniform distribution [35]; this implies
condition (i) of Theorem [I| Furthermore, we observe that Z(Px,, Py,|x,, x,(-|z1,-)) is invariant
with respect to column permutations of the transition matrix Py, x, x,(-|z1,-) for given Px,.
Since the matrices [Py, |x, x,(-|¢1,)], 1 € Xy, are column permutations of each other, we
conclude that Z(Px,, Py,|x,=z,,x,) does not depend on z; € &; for any fixed Px, € P(X>),
which is the second condition of Theorem [Il |

Corollary 2: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then C; = Co.

(i) The matrices [Py,|x, x, (|-, 2)], x2 € X,, are column permutations of each other;
(i) The matrices [Py, |x, x,(-|z1,)], 1 € X1, are column permutations of each other.

Proof: Tt suffices to show that conditions (i) and (ii) imply the conditions of Theorem [2|
This can be done using a similar argument as in the second part of the proof of Corollary [}
and hence the details are omitted. [ |

If the transition probability Py, v, x, x, satisfies conditions (i) and (ii) of Theorem [I| the

capacity region is given by

C =Co0 UR(P}1PX27PY1,Y2‘X1,X2) ) (13)

Px,

>A discrete memoryless channel with transition matrix [Py |x (|-)] is said to be weakly-symmetric if the rows are permutations
of each other and all the column sums are identical [34]. A discrete memoryless channel is said to be quasi-symmetric if its

transition matrix [Py|x (-|-)] can be partitioned along its columns into weakly-symmetric sub-matrices [35].
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where Py is given by condition (i). For example, condition (i) trivially holds when each one-
way channel with fixed state x5 € X5 from users 1 to 2 is 7T-symmetric. In this case, we have

Py, = P}(Jl and the capacity region becomes

C:% UR<P¥1PX27PY17Y2\X1,X2) . (14)

Px,

In fact, this is also the capacity region for memoryless TWCs which satisfy Corollary [I] because
condition (i1) of Corollary (1| implies condition (ii) of Theorem [l (this follows from the proof
of Corollary [I). Moreover, the proof of Theorem [2] demonstrates that a common maximizer
exists for each direction of the two-way transmission under the conditions of Theorem 2] Let
argmaxp, | I(X1;Y5| Xy = x3) = Pk, for all 75 € A and arg maxp, . I(Xy; V1| X, =
x1) = P%, for all z; € A;. A TWC which satisfies the conditions of Theorem [2| has the capacity
region

C :R(P)*(lp)*(yPYLYﬂXl,XQ)' (15)

The region is rectangular which suggests that such a two-way transmission inherently comprises
two independent one-way transmissions. A memoryless TWC that satisfies the conditions in
either Theorem [3] or Corollary [2] also has a capacity region given by (15).

To end this section, we remark that it is possible to combine different conditions to determine
the capacity region of a broader class of memoryless TWCs as shown below.

Theorem 4: For a memoryless TWC, if both of the following conditions are satisfied, then
C = C; = Co with C given by (13):

(i) There exists Py, € P(X)) such that argmaxp_ I(X1;Y2| Xy = x9) = Py, for all

11Xo=wo
To € AXo;

(i) H(Y1|X1,X3) does not depend on Pk, x, given Px, and Py,|x, x,, and P% given in (i) sat-
. 1 1) (1 2 « p(l
isfies HW(¥1|X;) < HO (V| X,) for any P{) o = PYPY | where PY) = Py Py).

Here, condition (i) is directly from Theorem [I} condition (ii) is obtained by extracting the CVA

condition related to the channel from user 2 to user 1. In order that the two conditions jointly

determine the capacity region, the ]5X1 required by the CVA condition is forced to be Py, .
Proof of Theorem ' Given any P)(<11), Xy = P)(é) P)(<11)| Xy

same argument as in (4)-(8), we obtain that 7™ (X,; V5| X,) < I®)(X;;Ys|X,) using condition

(i). Moreover, condition (ii) implies that 1V (X5; V1| X)) = HO (V1| X)) — HO(V1] X1, Xs) <

let P)((Q1 )7 x, = Px, P)(é). Invoking the

January 30, 2019 DRAFT



H?(Y11X,) — H?(Y1| X1, X3) = I®(X5;Y1]X;). Combining the above then completes the
proof. [ ]

D. Examples

We next illustrate the proposed conditions via examples.
Example 1 (Memoryless Binary Additive-Noise TWCs with Erasures): Let X1 = Xy = {0,1}
and Y, = Yy, = Z = {0,1,E}, where E denotes channel erasure. A binary additive noise TWC

with erasures is defined by the channel equations

Yii= (X1, B2 Xoi @2 Z1,) - {21, #E} +E-1{Z,, = E},

Yo, = (X1 B2 Xo; B2 Zoy)  H{Zo; #E}+E-1{Zy;, = E},

where @, denotes modulo-2 addition, {(Z; ;, Zs,;) }2, is a memoryless joint noise-erasure process
that 1s independent of the users’ messages and has components 7 ;, Z2; € Z such that Pr(Zj,i =
E)=¢;, Pr(Z;;=1) =, where 0 < ¢;+; <1 for j =1,2, and 1{-} denotes the indicator
function. Here, we adopt the convention E - 0 = 0 and E - 1 = E to simplify the representation
of the channel equationsﬁ The channel equations yield the following transition matrices for the

one-way channels:

1 —e9— g (e%) €2
[PY2|X1,X2('|'70)] = 5
Q9 l—ey—ay &
Q9 l—ey—ay &
[PY2|X1,X2('|'71)] = 5
1 —e9— (e%) €9
1l—e1—o (e %1 €1
[PY1|X1,X2('|07 )] = 5
o l—g1—aq &
(03] 1— g1 — 01 &1
[PY1|X1,X2('|17 )] =
l—e1—m (071 €1

As all our proposed conditions are only based on the marginal transition probabilities, the
relationship between Z;; and Z,; can be arbitrary. By Corollary E], we obtain that the optimal

channel input distribution is Py Py, = Py Py since the marginal channel transition matrices

6Strictly speaking, X1,; @2 X2,; P2 Z;,; is undefined when Z;; = E, but we set (X1,; ®2 X2,; ®2 E) -0 =0.

January 30, 2019 DRAFT



not only exhibit column permutation properties but also are quasi-symmetric. The capacity region
is given by

&%)

= (i 202011200 A= 01 (2

where H,(-) denotes the binary entropy function. One can verify that this TWC also satisfies

the conditions of Theorems and Corollary

Remark 1: Various TWCs are special cases of this TWC model:
1) If a; = ay = 0, then the memoryless binary additive TWC with erasures is recovered:
Yii= (X1 ®2 Xo,) H{Z1, #E} + E-1{Z,, = E},
Yo, = (Xu, ®2 Xo;) - 1{Zs;, # E} + E-1{Z,, = E}.
The capacity region is given by
C={(R1,Rs): R1 <1—¢e9,Ry <1—¢1}.
2) If e = g9 = 0, then the memoryless binary additive-noise TWC is obtained:
Yii=X1,D2 X0, ® 2y,
Yo, = X1, D2 Xo; ® Zs,.
The capacity region of this channel is given by
C={(Ri,Rs): Ry <1— Hyp(az),Rs <1— Hp(a1)}.

3) If e = e =0 and a1 = ay = 0, then we obtain the memoryless binary additive TWC
given by Vi, = Xy, @2 Xy, and Y5, = X;; @2 Xy,;. The capacity region is given by
C={(R1,Rs): Ry <1,Ry <1} [3], [24].

Remark 2: Example 1 can be generalized to a non-binary setting: for some integer ¢ > 2,
X =X={0,1,...,g—1}and Yy =)o = Z=1{0,1,...,9 — 1, E}, the g-ary channel model
obeys the same equations as in Example 1 with modulo-2 addition replaced with the modulo-
q operation @,. Furthermore, the channel noise-erasure variables have marginal distributions
given by Pr(Z;; = E) = ¢; and Pr(Z;; = 2) = o;/(q¢ — 1) for = = 0,1,...,q — 1, where
0<a;+¢; <1 forj=1,2. By Corollary @, we directly have that C; = Cop, and

= {im ) m < - (10— 1 (i =5) )
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Ry < (1—¢y) <log2q—Hq ((q_ 1;)6(11 —51)>)}’

where H,(7) £ xlogy(q — 1) — xlogyz — (1 — x)logy(1 — z).
Example 2 (Data Access TWCs): Let ¢ = 2™ for some integer m > 1 and consider the
alphabets X} = X, =X ={0,1,...,q— 1}, 1= ={0,1,...,¢—1,E}, and Z = {0, 1, 2}.

A data access TWC linking two storage devices is described by
1/171‘ - (Xl,i Eﬂq XQ,Z') . 1{Zl,i - 0} + ((q — 1) EE’q Xl,i Eﬂq X2,i) . 1{Zl,i - 1} + E . 1{Z1,i - 2},
5/272‘ - (Xl,i EEq XQ’Z') . 1{2271' = 0} + ((q - 1) EE'q Xl,i EEq Xg,i) . l{ZQ’Z' - 1} + E : 1{2271' - 2},

where af,b denotes bit-wise addition for the length-¢ standard binary representation of a,b € X,
and {(Z1,, Z2,)}32, is a memoryless joint noise-erasure process that is independent of the stored
messages and has components 7, ;, Z,; € Z such that Pr(Z;; = 1) = «;, Pr(Z;, = E) = ¢,
where 0 < a; +¢; < 1 for 7 = 1,2. This channel model can capture the effect of user signal
superpositions (when Z;; = 0), bit-level burst errors which flip all bits of X ; B, X5; (when
Z;; = 1), and data package losses (when Z;; = 2).

For this channel, an application of Corollary 2| immediately gives the capacity region:

C= {(RMRQ) R < (1— &) (m—Hb (1 f2€2)> Ry < (1—2) (m—Hb (1 il))}.

The next example redervies a known result in [28] based on our approach.

Example 3 (Memoryless Injective Semi-Deterministic TWCs [28)]): Let T; and Z; denote finite
sets. A memoryless ISD-TWC is defined in [28] by the channel equations

Y}z = hj(Xj,iaTj,i)a and ng = ilj(Xk,ia Zj,i)> for j,k € {172}, Jj#k, (16)

where h; : X; x T; — ); is invertible in 7; and }Nlj : X x Z; — 7T is invertible in Z;, i.e., for
every z; € X, hj(;,t;) is one-to-one in t; € 7T; and for every x; € Xj, h;(xy, 2;) is one-to-one
in z; € Z;. Here, {(Z1;,22,)}2, is a memoryless joint noise process that is independent of

users’ messages. For this channel, we have [28]

I(X1;Ys| Xy = 3) < max H(ho(X1, Zo)) — H(Z,).

