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Abstract

In this work we focus on syndrome source coding for lossless data compression with

and without side information based on fixed-length linear block codes.

For syndrome source coding without side information, we prove that this scheme

can achieve the source entropy rate when the source is stationary and ergodic. Then

we consider applying short-length perfect or quasi-perfect codes for syndrome source

coding to reduce the system’s delay. We describe the minimum distance (MD), strict

minimum distance (SMD), maximum likelihood (ML) and strict maximum likelihood

(SML) decoding methods for this scheme, and examine their relationship for Markov

sources using perfect and quasi-perfect codes. For Markov sources, we also use a modified

MD decoding method - so called the MD+ decoding method. Moreover we provide

simulation results using Hamming, BCH and Golay codes under the different decoding

methods.

For syndrome source coding with side information, we prove that this scheme can

achieve the Slepian-Wolf limit when the correlation channel is an additive noise channel

with a stationary and ergodic noise process. We also consider employing short-length

perfect and quasi-perfect codes for this scheme. We describe the MD, SMD, ML, SML de-

coding methods for this scheme, and examine their relationship for sources with Markov

noise correlation channel using perfect and quasi-perfect codes. The MD+ decoding

method is described for sources with Markov noise correlation channel. Furthermore,

we introduce a more common model with the side information as output and describe

the algorithm for optimal MAP decoding. Finally, we provide simulation results using
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Hamming, BCH and Golay codes under the different decoding methods.
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Chapter 1

Introduction

1.1 Problem Description

Lossless data compression has numerous applications in information and communications

technologies. Shannon [16] laid out the basics of information theory and proved that the

entropy rate is the ultimate limit of the rate for lossless data compression for identically

independent distributed sources.

The design of low-complexity fixed-length source coding algorithms to losslessly com-

press a Markov source {Xi}∞i=1 at rates close to its entropy rate remains a subject of

intensive research. In this work we study syndrome source coding based on linear block

codes and prove that this scheme can asymptotically achieve the entropy rates of Markov

sources.

Low density parity check codes (LDPC) [10] [13] are good candidates for syndrome

source coding as they can perform very close to the channel capacity. However, they
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may cause significant delay since they require very large block length to achieve good

performance. However, in many practical applications there are strict constrains on the

coding and decoding delay of the system. So in this work we consider using certain

perfect or quasi-perfect codes with short block lengths.

In recent years, sensor networks have been a very active research area. One of

the enabling technologies for sensor networks is distributed source coding (DSC) [20],

where separate encoders compress the data without communicating with each other.

One of the theoretical foundations for DSC is the Slepian-Wolf theorem [17], which

shows that separate encoding is as efficient as joint encoding for lossless compression

of independent, identically distributed (i.i.d.) sources. Wyner [18] proposed a scheme

for data compression with side information and proved that if the correlated channel

representing the side information is a binary symmetric channel (BSC), the scheme can

achieve the Slepian-Wolf limit. Our goal is to extend this scheme to a more general

situation with additive noise correlation channels, where the noise is stationary and

ergodic.

Many wireless sensor network applications have real-time requirements where the

sensor data must be sent to a base station within a very short time. For example, a sensor

network that monitors temperature would require the sensors to report the temperature

to a base station within very limited periods of time to detect rapid increases in the

temperature. To reduce the delay caused by long coding block lengths, we also consider

using short-length perfect and quasi-perfect block codes for source coding with side

information.
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1.2 Literature Review

For lossless data compression (without side information), in his landmark paper, ”A

Mathematical Theory of Communication,” [16] Shannon established that there is a

fundamental limit called entropy, which is the smallest possible rate for lossless data

compression.

Elias [8] proposed an algorithm for fixed-length lossless data compression which uses

the parity-check matrix of a linear block code to compress data via syndromes. Specif-

ically, the encoder is characterized by an m × n matrix H, which maps the source

xn = (x1, ..., xn) to the syndrome sm = Hxn. The optimal decoding method is maxi-

mum likelihood (ML) decoding. This decoding method maps the received syndrome sm

to the most likely x̂n which maximizes Pr(xn) over all xn such that Hxn = sm. He also

proved that for i.i.d. sources under ML decoding, there exists a parity-check matrix to

compress the data at a rate arbitrarily close to the source entropy with an asymptotically

vanishing error probability. The main idea of the proof is using random codebooks and

the fact that the probability that each coset has one and only one element in common

with the set of typical sequences tends to 1 when the block length n tends to infinity.

In a related work [3], Ancheta proposed a similar syndrome source coding scheme

based on linear block codes. The main idea is treating the source as the noise in an

associated additive noise channel. He proved that the error probability for syndrome

source coding using a linear block code on a given binary source is the same as the error

probability when this code is used on the associated additive channel, where the noise
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statistics of the noise are the same as the source. He also proved that for binary i.i.d.

sources, this scheme can asymptotically achieve the source entropy .

Caire et al. [4] proposed a data compression algorithm using LDPC codes to compress

sources with or without memory. The algorithm is based on the concatenation of a

syndrome source coding scheme using LDPC codes with the Burrows-Wheeler block

sorting transform. For the syndrome source coding scheme, they adapted the Belief-

Propagation decoding algorithm to decode the received syndrome.

For data compression with side information, it is known via the Slepian-Wolf theorem

[17] that for two correlated i.i.d. sources {Xi}∞i=1 and {Yi}∞i=1, we can compress {Xi}∞i=1

losslessly at a rate arbitrarily close to conditional entropy H(X|Y ), where {Yi}∞i=1 is

only available at the decoder. Cover [6] extended this theorem to stationary and ergodic

sources {Xi}∞i=1 and {Yi}∞i=1, and proved that the conditional entropy rate H(X|Y) is the

limit for the data compression of {Xi}∞i=1 with side information {Yi}∞i=1 at the decoder.

Wyner proposed in [18] a syndrome source coding scheme to compress data with side

information. The correlation between the two sources can be modeled via a channel. At

the encoder, one uses the parity check matrix of a linear code to compress the data using

a syndrome. At the decoder, one estimates the source input from the received syndrome

and the side information using the error pattern estimator of the linear code. Wyner

also proved that this scheme can achieve the Slepian-Wolf limit when the correlation

channel is a BSC.

Liveris et al. [12] applied LDPC codes for Wyner’s syndrome source coding scheme

for the case where the correlation channel is modeled as a BSC. Their simulation results

4



show that the scheme’s performance is very close to the Slepian-Wolf limit.

Garcia-Frias et al. [9] proposed the use of LDPC codes for syndrome source coding

for the case where the correlation channel between the sources is a hidden Markov noise

channel (a special case is Gilbert-Elliott channel (GEC)).

1.3 Overview of this Work

This work consists of four chapters.

In Chapter 1, we introduce basic definitions and results, including basic information

measures, the source coding theorem, the Slepian-Wolf theorem and the channel coding

theorem.

In Chapter 2, we focus on syndrome source coding without side information. The

scheme for syndrome source coding is introduced. We prove that this scheme can achieve

the entropy rate of the source asymptotically when the source is stationary and ergodic.

