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Abstract

Joint source-channel coding (JSCC) has been acknowledged to have superior per-

formance over separate source-channel coding in terms of coding efficiency, delay and

complexity. In the first part of this thesis, we study a hybrid digital-analog (HDA) JSCC

system to transmit a memoryless Gaussian source over a memoryless Gaussian channel

under bandwidth compression. Information-theoretic upper bounds on the asymptoti-

cally optimal mean squared error distortion of the system are obtained. An allocation

scheme for distributing the channel input power between the analog and the digital

signals is derived for the HDA system with mismatched channel conditions. A low-

complexity and low-delay version of the system is next designed and implemented. We

then propose an image communication application demonstrating the effectiveness of

HDA coding.

In the second part of this thesis, we consider problems in information hiding. We

begin by considering a single-user joint compression and private watermarking (JCPW)

problem. For memoryless Gaussian sources and memoryless Gaussian attacks, an expo-

nential upper bound on the probability of error in decoding the watermark is derived.

Numerical examples show that the error exponent is positive over a (large) subset of the

entire achievable region derived by Karakos and Papamarcou (2003).

We then extend the JCPW problem to a multi-user setting. Two encoders indepen-

dently embed two secret information messages into two correlated host sources subject

to a pair of tolerable distortion levels. The (compressed) outputs are subject to multiple

access attacks. The tradeoff between the achievable watermarking rates and the com-

pression rates is studied for discrete memoryless host sources and discrete memoryless

multiple access channels. We derive an inner bound and an outer bound with single-

letter characterization for the achievable compression and watermarking rate region. We



next consider a problem where two correlated sources are separately embedded into a

common host source. A single-letter sufficient condition is established under which the

sources can be successfully embedded into the host source under multiple access attacks.

Finally, we investigate a public two-user information hiding problem under multiple ac-

cess attacks. Inner and outer bounds for the embedding capacity region are obtained

with single-letter characterization.
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Chapter 1

General Introduction

1.1 Motivation

1.1.1 Shannon’s Source-Channel Coding

One of the ultimate goals in modern communication systems is to provide highly reli-

able and efficient transmission of data bearing signals over an inherently noisy medium.

Various theories and systems have been developed in order to achieve this goal.

In a typical communication system, data bearing signals, such as text, images, video,

speech, or combination of these, are often modeled as discrete-time continuous-amplitude

random source sequences. This is reasonable since in practice signals are often low-

pass filtered, and the sampling theorem guarantees that any band-limited signal with

bandwidth W Hz can be accurately represented by sampling it at a rate of 2W times

per second. Due to restrictions on bandwidth or storage, source sequences are often

compressed using a source encoder to remove its natural redundancy. This procedure

is called source coding. As a result, an inevitable loss of information occurs due to the

source coding operation (except in the case of lossless source coding). On the other
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1.1. Motivation

hand, this removal of redundancy, in turn, may introduce a greater level of sensitivity

to transmission noise. Therefore, a channel encoder may be necessary to add some

controlled redundancy into the output of the source encoder, which enables detecting and

correcting errors at the channel decoder. This procedure is called channel coding. The

output of the channel encoder is then modulated and sent over the waveform channel.

The output of the channel is subsequently demodulated, decoded via a channel decoder

and a source decoder, outputting a replica. This communication system is often called

a tandem source-channel coding system.

In a tandem system, source and channel coders are designed separately and con-

catenated to form a complete system. Shannon’s lossy source-channel separation princi-

ple [65] for single-user communication systems guarantees that splitting the coder into

a source coder and a channel coder is optimal for most channels, given unconstrained

coding delay and complexity. According to Shannon’s source coding theorem, R(D) bits

per source sample are necessary and sufficient to represent the source samples with an

average distortion not exceeding D when we operate on source blocks with arbitrary long

length. Conversely, D(R) is the minimum possible average distortion if R is the given

source coding rate. We call R(D) the rate-distortion function and D(R) the distortion-

rate function. These functions are inverses of each other and they can be calculated from

the statistics of the random source. According to Shannon’s channel coding theorem,

the statistics of the channel determine a number C, called the channel capacity, such

that information can only be reliably transmitted at rates below C. Thus we cannot

communicate reliably at rates above channel capacity. Combining these two theorems,

it is possible to obtain a reconstruction with fidelity D if R(D) < C; conversely, if the

source can be sent over the channel and reconstructed with fidelity D, then it must hold

that R(D) ≤ C. Shannon’s lossy source-channel separation theorem states that we can

independently design a source coder with rate as small as possible (given distortion D)

2



1.1. Motivation

assuming an error-free channel, and a channel coder which provides maximum protection

against channel errors at a rate no larger than the channel capacity, no matter what the

source statistics are.

1.1.2 Joint Source-Channel Coding

There are many theoretical results and successful practical systems available today which

are based on Shannon’s source-channel separation principle. However, there are a num-

ber of facts about the separation approach which merit attention. Firstly, near optimal

performance can be obtained with large coding block lengths, causing large delay and

complexity in practice. Secondly, for a tandem system, source and channel codes are

designed independently. More specifically, source codes are usually designed assuming

that the channel codes can correct all errors introduced by the channel, but this is not

always the case even for the most powerful channel codes. Similarly, channel codes are

usually designed to protect all the bits created by the source codes equally, assuming

that information are equally distributed in these bits which is not always the case for

many applications. Indeed, unequal error protection can result in better performance

for this situation. Thirdly, there are situations for which the separation principle does

not hold anymore; see [82] for an example of a non-stationary source-channel pair for

which the converse of the lossless separation theorem does not hold.

These drawbacks have motivated researchers to investigate the design of source and

channel codes jointly; such systems are generally called joint source-channel coding

(JSCC) systems [28], [90]. By designing source and channel codes jointly, it has been

shown that various gains may be obtained in terms of coding efficiency, reconstructed

signal quality, coding delay and complexity.

Examples of joint source-channel coding systems are: (a) hierarchical protection, also

3



1.1. Motivation

known as unequal error protection, where the basic idea is to apply different channel

codes to protect information according to the level of importance of the source data; (b)

optimal quantizer design for noisy channels, such as channel-optimized vector quantiza-

tion (COVQ) (e.g., [21], [38], [40], [92]); (c) optimal index assignment (e.g., [20], [93]);

(d) direct source-channel mapping or direct modulation organization, where the encoder

includes the modulator and benefits from the flexibility that is naturally present in a

constellation (e.g. [60], [67]); (e) channel codes which are designed to exploit the residual

redundancy of the source encoder output (e.g., [2], [68]).

We consider the problem of transmitting continuous-valued random sources over

a discrete-time memoryless channel. In applications such as broadcasting and robust

communication over wireless channels, there is a large variation in channel conditions

depending on the physical landscape, the communication distance, the weather situation,

etc. Thus, a communication system designed to perform well for a broad range of

channel conditions is highly desired. Although most digital JSCC systems perform fairly

well in terms of coding efficiency, coding delay, and have a less severe threshold effect

(see Section 2.1 for the definition of “threshold effect”) than tandem systems when the

channel condition falls below the design parameters (i.e., channel signal-to-noise ratio),

they usually fail to enhance performance as the channel condition improves due to the

distortion introduced by quantizing the source. This leads us to investigate a special

kind of JSCC systems: hybrid digital-analog coding systems. By combining digital and

analog (or nearly analog) coding/modulation, we may expect a graceful performance

improvement/degradation for a wide range of channel conditions.

1.1.3 Information Hiding

As the rapid development of information technology and internet, the communication

of multimedia data becomes increasingly popular. People sell their (digital) works,

4



1.1. Motivation

communicate secret information, and do business via the internet. This includes all

kinds of digital data, e.g., documents, photos, audio, video, etc. Such applications

however raise many problems involving data protection, such as pirating, ownership

identification, illegal copyright, and so on. These problems, which can be categorized

into the area of “information hiding”, have received considerable attention from both

the academic world and industry.

In plain words, information hiding is the means to embed/hide a message (known

as secret message or watermark) into a host data (covertext), so that the information

hider is able to transmit the secret message even though the transmission is subject to

manipulation by an attacker who tries to make the hidden information undetectable. In

some applications such as copyright protection and fingerprinting, the hidden message

carries information about the host data, e.g., ownership information, copyright of the

host data, etc. In other applications such as secret communication and steganography,

the hidden message can also be unrelated to the host data, or the host data acts as a

‘carrier’ of the secret message.

Generally, information hiding has two desirable characteristics:

• Transparency: The embedding procedure should cause as little degradation to the

host data as possible. This is easily understood for most applications such as copy-

right protection and fingerprinting, since the aim is to protect the host data and

also preserve the usability of the host data. For applications in secret communi-

cation and steganography, transparency can be interpreted as a characteristic to

ensure the security of the communications.

• Robustness: The embedded message should resist some signal processing proce-

dures (quantization, D/A conversion, print/scan, etc) and/or some malicious at-

tacks, and be detectable even after degradation introduced by these manipulations.

5



1.1. Motivation

A large number of practical systems have been developed to achieve the aforementioned

characteristics (see, e.g., [35], [56], and the references therein).

Information hiding has also been studied from information-theoretic perspectives

(see, e.g., [7], [33], [47], [48], [51], [73], [89] and the references therein). One perspective

is to model information hiding as a constrained channel coding problem [13]. Secret

messages, assumed to be uniformly distributed over a given message set, are embedded

into host data source messages. Since the watermarks should not interfere perceptually

with the host data, a distortion constraint is placed between the encoder output (also

called stegotext) and the host data. One information hiding problem is to find the

largest watermarking rate (known as watermarking capacity) for which, at the encoder,

the distortion between the host data and the stegotext does not exceed a preset threshold

(transparency constraint), and at the decoder, watermarks can be reproduced with an

arbitrarily small probability of error (robustness constraint). The problem is called

private information hiding if the host data (side information) is available to both the

encoder and the decoder [7], [48], [51], [73]. If the side information is available to the

encoder only, the problem is called public information hiding [7], [74]. Some previous

works on traditional source/channel coding with side information ( [66], [25], [8], [49])

are useful for posing information hiding problems as instances of constrained channel

coding problems. In another interesting work [3], the duality between the information-

embedding problem and the Wyner-Ziv problem of source coding with side information

is studied.

Information hiding has also been modeled as a game played between the information

embedder and the attacker. Given a certain objective function, e.g., embedding capacity

( [7], [19], [51], [52], [74], [75]), or error exponent ( [48], [73]), the embedder wishes to

maximize the objective function, while the attacker’s task is to minimize the objective

function.

6
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The problem of joint compression of host data and embedding/watermarking of secret

messages has also drawn attention in the information hiding literature ( [31], [32], [33],

[34], [46], [47], [89], [50]). This model applies to scenarios where a compressed version

of the stegotext is transmitted due to bandwidth constraints. Denoting the compression

rate by Rc and the watermarking rate by Rw, the main goal is to determine the achievable

rate pairs (Rc, Rw) under transparency and robustness constraints on the system.

In this thesis, we are interested in the information-theoretic aspects of information

hiding. We first study a private information hiding problem with joint watermarking

and compression, where an encoder jointly embeds a secret message to a host data and

compresses the host data. This system can be seen as a special JSCC system where the

watermarking/embedding of information messages can be seen as a (constrained) channel

coding problem, and the compression of the host data is actually source coding. Due to

popular applications in network communications, we also investigate information hiding

problems in the multi-user setting, where two encoders wish to embed independent

messages to two correlated data over multiple access channels. Both the public and

private scenarios are studied. We also study a private information hiding problem where

two correlated sources are separately embedded into a common host with multiple access

attacks.

1.2 Thesis Organization and Contributions

The rest of this thesis is organized as follows.

In Chapter 2, we investigate a hybrid digital-analog (HDA) system for the coding

of a discrete-time memoryless Gaussian source over a discrete-time memoryless Gaus-

sian channel under bandwidth compression. Information-theoretic upper bounds on the

asymptotically optimal mean squared error distortion of the system are obtained under

7
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both matched and mismatched channel conditions. An allocation scheme for distribut-

ing the channel input power between the analog and the digital signals is also derived

for the mismatched HDA system. A low-complexity and low-delay version of the system

is next designed and implemented without the use of error correcting codes. The pa-

rameters of the system, which employs vector quantization in conjunction with binary

phase-shift keying modulation in its digital part, are optimized via an iterative algo-

rithm. Simulation results show that the proposed HDA system performs within 0.3 dB

of the mismatch distortion upper bound. The results of Chapter 2 have appeared in

part in [84] and [85].

In Chapter 3, an image communication application demonstrating the effectiveness

of HDA coding is presented by combining the proposed bandwidth compression system

with the bandwidth expansion system of Skoglund et al. [69]. The results of this chapter

have appeared in part in [83].

In Chapter 4, we study an information hiding system where the encoder jointly com-

presses a host data and embeds a secret message. In particular, we study joint water-

marking and compression of a memoryless Gaussian source under memoryless additive

Gaussian attacks in a private scenario. The achievable region involving the watermarking

and the compression rate pairs has been established by Karakos and Papamarcou [33].

We refine the analysis of the watermarking decoding error probability for given achievable

rate pairs by deriving a computable random coding lower bound to the error exponent.

Numerical examples show that the random coding exponent is positive within almost

the entire achievable region given in [33]. Chapter 4 has appeared in part in [86].

Chapter 5 and 6 deal with private information hiding in a multi-user scenario. In

Chapter 5, we consider a model where two information hiders independently and sep-

arately embed two secret messages W1 and W2 (at rates R1
w and R2

w respectively) into

two correlated host sources U1 and U2 subject to a pair of tolerable distortion levels

8
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(D1, D2). The (compressed) outputs (at rates R1
c and R2

c respectively) are subjected

to attacks modeled via a multiple-access channel (MAC) WY |X1X2 . The tradeoff be-

tween the achievable watermarking rates and the compression rates with respect to the

distortion constraints is studied. Given distortion level (D1, D2), we derived an inner

bound and an outer bound with single-letter characterization for all the achievable rate

quadruple (R1
w, R2

w, R1
c , R

2
c).

In Chapter 6, we consider an information hiding model where two correlated sources

(S1, S2) are separately embedded into a common host data U . A sufficient condition in

single-letter form under which (S1, S2) can be successfully embedded into U under the

MAC WY |X1X2 is established. Chapter 6 has appeared in part in [87].

In Chapter 7, we investigate a public multi-user information embedding system in

which two secret messages are independently embedded into two correlated host sources

and undergo multiple access attacks. The tradeoff between the achievable embedding

rates and the average distortions for the two embedders is studied. For given distortion

levels, inner and outer bounds for the embedding capacity region for the public two-user

information embedding system are obtained with single-letter characterization. The

bounds are tightened when the host sources are independent.

Finally, the thesis is summarized in Chapter 8.

1.3 Notation

Throughout, random variables (RV’s) are denoted by capital letters, e.g., X, specific

values are denoted by lower case letters, e.g., x, and their alphabets are denoted by

calligraphic letters, e.g., X . The cardinality of a finite set X is denoted by |X |. Sim-

ilarly, random vectors are denoted by capital letters superscripted by their lengths,

e.g., Xn, their alphabets are denoted by calligraphic letters superscripted by their

9



1.3. Notation

lengths, e.g., X n, and their realizations are denoted by boldface lower case letters, e.g.,

x , (x1, x2, ..., xn)T ∈ X n, where T denotes transposition. For any RV X, PX(x) denotes

the probability that X = x. For jointly distributed RV’s X and U , PX|U(x|u) denotes the

conditional probability of X = x given that U = u. The probability of an independent

and identically distributed (i.i.d.) sequence x ∈ X n is given by P
(n)
X (x) ,

∏n
i=1 PX(xi).

Similar notation applies to the joint and conditional distributions. E(X) denotes the

expectation of X. 1{·} is the indicator function.

10
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11



Chapter 2

Hybrid Digital-Analog Joint

Source-Channel Coding for

Gaussian Source-Channel Pairs

This chapter is based on a paper submitted to the IEEE Transactions on Communications, May 2007

[85], and a paper presented at the IEEE 23nd Biennial Symposium on Communications (23rd QBSC),

Queen’s University, Kingston, ON, Canada, May-June 2006 [84].

2.1 Introduction

We consider the problem of transmitting a discrete-time analog-valued source over a

discrete-time memoryless channel. Due to the often lacking channel information at

the transmitter, a robust system is desirable for a wide range of channel conditions.

In terms of the used modulation techniques, systems can be generally categorized as

analog, digital or hybrid digital-analog (HDA) systems as shown in Fig. 2.1.

Since the publication of Shannon’s landmark paper in 1948 [65], digital communi-
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2.1. Introduction

Figure 2.1: Characteristics of analog, hybrid, and digital communication systems.

cation has been widely studied. One of the main advantages of digital communication

systems is that they can be designed to (asymptotically) achieve the theoretical optimal

performance for a fixed channel signal-to-noise ratio (CSNR) via the separate design of

optimal source and channel codes [10], [65]. Systems designed based on this principle

are often referred to as tandem source-channel coding systems. There are, however, two

fundamental disadvantages associated with digital tandem systems. One is the threshold

effect : the system typically performs well at the design CSNR, while its performance

degrades drastically when the true CSNR falls below the design CSNR. This effect is

due to the quantizer’s sensitivity to channel errors and the eventual breakdown of the
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employed error correcting code at low CSNRs (no matter how powerful it is). The other

trait is the leveling-off effect : as the CSNR increases, the performance remains constant

beyond a certain threshold. This is due to the non-recoverable distortion introduced by

the quantizer which limits the system performance at high CSNRs.

The threshold effect can be partly remedied via digital joint source-channel coding

(JSCC). By jointly designing the source and channel codes, many results (e.g., [21], [44])

show that noticeable gain can be obtained in terms of coding efficiency, reconstructed

signal quality, coding delay and complexity. In particular, JSCC schemes are more robust

than tandem systems at low CSNRs. However, such JSCC systems still suffer from the

leveling-off effect at high CSNRs, since being digital systems, they employ quantization

to “digitize” the source. On the other hand, the leveling-off effect is not a problem for

analog systems; actually, their performance can strictly increase as the CSNR increases

(we call a system analog if it uses an analog modulation technique such as amplitude

modulation). However, it is usually hard to incorporate efficient signal compression

schemes in analog systems, particularly when channel bandwidth is valuable and/or the

source has memory.

Schemes that exploit the advantage of analog systems are studied by Ramstad and

his co-authors in [12], [11], [23], [29] and [43]. These are based on the so-called direct

source-channel mapping technique: the output of a source scalar/vector quantizer is

mapped directly to a channel symbol using analog (or nearly analog) modulation, i.e.,

amplitude modulation (AM) or quadrature amplitude modulation (QAM). The direct

source-channel codes also enjoy graceful degradation performance at low CSNRs. In [43],

a robust image coding system is presented which combines subband coding and QAM.

This system allows various compression levels based on block-wise classification. An

improved image coding system is proposed in [12]; it utilizes both bandwidth compression

and bandwidth expansion mappings, where the bandwidth expansion mapping employs
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a scalar quantizer and transmits both the quantized value and the quantization error.

Recently, a JSCC technique known as the 2:1 Shannon mapping was investigated in [29]

and shown to provide very robust performance. It employs the Archimedean spiral to

approximately map a point in a plane onto a point on a line. Related works on analog

coding methods include [80], [81].

To exploit the advantages of both analog and digital systems, one can allow part

of the system to use digital modulation to improve robustness against severe channel

conditions, while letting another part of the system use analog signaling to obtain a

graceful improvement at high CSNRs. Several recent works have investigated such sys-

tems. In [53], a family of HDA systems are introduced and studied theoretically; they are

shown to offer better distortion performance than purely digital systems, have a graceful

performance improvement, and (asymptotically) achieve the Shannon limit. An HDA

system design based on vector quantization (VQ) for bandwidth expansion is investi-

gated in [69], where an algorithm to design optimized codes and performance evaluation

are presented. In [70], an HDA system for Gauss-Markov sources with bandwidth com-

pression/expansion is given. It employs the Karhunen-Loève transform to decorrelate

the source, Turbo error correcting coding in its digital part to improve the system per-

formance at low CSNRs, and superposition coding of the analog and digital signals.

This system allows for both linear and nonlinear mappings in its analog component.

In [64], systematic JSCC is studied and is demonstrated to be optimal for a wide class

of sources and channels. In [61], an inner distortion bound for broadcasting a single

Gaussian source to two listeners over a Gaussian broadcast channel with bandwidth

expansion is derived. This bound is obtained based on an HDA coding scheme, which

includes one of the HDA systems of [53] and the systematic coding scheme of [64] as

two special cases. In [63], systems using an HDA approach, a progressive transmission

approach, and a superposition coding approach are compared for a slowly-varying fading
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additive white Gaussian noise (AWGN) channel. It is shown that the HDA approach

has better performance than the other two methods. Most of the gain of this HDA

approach is due to the presence of the linear analog part. Other HDA-based techniques

are studied in [37], [55] and [58].

In this work, we study the transmission of a memoryless Gaussian source over an

AWGN channel with bandwidth compression. We investigate this problem within the

HDA coding framework, based on the recent work in [70]. We first obtain an information-

theoretical (mean squared) distortion upper bound for the optimal HDA system with a

linear analog part. As a direct consequence, we obtain a similar distortion bound for the

mismatched HDA system where the encoder does not know the true CSNR. An optimal

power allocation formula between the digital and the analog parts is obtained for this

mismatched system. A low-complexity and low-delay version of this HDA scheme is

next designed and implemented without the use of Turbo error correcting codes (unlike

the scheme of [70]) and is shown to be robust over a wide range of CSNRs. These

characteristics may be particularly appealing for telemedicine and sensor networks ap-

plications where sensitive image data need to be reliably communicated from remote

locations irrespective of the channel environment. The digital part of the HDA scheme

is formed with a VQ cascaded with a binary phase-shift keying (BPSK) modulated hard-

decision decoded AWGN channel. As in [69], the system parameters (in both the digital

and analog components) are optimized using an iterative algorithm similar to that for

channel-optimized vector quantizer (COVQ) design. Simulations show that this scheme

performs within 0.3 dB of the performance bound for the mismatched HDA system for

high CSNRs. Comparison are also made with purely analog and purely digital systems,

as well as the system in [70]. As an application, an image coding system which combines

the bandwidth compression system studied here with the bandwidth expansion system

of [69] is presented.
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The rest of this chapter is organized as follows. In Section 2.2, a general description of

the HDA system is given and information-theoretic bounds on its distortion are derived.

A power allocation scheme for distributing the channel input power between the system’s

analog and digital components is also obtained. In Section 2.3, the HDA system design is

examined in detail. Simulation results are given in Section 2.4. Some remarks are given

in Section 2.5 for the HDA with non-linear analog and for the Gauss-Markov sources.

Finally, conclusions are stated in Section 2.6.

2.2 Information-Theoretic Considerations
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Figure 2.2: HDA coder with bandwidth compression (k < n).

The block diagram for the HDA system with bandwidth compression is depicted in

Fig.2.2. Samples of a memoryless Gaussian source {Xi} with zero mean and variance

σ2
s > 0 are grouped into blocks of size n (denoted by Xn) and sent to a source encoder.

The discrete output I, which is taken from a finite set of indices, is then fed to a

channel encoder/modulator which produces a k-dimensional channel symbol sk
I , where

k < n. Here sk
I is taken from a finite set of possible symbols and satisfies E‖sk

I‖2 ≤
k(1 − t)P , where P is the constraint on the total input power per channel use and

t ∈ [0, 1] is the power allocation coefficient for the analog part. The source encoder
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and the channel encoder/modulator together will often be referred to as tandem source-

channel encoder/modulator. The output index I is also sent to a source decoder to

form a reconstruction vector X̃
n
, which is subtracted from Xn to form an error vector

En. The first k components of En are further sent to a linear (analog) encoder which

performs simple scaling so that the k-dimensional output Vk satisfies a power constraint

E‖Vk‖2 ≤ ktP . Now sk
I and Vk are superposed and sent over a channel with AWGN

Wk with per symbol noise variance N . The channel output Rk, which is given by

Rk = sk
I + Vk + Wk, is sent to a channel decoder. The discrete output J is sent to

the source decoder resulting in vector
̂̃
X

n

. Simultaneously, a channel symbol is chosen

according to J , which is subtracted from Rk. The result V̂
k

is fed to the linear (analog)

decoder to form an estimate Ê
k
. The remaining n−k components of the error vector are

filled with zeros to produce Ê
n

which is then added to
̂̃
X

n

to form an estimate X̂
n
. The

overall coding rate of this HDA system is r = k/n < 1 channel uses per source sample.

The system normalized mean squared error (MSE) distortion is

Dn(N) =
1

n
E

∥∥∥Xn − X̂
n
∥∥∥

2

. (2.1)

For purpose of analysis, we first consider the system’s asymptotic distortion, D(N) =

lim
n→∞

Dn(N), as the block length n grows without bound (assuming that the limit exists).

The rate-distortion function for the memoryless Gaussian source under the squared-error

distortion measure is given by

R(D) = max

(
0,

1

2
log2

σ2
s

D

)
(bits/source sample) (2.2)

for any distortion value D > 0 [65], [4]. The capacity of the AWGN channel with input

power constraint P and noise variance N is given by [10,65]

C(N) =
1

2
log2

(
1 +

P

N

)
(bits/channel use). (2.3)
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From Shannon’s lossy JSCC theorem [10,65] for the memoryless Gaussian source-channel

pair, we know that if a code has asymptotic distortion D, then R(D) ≤ rC(N) must

hold. By letting R(D) = rC(N), a lower bound on the asymptotic distortion of any

code can be obtained. This bound is also asymptotically achievable, and is generally

referred to as the optimal performance theoretically attainable (OPTA). It is given by

Dopta(N) , σ2
s(

1 + P
N

)r . (2.4)

By examining the structure of the proposed HDA system in Fig.2.2, we first obtain an

upper bound on D(N) for optimally designed HDA systems.

Proposition 2.1 (Upper bound) For a memoryless Gaussian source with zero mean

and variance σ2
s and an AWGN channel with noise variance N , given fixed r, P and t,

there exists a sequence of HDA systems with asymptotic distortion Dhda(N) given by

Dhda(N) = r
Dtan(N)

1 + tP
N

+ (1− r)Dtan(N), (2.5)

where

Dtan(N) , σ2
s(

1 + (1−t)P
tP+N

)r . (2.6)

Proof. First we give an informal derivation of the upper bound, and then we provide

the outline of a rigorous derivation which uses common randomization at the encoder

and the decoder. Some straightforward but tedious details will be omitted. For the

source encoder and decoder in the upper “digital” part of the system let (ϕ
(n)
e , ϕ

(n)
d ) be

a sequence of source codes (vector quantizers) with encoder ϕ
(n)
e : Rn → {1, . . . , 2nR}

and decoder ϕ
(n)
d : {1, . . . , 2nR} → Rn, having rate R = r

2
log

(
1+ (1−t)P

tP+N

)
bits per source

sample. We choose (ϕ
(n)
e , ϕ

(n)
d ) so that it asymptotically achieves the distortion-rate
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function at rate R of the i.i.d. Gaussian source with zero mean and variance σ2
s . Thus

letting X̃
n

= ϕ
(n)
d (ϕ

(n)
e (Xn)) and Dn , 1

n
E‖Xn − X̃

n‖2, we have

lim
n→∞

Dn = σ2
s2
−2R =

σ2
s(

1 + (1−t)P
tP+N

)r = Dtan(N). (2.7)

The output index I = ϕ
(n)
e (Xn) from the source encoder is fed to the channel encoder

which operates on blocks of k = rn channel symbols. The sequence of channel codes

(ψ
(k)
e , ψ

(k)
d ) with encoder ψ

(k)
e : {1, . . . , 2nR} → Rk and decoder ψ

(k)
d : Rk → {1, . . . , 2nR}

has rate

n

k
R =

R

r
=

1

2
log

(
1 +

(1− t)P

tP + N

)

bits per channel use. This is the capacity of an AWGN channel with noise variance tP+N

and input power constraint (1−t)P , and we choose the channel code to satisfy this power

constraint and such that its error probability is asymptotically (i.e., as k → ∞) zero

when it is used on this AWGN channel. Letting En , Xn − X̃
n
, the linear encoder-

decoder pair (α(n), β(n)) is defined as

Vk , α(n)(En) =

√
tP

Dn

[En]k1, Ê
n , β(n)(V̂

k
) =

(√
tPDn

tP + N
(V̂

k
)T , (0n−k)T

)T

(2.8)

where [En]k1 denotes the first k components of En. Since the source code asymptotically

achieves the rate-distortion function, one can easily show using a standard information

theoretic argument that the normalized relative entropy (Kullback Leibler divergence)

[10] between En and an n-dimensional Gaussian random vector with i.i.d. components

of zero mean and variance Dtan(N) converges to zero as n → ∞. This indicates that

the distribution of En is well approximated by that of the Gaussian vector for large

n. It is also easy to show that En and X̃
n

are (asymptotically) uncorrelated (see,

e.g., [53, Lemma 1]). To simplify the informal derivation, let us assume that the following

stronger versions of these approximations hold: (i) En is independent of X̃
n
; (ii) En is

Gaussian with independent components of zero mean and equal variance Dn.
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Note that since I is a function of X̃
n
, these assumptions imply that the channel

codeword sk
I = ψ

(k)
e (I) is independent of Vk =

√
tP
Dn

[En]k1, and furthermore,

1

k
E‖sk

I + Vk‖2 =
1

k
E[‖sk

I‖2] +
1

k
E[‖Vk‖2] ≤ (1− t)P + tP (2.9)

so that the total input power constraint P on the channel is met. By assumptions (i)

and (ii) the actual channel noise Vk + Wk at the channel decoder can be regarded as

an AWGN vector with per sample variance tP + N which is independent of the channel

encoder input. Under these assumptions the channel code has asymptotically vanishing

error probability, i.e.,

lim
n→∞

Pr{I 6= J} = 0. (2.10)

It is well known that for the i.i.d. Gaussian source an asymptotically optimal source code

can be chosen such that its codevectors lie on a sphere of radius
√

n(σ2
s −Dtan(N)), i.e.,

we can assume 1
n
‖ϕ(n)

d (i)‖2 = σ2
s − Dtan(N) for all i. Using this fact and noting that

(2.10) is equivalent to limn→∞ Pr{X̃n 6= ̂̃
X

n

} = 0, we obtain

lim
n→∞

1

n
E

∥∥X̃
n − ̂̃

X
n∥∥2

= 0. (2.11)

For simplicity we in fact assume that X̃
n

=
̂̃
X

n

for large n. In this case, the average

distortion can be written as

1

n
E

∥∥Xn − X̂
n∥∥2

=
1

n
E

∥∥(X̃
n

+ En)− (
̂̃
X

n

+ Ê
n
)
∥∥2

=
1

n
E

∥∥En − Ê
n∥∥2

. (2.12)

On the other hand, from (2.8) we have

1

n
E

∥∥En − Ê
n∥∥2

=
1

n

∥∥∥∥[En]k1 −
√

tPDn

tP + N
V̂

k
∥∥∥∥

2

+
1

n

∥∥[En]nk+1

∥∥2
(2.13)

where V̂
k

= Vk + Wk + sk
I − sk

J . It is well known that the channel codewords can be

chosen to lie on a sphere of radius
√

k(1− t)P (such an equi-energy codebook is often
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called a Gaussian codebook). Since (2.10) is equivalent to limk→∞ Pr{sk
I 6= sk

J} = 0, we

obtain

lim
k→∞

1

k
E‖sk

I − sk
J‖2 = 0. (2.14)

Again, for simplicity we actually assume sk
I = sk

J , so that V̂
k

= Vk + Wk (for large n).

Using (2.8), (2.13), and the assumption in (ii) that the components of En have equal

variance Dn, we obtain1

lim
n→∞

1

n
E

∥∥Xn − X̂
n∥∥2

= lim
n→∞

1

n
E

∥∥En − Ê
n∥∥2

(2.15)

= lim
n→∞

(
r

Dn

1 + tP
N

+ (1− r)Dn

)
(2.16)

= r
Dtan(N)

1 + tP
N

+ (1− r)Dtan(N) (2.17)

as desired. The preceding argument in fact forms the basis of a rigorous proof. The

crucial point is to prove (2.10), i.e., the existence of a channel code of rate R/r having

vanishing error probability which also meets the total power constraint as in (2.9). In-

deed, assuming (2.10) holds, we clearly have (2.11) and (2.14). It is then straightforward

to show that (2.11) implies (2.15), and that (2.14) implies (2.16) as long as we have

lim
n→∞

1

k
E

∥∥[En]k1
∥∥2

= Dtan(N). (2.18)

It is easy to make sure (2.18) holds. Let ` be a positive integer which divides n and

assume the n-dimensional source code is the n/`-fold product of an `-dimensional vector

quantizer Q(`) having rate R (i.e., Q(`) is used n/`-times when encoding Xn). If ` →∞,

then the rate-distortion performance (2.7) can be achieved by Q(`), and if in addition we

have `/n → 0, then (2.18) clearly holds.

Thus the entire proof hinges on the existence of channel codes with asymptotically

vanishing error probability (2.10) under the power constraint P . In the remainder of the

1With these assumptions,
√

tPDn

tP+N V̂
k

becomes the minimum MSE (MMSE) estimate of [En]k1
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proof we show that such codes exist if one allows common randomization at the encoder

and decoder. Common randomization, already used in the context of both source and

channel coding (see, e.g., [91], [17], [18] and [6]), ensures that the total input power

meets the power constraint and also makes the transmitted channel codeword and the

“noise” Vk + Wk independent. In what follows we first show that the average channel

noise 1
k
‖Vk + Wk‖ is concentrated near its expectation tP + N with large probability,

and then use this fact in showing that the desired channel code exists.

Recall that Dtan(N) = σ2
s2
−2R is the distortion-rate function at rate R of a memo-

ryless Gaussian source with variance σ2
s . It is known (see., e.g., [62] or [42]) that one

can choose Q(`) so that its codevectors lie on a sphere of radius
√

`(σ2
s −Dtan(N)) and

it has asymptotically optimal distortion lim`→∞ 1
`
E‖X` −Q(`)(X`)‖2 = Dtan(N), which

implies (2.7) since Dn = 1
`
E|X` −Q(`)(X`)‖2 by the source code construction.

Since [En]k1 is the concatenation of m′ = k/` independent copies of X` − Q(`)(X`),

and Vk =
√

tP
Dn

[En]k1, we have that ‖Vk‖2 is the sum of m′ = k/` independent random

variables with mean tP
Dn
E‖X` − Q(`)(X`)‖2 = `tP . Thus if ` is fixed, the weak law of

large numbers implies

lim
k→∞

Pr

{∣∣∣∣
1

k
‖Vk‖2 − tP

∣∣∣∣ > ε

}
= 0 (2.19)

for all ε > 0. Clearly, we can choose an ` sequence such that ` →∞, `/k = `/(rn) → 0

and (2.19) still holds. For the rest of the proof we assume that ` increases with n

(and k) in this fashion. We have 1
k
‖Vk + Wk‖2 = 1

k
‖Vk‖2 + 1

k
‖Wk‖2 + 2

k
(Vk)TWk,

where 1
k
‖Wk‖2, being the average of k i.i.d. random variables of mean N , converges

to N in probability as k → ∞. A direct calculation shows that E
[(

1
k
(Vk)TWk

)2]
=

N
k2E‖Vk‖2 = N

k
tP, which converges to zero as k → ∞, implying through Chebyshev’s

inequality that Pr
{∣∣ 2

k
(Vk)TWk

∣∣ > ε
} → 0 as k → ∞ for all ε > 0. Combining these
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2.2. Information-Theoretic Considerations

facts with (2.19) we obtain that for all ε > 0,

lim
k→∞

Pr

{∣∣∣∣
1

k
‖Vk + Wk‖2 − (tP + N)

∣∣∣∣ > ε

}
= 0. (2.20)

Now consider the fictitious k-dimensional vector channel with input power constraint

k(1−t)P and additive noise which is independent of the input and has the same distribu-

tion as Vk +Wk. The key point is that (2.20) allows us to use Theorem 1 in [41] which,

when applied to our setup, states that given an additive noise channel with power con-

straint k(1−t)P and input-independent, possibly non-ergodic noise which satisfies (2.20),

there exists a sequence of channel codes (ψ
(k)
e , ψ

(k)
d ) which has rate 1

2
log

(
1+ (1−t)P

tP+N

)
and

equi-energy (Gaussian) codebook and whose error probability on this channel approaches

zero as k → ∞. (Thus, in effect, a channel code designed for the worst case AWGN

noise also works for non-Gaussian channel noise of equal power.)

We will use common randomization to apply (ψ
(k)
e , ψ

(k)
d ) to the real system where

Vk + Wk is not independent of the channel input. Let Π denote a random permutation

of the indices 1, . . . , 2nR which is uniformly drawn from the set of all (2nR)! permutations

and is independent of the source Xn and the channel noise Wk. Assume that Π is know

at both the encoder and the decoder. At the encoder apply Π to the output index I of

the source encoder before channel coding, so that the input to the channel encoder is

Π(I). At the decoder side, if J is the output index at the channel decoder, then Π−1(J) is

sent to the source decoder, where Π−1 denotes the inverse of Π. It is easy to see that the

channel with input I and output Π−1(J) is statistically equivalent to the discrete channel

realized when (ψ
(k)
e , ψ

(k)
d ) is used on the fictitious channel with a uniform distribution

on its input index set. Since (ψ
(k)
e , ψ

(k)
d ) has asymptotically vanishing error probability

on the fictitious channel, for the real system we also have limk→∞ Pr{I 6= Π−1(J)} = 0.