Px,
This upper bound does not depend on X5, and hence a common maximizer exists, i.e., Py, =
arg maxpy H(l~12 (X1, Z3)). Moreover, the value of maxpy I(X7;Y3| Xy = o) is identical for all

x5 € X,. We immediately observe that condition (i) in Theorem [3] holds. By a similar argument,
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Fig. 5: The capacity region of the point-to-point memoryless TWC in Example 4.

condition (ii) in Theorem [3] also holds, implying that Shannon’s inner and outer bounds coincide.

The capacity region is given by
C= {(Rl, Rg) . Rl S HP}aXH(iLQ(Xl, ZQ)) — H(ZQ), R2 S IIP}aXH<iL1(X2, Zl)) — H(Zl)} .
X1 X2
Example 4: Consider the TWC with X; = X, = ); = )» = {0, 1} and transition probability
00 01 10 11

00 0.783 0.087 0.117 0.013

011 0.36279  0.05421 0.50721 0.07579
[Py, Yalx1,X2) =

10| 0.261 0.609 0.039 0.091

11\ 0.173889 0.243111 0.243111 0.339889

The one-way channel marginal distributions are

0.9 0.1 0.87 0.13
[PYQ\XLXQ('|'5 0)} - ) [PY2|X1,X2('|'7 1)} - )
0.3 0.7 0.417 0.583

with [Py, x, x, (10, -)] = [Prijx 0 (|1 )] = [Projx, x, (- D)

Shannon’s symmetry condition in Proposition [I] does not hold for this channel since there are
no permutations of ) and ), which can result in . Furthermore, since H(Y5|X; = 0, X5 =
0) = Hy(0.1) and H(Y5|X; = 1, X, = 0) = Hy(0.3), H(Y>|X1, X>) depends on Py, |y, for fixed
Px,. Thus, the CVA condition in Proposition (3| does not hold either. However, the conditions

of Theorem [l| are satisfied since a common maximizer exists for the one-way channel from
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users 1 to 2 given by P, (0) = 0.471, and condition (ii) trivially holds. By considering all input
distributions of the form Px, x, = P, Px,, where Py, € P(X3), one can compute the capacity
region as shown in Fig. [5] We note that, with some extra effort, one can show that the conditions
of Theorem M] also hold [2]].

Finally, we point out (without proof) that the channels in the examples in [3, Fig. 2 & Tab.
IT] and [28| Section IV-B] satisfy the conditions of Theorem [T}

E. Comparison with Prior Results

In this section, we show that Theorems [1| and |2 generalize the Shannon results in Propositions
and [2] respectively, and that Theorem [{] subsumes the CVA result in Proposition [3] as a special
case.

Theorem 5: A TWC that satisfies the Shannon’s one-sided symmetry condition of Proposition
must satisfy the conditions of Theorem [I]

Proof: If a TWC satisfies the Shannon condition in Proposition (1| the capacity-achieving
input distribution is of the form Py, x, = PY, Px, for some Px, € P(X>) [3]. This implies that
condition (i) of Theorem [I] is satisfied because a common maximizer exists for all 2, € X’ and
is given by Py = P}(Jl. To prove that condition (ii) is also satisfied, we consider the transition
matrices [Py, x, x,(-|#1,-)] and [Py,|x, x,(-|27,-)] for arbitrary 27,2} € &; and show that these
are column permutations of each other and hence Z(Px,, Py |x,—«,x5) = Z(Pxy, Pyi|x1=2/ x5)-

The first claim is true because
Py, x5, (117, 22) = PY1|X1,X2(7Ty1 27, 77] (le)hztxg (1), 72) 7)
= PY1|X17X2 (71.371 [mllv Illl] (y1)|5(]/1,7 ZL‘Q),

where is obtained by marginalizing over Y5 on both sides of (2). For the second claim, we

have
I(PX27 PY1|X1:x’1,X2>

PYX,X Y1 T, T
= 3" Py (02 Pra o 2 2) 1% (9117, 72)

log - _
zi‘z PX2 (xQ)PYﬂXl,Xz (y1|33',1, x2)

2,Y1
Py, x,,x, (2 [27, 2] (1) |27, 22)
- Px, (22) Py x, x, (7 [2h, 2] (1) |27, 22)log L -
2 Prale) o (ot afl n)laf elow 5= (T ST i )

(18)
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PY1|X1,X2 (g1|$,1/, x2)
>y P (T2) Py xy,x, (1127, 2)

=) Py, (%2) Py, x, (1|27, w2)log

2,91

= I(PX27 PYl‘Xlil’,l,,Xg))

where (I8) holds by the first claim. [ |

Remark 3: Since the optimal input distribution of user 1 in Theorem [1| is not necessarily
uniform as illustrated in Example [, Theorem [I] is more general than Proposition

Theorem 6: A TWC that satisfies the Shannon two-sided symmetry condition of Proposition 2
must satisfy the conditions of Theorem 2]
This theorem is immediate, and hence the proof is omitted. Together with Example 5 given in
the next section, Theorem [2]is shown to be more general than Proposition [2] We next show that
the symmetry properties identified by the conditions of Theorem [ are more general than those
in the CVA condition.

Theorem 7: A TWC that satisfies the CVA condition in Proposition [3] must satisfy the
conditions in Theorem [l

Proof: Suppose that the condition of Proposition |3| is satisfied. To prove the theorem, we

show that for j = 1,2, H(Y;| X = 21, Xo = 20) = H(Y;| Xy = o7, Xy = x,) for all 2, 2] € X}

and o € X5. Given arbitrary pairs (2, z5) and (27, x2), consider the probability distributions

1 ifa=2,and b==x
P 1 ) 1 29
)((1),X2(I[7b) .
0, otherwise,

and

1, ifa=2aY and b = x»,

P, (ab) = -

0, otherwise.
Noting that P{) = P{), we have H(Y;| X, = @, Xo = 25) = HV(Y}| X1, Xa) = HO(Y}| X1, X»)
H(Y;| X, = 2/, X5 = ), where the first and last equality are due to the definitions of P)((ll x, and
P)(?l )’ x,» respectively, and the second equality follows from the CVA condition since P(12) = P)(é ),
Thus H(Y;|X; = 21, Xy = x3) does not depend on z; for fixed z, as claimed. Also, since
H(Y}‘|X1,X2 = ZL'Q) = Z;m PX1|X2(I1|ZE2) . H(YJ|X1 = Z’l,XQ = [Eg), H(YJ|X1,X2 = ZL’Q) does
not depend on Py, |x,—gz,.

Next, we show that condition (i) of Theorem ] holds by constructing a common maximizer

from the CVA condition. For fixed z, € X5, let P)*(lle:xz = argmaxp I(X1; Y5 Xy =

15) =argmaxp,  [H(Ya| Xy = m5) — H(Ya| Xy, Xp = )] and define P{) , = PPy
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for some P)%) € P(X,). Since H(Y;| X1, Xy = x2) does not depend on Px,|x,=z,, Px,|x,—, 18
in fact a maximizer of H(Y>|X> = x2). Note that the maximizer Py |y,_,, is not necessarily
unique, but any choice works for our purposes. Now for P)(a x,» by the CVA condition, there
exists Px, € P(X;) such that HD (Y3 X,) < H® (Y] X5), where P)((21),X2 = ﬁXlP)%). Since
P*

X1 | Xomzs 13 the maximizer for H (Y5|Xs = z3), we have

HO (Y| Xo) = > P (@) - HO(Ya| X = 2)

2

T2
—ZPEJ@)[ max H(Ya|Xo — )
T2

Pxq|Xa=as
> Py () - HP (V3] Xy = )
= HO(Y3]X5)
Thus, HV (Y| X,) = H? (V3| X5), ie.,
ST P (@) - HO (Y] Xa = 0) = Y P (w2) - HO(Ya| X, = ).

Since H?) (Y5| Xy = 19) < HW(Y5| Xy = 15) for each x5 € Xy, we obtain HV (Y| X, = x5) =
HO (Y| Xy = 2), ie., 15X1 achieves the same value for H(Y3| Xy = x9) as P)*mXQ:m2 for all
Ty € X,. Consequently, le is a common maximizer and thus condition (i) of Theorem H| is
satisfied. Moreover, since the common maximizer J-:’X1 is from the CVA condition, we have that
HY(Y1|X,) < H®(Y1]X)), which together with the fact that H(Y;]|X;, X5) does not depend
on Px,x, given Px, and Py, x, x, (guaranteed by the CVA condition) implies that condition
(ii) of Theorem [ holds. [ |

Remark 4: As illustrated by Example 4, a TWC that satisfies the conditions of Theorem [
does not necessarily satisfy the CVA condition in Proposition |3} Therefore, Theorem {4{is a more
general result than Proposition [3] We note that the main difference between Theorem {4 and

Proposition [3| lies in the fact that we allow H(Y>|X;, X,) to depend on Px,|x,, given Px,.

F. Connection Between the Shannon and CVA Conditions

In this section, we connect Shannon’s result to the CVA condition. First, the proof in Ap-
pendix [A] shows that Shannon’s symmetry conditions are more than sufficient for C; and Cq to
coincide. In fact, assume that the marginal channels Py, |x, x,’s (derived from Py, y,|x, x,) satisfy

the following extended Shannon’s symmetry condition: for any pair of distinct input symbols 2,
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r € X, there exists a pair of permutations (7> [z}, 2], 72[}, x}/]) on Y and ), respectively,
(which depend on 2| and z!) such that for all x;, za, y1, ¥o,

Py ix, (W1]w1, 22) = Pyyjx, x, (77 2, 2] (1) T;Z{lez(ﬂﬁ),b),
Py, x50 (y2l1, 22) = Pryjxy e (122, 2] (y2) 7)) (21), 22),

then C; = Co = C with C given by (3).

(19)

The extended Shannon’s symmetry conditions are more general than their original versions
since implies but the reverse implication is not true as shown below.
Example 5: Consider the TWC with X; = X, = ); = )» = {0, 1} and transition probability
00 01 10 11

00 025 05 025 0

01] 0.375 0375 0.125 0.125
[Py valx1,5x0) =

101 0.125 0.125 0.375 0.375

11\ 0.125 0.125 0.375 0.375

The marginal distributions are

0 1 0 1
00/ 0.75 0.25 00/0.5 0.5
01] 0.75 0.25 01] 0.5 0.5
[PY1|X1»X2} = ) [PYQ\XLX2] =
101 0.25 0.75 101 0.5 0.5
11\ 0.25 0.75 11\ 0.5 0.5

Clearly, neither of the Shannon conditions in Proposition [T or 2] holds, but the extended condition
in holds.

We now show that the above extended symmetry condition implies the CVA condition.

Theorem 8: A TWC that satisfies the condition in (I9) must satisfy the CVA condition of
Proposition

Proof: 1f the marginal channels Py, x, x, and Py, x, x, satisfy the extended one-sided

symmetry condition, then H (Y;|X; = x1, Xy = x) does not depend on z; € X for any fixed
Ty € X, since the rows of [Py, |x, x, (-], 2)] are permutations of each other. Hence, H (Y| X1, X»)
does not depend on Py, |x, given Py, € P(A5) as required by the CVA condition.