Then we consider applying perfect and quasi-perfect codes with short block length in

this scheme for (first order) Markov sources. We describe five decoding methods, namely

minimum distance (MD) decoding, strict minimum distance (SMD) decoding, maximum

likelihood (ML) decoding, strict maximum likelihood (SML) decoding and a modification

of MD decoding (MD+). We examine the relationship among these decoding methods

for the compression of Markov sources using perfect and quasi-perfect codes. Finally, we

present simulation results using Hamming, BCH and Golay codes under these different

decoding methods.
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In Chapter 3, we focus on syndrome source coding with side information. First we in-

troduce Wyner’s syndrome source coding scheme for data compression with side informa-

tion. Then we prove that this scheme can achieve the Slepian-Wolf limit asymptotically

for sources with an additive noise correlation channel where the noise is stationary and

ergodic. As in Chapter 2, we consider applying short-length perfect and quasi-perfect

codes for this scheme. We describe MD, SMD, ML, SML, MD+ decoding methods for

this scheme and analyze the relationship among them for sources with a Markov noise

correlation channel. Furthermore, we study a more natural correlation model where the

side information is the channel output. Finally, we provide simulation results for sources

with a Markov noise correlation channel and sources with a GEC correlation channel

using Hamming, BCH and Golay codes under these different decoding methods.

In Chapter 4, we state our conclusions and discuss directions for future work.
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Chapter 2

Preliminaries

2.1 Information Measures

We start with the definition of the basic measures of information proposed by Shannon

[16]. From now on, the logarithm is to the base 2 unless otherwise specified.

Definition 1 The entropy of a random variable X with discrete alphabet X and proba-

bility distribution p(x) = Pr(X = x) is given by

H(X) = −
∑
x∈X

p(x) log p(x).

Definition 2 Let X, Y be two discrete random variables with joint probability distribu-

tion p(x, y), then the joint entropy of X given Y is given by

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y).

Definition 3 Let X, Y be two discrete random variables with joint probability distribu-
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tion p(x, y), then the conditional entropy of X given Y is given by

H(X|Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x|y).

Definition 4 The mutual information between random variables X and Y defined over

alphabet X and Y, respectively, is defined by

I(X; Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.

These concepts can be extended to random processes.

Definition 5 The entropy rate of the random process {Xi}∞i=1 is given by

H(X) = lim
n→∞

1

n
H(X1, X2, ..., Xn).

The entropy rate may not exist for all random processes, but for a stationary source

{Xi}∞i=1, its entropy rate H(X) always exists and is equal to H(Xn|Xn−1, Xn−2, ..., X1).

Definition 6 The joint entropy rate of the random processes {Xi}∞i=1 and {Yi}∞i=1 is

given by

H(X, Y) = lim
n→∞

1

n
H(X1, X2, ..., Xn, Y1, Y2, ..., Yn).

Definition 7 The conditional entropy rate of the random processes {Xi}∞i=1 and {Yi}∞i=1

is given by

H(X|Y) = lim
n→∞

1

n
H(X1, X2, ..., Xn|Y1, Y2, ..., Yn).
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2.2 Source Coding

2.2.1 Shannon’s Source Coding Theorem

Definition 8 A discrete memoryless source (DMS) consists of a sequence of i.i.d. ran-

dom variables {Xi}∞i=1.

Definition 9 A (k, n) D-ary block (fixed-length) code for a discrete source defined on

the alphabet X consists of

• encoder f : X n → {0, 1, 2, ..., D − 1}k;

• decoder g : {0, 1, 2, ..., D − 1}k → X n.

Definition 10 The rate of the block code is defined as R = k
n

D-ary code symbol/source

symbol.

Definition 11 The error probability of a block code is defined as

Pe = Pr{g(f(x1, x2, ..., xn)) 6= (x1, x2, .., xn)}.

Theorem 1 Asymptotic Equipartition Property (AEP) If X1, X2, ... are i.i.d. with dis-

tribution function p(·), then for any ε > 0,

lim
n→∞

Pr(| − 1

n
log p(x1, ..., xn)−H(X)| > ε) = 0.

Definition 12 Fix ε > 0, the typical set A
(n)
ε is the set of sequence xn = (x1, ..., xn)

where xn are i.i.d. from random variable X with distribution function p(·) such that

A(n)
ε = {xn ∈ X n : 2−n(H(x)+ε) ≤ p(xn) ≤ 2−n(H(x)−ε)}

Theorem 2 Consequence of AEP: Consider a DMS with distribution function p(x),

x ∈ X , then

9



1. Pr(A
(n)
ε ) > 1− ε for n sufficiently large.

2. (1− ε)2n(H(x)−ε) ≤ |A(n)
ε | ≤ 2n(H(x)+ε) for n sufficiently large.

Theorem 3 Shannon’s Lossless Fixed-Length Source Coding Theorem for Discrete Mem-

oryless Sources(DMS). Consider a DMS with alphabet X , then the following hold.

Forward part: For any ε ∈ (0, 1) and any δ > 0, there exists a sequence of D-ary

block codes (k, n) for the source such that for n sufficiently large, k
n
≤ H(X)/ log D + δ

and Pe < ε.

Converse Part: For any ε ∈ (0, 1) and any sequence of D-ary block codes (k, n) with

R = k
n

< H(X)/ log D and sufficiently large n, Pe > ε.

AEP and Shannon’s lossless fixed-length source coding theorem also hold for sta-

tionary and ergodic source {Xi}∞i=1 if we replace entropy H(X) with the entropy rate

H(X).

2.2.2 Slepian-Wolf Coding Theory

Let (X1, Y1), (X2, Y2), ... be an i.i.d. sequence of jointly distributed random variables X

and Y with joint distribution function p(x, y). Assume that Xn and Y n are encoded

separately without knowledge of each other and the compressed outputs are sent to a

joint decoder for reconstruction. This problem is called the distributed source coding

problem and is illustrated in Fig. 2.1.

Definition 13 A (2nR1 , 2nR2 , n) distributed source code for the joint source (X, Y ) con-

10



Figure 2.1: Model for DSC with two sources

sists of two encoder maps,

f1 : X n → {1, 2, ..., 2nR1},

f2 : Yn → {1, 2, ..., 2nR2}

and a decoder map

g : {1, 2, ..., 2nR1} × {1, 2, ..., 2nR2} → X n × Yn,

where (R1, R2) is called the rate pair of the code.

Definition 14 The probability of error for a distributed source code is defined as

P (n)
e = P (g(f1(X

n), f2(Y
n)) 6= (Xn, Y n)).

Definition 15 A rate pair (R1, R2) is said to be achievable for a source pair {(Xi, Yi)}∞i=1

if there exists a sequence of (2nR1 , 2nR1 , n) distributed source codes with P
(n)
e → 0. The

achievable region is the closure of the set of achievable rates.

Theorem 4 Slepian-Wolf Source Coding Theorem. For the distributed source coding
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problem for the source (X, Y ) drawn i.i.d. from p(x, y), the achievable region is given by

R1 ≥ H(X|Y ),

R2 ≥ H(Y |X),

R1 + R2 ≥ H(X, Y ).

The achievable region of Slepian-Wolf theory is depicted in Fig. 2.2.

Figure 2.2: Slepian-Wolf achievability region

Cover proved that this theorem also holds for stationary and ergodic sources if we re-

place entropies with entropy rates and replace conditional entropies with the conditional

entropy rates.

Now consider achieving the corner point in the Slepian-Wolf rate region: Rx =

H(X|Y ), Ry = H(Y ). It is already known how to compress Y losslessly at rate H(Y );

so we will focus on compressing X at rate H(X|Y ) with side information Y only at the

12



decoding end. This is exactly the problem of data compression with side information

and the model of this problem is shown in Fig. 2.3.