It remains to show that the total power input power on the channel does not exceed P .
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2.2. Information-Theoretic Considerations

Since sk
Π(I) = ψ

(k)
e (Π(I)) is independent of Vk,

1

k
E‖sk

Π(I) + Vk‖2 =
1

k
E‖sk

Π(I)‖2 +
1

k
E‖Vk‖2 +

2

k
E[sk

Π(I)]
TE[Vk] (2.21)

where 1
k
E‖sk

Π(I)‖2 = (1− t)P and 1
k
E‖Vk‖2 = tP . Let m` , E[X` −Q(`)(X`)]. Then

Dn =
1

n
E‖X`−Q(`)(X`)‖2 =

1

`
E‖X`−Q(`)(X`)−m`‖2 +

1

`
‖m`‖2 ≥ Dtan(N)+

1

`
‖m`‖2

where the inequality holds since Q(`)(X`) + m` is a rate R quantizer for X`. This

implies lim`→∞ 1
`
‖m`‖2 = 0. Since 1

`
‖m`‖2 tP

Dn
= 1

k
‖E[Vk]‖2, applying Cauchy-Schwarz

inequality yields limk→∞ 1
k
E[sk

Π(I)]
TE[Vk] = 0. Substituting this into (2.21) shows that

limk→∞ 1
k
E‖sk

Π(I) +Vk‖2 = (1− t)P + tP ; thus, the power constraint is (asymptotically)

satisfied. 2

Remark: It is easy to show that Dhda(N) = Dopta(N) if and only if t = 0.

We next study the realistic situation where the AWGN variance N is not known at

the encoder. We assume that the encoder only knows a range of values in which the

true noise variance Ntr lies; in particular, it chooses the encoding operation for a fixed

design noise variance Ndes. The receiver, on the other hand, has full knowledge of Ntr

and adapts the decoding accordingly. For this mismatched HDA system, when the true

noise variance Ntr satisfies Ntr < Ndes, the linear decoder can adapt to Ntr, resulting in

a distortion given by Dtan(Ndes)

1+ tP
Ntr

. The asymptotic performance of the tandem coder part

is still the same. We then obtain the following upper bound on the distortion:

Dmis
hda (Ntr, Ndes) , r

Dtan(Ndes)

1 + tP
Ntr

+ (1− r)Dtan(Ndes) (2.22)

where Dtan(N) is given in (2.6).

We now consider the power allocation problem for this mismatched HDA system

with the encoder designed for Ndes, while the true noise variance is Ntr. The best power

allocation coefficient t that minimizes (2.22) is given by the following proposition.
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2.2. Information-Theoretic Considerations

Proposition 2.2 For Ntr < Ndes, P and r, the power allocation coefficient t which

minimizes the distortion expression (2.22) at Ntr is given by

t =

√
1 + 4(κtr−κdes)

(1−r)κdes
− 1

2κtr

, (2.23)

where κtr = P
Ntr

is the true CSNR and κdes = P
Ndes

is the design CSNR.

Proof. Define κtr = P
Ntr

and κdes = P
Ndes

, the distortion (2.22) can be rewritten as

Dmis
hda (Ntr, Ndes) =

[(
r

1 + tκtr

+ 1− r

)
(1 + tκdes)

r

]
σ2

s

(1 + κdes)r
. (2.24)

Since

d

dt

(
Dmis

hda (Ntr, Ndes)
)

=

[
(1 + (1− r)tκtr)κdes

1 + tκdes

− κtr

1 + tκtr

]
r(1 + tκdes)

r

1 + tκtr

σ2
s

(1 + κdes)r
, (2.25)

setting

d

dt

(
Dmis

hda (Ntr, Ndes)
)

= 0 (2.26)

yields

(1 + (1− r)tκtr)κdes

1 + tκdes

− κtr

1 + tκtr

= 0, (2.27)

or equivalently

(1− r)κ2
trκdest

2 + (1− r)κtrκdest + κdes − κtr = 0. (2.28)

Therefore, we get one stationary point (the negative solution is discarded)

t =

√
1 + 4(κtr−κdes)

(1−r)κdes
− 1

2κtr

. (2.29)
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2.2. Information-Theoretic Considerations

As a matter of fact, the above t minimizes Dmis
hda (Ntr, Ndes) since

d2

dt2
(
Dmis

hda (Ntr, Ndes)
)

(2.30)

= [2κtr(1 + tκdes)− (1 + r)(1 + tκtr)κdes]
(1 + tκdes)

r−1

(1 + tκtr)3

σ2
s

(1 + κdes)r
rκtr (2.31)

> [2κtr(1 + tκdes)− 2(1 + tκtr)κdes]
(1 + tκdes)

r−1

(1 + tκtr)3

σ2
s

(1 + κdes)r
rκtr (2.32)

= 2(κtr − κdes)
(1 + tκdes)

r−1

(1 + tκtr)3

σ2
s

(1 + κdes)r
rκtr (2.33)

> 0, (2.34)

where we have used the fact r < 1 in (2.32) and κtr > κdes in (2.34). 2

Since the optimal t is a function of Ntr, it is also unavailable at the encoder. However,

via a numerical study (see below) one can choose a value of t which performs well for

a large range of CSNRs κtr. In Fig. 2.3, we plot the optimal t for different system

parameters as a function of the true CSNR κtr. We observe the following.

• It is readily seen that as the true CSNR κtr increases, t approaches 0. Furthermore,

it is also easily seen from (2.23) that the rate of decay of t to 0 is less than that

of 1/κtr. It is easy to see that as κtr → ∞, the distortion performance of the

mismatched HDA system (2.22) approaches the constant (1−r)Dtan(Ndes). Curves

(a), (f), (b) and (c) present the best power allocation for an HDA system of rate 0.5,

with design CSNR κdes of 0 dB, 5 dB, 10 dB and 15 dB, respectively. They indicate

that, for a system with high design CSNR (which is the case when performance at

high CSNRs is the main concern), the best power allocation coefficient at various

CSNR pairs (κdes, κtr) is smaller than that for the low design CSNR case, i.e., the

analog part of the HDA system incrementally turns off as κdes increases without

bound.

• As κtr approaches κdes, t approaches 0. Thus the optimal performance at the design
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2.2. Information-Theoretic Considerations

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

True CSNR κ
tr
 (dB)

P
ow

er
 a

llo
ca

tio
n 

"t"
 fo

r t
he

 a
na

lo
g 

pa
rt

a

b

c

e

f
g

Figure 2.3: The best power allocation t (as a function of the true CSNR κtr) for different

system parameters. For curves (a), (b) and (c), r = 0.5, κdes = 0 dB, 10 dB and 15 dB,

respectively. For curves (e), (f) and (g), κdes = 5 dB, r = 0.75, 0.5 and 0.25 respectively.

CSNR is obtained by a “purely digital” design, or equivalently, by an optimal

tandem coder which contains an optimal source code and an optimal channel code,

as predicted by Shannon’s theory [65].

• Curves (e), (f) and (g) show the best t for κdes = 5 dB and coding rate of 0.75, 0.5

and 0.25, respectively. These curves demonstrate that t decreases as the coding

rate r decreases. Indeed, as r decreases, less components of quantization error

vectors are further coded via the analog part, which reduces the importance of the

analog part relative to that of the tandem coding part.
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2.3. HDA System Design

In our system implementations, we fix a design CSNR κdes and choose an adjusted

value of t which is good over a large range of true CSNRs κtr (> κdes); see Section 2.4

for details.

2.3 HDA System Design

We next consider a concrete implementation of the HDA scheme in Fig. 2.2. This

system, which has low-complexity and low-delay as it avoids the use of channel coding

in its digital part, is depicted in Fig. 2.4, and it employs VQ cascaded with BPSK

modulation in the digital part, and uses linear coding in the analog part.

Xn

- ε1 -I {sk
i }

?

- δ1
-J yn

J{yn
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? ??
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i }
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-
V̂

k β
Ê

n

6

Figure 2.4: Proposed HDA system design with bandwidth compression.

2.3.1 System Description

The upper part, referred to as the digital part, is formed by a VQ cascaded with a binary

symmetric channel (BSC) without the use of channel coding. An output index I of the

k-bit n-dimensional VQ encoder ε1 is assigned a k-dimensional channel symbol sk
I from

a set {sk
i } of 2k possible symbols. The index I also chooses a vector zn

I from the encoder

codebook {zn
i }, which is subtracted from Xn to form the error vector En.

In the ideal case, for a memoryless source, the optimal source code (in the sense of

29



2.3. HDA System Design

asymptotically achieving the rate-distortion curve) splits source vectors into two asymp-

totically orthogonal components, the quantizer output and the quantization error (see,

e.g., [53]). Furthermore, for memoryless Gaussian sources, the distribution of the quan-

tization error is also approximately Gaussian as n → ∞ (see the proof of Proposition

2.1). In the HDA system with linear analog coding, since the output of the linear analog

encoder is just a scaled version of the quantization error, we model (as discussed in the

proof of Proposition 2.1) the output of the linear encoder by a Gaussian random variable

with variance tP which is independent of the source. Hence, for the digital part, a BSC is

realized by using hard decision decoding on the BPSK-modulated AWGN channel with

input power (1− t)P and noise variance tP + Ndes. Consequently, if the BPSK signals

take values in {+
√

(1− t)P,−
√

(1− t)P}, the transition probabilities {PJ |I(j|i)} of the

BSC are PJ |I(j|i) = qdH(i,j)(1− q)k−dH(i,j), where dH(i, j) denotes the Hamming distance

between the binary representations of the integers i and j, and q = Q(
√

κdig) is the

crossover probability, where κdig , (1−t)κdes

tκdes+1
is the effective CSNR of the digital part and

Q(x) = 1√
2π

∫∞
x

e−t2/2dt. We remark that any memoryless modulation constellation can

be used besides BPSK modulation. We choose BPSK modulation because it is simple

and it performs comparatively well at low CSNRs.

Given an input error vector En, the mapping α simply takes the first k components

of En and forms a scaled vector Vk (to satisfy the average power constraint), which is

added to sk
I and sent over the AWGN channel. The received vector Rk is first fed to

decoder δ1 (which is a simple binary hard-decision demodulator), resulting in index J ,

and the corresponding reproduction yn
J is chosen through a lookup table. The channel

symbol sk
J is then subtracted from Rk and scaled by a constant b, forming an estimate

V̂
k
. The mapping β expands the message V̂

k
back to n dimensions, by padding it with

zeros in the corresponding locations. The resulting Ê
n

is added back to yn
J to form the

reproduction X̂
n
.
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2.3. HDA System Design

2.3.2 System Design

For a total input power P , a fixed power allocation t and a design noise variance Ndes, we

derive an iterative training algorithm to optimize the source digital transmitter (both

source encoder and source decoder) and both the digital decoder codebook and the

analog decoder. Given an arbitrary encoder ε1, {zn
i }, {sn

i }, {yn
j }, and a and b, the end-

to-end average distortion can be expressed as

Dn(Ndes)

=
1

n
E‖Xn − X̂

n‖2

=
1

n
E

∣∣∣∣∣∣

∣∣∣∣∣∣


 [Xn]k1

[Xn]nk+1


−


 [yn

J ]k1

[yn
J ]nk+1


−


 b

(
a([Xn]k1 − [zn

I ]k1) + sk
I + Wk − sk

J

)

0




∣∣∣∣∣∣

∣∣∣∣∣∣

2

=
1

n
E

∥∥[Xn]k1 − [yn
J ]k1 − b

(
a([Xn]k1 − [zn

I ]k1) + sk
I + Wk − sk

J

)∥∥2

︸ ︷︷ ︸
,D1

n(Ndes)

+
1

n
E

∥∥[Xn]nk+1 − [yn
J ]nk+1

∥∥2

︸ ︷︷ ︸
,D2

n(Ndes)

.

(2.35)

Assume that a is chosen such that the power constraint

a2E
∥∥[Xn]k1 − [zn

I ]k1
∥∥2

= ktP (2.36)

is satisfied. Then

D1
n(Ndes) =

1

n
E

∥∥[Xn]k1 − [yn
J ]k1 − b

(
a([Xn]k1 − [zn

I ]k1) + sk
I + Wk − sk

J

)∥∥2

=
1

n
E

∥∥[Xn]k1 − [yn
J ]k1 − b(sk

I − sk
J)− ba([Xn]k1 − [zn

I ]k1)
∥∥2

+
1

n
b2E‖Wk‖2(2.37)

=
1

n
E

∥∥[Xn]k1 − [yn
J ]k1 − b(sk

I − sk
J)

∥∥2
+

1

n
b2a2E

∥∥[Xn]k1 − [zn
I ]k1

∥∥2

−2ab
1

n
E

[(
[Xn]k1 − [yn

J ]k1 − b(sk
I − sk

J)
)T (

[Xn]k1 − [zn
I ]k1

)]
+

k

n
b2Ndes (2.38)

=
1

n
E

∥∥[Xn]k1 − [yn
J ]k1 − b(sk

I − sk
J)

∥∥2
+

k

n
b2tP

−2ab
1

n
E

[(
[Xn]k1 − [yn

J ]k1 − b(sk
I − sk

J)
)T (

[Xn]k1 − [zn
I ]k1

)]
+

k

n
b2Ndes.(2.39)
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Lemma 2.1 Fix a set of encoder regions {Qi} of ε1. For any digital decoder codebook

{yn
j } and b, the digital source decoder codebook {[zn

i ]k1} that minimizes the average

distortion (2.35) is given by

[zn
i ]k1 = [ȳn

i ]k1 + b(sk
i − s̄k

i ), i = 0, · · · , 2k − 1. (2.40)

For any {[zn
i ]k1}, the average distortion (2.35) is minimized by choosing b and {yn

j } as

follows:

b =
E

[(
[Xn]k1 − E

[
[Xn]k1 | J

])T
Uk

]

kNdes + E||Uk||2 , (2.41)

[yn
j ]k1 =

2k−1∑
i=0

PI|J(i|j) (
[x̄n

i ]k1 − ba([x̄n
i ]k1 − [zn

i ]k1)
)− b

(
2k−1∑
i=0

PI|J(i|j)sk
i − sk

j

)
, (2.42)

[yn
j ]nk+1 =

2k−1∑
i=0

PI|J(i|j)[x̄n
i ]nk+1, j = 0, · · · , 2k − 1, (2.43)

where

Uk , a
(
[Xn]k1 − E

[
[Xn]k1 | J

]− [zn
I ]k1 + E

[
[zn

I ]k1 | J
])

+ sk
I − sk

J − E
[
sk
I − sk

J | J
]
,(2.44)

x̄n
i , E [Xn | I = i] =

∫

xn∈Qi

xnp(xn)dxn, (2.45)

ȳn
i , E [yn

J | I = i] =
2k−1∑
j=1

PJ |I(j|i)yn
j , s̄k

i , E
[
sk
J | I = i

]
=

2k−1∑
j=1

PJ |I(j|i)sk
j , (2.46)

PI|J(i|j) , Pr(I = i|J = j) = PJ |I(j|i)PI(i)/PJ(j), (2.47)

PI(i) , Pr(I = i) = Pr(Xn ∈ Qi), PJ(j) , Pr(J = j) =
2k−1∑
i=1

PI(i)PJ |I(j|i), (2.48)

and p(xn) is the pdf of xn.

Proof. We first focus on how the digital source decoder codebooks {[zn
i ]k1} should be

chosen to minimize the distortion Dn(Ndes) (note that the {[zn
i ]nk+1} are not needed since
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we only transmit the first k error components). We note that the only term in (2.39)

that can be influenced by changing {[zn
i ]k1} is the third one. We have

E
[(

[Xn]k1 − [yn
J ]k1 − b(sk

I − sk
J)

)T (
[Xn]k1 − [zn

I ]k1
)]

= E
∥∥[Xn]k1

∥∥2 −
2k−1∑
i=0

PI(i)

((
[ȳn

i ]k1 + b(sk
i − s̄k

i )
)T (

[x̄n
i ]k1 − [zn

i ]k1

)
− [x̄n

i ]k1
T
[zn

i ]k1

)

= E
[(

[Xn]k1 − [ȳn
I ]k1 − b(sk

I − s̄k
I )

)T (
[Xn]k1 − [zn

I ]k1
)]

≤
√
E

∥∥[Xn]k1 − [ȳn
I ]k1 − b(sk

I − s̄k
I )

∥∥2E
∥∥[Xn]k1 − [zn

I ]k1
∥∥2

(2.49)

where (2.49) holds by the Cauchy-Schwarz inequality. For arbitrary given {yn
j } and

b, equality holds when we choose {[zn
i ]k1} as in (2.40), thus minimizing the distortion

D1
n(Ndes). Next, consider how the digital decoder codebook {yn

j } should be chosen to

minimize the average distortion Dn(Ndes) in (2.35). Recall that

D1
n(Ndes) =

1

n
E

∥∥(
[Xn]k1 − ba([Xn]k1 − [zn

I ]k1)− b(sk
I − sk

J + Wk)
)− [yn

J ]k1
∥∥2

,(2.50)

D2
n(Ndes) =

1

n
E

∥∥[Xn]nk+1 − [yn
J ]nk+1

∥∥2
. (2.51)

Thus, for arbitrary {[zn
i ]k1} and b, the {yn

j } which minimize the average distortion (2.35)

are obtained by letting {yn
j } represent the MMSE estimator

[yn
j ]k1 = E

[
[Xn]k1 − ba([Xn]k1 − [zn

I ]k1)− b(sk
I − sk

J + Wk) | J = j
]

=
2k−1∑
i=0

PI|J(i|j) (
[x̄n

i ]k1−ba([x̄n
i ]k1− [zn

i ]k1)
)−b

(
2k−1∑
i=0

PI|J(i|j)sk
i −sk

j

)
,(2.52)

[yn
j ]n

k+1
= E

[
[Xn]nk+1 | J = j

]
=

2k−1∑
i=0

PI|J(i|j)[x̄n
i ]nk+1. (2.53)

Choosing {yn
j } as above, and defining Uk as in (2.44), the distortion can be rewritten

as

Dn(Ndes) =
1

n
E

∥∥Xn − E[Xn | J ]
∥∥2 − 1

n
2bE

[(
[Xn]k1 −

1

n
E

[
[Xn]k1 | J

])T

Uk

]
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+
1

n
b2E

∥∥Uk
∥∥2

+
k

n
b2Ndes.

Minimizing the above distortion by solving ∂Dn(Ndes)
∂b

= 0 yields the expression of b given

by (2.41). 2

Lemma 2.2 For a fixed digital decoder codebook {yn
j }, a and b, fixed {[zn

i ]k1} as in

(2.40), the optimal encoder regions {Qi} for ε1 are given as follows:

Qi =

{
xn ∈ Rn : i = arg min

l

(
(ab− 1)2

∥∥[xn]k1 − [zn
l ]k1

∥∥2
+ hl

+
2k−1∑
j=0

∥∥[xn]nk+1 − [yn
j ]nk+1

∥∥2
PJ |I(j|l)

)}
(2.54)

where

hl , E
[∥∥[yn

J ]k1 + b(sk
I − sk

J)
∥∥2 | I = l

]
− E

[∥∥[zn
I ]k1

∥∥2
]
. (2.55)

Proof. The distortion D1
n(Ndes) in (2.35) can be written as

D1
n(Ndes)

=
1

n
E

∥∥[Xn]k1 − [zn
I ]k1

∥∥2
+

1

n
E

∥∥[yn
J ]k1 + b(sk

I − sk
J)

∥∥2 − 1

n
E

∥∥[zn
I ]k1

∥∥2
+

k

n
b2Ndes

− 1

n
2abE

[(
[Xn]k1 − [ȳn

I ]k1−b(sk
I − s̄k

I )
)T (

[Xn]k1 − [zn
I ]k1

)]
+

1

n
a2b2E

∥∥[Xn]k1 − [zn
I ]k1

∥∥2

=
1

n
(ab− 1)2E

∥∥[Xn]k1 − [zn
I ]k1

∥∥2
+

1

n
E

∥∥[yn
J ]k1 + b(sk

I − sk
J)

∥∥2− 1

n
E

∥∥[zn
I ]k1

∥∥2
+

k

n
b2Ndes

=
2k−1∑
i=0

1

n

∫

Qi

{
(ab− 1)2

∥∥[xn]k1 − [zn
i ]k1

∥∥2
+ hi

}
p([xn]k1) d[xn]k1 +

k

n
b2Ndes (2.56)

where hi is defined as (2.55). Combining D1
n(Ndes) above with D2

n(Ndes) in (2.35) yields

Dn(Ndes) =
2k−1∑
i=0

∫

Qi

d[xn]k1 p([xn]k1)

{
(ab− 1)2

∥∥[xn]k1 − [zn
i ]k1

∥∥2
+ hi
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+
2k−1∑
j=0

∥∥[xn]nk+1 − [yn
j ]nk+1

∥∥2
PJ |I(j|i)

}
+ kb2Ndes.(2.57)

Therefore, the optimal encoder regions are given by (2.54). 2

2.3.3 Some Special Cases

In Proposition 2.2, we derived the optimal power allocation coefficient t (with respect

to Dmis
hda (Ntr, Ndes)) as a function of the design CSNR κdes. Here we discuss the special

cases of high and low κdes regimes and examine how the power allocation coefficient t

and the system distortion change with κdes from the design point of view.

Assuming that the system is designed for a CSNR of κdes = P/Ndes and a power

allocation coefficient t, the digital channel has an effective CSNR of κdig = (1−t)κdes

tκdes+1
,

which means that the BSC transition probabilities PJ |I(j|i) are calculated with the

latter CSNR. Assume also that {Qi}, {[zn
i ]k1}, {yn

j }, and b are chosen according to the

results of Section 2.3.2. We consider the following situations.

• Low noise case, κdes → ∞. In this case, κdig ≈ 1−t
t

and the PJ |I(j|i)’s no longer

depend on κdes. Since decoding the analog signal is dependent on the correct

decoding of the digital signal, we can allocate more transmission power to the

digital part (decrease t) to increase κdig, as long as tP À Ndes. As a result, the

distortion due to the digital transmission part decreases, which in turn makes

the analog part more useful. This choice of t is consistent with the result of

Proposition 2.2 (see Fig. 2.3). As more power is allocated to the digital part (e.g.,

as t decreases), PJ |I(j|i) → 0 for j 6= i, hence, s̄k
I → sk

I , [zn
I ]k1 → [ȳn

I ]k1 → [yn
I ]k1, and

b → 1
a
. As a result, the encoder region {Qi} in (2.54) is simplified to QI =

{
xn ∈

Rn : I = arg min
l

(∥∥[xn]nk+1 − [yn
l ]nk+1

∥∥2
)}

since (ab − 1)2 → 0 and hl → 0. Thus

the dominant distortion is the non-recoverable quantization error from the rest of
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2.3. HDA System Design

the n − k components of the source vectors. This observation is also justified by

Proposition 2.1, where the first term of (2.5) goes to zero as tP/N → ∞ (note

that as κdes →∞, we also have κtr →∞ since we assume that κtr > κdes).

• High noise case, κdes → 0. In this case b → 0, which means that we will not decode

the analog signal because of its bad quality. Moreover, [zn
I ]k1 → [ȳn

I ]k1 in (2.40) and

yn
j →

∑
i

PI|J(i|j)x̄n
i in (2.42), (2.43). Since

∑
i

PI|J(i|j)x̄n
i =

∑
i

PI|J(i|j)E[Xn|I = i] =
∑

i

PI|J(i|j)E[Xn|I = i, J = j]

= E[Xn|J = j],

we have yn
J → E[Xn | J ], which means that the digital part approaches a COVQ

[21]. In this case, it is best to allocate all the power to the digital part.

2.3.4 Training Algorithm

The results of Lemmas 2.1 and 2.2 can be used to formulate an iterative training al-

gorithm as in [69] for codebooks design. The algorithm is summarized as follows: (1)

Given the design noise variance Ndes, total power P , power allocation coefficient t, and

two thresholds γ1, γ2, calculate the corresponding transition probabilities PJ |I(j|i) of

the digital channel. Initialize the encoder regions2{Qi}; (2) Determine the encoder cen-

troids {x̄n
i } and the probabilities {PI(i)}, initialize [zn

I ]k1 = [x̄n
I ]k1, initialize a to satisfy

the power constraint; (3) Iteratively compute b, {yn
j } and {[zn

i ]k1} using Lemma 2.1, up-

date a after each iteration to satisfy power constraint, and stop when the changes of the

codebooks {yn
j } and {[zn

i ]k1} fall below the threshold γ1; (4) Redefine the encoder regions

2Here we use the Voronoi regions of a VQ trained for a noiseless channel for the same source under

consideration. An alternative way is to use the encoder of a COVQ [21] trained for the same digital

channel {PJ|I(j|i)}).
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{Qi} using Lemma 2.2, update a again, and estimate the average distortion; (5) Repeat

steps (3) and (4) until the change of the average distortion falls below the threshold γ2.

In the simulations, γ1 = 10−5 and γ2 = 10−8 were used. We have the following remarks.

• Optimizing {[zn
i ]k1}, {yn

j } and b jointly is very complex. Instead, in the design

we use Lemma 2.1 for an iterative approach similar to the one in [69]. First, we

initialize [zn
I ]k1 = [x̄n

I ]k1. Then, we compute b using (2.41), and compute {yn
j } using

(2.42) and (2.43). We next update {[zn
i ]k1} using (2.40) with the new value of b

and {yn
j }. The iterative algorithm is stopped when the changes of the codebooks

{[zn
i ]k1} and {yn

j } fall below a certain threshold.

• In our derivation, we assume that the power constraint (2.36) is satisfied with

equality at all times. Strictly speaking, there is no guarantee for this to hold at all

iterations. Therefore, convergence is not guaranteed. In our design, the coefficient

a is updated after each computation of {[zn
i ]k1} to satisfy the power constraint.

Our experimental studies suggest that the iterative algorithm does converge to a

stable solution.

• In our design, all the codebooks are precomputed off line. During encoding, the

digital encoder finds {Qi} using Lemma 2.2. It is easily seen from (2.54) that,

{hl} can be precomputed. Given the input vector xn, most of the computation

needed to find the encoder region involves the full COVQ-type search over the

codebook {yn
j } restricted to the last n − k dimensions, i.e., we need to compute

∑2k−1
j=0

∥∥[xn]nk+1− [yn
j ]nk+1

∥∥2
PJ |I(j|l). Thus, we can see that when a moderate block

size n is used (e.g., n = 24 is used in the simulation of Section 2.4), the digital

encoding part has low computational complexity and low delay. For the decoding

part, since we use hard-decision demodulation, and the digital decoder codebook

{yn
j } is precomputed off line, we only need to perform table-lookup decoding.
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Thus, the digital decoding complexity is low. As for the analog part, only k

multiplications are needed for linear encoding/decoding.

2.4 Simulation Results

We evaluate the system’s performance for the transmission of an i.i.d. Gaussian source

over the AWGN channel. The source samples are grouped into vectors of dimension

n = 24, and transmitted at an overall rate of 1/2 channel use per source sample. We

implement our HDA optimized system using the training algorithm described in the

previous section. Specifically, for a fixed input power P = 1 and design noise variance

Ndes = 0.1 (thus κdes = P/Ndes = 10), the training algorithm is implemented to generate

the source digital transmitter and both the digital decoder codebook and the analog

decoder. In light of Proposition 2.2 and curve (b) of Fig. 2.3, we choose t = 0.05 (this

choice of t is expected to give good performance in the true CSNR range of 12 to 20 dB

for the asymptotically achievable system). Apart from this choice of t, we carried out

simulations with other choices of t ∈ [0, 1] for the purpose of comparison. Motivated

by a broadcast scenario, we assume (e.g., as in [69]) that the encoder is optimized for a

given power allocation and fixed design CSNR κdes, i.e., ε1 and {zn
i } are designed for a

fixed κdes, while the decoder knows the true CSNR κtr and adapts to it, i.e., {yn
j } and

b are adapted to κtr.

We present simulation results for the optimized HDA system with various power

allocation coefficients t, as well as an unoptimized HDA system, a purely digital system, a

purely analog system and the HDA-Turbo system of [70]. All systems have a transmission

rate of 1/2 channel use per source sample.

• The optimized HDA system performance is shown in Figs. 2.5–2.8 for κdes =10 dB

and various values of t.
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• The unoptimized HDA system uses the Linde-Buzo-Gray (LBG) algorithm [45] to

design the digital encoder ε1 and {zn
i }, and applies a linear encoder to the analog

part. The digital decoder codebook {yn
j } is adapted to the true CSNR κtr, and

a linear MMSE decoder (also assuming knowledge of κtr) is applied to the analog

part (its performance is shown in Fig. 2.7 for t = 0.07).

• The purely digital system, which solely employs the digital part of the HDA system,

uses a COVQ source encoder [21] and a COVQ decoder codebook {yn
j } adapted

to the true CSNR κtr (its performance is shown in Fig. 2.7 for κdes=10 dB).

• The purely analog system, which solely employs the analog part of the HDA sys-

tem, transmits only half of each source vector using linear coding and employs a

linear MMSE decoder with knowledge of the true CSNR (its performance is shown

in Fig. 2.7).

• For the HDA-Turbo system of [70] (since the source is memoryless, the HDA-Turbo

system does not employ Karhunen-Loéve processing), the digital part consists of

a 24-dimensional 6-bit VQ designed using the LBG algorithm, and a high-delay

(k = 768, n = 1536) rate 1/2 Turbo encoder with generator (37,21) (punctured to

rate 1/2) and a random interleaver, and the analog part employs the same methods

as the proposed HDA schemes. The digital decoder {yj} and the analog decoder

also has knowledge of κtr (its performance is shown in Fig. 2.8 for t = 0.1 and

t = 0.3).

All systems are trained with 300,000 vectors, and tested with a different set of 100,000

vectors. For comparison purposes, we also present the following curves (shown in

Figs. 2.7 and 2.8): the OPTA curve described by (2.4); the HDA bound described

by (2.5) for fixed t; and the mismatched HDA bound described by (2.22) for fixed t and
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κdes. The performance results are presented in terms of the source signal-to-distortion

ratio (SDR), which is defined by SDR = 10 log10(σ
2
s/D) where D is the MSE distortion.

We can observe the following:

• Figs. 2.5–2.6 indicate that the power allocation plays an important role in the

performance of the optimized HDA system, especially for CSNRs above the design

CSNR of 10 dB. Although we choose t = 0.05 based on Proposition 2.2, t = 0.07

turns out to be the best power allocation shown by the simulation results. In

particular, the SDR increases as t increases from t = 0 (which is equivalent to

the purely digital system) to about t = 0.07 (see Fig. 2.5) and then declines as t

varies from t = 0.07 to t = 1 (which is equivalent to the purely analog system).

While the optimal power allocation provided by Proposition 2.2 is derived for the

ideal case (which assumes infinite block size), and the above numerical results are

derived using a block size of 24, we note that the best choice (around t = 0.07)

obtained by the numerical study is consistent with the value t = 0.05 suggested by

Fig. 2.3. Another interesting observation is that when the true CSNR falls below

10 dB (κdes), the SDR performance gets better as t increases. This is because the

digital part degrades drastically when κtr < κdes (usually, the better the digital

part performs at the design CSNR, the more drastic is its performance degradation

for lower CSNRs).

• We observe from Fig. 2.7 that for t = 0.07, the optimized HDA system outperforms

the unoptimized HDA system at all CSNRs. Moreover, it obtains a gain of 1 dB

over the unoptimized HDA system, and is within 0.3 dB of the performance bound

for the mismatched HDA system at high CSNRs (e.g., for CSNR ≥ 30 dB). The

HDA systems present a smooth and robust performance for most CSNRs, and

provide substantial improvements over the purely digital system from medium to
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high CSNRs. They also outperform the purely analog system for a wide range of

CSNRs. We also note that the performance saturates at around 35 dB.

• In Fig. 2.8, we compare the optimized HDA system with the HDA-Turbo system

of [70] for t = 0.1 and t = 0.3. We remark that for a proper choice of t, e.g.,

for t = 0.1, the optimized HDA system outperforms the HDA-Turbo system for

CSNR ≥ 13 dB, and obtain a large gain for medium to high CSNRs. This behavior

can be explained as follows. During the linear encoding process, we discard half

of the components of each quantization error vector. For memoryless sources, all

components of the error vectors have approximately the same variance. Since the

optimized HDA system has higher quantization rate than that of the HDA-Turbo

system (the HDA scheme does not employ channel coding while the HDA-Turbo

system uses a rate 1/2 Turbo code), each component of the quantization error

vector has a smaller variance than the corresponding quantization error component

in the HDA-Turbo system. As a result, the distortion introduced in the optimized

HDA system by this dropping-off process in the analog part is less severe than that

for the HDA-Turbo system. On the other hand, the Turbo code plays an important

role for CSNRs ranging from 5 to 10 dB. For CSNRs over 10 dB, channel coding

becomes superfluous and most of the system distortion is due to quantization noise.

Fig. 2.8 shows that in the CSNR range of 25 to 40 dB, the optimized HDA system

has a gain around 1.5 dB over the HDA-Turbo system.

2.5 Some Remarks

Remark 1. Gauss-Markov sources. In [70], simulation results are presented for the

transmission of Gauss-Markov sources with correlation coefficient 0.9 using the HDA-
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Figure 2.5: SDR performance (in dB) of optimized HDA systems with various power

allocation coefficient t; i.i.d. Gaussian source over the AWGN channel, κdes = 10 dB,

r = 1/2 channel use/source sample.
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Figure 2.6: SDR performance (in dB) of optimized HDA systems with various power

allocation coefficient t; i.i.d. Gaussian source over the AWGN channel, κdes = 10 dB,

r = 1/2 channel use/source sample.
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Figure 2.7: SDR performance (in dB) of the optimized HDA, the unoptimized HDA,

the purely digital and the purely analog systems; i.i.d. Gaussian source over the AWGN

channel, r = 1/2 channel use/source sample.
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Figure 2.8: SDR performance (in dB) of various HDA systems; i.i.d. Gaussian source

over the AWGN channel, r = 1/2 channel use/source sample.
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Turbo system with bandwidth compression. We also applied our system to such sources.

As in [70], we employed a KLT to decorrelate the source before HDA coding. Simulation

results show that in this case, our HDA scheme performs marginally better than the

HDA-Turbo system for high CSNRs, but it is inferior for low and medium CSNRs. This

is due to the fact that the KLT concentrates most of the source power among the first

few transform coefficients. This is in contrast to the memoryless source case where all

source components have the same variance. Thus, even though the HDA-Turbo system

has a lower quantization rate than our system, the distortion introduced by its analog

part is significantly less than in the memoryless source case, since the most important

components of the quantization error vector are not lost by the dropping-off process of

the linear encoder. As a result the HDA-Turbo system performs better than our system

at low and medium CSNRs due to the powerful error correcting capability of the Turbo

code.

Remark 2: HDA system with nonlinear analog part. To improve the system

performance at high CSNRs, we also implement an HDA system with nonlinear analog

part which is similar to the ones studied in [70], [23]. Here the error vectors En are

first quantized to some discrete values using a VQ and then mapped to a discrete set

of signal points using pulse amplitude modulation (PAM). The nonlinear analog part is

not strictly analog. When a high-level PAM is applied, it can be considered as “close to

analog”. The analog part is trained to minimize the end-to-end distortion

Danalog = E‖En − Ê
n‖2 (2.58)

with power PA = tP and noise variance Ndes. The digital part employs using a COVQ

(see e.g., [21]), which is trained with power PD = (1− t)P and noise variance Ndes + tP .

In particular, we employ a system with rate 1/2 channel uses per source sample.

We first decompose quantization error vector En into n/2 two-dimensional subvectors
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Figure 2.9: SDR performance (in dB) of various HDA systems with non-linear analog

part; i.i.d. Gaussian source over the AWGN channel, r = 1/2 channel use/source sample.
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(assuming that n is even), where each such subvector is quantized using a q-bit 2-

dimensional vector quantizer. The output index is mapped to a channel symbol using

a 2q-level PAM. Therefore, all components of En are transmitted using this nonlinear

analog coding method. The analog decoder implements hard-decision detection on the

received signals, and performs a table lookup in a codebook, outputting Ê
n
. The whole

procedure can be modeled as a q-bit quantizer followed by a 2q-input 2q-output discrete

memoryless channel (DMC). The channel transition probability matrix can hence be

easily computed from the complementary error function given the CSNR. We note that

the rate of the vector quantizer, as well as the size of the PAM constellation, can be

increased to act more like analog coding. In the simulation, we choose q = 8.

Since the aim of this system is to focus on the performance at medium to high

CSNRs, we assume Ndes = 0.0001 and t = 0.1 (t is chosen via an experimental study).

The digital part is designed using a COVQ algorithm for power PD = (1 − t)P = 0.9

and noise variance 0.1001 (or around 9.5 dB). The non-linear code of the analog part

is designed for power PA = tP = 0.1 and noise variance 0.0001, and 256-level PAM

signals are employed. Simulation results are given in Fig. 2.9. We observe that for the

schemes with non-linear analog coding and t = 0.1, the HDA scheme outperforms the

HDA-Turbo for CSNRs between 10 and 60 dB. The HDA scheme still outperforms the

HDA-Turbo system with t = 0.3 at high CSNRs and saturate around 60 dB. We also

observe from the simulation results that the CSNR for which the nonlinear mapping is

designed is actually a trade-off between the quantization distortion and the distortion

incurred by the channel noise. If we prefer to get good performance at high CSNRs, the

design will focus on reducing the quantization distortion, as the channel noise is very

small compared to the channel input power in this range. If we want to get more robust

performance for medium CSNRs, we have to sacrifice some quantization accuracy in

the quantizer design in order to combat the channel noise. This explanation has been

48



2.6. Conclusions

justified by examining the distribution of the quantizer codebook: at lower CSNRs, the

VQ codevectors are clustered more closely to each other while as the CSNR increases,

the codevectors spread and yield a smaller overall quantization distortion.