Next, for any given P)((li X, = )(QQ)P)((11)| x,» We show that P)((Q1 ), X, = Px, P)%) with the choice

15)(1 = P/% meets the remaining requirements of the CVA condition in Proposition 3| Since
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the TWC satisfies the extended Shannon condition, Lemma [6] in Appendix [A] gives the two in-
equalities: T (X1; Y5|X5) < I (X1; V5| X,) and T (Xy; V1| X,) < TP (X5; V1| X1). Observing
that 7™M (X1;Y5|X5) = HO(Y5]X5) — HO(Ya| X1, Xo) = HO(Y5|X5) — HO(Ya| X1, Xy), we
immediately obtain that H"(Y5|X5) < H®(Y,|X,) since 1M (X ;Y| Xy) < I1O(X1;Ys|Xs).
Moreover, since HM (Y;| X1, Xy) = H(Y1| X1, X3) and T (Xy; V1| X1) < TP (Xo; V1] X)), we
have that H(Y;|X,) < H®(Y;|X,). Thus, the CVA condition is fulfilled. |
Remark 5: In [28]], the existence of examples showing that the Shannon and CVA results are
not equivalent was posed as an open question. The example below shows that the CVA condition
is more general than the extended (one-sided) Shannon’s symmetry condition (19). Together with
Example 5, we conclude that the CVA result is more general than the Shannon result.
Example 6: Consider the TWC with X} =), = ), = {0,1,2} and &> = {0, 1} and marginal

distributions given by

0.3 0.2 0.5

[Py, 1x:.%: (15 0)] = [Py x5 1] = [Pryjxy x5 0)] = [Prix, x(]- 1)) = [ 05 03 0.2

0.2 05 0.3
Clearly, there are no relabeling functions for ), and ), which recover [Py, |x, x,(-|-,0)] after
exchanging the labels of X; = 0 and X; = 1, so that the extended one-sided symmetry condition
does not hold. To check the CVA condition, we first observe that H(Y;|X; = x1, Xy = x9)
does not depend on z; € A; and x5, € AXy; thus H(Yj|X1,X2) does not depend on Py, x,
for j = 1,2. Furthermore, for any given P)((ll)’ X, = P)((12)]3)((11)| x,» consider P)((21 )7 X, = ﬁXl P)(é)
with Py, = PY. Then, we have 10 (X1;Ya|Xo) = 3, P () - IM(X 13 Ya| Xy = 22) <
> e P)%) (19) - I®(X1; Ya| Xy = 259) = I®(X1;Y2|X5), where the inequality follows from the
fact that P}(Jl is the capacity-achieving input distribution for all one-way channels from users 1
to 2. On the other hand, since the matrices [Py, |x, x,(-|%1,)], #1 € &}, are column permutations
of each other, Z(Px,, Py,|x,=z,,x,) does not depend on x; € & for any fixed Py, € P(X>). One
can then follow the proof of Theorem [1|to obtain that 1V (X5; V1| X;) < I®(Xy; Y1|X1). Now,
since H(Y;| X1, X») does not depend on the input distribution, we conclude that H)(Y;|X;) <

H®(Y;|X;) for j = 1,2, and thus the CVA condition is satisfied.

Remark 6: The channel in the above example in fact also satisfies the conditions of Theorem I}

Nevertheless, the connection between the conditions of Theorem [I] and the CVA condition is

still unclear.
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We close this section by noting that the symmetry properties induced by our proposed condi-
tions are not necessarily specific to two-user memoryless TWCs as we will see in Section IV. It
is also worth mentioning that the proposed conditions can be used to investigate whether or not
Shannon-type random coding schemes (under independent and non-adaptive inputs) provide tight
bounds for other classical communication scenarios such as MACs with feedback and one-way
compound channels. In particular, our conditions can be used to identify compound channels
where the availability of channel state information at the transmitter (in addition to the receiver)

cannot improve capacity.

III. TWO-WAY SYMMETRIC CHANNELS WITH MEMORY

We here consider point-to-point TWCs with memory whose inputs and outputs are related via

functions F; and F5 as follows:
}/l,i = Fl (Xl,i7 X2,i7 Zl,i)? (20)
Yo, = Fo( X1, Xoy, Za4), (21

where {(Z, ;, Z5;)}32, is a stationary and ergodic noise process which is independent of the users’
messages M, and M. Note that this model is a special case of the general model introduced in
Section |[I-A}; it is also a generalization of the discrete additive-noise TWC considered in [1]].

We first state (without proof) an inner bound for arbitrary (time-invariant) functions F; and F5.
The bound can be proved via Shannon’s standard random coding scheme (under non-adaptive
independent inputs) for information stable one-way channels with memory, applied in each
direction of the two-way transmission.

Lemma 1 (Inner Bound): For the channel described in (20) and (2I), a rate pair (Ry, R»)
is achievable if there exist two sequences of codes ([, g1) and (fy,ge) with message sets

My ={1,2,...,2"1} and M, = {1,2,...,2"%}, respectively, such that

1
Ry < lim —T(X7;Y5'[X5),

n—oo M

1
Ry < lim —I(X3; Y'[XT),

n—oo M,
where the mutual information terms are evaluated under a sequence of product input probability
distributions { Px» Pxy}52, and the inputs X7} are independent of {(Zy;, Z2;)}i_,, j = 1,2.
We say that F;(X;, Xy, Z;) is invertible in Z; if Fj(z1,2,-) is one-to-one for any fixed

r1 € X1 and 29 € AX,. Under this invertibility condition, we obtain the following corollary.
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Corollary 3: If F} is invertible in Z; for j = 1,2, a rate pair (R, Ry) is achievable if

1 _
Ry < lim —H(Yy'|X3) — H(Z), (22)
n—oo N,
1 _
Ry < lim ~H(Y!"|X]) - H(Z), (23)
n—oo M,

for product distributions {PxyPxp}n2,, where H(Z;) denotes the entropy rate of the noise
process {Z;;}7, and the inputs X7 are independent of {(Z1, Z2,)}i-y, j = 1,2.
Proof: The proof follows from the fact that

(X7 Y XS) = H(Y;'[XY) — H(YS'|XT, X5)
= H(YJ'|X5) — H(Z3| X7, X3)
= H(Y;'|X3) — H(Z3),

where the second equality holds since F5 is invertible in Z, and the last equality holds since
the channel inputs are generated independently of the noise process {(Z21, Z2,)}:2,. Applying
a similar argument to 7(X7; Y,"| X?) completes the proof. [
If we further impose cardinality constraints on the alphabets, we can simplify the expressions
in (22) and (23)) as follows.
Corollary 4: Suppose that | Xs| = |V1| = | 21| = ¢1 and that |X;| = |Vs| = | 22| = ¢» for some
integers ¢1,qs > 2. Then, a rate pair (R, Rs) is achievable if

Ry <logq, — H(Z,),

Ry <logqy — H(Zy).

Proof: The proof hinges on noting that H(Y;"|X7') < n -logg; and that the uniform input
distribution Pxp xp = (P}(J1 P}Y{Z)" achieves the upper bound. More specifically, we have to show
that if PXIH Xy is the uniform distribution, then Pyjn| Xxr (yﬂx;l) is uniform on yf for any given
X7 = 7%, and hence H(Y'|X} = 27) = n -log¢;. By symmetry, we only provide the details
for H(Y3'|Xy). Suppose that Pyp yp is the uniform distribution on X{" x X7 Let F;, ' denote
the inverse of Fy for fixed (x1,x3) so that zo = Fz_l(xl, Z2,Y2). Then, for any z7 we have

Pypixp(y5las) =) Pypixpxp (512}, 23) Pxpxp (27 |25)

n
T

1 n
- (—) D Pz xg (Fo(at, o, 25) o, %)

q2

n
T1
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1 " — n n n n n
- <£> ZPZS\X%XS(Fz N, a3, s, 25)

"

n
E2)

1\"
()
where holds since (X7, X7) is independent of Z' and F3 is onto in Z; due to the cardinality
constraint. Clearly, Py |xy—.z is the uniform distribution for any x73, implying that H (Y;*| X3') =
nlog qs. [ |
Next we consider ISD-TWCs as in Example [3| and [28], but with the assumption that the noise
process {(Z1, Z2,)}°, can have memory. Note that any ISD-TWC with memory is a special
case of the system model in and satisfying the invertibility condition in Z; and Zs.
Thus, Corollary 3| applies to ISD-TWCs with memory to obtain the following result.
Corollary 5: For the ISD-TWC with memory, a rate pair (R;, Ry) is achievable if

1 ~ _
Rl S lim —maXH(hg(X{L,ZS)) — H(ZQ),

n—oo N PX’ll’L

1 - _
Ry < lim — max H(h (X}, Z1) — H(Z,),

n—oo M PX;

where H(Z;) denotes the entropy rate of the process {Z;,}2°, for j = 1,2.

We note that Corollary [ also applies to ISD-TWCs with memory under identical alphabet
size constraints so that any rate pair in {(Ry, Ry : By <logq, — H(Z,), Ry <logq — H(Z,))}
is achievable for ISD-TWCs with memory. We next derive converses to Corollaries [ and [3]

Lemma 2 (Outer Bound for Noise-Invertible TWCs with Memory): Suppose that |V;| = g; for
some integer ¢; > 2. If F} is invertible in Z; for j = 1,2, any achievable rate pair (R, R»)

must satisfy
RS i1 i
Ry <log g _JL%EE;H(ZQ,AZI L2y,
. 1 - i—1 i—1
Ry <logq —J;H;OE;H(ZLAZl 2y ),

where the limits exist because {(Z);, Z;)}:2, is stationary.