Figure 2.3: Model for data compression with side information

2.3 Channel Coding

2.3.1 Shannon’s Channel Coding Theorem

Definition 16 A discrete channel is characterized by:

• A finite input alphabet X

• A finite output alphabet Y

• n-dimensional conditional distribution: p(yn|xn) = Pr(Y n = yn|Xn = xn)

where xn = (x1, ..., xn) ∈ X n and yn = (y1, ..., yn) ∈ Yn, such that
∑
yn

p(yn|xn) = 1

Definition 17 Discrete Memoryless Channel(DMC): The DMC is a channel with the

property that for all n ≥ 1,

Pr(Y n = yn|Xn = xn) =
n∏

i=1

Pr(Yi = yi|Xi = xi).

13



Definition 18 Given a discrete memoryless channel, its information capacity is defined

by

C = max
p(x)

I(X; Y )

where the maximum is taken over all input distributions p(x).

Definition 19 Block codes for discrete channels: Consider a discrete channel with input

alphabet X , output alphabet Y and transition probabilities {P (yn|xn)}∞n=1. Given a block

length n and a set of messages {1, 2, ...,M}, then an (M, n) block code for the channel

consists of:

• Encoding function: f : {1, 2, ...,M} → X n;

• Decoding function: g : X n → {1, 2, ...,M}.

Definition 20 The rate of the block code is R = log |M |
n

code symbol/message symbol.

Definition 21 Given message i is sent (i ∈ {1, 2, ...,M}), the conditional probability of

decoding error of an (M, n) code is given by

λi = Pr{g(yn) 6= i|xn = f(i)}.

Definition 22 Average probability of error of an (M, n) code is given by P
(n)
e = 1

M

M∑
i=1

λi.

Definition 23 Achievable rate. R > 0 is said to be achievable if there exists a sequence

of (
⌈
2nR

⌉
, n) codes for the channel such that the average probability of error P

(n)
e → 0

as n →∞. d·e denotes rounding up to the next integer value.

Theorem 5 Shannon’s Coding Theorem for Discrete Memoryless Channels(DMC).

Consider a DMC with transition distribution p(y|x), x ∈ X , y ∈ Y and information

capacity C, then the following hold.
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Forward Part: All code rates below C are achievable, i.e.,∀ε > 0, and any positive

R < C, ∃ a sequence of (2nR, n) codes for the channel with rate R and block length n

such that P
(n)
e < ε for n sufficiently large.

Converse Part: If R > C, then it is not achievable.

Theorem 6 [[11]] For a discrete-time binary additive noise channel Yi = Xi

⊕
Zi with

stationary and ergodic noise,

C = lim
n→∞

max
p(x)

I(Xn; Y n) = 1−H(Z)

2.3.2 Channel Models

2.3.2.1 Binary Symmetric Channel (BSC)

The binary symmetric channel is a binary additive noise channel Y = X ⊕Z, where
⊕

is modulo-2 addition and the noise Z is drawn from an i.i.d source and is independent

of input X such that Pr(Z = 1) = p. The structure of the BSC is shown in Fig. 2.4.

The capacity of the BSC is C = 1− hb(p).

Figure 2.4: BSC transition diagram
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2.3.2.2 Binary Markov Noise Channel (BMNC)

The binary Markov noise channel (BMNC) is an additive noise channel Yi = Xi

⊕
Zi,

where noise {Zi}∞i=1 is a first-order Markov process with transition matrix given by

Q =

 εZ + (1− εZ)(1− pZ) (1− εZ)pZ

(1− εZ)(1− pZ) εZ + (1− εZ)pZ

 .

where pZ is the channel bit error rate and εZ is the correlation coefficient of the noise

process. We assume that 0 < εZ ≤ 1 and 0 < p < 1/2 to ensure that the noise process

is irreducible.

The n-fold distribution of the noise if given by

P (zn) = pz1
Z (1− pZ)1−z1

n∏
i=2

[zi−1εZ + (1− εZ)pZ ]zi [(1− zi−1)εZ + (1− εZ)(1− pZ)]1−zi

2.3.2.3 Gilbert-Elliott Channel(GEC)

The Gilbert-Elliott channel is also binary additive noise channel but its noise is a hidden

Markov process. It has two states: good state G or 0 and bad state B or 1. The

sequence of states is a Markov process characterized by the transition matrix P . Each

state corresponds to a BSC with a crossover probability PG or PB. The model of the

GEC is shown in Fig. 2.5.

The transition matrix of the Markov state process is given by

P =

 1− b b

g 1− g

 .

Let Sk be the state at time k and Zk be the noise out at time k. Define the matrix

P (zk), whose ijth entry is given by Pr(Zk = zk, Sk = j|Sk−1 = i), i, j ∈ {0, 1}. Then for
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Figure 2.5: GEC model.

the GEC,

P (0) =

 (1− b)(1− p1) b(1− p2)

g(1− p1) (1− g)(1− p2)

 ,

P (1) =

 (1− b)p1 bp2

gp1 (1− g)p2

 .

The n-fold noise distribution is given by

P (zn) = ΠT (
n∏

i=1

P (zi))1

where 1 is the all-one column and Π is the state stationary distribution given by

Π =

(
g

b + g
,

b

b + g

)
.

2.3.3 Linear Block Codes

Let GF(q) denotes the Galois field of size q such that q = pm, where p is a prime and m

is an integer.
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Definition 24 Let F = GF (q), a q-ary (n, k) linear code C is a k-dimensional linear

subspace of Fn.

Definition 25 Any k × n matrix whose rows form a basis of C is called a generator

matrix of C and denoted by G. The parity-check matrix H of the linear code C, is an

(n− k)× n matrix with the property that G ·HT = 0.

Definition 26 A binary linear code C is a linear subspace of {0, 1}n. The dimension of

the code k is the size of the basis of C, which is given by k = log |C|.

Definition 27 Hamming Weight. Let C be a binary linear code. Then, for any codeword

xn , (x1, ..., xn) ∈ C, the Hamming weight of xn, denoted by wH(xn), is the number of

ones in xn.

Definition 28 Hamming Distance. The Hamming distance between two binary words

xn and yn in {0, 1}n is the Hamming weight of their difference, i.e., dH(xn, yn) =

wH(xn − yn) = wH(xn
⊕

yn).

Definition 29 The minimum distance d of the binary linear code C is the smallest

Hamming weight among its non-zero codewords.

We also designate a binary linear block code of length n, dimension k and minimum

distance d as an (n, k, d) code or simply an (n, k) code if the minimum distance is not

of interest.
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2.3.4 Decoding Methods for Linear Block Codes

2.3.4.1 MD and ML Decoding

MD and ML decoding are two common decoding methods for linear block codes. MD

decoding has less computational complexity than ML decoding but ML decoding is

optimal only in terms of minimizing the error probability when channel input is uniformly

distributed.

Both MD and ML decoding have large computational complexity, so they can only

be applied to decode short-length linear block codes.

MD decoding: Received channel output yn is decoded into codeword c0 ∈ C if

w(c0

⊕
yn) ≤ w(c

⊕
yn) for all c ∈ C. If two or more codewords satisfy the inequality,

randomly choose one of them.

SMD decoding: Received channel output yn is decoded into codeword c0 ∈ C if

w(c0

⊕
yn) < w(c

⊕
yn) for all c ∈ C. If no codeword satisfies the strict inequality,

report a decoding failure.

ML decoding: Received channel output yn is decoded into codeword c0 ∈ C if

Pr(Y n = yn|Xn = c0) ≥ Pr(Y n = yn|Xn = c) for all c ∈ C. If two or more codewords

satisfy the inequality, randomly choose one of them.

SML decoding: Received channel output yn is decoded into codeword c0 ∈ C if

Pr(Y n = yn|Xn = c0) > Pr(Y n = yn|Xn = c) for all c ∈ C. If no vector satisfies the

strict inequality, report a decoding failure.