2.6 Conclusions

An HDA joint source-channel system with bandwidth compression for the reliable com-

munication of memoryless Gaussian sources over AWGN channels is studied. The system

has a simple linear analog coding component. Information-theoretic distortion upper

bounds (under both matched and mismatched channel conditions) and a power allo-

cation scheme are established for the system. Then, a practical HDA scheme which

employs a VQ cascaded with BPSK modulation in the digital part is designed and im-

plemented. The system is similar to that considered in [70] but it is simpler as it does

not use Turbo error-correcting coding. A training algorithm is presented to iteratively

optimize the source digital transmitter (both source encoder and source decoder) and

both the digital decoder codebook and the analog decoder. Numerical results show that

the HDA scheme offers a robust and graceful performance improvement for a wide range

of CSNRs (medium to high CSNRs), and substantially outperforms purely digital and

purely analog systems for a large range of CSNRs. Furthermore, the performance of

the HDA scheme approaches the theoretical distortion bound for high CSNRs. The

advantages of the HDA scheme are as follows: (1) it has low complexity and low de-

lay; (2) it guarantees a graceful performance improvement for high CSNRs; (3) the joint

source-channel design of the codebooks enables smooth degradation for medium CSNRs.
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Chapter 3

Design of VQ-Based Hybrid

Digital-Analog Coder for Image

Communication

This chapter is based on the paper presented at the Data Compression Conference (DCC’05), Snowbird,

UT, USA, March 2005 [83].

3.1 Overview

In this chapter, we present an image communication application that illustrates the effec-

tiveness of HDA coding. The image coding system combines the bandwidth compression

system studied in Section 2.4 with the bandwidth expansion system of [69].

We consider the transmission of gray-scale still images over an AWGN channel.

Fig. 3.1 shows the block diagram of the proposed image coding system. The images

are first subjected to a wavelet decomposition. The wavelet coefficients are modeled as

memoryless sources and are formed into three groups of vectors and transmitted using
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Figure 3.1: The structure of the HDA image coding system.

either a bandwidth compression system or a bandwidth expansion system, depending

on the level of their importance. The channel outputs are decoded and placed back to

form reconstruction images.

3.2 Structure of the Image Coder

Generally, we first subtract the average of all pixel values in the image from each pixel

before wavelet decomposition to lower the average energy. For a gray scale image,

we simply subtract the constant 128 from each entry instead of the actual average

value in order to avoid additional side information. The results are decomposed using a

two-dimensional separable discrete wavelet transform (DWT). Here we employ a lifting

scheme with Antonni 9/7 biorthogonal wavelet filters (see [16], [22] for details on the

lifting wavelet transform). The DWT is applied three times, each time on the lowest

frequency subband of the previous resolution level, resulting in 10 subbands overall as

shown in Fig. 3.2. The variance and mean of each subband are estimated by their

empirical probabilities and all the wavelet coefficients are normalized to have zero mean

and unit variance. The normalized wavelet coefficients are grouped into three classes of

vectors as follows:
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Figure 3.2: 3-level wavelet decomposition to Lena image.

• For the lowest frequency LL subband , each block of 2×2 coefficients form a vector

of dimension 4, and is referred to as a class 1 vector.

• For the highest frequency levels (there are three such subbands in total), each

block of 4 × 4 coefficients form a vector of dimension 16, and is referred to as a

class 3 vector.

• For the remaining two frequency levels (six subbands in total with three subbands

for each level), one coefficient from the coarser level and a block of 2×2 coefficients

from the finer level (with the same frequency direction as the coarser one) form a

vector of dimension 5, and is referred to as a class 2 vector.

Since the three classes of vectors have unequal roles in the reconstruction of the

overall image, different coding strategies are employed in their processing and transmis-

sion. More precisely, we use a bandwidth expansion system to transmit the vectors of

class 1 and class 2, since these classes of vectors involve the low and middle frequency

components of the image, which are vital for the overall image quality. In total, 1/4 of

52



3.3. Probability Models

the coefficients are coded using the bandwidth expansion system of [69]. The vectors of

class 3 involve finer detail information of the image, which is also important when high

quality image reconstruction is desired. Due to the large volume of this part ( 3/4 of the

total coefficients), the proposed HDA system with bandwidth compression in Section

2.3 will be used for the class 3 vectors.

3.3 Probability Models

For wavelet image coding systems, there have been several assumptions concerning the

distribution of the wavelet coefficients. A common assumption is that the distribution

of the wavelet coefficients of each subband can be well approximated by the generalized

Gaussian distribution (GGD) (e.g., [78], [27]) whose probability density function (pdf)

is given by

f(x) =
αη(α, σs)

2Γ(1/α)
exp{−[η(α, σs)|x|]α}

where η(α, σs) = 1
σs

(
Γ(3/α)
Γ(1/α)

) 1
2
, α > 0 is a shaping parameter, σs is the standard deviation

of the distribution, and Γ(·) is the Gamma function. The pdf of the GGD reduces to

the Laplacian pdf when α = 1 and yields the Gaussian pdf when α = 2.

We have compared the empirical distribution of the wavelets coefficients to the GGD

using the Kolmogorov-Smirnov (KS) test. For a given set of data X = {xi}M
i=1, the KS

test compares the empirical distribution function FX(·) to a given distribution function

F (·). The empirical distribution function is defined as

FX(t) =





0, t < x(1)

i
M

, x(i) ≤ t < x(i+1), i = 1, · · · ,M

1, t ≥ x(M)

(3.1)

where x(i), i = 1, · · · ,M are the ascending-ordered version of the data X. The KS
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distance dKS is then defined as

dKS = max
i=1,··· ,M

|FX(xi)− F (xi)|. (3.2)

When testing the data against several known distributions, the distribution which yields

the smallest KS distance is the best fit for the data.

Here the KS test was carried out on a few gray-level test images. We have searched

for the best value of the shape parameter α, in the sense of minimizing the KS distance

in the range 0.1 ≤ α ≤ 2. The results are listed in Table 3.1. These show that α = 0.80 is

a good approximation of the shape parameter for the GGD for all the wavelets subbands

except the LL subband. In the design, we use the Laplacian distribution for simplicity.

For the LL subband, the Gaussian pdf tends to be the best fit for most test images

we instigated. We then assume that the LL subband is modelled by the Gaussian

distribution.

Since the HDA systems involve the transmission of quantization errors, the KS test

is also carried out to approximate the distribution of the quantization errors. Results

are shown in Table 3.2 which indicates that the Laplacian distribution is a good approx-

imation.

3.4 Adaptive Decoding

As in [69], motivated by a broadcast scenario, we apply the training algorithms to a

fixed-encoder adaptive-decoder optimized HDA system. For example, the optimized

HDA bandwidth expansion system is designed for a fixed CSNR value (in decibels),

yielding a fixed encoder ε1, and fixed {zi} and t, which are not modified as the true

CSNR changes. On the other hand, the decoder has knowledge of the true CSNR and

adapt to it by updating the values of {yj} and b as the CSNR varies.
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Test Best values of α

Images Level 1 Level 2 Level 3

LH HL HH LH HL HH LH HL HH LL

Baboon 0.75 0.85 0.95 0.75 0.90 0.85 0.85 1.00 0.90 2.00

Couple 0.70 1.05 1.15 0.55 0.70 0.85 0.60 0.60 0.70 1.55

Airplane 0.60 0.70 1.20 0.60 0.50 0.65 0.55 0.45 0.55 2.00

Girl 0.65 0.80 1.10 0.65 0.60 0.70 0.65 0.60 0.65 2.00

Goldhill 1.00 0.90 1.70 0.85 0.75 1.00 0.85 0.70 0.85 1.45

Lena 0.95 0.75 1.10 0.75 0.65 0.65 0.55 0.50 0.50 2.00

Pepper 0.80 0.85 1.55 0.60 0.60 0.80 0.60 0.55 0.65 2.00

Sailboat 0.85 0.95 1.40 0.60 0.65 0.75 0.55 0.65 0.65 2.00

Average 0.79 0.86 1.27 0.67 0.67 0.78 0.65 0.63 0.68 1.90

Average 0.80 ( Average for all subbands except LL ) 1.90

Table 3.1: The best α values chosen with the Kolmogorov-Smirnov test for all wavelets

subbands.
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Test Best values of α

Images Level 1 Level 2 Level 3

LH HL HH LH HL HH LH HL HH LL

Baboon 0.90 0.95 1.05 1.55 1.40 1.45 1.20 1.40 1.15 1.45

Couple 0.80 1.25 1.25 1.05 1.40 1.05 0.65 0.85 0.90 0.55

Airplane 0.80 0.80 1.35 1.35 1.45 1.40 0.90 0.65 0.75 1.05

Girl 0.85 0.90 1.20 1.00 1.15 1.20 0.75 0.75 0.85 0.85

Goldhill 1.05 0.95 1.80 1.30 1.10 1.25 1.20 0.85 1.05 1.60

Lena 1.00 0.85 1.15 1.15 1.35 1.20 0.70 0.85 0.70 0.80

Pepper 0.90 0.90 1.65 1.00 1.10 1.00 0.75 0.70 0.85 1.00

Sailboat 1.00 1.15 1.60 1.45 1.45 1.40 0.80 0.95 0.95 1.45

Average 0.91 0.97 1.38 1.23 1.30 1.24 0.87 0.88 0.90 1.10

Average 1.05 ( Average for all subbands except LL ) 1.10

Table 3.2: The best α values chosen with the Kolmogorov-Smirnov test for the quanti-

zation errors of all wavelets subbands.
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3.5 Side Information

Certain side information must be reliably transmitted over the channel, including the

mean and variance of each subband. By observing the statistical properties of the

subband data for a variety of images, we found that the mean values for all subbands

except for the LL subband are very small compared to the standard deviation. Thus,

all these mean values (except the LL subband) are assumed to be zero in our design.

For a 3-level 10-band octave decomposition, we use 12 bits to quantize the variance of

each subband and 8 bits to quantize the mean value of the LL subband, resulting in a

total of 128 bits. The image size also needs to be known at the receiver (it is encoded

using the natural binary code). The side information is usually error protected before

transmission. For an image of size 512 × 512 and a rate-1/2 error control code, the

overhead consists of 292 bits in total, or equivalently around 0.001 bits per pixel. In

the following discussion, we assume that the side information is transmitted error free,

and we do not include it in the calculation of the overall system rate (as it is negligible

compared to the rate).

3.6 Simulations

We next implement the proposed HDA image coding system for the transmission of gray-

scale images over AWGN channels and test it for the images Lena and Goldhill, both

of size 512 × 512. We denote this image coding system by VQHDA I. To improve the

system performance at high CSNRs, we also propose a system, denoted by VQHDA II,

where for the bandwidth compression part, an HDA design with nonlinear analog part is

applied (c.f., Section 2.5 or [70] for details). For the sake of comparison, we also present

a purely analog system based on linear coding, and two purely digital systems based on
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COVQ and LBG-VQ designs respectively. All systems are trained with 300,000 training

vectors.

A. HDA Systems

The VQHDA I system is carried out with the following parameters. The quantizers

for the class 1, 2 and 3 vectors are 5 bits, 4 bits and 8 bits respectively (these bit

allocations were determined experimentally). The overall transmission rate is 0.832

channel use/pixel. Since the power allocation result of Proposition 2.2 does not apply

to Laplacian sources, we choose the power allocation coefficient t = 0.1 (based on a

numerical study). The encoder is designed at a fixed CSNR of 10 dB, while (as in

the previous section) the decoder is assumed to have knowledge of the true CSNR and

adapts to it by updating the values of {yj} and b as the CSNR varies. In particular, the

quantizers of the class 1 and 2 vectors are trained using the algorithm proposed in [69],

and the quantizer of the class 3 vectors is trained using the algorithm based on Lemmas

2.1 and 2.2 (see Section 2.3.2).

The VQHDA II system has the same structure as the VQHDA I, except that for the

bandwidth compression part, an HDA system with nonlinear analog part is employed

(see Section 2.5 for details). The nonlinear mappings are designed at two CSNRs: 25 dB

and 50 dB. The other parts of the HDA system, i.e. the digital part of the compression

system and the expansion systems are designed for a CSNR of 10 dB.

C. Purely Analog System

The purely analog system (denoted by Analog) is developed using a rate-one linear code.

The system employs a similar rate allocation as that of the VQHDA I system. Class 1

and class 2 vectors are transmitted twice, and the receiver employs a linear minimum

mean square error decoder. Class 3 vectors employ a similar method as in the bandwidth
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compression system, where half of the components of each vector is transmitted using

linear mapping. The total rate of the system is around 0.875 channel use/pixel, which

is comparable to our system.

D. Purely Digital Systems

Two purely digital systems are also investigated. The first digital system uses channel

optimized vector quantization (COVQ). For this system, vectors are formed using the

same vector schemes as in the VQHDA I system. A 4-dimensional 9-bit COVQ, a 5-

dimensional 9-bit COVQ, and a 16-dimensional 8-bit COVQ are trained at a CSNR of

10 dB. The output indices of each VQ are then directly sent over the BPSK modulated

channel. The channel input power per channel use is also set to unity. The receiver

employs hard decision demodulation and adaptive COVQ decoding. The second digital

system, denoted by LBG-VQ, uses the Linde, Buzo and Gray (LBG) vector quantization

algorithm, where a 4-dimensional 9-bit LBG-VQ, a 5-dimensional 9-bit LBG-VQ, and a

16-dimensional 8-bit LBG-VQ are employed. The remaining system parts are identical

to their counterparts in the COVQ system. Adaptive decoding is also employed. Both

systems have an overall rate of 0.832 channel use/pixel.

E. Results and Discussion

In Figs. 3.3–3.6, we show simulation results for the images Lena and Goldhill in terms

of the peak signal-to noise ratio (PSNR), which is defined (in dB) by

PSNR = 10 log10

(255)2

D
,

where D is the MSE distortion between the original and decoded images. Each image

is tested 10 times and the average PSNR is reported.

We observe that the VQHDA I system outperforms the purely analog and LBG-VQ

systems for most CSNRs, and provides substantial improvements over the purely digital
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Figure 3.3: Image communication system performance for the Lena image. The

VQHDA I and COVQ systems are designed at a CSNR of 10 dB. Curves (a) and (b)

refer to VQHDA II systems, where for the compression part, the nonlinear mappings are

designed at a CSNR of 50 dB and 25 dB respectively with t=0.1, while the other parts

are designed at 10 dB. Adaptive decoding is used for all systems.
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Figure 3.4: Image communication system performance for the Goldhill image. The

VQHDA I and COVQ systems are designed at a CSNR of 10 dB. Curves (a) and (b)

refer to VQHDA II systems, where for the compression part, the nonlinear mappings are

designed at a CSNR of 50 dB and 25 dB respectively with t=0.1, while the other parts

are designed at 10 dB. Adaptive decoding is used for all systems.
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COVQ, PSNR=28.24 dB, CSNR=10 dB COVQ, PSNR=28.27 dB, CSNR=20 dB

Analog, PSNR=27.18 dB, CSNR=10 dB Analog, PSNR=35.23 dB, CSNR=20 dB

VQHDA I, PSNR=33.69 dB, CSNR=10 dB VQHDA I, PSNR=39.33 dB, CSNR=20 dB

Figure 3.5: Comparison between different systems, where the VQHDA and COVQ sys-

tems are designed at CSNR of 10 dB. Adaptive decoding is used in all systems.
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COVQ, PSNR=28.33 dB, CSNR=10 dB COVQ, PSNR=28.37 dB, CSNR=20 dB

Analog, PSNR=26.43 dB, CSNR=10 dB Analog, PSNR=32.01 dB, CSNR=20 dB

VQHDA I, PSNR=33.69 dB, CSNR=10 dB VQHDA I, PSNR=37.03 dB, CSNR=20 dB

Figure 3.6: Comparison between different systems, where the VQHDA I and COVQ

systems are designed at CSNR of 10 dB. Adaptive decoding is used in all systems.
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systems from medium to high CSNRs. However its performance saturates at around

CSNR of 30 dB; this is due to the non-reversible analog linear map in the bandwidth

compression system. We also note that for the VQHDA II system, replacing the linear

analog map with a nonlinear map enables the system to saturate at higher CSNRs. In

fact, the performance of the VQHDA II can be made to saturate at an arbitrary high

CSNR by increasing the resolution of the nonlinear mappings. However, the VQHDA II

is inferior to VQHDA I for low to medium CSNRs due to the breakdown of the nonlinear

maps in this range. We also remark that the COVQ system performs better than the

proposed VQHDA systems at low CSNRs; this can be remedied by using soft-decision

COVQ (e.g., [57]) in the digital part of the HDA systems.

3.7 Conclusions

An image communication system using VQ-based HDA JSC coding for AWGN channels

is proposed. This system is robust and enjoys graceful improvement characteristics

for a large range of channel conditions. Both bandwidth expansion and compression

HDA systems are used for the coding and transmission of the image wavelet coefficients:

bandwidth expansion is applied on the low and medium frequency subbands, while

bandwidth compression is applied on the high frequency subbands. Numerical results

show that the proposed system is superior to purely analog and purely digital systems

for a wide range of CSNRs. Future work may focus on optimizing the rate allocation

among the different subbands and optimizing the power allocation between the digital

and analog parts.
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Chapter 4

Error Exponent Analysis of

Single-User Joint Compression and

Private Watermarking with

Gaussian Attacks

This chapter is based on the paper presented at the 10th Canadian Workshop on Information Theory

(CWIT’07), Edmonton, AB, Canada, June 6-8, 2007 [86].

4.1 Introduction

In a joint compression and embedding information-hiding model, the watermarker en-

codes a watermark and a covertext jointly to output a (compressed) stegotext. Denoting

the compression rate by Rc and the watermarking rate by Rw, the main goal is to deter-

mine the achievable rate pairs (Rc, Rw) under transparency and robustness constraints

on the system.
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Karakos and Papamarcou [31], [32], [33] study the tradeoff between Rc and Rw for

Gaussian host data: the case where the stegotext is not subjected to attacks is studied

in [31, 32]; the case where the stegotext is subjected to additive memoryless Gaussian

attacks is examined in [33]. The main result of [33] is a coding theorem which estab-

lishes the achievable region for rate pairs (Rc, Rw) under transparency and robustness

constraints for a private scenario. Maor and Merhav [46], [47] study a similar tradeoff

problem for discrete memoryless sources in a public scenario. The work in [46] focuses

on the attack-free problem of joint watermarking and lossy compression, where the

host data, the watermark and the stegotext are drawn from finite alphabets, while [47]

extends the model in [46] to include a stationary memoryless discrete attack channel

operating on the stegotext. In both works, coding theorems are established in which

a single-letter expressions involving the maximum achievable watermarking rate, the

compression rate and the distortion threshold are obtained. Yang and Sun [89] study

a similar joint compression/watermarking problem with abstract alphabets in a private

scenario. Other related works include [5], [39], [50], [59].

In this chapter, we focus on the problem introduced and investigated in [33], i.e.,

the joint compression and watermarking of memoryless Gaussian sources under additive

white Gaussian noise (AWGN) attacks in a private scenario. We refine the analysis of the

probability of error in decoding the watermarks for any achievable rate pairs (Rc, Rw).

Using a random coding technique that incorporates Gallager’s method [24], we obtain

a computable exponential upper bound on the error probability of watermark decoding.

In a sense, our problem can be described as a joint source-channel coding problem with

side information at both the encoder and the decoder, and we study this problem from

an error exponent viewpoint.

It is worth pointing out that Merhav [48] and Somekh-Baruch and Merhav [73]

studied the error exponent performance for systems with finite alphabets in a private
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Figure 4.1: A model for joint compression and watermarking in a private scenario.

scenario. In [48], a single-letter expression of the Gallager random coding lower bound

to the error exponent is obtained, while in [73], an asymptotic expression for the exact

error exponent is derived. Note that the results of [48], [73] do not apply to the Gaus-

sian Karakos-Papamarcou setup studied here, as they depend on the finiteness of the

covertext and attack channel alphabets. Furthermore in [48], [73], different distortion

constraints are imposed at the encoder.

The rest of this chapter is organized as follows. In Section 4.2, we give a formal

description of the joint compression and watermarking problem and some preliminary

results are presented. The main result is presented in Section 4.3. Section 4.4 pro-

vides some numerical examples. All proofs are left to Sections 4.5 –4.7. Finally, some

concluding remarks are given in Section 4.8.

4.2 Problem Description

A general model for joint compression and watermarking in a private scenario is given

in Fig. 4.1. Let {Ui}∞i=1 be an independent and identically distributed (i.i.d.) sequence

of zero mean Gaussian random variables with variance σ2
u. Let U = X = R, and

1Here the term “lossless compression” means a one-to-one binary representation of the stegotext Xn.
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d : U ×X → [0,∞) be a single-letter distortion measure. For u ∈ Un and x ∈ X n, define

d(u,x) =
n∑

i=1

d(ui, xi). (4.1)

In this paper, we consider the squared distortion measure, i.e.,

d(u,x) = ‖u− x‖2 =
n∑

i=1

(ui − xi)
2. (4.2)

Let AY |X be an additive white Gaussian noise (AWGN) channel with input alphabet X ,

output alphabet Y (Y = X = R) so that Y = X + Z, where Z is Gaussian with mean

zero and variance Da > 0 which is independent of X.

Definition 4.1 An (Rc, Rw, n) joint compression and watermarking code consists of an

encoder-decoder pair (ϕ(n), ψ(n)):

ϕ(n) : W ×Un → X n, (4.3)

ψ(n) : Yn × Un →W , (4.4)

where W = {1, 2, . . . , Mw} is the watermark set and Mw , denRwe2. Given w ∈ W
and u ∈ Un, the stegotext x takes values from a set c of Mc , denRce codevectors, i.e.,

c , {x(1),x(2), . . . ,x(Mc)}.

Definition 4.2 Given an (Rc, Rw, n) code, the conditional probability of error in de-

coding a watermark index w is given by

P (n)
e,w = Pr {ŵ 6= w|w is embedded} , (4.5)

where ŵ is the decoded watermark message. Furthermore, if we assume that all water-

mark indices are equiprobable, the average probability of decoding error is given by

P (n)
e =

1

Mw

Mw∑
w=1

P (n)
e,w . (4.6)

2Throughout this chapter, all logarithms and exponentials are in the natural base.
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Definition 4.3 Given an (Rc, Rw, n) joint compression and watermarking code, the

average distortion between the host data and the stegotext is given by

D(n) , E
[

1

n
d
(
Un, ϕ(n)(W,Un)

)]
. (4.7)

Definition 4.4 The transparency and robustness conditions for a sequence of (Rc, Rw, n)

joint compression and watermarking codes require that for Dc > 0 and any ε, δ > 0,

D(n) ≤ Dc + δ, (4.8)

P (n)
e ≤ ε, (4.9)

for n sufficiently large.

Definition 4.5 A quadruple (Rc, Rw; Dc, Da) is said to be achievable if for every ε, δ >

0, there exists a sequence of (Rc, Rw, n) joint compression and watermarking codes such

that P
(n)
e ≤ ε and D(n) ≤ Dc + δ for n sufficiently large. Given (Dc, Da), denote by

RDc,Da the set of all rate pairs (Rc, Rw) such that (Rc, Rw; Dc, Da) is achievable.

The achievable rate region has been derived for memoryless Gaussian sources and

memoryless Gaussian attacks. The main result is summarized in the following theorem.

Theorem 4.1 [33]. The achievable rate region is given by

RDc,Da =

{
(Rc, Rw) :

Rc ≥
[
1

2
log

( σ2
u

Dc

)]+

,

Rw ≤ max

γ∈
[

max
{

1,
σ2

u
Dc

}
, e2Rc

] min
[
Rc − 1

2
log γ,

1

2
log

(
1 +

Pw(γ)

Da

)]}
, (4.10)

where [a]+ , max{a, 0} and

Pw(γ)
4
=

γ(σ2
u + Dc)− 2σ2

u + 2
√

σ2
u(γDc − σ2

u)(γ − 1)

γ2
. (4.11)
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4.3 Main Results

Given an i.i.d. Gaussian covertext {Ui}∞i=1, a distortion threshold Dc, and a Gaussian

attack variance Da, consider a rate pair (Rc, Rw) ∈ RDc,Da (we assume that Dc < σ2
u,

which is a reasonable assumption in most practical applications). We refine the analysis

of probability of error in detecting watermarks when (Rc, Rw) ∈ RDc,Da . Using a random

coding argument and maximum-likelihood decoding technique, we obtain an exponential

upper bound on the probability of error in decoding the watermark. The main result is

the following theorem.

Theorem 4.2 Given δ > 0, s ≥ 0, ρ ∈ [0, 1], β2 ∈ (Dc, σ
2
u), and γ ∈ (σ2

u/Dc, e
2(Rc−Rw)),

there exists a sequence of (Rc, Rw, n) joint compression and watermarking codes such

that

D(n) ≤ Dc + δ, (4.12)

P (n)
e ≤ 4 exp

{
−n

[
Λ(γ, β, ρ, s)− o(1)

]}
, (4.13)

for n sufficiently large, where Λ(γ, β, ρ, s) , min
{
Λ1(γ, β, ρ, s), Λ2(γ, β)

}
, where

Λ1(γ, β, ρ, s) =
1

2
log

(
1 + 2sβ2(γ − 1)Dc + 2s(1 + ρ)σ2

uθ

γ

)

+
ρ

2
log

(
1 + 2sβ2(γ − 1)Dc + (γ−1)Dc

(1+ρ)Da

γ

)
− ρRw, (4.14)

with θ = β2 −Dc − 2sβ2(γ − 1)D2
c , and

Λ2(γ, β) = min

{
1

2

(β2

σ2
u

− 1− log
β2

σ2
u

)
,

1

2

(γDc

σ2
u

− 1− log
γDc

σ2
u

)}
, (4.15)

and o(1) → 0 as n →∞.

Proof. See Section 4.5.

Remark:

71



4.3. Main Results

• From (4.15), it is clear that Λ2(γ, β) is always positive by the choice of γ > σ2
u/Dc

and β2 < σ2
u. The condition γ < e2(Rc−Rw) is equivalent to Rw < Rc − 1

2
log γ.

• The term Λ1(γ, β, ρ, s) is similar to the random coding lower bound derived in

[24, pp. 337–343] for AWGN channels. However, here we deal with a distortion

constraint at the channel input instead of a power constraint. The term Λ2(γ, β)

is somewhat similar to the reliability function for Gaussian sources with respect

to the rate-distortion pair (Rc −Rw, Dc) [30].

Λ(γ, β, ρ, s) can be tightened by optimizing it with respect to γ, β, ρ and s. In

particular, we have the following result.

Corollary 4.1 . Λ(γ, β, ρ, s) is maximized over s ≥ 0 by3

s∗ =
1− 2abc +

√
(1− 2abc)2 + 4ac(ρa + b)2+ρ

1+ρ

4ac(2 + ρ)
(4.16)

where

a , 1

β2(γ − 1)Dc + (1 + ρ)σ2
u(β

2 −Dc)
, (4.17)

b , 1

β2(γ − 1)Dc

+
1

(1 + ρ)β2Da

, (4.18)

c , σ2
uβ

2(γ − 1)D2
c . (4.19)

Proof. See Section 4.6.

Corollary 4.2 . Let

ER(Rc, Rw; Dc, Da) , sup
γ∈(

σ2
u

Dc
,e2(Rc−Rw)), β2∈(Dc,σ2

u), ρ∈[0,1], s≥0

Λ(γ, β, ρ, s).

3An analytical derivation of the other three optimizing parameters seems difficult. However the

optimization can be carried numerically (e.g., see Section 4.4).
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ER(Rc, Rw; Dc, Da) is positive for all Rw satisfying

Rw < min

{
Rc − 1

2
log

σ2
u

Dc

,
1

2
log

(
1 +

Dc −D2
c/σ

2
u

Da

)}
. (4.20)

Proof. See Section 4.7.

4.4 Examples

We next present some numerical examples to illustrate the results of the previous section.

Figs. 4.2 and 4.3 show the random coding error exponent versus the watermarking rate

Rw for various compression rates Rc and channel noise levels Da. Fig. 4.4 shows a

typical region of rate pairs where the random coding error exponent is positive, in

addition to the overall achievable region RDc,Da of Theorem 4.1 [33]. We note that

ER(Rc, Rw; Dc, Da) > 0 nearly everywhere in RDc,Da .

Here, point A is given by Rc = 1
2
log( σ2

u

Dc
), Rw = 0; B is given by Rc = 1

2
log( σ2

u

Dc
+

σ2
u−Dc

Da
), Rw = 1

2
log(1 + Dc−D2

c/σ2
u

Da
); and C is given by Rc = 1

2
log(1 + σ2

u

Dc
+ σ2

u+Dc

Da
), Rw =

1
2
log(1 + Dc

Da
) [33]. The figure shows that we can achieve all rates under the line seg-

ments AB and BB∞. In fact, for segment AB, i.e., for Rc < 1
2
log( σ2

u

Dc
+ σ2

u−Dc

Da
), given

any (Rc, Rw) ∈ RDc,Dw , we have that supρ,s,β Λ1(γ, β, ρ, s) > 0 for any given γ. Since

Λ2(γ, β) > 0 implies that Rw < Rc − 1
2
log γ, we can approach segment AB by let-

ting γ → ( σ2
u

Dc

)+4. For segment BB∞, if Rw ≥ 1
2
log(1 + Dc−D2

c/σ2
u

Da
), we will have

Λ1(γ, β, ρ, s) ≤ 0 for any γ, β, ρ and s, which means Λ(γ, β, ρ, s) ≤ 0. On the other

hand, for Rw < 1
2
log(1 + Dc−D2

c/σ2
u

Da
), we have supγ,β,ρ,s Λ1(γ, β, ρ, s) > 0. Since Λ2(γ, β)

is always positive, we get a positive random coding error exponent. In this case, when

4Here a → (b)+ means a → b in such a way that a > b; similarly, a → (b)− means a → b such that

a < b.
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Figure 4.2: ER(Rc, Rw; Dc, Da) v.s. Rw for various values of Rc.

we choose s as in (4.16), and letting γ → ( σ2
u

Dc

)+
, β2 → (

σ2
u

)−
, and ρ → 0, we can

approach segment BB∞ with Rw →
(

1
2
log(1 + Dc−D2

c/σ2
u

Da
)
)−

.

Remark: As Dc

σ2
u
→ 0, point B approaches point C. In this case, the exponent is

positive in the whole rate region. On the other hand, as Dc

σ2
u
→ 1, point B approaches

point A. In this case, the positive exponent region becomes empty.
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4.5 Proof of Theorem 4.2

4.5.1 Outline of the Proof

We construct a class of random codes, and show that the average distortion and the

average probability of error are satisfied with (4.12) and (4.13), respectively. We then

show that there exists at least one such code satisfying (4.12) and (4.13) simultaneously.

The analysis for the average distortion (Section 4.5.3) applies some properties of station-

ary memoryless Gaussian sources (see Lemma 4.1) and some techniques used to derive

the Gaussian source reliability function [30]. The analysis for the average probability

of error (Section 4.5.4) incorporates Gallager’s random coding technique [24] and some

bounds obtained in Section 4.5.3.

4.5.2 Code Construction

Given an i.i.d. Gaussian covertext {Ui}∞i=1 with mean zero and variance σ2
u, a distortion

threshold Dc, and a Gaussian attack variance Da, assume that (Rc, Rw) ∈ RDc,Da . Let

M , den(Rc−Rw)e, choose γ ∈ ( σ2
u

Dc
, e2(Rc−Rw)) and β2 ∈ (Dc, σ

2
u). Now consider a code c

described as follows.

Random Code Generation. The code c contains Mw = denRwe “subcodes” c ,

{c1, c2, . . . , cMw} which are assigned a product density function q(c) =
∏Mw

i=1 q(ci). Each

ci contains M codewords, i.e., ci = {x(i, 1), . . . ,x(i,M)}, where each codeword x(i, j)

is drawn i.i.d. according to q(x) =
∏n

k=1 q(xk). Here q(xk) is the Gaussian density with

mean zero and variance σ2
x = (γ−1)Dc. Thus for each ci, we have q(ci) =

∏M
j=1 q(x(i, j)).

Given the watermark index w, the subcode cw will be used for quantizing the covertext

u ∈ Un.

Encoding. Given a watermarking index w and a covertext u, the encoder chooses the
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first codeword x(w, t) in cw such that ‖u− x(w, t)‖2 ≤ nDc, i.e.,

‖u− x(w, i)‖2 > nDc, i = 1, . . . , t− 1,

‖u− x(w, t)‖2 ≤ nDc, t ≤ M. (4.21)

Denote the chosen codevector by x(cw,u). If no such x(w, t) exists, an error is declared

and x(cw,u) = 0 , x(0) will be sent.

Decoding. The decoder has full knowledge of u, and thus can generate all possible

watermarked versions {x(ci,u)}Mw
i=1. Upon receiving the “forgery” y = x(cw,u) +v, the

decoder compares it with all {x(ci,u)}i∈I , where I , {i ∈ W : ‖u− x(ci,u)‖2 ≤ nDc},
and chooses an output ŵ using the maximum-likelihood decoding criterion:

ŵ = arg max
i∈I

f
(
y|x(ci,u)

)
, (4.22)

where f(·|·) is the pdf for the additive Gaussian noise channel, i.e.,

f(y|x) =
n∏

j=1

f(yj|xj) =
n∏

j=1

1√
2πDa

exp
(
−(yj − xj)

2

2Da

)
. (4.23)

4.5.3 Analysis for the Average Distortion

Define the following events

E0(cw) , {u ∈ Un : embedding the watermark index w into u with cw is unsuccessful}

= {u ∈ Un : ‖u− x(w, i)‖2 > nDc, x(w, i) ∈ cw,∀ i = 1, 2, . . . , M},

E1(u) , {cw : embedding the watermark index w into u with cw is unsuccessful}

= {cw : ‖u− x(w, i)‖2 > nDc, x(w, i) ∈ cw,∀ i = 1, 2, . . . , M}.

Given any c = {c1, . . . , cMw}, the average distortion can be written as

D(n)(c) =
1

n
E

[∥∥∥Un − ϕ(n)(W,Un)
∥∥∥

2
∣∣∣∣ c

]
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=
1

n

M∑
w=1

1

M

∫

Un

p(u)‖u− x(cw,u)‖2 du

=
1

n

M∑
w=1

1

M




∫

(E0(cw))c

p(u)‖u− x(cw,u)‖2 du +

∫

E0(cw)

p(u)‖u− x(cw,u)‖2 du




≤ 1

n

M∑
w=1

1

M




∫

(E0(cw))c

p(u)nDc du +

∫

E0(cw)

p(u)‖u− 0‖2 du




≤ Dc +
1

n

M∑
w=1

1

M

∫

E0(cw)

p(u)‖u‖2 du. (4.24)

Then, the distortion averaged over the random choice of c is upper bounded by

D
(n)

=
1

n
E

[∥∥∥Un − ϕ(n)(W,Un)
∥∥∥

2
]

=

∫

c

q(c)
1

n
E

[∥∥∥Un − ϕ(n)(W,Un)
∥∥∥

2
∣∣∣∣ c

]
dc

≤ Dc +
1

n

M∑
w=1

1

M

∫

cw

q(cw)

∫

E0(cw)

p(u)‖u‖2 du dcw (4.25)

where dcw = dx(w, 1) · · · dx(w, M). Note that the second term in (4.25) is the average

distortion over those u’s for which the embedding of watermark index w into u is unsuc-

cessful, averaged over all randomly chosen cw. By changing the order of the integration,

we can also interpret this as the average distortion over those randomly chosen cw such

that the embedding of w into u is unsuccessful, averaged with respected to p(u). Thus,

we have
∫

cw

q(cw)

∫

E0(cw)

p(u)‖u‖2 du dcw =

∫

Un

p(u)‖u‖2

∫

E1(u)

q(cw) dcw du. (4.26)

We have

∫

E1(u)

q(cw) dcw =
M∏

j=1




∫

Xn

q(x(w, j))
[
1− ΦDc(x(w, j);u)

]
dx(w, j)
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=




∫

Xn

q(x)
[
1− ΦDc(x;u)

]
dx




M

(4.27)

where we have defined

ΦDc(x;u) =





1, d(x,u) ≤ nDc,

0, d(x,u) > nDc,

and (4.27) holds since the codewords are drawn independently according the same dis-

tribution q(x).

We need the following lemma.

Lemma 4.1 [30] Let {Xi} be an i.i.d. Gaussian source with distribution X ∼ N (0, σ2).