Proof: For an achievable rate pair (R, R>), we have

an = H<M1|M2)
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= I(M;Yy'|M2) + H(M:[Yy', Ma)

< I(My: Yy |Ma) + ney (25)

= 3 [HORM, Y37 = H(Y| My, Mo, V)] + ey (26)

<3 [log e — HYVasl My, M, V37| + e, 27)
i=1

< Z -long — H (Yo | My, My, Y71 Y374, X, X2,i)i| + ne,
=1

=" [log s — H(Zo| My, My, Yi~ V71, X1, X3)] + e (28)
i=1

=" 10842 — H(Zo| M, My, Yi Y3 X, X5, 207, Z;”)] +ne,  (29)
i=1

=S log g — H(Zo,1 217", Z;—l)] + ey (30)
i=1

=nlogqy — > H(Zo|Z{™', Zi") + ne, (31)

i=1

where (25) is due to Fano’s inequality with ¢, — 0 as n — oo, (27) follows from |Vs| = go,
(28) and (29) hold since Fj is invertible in Z; given (X ,;, X5;), and (30) holds since

H(Zou| 2y, Zy ") = H(Zaul My, My, 2y, Z57 1) (32)
= H(Zy;|My, My, Zi7, Z7 4 X1 1, Xo1) (33)
= H(Zy;|My, My, Zi7", Zy7 1, X1 1, X910, Y11, Ya1) (34)
= H(Zoy;|My, My, Z{71, Z51 X3, X3, Y11, Y1) (35)
= H(Zy;|My, My, Z;7 4, Z37 1 X, X, Vi Yy ) (36)

where (32) is due to the fact that {(Z ;, Z2,)}:2, is independent of (M, M>), (33) and (33) hold
since X; = f;.(M;, Y; 1) for j = 1,2, (34) follows from the identity Y;; = F;( X1, Xo4, Z;4),
and (36) is obtained by recursively using the same argument as in (33)-(35). Similarly, we have

nRy < nlogq — Z H(Zy ;|27 Z5) + né,. (37)

=1

The proof is completed by dividing both sides of (31)) and by n and letting n — co. N
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Lemma 3 (Outer Bound for ISD-TWCs with Memory): For the ISD-TWC with memory, any

achievable rate pair (R, Ry) must satisfy

1 ~ " ) .
R; < lim — H(ho( X7, Z0)) — H(Zy,| 2071, 21
1_nl—g}on IIEIZLX (ha(XT, Z3)) ; ( 2,‘ 12 )|

Ry < lim — |max H(hy(X3,27)) = Y H(Zy42{7", 27"

n—o0 1, ng —
L 1=

Proof: The proof is similar to the proof of the previous lemma and hence the details are
omitted. The main difference is that the first term in (26) is now upper bounded as follows

Z H(You | My, Y™ = Z H(ho(Xa, Tog) | M, Yy~ X5, T571)

i=1 =1

<Y H(To|T3 )
=1
= H(T3')

< maXH(ilQ(bea Z3)),

Pxp

where the first equality holds since X7} is a function of M, and Y;’l and Yo = ho(Xs,Ts) is
invertible in 75 given Xs. |

Based on the preceding inner and outer bounds, the capacity region for two classes of TWCs
with memory (whose component noise processes are independent of each other) can be exactly
determined as follows.

Theorem 9: For a TWC with memory such that {Z;;}3°, and {Z,;}°, are stationary ergodic
and mutually independent, Fj is invertible in Z; for j = 1,2, and |Ay| = || = | 21| = ¢1 and

|X1| = | o] = |22] = g2 for some integers ¢1, g2 > 2, the capacity region is given by
C={(Ri,Ry) : Ry <logqs — H(Z,), Ry <logq — H(Z1)} . (38)

Theorem 10: For a ISD-TWC with memory such that {Z;;}7°, and {Z,,}°, are stationary

ergodic and mutually independent, the capacity region is given by

1 ~ _
C = {(Rl,Rg) . Rl S lim —maXH(hQ(X{I,Z;Z)) — H(ZQ),

n—oo M, Pxiz

Ry < lim lmaxH(le(Xg,Z{‘)) — H(Zl)} : (39)

n—oo 1 PX%
Remark 7: Theorem generalizes [28, Corollary 1] for memoryless ISD-TWCs. If one
further has |X,| = |T1| = | 21| = ¢1 and |X}| = |T2| = | 22| = g2 for some integers q1, g2 > 2,
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then lim,, o = maxp, , H(hy(X7, Z5)) = log ¢y and that lim,,_,. 1 maxp, H(hi (X3, Z1)) =
log go.

The next example shows that if the noise processes are dependent, then Shannon’s random
coding scheme is not optimal.

Example 7 (Adaptation is Useful): Let ¢ = g2 = 2 and suppose that the channel is given by
Yii=Fi(X1,, Xo4, Z1,) = X1, ®2 Xo; B2 21,
Yo, = Fo( Xy, Xoji, Zoyi) = X1 @2 Xoi B2 Zay,

where {Z,;}!" , is assumed to be memoryless with Z; ; uniformly distributed on Z; = {0, 1} for
i=1,2,...,n,and {Zy,;}?, is given by Zy; = 0 and Zy; = Z,,_, for i = 2,3,...,n. Since

the functions £} and F5 are invertible in Z; and Zs, the outer bound in Lemma |2| indicates that

1 — , ,
Ry <log2— lim = H(Zy|Z{ ", 2y ) =1-0=1
=1

n—oo N 4

.1l i—1 rri—1
Ry <log2 — JLTEOE;H(Zl,i|Z1 s Zy ) =1- H(Zl,i) =0.

We claim that the rate pair (R, Rs) = (1,0) can be achieved by an adaptive coding scheme.
Let {M;;}? , denote the binary messages to be sent from users 1 to 2. For i = 1,2,...,n, set
the encoding function of user 1 as X;; = fi;({My;}7,, Y] ™) & My; @9 X141 D2 Y11 with

initial conditions X; o = Xy = Y7o = 0, and set the encoder output of user 2 to be zero, i.e.,

Xo,; = 0 for all 7. With this coding scheme, the received signal at user 2 is given by
Yo, = X1, @2 Xo; B2 Lo
=M ; D2 X1,i-1 P2 Y11 D2 2o,
= Mi; 2 X1,i—1 D2 Xii-1 D2 Z1i-1 D2 Lo = My,

and thus the rate pair (1,0) is achievable. This achievability result together with the outer bound
imply that the channel capacity is given by C = {(R;, R2) : Ry < 1, Ry = 0}. However, the
Shannon-type random coding scheme only provides Ry < 1—H(Z;) =0and Ry < 1—H(Z,) =
0 by Corollary

IV. MULTIPLE ACCESS/DEGRADED BROADCAST TWCS

This section considers a three-user two-way communication scenario combining multiaccess

and broadcasting. We first introduce the channel model and derive inner and outer bounds for
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Mi; o
—
I P —
<] Userl \ | MAC with |
~ I State X3 ! n Ms1 M.
M31 Yln : —> i :XS <i %
n el User 3
M23 Y2 ! DBC with | Yn "—>"
state (%, %)) | 13 Mz Mas
User 2 ng | |
Mo

Fig. 6: The information flow of MA/DB TWCs.

the capacity region. Then, sufficient conditions for the two bounds to coincide are provided,

along with illustrative examples.

A. Channel Model

Two-way communication over a discrete additive-noise MA/DB TWC comprises three users
as depicted in Fig. [6] Users 1 and 2 want to transmit messages M;3 and M3, respectively, to
user 3 through the TWC that acts as a MAC in the forward direction. User 3 wishes to broadcast
messages Msy and Mss to users 1 and 2, respectively, through the TWC that acts as a DBC in
the reverse direction. The messages are assumed to be independent of each other and uniformly

distributed over their alphabets. The joint distribution of all the variables for n channel uses is

given by
n n
PM{13,23,31,32}7X?1,2_’3}7Y{wi72ys} = PM13PM23PM31PM32 ’ H PXl,i|M13,Yf_1 ’ H PXQ,i|M23,Y2i_1
i=1 i=1
n n
H PX3@|M{31,32}7Y3¢71 ' H PYl»i*Y%Yi”»i‘Xfl,z,z}’y{iizl,s}
i1 i=1
A n A n n n n A
where Mz o331320 = {Mis, Moz, M1, Mo}, Xfios = {XT, X3, X§'}, and 1,23} —

{Y", Y, Yy}, Thus, the n transmissions can be described by the sequence of input-output

ticr

To simplify our analysis, we assume that the channel is memoryless in the sense that

conditional probabilities { P, ; i1
p { Y1,05Y2,6, Y3, Xy 5 515V (1 2.3
given current channel inputs, the current channel outputs are independent of past signals,
ie., Pylyi’yzl.’Y&i‘Xz'l23}7}/{2'17213} = Py, vs,YsilX1.4,Xs4,X5, Tor all 4. Furthermore, the two direc-

tions of transmission are assumed to interact in a way such that Py, v, vs (X1 X0 Xs,

Py, Ya i|X1.4,X0.0,X5.: Y5 41 X1 1, X0.0,x5,;,- Let all channel input and output alphabets other than V3
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equal @ £ {0,1,....,¢ — 1} for some ¢ > 2. The MA/DB TWC is defined by the transition
probability Py;|x, x, x, in the MA direction and the transmission equations in the DB direction
are given by
Yii= X1 Dg X3 Bg Z1,, (40)
Yo, =Xo;i @g X3, By 21, Bg Lo, (41)
for i = 1,2,...,n, where Z,,,7Z,; € Q denote additive noise variables, the components of
the memoryless and independent noise processes {Z;;}7; and {Zy;}, respectively. We also

assume that the channel noise processes are independent of all users’ messages. Thus, the channel

transition probability of this MA/DB TWC at time ¢ can be written as

o A SR Y S A6 Ry S Ry A |
PYM,Yz,i,Yg,i|X{,X;,X§,Y1H,Y;*,Y:;*(3/1,173/2,173/3,1’5517352737373/1 Yo Y3 )

- Pyl,iyy2,iyy3,i‘Xl,i7X2,i7X3,i (ylm Y2,i, Y3,i| L0y T2,0, I37i)

= Pyy1X10X0.0. X5 (U3 0105 T2.i5 230) Py j1X0 4. X0, X5.0,Ys,: (Y1l T1ds Tois T34, Y3,6)

'Pyz,i\Xl,i,X2,z'7X3,i7Y1,i7Y3,z' (yQ,i L1,y X2,i5 L34y Y14 y3,i>
= Pyyixy, X0, (U3, T16, T245 T3,3) - Pr{Z1; = 41, ©q 71, Og T3}
Pr{Zs; = 42,0072 S4 %3, S (Y1, O¢ T1: Sq X3,4)}
= Pyyxy,X0,%5 (U3, T1,05 Toiy T3,3) Pz, (Y1, ©q X1, ©q 35) Py (Y2, Og T2,i Oq Y1i Dg T1,),
where ©, denotes modulo-g subtraction.
We next define channel codes, achievable rates, and channel capacity for the MA/DB TWC.
Definition 4: An (n, Ri3, Ros, R31, R32) channel code for the memoryless MA/DB TWC
consists of four message sets M3 = {1,2,..,2"F13} My = {1,2,..., 275} My =

{1,2,...,2"1) 0 M3y = {1,2,..,2"%2} three sequences of encoding functions: fI' =
(fr1s fros e fin)s £ = (for, fozs s fon)s 13 = (f31, f32, s f3n) such that
Xig = fia(Mis), X1 = fri(Mys, Y7, (42)
Xo1 = fo1(Mas), Xoi = fo,i(Mas, Yy, (43)
X31 = f31(Ms1, Msz), Xs; = f3:(Ms1, Msa, Yy, (44)

for i = 2,...,n, and three decoding functions ¢y, g, and gs, such that Mz, = gy (Mys, Y,
Mzy = go(Ma3, Y3"), and (Mg, Maz) = g3(Mai, Maa, Y3).
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When messages are encoded via the channel code, the probability of decoding error is defined
as Pe(n)(ff7f§, £5, 91,92, g3) = Pr{M3 # Myz or Mos # Moy or My # Msy or My # Mz}

Definition 5: A rate quadruple (R;3, Ro3, R31, R32) is said to be achievable for the memoryless
MA/DB TWC if there exists a sequence of (n, Ry3, Ro3, R31, R32) codes with lim,, P = .

