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Abstract— We present a low-complexity and low-delay joint
source-channel coding method for bandwidth compression using
a hybrid digital-analog (HDA) coding/modulation system based
on the recent work in [3]. Analytical optimal distortion expres-
sions (under both matched and mismatched channel conditions)
are obtained for the proposed HDA system with a linear analog
part for a memoryless Gaussian source and additive white
Gaussian noise (AWGN) channel under the mean squared error
distortion measure. We consider two HDA coding schemes, both
of which employ a vector quantizer cascaded with binary phase-
shift keying (BPSK) modulation in the digital part, but differ in
that they use linear (resp. non-linear) coding with pulse amplitude
modulation (PAM) in the analog part. We derive an optimal
power allocation scheme for the system with linear analog coding
and present performance comparisons with purely analog and
purely digital systems, as well as the scheme in [3]. Simulation
results show that, under linear analog coding, the proposed
scheme outperforms the scheme of [3] for medium to high channel
signal-to-noise ratios (CSNRs). Furthermore, the performance of
the HDA scheme with the linear analog part is within 1 dB of
the optimal distortion bound for the mismatched HDA system
for high CSNRs; for the scheme with non-linear analog coding,
the performance can be improved at high CSNRs.

Index Terms: Hybrid digital-analog coding, joint source-channel
coding, vector quantization, broadcasting, robustness.

I. INTRODUCTION

We consider the problem of transmitting analog-valued
sources over a discrete-time memoryless channel. Due to
the usual lack of channel information at the transmitter, a
robust system is desirable. In terms of the used modulation
techniques, systems can be categorized into analog, digital or
hybrid digital-analog (HDA). Digital systems have the advan-
tage that they can be designed to (asymptotically) achieve the
theoretical optimal performance for a fixed channel signal-to-
noise ratio (CSNR) via the separate design of optimal source
and channel codes. There are, however, two fundamental
disadvantages associated with digital tandem systems. One
is the threshold effect: the system typically performs well at
the design CSNR, while it degrades drastically when the true
CSNR falls beneath the design CSNR. This effect is due to
the quantizer’s sensitivity to channel errors and the breakdown
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of the employed error-correcting code at low CSNRs (no
matter how powerful it is). The other trait is the levelling-
off effect: as the CSNR increases, the performance remains
constant beyond a certain threshold. This is due to the non-
recoverable distortion introduced by the quantizer which limits
the system performance at high CSNRs. The threshold effect
can be partly remedied by digital joint source-channel coding
(JSCC) design. However, such JSCC systems still suffer from
the levelling-off effect at high CSNRs, since being digital
systems, they employ quantization to “digitize” the source.
On the other hand, the levelling-off effect is not a problem
for analog systems, which means that the performance of an
analog system can strictly increase as the CSNR increases.
However, it is usually hard to incorporate efficient signal com-
pression schemes in analog systems, particularly for sources
with memory and when channel bandwidth is valuable.

Recent works undertaken to exploit the advantages of both
analog and digital systems are as follows. In [1], a family
of HDA systems are introduced and studied theoretically;
they are shown to offer better distortion performance than the
purely digital system, have a less severe threshold effect, and
(asymptotically) achieve the Shannon limit. An HDA system
design based on vector quantization (VQ) for bandwidth
expansion is investigated in [2], where an algorithm to design
optimized codes and distortion performance are presented. In
[3], an HDA system for Gauss-Markov sources with band-
width compression/expansion is presented. It employs the
Karhunen-Loéve transform to decorrelate the source, Turbo
error-correcting coding in its digital part to improve the system
performance at low CSNRs, and superposition coding of the
analog and digital signals. This system allows for both linear
and non-linear mapping in its analog component. Other related
HDA results can be found in [4] - [14].

In this work, we study the transmission of a memory-
less Gaussian source over an additive white Gaussian noise
(AWGN) channel with bandwidth compression, using HDA
techniques based on the recent work in [3]. We first obtain
a theoretical distortion bound of an HDA system with a
linear analog part for the mean squared error (MSE) distortion
measure. Then we derive a theoretical distortion bound of a
mismatched HDA system where the encoder does not know the
true CSNR. An optimal power allocation formula between the
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Fig. 1. A general HDA model with bandwidth compression (k < n).

digital and the analog parts is obtained for this mismatched
system. Using this formula, a power allocation that is good
over a wide range of CSNRs is chosen to design an HDA
scheme. This HDA scheme (which, unlike [3], does not
employ Turbo codes) has low complexity and low delay. The
digital part is formed with a VQ (optimized as in [5]) cascaded
with a binary phase shift keying (BPSK) modulated hard-
decision decoded AWGN channel, and the analog part uses
linear coding. Simulations show that this scheme performs
within 1 dB of the optimal performance of the mismatched
HDA system for high CSNRs. As the performance saturates
with increased CSNR, a non-linear analog coding is also
considered in the proposed HDA scheme to improve the
saturation level. Comparison are made with purely analog and
purely digital systems, as well as the system in [3].