For any ∆ > 0,

(a) if a2 = σ2 + ∆, we have

lim
n→∞

1

n
log Pr

(
1

n

n∑
i=1

|Xi − a|2 ≤ ∆

)
= −1

2
log

a2

∆
; (4.28)

(b) if 0 < β < σ, then

lim
n→∞

1

n
log Pr

(
1

n
‖Xn‖2 < β2

)
= −1

2

(
β2

σ2
− 1− log

β2

σ2

)
; (4.29)

(c) if α > σ, then

lim
n→∞

1

n
log Pr

(
1

n
‖Xn‖2 > α2

)
= −1

2

(
α2

σ2
− 1− log

α2

σ2

)
. (4.30)

Now define

Pex(u, Xn) ,
∫

Xn

q(x)
[
1− ΦDc(x;u)

]
dx = 1− Pr

(
1

n
‖Xn − u‖2 ≤ Dc

)
. (4.31)

Let α2 , σ2
x + Dc = γDc (recall that γ > σ2

u/Dc implies α2 > σ2
u), β2

1 ∈ (Dc, σ
2
u),

δ0 , σ2
u − β2

1 , and define Bn(α, β1) = {u ∈ Un : nβ2
1 ≤ ‖u‖2 ≤ nα2}. Since the pdf of
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the n-tuple Xn is strictly decreasing in ‖x‖2, we know that, for u ∈ Bn(α, β1),

Pr

(
1

n
‖Xn − u‖2 ≤ Dc

)
≥ Pr

(
1

n

n∑
i=1

| Xi − α |2≤ Dc

)
. (4.32)

Applying Lemma 4.1, we have

lim
n→∞

1

n
log Pr

(
1

n

n∑
i=1

| Xi − α |2≤ Dc

)
= −1

2
log

α2

Dc

= −1

2
log γ. (4.33)

Thus, given any 0 < ε
(n)
1 < ε

(n)
0 such that Rc − Rw > 1

2
log γ + ε

(n)
0 (here γ < e2(Rc−Rw)

guarantees the existence of such ε
(n)
0 ), there exists a positive integer N1 such that for

n ≥ N1,

Pr

(
1

n

n∑
i=1

|Xi − α|2 ≤ Dc

)
≥ exp

{
−n

(1

2
log γ + ε

(n)
1

)}
. (4.34)

Therefore,

Pr

(
1

n
‖Xn − u‖2 ≤ Dc

)
≥ exp

{
−n

(1

2
log γ + ε

(n)
1

)}
. (4.35)

Hence, for n ≥ N1 and u ∈ Bn(α, β1), we have

[
Pex(u, Xn)

]M

=
[
1− Pr

( 1

n
‖Xn − u‖2 ≤ Dc

)]en(Rc−Rw)

≤ exp

{
−Pr

{ 1

n
‖Xn − u‖2 ≤ Dc

}
en(Rc−Rw)

}
(4.36)

≤ exp

{
− exp

{
−n

(1

2
log γ + ε

(n)
1

)}
exp

{
n
(1

2
log γ + ε

(n)
0

)}}
(4.37)

= exp
{
− exp

(
n(ε

(n)
0 − ε

(n)
1 )

)}
, δ

(n)
1 , (4.38)

where we have used the inequality (1 − t)k ≤ e−tk for 0 ≤ t ≤ 1, k > 0 in (4.36), and

δ
(n)
1 → 0 as n →∞ .

Now combining (4.25)–(4.31) and (4.38), we obtain

D
(n) ≤ Dc +

1

n

∫

Un

p(u)‖u‖2
[
Pex(u, Xn)

]M
du
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≤ Dc +
1

n

∫

Bn(α,β1)

p(u)‖u‖2
[
Pex(u, Xn)

]M
du

+
1

n

∫

(Bn(α,β1))c

p(u)‖u‖2
[
Pex(u, Xn)

]M
du

≤ Dc + δ
(n)
1

1

n

∫

Bn(α,β1)

p(u)‖u‖2 du +
1

n

∫

(Bn(α,β1))c

p(u)‖u‖2 du

≤ Dc + δ
(n)
1 σ2

u +
1

n

∫

(Bn(α,β1))c

p(u)‖u‖2 du. (4.39)

Observe that

1

n

∫

(Bn(α,β1))c

p(u)‖u‖2 du

= σ2
u −

1

n

∫

Bn(α,β1)

p(u)‖u‖2 du

≤ σ2
u −

1

n

∫

Bn(α,β1)

p(u)nβ2
1 du

= σ2
u − β2

1

(
1− Pr

{‖Un‖2 < nβ2
1

}− Pr
{‖Un‖2 > nα2

})

≤ δ0 + σ2
u

(
Pr

{‖Un‖2 < nβ2
1

}
+ Pr

{‖Un‖2 > nα2
})

. (4.40)

By Lemma 4.1, there exists ε
(n)
2 > 0 and a positive integer N2 such that, for ∀ n ≥ N2,

we have

Pr
{‖Un‖2 < nβ2

1

} ≤ exp

{
−n

[1

2

(β2
1

σ2
u

− 1− log
β2

1

σ2
u

)
− ε

(n)
2

]}
, δ

(n)
2 (4.41)

and

Pr
{‖Un‖2 > nα2

} ≤ exp

{
−n

[1

2

(α2

σ2
u

− 1− log
α2

σ2
u

)
− ε

(n)
2

]}
, δ

(n)
3 . (4.42)

Plugging the above bounds back into (4.39), and choosing n ≥ max{N1, N2}, we obtain

D
(n) ≤ Dc + δ0 + σ2

u

(
δ
(n)
1 + δ

(n)
2 + δ

(n)
3

)
, Dc + δ̄(n), (4.43)
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where δ̄(n) can be made arbitrarily small by choosing σ2
u − β2

1 sufficiently small and n

sufficiently large.

4.5.4 Analysis for the Average Probability of Error

Recall that E1(u) = {cw : embedding w into u with cw is unsuccessful}. Given a

randomly chosen codebook c = {c1, . . . , cMw}, denote by Pr(error|w,x(cw,u),y) the

probability of decoding error conditioned, first, on w and u entering the encoder, second,

on the selection of a codeword x(w, i) ∈ cw, denoted as x(cw,u), and on the channel

output y. Let β2 ∈ (Dc, σ
2
u) and define Bn(α, β) = {u ∈ Un : nβ2 ≤ ‖u‖2 ≤ nα2}.

Then the probability of decoding error given that watermark index w was embedded,

averaged over the random choice of c, satisfies

P
(n)

e,w =

∫

Un

p(u)

∫

cw

q(cw)

∫

Yn

f(y|x(cw,u))Pr(error|w,x(cw,u),y) dy dcw du

≤
∫

Bn(α,β)

p(u)

∫

(E1(u))c

q(cw)

∫

Yn

f(y|x(cw,u))Pr(error|w,x(cw,u),y) dy dcw du

+

∫

Bn(α,β)

p(u)

∫

E1(u)

q(cw) dcw du +

∫

(Bn(α,β))c

p(u) du

, P0 + P1 + P2 (4.44)

Following Gallager’s technique for deriving the random coding lower bound for the chan-

nel error exponent [24], we can upper bound P0. Given w, x(cw,u) and y, define Ew′ as

the event that

f
(
y|x(cw′ ,u)

) ≥ f
(
y|x(cw,u)

)
(4.45)

where x(cw′ ,u) is the codeword of embedding w′ into u via the codebook cw′ . Then we

have for any ρ ∈ [0, 1] and r > 0,

Pr(error|w,x(cw,u),y)
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≤ Pr

( ⋃

w′ 6=w

Ew′

)

≤
[ ∑

w′ 6=w

Pr(Ew′)

]ρ

≤




∑

w′ 6=w

∫

(E1(u))c

q(cw′)

(
f(y|x(cw′ ,u))

f(y|x(cw,u))

)r

dcw′




ρ

=


(enRw − 1)

∫

(E1(u))c

q(cw′)

(
f(y|x(cw′ ,u))

f(y|x(cw,u))

)r

dcw′




ρ

. (4.46)

Plugging (4.46) into (4.44), we get

P0 ≤ enρRw

∫

Bn(α,β)

p(u)

∫

Yn




∫

(E1(u))c

q(cw)f(y|x(cw,u))1−rρ dcw







∫

(E1(u))c

q(cw′)f(y|x(cw′ ,u))rdcw′




ρ

dy du. (4.47)

Substituting r = 1/(1 + ρ), we get

P0 ≤ enρRw

∫

Bn(α,β)

p(u)

∫

Yn




∫

(E1(u))c

q(cw)f(y|x(cw,u))
1

1+ρ dcw




1+ρ

dy du. (4.48)

Let

η(u,y) ,
∫

(E1(u))c

q(cw)f(y|x(cw,u))
1

1+ρ dcw. (4.49)

We have

η(u,y)

=

∫

Xn

. . .

∫

Xn

(
1−

M∏
i=1

(
1− ΦDc

(
x(w, i),u

))
)

M∏
i=1

q
(
x(w, j)

)
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f
(
y|x(cw,u)

) 1
1+ρ dx(w, 1) . . . dx(w, M)

=
M∑
i=1

i−1∏
j=1

∫

Xn

q
(
x(w, j)

)[
1− ΦDc(x(w, j);u)

]
dx(w, j)

∫

Xn

q
(
x(w, i)

)
ΦDc

(
x(w, i);u

)
f
(
y|x(w, i)

) 1
1+ρ dx(w, i)

=
M∑
i=1




∫

Xn

q(x)
[
1− ΦDc

(
x;u

)]
dx




i−1 ∫

Xn

q(x)ΦDc(x;u)f(y|x)
1

1+ρ dx

=
M∑
i=1

[
Pex(u, Xn)

]i−1
∫

Xn

q(x)ΦDc(x;u)f(y|x)
1

1+ρ dx (4.50)

=
1− [

Pex(u, Xn)
]M

1− Pex(u, Xn)

∫

Xn

q(x)ΦDc(x;u)f(y|x)
1

1+ρ dx

≤ 1

1− Pex(u, Xn)

∫

Xn

q(x)ΦDc(x;u)f(y|x)
1

1+ρ dx, (4.51)

where in the second equality we have used the fact that

1−
M∏
i=1

(
1− ΦDc

(
x(w, i),u

))
=

M∑
i=1

i−1∏
j=1

(
1− ΦDc

(
x(w, j),u

))
ΦDc

(
x(w, i),u

)
.

Applying the inequality ΦDc(x,u) ≤ exp
{

s
[
nDc − d(x,u)

]‖u‖2
n

}
(s ≥ 0), we have

∫

Xn

q(x)ΦDc(x;u)f(y|x)
1

1+ρ dx

≤
∫

Xn

q(x) exp
{

s
[
nDc − d(x,u)

]‖u‖2

n

}
f(y|x)

1
1+ρ dx

≤
∫

Xn

q(x) exp
{

s
[
Dc‖u‖2 − β2d(x,u)

]}
f(y|x)

1
1+ρ dx (4.52)

=
n∏

i=1

∫

X

q(xi) exp
{

s
[
Dcu

2
i − β2(xi − ui)

2
]}

f(yi|xi)
1

1+ρ dxi

=
n∏

i=1

∫

X

1√
2πσ2

x

(
1√

2πDa

) 1
1+ρ
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exp

[
− x2

i

2σ2
x

+ s
(
Dcu

2
i − β2(xi − ui)

2
)− (yi − xi)

2

2(1 + ρ)Da

]
dxi

=
n∏

i=1

τ

(
1√

2πDa

) 1
1+ρ

exp
{(

2σ2
xτ

2s2β4 − sβ2 + sDc

)
u2

i +
(
2σ2

xκ
2τ 2 − κ

)
y2

i + 4κsτ 2β2σ2
xuiyi

}
(4.53)

where

κ , 1

2(1 + ρ)Da

, τ , 1√
1 + 2(κ + sβ2)σ2

x

, (4.54)

and in (4.52) we have used the fact that ‖u‖2 ≥ nβ2 for u ∈ Bn(α, β). Using this bound

when integrating (4.51) over y, we get

∫

Yn




∫

Xn

q(x)ΦDc(x;u)f(y|x)
1

1+ρ dx




1+ρ

dy

≤
n∏

i=1

τ 1+ρ exp
{

(1 + ρ)
[
(2σ2

xτ
2s2β4 − sβ2 + sDc)u

2
i

]}

×
∫

Y

1√
2πDa

exp

{
(2σ2

xκτ 2 − 1)y2
i + 4σ2

xτ
2sβ2uiyi

2Da

}
dyi. (4.55)

Since

∫

Y

1√
2πDa

exp

{
(2σ2

xκτ 2 − 1)y2
i + 4σ2

xτ
2sβ2uiyi

2Da

}
dyi

= exp

{
4σ4

xτ
4s2β4u2

i

2Da(1− 2σ2
xκτ 2)

} ∫

Y

1√
2πDa

exp

{
− [yi + (2σ2

xτ
2sβ2ui)/(2σ

2
xκτ 2 − 1)]2

2Da/(1− 2σ2
xκτ 2)

}
dyi

= exp

{
4σ4

xτ
4s2β4u2

i

2Da(1− 2σ2
xκτ 2)

}
1√

1− 2σ2
xκτ 2

.

Plugging the above expression back into (4.55), we get

∫

Yn




∫

Xn

q(x)ΦDc(x;u)f(y|x)
1

1+ρ dx




1+ρ

dy
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≤
n∏

i=1

τ ρ

√
1 + 2sβ2σ2

x

exp

{
−

(
(1 + ρ)sβ2

1 + 2sβ2σ2
x

− s(1 + ρ)Dc

)
u2

i

}
. (4.56)

Substituting this into (4.48), we obtain

P0 ≤ enρRw

∫

Bn(α,β)

p(u)

∫

Yn




∫

(E1(u))c

q(cw)f(y|x(cw,u))
1

1+ρ dcw




1+ρ

dy du

≤ enρRw

[
τ ρ

√
1 + 2sβ2σ2

x

]n ∫

Bn(α,β)

p(u)
1(

1− Pex(u, Xn)
)1+ρ

n∏
i=1

exp

{
−

(
(1 + ρ)sβ2

1 + 2sβ2σ2
x

− s(1 + ρ)Dc

)
u2

i

}
du

≤

τ ρ exp

{
(1 + ρ)(1

2
log γ + ε

(n)
1 ) + ρRw

}
√

1 + 2sβ2σ2
x




n

∫

Un

p(u)
n∏

i=1

exp

{
−

(
(1 + ρ)sβ2

1 + 2sβ2σ2
x

− s(1 + ρ)Dc

)
u2

i

}
du

=


 τ ρ exp

{
(1 + ρ)(1

2
log γ + ε

(n)
1 ) + ρRw

}
√

1 + 2sβ2σ2
x + 2sβ2(1 + ρ)σ2

u − 2s(1 + ρ)(1 + 2sβ2σ2
x)σ

2
uDc




n

(4.57)

where in the second inequality we used (4.35).

To bound P2, recall that for n ≥ N2, we have

P2 =

∫

(Bn(α,β))c

p(u) du

= Pr
{‖Un‖2 < nβ2

}
+ Pr

{‖Un‖2 > nα2
}

≤ exp

{
−n

[1

2

(β2

σ2
u

− 1− log
β2

σ2
u

)
− ε

(n)
2

]}

+ exp

{
−n

[1

2

(α2

σ2
u

− 1− log
α2

σ2
u

)
− ε

(n)
2

]}
. (4.58)
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To bound P1, we use (4.27) and (4.38) to obtain

P1 =

∫

Bn(α,β)

p(u)

∫

E1(u)

q(cw) dcw du

≤ exp
{
− exp

(
n(ε

(n)
0 − ε

(n)
1 )

)}
. (4.59)

Since the right hand side of (4.59) vanishes at a double exponential speed by choosing

0 < ε
(n)
1 < ε

(n)
0 , the exponential converges to zero. Thus the exponential of P

(n)

e,w is

dominated by (4.57) and (4.58).

Noting that ε
(n)
1 , ε

(n)
2 > 0 can be arbitrarily small thus be absorbed into γ, α and β,

define

Λ1(γ, β, ρ, s)

, 1

2
log

(
1 + 2sβ2σ2

x + 2s(1 + ρ)σ2
u

(
β2 −Dc − 2sDcβ

2σ2
x

))

−ρ log τ − 1 + ρ

2
log γ − ρRw

=
1

2
log

(
1 + 2sβ2(γ − 1)Dc + 2s(1 + ρ)σ2

u

(
β2 −Dc − 2sβ2(γ − 1)D2

c

)

γ

)

+
ρ

2
log

(
1 + 2sβ2(γ − 1)Dc + (γ−1)Dc

(1+ρ)Da

γ

)
− ρRw, (4.60)

and

Λ2(γ, β) = min

{
1

2

(β2

σ2
u

− 1− log
β2

σ2
u

)
,

1

2

(γDc

σ2
u

− 1− log
γDc

σ2
u

)}
. (4.61)

We obtain

P
(n)

e,w ≤ P0 + P1 + P2

≤ exp
{−nΛ1(γ, β, ρ, s)

}
+ exp

{− exp
(
n(ε

(n)
0 − ε

(n)
1 )

)}
+ 2 exp

{−nΛ2(γ, β)
}

≤ 4 exp
{
−n

(
min

[
Λ1(γ, β, ρ, s), Λ2(γ, β)

])}
, ε̄(n) (4.62)

for n sufficiently large. Since the above bound is independent of watermark w, we then

obtain a random coding upper bound for P
(n)

e .
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4.5.5 The Existence of a Sequence of (Rc, Rw, n) Codes

In Section 4.5.3 and 4.5.4, we show that for any ε̄(n), δ̄(n) > 0, the average probability

of error and the average distortion with respect to the random codebook c are bounded

by P
(n)

e ≤ ε̄(n) and D
(n) ≤ Dc + δ̄(n), respectively, for n sufficiently large. Now we show

that for given δ > 0, there exists at least one code c̃ such that P
(n)
e (c̃) < (ε̄(n))

1− 1√
n and

simultaneously D(n)(c̃) ≤ Dc +δ for n sufficiently large. Let A be the set of all the codes

with P
(n)
e (c) ≤ (ε̄(n))

1− 1√
n , i.e.,

A ,
{
c : P (n)

e (c) ≤ (ε̄(n))
1− 1√

n
}
.

Since P
(n)
e (c) is a random variable (a function of the random code c), it follows from

Markov’s inequality that Pr
{
P

(n)
e (c) > (ε̄(n))

1− 1√
n
} ≤ (ε̄(n))

1√
n or Pr(A) ≥ 1 − (ε̄(n))

1√
n

for n sufficiently large. Therefore, we have

∫

A

q(c)

Pr(A)
D(n)(c) dc ≤ 1

Pr(A)

∫
q(c)D(n)(c) dc

≤ Dc + δ̄(n)

1− (ε̄(n))
1√
n

. (4.63)

Since (ε̄(n))
1√
n ≤ 4

1√
n exp

{−√n
(
min

[
Λ1(γ, β, ρ, s), Λ2(γ, β)

])}
, which goes to 0 as n →

∞, we can make

Dc + δ̄(n)

1− (ε̄(n))
1√
n

≤ Dc + δ (4.64)

for n sufficiently large. This demonstrates that, there exists at least one sequence of

codes {c̃} satisfying P
(n)
e (c̃) < (ε̄(n))

1− 1√
n and D(n)(c̃) ≤ Dc + δ simultaneously for n

sufficiently large.

2
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4.6 Proof of Corollary 4.1

We first get a stationary point with respect to s by letting

∂Λ1(γ, β, ρ, s)

∂s
=

β2(γ − 1)Dc + (1 + ρ)σ2
u(β

2 −Dc)− 4s(1 + ρ)σ2
uβ

2(γ − 1)D2
c

1 + 2sβ2(γ − 1)Dc + 2s(1 + ρ)σ2
u

(
β2 −Dc − 2sβ2(γ − 1)D2

c

)

+
ρβ2(γ − 1)Dc

1 + 2sβ2(γ − 1)Dc + γ−1)Dc

(1+ρ)Da

(4.65)

= 0. (4.66)

It is convenient to introduce the following notation:

a , 1

β2(γ − 1)Dc + (1 + ρ)σ2
u(β

2 −Dc)
, (4.67)

b , 1

β2(γ − 1)Dc

+
1

(1 + ρ)β2Da

, (4.68)

c , σ2
uβ

2(γ − 1)D2
c . (4.69)

Then we obtain

1− 4s(1 + ρ)ac

a + 2s− 4s2(1 + ρ)ac
+

ρ

b + 2s
= 0. (4.70)

or equivalently

2ac(2 + ρ)s2 + (2abc− 1)s− ρa + b

2(1 + ρ)
= 0. (4.71)

Solving the above equation, we obtain

s =
1− 2abc±

√
(1− 2abc)2 + 4ac(ρa + b)2+ρ

1+ρ

4ac(2 + ρ)
. (4.72)

It can be easily checked that only

s∗ =
1− 2abc +

√
(1− 2abc)2 + 4ac(ρa + b)2+ρ

1+ρ

4ac(2 + ρ)
. (4.73)
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satisfies the constraint s ≥ 0. In fact, the above s∗ maximizes Λ1(γ, β, ρ, s) over s ≥ 0

since

∂2Λ1(γ, β, ρ, s)

∂s2
=

−4(1 + ρ)ac
(
a + 2s− 4s2(1 + ρ)ac

)− 2
(
1− 4s(1 + ρ)ac

)2

(
a + 2s− 4s2(1 + ρ)ac

)2

− 2ρ

(b + 2s)2

= −1 + 4(1 + ρ)a2c +
(
1− 4s(1 + ρ)ac

)2

(
a + 2s− 4s2(1 + ρ)ac

)2 − 2ρ

(b + 2s)2

< 0. (4.74)

4.7 Proof of Corollary 4.2

We first maximize Λ1(γ, β, ρ, s) over ρ ∈ [0, 1]. Denote θ = β2−Dc− 2sβ2(γ− 1)D2
c , we

have

∂Λ1(γ, β, ρ, s)

∂ρ

=
sσ2

uθ

1 + 2sβ2(γ − 1)Dc + 2s(1 + ρ)σ2
uθ

+
1

2
log

(
1 + 2sβ2(γ − 1)Dc + (γ−1)Dc

(1+ρ)Da

γ

)

−
ρ(γ−1)Dc

2(1+ρ)2Da

1 + 2sβ2(γ − 1)Dc + (γ−1)Dc

(1+ρ)Da

−Rw (4.75)

and

∂2Λ1(γ, β, ρ, s)

∂ρ2

= − 2
(
sσ2

uθ
)2

(
1 + 2sβ2(γ − 1)Dc + 2s(1 + ρ)σ2

uθ
)2 −

1

2

γ(γ−1)Dc

(1+ρ)2Da

1 + 2sβ2(γ − 1)Dc + (γ−1)Dc

(1+ρ)Da

−
(γ−1)Dc(1+2ρ−ρ2)

2Da(1+ρ)4

(
1 + 2sβ2(γ − 1)Dc + (γ−1)Dc

(1+ρ)Da

)
+ ρ

2

(
(γ−1)Dc

(1+ρ)2Da

)2

(
1 + 2sβ2(γ − 1)Dc + (γ−1)Dc

(1+ρ)Da

)2

≤ 0. (4.76)
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Thus by solving the equation

∂Λ1(γ, β, ρ, s)

∂ρ
= 0,

we can obtain a ρ which maximizes Λ1(γ, β, ρ, s), or equivalently

Rw =
1

2
log

(
1 + 2sβ2(γ − 1)Dc + (γ−1)Dc

(1+ρ)Da

γ

)

− ρ

2s + b

1

2(1 + ρ)2Daβ2
+

saσ2
uθ

a + 2s− 4s2(1 + ρ)ac
. (4.77)

For the s∗ satisfying (4.66), this reduces to

Rw =
1

2
log

(
1 + 2s∗β2(γ − 1)Dc + (γ−1)Dc

(1+ρ)Da

γ

)

− ρ

2s∗ + b

(
1

2(1 + ρ)2Daβ2
+

s∗aσ2
uθ

1− 4s∗(1 + ρ)ac

)
. (4.78)

It can be easily shown that Rw is a decreasing function of ρ. That is, the maximum

value of Rw, denoted by R∗
w, can be obtained by letting ρ = 0 (in other words, when

the maximization of Λ1(γ, β, ρ, s) over ρ is achieved by ρ = 0, and we know that the

Rw which satisfies (4.78) with ρ = 0 is the maximum value we can get, since Rw is a

decreasing function of ρ), which results in

Rw ≤ R∗
w , 1

2
log

(
1 + 2s∗β2(γ − 1)Dc + (γ−1)Dc

Da

γ

)
. (4.79)

Noting that by setting ρ = 0, s∗ reduces to

s∗ =
1

4ac
. (4.80)

Plugging the above back into (4.79) and replacing a, c with (4.67) and (4.69) respectively,

we obtain

R∗
w =

1

2
log




1 +
β2

σ2
u

(γ−1)+( β2

Dc
−1)

2
+ (γ−1)Dc

Da

γ


 . (4.81)
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Furthermore, noting that R∗
w is a decreasing function of γ and an increasing function of

β2, and γ and β2 are independent of each other, if we choose γ → ( σ2
u

Dc

)+
and β2 → (

σ2
u

)−
,

we have

Rw ≤ R∗
w →

(
1

2
log

(
1 +

Dc −D2
c/σ

2
u

Da

))−
. (4.82)

It is easily seen that in this case we have supρ,s,β,γ Λ1(γ, β, ρ, s) > 0 for any given Rw

satisfying (4.82).

On the other hand, the condition γ < e2(Rc−Rw) is equivalent to

Rw < Rc − 1

2
log γ. (4.83)

Noting that Rc − 1
2
log γ is also a decreasing function of γ, as γ → ( σ2

u

Dc

)+
, we have

Rw →
(
Rc − 1

2
log

σ2
u

Dc

)−
. (4.84)

Combining (4.82) with (4.84), we obtain that the error exponent is positive for all Rw

satisfying

Rw < min

{
Rc − 1

2
log

σ2
u

Dc

,
1

2
log

(
1 +

Dc −D2
c/σ

2
u

Da

)}
. (4.85)

By the continuity of Λ1(γ, β, ρ, s) with respect to all the parameters, it is easy to

see that we can always find γ, β, ρ, s such that Λ1(γ, β, ρ, s) is positive as long as Rw

satisfies (4.85). The proof is finished by noting that Λ2(γ, β) is always positive, thus

ER(Rc, Rw; Dc, Da) is positive as long as Rw satisfies (4.85).

2

4.8 Conclusions

In this chapter, a computable error exponent for a joint compression and private wa-

termarking system for memoryless Gaussian sources under AWGN attacks is obtained.
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4.8. Conclusions

The error exponent is derived by applying random coding technique that uses Gallager’s

method, and by incorporating techniques for the derivation of Gaussian source reliability

functions. Numerical results show that the random coding exponent is positive within

almost the entire achievable region [33]. In future work, we plan to refine our analysis

to obtain a random coding exponent which is positive in the entire achievable region.
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Chapter 5

Achievable Rate Region for

Multi-User Joint Compression and

Private Watermarking Under

Multiple Access Attacks

5.1 Introduction

In this chapter, we extend the joint compression and information hiding problem from

a single-user (e.g., [33], [46], [47], [76], [89]) to a multi-user scenario. Our model is

depicted in Fig. 5.1. Assume that two users separately embed their secret messages W1

and W2 (at rates R1
w and R2

w respectively) into two correlated DMS’s (Un
1 , Un

2 ). Each

user can only access one of the two host sources. Due to bandwidth and/or storage

constraints, two compressed stegotexts Xn
1 and Xn

2 are obtained at rates R1
c and R2

c

respectively. The stegotexts are corrupted by a discrete memoryless multiple access
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-W1

at rate R1
w

-W2

at rate R2
w

Joint

Watermarking/

Compression

ϕ
(n)
1

-Xn
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Compression1
-at rate

R1
c

Decompression

Joint

Watermarking/

Compression

ϕ
(n)
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-Xn
2 Lossless

Compression1
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R2
c

Decompression

Encoder 1

Encoder 2

?
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1
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2
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6

-

-

-

-

Xn
1

Xn
2

Destination

Destination

MAC

WY |X1X2

-Y n
Joint

Decoder

ψ(n)

-(cW1,cW2)

Figure 5.1: A general model of joint watermarking and compression for multi-user in-

formation hiding.

channel (MAC) WY |X1X2 . As a result, a forgery Y n is produced at the output of the

channel. The authorized receiver retrieves the hidden information from the received

forgery. Throughout the paper, we focus on the private scenario, i.e., we assume the

decoder has perfect knowledge of the original host sources (Un
1 , Un

2 ).

For this two-user private information hiding system, we are interested in determining

the rate region of all achievable rate quadruples (R1
w, R2

w, R1
c , R

2
c) for given distortion

levels (D1, D2). We find that the multiple embedding problem is strongly related to

the lossy multi-terminal source coding problem for correlated sources, where separate

encoders are designed in order to guarantee the joint typicality of the codewords with

respect to the correlated source sequences. An inner bound for the achievable rate region

is obtained (see Theorem 5.1) based on a ε-strong typicality coding/decoding argument.

1Here the term “lossless compression” means an invertible binary representation of the stegotext

Xn
i , i = 1, 2.

96



5.2. Preliminary: Jointly Typical Sequences

More specifically, we employ a generalized rate-distortion encoding scheme to ensure

that (u1,u2,x1,x2) are jointly strongly typical with high probability. The generalized

rate-distortion encoding scheme, introduced in [54] for Gaussian multi-terminal source

coding (see also [79], [26]), can be briefly described as follows. One of the encoders, say

Encoder 1, chooses a codeword x1 such that conditioned on (u1,x1), (u1,x1, U
n
2 , Xn

2 )

is ε-strongly typical with high probability. The other encoder, Encoder 2, which is

assumed to know the codebook of Encoder 1 (ϕ
(n)
1 (W1, U

n
1 )), generates a codeword x2

such that (Un
1 , ϕ

(n)
1 (W1, U

n
1 ),u2,x2) is ε-strongly typical with high probability. To this

end, an extended Markov lemma (see Lemma 5.5) ensures that the codewords x1 and

x2, although generated from separate encoders, are ε-strongly typical with the source

sequences (u1,u2) with high probability.

We also derive an outer bound for the achievable rate region with single-letter

characterization (see Theorem 5.2), which follows from Fano’s inequality and standard

information-theoretical bounding arguments.

The rest of this chapter is organized as follows. In Section 5.2, we review the definition

of ε-strong typicality and its properties, which are widely used in the rest of this thesis.

In Section 5.3, we formulate our problem and establish an inner bound and an outer

bound for the achievable rate region. All the proofs are given in Section 5.4. Finally, we

draw conclusions in Section 5.5.

5.2 Preliminary: Jointly Typical Sequences

Let V , (X1, X2, ..., Xm) be a superletter (a collection of RV’s) taking values in a finite

set V , X1 × X2 × · · · × Xm with joint distribution PV (x1, ..., xm), which for simplicity

we also denote by PV (v).
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Definition 5.1 [10] For any 0 < ε < 1, a vector of n-length sequences v , (x1,x2, ...,xm) ∈
Vn is called ε-strongly typical with respect to PV if

1. For all v ∈ V with PV (v) > 0, we have

∣∣∣∣
N(v|v)

n
− PV (v)

∣∣∣∣ ≤
ε

|V| ,

where N(v|v) is the number of occurrences of v in v;

2. For all v ∈ V with PV (v) = 0, N(v|v) = 0.

Denote by T
(n)
ε (V ) or T

(n)
ε the set of all ε-strongly typical sequences (x1, . . . ,xm)

with respect to the joint distribution PV (v). Let IV , {1, 2, ..., m}, and IG ⊆ IV . We

then let G = (Xg1 , Xg2 , ..., Xg|IG|
) ∈ G be a “sub-superletter” corresponding to IG such

that gi ∈ IG. Let G, K, and L be sub-superletters of V such that IG, IK , IL are disjoint,

and let PG, PK and PG|K be the marginal and conditional distributions induced by PV ,

respectively. Denote by T
(n)
ε (G) the projection of T

(n)
ε (V ) to the coordinates of G. Given

any k ∈ Kn, denote T
(n)
ε (G|k) ,

{
g ∈ Gn : (g,k) ∈ T

(n)
ε (G,K)

}
. Clearly T

(n)
ε (G|k) = ∅

if k /∈ T
(n)
ε (K). The following lemma (see, e.g., [10, pp. 342–343]2) restates the well

known exponential bounds for the cardinality of ε-strongly typical sets.

Lemma 5.1 ( [10]) For any disjoint subsets G,K ⊆ V , let Gn, Kn and V n be i.i.d.

drawn according to P
(n)
G , P

(n)
K and P

(n)
V . The following properties hold for sufficiently

large n.

1. P
(n)
V

{
V n ∈ T (n)

ε

}
≥ 1− η. Moreover P

(n)
K

{
Kn ∈ T (n)

ε (K)
}
≥ 1− η,

2. For any k ∈ T (n)
ε (K),

∣∣∣ 1
n

log P
(n)
K (k) + H(K)

∣∣∣ ≤ η,

2Note that the sets T
(n)
ε (G|k) are only implicitly defined in [10].
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3. 2n(H(K)−η) ≤
∣∣∣T (n)

ε (K)
∣∣∣ ≤ 2n(H(K)+η),

4. For any k ∈ T (n)
ε (K), P

(n)
G

{
Gn ∈ T (n)

ε (G|k)
}
≥ 1− η,

5. For any k ∈ T (n)
ε (K), 2n(H(G|K)−η) ≤

∣∣∣T (n)
ε (G|k)

∣∣∣ ≤ 2n(H(G|K)+η),

6. For (g,k) ∈ T (n)
ε (G,K),

∣∣∣ 1
n

log P
(n)
G|K(g|k) + H(G|K)

∣∣∣ ≤ η,

where η , η(ε, n) is a generic positive term such that limε→0 limn→∞ η(ε, n) = 0.

Finally, we recall the Markov lemma for ε-strong typicality.

Lemma 5.2 (Markov Lemma [10, p. 579]) Let G → K → L form a Markov chain in

this order. For any 0 < ε0 < 1 and (g,k) ∈ T
(n)
ε (G,K),

P
(n)
L|K

(
l : (g,k, l) ∈ T (n)

ε (G,K,L)
∣∣k)

> 1− ε0

for n sufficiently large, independently of (g,k).

5.3 Problem Formulation and Main Results

Let the pair of finite-alphabets discrete memoryless correlated host sources {(U1j, U2j)}∞j=1

have marginal distribution QU1U2 . The secret messages w1 and w2 are independently

and uniformly chosen from the sets W1 , {1, 2, ..., M1
w} and W2 , {1, 2, ..., M2

w}, re-

spectively. The attack channel is modeled as a two-sender one-receiver discrete mem-

oryless MAC WY |X1X2 having finite input alphabets X1 and X2, finite output alpha-

bet Y , and a transition probability distribution WY |X1X2(y|x1, x2). The probability of

receiving y ∈ Yn conditioned on sending x1 ∈ X n
1 and x2 ∈ X n

2 is hence given by

W
(n)
Y |X1X2

(y|x1,x2).

Let di : Ui × Xi → [0,∞) be single-letter distortion measures and define dmax
i ,

maxui,xi
di(ui, xi) for i = 1, 2. For ui ∈ Un

i and xi ∈ X n
i , let di(ui,xi) =

∑n
j=1 di(uij, xij).
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Definition 5.2 Given PU1U2 and WY |X1X2 , a (R1
w, R2

w, R1
c , R

2
c ; n) joint compression and

private watermarking (JCPW) code with block length n (see Fig. 5.1) consists of two

encoders

ϕ
(n)
1 : W1 × Un

1 −→ X n
1 ,

ϕ
(n)
2 : W2 × Un

2 −→ X n
2 ,

and a private (in the sense that the host sources are available at the decoder) decoder

ψ(n) : Yn × Un
1 × Un

2 −→W1 ×W2.

Let i ∈ {1, 2}. The watermarking rate for encoder i is defined as Ri
w = log2 M i

w

n
. The

stegotext xi = ϕ
(n)
i (wi,ui) takes values from a set C(i) ⊆ X n

i of M i
c codevectors. The

compression rate for encoder i is defined as Ri
c = log2 M i

c

n
.

Definition 5.3 The probability of error in reproducing the secret sources is given by

P (n)
e

, Pr
(
ψ(n)(Y n, Un

1 , Un
2 ) 6= (W1,W2)

)

=
1

2n(R1
w+R2

w)

M1
w∑

w1=1

M2
w∑

w2=1

∑
Un

1 ×Un
2

Q
(n)
U1U2

(u1,u2)W
(n)
Y |X1X2

(
y : ψ(n)(y,u1,u2) 6= (w1, w2)

∣∣x1,x2

)

where xi , ϕ
(n)
i (wi,ui) (i = 1, 2).

Definition 5.4 Given QU1U2 and WY |X1X2 , a quadruple (R1
w, R2

w, R1
c , R

2
c) is said to

be achievable with respect to distortion levels (D1, D2) if there exists a sequence of

(R1
w, R2

w, R1
c , R

2
c ; n) JCPW codes such that

lim
n→∞

P (n)
e = 0

and

lim sup
n→∞

1

n
E

[
di

(
Un

i , ϕ
(n)
i (Wi, U

n
i )

)] ≤ Di, i = 1, 2.
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Definition 5.5 The achievable rate region R(D1, D2) is the closure of the set of achiev-

able rate quadruples R , (R1
w, R2

w, R1
c , R

2
c).

Remark: It can be shown by using a time-sharing argument [10] that R(D1, D2) is

convex.

Definition 5.6 Given QU1U2 , WY |X1X2 , and a pair of distortion levels (D1, D2), let

PD1,D2 be the set of random variable tuples (U1, U2, X1, X2, Y ) ∈ U1×U2×X1×X2×Y
such that the joint distribution PU1U2X1X2Y satisfies: (1) it can be factorized as

PU1U2X1X2Y = QU1U2PX1|U1PX2|U2WY |X1X2 ,

and (2) E[di(Ui, Xi)] ≤ Di, for i = 1, 2.