Definition 6: The capacity region CMAPBC of the memoryless MA/DB TWC is the closure of

the convex hull of all achievable rate quadruples (Ri3, Ro3, R31, R32).

B. Capacity Inner and Outer Bounds for the Memoryless MA/DB TWCs

Let RMAPBC(Py v, xov, Pyyixy,Xs.xs: Pz, Pz,) denote the set of rate quadruples

(R13, Ros, R31, R32) which satisfy the constraints
Riz < I(X3; V3| X, X3),
Roz < I(Xy; V3| Xy, X3),
Rz + Ras < I(X1, Xo; Y3 X3),
Rg1 < 1(X3; X3 @4 Z1|V),
R3y < I(V; X3 @y Z1 ®g Zs),

where V' is an auxiliary random variable with alphabet V' such that [V| < ¢ + 1 and
the mutual information terms are evaluated according to the joint probability distribution
Px, X0, x3,V,Y3,21,2 = Px1,x2,53,v Py3|x1,%,x5 Pz, Pz, We next establish a Shannon-type inner
bound and an outer bound for the capacity of MA/DB TWCs in Theorems[IT|and[I2] respectively.
Note that the achievable scheme in Theorem (1 1{is given by combining Shannon’s standard (non-
adaptive) coding schemes for the MAC [8, Theorem 4.2] and the DBC [8, Theorem 5.2], and
hence the proof is omitted here. The derivation for the outer bound is given in Appendix
Theorem 11 (Inner Bound): For a memoryless MA/DB TWC with MA transition probability
Py, |x,,x,,x, and DB noise distributions Pz, and Pz,, any rate quadruple (R13, Ras, R31, Rso) €

C%VIA_DBC(PyﬂXl’XZ’XS, PZ1 , PZz) 1s achievable, where

MA-DBC
G (Pys1x1,x2.X3, P21, Pz,)

A — MA-DBC
=C U R (PX1PX2PV,X37PY3\X1,X27X37PZNPZ2)

Px, Px,Pv,x,
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Theorem 12 (Outer Bound): For a memoryless MA/DB TWC with MA ftransition prob-
ability Py,|x, x, and DB noise distributions P, and Pz, all achievable rate quadruples

(ng, R23, Rgl, Rgg) belong to CgIA-DBC(PyﬂXI,X%XS, PZ1 , PZQ)? where

MA-DBC
CO (PY3|X1,X2,X37 PZl7 PZ2)

A — MA-DBC
= €0 U R (PX17X27X37V7 PY3|X1,X2,X37 PZ17 PZQ)

Px,,x4,x5,V

C. Conditions for the Tightness of the Inner and Outer Bounds

The inner and outer bounds derived in the previous section are of the same form but have
different restrictions on the joint distribution Py, x, x,, and hence they do not match. Here,
we establish conditions under which the two bounds have matching input distributions, implying
that they coincide and yield the capacity region. The proofs of Theorems [I3H{I5] are given in
Appendices [CHE] respectively.

Theorem 13: The inner and outer capacity bounds in Theorems |1 1| and [12| coincide if for every
conditional input distribution P)((ll)’ Xo| X3? there exists a product input distribution P)((Ql)’ Xo|Xs =

Z5X1 15X2 (which depends on pW Xs) such that

X1,X2|
I (X3 Y30 X0, X5 = 23) < IP(X3; V3] X0, X5 = 23) (45)
TO(X; Ya| X1, Xy = w3) < TP (Xo; V3| Xy, X3 = 3) (46)
IM(Xy, Xo; 3| X5 = a3) < IP(Xy, Xo; V3| X = 3) (47)

hold for all z3 € A3. Under this condition, the capacity region is given by

(MA-DBC _ 5 U RMA-DBC < Py, Px, Pyxs. Praix, xoxs P Pzz>
Px, Px, Py x,
A special case of the above theorem is when Py, Px, does not depend on Py, Xo|X5- This
case may happen when Py, x, x, x, has a strong symmetry property.
Corollary 6: The inner and outer capacity bounds in Theorems and [12] coincide if there
exists an input distributions P)((z1 )7 x, = P%, P, such that for all P)((ll)’ xox, and 3 € A3 the

inequalities given in (45)-(@7) hold. In this case, the capacity region is given by

MA-DBC — MA-DBC * *
C = R (lepxzpv,xsnPY3|X1,X27X37PZUP&)

Py x4
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The next result is derived by treating the channel as a composition of state-dependent one-way
channels.

Theorem 14: The inner and outer capacity bounds in Theorems [11] and [12] coincide if the
following conditions hold:

(i) There exists Py, € P (A1) such that arg MAXp o ny I(X1;Y3| Xy = 29, X3 = x3) =
P%, for all x5 € A, and w3 € A3 and Z( Py, Pyy|x,, Xo—c,X3—c;) does not depend on z, for
every fixed xs;

(ii) Forany Px, € P(&Xs), Z(Px,, Pyy|x,=21,X2,X3=2,) does not depend on z; € &) and x5 € As;

(iii) For any fixed Px, x,, we have Z(Px, x,, Pyy|x, X2, X5=24) does not depend on z3 € X3, and
for each z3 € A5 we have T(Px, x,, Pyy|x1, X0, x3=25) < Z(P%, Pxys Pyy|x1,X2,X3=25)> Where

X, 18 given by condition (i) and Px,(z2) = >, Px, x,(71,72) for 75 € &5,

Under this condition, the capacity region is given by

MA-DBC —_— MA-DBC *
C = Co U R ( X1PX2PV7X37 PY3|X1,X2,X37 PZ17PZ2>

Px, Py, x,
Next, we derive our last sufficient condition by generalizing Shannon’s condition (in Propo-
sition |1)) to the three-user setting. This new condition is easier to verify than the previous ones.
Theorem 15: The inner and outer capacity bounds in Theorems [I1] and [T2] coincide if the

following conditions hold:

(i) For any relabeling T;E{x,l, on X, there exists a permutation 73[z/, 2] on Y3 such that for

all 1, =9, x3, and y3, we have

PYs\Xl,Xz,Xs (y3‘x1a T2, 373) = PY3|X17X2,X3 (7T)J3 [xll’ xlll] (yd) |T:Z{x’1’<xl)a L2, I3) (48)

(ii) For any relabeling T;ZQ%, on X, there exists a permutation on 7>2[z}, ¥45] on Vs such that

for all x1, xo, 3, and y3, we have
PY3‘X1,X2,X3 <y3|x17 QZQ, 'T3) = PYngl,XQ,Xg (ﬂ-y3 [:C/17 xlll] <y3) ‘.Tl, 7-;2271’/2/ (x2)7 'r3) : (49)

Under these conditions, the capacity region is given by

MA-DBC __ == MA-DBC U U
C = €0 U R (PXIPXQPV7X37 PY3|X17X2,X37 Py, PZz) )
Py x4

(50)

where P}({_ denotes uniform probability distribution on X; for i = 1, 2.
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D. Examples

We next illustrate Theorems [I3{I5] via three examples.

Example 8 (Additive-Noise MA/DB TWC): Consider a discrete memoryless additive-noise
MA/DB TWC in which the inputs and outputs of the DBC are described by and (@1) and
the inputs and outputs of MAC are related via

Y, = X1,DBq Xo; ©g X3 Dy 23, (51)

where {Z5,}°, with Z3; € Q is a discrete memoryless noise process which is independent of
all user messages and the noise processes {Z;,;}°, and {Z,}°,. For any z3 € A5, we have

the following bounds:
I(X1;Y3] Xo, X5 = 23) = H(Y3] X0, X3 = x3) — H(Y3]X3, Xo, X3 = 23) < log, ¢ — Hyp(Z3),
(X2 V3| X1, X3 = 23) = H(Y3| X0, X3 = a3) — H(Y3] X1, Xo, X5 = 23) < logy q — Hy(Z3),
(X, Xo; V3| X3 = 23) = H(Y3| X3 = a3) — H(Y3]| X1, Xo, X3 = x3) < log, ¢ — Hy(Z3),

where equalities hold when Py, x, = Py, P\.. Choosing Py, = Py and Py, = Py, it is clear

that (45)-@7) in Theorem [13] hold, and hence the capacity region given by

MA-DBC —_— MA-DBC U U
C = R (lep;zQPU,Xs,PY3|X1,X2,X3=PZnPZz>

Py, x4

E( U {(Ri3, Rz, R31, R32) : Ris + Rog < log, q — Hy(Z3),

Py, x4
Ryt S I(X1; X3 @0 Z1|V), Ry < I(Xo © Z1 @ Z2§V)}>o

Example 9: Suppose that X} = X, = X3 = {0,1}, Yy = Vo = {0,1}, and V5 = {0,1,2}. We
consider a discrete memoryless MA/DB TWC in which the DB direction is described by

and (4I)) and the channel transition matrix [Py;|x, x, x;(|-,, )] for the MA direction is given
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0 1 2
000 1—¢ 0 €
100 1 —¢ 0 €
010 0 1—¢ €
110 0 1—¢ €
001 0 € 1—e¢
101 0 € 1—c¢
011 1 —¢ € 0
111\ 1—-¢ € 0

where 0 < ¢ < 1. Since each marginal channel governed by the transition matrix
[Pyyx1,%2,x5 (-], @2, 23)] is quasi-symmetric, we immediately have that Py = Py . Also, since
[Pyyx1,x0,x5 (-, 2, 23)], v2 € X5 and x5 € A, are column permutations of each other, for any
fixed 23 € X3, T(Px,, Pyy|x,,Xo—c,X5—2;) does not depend on x5 € A5. Thus, condition (i) of
Theorem (14| holds. Moreover, condition (ii) holds since the matrices [Py,|x, x,,x;(-|71,, 23)],
r1 € X1 and z3 € A3, are column permutations of each other.