For any sequence xn ∈ X n, s = xnHT is called the syndrome of xn. If xn is a
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codeword, s = 0. The coset indexed by s is defined as the set {xn ∈ X n : xnHT = s}.

Coset leaders corresponding to MD decoding are the minimum weight vector in each

coset.

For MD decoding, we can calculate the syndrome of the channel output first, then

decode it to the coset leader indexed by the syndrome. Coset leader is stored in advance

to avoid the exhaustive search and reduce the computational complexity.

Definition 30 Perfect Code. A linear code C is said to be perfect code if for some non-

negative integer t, it has all patterns of Hamming weight t or less and no others as coset

leaders.

Definition 31 Quasi-Perfect Code. A linear code C is said to be quasi-perfect if, for

some non-negative integer t, it has all patterns of Hamming weight t or less, some of

weight t + 1 and none of greater weight as coset leaders.

2.3.4.2 MD+ decoding

For a BMNC channel, MD+ decoding is a compromise decoding method between MD

decoding and ML decoding [2] . It is based on MD decoding and has more computational

complexity but better performance than MD decoding. It mainly deals with the ties

among the vectors with minimum Hamming weights in a coset under MD decoding.

For a BMNC channel Yi = Xi

⊕
Zi, let tij(z

n) denote the number of times two

consecutive bits in zn are equal to (i, j), where i, j ∈ {0, 1}, then

t00(z
n) =

n−1∑
k=1

(1− zk)(1− zk+1)
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and

t11(z
n) =

n−1∑
k=1

zkzk+1.

MD+ decoding: [2] Assume yn is received at the channel output. Suppose the

decoder outputs the codeword c0 satisfying the MD decoding condition. If there is

more than one such codeword, then the decoder chooses c0 from them that maximizes

t00(c0⊕yn)+t11(c0⊕yn). If there is still a tie, then the decoder chooses c0 from the tying

codewords that maximizes t11(c0 ⊕ yn). Finally, if there is still a tie, then the codeword

c0 is picked at random.

The advantage of the MD+ decoding over the ML decoding is the computational

complexity. Whereas ML decoding requires an exhaustive search, MD+ can be imple-

mented using syndrome decoding where the coset leaders are chosen according to the

MD+ criteria.

2.3.5 Hamming Codes

Hamming codes are perfect codes and can correct one and only one error under MD

decoding. The binary rth Hamming code is a (2r − 1, 2r − 1− r, 3) code.

The parity check matrix of a (7,4,3) Hamming code with r = 3 is given by
1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1

 .

21



2.3.6 BCH codes

For an (n, k) binary linear block code C, a codeword cn = (c0, c1, ..., cn−1) can be repre-

sented in a polynomial form c(x) = c0 + c1x + ... + cn−1x
n−1. A code is cyclic if every

cyclic shift of every codeword is also a codeword. The generator polynomial for a cyclic

linear block code is the polynomial g(x) with the property that every codeword in C can

be written as the multiplication a(x)g(x) mod (xn − 1) for some a(x). For cyclic linear

block code, the generator polynomial always exists and is unique.

Definition 32 If a ∈ GF (2n), the Galois field of size 2n, with the property that the

smallest integer l satisfying al = 1 is l = 2n − 1, then a is called primitive. l is called

the order of a.

Let a ∈ GF (2n). Let φ(x) be a non-zero polynomial over GF (2) = {0, 1} with the

smallest degree such that φ(a) = 0. Then φ(x) is called the minimal polynomial of a.

For any r ≥ 3 and t < 2r−1 there exists a t-error-correcting binary BCH code with

the properties n = 2m − 1, k ≥ n− rt and d ≥ 2t + 1. The double-error correcting BCH

codes are quasi-perfect. The generator polynomial for such code is given by

g(x) = LCM{φ1(x), φ3(x), ..., φ2t−1(x)}

where LCM is the least common multiple, φi(x) is the minimal polynomial of ai and a

is a primitive element in GF (2n).

The minimal polynomial of an (15, 7) BCH code is given by

g(x) = x8 + x7 + x6 + x4 + 1
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2.3.7 Golay codes

The binary (23, 12, 7) Golay code is the only other nontrivial binary perfect code besides

Hamming codes. Due to its rich structure, the Golay code has been used in many

communication applications. The (23, 12, 7) Golay code is also a cyclic code, where the

generator polynomial is given by

g(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1.
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Chapter 3

Syndrome Source Coding (without

Side Information)

In this chapter, we study syndrome source coding for lossless data compression without

side information. In the remaining part of this chapter we only refer to it as syndrome

source coding.

3.1 Syndrome Source Coding Scheme

Consider compressing a source {Xi}∞i=1 defined over alphabet GF (q). We associate an

additive noise channel Y ′
i = X ′

i+Z ′
i (In this chapter, when ‘+’ or ‘×’ is taken between two

elements in GF (q), it is the ‘+’ or ‘×’ operation in the finite field GF (q), respectively),

where the statistics of the noise {Z ′
i}∞i=1 is same as that of the source {Xi}∞i=1. Assume

that C is an q-ary (n, k) linear block code for this associated channel and has parity
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check matrix H of size m×n and the decoder of C consists of an error pattern estimator

whose input is the syndrome of the channel output and whose output is the estimate of

the noise. The syndrome source coding scheme employs this code to compress source

{Xi}∞i=1 as follows:

Encoder: The encoder compresses each source word xn to the syndrome sm = Hxn.

Decoder: The decoder decodes sm using the error pattern estimator of code C.

When the source is binary, stationary and ergodic, if the rate of this code for channel

coding is close to the associated channel capacity, the rate of syndrome source coding is

close to H(X). Since

Rs =
n− k

n
= 1− k

n
= 1−Rc

where Rs is the compression rate for syndrome source coding and Rc is the rate for

channel coding. For any ε > 0, if Rc > C − ε, by theorem 6, C = 1 − H(X), thus we

have Rs < H(X) + ε.

Next we examine the existence of the codes for the syndrome source coding to achieve

the source entropy with arbitrary small error probability.

Theorem 7 (Elias [8]) For DMS {Xi}∞i=1 with alphabet X = GF (q), we use a matrix H

(over X ) of size m×n to compress the source via sm = Hxn and use ML decoder: x̂n =

arg max
xn

{Pr(xn),Hxn = sm}. For any ε′ > ε > 0, assume that H(X)
log |X |+ε′ > R > H(X)

log |X |+ε

and m = dnRe, where | · | is the number of elements in the set. If the entries of H are

independent, equiprobable on the alphabet X , then the average block error probability P̄e

(over the ensemble of H) tends to 0 as n →∞.
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For an stationary and ergodic source, we can prove a similar result.

Theorem 8 For stationary and ergodic source {Xi}∞i=1 with alphabet X = GF (q), we

use a matrix H (over X ) of size m × n to compress the source by sm = Hxn and use

ML decoding: x̂n = arg max
xn

{Pr(xn),Hxn = sm}. For any ε′ > ε > 0, Assume that

H(X)
log |X | + ε′ > R > H(X)

log |X | + ε and m = dnRe, where H(X) is the entropy rate for the

source. If the entries of H are independent, equiprobable on the alphabet X , the average

block error probability P̄e (over the ensemble of H) tends to 0 as n →∞.

Proof:

Let Pe(H) be the block error probability of syndrome source coding based on H

under ML decoding. Then

P̄e =
∑
H

PH(H)Pe(H)

=
∑
H

PH(H)
∑
xn

PXn(xn)1(x̂n 6= xn))

=
∑
xn

PXn(xn)
∑
H

PH(H)1(x̂n 6= xn))

=
∑
xn

PXn(xn) PH(H : ∃xn
0 ,Hxn

0 = Hxn, PXn(xn
0 ) > PXn(xn))︸ ︷︷ ︸

A

where 1(·) denotes the indicator function.