Theorem 5.1 Let Rin(D1, D2) be the closure of the convex hull of all (R1
w, R2

w, R1
c , R

2
c)

satisfying

R1
w < min

{
R1

c − I(U1; X1), I(X1; Y |X2, U1, U2)
}

, (5.1)

R2
w < min

{
R2

c − I(U2; X2), I(X2; Y |X1, U1, U2)
}

, (5.2)

R1
w + R2

w < I(X1, X2; Y |U1, U2). (5.3)

for some (U1, U2, X1, X2, Y ) ∈ PD1,D2 . Then Rin(D1, D2) ⊆ R(D1, D2).

By introducing an auxiliary random variable V , we establish the following outer

bound.

Definition 5.7 Given PV , QU1U2 , WY |X1X2 , and a pair of distortion levels (D1, D2), let

P̃D1,D2 be the set of random variable tuples (V, U1, U2, X1, X2, Y ) ∈ V × U1 ×U2 ×X1 ×
X2×Y such that the joint distribution PV U1U2X1X2Y satisfies: (1) it can be factorized as

PV U1U2X1X2Y = PV QU1U2PX1|U1V PX2|U2V WY |X1X2 ,

and (2) E[di(Ui, Xi)] ≤ Di, for i = 1, 2.
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Theorem 5.2 Let Rout(D1, D2) be the closure of all (R1
w, R2

w, R1
c , R

2
c) satisfying

R1
w < min

{
R1

c − I(U1; X1|V ), I(X1; Y |X2, U1, U2, V )
}

, (5.4)

R2
w < min

{
R2

c − I(U2; X2|V ), I(X2; Y |X1, U1, U2, V )
}

, (5.5)

R1
w + R2

w < I(X1, X2; Y |U1, U2, V ). (5.6)

for some (V, U1, U2, X1, X2, Y ) ∈ P̃D1,D2 . Then R(D1, D2) ⊆ Rout(D1, D2). Further-

more, the cardinality of the alphabet of the auxiliary RV V can be bounded as |V| ≤
|U1||U2||X1||X2|+ 4.

5.3.1 Special Cases

1. Single User Case. There is only one secret message W1, i.e., Encoder 2 is turned

off and the MAC reduces to a (single-user) discrete memoryless channel. Define

U1 = U,X1 = X,D1 = D,R1
c = Rc and R1

w = Rw, (5.1)–(5.3) reduce to

Rw < min
{

Rc − I(U ; X); I(X; Y |U)
}

. (5.7)

Therefore, given a compression rate Rc, the maximum watermarking rate R∗
w is

obtained by

R∗
w = max

PX|U :E[d(U,X)]≤D
min

{
Rc − I(U ; X), I(X; Y |U)

}
. (5.8)

Equivalently, the minimum rate compression rate R∗
c to achieve a target water-

marking rate Rw is obtained by

R∗
c = min

PX|U :E[d(U,X)]≤D, Rw<I(X;Y |U)
I(U ; X) + Rw. (5.9)

It is easy to see that these results reduces to the single-user private joint com-

pression and watermarking scenarios (see, e.g., [33], [89]). Furthermore, in this

single-user case, it can be shown that Rin(D) = Rout(D) = R(D) (see e.g., [34,

Theorem 2.1], for the case of discrete alphabets).
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2. Attack-Free Channel. Let l : X1 × X2 → Y be a bijection and let Y = l(X1, X2).

(5.1)–(5.3) reduce to

R1
w < min

{
R1

c − I(U1; X1), H(X1|U1)
}

, (5.10)

R2
w < min

{
R2

c − I(U2; X2), H(X2|U2)
}

, (5.11)

R1
w + R2

w < H(X1|U1) + H(X2|U2). (5.12)

Note that the last inequality is a redundant condition and thus can be removed.

As a result, this reduces to two parallel joint compression and watermarking prob-

lems with no attacks. For this case, we can easily show that Rin(D1, D2) =

Rout(D1, D2) = R(D1, D2). Furthermore, R(D1, D2) is the Cartesian product of

R(D1) andR(D2), whereR(Di) , max
PXi|Ui

:E[di(Ui,Xi)]≤Di

min
{
Ri

c−I(Ui; Xi), H(Xi|Ui)
}
,

i = 1, 2.

5.4 Proofs

5.4.1 Proof of Theorem 5.1

We first give an outline of the proof. We need to show that for given QU1U2 , WY |X1X2 , and

any (R1
w, R2

w, R1
c , R

2
c) ∈ Rin(D1, D2), there exists a sequence of JCPW codes (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n))

such that P
(n)
e → 0 as n → ∞ and for any δ > 0, 1

n
E[di(U

n
i , ϕ

(n)
i (Wi, U

n
i ))] ≤ Di + δ,

i = 1, 2, for n sufficiently large.

Fix (PX1|U1 , PX2|U2) such that the following are satisfied for some ε′ > 0 (ε′ will be

specified later),

R1
w < min

{
R1

c − I(U1; X1)− ε′, I(X1; Y |X2, U1, U2)− ε′
}

, (5.13)

R2
w < min

{
R2

c − I(U2; X2)− ε′, I(X2; Y |X1, U1, U2)− ε′
}

, (5.14)

R1
w + R2

w < I(X1, X2; Y |U1, U2)− ε′, (5.15)
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E[di(Ui, Xi)] ≤ Di, i = 1, 2. (5.16)

Define

P
(n)
i , Pr

( 1

n
di

(
Un

i , ϕ
(n)
i (Wi, U

n
i )

)
> Di + εdmax

i

)
, i = 1, 2.

We will prove that for any ε1 > 0, the following probabilities, which are averaged prob-

abilities over a family of random codes (ϕ
(n)
1 , ϕ

(n)
2 ), satisfy

E[P (n)
e ] ≤ ε1, E[P

(n)
1 ] ≤ ε1, E[P

(n)
2 ] ≤ ε1

for n sufficiently large. Then E{P (n)
e + P

(n)
1 + P

(n)
2 } ≤ 3ε1, which guarantees that there

exists at least one pair of codes (ϕ
(n)
1 , ϕ

(n)
2 ) such that P

(n)
e +P

(n)
1 +P

(n)
2 ≤ 3ε1 and hence

P
(n)
e ≤ 3ε1, P

(n)
1 ≤ 3ε1, P

(n)
2 ≤ 3ε1 are simultaneously satisfied for n sufficiently large.

Finally, it can be easily shown that P
(n)
i ≤ 3ε1 implies for n sufficiently large that

1

n
E

[
di(U

n
i , ϕ

(n)
i (Wi, U

n
i ))

]
≤ Di + εdmax

i + P
(n)
i dmax

i ≤ Di + δ.

Random Code Design

In what follows, the ε-strongly typical set T (n)
ε is defined under the joint distribution

PU1U2X1X2Y = QU1U2PX1|U1PX2|U2WY |X1X2

and all the marginal and conditional distributions, e.g., PU2X2 , PU1|U2X2 , etc, are induced

by PU1U2X1X2Y defined in the above. The parameter ε, which is chosen sufficiently small,

will be specified later in the proof.

Random code generation. Let i = 1, 2. Denote Li , 2n(Ri
c−Ri

w). For every wi ∈ Wi,

randomly generate a codebook

Cwi
, {xi(wi, ti); ti = 1, · · · , Li}
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where each codeword xi(wi, ti) is independently and uniformly drawn from the typical

set T (n)
ε (Xi). Denote the whole codebook for Encoder i by C(i) = {Cwi

}M i
w

wi=1, where we

recall that M i
w = 2nRi

w . Reveal the codebooks to both encoders and the decoder.

Encoder ϕ
(n)
1 . To define the encoder ϕ

(n)
1 , we need some new notation. Following [54],

we introduce a conditional probability

A(n)(u1,x1) , P
(n)
U2X2|U1X1

{
(u2,x2) : (u2,x2) ∈ T (n)

ε (U2, X2|u1,x1)
∣∣u1,x1

}
. (5.17)

For µ ∈ (0, 1), let

F (n)
µ,ε (U1, X1) ,

{
(u1,x1) : A(n)(u1,x1) ≥ 1− µ

}
, (5.18)

F (n)
µ,ε (U1|x1) ,

{
u1 : (u1,x1) ∈ F (n)

µ,ε (U1, X1)
}

. (5.19)

By definition, we have F (n)
µ,ε (U1, X1) ⊆ T (n)

ε (U1, X1). Moreover, we introduce the follow-

ing sets based on F (n)
µ,ε (U1, X1) for later in the proof,

F (n)
µ,ε (X1|u1) ,

{
x1 : (u1,x1) ∈ F (n)

µ,ε (U1, X1)
}

,

F (n)
µ,ε (U1) ,

{
u1 : (u1,x1) ∈ F (n)

µ,ε (U1, X1) for some x1

}
,

F̃ (n)
µ,ε (U1) ,

{
u1 : P

(n)
X1|U1

{
x1 : x1 ∈ F (n)

µ,ε (X1|u1)
∣∣u1

}
≥ 1− µ

}
.

Given w1 ∈ {1, . . . , M1
w} and u1, ϕ

(n)
1 seeks the first codeword x1(w1, t1) with t1 ≤

L1 − 1 in Cw1 such that u1 ∈ F (n)
µ,ε (U1|x1(w1, t1)). If no such codeword is found, choose

x1(w1, L1). The resulting x1(w1, t1) (or x1(w1, L1)), known as the stegotext ϕ
(n)
1 (w1,u1)

or denoted by x1(w1,u1), is then sent to the (attack) channel.

Encoder ϕ
(n)
2 . To define the encoder ϕ

(n)
2 , we introduce the following notation. For

the above given ϕ
(n)
1 , let

B(n)
ϕ1

(u2,x2) , 1

2nR1
w

M1
w∑

w1=1

P
(n)
U1|U2X2

{
u1 :

(
u1, ϕ

(n)
1 (w1,u1)

) ∈ T (n)
ε (U1, X1|u2,x2)

∣∣u2,x2

}
.
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For ν ∈ (0, 1), let

F (n)
ϕ1,ν,ε(U2, X2) ,

{
(u2,x2) : B(n)

ϕ1
(u2,x2) ≥ 1− ν

}
, (5.20)

F (n)
ϕ1,ν,ε(U2|x2) ,

{
u2 : (u2,x2) ∈ F (n)

ϕ1,ν,ε(U2, X2)
}

. (5.21)

By definition, it is seen that F (n)
ϕ1,ν,ε(U2, X2) ⊆ T (n)

ε (U2, X2). Moreover, we introduce the

following sets based on F (n)
ϕ1,ν,ε(U2, X2) for later in the proof,

F (n)
ϕ1,ν,ε(X2|u2) ,

{
x2 : (u2,x2) ∈ F (n)

ϕ1,ν,ε(U2, X2)
}

,

F (n)
ϕ1,ν,ε(U2) ,

{
u2 : (u2,x2) ∈ F (n)

ϕ1,ν,ε(U2, X2) for some x2

}
,

F̃ (n)
ϕ1,ν,ε(U2) ,

{
u2 : P

(n)
X2|U2

{
x2 : x2 ∈ F (n)

ϕ1,ν,ε(X2|u2)
∣∣u2

} ≥ 1− ν
}

.

Given w2 ∈ {1, 2, ..., M2
w} and u2, ϕ

(n)
2 seeks the first codeword x2(w2, t2) with t2 ≤

L2 in Cw2 such that u2 ∈ F (n)
ϕ1,ν,ε(U2|x2(w2, t2)). If no such codeword is found, choose

x2(w2, L2). The resulting x2(w2, t2) (or x2(w2, L2)), known as the stegotext ϕ
(n)
2 (w2,u2)

or simply denoted by x2(w2,u2), is then sent to the (attack) channel.

Decoder ψ(n). The decoder has full knowledge of (u1,u2), and thus can generate

all possible stegotexts {ϕ(n)
i (wi,ui)}M i

w
wi=1, i = 1, 2. Upon receiving the sequence y, the

decoder finds the unique pair (ŵ1, ŵ2) such that, (x̂1, x̂2,y) ∈ T (n)
ε (X1, X2, Y |u1,u2),

where x̂1 = ϕ
(n)
1 (ŵ1,u1) and x̂2 = ϕ

(n)
2 (ŵ2,u2). A decoding error occurs if at least one

of the following event occurs:

1. E0 : (u1,u2,x1(w1,u1),x2(w2,u2),y) /∈ T (n)
ε (U1, U2, X1, X2, Y );

2. E1: there exist w′
1 6= w1 such that

(u1,u2,x1(w
′
1,u1),x2(w2,u2),y) ∈ T (n)

ε (U1, U2, X1, X2, Y );

3. E2: there exist w′
2 6= w2 such that

(u1,u2,x1(w1,u1),x2(w
′
2,u2),y) ∈ T (n)

ε (U1, U2, X1, X2, Y );
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4. E3: there exist w′
1 6= w1 and w′

2 6= w2 such that

(u1,u2,x1(w
′
1,u1),x2(w

′
2,u2),y) ∈ T (n)

ε (U1, U2, X1, X2, Y ).

Bounding EC(1),C(2) [P
(n)
i ]

We first give two useful lemmas.

Lemma 5.3 Given µ ∈ (0, 1) and u1 ∈ F (n)
µ,ε (U1),

|F (n)
µ,ε (X1|u1)| ≥

(
1− η

µ

)
2n(H(X1|U1)−η) (5.22)

for n sufficiently large. For any u2 ∈ F̃ (n)
ϕ1,ν,ε(U2),

|F (n)
ϕ1,ν,ε(X2|u2)| ≥ (1− ν) 2n(H(X2|U2)−η) (5.23)

for n sufficiently large.

Proof: The proof is given in Section 5.4.3.

Lemma 5.4 Given µ, ν ∈ (0, 1), we have

∑

( eF(n)
µ,ε (U1))c

Q
(n)
U1

(u1) ≤ η

µ2
(5.24)

and

EC(1)




∑

( eF(n)
ϕ1,ν,ε(U2))c

Q
(n)
U2

(u2)


 ≤

µ + (1− µ)
(

η
µ

+ λ + η
µ2

)

ν2
(5.25)

for n sufficiently large, where λ , e−2n(ε′−2η)
e−2−n(I(X1;U1)+2η)

.

Proof: The proof is given in Section 5.4.4.

Note that the two encoders are designed asymmetrically. Encoder 1 works with

codebook C(1), while Encoder 2 works with both C(1) and C(2). Thus, we need to bound

P
(n)
1 and P

(n)
2 separately.
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We first bound EC(1),C(2) [P
(n)
1 ]. Since Encoder 1 only depends on C(1), we may also

write it as

EC(1) [P
(n)
1 ] = EC(1)Pr

( 1

n
d1

(
Un

1 , ϕ
(n)
1 (W1, U

n
1 )

)
> D1 + εdmax

1

)
.

For a randomly chosen subcodebook Cw1 = {x1(w1, t1), t1 = 1, 2, ..., L1}, define

θ1 ,
{
t1 : t1 ≤ L1 − 1,u1 ∈ F (n)

µ,ε (U1|x1(w1, t1))
}

.

Given w1 and u1, define the waiting time for finding a codeword in Cw1 by

T (u1, Cw1) ,





min{t1 : t1 ∈ θ1}, if θ1 6= Ø,

L1, otherwise .
(5.26)

Given u1 and Cw1 , if T (u1, Cw1) ≤ L1−1, then we have
(
u1, ϕ

(n)
1 (w1,u1)

) ∈ F (n)
µ,ε (U1, X1) ⊆

T (n)
ε (U1, X1). For every

(
u1, ϕ

(n)
1 (w1,u1)

) ∈ T (n)
ε (U1, X1), we have

1

n
d1

(
u1, ϕ

(n)
1 (w1,u1)

) ≤ E[d1(U1, X1)] + εdmax
1 ≤ D1 + εdmax

1

for n large enough, where the first inequality holds by the definition of ε-strong typicality,

and the second inequality follows by (5.16). Thus

EC(1) [P
(n)
1 ] = EC(1)


 1

2nR1
w

M1
w∑

w1=1

∑
Un

1

Q
(n)
U1

(u1)Φ {T (u1, Cw1) ≥ L1}



≤
∑

F(n)
µ,ε (U1)

Q
(n)
U1

(u1)
∑
Cw1

Pr(Cw1)1 {T (u1, Cw1) ≥ L1}

+
∑

(F(n)
µ,ε (U1))c

Q
(n)
U1

(u1). (5.27)

By Lemma 5.4, we have

∑

(F(n)
µ,ε (U1))c

Q
(n)
U1

(u1) ≤ η

µ2
(5.28)
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for sufficiently large n. Let P0 be the uniform distribution on T (n)
ε (X1). For given

u1 ∈ F̃ (n)
µ,ε (U1), we have

∑
Cw1

Pr(Cw1)1 {T (u1, Cw1) ≥ L1}

=

L1−1∏
t1=1

[
1− P0

{
x1(w1, t1) : u1 ∈ F (n)

µ,ε (U1|x1(w1, t1))
}]

(5.29)

=
[
1− P0

{
x1(w1, 1) : u1 ∈ F (n)

µ,ε (U1|x1(w1, 1))
}]L1−1

=
[
1− P0

{
x1(w1, 1) ∈ F (n)

µ,ε (X1|u1)
}]L1−1

=

[
1− |F (n)

µ,ε (X1|u1)|
|T (n)

ε (X1)|

]L1−1

≤
[
1−

(1− η
µ
)2n(H(X1|U1)−η)

2n(H(X1)+η)

]L1−1

(5.30)

=

[
1− (1− η

µ
)2−n(I(X1;U1)+2η)

]2n(R1
c−R1

w)−1

≤ 1− (1− η

µ
) + exp{−2n(R1

c−R1
w−I(X1;U1)−2η) − 2−n(I(X1;U1)+2η)} (5.31)

≤ η

µ
+ e−2n(ε′−2η)

e−2−n(I(X1;U1)+2η)

(5.32)

, η

µ
+ λ, (5.33)

where (5.30) follows from Lemmas 5.1 and 5.3, (5.31) follows from the inequality (1 −
xy)k ≤ 1 − x + e−ky for 0 ≤ x, y ≤ 1, k > 0, (5.32) holds from (5.13), and we define

λ = e−2n(ε′−2η)
e−2−n(I(X1;U1)+2η)

in (5.33), which goes to 0 as n → ∞. Consequently,

plugging (5.33) and (5.28) back into the average distortion expression (5.27) yields

EC(1) [P
(n)
1 ] ≤ η

µ
+ λ +

η

µ2
≤ ε1 (5.34)

for n sufficiently large (recalling that η → 0 as ε → 0 and n → ∞, we can make ε1

arbitrarily small for n sufficiently large and ε sufficiently small).

109



5.4. Proofs

Next we bound

EC(1),C(2) [P
(n)
1 ] = EC(1),C(2)Pr

( 1

n
d1

(
Un

2 , ϕ
(n)
1 (W2, U

n
2 )

)
> D2 + εdmax

2

)
.

By introducing a waiting time variable T (u2, Cw2) defined similarly as T (u1, Cw1), we

know that for any u2 and Cw2 such that T (u2, Cw2) ≤ L2−1, we have
(
u2, ϕ

(n)
2 (w2,u2)

) ∈
F (n)

ϕ1,ν,ε(U2, X2) ⊆ T (n)
ε (U2, X2), and for any

(
u2, ϕ

(n)
2 (w2,u2)

) ∈ T (n)
ε (U2, X2), and thus

1

n
d2

(
u2,x2(s2,u2)

) ≤ E[
d2(U2, X2)

]
+ εdmax

2 < D2 + εdmax
2

for n large enough. Then we have

EC(1),C(2) [P
(n)
2 ] = EC(1),C(2)


 1

2nR2
w

M2
w∑

w2=1

∑
Un

2

Q
(n)
U2

(u2)1 {T (u2, Cw2) ≥ L2}



≤ EC(1)


 1

2nR2
w

M2
w∑

w2=1

∑

eF(n)
ϕ1,ν,ε(U2)

Q
(n)
U2

(u2)
∑
Cw2

Pr(Cw2)1 {T (u2, Cw2) ≥ L2}




+EC(1)




∑
(
eF(n)

ϕ1,ν,ε(U2)
)c

Q
(n)
U2

(u2)


 . (5.35)

The first term in the right side of the above inequality can be upper bounded in a similar

manner as in (5.29)–(5.33) to obtain

∑
Cw2

Pr(Cw2)1
{
T (u2, Cw2) > L2

} ≤ ν + λ (5.36)

for any w2 and u2 ∈ F̃ (n)
ϕ1,ν,ε(U2). The second term can be upper bounded using Lemma

5.4.

Therefore, we obtain

EC(1),C(2) [P
(n)
2 ] ≤ ν + λ +

µ + (1− µ)
(

η
µ

+ λ + η
µ2

)

ν2

≤ ε1 (5.37)

for µ, ν sufficiently small and n sufficiently large.
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Bounding EC(1),C(2) [P
(n)
e ]

To analyze the average probability of error, we need the following lemma.

Lemma 5.5 For any ε0, ε ∈ (0, 1), one can choose µ, ν ∈ (0, 1) sufficiently small such

that

EC(1),C(2)


 1

2n(R1
w+R2

w)

M1
w∑

w1=1

M2
w∑

w2=1

P
(n)
U1U2

(
v ∈ T (n)

ε (T1, U1, U2, T2)
)

 ≥ 1− ε0

for n sufficiently large, where v , (ϕ
(n)
1 (w1,u1),u1,u2, ϕ

(n)
2 (w2,u2)), and the expectation

is taken with respect to the random codes C(1) and C(2).

Proof: The proof is very similar to the proof of the extended Markov Lemma in [54,

Lemma 3] for correlated Gaussian sources. A self-contained proof is provided in Section

5.4.5 for the sake of completeness. 2

We now bound the average probability of error

P (n)
e = Pr

{
ψ(n)(Y n, Un

1 , Un
2 ) 6= (W1,W2)

}

≤ Pr(A0) + Pr
({

ψ(n)(Y n, Un
1 , Un

2 ) 6= (W1,W2)
}∣∣Ac

0

)
, (5.38)

where A0 is the event

A0 : (x1(w1,u1),u1,u2,x2(w2,u2)) /∈ T (n)
ε (X1, U1, U2, X2).

Consequently, taking expectation in (5.38) and using the union bound, we have

EC(1),C(2) [P (n)
e ] ≤ EC(1),C(2)Pr (A0) + EC(1),C(2)Pr (E0|Ac

0) +
3∑

k=1

EC(1),C(2)Pr (Ek|Ac
0) .(5.39)

First of all, it immediately follows from Lemma 5.5 (with µ = µ(ε0) and ν = ν(ε0)) that

EC(1),C(2)Pr (A0) ≤ ε0 (5.40)
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for n sufficiently large. In the following, we set ε0 = ε1/5 throughout the proof. When

Ac
0 holds, since y is drawn from the conditional distribution W

(n)
Y |X1X2

(·|x1,x2), it follows

from Lemma 5.2 that

EC(1),C(2)Pr
(
E0

∣∣Ac
0

) ≤ ε0 (5.41)

for n sufficiently large. It remains to bound EC(1),C(2)Pr
(
Ek

∣∣Ac
0

)
for k = 1, 2, 3. Using

the union bound we write

EC(1),C(2)Pr
(
E1

∣∣Ac
0

)

≤
∑

w′1 6=w1

Pr
({(

Un
1 , Un

2 , Xn
1 (w′

1, U
n
1 ), Xn

2 (w2, U
n
2 ), Y n

) ∈ T (n)
ε (U1, U2, X1, X2, Y )

}∣∣Ac
0

)
.

Since Xn
1 (w′

1, U
n
1 ) → Un

1 → Un
2 → Xn

2 (w2, U
n
2 ), and by construction, Xn

1 (w′
1, U

n
1 ) is

independent of Y n given Un
1 if w′

1 6= w1, we have

Pr
({(

Un
1 , Un

2 , Xn
1 (w′

1, U
n
1 ), Xn

2 (w2, U
n
2 ), Y n

) ∈ T (n)
ε (U1, U2, X1, X2, Y )

}∣∣Ac
0

)

=
∑

(u1,u2,x2,y)∈T (n)
ε (U1,U2,X2,Y )

∑

x1∈T (n)
ε (X1|u1,u2,x2,y)

Pr
(
Un

1 = u1, U
n
2 = u2, X

n
2 (w2, U

n
2 ) = x2, Y

n = y
∣∣Ac

0

)

×Pr
(
Xn

1 (w′
1, U

n
1 ) = x1

∣∣Un
1 = u1, U

n
2 = u2, X

n
2 (w2, U

n
2 ) = x2, Y

n = y, Ac
0

)

=
∑

(u1,u2,x2,y)∈T (n)
ε (U1,U2,X2,Y )

Pr
(
Un

1 = u1, U
n
2 = u2, X

n
2 (w2, U

n
2 ) = x2, Y

n = y
∣∣Ac

0

)

∑

x1∈T (n)
ε (X1|u1,u2,x2,y)

Pr
(
Xn

1 (w′
1, U

n
1 ) = x1

∣∣Un
1 = u1

)
. (5.42)

Recalling the definition of T (u1, Cw1) in (5.26), we have

Pr
{
Xn

1 (w′
1, U

n
1 ) = x1

∣∣Un
1 = u1

}

= Pr
{
T (u1, Cw′1) < L1

}
Pr

{
Xn

1 (w′
1, U

n
1 ) = x1

∣∣Un
1 = u1, T (u1, Cw′1) < L1

}

+ Pr
{
T (u1, Cw′1) ≥ L1

}
Pr

{
Xn

1 (w′
1, U

n
1 ) = x1

∣∣Un
1 = u1, T (u1, Cw′1) ≥ L1

}
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= Pr
{
T (u1, Cw′1) < L1

} 1

|F (n)
µ,ε (X1|u1)|

+ Pr
{
T (u1, Cw′1) ≥ L1

} 1

|T (n)
ε (X1)|

(5.43)

≤ 1

|F (n)
µ,ε (X1|u1)|

+
(η

µ
+ λ

) 1

|T (n)
ε (X1)|

(5.44)

≤ 1(
1− η

µ

)
2n[H(X1|U1)−η]

+
(η

µ
+ λ

) 1

2n[H(X1)−η]
(5.45)

≤ 1(
1− η

µ

)
2n[H(X1|U1)−η]

+
(η

µ
+ λ

) 1

2n[H(X1|U1)−η]
(5.46)

=
[ 1

1− η
µ

+
η

µ
+ λ

] 1

2n[H(X1|U1)−η]
(5.47)

for n sufficiently large, where (5.44) holds by applying (5.33), (5.45) follows by applying

Lemma 5.3 and Lemma 5.1, and (5.46) holds since conditioning reduces entropy. Letting

τ1(η, µ, λ) , 1
1− η

µ
+ η

µ
+ λ, and plugging (5.47) back into (5.42), we obtain

Pr
({(

Un
1 , Un

2 , Xn
1 (w′

1, U
n
1 ), Xn

2 (w2, U
n
2 ), Y n

) ∈ T (n)
ε (U1, U2, X1, X2, Y )

}∣∣Ac
0

)

≤
∑

(u1,u2,x2,y)∈T (n)
ε (U1,U2,X2,Y )

Pr
(
Un

1 = u1, U
n
2 = u2, X

n
2 (w2, U

n
2 ) = x2, Y

n = y
∣∣Ac

0

)

∑

x1∈T (n)
ε (X1|u1,u2,x2,y)

τ1(η, µ, λ)

2n[H(X1|U1)−η]

≤
∣∣T (n)

ε (X1|u1,u2,x2,y)
∣∣ τ1(η, µ, λ)

2n[H(X1|U1)−η]
(5.48)

≤ 2n[H(X1|U1,U2,X2,Y )+η] τ1(η, µ, λ)

2n[H(X1|U1)−η]
(5.49)

≤ τ1(η, µ, λ)2−n[I(X1;U2,X2,Y |U1)−2η]

= τ1(η, µ, λ)2−n[I(X1;U2,X2|U1)+I(X1;Y |U1,U2,X2)−2η]

= τ1(η, µ, λ)2−n[I(X1;Y |U1,U2,X2)−2η] (5.50)

where the last inequality holds since X1 → U1 → U2 → X2. Thus

EC(1),C(2)Pr
(
E1

∣∣Ac
0

) ≤ τ1(η, µ, λ)2nR1
w2−n(I(X1;Y |U1,U2,X2)−2η]

≤ τ1(η, µ, λ)2n[I(X1;Y |U1,U2,X2)−ε′−I(X1;Y |U1,U2,X2)+2η] (5.51)

= τ1(η, µ, λ)2−n(ε′−2η)
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≤ ε0 (5.52)

for ε, µ small enough and n sufficiently large, where (5.51) follows from (5.13). Similarly

we can obtain

Pr
{
Xn

2 (w′
2, U

n
2 ) = x2

∣∣Un
2 = u2

} ≤
[ 1

1− ν
+ ν + λ

] 1

2n[H(X2|U2)−η]
. (5.53)

Defining τ2(ν, λ) , 1
1−ν

+ ν + λ, we have

EC(1),C(2)Pr
(
E2

∣∣Ac
0

) ≤ τ2(ν, λ)2−n(ε′−2η) ≤ ε0 (5.54)

for ε small enough and n sufficiently large.

It remains to bound EC(1),C(2)Pr
(
E3

∣∣Ac
0

)
. Using the union bound we write

EC(1),C(2)Pr
(
E3

∣∣Ac
0

)

≤
∑

w′1 6=w1

∑

w′2 6=w2

Pr
({(

Un
1 , Un

2 , Xn
1 (w′

1, U
n
1 ), Xn

2 (w′
2, U

n
2 ), Y n

) ∈ T (n)
ε (U1, U2, X1, X2, Y )

}∣∣Ac
0

)
.

Since Xn
1 (w′

1, U
n
1 ) → Un

1 → Un
2 → Xn

2 (w′
2, U

n
2 ), and by construction, Xn

1 (w′
1, U

n
1 ) and

Xn
2 (w′

2, U
n
2 ) are independent of Y n given (Un

1 , Un
2 ) by noting that w′

1 6= w1 and w′
2 6= w2,

we have

Pr
({(

Un
1 , Un

2 , Xn
1 (w′

1, U
n
1 ), Xn

2 (w′
2, U

n
2 ), Y n

) ∈ T (n)
ε (U1, U2, X1, X2, Y )

}∣∣Ac
0

)

=
∑

(u1,u2,y)∈T (n)
ε (U1,U2,Y )

∑

(x1,x2)∈T (n)
ε (X1,X2|u1,u2,y)

Pr
{
Un

1 = u1, U
n
2 = u2, Y

n = y
∣∣Ac

0

}

×Pr
{
Xn

1 (w′
1, U

n
1 ) = x1, X

n
2 (w′

2, U
n
2 ) = x2

∣∣Un
1 = u1, U

n
2 = u2, Y

n = y, Ac
0

}

=
∑

(u1,u2,y)∈T (n)
ε (U1,U2,Y )

∑

(x1,x2)∈T (n)
ε (X1,X2|u1,u2,y)

Pr
{
Un

1 = u1, U
n
2 = u2, Y

n = y
∣∣Ac

0

}

×Pr
{
Xn

1 (w′
1, U

n
1 ) = x1

∣∣Un
1 = u1

}
Pr

{
Xn

2 (w′
2, U

n
2 ) = x2

∣∣Un
2 = u2

}

≤ τ1(η, µ, λ)τ2(ν, λ)
2n[H(X1,X2|U1,U2,Y )+η]

2n[H(X1|U1)−η]2n(H(X2|U2)−η)

= τ1(η, µ, λ)τ2(ν, λ)
2n[H(X1,X2|U1,U2,Y )+η]

2n[H(X1,X2|U1,U2)−2η]
(5.55)
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= τ1(η, µ, λ)τ2(ν, λ)2−n[I(X1,X2;Y |U1,U2)−3η] (5.56)

where (5.55) holds since X1 → U1 → U2 → X2. Thus

EC(1),C(2)Pr
(
E3

∣∣Ac
0

)

≤ τ1(η, µ, λ)τ2(ν, λ)2n(R1
w+R2

w)2−n(I(X1;Y |U1,U2,X2)−3η]

≤ τ1(η, µ, λ)τ2(ν, λ)2n[I(X1,X2;Y |U1,U2)−ε′−I(X1,X2;Y |U1,U2)+3η] (5.57)

= τ1(η, µ, λ)τ2(ν, λ)2−n(ε′−3η)

≤ ε0 (5.58)

for ε small enough and n sufficiently large, where (5.57) follows from (5.15).

Finally, substituting (5.40), (5.41), (5.52), (5.54), and (5.58) into (5.39) yields

EC(1),C(2) [P (n)
e ] ≤ 5ε0 = ε1 (5.59)

for ε sufficiently small and n substantially large.

Completing the Proof

By (5.34), (5.37) and (5.59), We obtain

EC(1),C(2){P (n)
e + P

(n)
1 + P

(n)
2 } = EC(1),C(2) [P (n)

e ] + EC(1),C(2) [P
(n)
1 ] + EC(1),C(2) [P

(n)
2 ] ≤ 3ε1,

which implies that there exists a pair of codes (C(1), C(2)) such that P
(n)
e ≤ 3ε1, P

(n)
1 ≤ 3ε1,

P
(n)
2 ≤ 3ε1 are simultaneously satisfied for n sufficiently large.

Furthermore, if P
(n)
i ≤ 3ε1, we have

1

n
E[di(U

n
i , Xn

i )] ≤ Di + εdmax
i + EC(1),C(2) [P

(n)
i ]dmax

i

≤ Di + δ

as n →∞. 2
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5.4.2 Proof of Theorem 5.2

We need to show that any sequence of achievable JCPW codes (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) with

rate quadruple (R1
w, R2

w, R1
c , R

2
c) must satisfy (5.4)–(5.6) for some auxiliary RV’s V with

joint distribution PV U1U2X1X2Y ∈ P̃D1,D2 . It follows from Fano’s inequality that

H(W1,W2|Y n, Un
1 , Un

2 ) ≤ n(R1
w + R2

w)P (n)
e + H(P (n)

e ) , nεn. (5.60)

It is clear that εn → 0 if P
(n)
e → 0. Since

H(W1|Un
1 , Un

2 , Xn
2 , Y n) = H(W1|Un

1 , Un
2 , Y n)− I(W1; X

n
2 |Un

1 , Un
2 , Y n)

≤ H(W1|Un
1 , Un

2 , Y n)

≤ H(W1,W2|Un
1 , Un

2 , Y n), (5.61)

we have

H(W1|Un
1 , Un

2 , Xn
2 , Y n) ≤ H(W1,W2|Y n, Un

1 , Un
2 ) ≤ nεn. (5.62)

Similarly,

H(W2|Un
1 , Un

2 , Xn
1 , Y n) ≤ nεn. (5.63)

Because W1 is uniformly drawn from the message set {1, 2, ..., 2nR1
w} and is indepen-

dent of (Un
1 , Un

2 , Xn
2 ), we have

nR1
w = H(W1)

= H(W1|Un
1 , Un

2 , Xn
2 )

= I(W1; Y
n|Un

1 , Un
2 , Xn

2 ) + H(W1|Un
1 , Un

2 , Xn
2 , Y n)

≤ I(Xn
1 ; Y n|Un

1 , Un
2 , Xn

2 ) + nεn (5.64)

where the last inequality follows from the data processing inequality and (5.62). Note

that

I(Xn
1 ; Y n|Un

1 , Un
2 , Xn

2 ) = H(Y n|Un
1 , Un

2 , Xn
2 )−H(Y n|Xn

1 , Un
1 , Un

2 , Xn
2 )
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=
n∑

j=1

H(Yj|Y j−1, Un
1 , Un

2 , Xn
2 )−H(Y n|Xn

1 , Xn
2 )

≤
n∑

j=1

H(Yj|U1j, U2j, X2j)−
n∑

j=1

H(Yj|Y j−1, Xn
1 , Xn

2 ) (5.65)

=
n∑

j=1

H(Yj|U1j, U2j, X2j)−
n∑

j=1

H(Yj|X1j, X2j) (5.66)

=
n∑

j=1

H(Yj|U1j, U2j, X2j)−
n∑

j=1

H(Yj|X1j, X2j, U1j, U2j)

=
n∑

j=1

I(X1j; Yj|U1j, U2j, X2j),

where (5.65) holds since conditioning reduces entropy, and (5.66) follows by the memo-

ryless property of the channel.

On the other hand, we have

nR1
w = H(W1)

= H(W1|Un
1 ) (5.67)

= I(W1; X
n
1 |Un

1 ) + H(W1|Xn
1 , Un

1 )

= I(W1; X
n
1 |Un

1 ) + H(W1|Xn
1 , Un

1 , Un
2 , Xn

2 ) (5.68)

≤ I(W1; X
n
1 |Un

1 ) + H(W1|Y n, Un
1 , Un

2 , Xn
2 ) (5.69)

≤ I(W1; X
n
1 |Un

1 ) + nεn (5.70)

= H(Xn
1 |Un

1 )−H(Xn
1 |Un

1 ,W1) + nεn

= H(Xn
1 |Un

1 ) + nεn (5.71)

= H(Xn
1 )− (

H(Xn
1 )−H(Xn

1 |Un
1 )

)
+ nεn

≤ nR1
c − I(Xn

1 ; Un
1 ) + nεn (5.72)

= nR1
c −H(Un

1 ) + H(Un
1 |Xn

1 ) + nεn

≤ nR1
c −

n∑
j=1

H(U1j) +
n∑

j=1

H(U1j|X1j) + nεn (5.73)
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= nR1
c −

n∑
j=1

I(U1j; X1j) + nεn (5.74)

where (5.67) holds since W1 is independent of Un
1 ; (5.68) holds from the Markov chain re-

lationship W1 → (Xn
1 , Un

1 ) → (Xn
2 , Un

2 ); (5.69) holds from the data processing inequality

and the Markov chain relationship W1 → (Un
1 , Un

2 , Xn
1 , Xn

2 ) → (Un
1 , Un

2 , Xn
2 , Y n); (5.70)

holds from (5.62); (5.71) follows from the fact that Xn
1 is a deterministic function of Un

1

and W1; (5.72) holds since nR1
c ≥ H(Xn

1 ); and (5.73) holds since conditioning reduces

entropy.