Verifying condition (iii) involves several steps. We first observe that Z(Px, x,, Pvy|x,,Xs, Xs=z3)
does not depend on w3 € Xj for any fixed Py, x, since the matrices [Py,|x, x,x,(:|*, ", Z3)],
x3 € A3, are column permutations of each other. From and in Appendix [D] it
suffices to consider input distributions of this form: Px, x, x, v = Px, x,Px,,v. Thus, given any
P)((ll),xg,xg,v = P)((II{XQP)(;;’V, we define P)((21)7X2’X3’V(9c1, To, T3, V) = P§1)7X2’X3’V(x1 @21, 29,23, 0)
for all zy,x9,23,v. Also, let P£)7X27X37V = (P)((ll),Xz,Xg,V + P)((21)7X27X3,V)/2 so that we have
P)(?l )7 Xp XV = P)(?1 ) P)((IQ) P)((IS)’V with P)((g1 ) = P} = P%,. Now, since (48] holds in this example, one
can directly obtain that 1™ ( X, X5; V3| X5 = x3) < I® (X, Xy; V3| X5 = x3) from the proof of
Lemma (/| As a result, this TWC satisfies all conditions of Theorem (14| and has capacity region
given by

MA-DBC —_— MA-DBC U
C = CO U R (PleXQPV,X37 pY3|X1,X2,X3a PZ17PZ2>

Px, Py x4

Example 10 (Binary MA/DB TWC with Erasures): Suppose that X} = Xy = X3 = {0, 1},
V1 =Y, ={0,1}, and Y3 = {0, 1, E}, where E denotes erasure symbol. We consider a discrete
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memoryless MA/DB TWC in which the DBC direction is described by and and the
MAC direction is described by

Y5, = (X1, P2 Xoi @2 X5,) - 1(Zs; #E) +E-1(Z5; = E), (52)

where {Z3,}5°, with Z3; € {0, E} is a discrete memoryless noise process which is independent
of all users’ messages and the noise processes {7}, and {Z;;}:°,. Also, we assume that

Pr(Zs;; = E) = ¢ for all i, thereby obtaining the channel transition matrix [Py;|x, x,,x, (-, ", )]

0 1 E
000 1—¢ 0 €
100 0 1—¢ ¢
010 0 1—¢ ¢
1101 1 —¢ 0 €
001 0 l1—¢ ¢
101 1 —¢ 0 €
011 1 —¢ 0 €
111 0 1—¢ ¢

It can be directly verified that (48) and {#9) in Theorem [I5] hold. Hence, the inner and outer

bounds coincide and the capacity region is given by

MA-DBC — MA-DBC U pU
C = CO U R (PX1PX2PV,X37 PY3|X1,X2,X37 le7 PZQ)

Py x4

= @< U {(R13,R23,R?,1, R3s) : Ri3+ Rog <1 — Hy(e),

Py x4

Ry < I(X1; X3 @ Z1|V), Ry < I( Xy @2 Z) @y Zo; V)})

Remark 8: Examples 9 and 10 also satisfy Theorem 13| since the product distribution le ﬁX2
required by Theorem [13|are explicitly given in these examples. Moreover, it is straightforward to
show that Examples 9 and 10 do not satisfy the conditions of Theorems [I5] and [T4] respectively.

In other words, Theorems |14| and (15| are neither equivalent nor special cases of each other.

V. CONCLUSION

We have identified salient symmetry conditions for three types of two-way noisy networks:
two-user TWCs with and without memory, and three-user MA/DB TWCs, under which Shannon-

type random coding inner bounds exactly yield channel capacity. These tightness results, which
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subsume previously established symmetry properties as special cases, delineate large families
of TWCs for which user interactive adaptive coding is not beneficial in terms of improving
capacity. Future research directions include identifying necessary conditions for the tightness of
Shannon-type inner bounds and deriving conditions under which Han’s adaptive coding inner
bound [13] is tight. An additional interesting avenue of investigation is to examine whether
adaptive coding is useful for the (almost) lossless and lossy transmission of correlated sources

over TWCs whose capacity are achievable by the Shannon-type random coding scheme.

APPENDIX
A. Proof of Proposition |l| (Shannon’s One-sided Symmetry Condition)

The proof of Proposition [I] is based on the following lemmas.

Lemma 4: If a memoryless TWC satisfies the conditions in Proposition [T} then for any input

distribution P)(a x,» any 7, ¥§ € &y, and P)(fl )’ OO P)(a X2(lez,1,( ), ), the following hold:
IW(X15Y5] Xo) = IP(X1; Ya | Xa), (53)

IV(X; Y11 X0) = TP(Xa; V3| X0), (54)

R(PY) v Privalxixs) = RIPY) . Prvalxixs)- (55)

Proof: For any P)((ll)’ x, and P)((Q1 )7 OO P)((11), X (T;\,'/lz,l,< ), ), we have

I®(X1; 2| Xs) = ZP” I?(X1; Ya| Xz = )

Py, 1x,,x, (Y2| 71, 72)
= P22 D P (@1la2) P, xa o, ) log 225

X2 T1,Y2 Y2|X2 <y2|x2)
= Y POy (21, 22) Py, xo (o)1, )
T1,22,Y2

Py, x, x5 (Y2| 21, 72)

Zml X1|X2(x1|x2)PY2|X1,X2(y2|j1>x2)

Z PXl,Xg Tx/ //($1) ,1'2)PY2‘X1’X2(7TJ)2[1’,1,.1"{](3/2)’7';?@,1,(.1'1),1‘2)

T1,22,Y2
PY2|X1,X2(7ry2[x/1axll](?J?)‘T/ ”(ajl) xQ)
1 T~
Sy P, (Tt (1) [2) Py, (722 [, 2] () 752 (1), 2)
(56)

-log
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= > Py, Tx/ Lo (1), $2)PY2\X1,X2(7T§;2[$/17515'1/](3/2)|Tzl,x/1/($1)a1’2)

T1,22,Y2

Py, 1x,,x, (m2 [, 2] (y2) |7';Zl’x/1/(x1), )

(57)

-log -
>, PO, (#1]22) Py x, (12 h, ) (y2) |1, 22)

= Z PX1 Xo Tx’ //(131) IQ)PYz\XLXz(ﬂ-gQ[x/lvxlll](y2>’7_;?7x’l’(xl)>x2)

T1,T2,Y2

Py x, x, (7222, 2] (ya) ’7':?,36/1' (1), z2)

-log :
PO, ([, 28] (o) e2)

= Z PX1 X, Tw/ w,,(xl) $2)PY2‘X1,X2(g2|7':21’$/1/(371),.172)

x1,22,92

Py, x5, (o] 70" o (1), )

‘log (58)

1 -~
Pyl (iha]aa)

. . Py, x,,x,(Y2|T1, T2
= > PY) ¢, (F1,22) Pryjx, xa ()1, 72) log 2 5 20 )
E1,22,02 y2|x2(?/2|932)

(59)

= IW(X1; V5| Xy), (60)

where (56) holds by the definition of P)((Q1 )7 x,(T1,72) and the fact that Py, x, x, (2|71, 72) =
Py, x, x, (w22, 2] <3/2)‘Tzl,x’1’ (71),x2) due to the Shannon condition in ), (57) and (39) hold
since T;fo,l, is a bijection, and (58) holds since 72z, 2] is a bijection.

By a similar argument, we can verify that 1™ (X5: V1| X)) = I®(Xy; Y1|X}). The proof is then
completed by noting that the identity R(P)((ll{ Xy PrYalx1 o) = R(P)(fl )7 x,» P valx1,x,) follows

from the definition of R in (T). [
Lemma 5: If a memoryless TWC satisfies the condition in Proposition [T} then for any input
distribution P)((li x,» any x4, z{ € &y, and P)((Q1 )7 OO P)(a Xy (Tzlx/l/( ), ), we have
1 3
R(P)((l),X2> PYLYQ\X17X2> C R(P)((l),ng PY17Y2|X1,X2) (61)

where P\ (11, 25) 2 L(PY)  (21,22) + PO i, (21, 22)).

Proof: The proof relies on the concavity of I(Xi;Y5]|X5) and 1(Xs; Y| X)) in Py, x, [3l.
For any given P)(a , and P)((Q1 )7 () = P)((li X (T ,(4), ), let P)((?’1 )7 X, = %<P)(<11), x, + P)((Ql)’ )

Ty ,2q

The concavity property then implies that
1

1
I9(X15Ya]X0) = S 10 (X5 5| Xs) + 51 (X5; V2| Xs) (62)
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= IW(X1: V5| X,), (63)
and that

1
IO(Xy; V1) X) > STV (X, Vi | X)) + 5I<2><X2;Y1|X1) (64)

N | —

= IV (X V1] X)), (65)

where and (63) follow from Lemma [ The proof is completed by invoking the definition
of R in (). u
Lemma 6: If a memoryless TWC satisfies the condition in Proposition [T} then for any given

input distribution Py, x, = Px,|x,Px,, we have

R(PX1,X27 PY17Y2|X17X2) - ’R’<P/’%PX27 PY1,Y2|X17X2>7 (66)

where Py denotes the uniform probability distribution on A;.

Proof: Without loss of generality, we assume that X; = {1,2,... x}. Define P,, =
{Px, x, € P(X1 x X2) : Px, x,(1,22) = Px, x,(2,22) = --- = Px, x,(m, x3) for all x5 € A},
where 1 < m < k. Lemma |5 shows that for any P)((li x, € P1, one can construct P)(f’l ), X, € Po
in such a way that holds. We now extend this result by induction on m showing

that for any P)((—l) x, € Pm with 2 < m < &, there exists a PXm}z) € Ppy1 such that

R<P)((1)X2> le Yo |X1, X2) - R(PXl X2) PYl Y21 X1, Xz)
Suppose that the above claim is true up to m for some 1 < m < k, where the base case
m = 1 was proved in Lemma |5l We next prove the claim for m + 1. For any P)((li X, € Pm,

define
m+1

1 i
£ 1 X P (o)
=1

where P¥37X2(~, N2 P)((-IR’X2 (71{117m+1('), -) for 2 < ¢ < m + 1. Due to the Shannon’s one-sided
symmetry condition and Lemma 4, we have that 10 (X;Y5|X5) = IW(X1; Y3 X,) and that

T9(X5;Y1|X1) = IM(X5; V1] X)) for 2 < i < m + 1. Concavity then implies that
1 m+1

I (X Y| X)) > I1D(X1; Ys| X
(1; 2| 2)_m+1z 15 2| 2)

:I(l)(Xl;Yé|X2)-

Similarly, we obtain that 70"+ (X,; Y;|X,) > IV(Xy; Y1|X,). Moreover, since /73)((11)’X2 € P,
we have that P)(( XQ)(:vl,xg) =1/(m+1)-(m- P)((ll)xQ(l, To) ~|—P§(11),X2(m+ 1,x9)) for 1 < x; <
m+ 1 and all z5 € X, i.e.,P)((T}? € P41, thereby proving the claim.
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Since any Px, x, = Px,|x,Px, € P, can be expressed as Py, Px,, in view of the definition
of R the proof is complete. [ |
We are now ready to prove Proposition [I]

Proof of Proposition 1: Note that

CO(PYLYQ\X1,X2) =co U R<PX17X27 PY1,Y2\X1,X2)
Px;,%5
— U
ce | |JR(PY P Prvaxx: ) (67)
Px,
C Ci( Py, vs|x1,X2)s (68)

where follows from Lemma [6| Together with Ci(Py, v,(x, x,) € Co(Py; v/ x1,x,)- this gives:

C = Ci(Py, yaix1.x2) = Co(Privaxixa) =0 | R<P¥1PX2a PY1,Y2|X1,X2> . (69)

Px,

|
We remark that, based on the proof of Proposition [I} it is straightforward to prove Shannon’s

two-sided symmetry condition in Proposition [2]

B. Proof of Theorem [I2]

Proof: Suppose that (R;3, Ro3, R31, R32) is an achievable quadruple. We derive the necessary

conditions for those rates by the standard converse method. For R3, we have
nRiz3 = H(M13’M23, M3, M32)
= [(M3; Y3 | Moz, M3y, Msy) + H(Mi3|Y3", Mag, My, Mss)
< I(M3; Y3" | Moz, M3y, M3g) + ney (70)
< I(Mis; Yy, Y3 | Moz, My, Mzs) + ney,