II. INFORMATION-THEORETIC CONSIDERATIONS

The block diagram for the HDA system with bandwidth
compression is depicted in Fig.1. The samples of a memoryless
Gaussian source {Xi} with zero mean and variance σ2

s are
grouped into blocks of size n, denoted as Xn, and encoded by
a digital tandem source-channel encoder with power (1− t)P ,
where P is the total input power per channel use and t ∈ [0, 1]
is the power allocation coefficient for the analog part. The
source decoder output X̃

n
is subtracted from Xn to form the

error vector En, k components of which are further transmitted
using linear analog coding (via a scaling operation) with power
constraint E||Vk||2 ≤ ktP . Sk and Vk are superposed and sent
over an AWGN channel with noise variance N . The receiver
first employs a digital tandem decoder to get an estimate ˆ̃Xn.
The decoded channel symbols are subtracted from Rk. The
results are fed to the linear analog decoder to form an estimate
Ê

n
. Here, the remaining n−k components of the error vector

are filled with zeros at the decoder part. Ê
n

is then added to
ˆ̃Xn to form an estimate X̂

n
. The overall coding rate of this

HDA system is r = k/n < 1 channel uses per source sample.
We first consider the optimal asymptotic distortion of this

system

DMSE(N) = lim sup
n→∞

1
n

E||X − X̂||2. (1)

From Shannon’s lossy JSCC theorem [15], we know that the
performance of a general JSCC system for sending an i.i.d.

Gaussian source over an AWGN channel is always lower
bounded by the optimal performance theoretically attainable
(OPTA), which is

DOPTA(N) � σ2
s(

1 + P
N

)r . (2)

By examining the structure for the proposed HDA system in
Fig.1, we first derive an OPTA for this system.

Lemma 1: For a memoryless Gaussian source with zero
mean and variance σ2

s and an AWGN channel with noise
variance N , given fixed P , t and r, the OPTA of the HDA
system of Fig.1, denoted by Dhda

OPTA(N), is given by

Dhda
OPTA(N) �

(
r

1 + tP
N

+ (1 − r)

)
Ddig(N), (3)

where

Ddig(N) � σ2
s(

1 + (1−t)P
tP+N

)r . (4)

It is easy to show that Dhda
OPTA(N) = DOPTA(N) if and

only if t = 0.
We next study the realistic situation where the AWGN

variance N is not known at the encoder. We assume that
the encoder only knows a range of values in which the true
noise variance N lies; thus, it chooses the encoding operation
for a fixed design noise variance Ndes. The receiver on the
other hand has full knowledge of N and adapts the decoding
accordingly. For this mismatched HDA system, when the true
noise variance N satisfies N ≤ Ndes, we have the following
OPTA distortion:

Dmis−hda
OPTA (N,Ndes) �

(
r

1 + tP
N

+ (1 − r)

)
Ddig(Ndes). (5)

We now consider the power allocation problem for this
mismatched HDA system with the encoder designed for Ndes,
while the true noise variance is N . The best power allocation
coefficient t that minimizes (5) is given by the following
lemma.

Lemma 2: For a given Ndes ≥ N , P and r, the best
power allocation coefficient t which minimizes the distortion
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Fig. 2. The best power allocation t (shown by the y-coordinate) for different
system parameters. For curves (a), (b) and (c), r = 0.5, κd = 1, 10 and 32
respectively. For curves (e), (f) and (g), κd = 3.2, r = 0.75, 0.5 and 0.25
respectively. CSNR values are shown (in dB) by the x-coordinate.

expression (5) at N is given by

t =

√
1 + 4(κ−κd)

(1−r)κd
− 1

2κ
, (6)

where κ = P
N is the CSNR and κd = P

Ndes
.

In Fig. 2, we show the best power allocation for different
system parameters. In our system implementations, an adjusted
value of t which is good over a large range of CSNRs will be
chosen.

III. SYSTEM DESIGN

1) HDA system with linear analog coding: We implement
the following scheme in Fig.1. The upper part, referred to
as the digital part, is formed by a VQ cascaded with a
binary symmetric channel without the use of channel coding.
This is realized by using hard decision decoding on the
BPSK-modulated AWGN channel. Consequently, if the BPSK
signals take values in {+1,−1}, the transition probabilities
{P (j|i)} can be obtained by P (j|i) = qw(i,j)(1 − q)k−w(i,j),
where w(i, j) denotes the Hamming distance between the
binary representations of the integer i and j, and q is the
crossover probability. We remark that any memoryless modu-
lation constellation can be used besides BPSK modulation.
We choose BPSK modulation because it is simple and it
performs comparatively well at low CSNRs. The linear analog
encoder takes the first k components of the error En to form
a scaled PAM vector Vk. The linear analog decoder expands
the message V̂

k
back to n dimensions, by adding in zeros in

the corresponding locations.
For a total input power P , a fixed power allocation t

and a design noise variance Ndes, we derive an iterative
training algorithm to optimize the source digital transmitter
(both source encoder and source decoder) and both the digital
decoder codebook and the analog decoder (as in [5]).