Hence we obtain

R1
w ≤ min

{
R1

c −
1

n

n∑
j=1

I(U1j; X1j),
1

n

n∑
j=1

I(X1j; Yj|U1j, U2j, X2j)
}

+ εn. (5.75)

Similarly, we have

R2
w ≤ min

{
R2

c −
1

n

n∑
j=1

I(U2j; X2j),
1

n

n∑
j=1

I(X2j; Yj|U1j, U2j, X1j)
}

+ εn. (5.76)

To bound the sum of the rates, we have

n(R1
w + R2

w) = H(W1) + H(W2)

= H(W1,W2|Un
1 , Un

2 )

= I(W1,W2; Y
n|Un

1 , Un
2 ) + H(W1,W2|Un

1 , Un
2 , Y n)

≤ I(Xn
1 , Xn

2 ; Y n|Un
1 , Un

2 ) + nεn (5.77)

where (5.77) follows the data processing inequality and (5.60). Now

I(Xn
1 , Xn

2 ; Y n|Un
1 , Un

2 )

= H(Y n|Un
1 , Un

2 )−H(Y n|Un
1 , Un

2 , Xn
1 , Xn

2 )

=
n∑

j=1

H(Yj|Y j−1, Un
1 , Un

2 )−H(Y n|Xn
1 , Xn

2 )
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≤
n∑

j=1

H(Yj|U1j, U2j)−
n∑

j=1

H(Yj|Y j−1, Xn
1 , Xn

2 ) (5.78)

=
n∑

j=1

H(Yj|U1j, U2j)−
n∑

j=1

H(Yj|X1j, X2j) (5.79)

=
n∑

j=1

H(Yj|U1j, U2j)−
n∑

j=1

H(Yj|X1j, X2j, U1j, U2j)

=
n∑

j=1

I(X1j, X2j; Yj|U1j, U2j)

where (5.78) holds since conditioning reduces entropy, and (5.79) follows from the mem-

oryless property of the channel. Therefore, we have

R1
w + R2

w ≤
1

n

n∑
j=1

I(X1j, X2j; Yj|U1j, U2j) + εn. (5.80)

We next introduce an auxiliary RV to simplify the bounds (5.75), (5.76), and (5.80)

with single-letter characterization. Define a RV V with alphabet {1, 2, ..., n} and distri-

bution PV (v) = 1/n. We next introduce RV’s U1 and U2 which are independent of V

such that

Pr(U1 = u1, U2 = u2) = Pr(U1j = u1, U2j = u2) = QU1U2(u1, u2)

for all (u1, u2) ∈ U1 ×U2, j = 1, 2, . . . , n. Furthermore, we define new RV’s X1, X2, and

Y by

Pr(X1 = x1, X2 = x2, Y = y|V = j) = Pr(X1j = x1, X2j = x2, Yj = y)

for all (x1, x2, y) ∈ X1 ×X2 × Y . It follows that

1

n

n∑
j=1

I(X1j; Yj|U1j, U2j, X2j) = I(X1; Y |U1, U2, X2, V ).

This shows that

R1
w ≤ I(X1; Y |U1, U2, X2, V ) + εn. (5.81)
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By a similar argument, we can show that

R2
w ≤ I(X2; Y |U1, U2, X1, V ) + εn, (5.82)

R1
w ≤ R1

c − I(X1; U1|V ) + εn, (5.83)

R2
w ≤ R2

c − I(X2; U2|V ) + εn, (5.84)

R1
w + R2

w ≤ I(X1, X2; Y |U1, U2, V ) + εn. (5.85)

For such RV (V, U1, U2, X1, X2, Y ), we have the Markov chain relationship (V, U1, U2) →
(X1, X2) → Y . In fact,

Pr(Y = y|V = j, U1 = u1, U2 = u2, X1 = x1, X2 = x2)

= Pr(Yj = y|U1j = u1, U2j = u2, X1j = x1, X2j = x2)

= Pr(Yj = y|X1j = x1, X2j = x2)

= WY |X1X2(y|x1, x2).

Similarly, we can prove that the Markov chain relationship X1 → (V, U1) → (V, U2) →
X2 holds. Therefore, the joint distribution PV U1U2X1X2Y can be factorized as

PV U1U2X1X2Y = PV QU1U2PX1|U1V PX2|U2V WY |X1X2 .

Next we bound the distortions E[di(Ui, Xi)]. Since (R1
w, R2

w, R1
c , R

2
c) is achievable

under the sequence of codes (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)), this implies that for any δ > 0 and n large

enough, we have

Di + δ ≥ 1

n
E

[
di(U

n
i , ϕ

(n)
i (Wi, U

n
i ))

]

=
1

n

1

2nRi
w

M i
w∑

wi=1

∑
Un

i

Q
(n)
Ui

(ui)di

(
ui, ϕ

(n)
i (wi,ui)

)

=
1

n

∑
Un

i ×Xn
i

Pr(Un
i = ui, X

n
i = xi)di(ui,xi)
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=
1

n

n∑
j=1

∑
Un

i ×Xn
i

Pr(Un
i = ui, X

n
i = xi)di(uij, xij)

=
n∑

j=1

PV (V = j)
∑
Ui×Xi

Pr(Uij = uij, Xij = xij)di(uij, xij)

=
n∑

j=1

PV (V = j)
∑
Ui×Xi

Pr(Ui = ui, Xi = xi|V = j)di(ui, xi)

=
n∑

j=1

∑
Ui×Xi

Pr(Ui = ui, Xi = xi, V = j)di(ui, xi)

=
∑
Ui×Xi

PUiXi
(ui, xi)di(ui, xi).

Thus we obtained that E[di(Ui, Xi)] ≤ Di + δ for i = 1, 2. Combined with (5.81)–

(5.85) and recalling that limn→∞ εn = 0 and that R(D1, D2) is closed, we conclude that

R(D1, D2) ⊂ Rout(D1 +δ,D2 +δ) for any δ > 0. This, and the fact that in the definition

of Rout, the random variable V can be taken to have a fixed finite alphabet (as we

show next) implies that
⋂
δ>0

Rout(D1 + δ,D2 + δ) = Rout(D1, D2). Thus R(D1, D2) ⊂
Rout(D1, D2) as claimed.

It remains to show that the alphabet of the random variable V can be limited by

|V| ≤ |U1||U2||X1||X2|+4. To this end, we will need the following support lemma, which

is based on Carathéodory’s theorem.

Lemma 5.6 ( [15, Support lemma, p. 311]) Let P(X ) be the set of distributions defined

on a finite set X (represented as the probability simplex in R|X |) and let fj, j = 1, 2, ..., k

be real-valued continuous functions on P(X ). For any probability measure µ on the Borel

σ-algebra of P(X ), there exist k elements P1, P2, ..., Pk of P(X ) and k non-negative reals

α1, α2, ...αk with
∑k

i=1 αi = 1 such that for every j = 1, 2, ..., k

∫

P(X )

fj(P )µ(dP ) =
k∑

i=1

αifj(Pi).
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Before we actually apply the support lemma, we first rewrite all relevant mutual

informations of (5.81)–(5.85)

I(X1; Y |U1, U2, X2, V ) = H(Y |U1, U2, X2, V )−H(Y |U1, U2, X1, X2, V )

= H(Y |U1, U2, X2, V )−H(Y |X1, X2); (5.86)

I(X2; Y |U1, U2, X1, V ) = H(Y |U1, U2, X1, V )−H(Y |U1, U2, X1, X2, V )

= H(Y |U1, U2, X1, V )−H(Y |X1, X2); (5.87)

R1
c − I(X1; U1|V ) = R1

c −H(U1|V ) + H(U1|X1, V )

= R1
c −H(U1) + H(U1|X1, V ); (5.88)

R2
c − I(X2; U2|V ) = R2

c −H(U2|V ) + H(U2|X2, V )

= R2
c −H(U2) + H(U2|X2, V ); (5.89)

I(X1, X2; Y |U1, U2, V ) = H(Y |U1, U2, V )−H(Y |U1, U2, X1, X2, V )

= H(Y |U1, U2, V )−H(Y |X1, X2). (5.90)

Note that H(Y |X1, X2), H(U1), and H(U2) are unaffected by V since V → (X1, X2) → Y

forms a Markov chain relationship, and U1 and U2 are independent of V . Thus, it is

sufficient to preserve the values H(Y |U1, U2, X1, V ), H(Y |U1, U2, X2, V ), H(U1|X1, V ),

H(U2|X2, V ) and H(Y |U1, U2, V ).

Now define the following real-valued continuous functions of a generic distribution

P over U1 × U2 × X1 × X2 for fixed v ∈ V , where U1 × U2 × X1 × X2 is assumed to be

{1, 2, . . . , m}, m , |U1||U2||X1||X2| without loss of generality:

fi(P (·|v)) , PU1U2X1X2|V (u1, u2, x1, x2|v), i , (u1, u2, x1, x2) = 1, . . . , m− 1;

fm(P (·|v)) , H(Y |U1, U2, X1, V = v);

fm+1(P (·|v)) , H(Y |U1, U2, X2, V = v);

fm+2(P (·|v)) , H(U1|X1, V = v);
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fm+3(P (·|v)) , H(U2|X2, V = v);

fm+4(P (·|v)) , H(Y |U1, U2, V = v).

It is easy to see that the fi, i = 1, . . . , m + 4, are continuous in P (·|v). Applying the

support lemma, there must exist a new RV V̂ (jointly distributed with (U1, U2, X1, X2)),

whose alphabet size is |V̂| = m + 4 = |U1||U2||X1||X2|+ 4, and it satisfies:

PU1U2X1X2(u1, u2, x1, x2) =
∑

bv∈bV
PV (v)fi(P (·|v));

H(Y |U1, U2, X1, V̂ ) =
∑

bv∈bV
PV (v)fm(P (·|v));

H(Y |U1, U2, X2, V̂ ) =
∑

bv∈bV
PV (v)fm+1(P (·|v));

H(U1|X1, V̂ ) =
∑

bv∈bV
PV (v)fm+2(P (·|v));

H(U2|X2, V̂ ) =
∑

bv∈bV
PV (v)fm+3(P (·|v));

H(Y |U1, U2, V̂ ) =
∑

bv∈bV
PV (v)fm+4(P (·|v)).

Furthermore, this RV V̂ maintains the distortion level E[di(Ui, Xi)] ≤ Di + δ, since the

joint distribution PU1U2X1X2(u1, u2, x1, x2) is preserved. This completes the proof. 2

5.4.3 Proof of Lemma 5.3

Using Lemma 5.1, we have

P
(n)
X1|U1

{
x1 : x1 ∈ F (n)

µ,ε (X1|u1)
∣∣u1

}

=
∑

x1∈F(n)
µ,ε (X1|u1)

P
(n)
X1|U1

(x1|u1)

≤ |F (n)
µ,ε (X1|u1)| · 2−n(H(X1|U1)−η). (5.91)
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On the other hand, by the Markov inequality, we have

P
(n)
X1|U1

{
x1 : x1 ∈ F (n)

µ,ε (X1|u1)
∣∣u1

}

= P
(n)
X1|U1

{
x1 : A(n)(u1,x1) ≥ 1− µ

∣∣u1

}

= 1− P
(n)
X1|U1

{
x1 : 1− A(n)(u1,x1) > µ

∣∣u1

}

≥ 1− 1− EXn
1 |Un

1

[
A(n)(u1, X

n
1 )

∣∣u1

]

µ
, (5.92)

where

EXn
1 |Un

1

[
A(n)(u1, X

n
1 )

∣∣u1

]

= Pr
{

(u1, X
n
1 , Un

2 , Xn
2 ) ∈ T (n)

ε (U1, X1, U2, X2)
∣∣u1

}

≥ 1− η. (5.93)

Combining (5.91)–(5.93), we get (5.22). Similarly, by the definition of F (n)
ϕ1,ν,ε(X2|u2) and

Lemma 5.1, we have

P
(n)
X2|U2

{
x2 : x2 ∈ F (n)

ϕ1,ν,ε(X2|u2)|u2

}

=
∑

x2∈F(n)
ϕ1,ν,ε(X2|u2)

P
(n)
X2|U2

(x2|u2)

≤ |F (n)
ϕ1,ν,ε(X2|u2)| · 2−n(H(X2|U2)−η). (5.94)

for n sufficiently large. Given any u2 ∈ F̃ (n)
ϕ1,ν,ε(U2), recall the definition of F̃ (n)

ϕ1,ν,ε(U2),

we have

P
(n)
X2|U2

{
x2 : x2 ∈ F (n)

ϕ1,ν,ε(X2|u2)
∣∣u2

} ≥ 1− ν. (5.95)

(5.23) immediately holds by combining (5.94) and (5.95). 2

5.4.4 Proof of Lemma 5.4

By definition

Pr
{

(Un
1 , Xn

1 ) ∈ F̃ (n)
µ,ε (U1, X1)

}
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= Pr
{
(u1,x1) : A(n)(u1,x1) ≥ 1− µ

}

= 1− Pr
{
(u1,x1) : A(n)(u1,x1) < 1− µ

}

= 1− Pr
{
(u1,x1) : 1− A(n)(u1,x1) > µ

}

≥ 1− EUn
1 Xn

1
[1− A(n)(Un

1 , Xn
1 )]

µ
, (5.96)

where the last inequality is from Markov’s inequality. Since

EUn
1 Xn

1
[1− A(n)(Un

1 , Xn
1 )]

= 1− EUn
1 Xn

1
[A(n)(Un

1 , Xn
1 )]

= 1−
∑

Un
1 ×Xn

1

P
(n)
U1X1

(u1,x1)A
(n)(u1,x1)

= 1− Pr
{

(Un
1 , Xn

1 , Un
2 , Xn

2 ) ∈ T (n)
ε (U1, X1, U2, X2)

}

≤ η, (5.97)

we have

Pr
{

(Un
1 , Xn

1 ) ∈ F̃ (n)
µ,ε (U1, X1)

}
≥ 1− η

µ
. (5.98)

Similarly,

Pr
{

Un
1 ∈ F̃ (n)

µ,ε (U1)
}

= 1− Pr
{
(u1) : 1− Pr

{
Xn

1 ∈ F (n)
µ,ε (X1|u1)

∣∣u1

}
> µ

}

≥ 1−
E

P
(n)

Un
1

[
1− Pr

{
Xn

1 ∈ F (n)
µ,ε (X1|Un

1 )
∣∣Un

1

}]

µ

= 1−
1− Pr

{
(Un

1 , Xn
1 ) ∈ F (n)

µ,ε (U1, X1)
}

µ

≥ 1−
1− (1− η

µ
)

µ

= 1− η

µ2
. (5.99)
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or equivalently,

∑

( eF(n)
µ,ε (U1))c

Q
(n)
U1

(u1) ≤ η

µ2
. (5.100)

Next we prove (5.25). It follows from the definition that

Pr
{

(Un
2 , Xn

2 ) ∈ F (n)
ϕ1,ν,ε(U2, X2)

}

= Pr
{
(u2,x2) : B(n)

ϕ1
(u2,x2) ≥ 1− ν

}

= 1− Pr
{
(u2,x2) : 1−B(n)

ϕ1
(u2,x2) > ν

}

≥ 1− 1− EUn
2 Xn

2
[B

(n)
ϕ1 (Un

2 , Xn
2 )]

ν
, (5.101)

where the last inequality is from Markov’s inequality. Since

EUn
2 Xn

2
[B(n)

ϕ1
(Un

2 , Xn
2 )]

=
∑

Un
2 ×Xn

2

P
(n)
U2X2

(u2,x2)B
(n)
ϕ1

(u2,x2)

=
1

2nR1
w

M1
w∑

w1=1

Pr
{

(Un
1 , ϕ

(n)
1 (w1, U

n
1 ), Un

2 , Xn
2 ) ∈ T (n)

ε (U1, X1, U2, X2)
}

=
1

2nR1
w

M1
w∑

w1=1

∑
Un

1

Q
(n)
U1

(u1)Pr
{

(Un
2 , Xn

2 ) ∈ T (n)
ε (U2, X2|u1, ϕ

(n)
1 (w1,u1))

∣∣u1

}

=
1

2nR1
w

M1
w∑

w1=1

EUn
1

[
A(n)(Un

1 , ϕ
(n)
1 (w1, U

n
1 ))

]

≥ (1− µ)Pr
{
u1 : A(n)(u1, ϕ

(n)
1 (w1,u1)) ≥ 1− µ

}
, (5.102)

where (5.102) follows from Markov’s inequality. Note that the probability in (5.102) is

exactly the probability of successfully encoding for Encoder 1, i.e., Pr
{
u1 : T (u1, Cw1) ≤

L1

}
, where T (u1, Cw1) is defined by (5.26). Taking the average over C(1), we obtain

EC(1)

[
Pr

{
u1 : A(n)(u1, ϕ

(n)
1 (w1,u1)) ≥ 1− µ

}]
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= ECw1

[
Pr

{
u1 : T (u1, Cw1) ≤ L1

}]

= 1− ECw1

[
Pr

{
u1 : T (u1, Cw1) > L1

}]

≥ 1−
(

η

µ
+ λ +

η

µ2

)
(5.103)

for n sufficiently large where the last inequality holds from (5.27)–(5.34). Hence,

EC(1)

[
EUn

2 Xn
2
[B(n)

ϕ1
(Un

2 , Xn
2 )]

]

≥ (1− µ)

(
1−

(η

µ
+ λ +

η

µ2

))

= 1−
(

µ + (1− µ)
(η

µ
+ λ +

η

µ2

))
(5.104)

for n sufficiently large. Plugging (5.104) back into (5.101), we have

EC(1)

[
Pr

{
(Un

2 , Xn
2 ) ∈ F (n)

ϕ1,ν,ε(U2, X2)
}]

≥ 1−
µ + (1− µ)

(
η
µ

+ λ + η
µ2

)

ν
(5.105)

for n sufficiently large. Similarly, we have

Pr
{

Un
2 ∈ F̃ (n)

ϕ1,ν,ε(U2)
}

= 1− Pr
{
u2 : 1− P

(n)
X2|U2

{
Xn

2 ∈ F (n)
ϕ1,ν,ε(X2|u2)

∣∣u2

}
> ν

}

≥ 1−
EUn

2

[
1− P

(n)
X2|U2

{
Xn

2 ∈ F (n)
ϕ1,ν,ε(X2|u2)

∣∣u2

}]

ν

= 1−
1− Pr

{
(Un

2 , Xn
2 ) ∈ F (n)

ϕ1,ν,ε(U2, X2)
}

ν
. (5.106)

Thus

EC(1)

[
Pr

{
Un

2 ∈ F̃ (n)
ϕ1,ν,ε(U2)

}]

≥ 1−
1− EC(1)

[
Pr

{
(Un

2 , Xn
2 ) ∈ F (n)

ϕ1,ν,ε(U2, X2)
}]

ν
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≥ 1−
µ + (1− µ)

(
η
µ

+ λ + η
µ2

)

ν2
(5.107)

for n sufficiently large. 2

5.4.5 Proof of Lemma 5.5

Step 1: We first state how we are going to prove this lemma. Define the following

quantities

1− θ
(n)
0 , P

(n)
X1U1U2X2

(
(x1,u1,u2,x2) ∈ T (n)

ε (X1, U1, U2, X2)
)
,

1− θ
(n)
1 , 1

2nR1
w

M1
w∑

w1=1

P
(n)
U1U2X2

(
(ϕ

(n)
1 (w1,u1),u1,u2,x2) ∈ T (n)

ε (X1, U1, U2, X2)
)

,

1− θ
(n)
2 , 1

2n(R1
w+R2

w)

M1
w∑

w1=1

M2
w∑

w2=1

P
(n)
U1U2

(
(ϕ

(n)
1 (w1,u1),u1,u2, ϕ

(n)
2 (w2,u2)) ∈ T (n)

ε (X1, U1, U2, X2)
)

.

Clearly, by the property of typicality, θ
(n)
0 vanishes as n goes to infinity. In the following

steps we upper bound EC(1) [θ
(n)
1 ] and EC(1),C(2) [θ

(n)
2 ] recursively.

Step 2: Upper bounding EC(1) [θ
(n)
1 ]. Note that

1− θ
(n)
0 =

∑
Xn

1 ×Un
1

P
(n)
X1U1

(x1,u1)A
(n)(u1,x1).

It then follows from Markov’s inequality that

1− P
(n)
X1U1

(F (n)
µ,ε (U1, X1)

)
= P

(n)
X1U1

(
(x1,u1) : A(n)(u1,x1) < 1− µ

)

= P
(n)
X1U1

(
(x1,u1) : 1− A(n)(u1,x1) > µ

)

≤ θ
(n)
0

µ
. (5.108)

Thus

P
(n)
X1U1

(F (n)
µ,ε (U1, X1)

) ≥ 1− θ
(n)
0

µ
. (5.109)
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Note also that

P
(n)
X1U1

(F (n)
µ,ε (U1, X1)

)
=

∑
Un

1

P
(n)
U1

(u1)P
(n)
X1|U1

(F (n)
µ,ε (X1|u1)|u1

)
.

Recall the definition of F̃ (n)
µ,ε (U1) that

F̃ (n)
µ,ε (U1) ,

{
u1 : P

(n)
X1|U1

(F (n)
µ,ε (X1|u1)|u1

) ≥ 1− µ
}

.

It then follows from Markov’s inequality again and the use of (5.109) that

1− P
(n)
U1

(F̃ (n)
µ,ε (U1)) = P

(n)
U1

(
u1 : P

(n)
X1|U1

(F (n)
µ,ε (X1|u1)|u1

)
< 1− µ

)

= P
(n)
U1

(
u1 : 1− P

(n)
X1|U1

(F (n)
µ,ε (X1|u1)|u1

)
> µ

)

≤
1− E

P
(n)
U1

[
P

(n)
X1|U1

(
F (n)

µ,ε (X1|u1)|u1

)]

µ

≤
1− (1− θ

(n)
0

µ
)

µ
=

θ
(n)
0

µ2
,

which yields

P
(n)
U1

(F̃ (n)
µ,ε (U1)) ≥ 1− θ

(n)
0

µ2
. (5.110)

On the other hand, define

A(w1, l1) ,
{
u1 ∈ F̃ (n)

µ,ε (U1) : ϕ
(n)
1 (w1,u1) = x1(w1, l1)

}
.

Then we can write

1− θ
(n)
1

=
1

2nR1
w

M1
w∑

w1=1

∑
u1∈Un

1

P
(n)
U1

(u1)P
(n)
U2X2|U1

(
(u2,x2) ∈ T (n)

ε

(
U2, X2|u1, ϕ

(n)
1 (w1,u1)

)∣∣u1

)

≥ 1

2nR1
w

M1
w∑

w1=1

L1−1∑

l1=1

∑

u1∈A(w1,l1)

P
(n)
U1

(u1)P
(n)
U2X2|U1

(
(u2,x2) ∈ T (n)

ε

(
U2, X2|u1, ϕ

(n)
1 (w1,u1)

)∣∣u1

)
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=
1

2nR1
w

M1
w∑

w1=1

L1−1∑

l1=1

∑

u1∈A(w1,l1)

P
(n)
U1

(u1)A
(n)

(
u1,x1(w1, l1)

)
(5.111)

where the last equality holds since X1 → U1 → U2 → X2. By definition, F̃ (n)
µ,ε (U1) ⊆

F (n)
µ,ε (U1) ⊆ T (n)

ε (U1) and A(w1, l1) ⊆ F̃ (n)
µ,ε (U1). Given l1 ∈ {1, . . . , L1 − 1} and u1 ∈

A(w1, l1), noting that ϕ
(n)
1 (w1,u1) = x1(w1, l1), we have

A(n)(u1,x1(w1, l1)) = A(n)(u1, ϕ
(n)
1 (w1,u1)) ≥ 1− µ

where the inequality follows from the definition of the encoder ϕ
(n)
1 . Plugging this into

(5.111), we have

1− θ
(n)
1 ≥ (1− µ)

1

2nR1
w

M1
w∑

w1=1

L1−1∑

l1=1

∑

u1∈A(w1,l1)

P
(n)
U1

(u1)

= (1− µ)
1

2nR1
w

M1
w∑

w1=1

L1−1∑

l1=1

P
(n)
U1

(A(w1, l1)
)

(a)
= (1− µ)

1

2nR1
w

M1
w∑

w1=1

P
(n)
U1

(
L1−1⋃

l1=1

A(w1, l1)

)

= (1− µ)
1

2nR1
w

M1
w∑

w1=1

P
(n)
U1

(
F̃ (n)

µ,ε (U1) \ A(w1, L1)
)

= (1− µ)
1

2nR1
w

M1
w∑

w1=1

[
P

(n)
U1

(F̃ (n)
µ,ε (U1))− P

(n)
U1

(A(w1, L1)
)]

(b)

≥ 1− µ− θ
(n)
0

µ2
− 1

2nR1
w

M1
w∑

w1=1

P
(n)
U1

(A(w1, L1)
)
,

where (a) holds since A(w1, l1) and A(w1, l̃1) are disjoint for any l1 6= l̃1, l1, l̃1 ∈
{2, . . . , L1}, and (b) holds from (5.110). Equivalently,

θ
(n)
1 ≤ µ +

θ
(n)
0

µ2
+

1

2nR1
w

M1
w∑

w1=1

P
(n)
U1

(A(w1, L1)
)
. (5.112)
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Consequently, to upper bound EC(1) [θ
(n)
1 ], it suffices to upper bound

EC(1)


 1

2nR1
w

M1
w∑

w1=1

P
(n)
U1

(A(w1, L1)
)



=
∑

u1∈ eF(n)
µ,ε (U1)

P
(n)
U1

(u1)EC(1)


 1

2nR1
w

M1
w∑

w1=1

1
{

u1 /∈
L1−1⋃

l1=1

F (n)
µ,ε

(
U1|x1(w1, l1)

)
}

 .(5.113)

Note that for u1 ∈ F̃ (n)
µ,ε (U1), we have

EC(1)


 1

2nR1
w

M1
w∑

w1=1

1
{

u1 /∈
L1−1⋃

l1=1

F (n)
µ,ε

(
U1|x1(w1, l1)

)
}



=
∑
Cw1

Pr(Cw1)1 {T (u1, Cw1) ≥ L1}

≤ η

µ
+ λ, (5.114)

where T (u1, Cw1) is defined by (5.26), and the inequality follows from (5.33). Now let n be

sufficiently large so that θ
(n)
0 ≤ µ3, it then follows from (5.112) that EC(1) [θ

(n)
1 ] ≤ 2µ+ η

µ
+λ

for n large enough.

Step 3: Upper bounding EC(1),C(2) [θ
(n)
2 ]. We first write

1− θ
(n)
1 =

1

2nR1
w

M1
w∑

w1=1

P
(n)
U2X2

(u2,x2)P
(n)
U1|U2X2

{
(u1, ϕ

(n)
1 (w1,u1)) ∈ T (n)

ε (U1, X1|u2,x2)
∣∣∣u2,x2

}

= P
(n)
U2X2

(u2,x2)B
(n)
ϕ1

(u2,x2).

It then follows from Markov’s inequality

1− P
(n)
U2X2

(F (n)
ϕ1,ν,ε(U2, X2)

)
= P

(n)
U2X2

(
(u2,x2) : 1−B(n)

ϕ1
(u2,x2) > ν

)

≤ θ
(n)
1

ν
, (5.115)

hence

P
(n)
U2X2

(F (n)
ϕ1,ν,ε(U2, X2)

) ≥ 1− θ
(n)
1

ν
.
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Observing that

P
(n)
U2X2

(F (n)
ϕ1,ν,ε(U2, X2)

)
=

∑
Un

2

P
(n)
U2

(u2)P
(n)
X2|U2

(F (n)
ϕ1,ν,ε(X2|u2)|u2

)
,

and recall the definition of F̃ (n)
ϕ1,ν,ε(U2) that

F̃ (n)
ϕ1,ν,ε(U2) =

{
u2 : P

(n)
X2|U2

(F (n)
ϕ1,ν,ε(X2|u2)|u2

) ≥ 1− ν
}

,

we can obtain by using Markov’s inequality again and (5.115) that

P
(n)
U2

(F̃ (n)
ϕ1,ν,ε(U2)) ≥ 1− θ

(n)
1

ν2
. (5.116)

Similarly, define

B(w2, l2) ,
{
u2 ∈ F̃ (n)

ϕ1,ν,ε(U2) : ϕ
(n)
2 (w2,u2) = x2(w2, l2)

}
,

we can lower bound

1− θ
(n)
2

=
1

2n(R1
w+R2

w)

M1
w∑

w1=1

M2
w∑

w2=1

∑
Un

2

P
(n)
U2

(u2)

P
(n)
U1|U2

(
(ϕ

(n)
1 (w1,u1),u1,u2, ϕ

(n)
2 (w2,u2)) ∈ T (n)

ε (X1, U1, U2, X2)
∣∣u2

)

≥ 1

2n(R1
w+R2

w)

M1
w∑

w1=1

M2
w∑

w2=1

L2−1∑

l2=1

∑

u2∈B(w2,l2)

P
(n)
U2

(u2)

P
(n)
U1|U2

((
ϕ

(n)
1 (w1,u1),u1,u2,x2(w2, l2)

) ∈ T (n)
ε (X1, U1, U2, X2)

∣∣u2

)

=
1

2nR2
w

M2
w∑

w2=1

L2−1∑

l2=1

∑

u2∈B(w2,l2)

P
(n)
U2

(u2)B
(n)
ϕ1

(u2,x2(w2, l2)) (5.117)

where the last equality holds since X2 → U2 → U1 → X1. By definition, F̃ (n)
ϕ1,ν,ε(U2) ⊆

F (n)
ϕ1,ν,ε(U2) and B(w2, l2) ⊆ F̃ (n)

ϕ1,ν,ε(U2). Given l2 ∈ {1, . . . , L2 − 1} and u2 ∈ B(w2, l2),

noting that ϕ
(n)
2 (w2,u2) = x2(w2, l2), we have

B(n)
ϕ1

(u2,x2(w2, l2)) = B(n)
ϕ1

(u2, ϕ
(n)
2 (w2,u2)) ≥ 1− ν
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Plugging it into (5.117), we have

1− θ
(n)
2

≥ (1− ν)
1

2nR2
w

M2
w∑

w2=1

L2−1∑

l2=1

∑

u2∈B(w2,l2)

P
(n)
U2

(u2)

= (1− ν)
1

2nR2
w

M2
w∑

w2=1

L2−1∑

l2=1

P
(n)
U2

(B(w2, l2)
)

= (1− ν)
1

2nR2
w

M2
w∑

w2=1

P
(n)
U2

(
L2−1⋃

l2=1

B(w2, l2)

)

= (1− ν)
1

2nR2
w

M2
w∑

w2=1

P
(n)
U2

(
F̃ (n)

ϕ1,ν,ε(U2) \ B(w2, L2)
)

= (1− ν)
1

2nR2
w

M2
w∑

w2=1

[
P

(n)
U2

(F̃ (n)
ϕ1,ν,ε(U2))− P

(n)
U2

(B(w2, L2)
)]

≥ 1− ν − θ
(n)
1

ν2
− 1

2nR2
w

M2
w∑

w2=1

P
(n)
U2

(B(w2, L2)
)
, (5.118)

where the last inequality follows from (5.116). Therefore, we have

θ
(n)
2 ≤ ν +

θ
(n)
1

ν2
+

1

2nR2
w

M2
w∑

w2=1

P
(n)
U2

(B(w2, L2)
)
.

As in (5.113)–(5.114), by using the result (5.36), we obtain

EC(1),C(2) [θ
(n)
2 ] ≤ ν +

EC(1) [θ
(n)
1 ]

ν2
+ EC(1),C(1)


 1

2nR2
w

M2
w∑

w2=1

P
(n)
U2

(B(w2, L2)
)



≤ ν +
2µ + η

µ
+ λ

ν2
+ ν + λ (5.119)

for n large enough. Finally, choosing µ and ν small enough and n large enough, we

obtain EC(1),C(2) [θ
(n)
2 ] ≥ ε0. 2
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5.5 Conclusions

In this chapter, we studied the joint compression and private watermarking problem

with a multi-user setting, where two users separately embed their secret messages W1

and W2 (at rates R1
w and R2

w respectively) into two correlated DMS’s (Un
1 , Un

2 ), and

transmit the compressed stegotexts Xn
1 and Xn

2 (at rates R1
c and R2

c respectively) over a

memoryless MAC. We established an inner bound and an outer bound with single-letter

characterization for the rate region of all achievable rate quadruples (R1
w, R2

w, R1
c , R

2
c)

with respect to the distortion levels (D1, D2). We do not provide conditions for which

the inner bound and the outer bound are tight. However, for the special single-user case

and no-attack case, we observe that the bounds are actually tight.
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Chapter 6

Private Information Hiding of

Correlated Sources Under Multiple

Access Attacks

This chapter is based on the paper presented at the IEEE International Symposium on Information

Theory (ISIT’07), Nice, France, June 24-29, 2007 [87].

6.1 Introduction

In practical situations (e.g., instant (online) data-hiding), in order to reduce the com-

plexity of coding, we may need to directly hide an information source (or correlated

sources) with a nonuniform distribution. In this chapter, instead of transmitting two

independent watermark messages, we consider the private information hiding of two cor-

related secret sources. Our model is depicted in Fig. 6.1. Instead of embedding uniformly

distributed indices, two encoders independently embed two (arbitrarily distributed) dis-

crete memoryless correlated sources (S1, S2) into a common memoryless host source U ,
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and transmit the resulting sequences to a common destination in the presence of dis-

crete memoryless multiple access channel (MAC) attacks. One possible application of

this scenario is that two agents separately embed noisy observations of the same source,

and transmit the hidden information over a MAC attack channel.

Given the secret sources (S1, S2), a MAC WY |X1X2 , the host source U , and a distor-

tion level pair (D1, D2), one may ask whether there exists a coding scheme, such that

(S1, S2) can be embedded in U within distortion levels (D1, D2), and transmitted over

WY |X1X2 with an arbitrarily small probability of error. To begin, we note that, especially

in a multi-user system, jointly source coding and embedding the sources (S1, S2) into U

might perform better than the traditional separate coding (i.e., concatenating lossless

data compression and embedding). In this section, we investigate whether (S1, S2) can

be successfully transmitted under the MAC attacks by joint source coding and embed-

ding codes. In particular, we establish a sufficient condition for successfully embedding

(S1, S2) into U under the MAC WY |X1X2 ; see Theorem 6.1. Note that our problem can

be viewed as a generalization of the problem of transmitting correlated sources over

ordinary MAC channels [1], [9], [71], [72].

-Sn
1

-Sn
2

Encoder ϕ
(n)
1

Encoder ϕ
(n)
2

6

?

Un

-

-

Xn
1

Xn
2

Attack

Channel
WY |X1X2

-Y n Joint
Decoder
ψ(n)

6Un

-(Ŝn
1 , Ŝn

2 )

Figure 6.1: A joint source coding and embedding model for multi-user information

hiding.

Related works on multi-user information hiding include [36], [76]. They are different
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from this work in the following aspects: first, they study a public information-embedding

scenario; and second, the secret sources (watermarks) are independent and uniformly

distributed. To the best of our knowledge, the private multi-user information hiding

problem with correlated secret sources has not been addressed before.

6.2 Problem Formulation and Main Results

Let the pair of memoryless correlated secret sources {(S1j, S2j)}∞j=1 have marginal dis-

tribution PS1S2 and denote the marginal distribution of the host source {Uj}∞j=1 by PU .

Assume (S1, S2) and U are independent. The attack channel is modeled as a two-

sender one-receiver discrete memoryless MAC WY |X1X2 having input alphabets X1 and

X2, output alphabet Y , and a transition probability distribution WY |X1X2(y|x1, x2). The

probability of receiving y ∈ Yn conditioned on sending x1 ∈ X n
1 and x2 ∈ X n

2 is hence

given by W
(n)
Y |X1X2

(y|x1,x2) =
∏n

j=1 WY |X1X2(yj|x1j, x2j). Let di : U × Xi → [0,∞) be

single-letter distortion measures and define dmax
i , max

u,xi

di(u, xi) for i = 1, 2. For u ∈ Un

and xi ∈ X n
i , let di(u,xi) =

∑n
j=1 di(uj, xij). All alphabets are finite.

A joint source coding and embedding (JSCE) code (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) with block length

n consists of two encoders ϕ
(n)
1 : Sn

1 ×Un → X n
1 and ϕ

(n)
2 : Sn

2 ×Un → X n
2 and a decoder

ψ(n) : Yn × Un → Sn
1 × Sn

2 ; see Fig. 6.1. The probability of error in reproducing the

secret sources is given by

P (n)
e = Pr

{
ψ(n)(Y n, Un) 6= (Sn

1 , Sn
2 )

}

=
∑

Sn
1 ×Sn

2 ×Un

P
(n)
S1S2

(s1, s2)P
(n)
U (u)

∑

y:ψ(n)(y,u) 6=(s1,s2)

W
(n)
Y |X1X2

(y|x1,x2)

where xi , ϕ
(n)
i (si,u) (i = 1, 2).