= Z](Mm; Yo, Ya,|Ys ™ Y37, Mag, My, Msz) + ney,

i=1

= Z (H(YQ,i7 Yail Xou, Xz, Yo ', Y571 Moz, May, Mas)
i=1
—H(Ym,%,i\Xz,inB,,i,}/'zFl’Y}f*l,M23,M317M32,M13)) + ne, (71)

< Z (H(Yz,z‘, Y3l Xo4, X34) — H(Yay, Y3,z‘|X1,z‘,X2,i,X3,i)> + ney (72)
i—1
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= Z I( X145 Yo, Y3 Xoi, Xs4) + ne,

i=1

Z I( X145 X0 @g X34 By Z1i By L2y Ya.il Xoiy X34) + ney,

i=1

Z I(X,5 Y3l X0, Xai) + (X5 21 Bg Zoi| Vs, Xojiy Xs,i) + ney,

i=1

D (X1 Yail Xo, Xai) + nen, (73)

=1

where follows from Fano’s inequality with ¢, — 0 as n — oo, holds since X,; =
foi(Mys, Y57 1) and X3, = f3.:(Msy, Mo, Y1), follows since the channel is memoryless,
and follows since (2 ;, Z»;) is independent of (Y3, X, X2, X3,). By symmetry, we also

have

niys < Z I( X945 Y5 X1, X34) + nep. (74)

=1

For the sum rate Ri3 + Rs3, we have

TL(R13 + R23) =

<

IN

-

IA

i

H<M137 M23|M31, M32)

I(Miz, Maz; Y3 | M3y, Msy) + ne,

(H(Y},,z’|X3,z’7Y3i_l7 M3y, Mso) — H(Y3,;|Yy™t, Msy, Mo, M3, M23)> + ne,
1

7

(H(Y:?»,i|X3,i) - H(%,i’ﬁfly M3y, M3y, M3, M23)> + ne,

=1

<H<Y3>,i’X3,i) — H(Y3,;| X1, Xa,, X3,i)> + ne,

=1

I(Xl,ia Xoi; YE’),i‘XS,i) + ney,

M-

=1

where €, — 0 as n — oo by Fano’s inequality. Therefore, for the rates in the MAC direction,

we have

1 n
Ri3 < - ZI(Xl,i;Yé,z'|X2,i,X3,i) + e, < I(X7; V3| X0, X3) + €,
i=1

1 n
Ros < = 1(Xai5 Vsl X1 Xai) + €0 < (X3 V3|5, X3) + 6

=1

1 n
Rz + Ras < - Z I( Xy, X0 Ysi| Xs) +en < T(Xq, Xo; V3| X3) + €,
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where the inequalities hold since I(X7;Y3| Xy, X3), I(Xo; Y3| X1, X3), and (X, Xo; Y3|X3) are
concaveﬂ in the joint input distribution Py, x, x,, where Px, x, x, = %22;1 Px\ X0, Xs5,-

For the achievable rate R35 in the DB direction, we have
nlz= H(M32|M23)
< I(Msg; Y3 | Mag) + ney,

= Z I(Mzg; Ya,u Y37, Mas, X5) + ne,

i=1

= I(Msg; X33 @q Z1i By Zoa| X5 ©g Zi7 ©g 257", Mag, X3) + ne,

=1

= I(Msp; X33 @q Z1i By Zoa| X5 ©g Zi7 ®g Z5", Mag) + ney, (75)
=1

< Z I(M3z, X571 Dy zZit Dy Z5t, Mas; X3 By 21, By Zai) + ney, (76)
=1

<Y I(Msp, Mg, Myg, X5 @4 27 @4 237 Xi74 @4 Z7' Xs,3 @ Z14 @y Zog) + ey
=1

= Z I(Msp13, Yy Y57 Ya,) + ney, (17

i=1
where (75) holds since X? is a function of (Xi '@, Z; ™' @, Z5 1, My3), follows from
the chain rule and the non-negativity of mutual information, and (77) is expressed in terms of
Vii® X3, ®q Zrg, and Yo, 2 X3 @y 213 ©g Zog = Vi ©g Zosie

For Rs3;, we have

nRs = H(Ms|Ms22313))

< T(Ms1; Y], Y5 [ Miso.03.13)) + ney

Z I(Mzy; Y1, Yaul Vi Y57, Misosa3y) + ey,
i=1

I(Mz1, X35, Yy, Yo,V H Y70, Mys2,2313)) + ney

-

=1

M-

I(May, X35 Y1, Yol V771 Y5 M32,23,131, X1, X3) + ne, (78)

=1

"This follows from the fact that I(A; C|B) is concave in Pa,p for fixed Pca,s 3.

January 30, 2019 DRAFT



46

= Z I(M317 X3,2‘§ 371,1‘; }72,z'|Y1i_17 Ygi_la M{32,23,13}7 X1i7 Xé) + ne,
i=1

= Z T(Ms, X35 }71,1', 372,¢|571i71, 3727;71, M32,13,.93)) + ney (79)
i=1

= Z I( X35 371,1', 572,i|3~/1i717 5721'71: Mys9.13,231)

i=1

+ Z I(Msy; 571,@ }72,1'|1~/1i_17 }721'—1’ My32,13,23), X3,4) + nep

i=1

= Z I( X555 Y13, Yau| Vi, Y31, Mysa s 03y) + nen (80)
i=1

= Z I(X55 Vil Yy~ Y57 Msaa3.03y) + nen (1)
i=1

where holds since X;; = fi;(Mi3, Y/ ™") and Xo; = fo,(Mas, Yo ), holds since
(Vi1 Yj~' X7 X%) can be generated knowing (Mis, Mas, Y71 V1), holds because
My —o— (V{74 V9™ Msa13.03), X34) —o— (Y14, Ya;) form a Markov chain, and holds
since 3721 —o0— (}7172»,}71“'_1,)7;_1,M{32713,23}) —o— X3, form a Markov chain. Note that
these Markov chain properties hold since {Z;;}? , and {Z5,}? , are independent memoryless
processes and are independent of all user messages.

Setting V; = (ﬁi_l,ﬁ_l,W{gllg,gg}), we have that V; —o— Xj5; —o— (}712,3721) form
a Markov chain. From and (BT), we obtain that nRy, < S°r I(Vi;Ya,) + ne, and
nRy < >0 I(Xsy; 3711|V,) + ne,. Let K be a time-sharing random variable that is uniform
over {1,2,...,n} and independent of all messages, inputs, and outputs. Setting V = (K, V),
X = Xag, Z1 = Zvk, 4o = Zox Vi = X, Dy 21 = 371,1(, Yy = X3 Dq L1 g Lo = 372,}(, we

have
nRzy < i 1(Vi; Ya,) + nep = nl (Vie; Ya x| K) + ne, < nl(V;Ys) + ney,
=1
= nI(V, X3 @q Z1 @q ZQ) + ney,,
and

nis < Z I(Xs5,; 5712“/;) +ne, = nl (X3 Y1[V) + né,
i—1

= n[(Xg, X3 @q Z1’V) + ne,
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for some Py, z, x, v = Px, v Pz Pz,. Combining the obtained bounds for rates I2;3 and [y, the
proof is completed by letting n — oo. The bound on the alphabet size of V' can be established

by the convex cover method [S]]. |

C. Proof of Theorem

Proof: Consider a MA-DB TWC governed by Py, x, x,,x;. Pz, and Pz,. Recall that

MA-DBC .
R (PX1,X2,X3,V7 PY3|X1,X2,X37 PZ17 PZQ) == {<R137 R237 R317 R32) .

Rz < I(Xy; V3| X, X3), (82)
Roz < I(Xo; V3| X1, X3), (83)
Ri3 + Ros < I(X4, Xo; V3] X3), (84)
Ry < I(X3; X3 @q Z1|V), (85)
Rsy < I(V; X3 &y Z1 &y Zo)} - (86)

Since ([82)-(84) do not depend on V' and (85) and (86) do not depend on (X, X3), we have

RMA—DBC ( — RMA—DBC (

PX1,X27X37V7 PY3|X1,X27X37 PZ17 'PZQ) PX17X2\X3PV7X37 PYs\leXz,Xsa PZM PZQ)'

87)

To complete the proof, it suffices to show that for every Px, x,|x, and the corresponding Px, Px,

(which depends on Px, x,|x;) given by our assumption, satisfies
RMAPBC( Py 155 Prxas Pralx1.%0.%55 Py Pzy) € RMAPBE( Py, Py, Py xys Py xy.50.%55 P21y P,
(83)

: MA-DBC MA-DBC
since then we clearly have Cj (Pyy|x1,X0,X55 P21, Pz,) € C (Pyy|x1,x5.x5, P21, Pz,)-
1) A

To show (88)), consider two input distributions P)(ﬁ, o XaV = P)((ll), Xl XSP‘(/B(S and P)((z1 )7 XXV =
15)(1 ]5X2 P‘(/;)(B, where 15x1 PXQ is given by the assumption. Then,

IV( X3 X3 @, Z1|V) = I (X3; X3 @, Z1|V) (89)

IOV X3 @, 721 ®y Zo) = TP(V; X3 ©y Z) @y 7o) (90)

: (1) 2) - (1)
since Py v, x,v and Py, v,y have the same marginal F; . Furthermore,

IO(X1; V3| X2, X3) = Y P (w3) - TO(X1; Va| X, X5 = a3)

z3

January 30, 2019 DRAFT



48

< ZP(I (x3) (Xl,Y3|X2,X3 = 13)

= 1< )(X1; Ys| Xy, Xs),

where the inequality follows from (45) and the last equality holds since P)((ll), X,.x5, and
P)((Z1 ),X2,X3,v have the same marginal P)((IB). Similarly, we obtain that I (Xy; Y3 Xy, X3) <
T (X5 V3| X1, X3) and TW(X7, Xy; V3| X3) < 1P (X1, Xy; Y3/X3). Consequently, (88) holds.

|

D. Proof of Theorem

Proof: Similar to the proof in Theorem for any Px, x,x5Pv.xs = Pxaxs PxyXs, x5 Pv.xs»

it suffices to show that

MA-DBC
R (PX17X2|X3PV,X37 PY3\X1,X27X37 PZU PZz)

C RMA_DBC(P;(1PX2|X3PV,X3, Py 1x1,X0,x3> P21, Pz,) 1)

where Py is given by conditions (i).
1 1 1 2 « p(l) p(l . e
For any P)((l), Xo XV = P)((l)’ Xo|Xs P‘(/, ))(3, let P)(Q{ xsv = Px, P)((Z) P‘(/, ))(3, where Py is given by
(1)

condition (i) and Py, denotes the marginal distribution of X, derived from P)((li X,.X5,v- FOr the

rate constraints in the DB direction, the same identities as in (89)-(90) can be obtained because
P)((ll), X,.x5,v and P)(fl )7 X,.X,,v share a common marginal distribution given by P‘(/l))(3 For R;3 in

the MA direction, we have
I (X1; V3] X3, X3)

= Z P)((IQ),X3($2>333) : [(1)(X1;Y3)’X2 = 29, X3 = x3)

T2,T3
1) (1)
o Z P X2,X3 Ig,l'g) I(PXllesz,ngzg’ PY3\X1,X2=12,X3=I3)
2,23
(1)
< § : PXZ,Xg (m% x3) ‘p max I(PXllezzz,X3:x3v PY3\X1,X2:902,X3:$3)
Z2,23 X1|Xg=w3,X3=23
1) *
o Z Py X2,X3 :CQ’ 33'3) I<PX17 PY3|X1,X2=332,X3=903) (92)
T2,T3

(1 *
:ZP) Z X\X (w2]w3) - Z(Px,, Pra| X1, Xo=as, Xs=a5)

1 *
=" P (as) (Z o, (2]73) ) CI(PY,, Prayxy Xol Xo—as) (93)
T3
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1 1 *
- Z P)((Q)(IJQ) Z P)((g,)(x?)) ) I(PX17 PY3|X1,X2=I'27X3=903)

= I(X}; V3] X, X3),

where (92) and (O3) directly follow from condition (i).