For fixed xn and xn
0 with PXn(xn

0 ) > PXn(xn), if Hxn
0 = Hxn, then H(xn

0 − xn) = 0.

Let (t1, t2, ..., tn) = xn
0 − xn. Assume that tj 6= 0, for each row of H, (hi1, hi2, ..., hin), we

have hijtj = −hi1t1 − ....− hi(j−1)tj−1 − hi(j+1)tj+1 − ...− hintn.

We have |X |(n−1) ways to choose hi1, ...hi(j−1), hi(j+1), ..., hin, then hij is determined.

Thus we have |X |m(n−1) different matrices H such that H(xn
0 − xn) = 0.
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Then

A <
|{xn

0 : PXn(xn
0 ) > PXn(xn)}| · |X |m(n−1)

|X |mn

= |{xn
0 : PXn(xn

0 ) > PXn(xn)}| · |X |−m.

For each xn in the typical set T , PXn(xn) ≥ |X |−n( H(p)
log |X|+δ) for δ < ε and sufficiently

large n. Hence |{xn
0 : PXn(xn

0 ) > PXn(xn)}| ≤ |X |
n( H(X)

log |X|+δ)
, and

P̄e <
∑
xn∈T

PXn(xn) |X |−m+n( H(X)
log |X|+δ)︸ ︷︷ ︸

B

+
∑
xn /∈T

PXn(xn).

Since m
n

> H(X)
log |X | + ε, we obtain that B → 0 as n →∞. Thus Pe → 0 as n →∞.

2

Note: This theorem also holds for non-stationary homogeneous irreducible Markov

sources since the AEP also holds for such Markov sources.

Corollary 1 For a stationary and ergodic source {Xi}∞i=1 with finite field alphabet X ,

we can find a linear code for syndrome source coding under ML decoding such that the

compression rate is arbitrarily close to H(X) and the error probability is arbitrarily small.

Proof. For any ε′ > 0 and δ > 0, choose ε and R such that 0 < ε < ε′ and H(X)
log |X | + ε′ >

R > H(X)
log |X | + ε. Let m = dnRe.

By theorem 8, The average error probability of the syndrome source coding scheme

is less than δ over the ensemble of H when n is sufficiently large, then there exists a

special H such that the error probability for the syndrome source coding based on this

matrix is less than δ, while the rate R is less than ε.

2
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3.2 Syndrome Source Coding Using Short-Length

Block Codes

In this section, we consider employing short-length perfect and quasi-perfect codes for

syndrome source coding for binary sources to reduce the system delay. We have the

following decoding methods for syndrome source coding:

MD decoding: A received sm is decoded into x̂n in the coset indexed by sm if

w(x̂n) ≤ w(xn) for all xn in the coset indexed by sm. If two or more vectors satisfy the

inequality, randomly choose one of them.

SMD decoding: A received sm is decoded into x̂n in the coset indexed by sm if

w(x̂n) < w(xn) for all xn in the coset indexed by sm. If no vector satisfies the strict

inequality, report a decoding failure.

ML decoding: A received sm is decoded into x̂n in the coset indexed by sm if

Pr(x̂n) ≥ Pr(xn) for all xn in the coset indexed by sm. If two or more vectors satisfy

the inequality, randomly choose one of them.

SML decoding: A received sm is decoded into x̂n in the coset indexed by sm if

Pr(x̂n) > Pr(xn) for all xn in the coset indexed by sm. If no vector satisfies the strict

inequality, report a decoding failure.

For Markov sources {Xi}∞i=1, we also have the MD+ decoding method.

MD+ decoding: sm is decoded into x̂n in the coset indexed by sm if w(x̂n) ≤ w(xn)

for all xn in the coset indexed by sm. If two or more vectors satisfy the inequality, the

decoder chooses from them the x̂n that maximizes t00(x
n)+ t11(x

n). If there is still a tie,

28



then the decoder chooses from these vectors in the tie the x̂n that maximizes t11(x
n).

Finally, if there is still a tie, then x̂n is picked from the vectors in the tie at random.

ML decoding is the optimal decoding method in terms of minimizing the error prob-

ability.

Next we will explore the relationship among these decoding methods for binary

Markov sources.

Lemma 1 [1][2] For a binary stationary (first order) Markov process {Xi}∞i=1 with

Pr(Xi = 1) = p and correlation coefficient ε, suppose that

t∗ =
ln

[
ε+(1−ε)p
(1−ε)p

]
+ ln

[
1−p

p

]
ln

[
ε+(1−ε)(1−p)
(1−ε)(1−p)

]
+ ln

[
ε+(1−ε)(1−p)

(1−ε)p

]
and

0 < ε <
1− 2p

2(1− p)

Let xn be a sequence such that w(xn) ≤ min{t∗, n/2}. Then if w(x̄n) > w(xn),

Pr(x̄n) < Pr(xn).

Theorem 9 Let C be an (n,M, d) perfect code to be used for syndrome source coding

for a binary stationary (first order) Markov source {Xi}∞i=1 with Pr(Xi = 1) = p and

correlation coefficient ε. Assume that

⌊
d− 1

2

⌋
<

ln
[

ε+(1−ε)p
(1−ε)p

]
+ ln

[
1−p

p

]
ln

[
ε+(1−ε)(1−p)
(1−ε)(1−p)

]
+ ln

[
ε+(1−ε)(1−p)

(1−ε)p

] (3.1)

and

0 < ε <
1− 2p

2(1− p)
(3.2)

Then MD, SMD, ML and SML decoding are equivalent.
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Proof. For perfect codes, the leader with minimum weight in each coset is unique,

and the weight of the coset leader is less than
⌊

d−1
2

⌋
≤ n/2.

For received syndrome sm, the MD decoding and SMD decoding result x̂n is the

leader of the coset indexed by sm where w(x̂n) < w(xn) for all xn in the coset indexed

by sm. By Lemma 1, Pr(x̂n) > Pr(xn) for all xn in the coset indexed by sm, this x̂n is

also the decoding result for ML decoding and SML decoding.

2

Theorem 10 Let C be an (n,M) quasi-perfect code to be used for syndrome source

coding for a binary stationary (first order) Markov source {Xi}∞i=1. Assume that

⌊
d− 1

2

⌋
+ 1 <

ln
[

ε+(1−ε)p
(1−ε)p

]
+ ln

[
1−p

p

]
ln

[
ε+(1−ε)(1−p)
(1−ε)(1−p)

]
+ ln

[
ε+(1−ε)(1−p)

(1−ε)p

]
and

0 < ε <
1− 2p

2(1− p)

.

Then for the syndrome sm, the following hold.

(a) If there exists x̂n in the coset indexed by sm such that w(x̂n) < w(xn) for all xn

in the coset indexed by sm, then Pr(x̂n) > Pr(xn) for all xn in the coset indexed by sm.

(b) If there exists x̂n in the coset indexed by sm such that Pr(x̂n) > Pr(xn) for all xn

in the coset indexed by sm, then w(x̂n) ≤ w(xn) for all xn in the coset indexed by sm.

Proof: (a) for quasi-perfect codes, the weight of the leader with minimum weight in

each coset is less than
⌊

d−1
2

⌋
+ 1 ≤ n/2.
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For a received syndrome sm, if ∃x̂n in the coset indexed by sm such that w(x̂n) <

w(xn) for all xn in the coset indexed by sm, this x̂n must be the leader in this coset, so

its weight is less than
⌊

d−1
2

⌋
+ 1 ≤ n/2. By Lemma 1 , Pr(x̂n) > Pr(xn) for all xn in the

coset indexed by sm.