Definition 6.1 Given PU and distortion levels D1 > 0 and D2 > 0, we say that the
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secret sources {(S1j, S2j)} are (D1, D2)-admissible with respect to the MAC WY |X1X2 ,

if there exists a sequence of codes (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) such that P

(n)
e → 0 as n → ∞ and

lim sup
n→∞

1
n
E

[
di(U

n, ϕ
(n)
i (Sn

i , Un))
] ≤ Di for i = 1, 2.

Theorem 6.1 {(S1j, S2j)} are (D1, D2)-admissible with respect to the MAC WY |X1X2 if

there exist some RV Q and a pair of conditional distributions (PX1|S1UQ, PX2|S2UQ) such

that

H(S1|S2) < I(X1; Y |X2, S2, U,Q), (6.1)

H(S2|S1) < I(X2; Y |X1, S1, U,Q), (6.2)

H(S1, S2) < I(X1, X2; Y |U,Q), (6.3)

E[di(U,Xi)] ≤ Di, i = 1, 2, (6.4)

where the above entropies, mutual informations, and expectations are taken with respect

to the joint distribution

PQPS1S2PUPX1|S1UQPX2|S2UQWY |X1X2 . (6.5)

We remark that the RV Q serves as a time-sharing RV and the cardinality of its

alphabet can be bounded by |Q| ≤ 5 ( [10]).

The proof of the theorem, which employs a joint strong typicality coding argument

[9] under additional distortion constraints, is deferred to Section 6.3.1. Note that if

U is removed in (6.1)–(6.3), then the inequalities reduce to the sufficient condition

under which the sources {(S1j, S2j)} can be reliably transmitted over the MAC WY |X1X2

obtained in [9], [1].

Although we are unable to obtain a converse to Theorem 6.1 in single-letter form,

we can still obtain an “n-dimensional” embedding theorem.
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Theorem 6.2 {S1j, S2j}∞j=1 can be sent with (asymptotically) arbitrarily small proba-

bility of error over the MAC WY |X1X2 with block codes
{
(ϕ

(n)
1 (Sn

1 , Un), ϕ
(n)
2 (Sn

2 , Un))
}

satisfying 1
n
E[di(U

n, ϕ
(n)
i (Sn

i , Un))] ≤ Di, i = 1, 2, if and only if

(
H(S1|S2), H(S2|S1), H(S1, S2)

) ∈ cl

( ∞⋃
n=1

Rn

)
, (6.6)

where cl(B) denotes the closure of a set B ⊂ R3 and

Rn =
⋃

P
(n)
Xi|SiU

:

E[di(Un,Xn
i )]≤nDi, i=1,2

{
(R1, R2, R3) : R1 <

1

n
I(Xn

1 ; Y n|Sn
2 , Un, Xn

2 ),

R2 <
1

n
I(Xn

2 ; Y n|Sn
1 , Un, Xn

1 ),

R3 <
1

n
I(Xn

1 , Xn
2 ; Y n|Un)

}
. (6.7)

for some joint distribution

n∏
j=1

PS1S2(s1j, s2j)PU(uj)Pr(x1|s1,u1)Pr(x2|s2,u2)
n∏

j=1

PY |X1X2(yj|x1j, x2j).

6.2.1 Special Cases

Uniform and Independent Sources

Suppose that the sources are independent and uniform, i.e., PS1(s1) = 1/|S1|, PS2(s2) =

1/|S2| and PS1S2(s1, s2) = PS1(s1)PS2(s2) for any (s1, s2) ∈ S1 × S2. Define R̃1 =

H(S1) = log |S1| and R̃2 = H(S2) = log |S2| to be the rates of the sources. By Theorem

6.1, {(S1j, S2j)} are (D1, D2)-admissible with respect to the MAC WY |X1X2 if there exists

some RV Q with |Q| ≤ 5, and a pair of distributions (PX1|UQ, PX2|UQ) such that

R̃1 < I(X1; Y |X2, U,Q), (6.8)

R̃2 < I(X2; Y |X1, U,Q), (6.9)
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R̃1 + R̃2 < I(X1, X2; Y |U,Q), (6.10)

E[di(U,Xi)] ≤ Di, i = 1, 2, (6.11)

where the above mutual informations and expectations are taken with respect to the joint

distribution PQPUPX1|UQPX2|UQWY |X1X2 . If we further set D1 ≥ dmax
1 and D2 ≥ dmax

2

and let U be deterministic, inequalities (6.8)–(6.11) give the capacity region of the

MAC [10].

Parallel Attack Channels

Assume that the attack MAC is composed of two independent discrete memoryless chan-

nels WY |X1X2(y|x1, x2) = WY1|X1(y1|x1)×WY2|X2(y2|x2) where WYi|Xi
has input alphabet

Xi and output alphabet Yi such that Y1 × Y2 = Y , i = 1, 2. This can be interpreted as

two attackers separately attacking the stegotexts. In this case, the condition given by

Theorem 6.1 for successful embedding is equivalent to the following (see Section 6.3.3

for the proof): {(S1j, S2j)} are (D1, D2)-admissible with respect to the MAC WY |X1X2 if

H(S1|S2) < C(W (1), D1), (6.12)

H(S2|S1) < C(W (2), D2), (6.13)

H(S1, S2) < C(W (1), D1) + C(W (2), D2), (6.14)

where C(W (i), Di) = max
PXi|U :E[di(U,Xi)]≤Di

I(Xi; Yi|U), i = 1, 2, is the information-hiding

capacity of the attack channel WYi|Xi
with distortion threshold Di [51].

Attack-Free Channel

Let l : X1 × X2 → Y be a bijection and let Y = l(X1, X2). In this case, Theorem 6.1

implies that {(S1j, S2j)} are (D1, D2)-admissible with respect to the MAC WY |X1X2 if

H(S1|S2) < H(X1|X2, S2, U,Q), (6.15)
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H(S2|S1) < H(X2|X1, S1, U,Q), (6.16)

H(S1, S2) < H(X1, X2|U,Q), (6.17)

E[di(U,Xi)] ≤ Di, i = 1, 2, (6.18)

where the entropies are taken under the joint distribution PS1S2PUPX1|S1UPX2|S2U . Note

also that conditions (6.15)–(6.18) give the Slepian-Wolf lossless data compression region

[10], [71] if we set D1 ≥ dmax
1 , D2 ≥ dmax

2 , and let U be deterministic.

6.3 Proofs

6.3.1 Proof of Theorem 6.1

We first give an outline of the proof. We need to show that for given PS1S2 , PU , and

WY |X1X2 , there exists a sequence of JSCE codes (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) such that P

(n)
e → 0 as

n →∞ and for any δ > 0, 1
n
E

[
di(U

n, ϕ
(n)
i (Sn

i , Un))
] ≤ Di + δ, i = 1, 2, for n sufficiently

large. Fix (PQ, PX1|S1UQ, PX2|S2UQ) such that the following are satisfied for some ε > 0,

H(S1|S2) < I(X1; Y |X2, S2, U,Q)− 7ε, (6.19)

H(S2|S1) < I(X2; Y |X1, S1, U,Q)− 7ε, (6.20)

H(S1, S2) < I(X1, X2; Y |U,Q)− 7ε, (6.21)

E[di(U,Xi)] ≤ Di, i = 1, 2. (6.22)

Define P
(n)
i , Pr{ 1

n
di(U

n, ϕ
(n)
i (Sn

i , Un)) > Di + εdmax
i }, i = 1, 2. We will prove that

for any ε1 > 0, the following probabilities, which are averaged over a family of random

codes (C1, C2), i = 1, 2, satisfy

EC1,C2 [P
(n)
e ] ≤ ε1, EC1,C2 [P

(n)
1 ] ≤ ε1, EC1,C2 [P

(n)
2 ] ≤ ε1
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for n sufficiently large. Then EC1,C2{P (n)
e + P

(n)
1 + P

(n)
2 } ≤ 3ε1, which guarantees that

there exists at least one pair (C1, C2) such that P
(n)
e + P

(n)
1 + P

(n)
2 ≤ 3ε1 and hence

P
(n)
e ≤ 3ε1, P

(n)
1 ≤ 3ε1, P

(n)
2 ≤ 3ε1 are simultaneously satisfied for n sufficiently large.

Finally, it can be easily shown that P
(n)
i ≤ 3ε1 implies for n sufficiently large that

1

n
E

[
di(U

n, ϕ
(n)
i (Sn

i , Un))
] ≤ Di + εdmax

i + P
(n)
i dmax

i ≤ Di + δ.

Random Code Design

Random Code Generation. Let i ∈ {1, 2}. Choose a typical sequence q = (q1, q2, ..., qn)

arbitrarily in T (n)
ε (Q). The sequence serves as a time sharing sequence and it is known

at both the encoders and the decoder. For any sequences si,u and the fixed q, generate

one xi(si,u,q) sequence according to
n∏

j=1

PXi|SiUQ(xij|sij, uj, qj). Define codebook Ci as

Ci , {xi(si,u,q) : (si,u) ∈ Sn
i × Un}. Reveal the codebooks to both the encoders and

the decoder.

Encoding. Given (si,u) ∈ Sn
i × Un, Encoder i sends xi(si,u,q).

Decoding. The decoder has full knowledge of u (and also the time sharing sequence q).

Upon receiving sequence y, the decoder finds the only pair (ŝ1, ŝ2) ∈ T (n)
ε (S1, S2), such

that y ∈ T (n)
ε (Y |̂s1, ŝ2,u,q, x̂1, x̂2), where x̂1 = x1(ŝ1,u,q) and x̂2 = x2(ŝ2,u,q). If

there is no or more than one such pair of sequences (̂s1, ŝ2), an error is declared.

For the sake of convenience, define the events

A0 : (s1, s2,u) ∈ T (n)
ε (S1, S2, U |q)

A1 : (s1, s2,u, Xn
1 (s1,u,q), Xn

2 (s2,u,q)) ∈ T (n)
ε (·|q).

The following result is a consequence of the Markov lemma (Lemma 5.2).

Lemma 6.1 For any ε, ε2 ∈ (0, 1), EC1,C2 [Pr(Ac
1|A0)] ≤ ε2 for n sufficiently large, where

the expectation is taken with respect to the random codes C1 and C2.
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Bounding EC1,C2 [P
(n)
e ]

EC1,C2 [P
(n)
e ]

≤
∑

(T (n)
ε (S1,S2,U |q))c

P
(n)
S1S2

(s1, s2)P
(n)
U (u)

+
∑

T (n)
ε (S1,S2,U |q)

P
(n)
S1S2

(s1, s2)P
(n)
U (u)EC1,C2


 ∑

y:ψ(n)(y,u) 6=(s1,s2)

W
(n)
Y |X1X2

(y|x1,x2)


 .

The first term vanishes for n sufficiently large by Lemma 5.1. It suffices to bound

the expectation in the second term. Given (s1, s2,u) ∈ T (n)
ε (S1, S2, U |q), we have the

following four error events:

E0 : (s1, s2,u, Xn
1 (s1,u,q), Xn

2 (s2,u,q), Y n) /∈ T (n)
ε (·|q),

E1 : ∃ ŝ1 6= s1 such that

(ŝ1, s2,u, Xn
1 (ŝ1,u,q), Xn

2 (s2,u,q), Y n) ∈ T (n)
ε (·|q),

E2 : ∃ ŝ2 6= s2 such that

(s1, ŝ2,u, Xn
1 (s1,u,q), Xn

2 (ŝ2,u,q), Y n) ∈ T (n)
ε (·|q),

E3 : ∃ s̃1 6= s1, s̃2 6= s2 such that

(s̃1, s̃2,u, Xn
1 (s̃1,u,q),u), Xn

2 (s̃2,u,q), Y n) ∈ T (n)
ε (·|q).

It then immediately follows from the union bound that

EC1,C2


 ∑

y:ψ(n)(y,u) 6=(s1,s2)

W
(n)
Y |X1X2

(y|x1,x2)


 ≤

3∑
j=0

EC1,C2
[
Pr {Ej|A0}

]
. (6.23)

To bound EC1,C2
[
Pr {E0|A0}

]
, it follows from Lemma 5.2 that

EC1,C2
[
Pr {E0|A0}

]
≤ EC1,C2

[
Pr(Ac

1|A0)
]

+ EC1,C2
[
Pr {E0|A0, A1}

]

≤ ε0

2
+

ε0

2
= ε0 (6.24)
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if n sufficiently large, where ε0 will be specified later.

To bound EC1,C2
[
Pr {E1|A0}

]
, write

EC1,C2
[
Pr{E1|A0}

]
≤

∑

bs1 6=s1:bs1∈T (n)
ε (S1|s2)

EC1,C2
[
Pr

{
v1 ∈ T (n)

ε

∣∣ A0

}]
(6.25)

where v1 = (ŝ1, s2,u,q, Xn
1 (ŝ1,u,q), Xn

2 (s2,u,q), Y n) and the expectation can be upper

bounded by

EC1,C2
[
Pr

{
v1 ∈ T (n)

ε

∣∣ A0

}]

≤
∑

Xn
1 ×Xn

2

P
(n)
X1|S1UQ(x̂1 |̂s1,u,q)P

(n)
X2|S2UQ(x2|s2,u,q)

∑

y∈T (n)
ε (Y |bs1,s2,u,q,bx1,x2)

P
(n)
Y |S2UQX2

(y|s2,u,q,x2)

≤
∣∣T (n)

ε (Y |̂s1, s2,u,q, x̂1,x2)
∣∣ 2−n(H(Y |S2,U,Q,X2)−2ε) (6.26)

≤ 2n(H(Y |X1,X2)+2ε)2−n(H(Y |S2,U,Q,X2)−2ε) (6.27)

= 2n(H(Y |X1,X2,S2,U,Q)+2ε)2−n(H(Y |S2,U,Q,X2)−2ε)

= 2−n(I(X1;Y |X2,S2,U,Q)−4ε), (6.28)

where x̂1 = x1(ŝ1,u,q), x2 = x2(s2,u,q), and (6.26) and (6.27) follow from Lemma 5.1.

It then follows from (6.25), Lemma 5.1 and (6.19) that

EC1,C2
[
Pr {E1|A0}

]
≤

∣∣T (n)
ε (S1|s2)

∣∣ 2−n(I(X1;Y |X2,S2,U,Q)−4ε)

≤ 2n(H(S1|S2)+2ε)2−n(I(X1;Y |X2,S2,U,Q)−4ε)

= 2−n(I(X1;Y |X2,S2,U,Q)−H(S1|S2)−6ε)

≤ 2−nε ≤ ε0, (6.29)

for n sufficiently large. Similarly, we can bound using (6.20)

EC1,C2
[
Pr {E2|A0}

]
≤ ε0, (6.30)
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for n sufficiently large.

It remains to bound EC1,C2
[
Pr {E3|A0}

]
. Write

EC1,C2
[
Pr{E3|A0}

]
≤

∑

es1 6=s1,es2 6=s2:(es1,es2)∈T (n)
ε (S1,S2)

EC1,C2
[
Pr

{
v2 ∈ T (n)

ε

∣∣ A0

}]
, (6.31)

where v2 = (s̃1, s̃2,u,q, Xn
1 (s̃1,u,q), Xn

2 (s̃2,u,q), Y n) and

EC1,C2
[
Pr

{
v2 ∈ T (n)

ε

∣∣ A0

}]

≤
∑

Xn
1 ×Xn

2

P
(n)
X1|S1UQ(x̃1 |̃s1,u,q)P

(n)
X2|S2UQ(x̃2 |̃s2,u,q)

∑

y∈T (n)
ε (Y |es1,es2,u,q,ex1,ex2)

P
(n)
Y |UQ(y|u,q)

≤
∣∣T (n)

ε (Y |̃s1, s̃2,u,q, x̃1, x̃2)
∣∣ 2−n(H(Y |U,Q)−2ε) (6.32)

≤ 2n(H(Y |U,Q,X1,X2)+2ε)2−n(H(Y |U,Q)−2ε) (6.33)

= 2−n(I(X1,X2;Y |U,Q)−4ε)

where x̃1 = x1(s̃1,u,q) and x̃2 = x2(s̃2,u,q), and (6.32) and (6.33) follow Lemma 5.1.

It then follows that,

EC1,C2
[
Pr{E3|A0}

]
≤

∑

es1 6=s1,es2 6=s2:(es1,es2)∈T (n)
ε (S1,S2)

2−n(I(X1,X2;Y |U)−4ε)

≤
∣∣T (n)

ε (S1, S2)
∣∣ 2−n(I(X1,X2;Y |U)−4ε)

≤ 2n(H(S1,S2)+2ε)2−n(I(X1;Y |X2,S2,U)−4ε)

= 2−n(I(X1;Y |X2,S2,U)−H(S1,S2)−6ε)

≤ 2−nε ≤ ε0 (6.34)

for n sufficiently large. Now plugging (6.24), (6.29), (6.30), and (6.34) back into (6.23),

and setting ε0 = ε1
4
, we see that EC1,C2 [P

(n)
e ] ≤ ε1 for n sufficiently large.
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Bounding EC1,C2 [P
(n)
i ]

Since the encoding is separately performed, Encoder 1 is independent of C2. Thus it

suffices to show that EC1 [P
(n)
1 ] ≤ ε1 for n sufficiently large.

Clearly, if (s1,u,x1) ∈ T (n)
ε (S1, U,X1|q), then

1

n
d1(u,x1(s1,u,q)) ≤ E[d1(U,X1)] + εdmax

1 ≤ D1 + εdmax
1

for n sufficiently large, where the first inequality follows from the definition of strong

typicality and the second inequality follows from (6.22). According to Lemma 5.1,

EC1 [P
(n)
1 ] ≤

∑

(T (n)
ε (S1,U |q))c

P
(n)
S1U(s1,u)

+
∑

T (n)
ε (S1,U |q)

P
(n)
S1U(s1,u)EC1

[
1
{
v3 /∈ T (n)

ε (S1, U,Q,X1)
}]

≤ ε1

2
+

ε1

2
= ε1 (6.35)

for n sufficiently large, where v3 = (s1,u,q, Xn
1 (s1,u,q)).

Completing the Proof

As we mentioned in the beginning of the section,

EC1,C2{P (n)
e + P

(n)
1 + P

(n)
2 } ≤ 3ε1,

implies that there exists a pair of codes (C1, C2) such that P
(n)
e ≤ 3ε1, P

(n)
1 ≤ 3ε1, P

(n)
2 ≤

3ε1 are simultaneously satisfied for n sufficiently large. Furthermore, if P
(n)
i ≤ 3ε1, we

have

1

n
E

[
di(U

n, ϕ
(n)
i (Sn

i , Un))
] ≤ Di + εdmax

i + P
(n)
i dmax

i ≤ Di + δi,

as n →∞, by setting δi = ε + 3ε1d
max
i . Thus the distortion constraint is satisfied. This

completes the proof of Theorem 6.1.
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6.3.2 Proof of Theorem 6.2

Suppose (H(S1|S2), H(S2|S1), H(S1, S2)) ∈ Rn. Then we can replace the channel by its

nth extension. Thus, the achievability follows directly from Theorem 1. We now prove

the converse part. We wish to show that for any sequence of encoder-decoder triplets

(ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) that achieves P

(n)
e < ε and 1

n
E[d(Un, ϕ

(n)
i (Sn

i , Un))] ≤ D + δ for i = 1, 2

for n sufficiently large, (6.6) holds. By Fano’s inequality, we have

H(Sn
1 , Sn

2 |Un, Y n) ≤ P (n)
e log |(Sn

1 , Sn
2 )|+ H(P (n)

e ) , nεn. (6.36)

Since

H(Sn
1 |Sn

2 , Un, Y n, Xn
2 ) ≤ H(Sn

1 |Sn
2 , Un, Y n) ≤ H(Sn

1 , Sn
2 |Un, Y n) (6.37)

by data processing inequality, we also have

H(Sn
1 |Sn

2 , Un, Y n, Xn
2 ) ≤ nεn, (6.38)

H(Sn
2 |Sn

1 , Un, Y n, Xn
1 ) ≤ nεn. (6.39)

We now bound H(S1|S2) as

nH(S1|S2)

= H(Sn
1 |Sn

2 )

= H(Sn
1 |Sn

2 , Un) (6.40)

= H(Sn
1 |Sn

2 , Un, Xn
2 ) + I(Sn

1 ; Xn
2 |Sn

2 , Un) (6.41)

= I(Sn
1 ; Y n|Sn

2 , Un, Xn
2 ) + H(Sn

1 |Sn
2 , Un, Xn

2 , Y n) + I(Sn
1 ; Xn

2 |Sn
2 , Un) (6.42)

≤ I(Xn
1 ; Y n|Sn

2 , Un, Xn
2 ) + H(Sn

1 |Sn
2 , Un, Xn

2 , Y n) (6.43)

≤ I(Xn
1 ; Y n|Sn

2 , Un, Xn
2 ) + nεn (6.44)

where (6.43) follows from the data processing inequality and the fact that Sn
1 and Xn

2

are conditional independent given Un and Sn
2 , and (6.44) follows from (6.38). Therefore,
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we obtain that

H(S1|S2) ≤ 1

n
I(Xn

1 ; Y n|Sn
2 , Un, Xn

2 ) + εn. (6.45)

Similarly, we have

H(S2|S1) ≤ 1

n
I(Xn

2 ; Y n|Sn
1 , Un, Xn

1 ) + εn. (6.46)

To bound H(S1, S2), we have

nH(S1, S2) = H(Sn
1 , Sn

2 )

= H(Sn
1 , Sn

2 |Un) (6.47)

= I(Sn
1 , Sn

2 ; Y n|Un) + H(Sn
1 , Sn

2 |Un, Y n) (6.48)

≤ I(Xn
1 , Xn

2 ; Y n|Un) + nεn (6.49)

where the last inequality follows from (6.36). Hence, we have

H(S1, S2) ≤ 1

n
I(Xn

1 , Xn
2 ; Y n|Un) + εn. (6.50)

Now if P
(n)
e → 0, we have εn → 0 and δ → 0 as n→ ∞. It follows from (6.45), (6.46),

and (6.50) that

(H(S1|S2), H(S2|S1), H(S1, S2)) ∈
∞⋃

n=1

Rn. (6.51)

which proves the converse part.

6.3.3 Proof of the Case of Parallel Attack Channels

When WY |X1X2 = WY1|X1×WY2|X2 , we see that (6.12)–(6.14) imply (6.1)–(6.4). In fact, if

the maximums in (6.12)–(6.14) are achieved by P ∗
X1|U(x1|u) and P ∗

X2|U(x2|u), then simply
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letting |Q| = 1, PX1|S1U(x1|s1, u) = P ∗
X1|U(x1|u) and PX2|S2U(x2|s2, u) = P ∗

X2|U(x2|u), we

see that with this choice,

I(X1; Y |X2, S2, U,Q) = I(X1; Y1|S2, U,Q)

= I(X1; Y1|U)

= max
PX1|U :E[d1(U,X1)]≤D1

I(X1; Y1|U).

Similarly,

I(X2; Y |X1, S1, U,Q) = max
PX2|U :E[d2(U,X2)]≤D2

I(X2; Y2|U),

and

I(X1, X2; Y1, Y2|U,Q) = max
PX1|U :E[d1(U,X1)]≤D1

I(X1; Y1|U) + max
PX2|U :E[d2(U,X2)]≤D2

I(X2; Y2|U).

We next show that (6.1)–(6.4) imply (6.12)–(6.14). We only need to show that for any

PX1|S1UQ satisfying E[d1(U,X1)] < D1, the right hand side of (6.1) is upper bounded by

(6.12). Since (Q,S1, U) → X1 → Y1 form a Markov chain in this order,

I(X1; Y1|U) = H(Y1|U)−H(Y1|X1, U)

≥ H(Y1|S2, U,Q)−H(Y1|X1, S2, U,Q)

= I(X1; Y1|S2, U,Q).

For any PX1|S1UQ satisfying E[d1(U,X1)] < D1, set

P̂X1|U(x1|u) =
∑
S1×Q

PS1(s1)PQ(q)PX1|S1UQ(x1|s1, u, q).

Under the corresponding P̂X1|U(x1|u), we have

I(X1; Y1|U, S2, Q) ≤ I(X1; Y1|U)

≤ max
PX1|U :E[d1(U,X1)]≤D1

I(X1; Y1|U).

We can similarly show that (6.2)–(6.3) imply (6.13)–(6.14). 2
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6.4 Conclusions

We presented a multi-user information hiding model for the transmission of two corre-

lated secret sources over memoryless multiple attack access channel with common host

data. The achievable rate region is studied for the case where lossless compression of

stegotexts is jointly performed with information hiding. Based on our definition for

reliable transmission (admissibility), we derived a sufficient condition with single-letter

characterizations for hiding correlated sources against MAC attacks. An uncomputable

(and somewhat trivial) outer bound (converse condition) is formulated by applying

Fano’s inequality in terms of a sequence of n-dimensional joint distributions. In the

future, we are interested to study the embedding of correlated sources with joint em-

bedding/compression rate constraints. Our next step is to answer the question: when

(S1, S2) are (D1, D2)-admissible with respect to WY |X1X2 , what is the compression limit

for the sources (S1, S2) and U?
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Chapter 7

Capacity Region for Multi-User

Public Information Hiding Under

Multiple Access Attacks

7.1 Introduction

In [88], an information embedding model was considered for hiding secret information

in a discrete memoryless source (DMS) which is then transmitted through a discrete

memoryless channel (DMC); see Fig. 7.1. The secret message W , independently and

uniformly drawn from a message set of 2nR elements, is embedded into n-length sequences

Un (referred to as host messages) generated by the DMS {U}. Since the secret messages

should not interfere perceptually with the host messages, a distortion constraint is placed

between the encoder output (referred to as stegotext) Xn and the original host message

Un. This secret information is to be recovered from a noisy version of the sequence in

which the information is embedded. The noise is used to model the effects of standard

151



7.1. Introduction

data-processing or a malicious attack. The embedding model is motivated by practical

information hiding problems such as watermarking or copyright protection, where a

copyright/watermark is embedded into the original multimedia data in order to preserve

the ownership of intellectual property (see, e.g., [35], [77] and the references therein).

Un
- Embedder

?

W

- Destination

-

Xn

DMC
WY |X

-Y n
Decoder -Ŵ

Figure 7.1: A single-user information embedding system.

From an information-theoretic point of view, it is of interest to find the largest

achievable embedding rate R (known as the embedding capacity) for which, at the

encoder, the distortion between the host message Un and the stegotext Xn does not

exceed a preset threshold, and at the decoder, the secret messages can be reproduced

with an arbitrarily small probability of error. It is shown in [88] that for a host source

with distribution QU , “attack” channel WY |X , and an (average) distortion threshold D,

the embedding capacity is given by

max
PTX|U∈PD

[I(T ; Y )− I(U ; T )]

where PD is the set of all the conditional distributions PTX|U such that the average

distortion between X and U under the distribution QUPTX|U is less than D for some

auxiliary random variable (RV) T .

In this work we extend the information embedding model for a multi-user setting

depicted in Fig. 7.2. Assume that two users separately embed their secret information
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into two correlated DMSs, U1 and U2. Each user can only access one of the two host

sources. The stegotexts are sent through a multiple access channel (MAC) to a decoder

which tries to reconstruct the secret information. For the two-user information embed-

ding system, we are interested in determining the embedding capacity region, i.e., the

two-dimensional set of all the achievable embedding rate pairs. An inner bound for the

embedding capacity region is obtained based on a ε-strong typicality coding/decoding

argument. More specifically, we first map the watermarks w1 and w2 as well as the corre-

lated source messages u1 and u2 through separate encoders to auxiliary codewords t1 and

t2, and then we generate two stegotexts x1 and x2 which are jointly typical with respect

to (u1,u2, t1, t2). In the decoding stage, we recover the watermarks by examining the

joint typicality of the received sequence y and all auxiliary codeword pairs (t1, t2). We

employ a generalized rate-distortion encoding scheme to ensure that (u1,u2, t1, t2) are

jointly typical with high probability. The generalized rate-distortion encoding scheme,

introduced in [54] for Gaussian multi-terminal source coding (see also [79], [26]), can be

briefly described as follows. One of the encoders, say Encoder 1, generates an auxil-

iary t1 such that conditioning on (u1, t1), (u1, t1, U
n
2 , T n

2 ) is ε-strongly typical with high

probability. The other encoder, Encoder 2,uses the auxiliary codebook of Encoder 1

(ϕ
(n)
1 (W1, U

n
1 )) and generates an auxiliary t2 such that (Un

1 , ϕ
(n)
1 (W1, U

n
1 ),u2, t2) is ε-

strongly typical with high probability. To this end, an extended Markov lemma (see

Lemma 5.5) ensures that the auxiliary codewords t1 and t2, although generated from

separate encoders, are jointly typical with the source sequences with high probability.

We also derive an outer bound for the embedding capacity region with single-letter

characterization (see Theorem 7.2), which follows from Fano’s inequality and a standard

information-theoretical bounding argument. We also study the embedding capacity

region when the two host sources are independent, and inner and outer bounds are

obtained (see Theorem 7.3). The inner bound is a consequence of Theorem 7.1. To
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prove the converse part, we sharpen the bound given in Theorem 7.2 by using the

independence condition.

In [76], the authors obtained an achievable embedding region for correlated Gaussian

host sources and parallel additive Gaussian attack channels. Their proof seems to be

incorrect because their encoding approach cannot guarantee the typicality of the output

sequences with respect to the host sequences. In fact, our Theorem 7.1 shows that

their result (the achievable region) is correct; see the remark after Theorem 7.1. We also

point out that a similar setup regarding the multi-user reversible information embedding

system was considered in [36] for independent host sources and a MAC. Since in the

reversible information embedding problem the secret messages as well as the host sources

from both users are reconstructed at the single decoder, the techniques of the generalized

rate-distortion coding scheme and the decoding based on the auxiliary codewords are

not required in [36] and the coding strategy is fundamentally different from ours.

7.2 Problem Formulation and Main Results

Let the joint distribution of the discrete memoryless host sources U1 and U2 with al-

phabets U1 and U2 be QU1U2 . The secret messages w1 and w2 are independently and

uniformly chosen from the sets W1 , {1, 2, ..., M1} and W2 , {1, 2, ..., M2}, respec-

tively. The attack channel is modeled as a two-sender one-receiver discrete memoryless

MAC WY |X1X2 having input alphabets X1 and X2, output alphabet Y , and a transition

probability distribution WY |X1X2(y|x1, x2). The probability of receiving y ∈ Yn con-

ditioned on sending x1 ∈ X n
1 and x2 ∈ X n

2 is hence given by W
(n)
Y |X1X2

(y|x1,x2). Let

di : Ui × Xi → [0,∞) be single-letter distortion measures for i = 1, 2. For ui ∈ Un
i and

xi ∈ X n
i , let di(ui,xi) =

∑n
j=1 di(uij, xij).

A two-sender one-receiver multiple-access embedding (MAE) code (f
(n)
1 , f

(n)
2 , ψ(n))
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-(Ŵ1, Ŵ2)

Figure 7.2: A multi-user information embedding system with two embedders.

with block length n consists of (see Fig. 7.2) two encoders (embedders)

f
(n)
1 : W1 × Un

1 −→ X n
1 and f

(n)
2 : W2 × Un

2 −→ X n
2

with embedding rates R1 = log2 M1

n
and R2 = log2 M2

n
, respectively, and decoder

ψ(n) : Yn −→W1 ×W2.

The system depicts a “public” embedding scenario since the host sources are not available

at the decoder. The probability of erroneously decoding the secret messages is defined

by

P (n)
e (R1, R2)

, Pr
(
ψ(n)(Y n) 6= (W1,W2)

)

=
1

2n(R1+R2)

M1∑
w1=1

M2∑
w2=1

∑
Un

1 ×Un
2

Q
(n)
U1U2

(u1,u2)W
(n)
Y |X1X2

(
y : ψ(n)(y) 6= (w1, w2)|x1,x2

)

where xi , f
(n)
i (wi,ui) for i = 1, 2.
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Definition 7.1 Given QU1U2 , WY |X1X2 , a rate pair (R1, R2) is said to be achievable

with respect to distortion levels (D1, D2) if there exists a sequence of MAE codes

(f
(n)
1 , f

(n)
2 , ψ(n)) at rates R1 and R2 such that

lim
n→∞

P (n)
e (R1, R2) = 0

and

lim sup
n→∞

1

n
E

[
di(U

n
i , f

(n)
i (Wi, U

n
i ))

]
≤ Di, i = 1, 2.

Definition 7.2 The embedding capacity region R(D1, D2) is the closure of the set of

achievable rate pairs (R1, R2).

Remark: It can be shown by using a time-sharing argument [10] that R(D1, D2) is

convex.

Definition 7.3 Given QU1U2 , WY |X1X2 , and a pair of distortion levels (D1, D2), let

SD1,D2 be the set of random variables (U1, T1, U2, T2, X1, X2, Y ) ∈ U1×T1×U2×T2×X1×
X2×Y for some finite alphabets T1 and T2 such that the joint distribution PU1T1U2T2X1X2Y

satisfies: (1) it can be factorized as

PU1T1U2T2X1X2Y = QU1U2PT1X1|U1PT2X2|U2WY |X1X2 ,

(2) I(Ui; Ti) > 0, and (3) E[di(Ui, Xi)] ≤ Di, for i = 1, 2.

Definition 7.4 Given QU1U2 , WY |X1X2 , and a pair of distortion levels (D1, D2), let

PD1,D2 be the set of random variables (U1, T1, U2, T2, X1, X2, Y ) ∈ U1×T1×U2×T2×X1×
X2×Y for some finite alphabets T1 and T2 such that the joint distribution PU1T1U2T2X1X2Y

satisfies: (1) it can be factorized as

PU1T1U2T2X1X2Y = QU1U2PT1T2X1X2|U1U2WY |X1X2 ,

and (2) E[di(Ui, Xi)] ≤ Di, for i = 1, 2.
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By definition, SD1,D2 ⊆ PD1,D2 . The following are the main results of the paper.

Theorem 7.1 LetRin(D1, D2) be the closure of the convex hull of all (R1, R2) satisfying

R1 < I(T1; T2, Y )− I(U1; T1), (7.1)

R2 < I(T2; T1, Y )− I(U2; T2), (7.2)

R1 + R2 < I(T1, T2; Y )− I(U1, U2; T1, T2), (7.3)

for some (U1, T1, U2, T2, X1, X2, Y ) ∈ SD1,D2 . Then Rin(D1, D2) ⊆ R(D1, D2).

Remark: Although we only deal with discrete (finite-alphabet) sources and channels,

it is not hard to see that, with the appropriate changes in the proof, the achievable region

is also valid for a system that incorporates a pair of correlated memoryless Gaussian

sources and a Gaussian MAC. In particular, when the MAC is a pair of parallel additive

Gaussian channels, Rin(D1, D2) reduces to the achievable region obtained in [76], even

though the proof provided in [76] is not entirely correct.

Theorem 7.2 Let Rout(D1, D2) be the closure of all (R1, R2) satisfying (7.1)–(7.3) for

some

(U1, T1, U2, T2, X1, X2, Y ) ∈ PD1,D2 . ThenR(D1, D2) ⊆ Rout(D1+δ,D2+δ) for all δ > 0.

Remark: The theorem states that R(D1, D2) ⊆
⋂

δ>0Rout(D1 + δ,D2 + δ). If we

could upper bound the cardinality of the alphabet sizes of the auxiliary RVs T1 and T2 in

the definition ofRout(D1, D2), it could be readily shown that
⋂

δ>0Rout(D1+δ,D2+δ) =

Rout(D1, D2), so that R(D1, D2) ⊆ Rout(D1, D2). However, without such an upper

bound, we can only state the theorem in the present weaker form. The same remark

applies to the outer bound in the next theorem.

We next consider the case when the host sources are independent, i.e., QU1U2 =

QU1QU2 . We then have the following inner and outer bounds.
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Theorem 7.3 Let QU1U2 = QU1QU2 . Let R∗
in(D1, D2) be the closure of the convex hull

of all (R1, R2) satisfying

R1 < I(T1; Y |T2)− I(U1; T1) (7.4)

R2 < I(T2; Y |T1)− I(U2; T2) (7.5)

R1 + R2 < I(T1, T2; Y )− I(U1; T1)− I(U2; T2) (7.6)

for some (U1, T1, U2, T2, X1, X2, Y ) ∈ SD1,D2 , and let R∗
out(D1, D2) be the closure of all

(R1, R2) satisfying (7.4)–(7.6) for some (U1, T1, U2, T2, X1, X2, Y ) ∈ PD1,D2 . Then

R∗
in(D1, D2) ⊆ R(D1, D2) ⊆ R∗

out(D1 + δ,D2 + δ)

for all δ > 0.

Remark: In Section 7.3.4 we show that the cardinality of the alphabets of the

auxiliary RVs T1 and T2 for R∗
in(D1, D2) and Rin(D1, D2) can be bounded as |Ti| ≤

|Ui||Xi|+ 1 and |Ti| ≤ |U1||U2||Xi|+ 1 (i = 1, 2), respectively.

7.3 Proofs

7.3.1 Proof of Theorem 7.1

We first give an outline of the proof. We need to show that for given QU1U2 , WY |X1X2 ,

and any (R1, R2) ∈ Rin(D1, D2), there exists a sequence of codes (f
(n)
1 , f

(n)
2 , ψ(n)) such

that P
(n)
e → 0 as n →∞ and for any δ > 0, 1

n
E[di(U

n
i , f

(n)
i (Wi, U

n
i ))] ≤ Di + δ, i = 1, 2,

for n sufficiently large.