For R,3, we have
IW(Xy; Y3 X1, X3)

= Z P)((ll),xg($1a$3) : [(1)(X2;Y3\X1 = 11, X3 = x3)

Z1,T3
1 1
= Z P)((1),X3 ($17 (L’g) ’ I(P)((2)|X1:xhx3:x3’ PY3\X1=I1,X2,X3=I3)
1,13
=y pW -z(PY P 94
Z X1,X «751; $3 ( Xa|X1=21,X3=03" Yg\xlzxg,xz,xgzzg) (94)
T1,r3
1 1
<I (Z P)((1)7X3 (1’1, $3)P)((2)\X1,X3 (.1'2‘:61, 1‘3), PY3|X1x’1,X2,X3xg> (95)
T1,T3
—7(PY), P : )
X9 Y3‘X1::El,X2,X3:LE3
* 1 1
= > P ()P () - TP, Py, 0 =) (96)
7,7

= 1?(Xy; V3] Xy, X3),

where (94) and (96) follow from condition (ii) and (93) is due to convexity of Z(-,) in its first
argument.

Moreover, for the sum rate R;3 + R33, we have

I(l)(XlﬁXQ;KﬂXtS ZPX3 1'3 (X17X27Y5’X3 _xd)

1
- Z PX3 (1’ -z <P)((1)X2\X3 =3 PYS\Xl,XQ,X?,:ws)

1 1
= S P (5) - T (P g, e Profs o ot 97)
x3

S z (Z P)(fls) <x3)P)((11)7X2|X3 (Il’ x2 |I3)’ PY3X1:X2:X3:x:@> (98)

3

=7 (P)((l)Xz’PYlel X2, X5= 105)
<7 (P;QP)((IZ)7 PY3|X1,X2,X3:x’3> 99)

* 1
o ZP <PX1P)((2)>PY3|X1 X2,X3= 303)
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= 1@(X1, Xa; V3| X3),

where and (99) follow from condition (iii) and (98)) is due to convexity of Z(-,-) in its first
argument. Therefore, holds under conditions (i)-(iii). u

E. Proof of Theorem [I5]
It suffices to show that

MA-DBC
R (Pxy Xa1x5 Pv.xs» Pya|x1,Xa,x50 P21 Pz,)

g RMA-DBC(P}(‘Il P)L(‘]ZPV,X37 PY3‘X17X2,X37 PZ17 PZQ) (100)
for any Px, x,|x;Pv,x,. We first give a proof sketch. Analogous to Shannon’s proof for point-to-

point TWCs (see Appendix , we want to show that for any input distribution P)((ll), X XaV =

(1) n (2) 2) (1) (3) _ p® 1)
Py x5, T v, W SeL Py e, o v = Py g Tvixs a0d Py, v v = Px; x x, Py x,» Where

2 1

PR xaxa (1) 2 P, (T (1), (101)
3 1 1

PA)((I),X2|X3(.7 |) é 5 <P)((1),X2|X3(.7 |) + P§(1)X2|X3( |)> 9 (102)

and 27, z] € X, we have
RMA- DBC(P(l)X2|X3P‘(/))(37 Pyixsxa Xas Py Pry) =RMA DBC(P)(Q)XﬂXsP‘(U)‘%’ Py, x,,x5,x5: Pz,, Pz,)  (103)
gRMA_DBC(P)((Bl),XQ\X3P‘(/,1))(37 PY3|X17X27X37 PZ17 PZz)7 (104)

where the last inclusion is shown using and extending Lemma [5| to the MA/DBC setup.

Then, we use an induction argument as in the proof of Lemma [6] to obtain

RMA—DBC( RMA—DBC( U

PX17X2|X3PV7X3> PY3\X17X2,X37 PZl7 PZ2) - PX1PX2\X3PV7X3> PY3\X17X2,X37 PZl7 PZ2)'

(105)

Next, we consider input distributions of the form P)((ll) X0 XsV = P}élP(l)

N | X P)(<13)v and set

(2) _ p®2 (1) (3) _ pd) (1)
PX1’X27X37 PX1,X2\X3PV7X3 and PX1,X2,X37 PX1 Xg\XgPV,Xg’ where
(2) A p(1) X
P—XVI,-XQLXQS(.7 |) - PX1,X2|X3( ’Tx/ xz( )|)7
(3) alnm (2)
PXI:X2|X3(.7 ‘) - 5 <PX1,X2|X3(.’ |) + PX1,X2|X3< |)> )

and z,, x) € X. It can be shown via (9) that (I03)-(104) also hold, and thus applying an

induction argument again yields

MA-DBC U MA-DBC U U
R (PX1PX2|X3PV7X3’PYS\X17X27X37PZ1>PZ2) CR <PX1PX2PV’X3’PY3\X17X27X37PZ17P22)'
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(106)

Combining (105) and (106) then proves our claim. Due to symmetry, we only prove (103).
. (1) _ (1) (2) _ (1)
Lemma 7: For any Py ¢ . v = PX1 Xalxs T vxye let Pl xo xov = PX1 Xa|xs T v,x, and
3 3 1 3 :
P)((i XXV = P)(ﬁ), Xl XSP‘(/, ))(3, where P)(() x,|x, and P)((l)’ x,|x, are given by (T01) and (102),
respectively. Then, (103)-(104) hold.

Proof: We have

1(2)(X1;Y3|X2,X3 = 13)

2
= Z P)((l),XQ\XP,(xhx2|x3)PY3|X1,X2,X3(y3|x1>$27m3)
x1,22,Y3
1 PY3|X17X27X3(y3|x17 T, l’g)
. Og

2 ~ -
Zﬁcl P)((l)\xg,xg ($1|~’B2, xS)PY3|X1,X2,X3(y3|$17 T2, 963)

1
= Z P)((I{XQ‘Xj(T;EM(h) I2|$3)PY3|X1,X2,X3(7Ty3[95/1»xlll](y3)|7';\fil,x/1/($l)7$27953)

x1,22,Y3

| Py, x1, 55,5 (w8 [y, 2] (ys) |T;\/Il,x/1/ (1), T2, 23)

. Og 1

Z P)((1)\X2,X3(TA"/ ”<x1) x2’x3)PY3|X17X2,X3(7Ty3[m/17xll](y3>|7—/ //(xl) CL’Q,Ig)
(107)
= Z P)((—ll)Xz‘XS(%l,iUQ\SU:s)PY3|X1,X2,X3(3/3’$17372,1‘3)
xr1,22,Y3
P T1,To, X
log - Y3|X1,X2,X3(y3| 1, T2, T3) (108)

zgcl le\xg,xg, (Z1 |22, $3)PY3|X1,X2,X3 (y3|T1, 2, 23)

- I(l)(X17Y2|X27X3 - I’g),

where follows from (@8) and (T0T)), (TO8) holds since 73z}, x] and Tzl’z,{ are bijections.
By a similar argument, we have that 1®®(Xy; Y3| X1, X3 = 23) = IW(Xy; V3] X1, X3 = x3)
and that 1® (X, Xy; Y3|X3 = 23) = IW(X,, X5; Y3/ X3 = 23). Next, using the concavity of
I(X1; Y| X, X3 = @3), [(Xo; V3| X1, X3 = @3), and 1(X1, Xo; V3| X3 = x3) in Px, x,0x, (-, |73
yields that

IO(Xy; Ys] Xp, X = 25) > %](1)()(1; V3| X, X3 = x3) + 31(2)(X1;3§|X27X3 = 13)

= IW(X1; Y3| Xo, X3 = 73),

SI(Xl;Yg\Xg,Xg = x3) and I(X2;Y3|X1, X3 = x3) are concave function of Px, x,|x,(-,-|3) since I(X1;Y2|X2) and
I(X2;Y1|X1) are both concave in the input distribution Px, x, [3].
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](3)(X2§Y3|X17X3 = $3) > %](1)()(2; Y3|X1,X3 = 1‘3) + %—7(2)()(2;3/3|X17X3 = $3)
= (1)(X2; V3| X1, X3 = 23),

I®(X1, Xo; V3| X3 = x3) > 2](1)(X1,X2; Y3 X3 = x3) + 31(2)(X17X2;3/§|X3 = 13)

= [(1)(X1,X2; V3| X3 = x3),

and hence

I®(X1;Y3] X2, X3) > 1M (X1; V3] X, X3),

[(3)(X2;Y?3’X1,X3) > I(l)(X2;Y3’X1>X3)>

I18)(X1, Xp; Vs X3) > TW (X, Xy; V3| X3),

since P)(é) = P)((S3 ). Together with the definition of RMAPBC given in Section [[V-B|, the inclusions

in (103)-(104) are proved. [

Now, without loss of generality, suppose that X; = {1,2,...,x}. For 1 < m < k, define A,,

as the set of all conditional probability distributions Py, x,|x, satisfying Px, x,|x,(1, z2|73) =
Px, x51x5(2, Ta|ws) = -+ = Px, xu/x,(m, x2|xs) for any fixed z, € &> and x3 € A3. As in the

proof of Lemma [0 it can be shown by induction on m that

MA-DBC MA-DBC / 1
R (PXl,leX:sPV,st PY3|X1,X2,X37 PZ17PZ2) CR (PX17X2\X3PV,X3’ PY:;\Xl,Xz,Xw PZI’ PZZ)

(109)

where Px, x,x, € A, and 15X1’X2‘ x5 € Aypyq for 1 < m < k. Note that the base case m = 1
was proved in Lemma (7, Since Px, x,/x, € A can be expressed as Py, x,/x, = P}él Px, x5
(I03) holds. To show (106)), we consider input probability distributions of the form Px, x, x,v =
PY Px,|x,Px,,v. By changing the roles of X; and X, in the above derivation, the rest of the

proof is straightforward. [ ]
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