(b) If ∃x̂n such that Pr(x̂n) > Pr(xn) for all xn in the coset indexed by sm, then

if w(x̂n) ≤ w(xn) doesn’t hold for all xn in the coset indexed by sm , let x̄n be the

leader in the coset indexed by sm such that w(x̄n) < w(x̂n). By Lemma 1 we have

Pr(x̄n) > Pr(x̂n), contradicting Pr(x̂n) > Pr(xn) for all xn in the coset indexed by sm.

Then w(x̂n) ≤ w(xn) for all xn in the coset indexed by sm.

2

3.3 Simulation Results

Throughout the simulations, we will measure the performance of the different source

coding schemes in terms of probability of codeword error on frame error rate (FER).

Simulation results are shown in Fig. 3.1 - 3.6, where we use (15,7) BCH, (23,12)

Golay and (7,4) Hamming codes, under MD, MD+ and ML decoding to compress a

binary Markov source {Xi}∞i=1, with Pr(Xi = 1) = p and correlation coefficient is ε.

Fig. 3.1 and Fig. 3.2 indicate that for the (7, 4) Hamming code, MD, MD+ and

ML decoding are identical for the cases ε = 0.1 and ε = 0.25, which is expected by

Theorem 9 since the (7,4) Hamming code is perfect code and equations (3.1) and (3.2)

are satisfied.
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In Fig. 3.3 and Fig. 3.4, for the (15, 7) BCH code, MD+ decoding improves on MD

decoding. By comparing simulations with ε = 0.1 and ε = 0.25, it shows that when

source correlation is smaller, MD+ decoding performs closer to ML decoding. In Fig.

3.3, MD+ decoding is very close to ML decoding when 0.05 < p < 0.1.

Fig. 3.5 and Fig. 3.6 show that for the (23, 12) Golay code, when MD+ decoding

is implemented it does not show any improvement over MD decoding since the (23,12)

Golay code is a perfect code and there are no ties in MD decoding for perfect code.

Because d = 7, 3.1 does not hold for parameters used in these two simulations, so MD

and ML decoding are not identical.
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Figure 3.1: FER vs. p under different decoding methods for syndrome source coding

based on (7,4) Hamming code for Markov sources with correlation coefficient ε = 0.1
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Figure 3.2: FER vs. p for syndrome source coding based on (7,4) Hamming code for

Markov sources with correlation coefficient ε = 0.25
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Figure 3.3: FER vs. p for syndrome source coding based on (15,7) BCH code for Markov

sources with correlation coefficient ε = 0.1
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Figure 3.4: FER vs. p for syndrome source coding based on (15,7) BCH code for Markov

sources with correlation coefficient ε = 0.25

36



Figure 3.5: FER vs. p for syndrome source coding based on (23,12) Golay code for

Markov sources with correlation coefficient ε = 0.1
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Figure 3.6: FER vs. p for syndrome source coding based on (23,12) Golay code for

Markov sources with correlation coefficient ε = 0.25
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Chapter 4

Syndrome Source Coding with Side

Information

4.1 Syndrome Source Coding Scheme with Side In-

formation

For source pairs {(Xi, Yi)}∞i=1, where Xi and Yi are defined over alphabet GF (q), assume

that the correlation between {Xi}∞i=1 and {Yi}∞i=1 can be modeled as Xi = Yi + Zi,

where {Zi}∞i=1 defined over alphabet GF (q) is independent from {Yi}∞i=1, stationary and

ergodic. We compress {Xi}∞i=1 with {Yi}∞i=1 as side information only at the decoder.

For a linear block code C with parity check matrix H defined over alphabet GF (q),

assume the decoder of C consists of an error pattern estimator whose input is the syn-

drome of the channel output and whose output is the estimate of the noise, Wyner’s
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syndrome source coding scheme to compress {Xi}∞i=1 with {Yi}∞i=1 as side information is

as follows: (In this chapter, when ‘+’ or ‘×’ is taken between two elements in GF (q), it

is the ‘+’ or ‘×’ operation in the finite field GF (q), respectively; for a and b in GF (q),

a− b denotes a + b−1, where b−1 is the inverse of b in the finite field GF (q).)

Encoder: Compress xn to the syndrome sm
X = Hxn.

Decoder: First calculate the syndrome of zn: sm
Z = sm

X−Hyn. Then we can estimate

zn by the error pattern estimator of C. Finally we estimate xn via x̂n = yn + ẑn.

When the channel is a binary channel (Xi, Yi and Zi are all over GF (2)), and noise in

the correlation channel is stationary and ergodic, if the rate of this code for the channel

coding is close to the correlation channel capacity, the rate of syndrome source coding

is close to H(X|Y). Since

Rs =
n− k

n
= 1− k

n
= 1−Rc

where Rs is the compression rate for syndrome source coding and Rc is the rate for

channel coding. For any ε > 0, if Rc > C − ε, by theorem 6, C = 1 −H(Z), hence we

have Rs < H(Z) + ε = H(X|Y) + ε.

The following corollary shows the existence of syndrome source coding to achieve the

Slepian-Wolf limit.

Corollary 2 For two sources X = {Xi}∞i=1 defined over alphabet GF (q) and Y = {Yi}∞i=1

defined over alphabet GF (q), if the correlation between them is modeled as an additive

noise channel Xi = Yi + Zi where the noise Z = {Zi}∞i=1 defined over alphabet GF (q)

is stationary and ergodic, and is independent of Y, we can find a q-ary linear code for
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Wyner’s syndrome source coding scheme such that the compression rate of X is arbitrarily

close to H(X|Y) and the error probability is arbitrarily small.

Proof: By Theorem 8, for {Zi}∞i=1 we can find an m × n matrix H to compress zn

to the syndrome Hzn under ML decoding, such that m
n

is arbitrarily close to H(Z) and

the error probability is arbitrarily small for n sufficiently large.

Then we use this H for Wyner’s syndrome source coding scheme. At the decoder,

after we calculate sm
Z , decode sm

Z using the ML decoding: ẑn is the vector in the coset

indexed by sm
Z which maximizes Pr(zn). Finally let x̂n = yn + ẑn.

Then Pr(x̂n 6= xn) = Pr(ẑn 6= zn), which is arbitrarily small, and the rate is

arbitrarily close to H(Z) = H(X|Y) when n is sufficiently large.

2

4.2 Syndrome Source Coding with Side Information

Using Short-Length Block Codes

In this section, we consider using short-length perfect and quasi-perfect codes for binary

syndrome source coding with side information to avoid the significant delay that can be

caused by long-length block codes such as LDPC codes. This low-complexity solution

comes at the price that the code rate may not be close to the Slepian-Wolf limit. For

these short-length codes, the following decoding methods are provided to decode short-

length linear block codes. We assume a side information correlation model given by
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Xi = Yi

⊕
Zi.

MD decoding: For received sm
X and yn, first calculate the syndrome of zn: sm

Z =

sm
X

⊕
Hyn. Then estimate zn: sm

Z is decoded into ẑn in the coset indexed by sm
Z if

w(ẑn) ≤ w(zn) for all zn in the coset indexed by sm
Z . If two or more vectors satisfy the

inequality, randomly choose one of them. Finally estimate xn by x̂n = yn
⊕

ẑn.