2) HDA system with non-linear analog coding: To improve
the system performance at high CSNRs, we also implement a
non-linear analog scheme which is similar to the ones studied

in [3], [9]. The error vectors En are first quantized to some
discrete values using a VQ and then mapped to a discrete set
of signal points. In particular, we employ a scheme where the
VQ has dimension 2 and rate l bits per sample, and 2l-level
PAM. For an HDA system with rate 0.5, both components of
En are coded using this non-linear analog coding.

The digital part employs using a channel optimized VQ
(COVQ) – e.g., see [13] – which is trained with power PD =
(1 − t)P and noise variance Ndes + tP . The analog part is
trained to minimized the end-to-end distortion ‖En − Ê

n‖2

with power PA = tP and noise variance Ndes.

IV. SIMULATION RESULTS

We evaluate the performance for the transmission of an
i.i.d. Gaussian source over the AWGN channel. The source
samples are grouped into vectors of dimension n = 24,
and transmitted with an overall rate of 0.5 channel use per
source sample. We implement the two schemes proposed in
Section III. Motivated by a broadcast scenario, we assume that
the encoder is optimized for a given power allocation and noise
variance, while the decoder knows the true noise variance and
can adapt to it.

The first scheme employs linear coding in the analog part.
For a fixed input power P = 1 and design noise variance
Ndes = 0.1 (thus κd = P/Ndes = 10), an iterative training
algorithm as in [5] is used to generate the source digital
transmitter and both the digital decoder codebook and the
analog decoder. Following Lemma 2 and the curve (b) of
Fig. 2, we then choose t = 0.05.

The second scheme uses a non-linear code in the analog
part. Sine the aim of this scheme is to focus on the perfor-
mance at medium to high CSNRs, we assume Ndes = 0.0001
and t = 0.1 (t is chosen via an experimental study). The
digital part is designed using a COVQ algorithm for power
PD = (1 − t)P = 0.9 and noise variance 0.1001 (or around
9.5 dB). The non-linear code of the analog part is designed
for power PA = tP = 0.1 and noise variance 0.0001, and
256-level PAM signals are employed.

Comparisons are made with a purely digital system and
a purely analog system. The purely digital system employs
solely the digital part of the HDA system, where the COVQ
algorithm is used to design the source encoder. The purely
analog system employs solely the analog part of the HDA
system, which transmits only half of each source vectors using
linear coding. Three theoretical bounds are also shown: the
mismatched HDA-OPTA curve, which is given for t = 0.05
and κd = 10, the HDA-OPTA curve with t = 0.05, and
the OPTA curve, all with rate 0.5 channel use per source
sample. We also compare the proposed scheme with the
systems in [3], which we refer to as ‘HDA-Turbo’ (since
the source is memoryless, the HDA-Turbo system does not
employ Karhunen-Loéve processing). The digital part of the
HDA-Turbo consists of a 24-dimensional 6-bit VQ (designed
only for the source using the LBG algorithm) and a high-delay
(k = 768, n = 1536) rate 0.5 Turbo encoder with generator
(37,21) (punctured to rate 0.5) and a random interleaver, and



the analog part employs the same methods as the proposed
schemes. We choose two power allocation schemes with t =
0.3 and t = 0.05.

The HDA systems and the purely digital system are trained
with 300,000 vectors, and tested with 128,000 vectors. The
simulation results are shown in Figs. 3 in terms of the
source signal-to-distortion ratio (SDR) defined by SDR =
10 log10(σ2

s/D), where D is the MSE distortion. Overall we
have the following remarks:

• The HDA schemes present a smooth and robust perfor-
mance for most CSNRs, and provide substantial improve-
ments over the purely digital COVQ system from medium
to high CSNRs. They also outperform the purely analog
system for a wide range of CSNRs. We also remark that
the use of a linear part results in performance saturation
at around 30 dB of CSNR.

• For the schemes with linear analog coding and t = 0.05,
the HDA scheme outperforms the HDA-Turbo systems
for CSNR ≥ 7 dB, and the HDA scheme also outperforms
the HDA-Turbo with t = 0.3 for CSNRs ranging from 15
to 40 dB. This is due to the fact that the HDA scheme has
a higher quantization rate than the HDA-Turbo systems,
which results in higher saturated performance than the
HDA-Turbo systems at high CSNRs. Furthermore, the
HDA scheme with linear analog coding performs within 1
dB of the mismatched HDA-OPTA curve at high CSNRs.

• For the schemes with non-linear analog coding and t =
0.1, the HDA scheme outperforms the HDA-Turbo for
CSNRs between 10 and 60 dB. The HDA scheme still
outperforms the HDA-Turbo system with t = 0.3 at high
CSNRs and saturate around 60 dB.

In future work, we intend to compare the performance of
our HDA schemes with the HDA-Turbo system studied in [3]
for the transmission of Gauss-Markov sources.
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