SMD decoding: For received sm
X and yn, first calculate the syndrome of zn: sm

Z =

sm
X

⊕
Hyn. Then estimate zn: sm

Z is decoded into ẑn in the coset indexed by sm
Z if

w(ẑn) < w(zn) for all zn in the coset indexed by sm
Z . If no vector satisfies the strict

inequality, report a decoding failure. Finally estimate xn by x̂n = yn
⊕

ẑn if there is no

decoding failure.

ML decoding: For received sm
X and yn, first calculate the syndrome of zn: sm

Z =

sm
X

⊕
Hyn. Then estimate zn: sm

Z is decoded into ẑn in the coset indexed by sm
Z if

Pr(ẑn) ≥ Pr(zn) for all zn in the coset indexed by sm
Z . If two or more vectors satisfy

the inequality, randomly choose one. Finally estimate xn by x̂n = yn
⊕

ẑn.

SML decoding: For received sm
X and yn, first calculate the syndrome of zn: sm

Z =

sm
X

⊕
Hyn. Then estimate zn: sm

Z is decoded into ẑn in the coset indexed by sm
Z if

Pr(ẑn) > Pr(zn) for all zn in the coset indexed by sm
Z . If no vector satisfies the strict

inequality, report a decoding failure. Finally estimate xn by x̂n = yn
⊕

ẑn if there is no

decoding failure.

Obviously the ML decoding method is optimal in terms of minimizing the error
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probability since the optimal decoding maximizes Pr(xn|yn, sX), and

P (xn|yn, sX)

= P (xn|yn, sZ)

= P (zn|sZ)

For sources with binary Markov noise correlation channels, the MD+ decoding is

formulated as follows:

MD+ decoding: For received sm
X and yn, first calculate the syndrome of zn: sm

Z =

sm
X

⊕
Hyn. Then estimate zn: sm is decoded into ẑn in the coset indexed by sm

Z if

w(ẑn) ≤ w(zn) for all zn in the coset indexed by sm
Z . If two or more vectors satisfy the

inequality, the decoder chooses from them the ẑn that maximizes t00(z
n) + t11(z

n). If

there is still a tie, then the decoder chooses from the tying vectors the ẑn that maximizes

t11(z
n). If there is still a tie, then ẑn is picked from the tying vectors at random. Finally

estimate xn by x̂n = yn
⊕

ẑn.

For these decoders, we can store the coset leaders in advance and the computing

complexity will be substantially lower than that of using exhaustive search.

Next we examine the relationship among these decoding methods.

Theorem 11 For two binary sources {Xi}∞i=1 and {Yi}∞i=1, assume that the correlation

channel between {Xi}∞i=1 and side information {Yi}∞i=1 is Xi = Yi

⊕
Zi where {Zi}∞i=1 is

a binary stationary Markov process and independent of input {Yi}∞i=1. The distribution

of Y n can be arbitrary. Let C be an (n, M, d) perfect code to be used on syndrome source
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coding for {Xi}∞i=1 with side information {Yi}∞i=1. Assume that

⌊
d− 1

2

⌋
<

ln
[

ε+(1−ε)p
(1−ε)p

]
+ ln

[
1−p

p

]
ln

[
ε+(1−ε)(1−p)
(1−ε)(1−p)

]
+ ln

[
ε+(1−ε)(1−p)

(1−ε)p

] (4.1)

and

0 < ε <
1− 2p

2(1− p)
(4.2)

Then MD, SMD, ML and SML decoding are equivalent.

The proof is similar to that of Theorem 9.

Theorem 12 For two binary sources {Xi}∞i=1 and {Yi}∞i=1, assume the correlation chan-

nel between {Xi}∞i=1 and side information {Yi}∞i=1 is Xi = Yi

⊕
Zi where {Zi}∞i=1 is binary

stationary Markov process and is independent of input {Yi}∞i=1. The distribution of Y n

can be arbitrary. Let C be an (n, M, d) quasi-perfect code to be used for syndrome source

coding for {Xi}∞i=1 with side information {Yi}∞i=1. Assume that

⌊
d− 1

2

⌋
+ 1 <

ln
[

ε+(1−ε)p
(1−ε)p

]
+ ln

[
1−p

p

]
ln

[
ε+(1−ε)(1−p)
(1−ε)(1−p)

]
+ ln

[
ε+(1−ε)(1−p)

(1−ε)p

]
and

0 < ε <
1− 2p

2(1− p)

If x̂n is the decoding output of SMD (not the decoding failure), it’s also the decoding

output of SML.

The proof is similar to that of Theorem 10.
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4.3 Syndrome Source Coding Scheme for Model Yi =

Xi + Zi

For two sources {Xi}∞i=1 and {Yi}∞i=1, since Y n is known at the decoder and decoder

needs to estimate xn, it is more natural to model the correlation channel as an additive

noise channel Yi = Xi +Zi where {Zi}∞i=1 defined over alphabet GF (q) is independent of

{Xi}∞i=1. Based on a linear block code C with parity check matrix H, for the correlation

channel Yi = Xi + Zi, Wyner’s scheme can be adjusted as follows.

Encoder: Compress xn to the syndrome sm
X = Hxn.

Decoder: First calculate the syndrome of zn: sm
Z = Hyn− sm

X . Next estimate zn by

the error pattern estimator of C. Finally, estimate xn by x̂n = yn − ẑn.

However, we may get some rate loss with this correlation model and may not achieve

the Slepian-Wolf limit. Since Y n = Xn + Zn, by [5], H(Y n) ≥ H(Xn); then H(Y) ≥

H(X). Thus we have that H(X|Y) = H(X, Y)−H(Y) ≤ H(X, Y)−H(X) = H(Y|X).

Using this model and syndrome source coding, we can only achieve a rate of H(Y|X),

which is greater than or equal to H(X|Y).

Next we consider applying perfect and quasi-perfect codes for syndrome source coding

based on this new model to compress binary sources. For this new model, MD, SMD,

ML, SML, MD+ are the same as described in Section 4.2. Moreover we propose an

optimal decoding method for this model.

MAP decoding: For received sm
X and yn, decode them into x̂n in the coset indexed

by sm
X which maximize P (xn)P (zn), where zn = yn

⊕
xn.
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The MAP decoding method is optimal. Since for any given yn and sm
X , the optimal

decoder finds X̂ to maximize P (x̂n|yn, sX),

P (xn|yn, sX) =
P (xn, yn, sX)

P (yn, sX)

=
P (xn)P (yn|xn)P (sX |xn, yn)

P (yn, sX)

=
P (xn)P (zn)P (sX |xn)

P (yn, sX)

If xn is i.i.d. and uniformly distributed maximizing P (xn|yn, sX) is equivalent to maxi-

mizing P (zn) in coset indexed by sZ , and hence ML decoding is optimal.

However, usually xn is not uniformly distributed. In this case we can search all xn

in the coset indexed by sm
X to find x̂n which maximize P (xn)P (zn), zn = yn

⊕
xn to

maximizes P (xn|yn, sX). This is MAP decoding.

For this new model we have similar results as Theorem 11 and Theorem 12.

Let the noise {Zi}∞i=1 is binary stationary Markov process which has channel bit error

rate p and correlation coefficient ε.

For a (n, M, d) linear block code C , assume

⌊
d− 1

2

⌋
<

ln
[

ε+(1−ε)p
(1−ε)p

]
+ ln

[
1−p

p

]
ln

[
ε+(1−ε)(1−p)
(1−ε)(1−p)

]
+ ln

[
ε+(1−ε)(1−p)

(1−ε)p

] (4.3)

and

0 < ε <
1− 2p

2(1− p)

If C is perfect code, then MD, SMD, ML and SML decoding are equivalent.
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If C is quasi-perfect code, then the decoding output (not decoding failure) of SMD

is also the decoding output of SML.

4.4 Simulation Results

For the simulations shown in Fig. 4.1 - 4.5, the correlation between X and Y is modeled

as an BMNC Xi = Yi + Zi. The noise Z is a first order stationary Markov process with

P (Z = 1) = pZ and correlation coefficient is εZ . The channel input Y n is uniformly

distributed.

For the simulations shown in Fig. 4.6 - 4.10, the correlation of X and Y is modeled as

BMNC Yi = Xi

⊕
Zi where the noise Z is a first order stationary Markov process where

P (Z = 1) = pZ and correlation coefficient is εZ . X is a first order stationary Markov

source with P (X = 1) = pX and correlation coefficient is εX . In these simulations,

εX = 0.5, pX = 0.1.

For the simulations shown in Fig. 4.11 - 4.15, the correlation between X and Y is

modeled as a GEC Yi = Xi +Zi, where the noise Z is a hidden Markov process with two

states S1 and S2. The probability that S2 is current state is pZ and correlation coefficient

is εZ . p1 and p2 are crossover probabilities for these two states S1 and S2, respectively.

X is a first order stationary Markov source where P (X = 1) = pX and correlation

coefficient is εX . In these simulations, εX = 0.5, pX = 0.1, p1 = 0.9, p2 = 0.01.

In Figs. 4.1, 4.2, 4.6, 4.7, we observe that for the (7, 4) Hamming code, MD, MD+

and ML decoding are identical for Wyner’s syndrome source coding scheme for the cases
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εZ = 0.1 and εZ = 0.25. These simulations coincide with Theorem 11 since the (7,4)

Hamming code is a perfect code and equations (3.1) and (3.2) are satisfied. In Figs

4.11 and 4.12, the correlation channel is a GEC. Although we do not have a theorem to

show that MD, MD+ and ML decoding methods are equivalent for perfect codes under

certain condition when the correlation channel is GEC, these three decoding methods

are still identical in these simulations.

In Figs. 4.3, 4.4, 4.8, 4.9, 4.13 and 4.14, we remark that for the (15, 7) BCH code,

MD+ is improved from MD decoding. In Fig. 4.13, MD+ is almost identical to ML

decoding. By comparing those cases when ε = 0.1 and ε = 0.25, we note that when

source correlation is smaller, MD+ decoding performs closer to ML decoding.

Figs. 4.5, 4.10, 4.15 indicates that for the (23, 12) Golay code, when MD+ decoding

is implemented it does not show any improvement over MD decoding. This is expected

since there are no ties in MD decoding for the (23, 12) Golay code, which is a perfect

code. Note that (4.3) does not hold for the parameters used in these simulations.

In Figs. 4.6-4.15, MAP decoding outperforms than MD, MD+ and ML decoding as

expected since MAP decoding is optimal. This comes however at a cost of substantial

increase in decoding complexity.
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Figure 4.1: FER vs. pz under different decoding methods for Wyner’s syndrome source

coding based on (7,4) Hamming code for BMNC correlation channel Xi = Yi

⊕
Zi with

noise correlation coefficient εZ = 0.1
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Figure 4.2: FER vs. pz for Wyner’s syndrome source coding based on (7,4) Hamming

code for BMNC correlation channel Xi = Yi

⊕
Zi with noise correlation coefficient

εZ = 0.25
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Figure 4.3: FER vs. pz for Wyner’s syndrome source coding based on (15,7) BCH code

for BMNC correlation channel Xi = Yi

⊕
Zi with noise correlation coefficient εZ = 0.1
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Figure 4.4: FER vs. pz for Wyner’s syndrome source coding based on (15,7) BCH code

for BMNC correlation channel Xi = Yi

⊕
Zi with noise correlation coefficient ε = 0.25
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Figure 4.5: FER vs. pz for Wyner’s syndrome source coding based on (23,12) Golay code

for BMNC correlation channel Xi = Yi

⊕
Zi with noise correlation coefficient ε = 0.1
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Figure 4.6: FER vs. pz for Wyner’s syndrome source coding based on (7,4) Hamming

code for BMNC correlation channel Yi = Xi

⊕
Zi with noise correlation coefficient

εZ = 0.1
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Figure 4.7: FER vs. pz for Wyner’s syndrome source coding based on (7,4) Hamming

code for BMNC correlation channel Yi = Xi

⊕
Zi with noise correlation coefficient

εZ = 0.25
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Figure 4.8: FER vs. pz for Wyner’s syndrome source coding based on (15,7) BCH code

for BMNC correlation channel Yi = Xi

⊕
Zi with noise correlation coefficient εZ = 0.1
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Figure 4.9: FER vs. pz for Wyner’s syndrome source coding based on (15,7) BCH code

for BMNC correlation channel Yi = Xi

⊕
Zi with noise correlation coefficient εZ = 0.25
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Figure 4.10: FER vs. pz for Wyner’s syndrome source coding based on (23,12) Golay

code for BMNC correlation channel Yi = Xi

⊕
Zi with noise correlation coefficient

εZ = 0.1
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Figure 4.11: FER vs. pz for Wyner’s syndrome source coding based on (7,4) Hamming

code for GEC correlation channel Yi = Xi

⊕
Zi with noise correlation coefficientεZ = 0.1
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Figure 4.12: FER vs. pz for Wyner’s syndrome source coding based on (7,4) Hamming

code for GEC correlation channel Yi = Xi

⊕
Zi with noise correlation coefficient εZ =

0.25
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Figure 4.13: FER vs. pz for Wyner’s syndrome source coding based on (15,7) BCH code

for GEC correlation channel Yi = Xi

⊕
Zi with noise correlation coefficient εZ = 0.1
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Figure 4.14: FER vs. pz for Wyner’s syndrome source coding based on (15,7) BCH code

for GEC correlation channel Yi = Xi

⊕
Zi with noise correlation coefficient εZ = 0.25
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Figure 4.15: FER vs. pz for Wyner’s syndrome source coding based on (23,12) Golay

code for GEC correlation channel Yi = Xi

⊕
Zi with noise correlation coefficient εZ = 0.1
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Chapter 5

Conclusion and Future Work

In this work, we studied syndrome source coding for two cases: data compression without

side information and data compression with side information.

For data compression without side information, we proved that syndrome source

coding scheme can achieve asymptotically the entropy rate of stationary and ergodic

sources. The MD, SMD, ML, SML, MD+ decoding methods were provided for this

scheme, and the relationships among these decoding methods with perfect or quasi-

perfect codes for Markov sources were explained. We also provided simulation results

using Hamming, BCH and Golay codes under the different decoding methods to show the

effectiveness of syndrome source coding based on these codes, and the good performance

of MD+ decoding method.

For data compression with side information, we proved that syndrome source coding

scheme can achieve the Slepian-Wolf limit asymptotically for sources with additive noise

correlation channel, where the noise is stationary and ergodic. The MD, SMD, ML,
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SML, MD+ decoding methods were provided for this scheme, and the relationships

among these decoding methods with perfect or quasi-perfect codes for Markov sources

were also presented. Furthermore we studied another more natural model with the side

information as the output, and the MAP decoding was presented, which is the optimal

decoding method. We also provided simulation results using Hamming, BCH and Golay

codes under these decoding methods.

Lossless data compression with side information is only a special case of the Wyner-

Ziv Theorem [19], which examines lossy data compression with side information. In fu-

ture work, one can study lossy data compression using linear block codes with or without

side information to achieve the Wyner-Ziv rate distortion function. Some progress for

this problem was reported by Matsunaga et al. [14] and Miyake [15].
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