Fix (PT1|U1 , PX1|U1T1 , PT2|U2 , PX2|U2T2) such that I(Ui; Ti) > 0 and the following are

satisfied for some ε′ > 0,

R1 < I(T1; T2, Y )− I(U1; T1)− ε′, (7.7)
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R2 < I(T2; T1, Y )− I(U2; T2)− ε′, (7.8)

R1 + R2 < I(T1, T2; Y )− I(U1, U2; T1, T2)− ε′, (7.9)

E[di(Ui, Xi)] ≤ Di, i = 1, 2. (7.10)

We will choose f
(n)
1 and f

(n)
2 in a random manner. For ε < δ

2max{dmax
1 ,dmax

2 } , define

P
(n)
i , Pr

( 1

n
di

(
Un

i , f
(n)
i (Wi, U

n
i )

)
> Di + εdmax

i

)
, i = 1, 2,

where dmax
i , max

ui,xi

di(ui, xi), i = 1, 2. We will prove that for any 0 < ε1 ≤ δ
6max{dmax

1 ,dmax
2 } ,

the probabilities P
(n)
e , P

(n)
1 , and P

(n)
2 , when averaged over the random choice of f

(n)
1 and

f
(n)
2 , satisfy

E[P (n)
e ] ≤ ε1, E[P

(n)
1 ] ≤ ε1, E[P

(n)
2 ] ≤ ε1

for n sufficiently large. Then E{P (n)
e + P

(n)
1 + P

(n)
2 } ≤ 3ε1, which guarantees that there

exists at least one pair of codes (f
(n)
1 , f

(n)
2 ) such that P

(n)
e + P

(n)
1 + P

(n)
2 ≤ 3ε1 and hence

P
(n)
e ≤ 3ε1, P

(n)
1 ≤ 3ε1, P

(n)
2 ≤ 3ε1 are simultaneously satisfied for n sufficiently large.

Finally, it can be easily shown that P
(n)
i ≤ 3ε1 implies for n sufficiently large that

1

n
E

[
di(U

n
i , f

(n)
i (Wi, U

n
i )

]
≤ Di + εdmax

i + P
(n)
i dmax

i ≤ Di + δ.

Random Code Design

In what follows, the strongly ε-typical set T (n)
ε is defined under the joint distribution

PU1U2T1T2X1X2Y = QU1U2PT1|U1PX1|U1T1PT2|U2PX2|U2T2WY |X1X2 (7.11)

and all the marginal and conditional distributions, e.g., PU2T2 , PU1|U2T2 , etc, are induced

by the joint distribution. The parameter ε, which is chosen to be sufficiently small, will

be specified in the proof.
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Generation of codebooks. For i = 1, 2 and every wi ∈ Wi, generate a codebook

Cwi
= {ti(wi, 1), ti(wi, 2), ..., ti(wi, Li)}

with Li = 2n[I(Ui;Ti)+4ε] codewords such that each ti(wi, li) is independently selected

with uniform distribution from the typical set T (n)
ε (Ti). Denote the entire codebook

for Encoder i by C(i) = {Cwi
}Mi

wi=1, where we recall that Mi = 2nRi . For each ui and

codeword ti(wi, li) (1 ≤ wi ≤ Mi, 1 ≤ li ≤ Li), generate a codeword xi according to

P
(n)
Xi|UiTi

(xi|ui, ti). Denote the codebook of all the codewords xi by B(i).

Encoder f
(n)
1 : Encoder f

(n)
1 is the concatenation of a pre-encoder ϕ

(n)
1 : W1×Un

1 −→
T n

1 and a mapping g
(n)
1 : Un

1 × T n
1 −→ X n

1 .

To define ϕ
(n)
1 , we need the following notation adopted from [54]. We introduce a

conditional probability

A(n)(u1, t1) , P
(n)
U2T2|U1T1

(
(u2, t2) : (u2, t2) ∈ T (n)

ε (U2T2|u1, t1)
∣∣u1, t1

)
.

For µ ∈ (0, 1), let

F (n)
µ,ε (U1, T1) ,

{
(u1, t1) : A(n)(u1, t1) ≥ 1− µ

}
.

By definition, we have F (n)
µ,ε (U1, T1) ⊆ T (n)

ε (U1, T1).

We now describe the pre-encoding function ϕ
(n)
1 = ϕ

(n)
1 (w1,u1) which maps every

pair (w1,u1) to a codeword in C(1) ⊆ T n
1 . Given w1 ∈ {1, 2, ..., M1} and u1, ϕ

(n)
1

seeks the first codeword t1(w1, l1) with l1 ≤ L1 − 1 in Cw1 such that (u1, t1(w1, l1)) ∈
F (n)

µ,ε (U1, T1). If there is no such codeword, ϕ
(n)
1 outputs t1(w1, L1). Next, for each output

t1(w1, l1) and u1, g
(n)
1 sends out the associated codeword x1(w1,u1) to the channel. Thus,

f
(n)
1 (w1,u1) = g

(n)
1

(
u1, ϕ

(n)
1 (w1,u1)

)
.

Encoder f
(n)
2 : Encoder f

(n)
2 is the concatenation of a pre-encoder ϕ

(n)
2 : W2×Un

2 −→
T n

2 and a mapping g
(n)
2 : Un

2 × T n
2 −→ X n

2 .
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To define ϕ
(n)
2 , let

B(n)
ϕ1

(u2, t2) , 1

2nR1

M1∑
w1=1

P
(n)
U1|U2T2

(
u1 : (u1, ϕ

(n)
1 (w1,u1)) ∈ T (n)

ε (U1T1|u2, t2)
∣∣∣u2, t2

)
.

Also, for ν ∈ (0, 1), define

F (n)
ϕ1,ν,ε(U2, T2) ,

{
(u2, t2) : B(n)

ϕ1
(u2, t2) ≥ 1− ν

}
.

By definition, it is seen that F (n)
ϕ1,ν,ε(U2, T2) ⊆ T (n)

ε (U2, T2).

We now describe the pre-encoding function ϕ
(n)
2 = ϕ

(n)
2 (w2,u2) which maps every pair

(w2,u2) to a codeword in C(2) ⊆ T n
2 . Given w2 ∈ {1, 2, ..., M2} and u2, ϕ

(n)
2 seeks the first

codeword t2(w2, l2) with l2 ≤ L2 − 1 in Cw2 such that (u2, t2(w2, l2)) ∈ F (n)
ϕ1,ν,ε(U2, T2).

If there is no such codeword, ϕ
(n)
2 outputs t2(w2, L2). Next, for each output t2(w2, l2),

g
(n)
2 sends out the associated codeword x2(w2,u2) to the channel. Thus, f

(n)
2 (w2,u2) =

g
(n)
2

(
u2, ϕ

(n)
2 (w2,u2)

)
.

Decoder ψ(n): Given y, ψ(n) seeks t1(ŵ1, l̂1) ∈ C(1) and t2(ŵ2, l̂2) ∈ C(2) such that

(t1(ŵ1, l̂1), t2(ŵ2, l̂2),y) ∈ T (n)
ε (T1, T2, Y ).

If such a pair (t1(ŵ1, l̂1), t2(ŵ2, l̂2)) exists for a unique (ŵ1, ŵ2), then ψ(n) outputs ŵ1

and ŵ2 as the decoded messages. If there is no such pair (ŵ1, ŵ2), or it is not unique, a

decoding error is declared. Letting ti(wi, li) = ϕ
(n)
i (wi,ui), it is easy to see that if there

is a decoding error, then at least one of the following events occurs:

1. E1: (t1(w1, l1), t2(w2, l2),y) /∈ T (n)
ε (T1, T2, Y ),

2. E2: there exist l′1 and w′
1 6= w1 and l′2 (l′2 may or may not be equal to l2) such that

(t1(w
′
1, l

′
1), t2(w2, l

′
2),y) ∈ T (n)

ε (T1, T2, Y ),
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3. E3: there exist l′2 and w′
2 6= w2 and l′1 (l′1 may or may not be equal to l1) such that

(t1(w1, l
′
1), t2(w

′
2, l

′
2),y) ∈ T (n)

ε (T1, T2, Y ),

or

4. E4: there exist l′1 and w′
1 6= w1 and l′2 and w′

2 6= w2 such that

(t1(w
′
1, l

′
1), t2(w

′
2, l

′
2),y) ∈ T (n)

ε (T1, T2, Y ).

In the following, we will bound the probabilities P
(n)
e , P

(n)
1 and P

(n)
2 averaged over

the random choice of all codes B(1), B(2), C(1), and C(2). To simplify the notation we

abbreviate EB(1),B(2),C(1),C(2) [ · ] as EΩ[ · ].

Bounding EΩ[P
(n)
e ]

To analyze the average probability of error, we need the following lemma.

Lemma 7.1 For any discrete RVs (U1, U2, T1, T2) forming a Markov chain T1 → U1 →
U2 → T2 in this order, we have

I(U1, U2; T1, T2) + I(T1; T2) = I(U1; T1) + I(U2; T2).

Proof: We first write

I(U1, U2; T1, T2) = H(T1, T2)−H(T1, T2|U1, U2)

= H(T1, T2)−H(T1|U1, U2)−H(T2|U1, U2, T1)

= H(T1, T2)−H(T1|U1)−H(T2|U2)

where the last equality follows from the Markov condition. Since I(T1; T2) = H(T1) +

H(T2)−H(T1, T2), we have

I(U1, U2; T1, T2) + I(T1; T2) = H(T1) + H(T2)−H(T1|U1)−H(T2|U2)
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= I(U1; T1) + I(U2; T2).

2

Since the watermarks are independently and uniformly distributed, and by the sym-

metry of the code construction, we can assume without the loss of generality that some

fixed w1 ∈ W1 and w2 ∈ W2 are the transmitted watermarks. Thus we bound the

probability of error as

P (n)
e = Pr

({
ψ(n)(Y n) 6= (w1, w2)

})

≤ Pr(A1) + Pr
({

ψ(n)(Y n) 6= (w1, w2)
}∣∣ Ac

1

)
(7.12)

where A1 is the event

A1 : (t1(w1, l1),u1,u2, t2(w2, l2),x1,x2) /∈ T (n)
ε (T1, U1, U2, T2, X1, X2).

Recall that ti(wi, li) = ϕ
(n)
i (wi,ui), i = 1, 2. We also let ti(wi, l

′
i) and ti(w

′
i, l

′
i) be the

l′i-th codeword in the codebook Cwi
and Cw′i , respectively.

We then introduce the event

A0 : (t1(w1, l1),u1,u2, t2(w2, l2)) /∈ T (n)
ε (T1, U1, U2, T2).

Taking expectation in (7.12) and using the union bound, we have

EΩ[P (n)
e ] ≤ EΩPr (A0) + EΩPr (A1|Ac

0) + EΩPr (E1|Ac
1) +

4∑

k=2

EΩPr (Ek|Ac
1) . (7.13)

It immediately follows from Lemma 5.5 that

EΩPr (A0) = EC(1),C(2)Pr (A0) ≤ ε0 (7.14)

for n sufficiently large, where we set ε0 = ε1/7 for a given ε1 ≥ 0 throughout the proof.

When Ac
0 holds, since x1 and x2 are respectively drawn according to the conditional
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probabilities P
(n)
X1|U1T1

(·|u1, t1) and P
(n)
X2|U2T2

(·|u2, t2), and y is drawn according to the

conditional distribution W
(n)
Y |X1X2

(·|x1,x2), it follows from two successive applications of

Lemma 5.2 that

EΩPr (A1|Ac
0) ≤ EΩ[ε0] = ε0 (7.15)

and

EΩPr (E1|Ac
1)

≤ EΩPr
({(

ϕ
(n)
1 (w1, U

n
1 ), Un

1 , Un
2 , ϕ

(n)
2 (w2, U

n
2 ), f

(n)
1 (w1, U

n
1 ), f

(n)
2 (w2, U

n
2 ), Y n

)
/∈ T (n)

ε

}∣∣∣ Ac
1

)

≤ EΩ[ε0] = ε0 (7.16)

for n sufficiently large. It remains to bound EΩPr {Ek|Ac
1} for k = 2, 3, 4. Using the

union bound we write

EΩPr (E2|Ac
1)

≤
∑

w′1 6=w1

L1∑

l′1=1

Pr
({

(T n
1 (w′

1, l
′
1), Y

n, T n
2 (w2, l

′
2)) ∈ T (n)

ε (T1, T2, Y )
}∣∣ Ac

1

)
, (7.17)

where T n
1 (w′

1, l
′
1) is a RV uniformly drawn from T (n)

ε (T1) which is independent of (T n
2 (w2, l

′
2), Y

n)

since w′
1 6= w1. Thus we have

Pr
({

(T n
1 (w′

1, l
′
1), Y

n, T n
2 (w2, l

′
2)) ∈ T (n)

ε (T1, T2, Y )
}∣∣ Ac

1

)

=
∑

(t2,y)∈T (n)
ε (T2,Y )

∑

t1∈T (n)
ε (T1|t2,y)

Pr (T n
2 (w2, l

′
2) = t2, Y

n = y|Ac
1)

Pr (T n
1 (w′

1, l
′
1) = t1|T n

2 (w2, l
′
2) = t2, Y

n = y, Ac
1)

=
∑

(t2,y)∈T (n)
ε (T2,Y )

∑

t1∈T (n)
ε (T1|t2,y)

Pr (T n
2 (w2, l

′
2) = t2, Y

n = y|Ac
1) Pr (T n

1 (w′
1, l

′
1) = t1)

=
∑

(t2,y)∈T (n)
ε (T2,Y )

Pr (T n
2 (w2, l2) = t2, Y

n = y|Ac
1)
|T (n)

ε (T1|t2,y)|
|T (n)

ε (T1)|

≤ 2n[H(T1|T2,Y )+η]

2n[H(T1)−η]

∑

(t2,y)∈T (n)
ε (T2,Y )

Pr (T n
2 (w2, l

′
2) = t2, Y

n = y|Ac
1)
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≤ 2−n[I(T1;T2,Y )−2η], (7.18)

where the first inequality follows from Lemma 5.1. Recalling that η → 0 as n → ∞
and ε → 0, we can make sure that 2η < ε′ − 4ε by choosing ε small enough and n large

enough. Thus from (7.17)

EΩPr (E2|Ac
1) ≤ 2n[R1+I(U1;T1)+4ε−I(T1;T2,Y )+2η]

≤ 2n[R1+I(U1;T1)−I(T1;T2,Y )+ε′]

≤ ε0 (7.19)

for ε sufficiently small and n sufficiently large, where (7.19) follows from the assumption

(7.7). Similarly we have

EΩPr (E3|Ac
1) ≤ ε0 (7.20)

for ε small enough and n sufficiently large. We next bound

EΩPr (E4|Ac
1)

≤
∑

w′1 6=w1

L1∑

l′1=1

∑

w′2 6=w2

L2∑

l′2=1

Pr
({

(T n
1 (w′

1, l
′
1), T

n
2 (w′

2, l
′
2), Y

n) ∈ T (n)
ε (T1, T2, Y )

}∣∣ Ac
1

)
,

where T n
1 (w′

1, l
′
1) and T n

2 (w′
2, l

′
2) are RVs independently drawn from T (n)

ε (T1) and T (n)
ε (T2)

according to the uniform distribution, respectively. We have

Pr
({

(T n
1 (w′

1, l
′
1), T

n
2 (w′

2, l
′
2), Y

n) ∈ T (n)
ε (T1, T2, Y )

}∣∣ Ac
1

)

=
∑

y∈T (n)
ε (Y )

∑

(t1,t2)∈T (n)
ε (T1,T2|y)

Pr(Y n = y|Ac
1)

Pr(T n
1 (w′

1, l
′
1) = t1, T

n
2 (w′

2, l
′
2) = t2|Ac

1, Y
n = y)

=
∑

y∈T (n)
ε (Y )

∑

(t1,t2)∈T (n)
ε (T1,T2|Y )

Pr(Y n = y|Ac
1)

1

|T (n)
ε (T1)|

1

|T (n)
ε (T2)|

≤
∑

y∈T (n)
ε (Y )

Pr(Y n = y|Ac
1)

2n[H(T1,T2|Y )+η]

2n[H(T1)−η]2n[H(T2)−η]
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≤ 2−n[I(T1,T2;Y )+I(T1;T2)−3η]

and hence

EΩPr (E4|Ac
1)

≤ 2n[R1+R2+I(U1;T1)+I(U2;T2)−I(T1,T2;Y )−I(T1;T2)+8ε+3η]

≤ 2n[R1+I(U1,U2;T1,T2)−I(T1,T2;Y )+ε′]

≤ ε0 (7.21)

for n sufficiently large and ε small enough (such that 8ε + 3η < ε′), where the second

inequality follows from Lemma 7.1 and the last inequality follows from the assumption

(7.9). Finally, substituting (7.14)–(7.16), (7.19), (7.20) and (7.21) into (7.13) yields

EΩ[P
(n)
e ] ≤ 7ε0 = ε1 for ε sufficiently small and n sufficiently large.

Bounding EΩ[P
(n)
i ]

We only bound EΩ[P
(n)
i ] for i = 1, since the case i = 2 can be dealt with similarly. When

(u1,x1(w1,u1)) ∈ T (n)
ε (U1, X1),

1

n
d1

(
u1,x1(w1,u1)

) ≤ E[d1(U1, X1)] + εdmax
1 ≤ D1 + εdmax

1

for n sufficiently large, where the first inequality follows from the definition of strong typi-

cality and the second inequality follows from (7.10). This means that if 1
n
d1

(
Un

1 , f
(n)
1 (W1, U

n
1 )

)

> D1 + εdmax
1 , then we must have

(
Un

1 , f
(n)
1 (W1, U

n
1 )

)
/∈ T (n)

ε (U1, X1) for n sufficiently

large. Thus, we can bound

Pr
( 1

n
d1(U

n
1 , f

(n)
1 (W1, U

n
1 )) > D1 + εdmax

1

)

≤ Pr
((

Un
1 , f

(n)
1 (W1, U

n
1 )

)
/∈ T (n)

ε (U1, X1)
)

≤ Pr
((

Un
1 , ϕ

(n)
1 (W1, U

n
1 ), f

(n)
1 (W1, U

n
1 )

)
/∈ T (n)

ε (U1, T1, X1)
)
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≤ Pr
((

Un
1 , ϕ

(n)
1 (W1, U

n
1 )

)
/∈ T (n)

ε (U1, T1)
)

+Pr
((

Un
1 , ϕ

(n)
1 (W1, U

n
1 ), f

(n)
1 (W1, U

n
1 )

)
/∈ T (n)

ε (U1, T1, X1)
∣∣∣

(Un
1 , ϕ

(n)
1 (W1, U

n
1 )) ∈ T (n)

ε (U1, T1)
)

≤ Pr
((

ϕ
(n)
1 (W1, U

n
1 ), Un

1 , Un
2 , ϕ

(n)
2 (W2, U

n
2 )

)
/∈ T (n)

ε (T1, U1, U2, T2)
)

+Pr
((

Un
1 , ϕ

(n)
1 (W1, U

n
1 ), f

(n)
1 (W1, U

n
1 )

)
/∈ T (n)

ε (U1, T1, X1)
∣∣∣

(Un
1 , ϕ

(n)
1 (W1, U

n
1 )) ∈ T (n)

ε (U1, T1)
)
. (7.22)

Now taking expectation on both sides, the first term of (7.22) is bounded by ε1
2

by

Lemma 5.5, and the second term is bounded by ε1
2

for sufficiently large n by Lemma 5.2.

This completes the proof of the bound EΩ[P
(n)
1 ] ≤ ε1 for n sufficiently large. 2

7.3.2 Proof of Theorem 7.2

We will prove the outer bound for the achievable region by using a standard bounding

technique based on Fano’s inequality. In fact, our proof is a generalization of the proof

of the converse in [88] for a single-user embedding system.

We need to show that any MAE code (f
(n)
1 , f

(n)
2 , ψ(n)) with achievable rate pair

(R1, R2) must satisfy (7.1)–(7.3) for some auxiliary RVs T1 and T2 with joint distribution

PU1U2T1T2X1X2Y ∈ PD1,D2 . It follows from Fano’s inequality that

H(W1,W2|Y n) ≤ n(R1 + R2)P
(n)
e + H(P (n)

e ) , nεn.

It is clear that εn → 0 if P
(n)
e → 0 and

H(W1|Y n) ≤ H(W1,W2|Y n) ≤ nεn,

H(W2|Y n) ≤ H(W1,W2|Y n) ≤ nεn.

Because W1 is uniformly drawn from the message set {1, 2, ..., 2nR1} and is independent
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of Un
1 , we have

nR1 = H(W1) = I(W1; Y
n) + H(W1|Y n) ≤ I(W1; Y

n)− I(W1; U
n
1 )︸ ︷︷ ︸

=0

+nεn.

In the following, we bound

I(W1; Y
n)− I(W1; U

n
1 )

(a)
=

n∑

k=1

[
I(W1; Yk|Y k−1

1 )− I(W1; U1k|Un
1,k+1)

]

=
n∑

k=1

[
H(Yk|Y k−1

1 )−H(Yk|W1, Y
k−1
1 , Un

1,k+1)− I(Yk; U
n
1,k+1|W1, Y

k−1
1 )

−H(U1k|Un
1,k+1) + H(U1k|W1, U

n
1,k+1)

]

(b)
=

n∑

k=1

[
H(Yk|Y k−1

1 )−H(Yk|W1, Y
k−1
1 , Un

1,k+1)− I(U1k; Y
k−1
1 |W1, U

n
1,k+1)

−H(U1k|Un
1,k+1) + H(U1k|W1, U

n
1,k+1)

]

(c)
=

n∑

k=1

[
H(Yk|Y k−1

1 )−H(Yk|W1, Y
k−1
1 , Un

1,k+1)

−H(U1k) + H(U1k|W1, Y
k−1
1 , Un

1,k+1)
]

≤
n∑

k=1

[
H(Yk)−H(Yk|W1, U

n
1,k+1, Y

k−1
1 )− I(U1k; W1, Y

k−1
1 , Un

1,k+1)
]

=
n∑

k=1

[
I(Yk; W1, U

n
1,k+1, Y

k−1
1 )− I(U1k; W1, Y

k−1
1 , Un

1,k+1)
]

(d)

≤
n∑

k=1

[
I(W2, U

n
2,k+1, Y

k−1
1 , Yk; W1, U

n
1,k+1, Y

k−1
1 )− I(U1k; W1, Y

k−1
1 , Un

1,k+1)
]

(e)
=

n∑

k=1

[
I(L2k, Yk; L1k)− I(U1k; L1k)

]

where in (a) Y k−1
1 , (Y1, Y2, ..., Yk−1) and Un

1,k+1 , (U1,k+1, U1,k+2, ..., U1,n), (b) follows

from the “summation by parts” identity [14, Lemma 7], (c) holds since the source U1 is

memoryless, in (d) Un
2,k+1 , (U2,k+1, U2,k+2, ..., U2,n), and in (e) L1k , (W1, Y

k−1
1 , Un

1,k+1)
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and L2k , (W2, Y
k−1
1 , Un

2,k+1). Hence we obtain the bound

R1 ≤ 1

n

n∑

k=1

[I(L1k; L2k, Yk)− I(U1k; L1k)] + εn. (7.23)

Similarly, we can bound

R2 ≤ 1

n

n∑

k=1

[I(L2k; L1k, Yk)− I(U2k; L2k)] + εn. (7.24)

To bound the sum of the rates, we have

n(R1 + R2) = H(W1,W2) = I(W1,W2; Y
n) + H(W1,W2|Y n)

≤ I(W1,W2; Y
n)− I(W1,W2; U

n
1 , Un

2 )︸ ︷︷ ︸
=0

+nεn (7.25)

and

I(W1,W2; Y
n)− I(W1,W2; U

n
1 , Un

2 )

=
n∑

k=1

[
I(W1,W2; Yk|Y k−1

1 )− I(W1,W2; U1k, U2k|Un
1,k+1, U

n
2,k+1)

]

=
n∑

k=1

[
H(Yk|Y k−1

1 )−H(Yk|W1, U
n
1,k+1, Y

k−1
1 ,W2, U

n
2,k+1)

−I(Yk; U
n
1,k+1, U

n
2,k+1|W1,W2, Y

k−1
1 )

−H(U1k, U2k|Un
1,k+1, U

n
2,k+1) + H(U1k, U2k|W1,W2, U

n
1,k+1, U

n
2,k+1)

]

=
n∑

k=1

[
H(Yk|Y k−1

1 )−H(Yk|W1, U
n
1,k+1, Y

k−1
1 ,W2, U

n
2,k+1)

−I(U1k, U2k; Y
k−1
1 |W1,W2, U

n
1,k+1, U

n
2,k+1)

−H(U1k, U2k) + H(U1k, U2k|W1,W2, U
n
1,k+1, U

n
2,k+1)

]

=
n∑

k=1

[
H(Yk|Y k−1

1 )−H(Yk|W1, U
n
1,k+1, Y

k−1
1 ,W2, U

n
2,k+1)

−H(U1k, U2k) + H(U1k, U2k|W1,W2, U
n
1,k+1, U

n
2,k+1, Y

k−1
1 )

]

≤
n∑

k=1

[
H(Yk)−H(Yk|W1, U

n
1,k+1,W2, U

n
2,k+1, Y

k−1
1 )− I(U1k, U2k; L1k, L2k)

]
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=
n∑

k=1

[
I(Yk; W1, U

n
1,k+1,W2, U

n
2,k+1, Y

k−1
1 )− I(U1k, U2k; L1k, L2k)

]

=
n∑

k=1

[
I(Yk; L1k, L2k)− I(U1k, U2k; L1k, L2k)

]
, (7.26)

which implies

R1 + R2 ≤ 1

n

n∑

k=1

[I(L1k, L2k; Yk)− I(U1k, U2k; L1k, L2k)] + εn. (7.27)

We next introduce a time-sharing RV to simplify the bounds (7.23), (7.24), and

(7.27) using a single-letter characterization. Define a RV V with alphabet {1, 2, ..., n}
and distribution PV (v) = 1/n. We next introduce RVs U1 and U2 such that

Pr(U1 = u1, U2 = u2) = Pr(U1k = u1, U2k = u2) = QU1U2(u1, u2)

for all (u1, u2) ∈ U1×U2, which are independent of V . Furthermore, we define new RVs

L1, L2, X1, X2, and Y by

Pr(L1 = l1, L2 = l2, X1 = x1, X2 = x2, Y = y|V = k)

= Pr(L1k = l1, L2k = l2, X1k = x1, X2k = x2, Yk = y)

for all (l1, l2, x1, x2, y) ∈ L1 × L2 ×X1 ×X2 × Y . It follows that

1

n

n∑

k=1

[I(L1k; L2k, Yk)− I(U1k; L1k)]

= I(L1; L2, Y |V )− I(U1; L1|V )

= H(L1|V )−H(L1|L2, Y, V )−H(U1|V ) + H(U1|L1, V )

(a)

≤ H(L1)−H(L1|L2, Y, V )−H(U1) + H(U1|L1, V )

= I(L1; L2, Y, V )− I(U1; L1, V )

≤ I(L1, V ; L2, Y, V )− I(U1; L1, V )

(b)
= I(T1; T2, Y )− I(T1; U1)
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where (a) holds since conditioning reduces entropy and U1 is independent of V , and in

(b) T1 , (L1, V ) and T2 , (L2, V ). This shows that

R1 ≤ I(T1; T2, Y )− I(T1; U1) + εn. (7.28)

By a similar argument, we can show

R2 ≤ I(T2; T1, Y )− I(T2; U2) + εn (7.29)

and

R1 + R2 ≤ I(T1, T2; Y )− I(U1, U2; T1, T2) + εn. (7.30)

For such RVs (U1, U2, T1, T2, X1, X2, Y ), it can be readily seen that the Markov chain

relationship (U1, U2, T1, T2) → (X1, X2) → Y holds. In fact,

Pr(Y = y|U1 = u1, U2 = u2, T1 = t1 = (l1, k), T2 = t2 = (l2, k), X1 = x1, X2 = x2)

= Pr(Y = y|U1 = u1, U2 = u2, L1 = l1, L2 = l2, X1 = x1, X2 = x2, V = k)

= Pr(Yk = y|U1k = u1, U2k = u2, L1k = l1, L2k = l2, X1k = x1, X2k = x2)

= Pr(Yk = y|X1k = x1, X2k = x2)

= WY |X1X2(y|x1, x2).

Next we bound the distortions E[di(Ui, Xi)]. Since (R1, R2) is achievable under the

sequence of codes (f
(n)
1 , f

(n)
2 , ψ(n)), this implies that for any δ > 0 and all n large enough,

we have

Di + δ ≥ 1

n

1

2nRi

Mi∑
wi=1

∑
Un

i

Q
(n)
Ui

(ui)di

(
ui, f

(n)
i (wi,ui)

)

=
1

n

∑
Un

i ×Xn
i

Pr(Un
i = ui, X

n
i = xi)di(ui,xi)

=
1

n

n∑

k=1

∑
Un

i ×Xn
i

Pr(Un
i = ui, X

n
i = xi)di(uik, xik)
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=
n∑

k=1

PV (V = k)
∑
Ui×Xi

Pr(Uik = uik, Xik = xik)di(uik, xik)

=
n∑

k=1

PV (V = k)
∑
Ui×Xi

Pr(Ui = ui, Xi = xi|V = k)di(ui, xi)

=
n∑

k=1

∑
Ui×Xi

Pr(Ui = ui, Xi = xi, V = k)di(ui, xi)

=
∑
Ui×Xi

PUiXi
(ui, xi)di(ui, xi).

Thus we obtained that E[di(Ui, Xi)] ≤ Di + δ for i = 1, 2. Combined with (7.28)–

(7.30) and recalling that limn→∞ εn = 0 and that R(D1, D2) is closed, we conclude that

R(D1, D2) ⊂ Rout(D1 + δ,D2 + δ) as claimed. 2

7.3.3 Proof of Theorem 7.3

The forward part (achievability) is a consequence of Theorem 7.1 since (U1, T1) and

(U2, T2) are independent and hence I(T1; T2, Y ) = I(T1; Y |T2), I(T2; T1, Y ) = I(T2; Y |T1),

and I(U1, U2; T1, T2) = I(U1; T1) + I(U2; T2). To prove the converse part, we need to

sharpen the bounds in the last proof. We start from

I(W1; Y
n)− I(W1; U

n
1 )

=
n∑

k=1

[
I(Yk; W1, U

n
1,k+1|Y k−1

1 )− I(U1k; W1, Y
k−1
1 , Un

1,k+1)
]

=
n∑

k=1

[
H(W1, U

n
1,k+1|Y k−1

1 )−H(W1, U
n
1,k+1|Y k−1

1 , Yk)− I(U1k; W1, Y
k−1
1 , Un

1,k+1)
]

(a)
=

n∑

k=1

[
H(W1, U

n
1,k+1|W2, U

n
2,k+1, Y

k−1
1 )−H(W1, U

n
1,k+1|W2, U

n
2,k+1, Y

k−1
1 , Yk)

−I(U1k; W1, Y
k−1
1 , Un

1,k+1)
]

=
n∑

k=1

[
I(W1, U

n
1,k+1; Yk|W2, U

n
2,k+1, Y

k−1
1 )− I(U1k; W1, Y

k−1
1 , Un

1,k+1)
]
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≤
n∑

k=1

[
I(W1, U

n
1,k+1, Y

k−1
1 ; Yk|W2, U

n
2,k+1, Y

k−1
1 )− I(U1k; W1, Y

k−1
1 , Un

1,k+1)
]

=
n∑

k=1

[
I(L1k; Yk|L2k)− I(U1k; L1k)

]

where (a) follows since (W1, U
n
1,k+1) is now independent of (W2, U

n
2,k+1), and in the last

equality we still let L1k , (W1, Y
k−1
1 , Un

1,k+1) and L2k , (W2, Y
k−1
1 , Un

2,k+1). Thus, using

Fano’s inequality we have

R1 ≤ 1

n

n∑

k=1

[I(L1k; Yk|L2k)− I(U1k; L1k)] + εn.

Similarly we can obtain

R2 ≤ 1

n

n∑

k=1

[I(L2k; Yk|L1k)− I(U2k; L2k)] + εn.

To bound the sum of the rates, we have

n(R1 + R2) = H(W1,W2) = I(W1,W2; Y
n) + H(W1,W2|Y n)

≤ I(W1,W2; Y
n)− I(W1; U

n
1 )− I(W2; U

n
2 ) + nεn (7.31)

and

I(W1,W2; Y
n)− I(W1; U

n
1 )− I(W2; U

n
2 )

=
n∑

k=1

[
I(W1; Yk|Y k−1

1 ) + I(W2; Yk|W1, Y
k−1
1 )− I(W1; U1k|Un

1,k+1)− I(W2; U2k|Un
2,k+1)

]

=
n∑

k=1

[
H(Yk|Y k−1

1 )−H(Yk|W1, Y
k−1
1 , Un

1,k+1)− I(Yk; U
n
1,k+1|W1, Y

k−1
1 )

+H(Yk|W1, Y
k−1
1 )−H(Yk|W1,W2, Y

k−1
1 , Un

2,k+1)− I(Yk; U
n
2,k+1|W1,W2, Y

k−1
1 )

−H(U1k|Un
1,k+1) + H(U1k|W1, U

n
1,k+1)−H(U2k|Un

2,k+1) + H(U2k|W2, U
n
2,k+1)

]

=
n∑

k=1

[
H(Yk|Y k−1

1 )−H(Yk|W1, Y
k−1
1 , Un

1,k+1)− I(U1k; Y
k−1
1 |W1, U

n
1,k+1)

+H(Yk|W1, Y
k−1
1 )−H(Yk|W1,W2, Y

k−1
1 , Un

2,k+1)− I(U2k; Y
k−1
1 |W1,W2, U

n
2,k+1)
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−H(U1k) + H(U1k|W1, U
n
1,k+1)−H(U2k) + H(U2k|W1,W2, U

n
2,k+1)

]

=
n∑

k=1

[
H(Yk|Y k−1

1 )−H(Yk|W1, Y
k−1
1 , Un

1,k+1)

+H(Yk|W1, Y
k−1
1 )−H(Yk|W1,W2, Y

k−1
1 , Un

2,k+1)

−H(U1k) + H(U1k|W1, U
n
1,k+1, Y

k−1
1 )−H(U2k) + H(U2k|W1,W2, U

n
2,k+1, Y

k−1
1 )

]

=
n∑

k=1

[
I(Yk; W1, U

n
1,k+1|Y k−1

1 ) + I(Yk; W2, U
n
2,k+1|W1, Y

k−1
1 )

−I(U1k; W1, U
n
1,k+1, Y

k−1
1 )− I(U2k; W2, U

n
2,k+1, Y

k−1
1 )

]

=
n∑

k=1

[
H(W1, U

n
1,k+1|Y k−1

1 )−H(W1, U
n
1,k+1|Y k−1

1 , Yk)

+H(W2, U
n
2,k+1|W1, Y

k−1
1 )−H(W2, U

n
2,k+1|W1, Y

k−1
1 , Yk)

−I(U1k; W1, U
n
1,k+1, Y

k−1
1 )− I(U2k; W2, U

n
2,k+1, Y

k−1
1 )

]

(a)
=

n∑

k=1

[
H(W1, U

n
1,k+1|Y k−1

1 )−H(W1, U
n
1,k+1|Y k−1

1 , Yk)

+H(W2, U
n
2,k+1|W1, U

n
1,k+1, Y

k−1
1 )−H(W2, U

n
2,k+1|W1, U

n
1,k+1, Y

k−1
1 , Yk)

−I(U1k; W1, U
n
1,k+1, Y

k−1
1 )− I(U2k; W2, U

n
2,k+1, Y

k−1
1 )

]

=
n∑

k=1

[
H(W1, U

n
1,k+1,W2, U

n
2,k+1|Y k−1

1 )−H(W1, U
n
1,k+1,W2, U

n
2,k+1|Y k−1

1 , Yk)

−I(U1k; W1, U
n
1,k+1, Y

k−1
1 )− I(U2k; W2, U

n
2,k+1, Y

k−1
1 )

]

=
n∑

k=1

[
I(W1, U

n
1,k+1,W2, U

n
2,k+1; Yk|Y k−1

1 )− I(U1k; W1, U
n
1,k+1, Y

k−1
1 )

−I(U2k; W2, U
n
2,k+1, Y

k−1
1 )

]

≤
n∑

k=1

[
H(Yk)−H(Yk|W1, U

n
1,k+1,W2, U

n
2,k+1, Y

k−1
1 )− I(U1k; W1, U

n
1,k+1, Y

k−1
1 )

−I(U2k; W2, U
n
2,k+1, Y

k−1
1 )

]

=
n∑

k=1

[
I(W1, U

n
1,k+1,W2, U

n
2,k+1, Y

k−1
1 ; Yk)− I(U1k; W1, U

n
1,k+1, Y

k−1
1 )
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−I(U2k; W2, U
n
2,k+1, Y

k−1
1 )

]

=
n∑

k=1

[
I(L1k, L2k; Yk)− I(U1k; L1k)− I(U2k; L2k)

]

where (a) holds since (W1, U
n
1,k+1) is independent of (W2, U

n
2,k+1) and L1k , (W1, Y

k−1
1 , Un

1,k+1)

and L2k , (W2, Y
k−1
1 , Un

2,k+1) in the last equality. The above implies

R1 + R2 ≤ 1

n

n∑

k=1

[I(L1k, L2k; Yk)− I(U1k; L1k)− I(U2k; L2k)] + εn.

The rest of the proof proceeds the same way as the proof of Theorem 7.2. 2

7.3.4 Upper Bounds on |Ti| for R∗
in(D1, D2) and Rin(D1, D2)

We only bound the cardinality of T1 and T2 for the region Rin(D1, D2). The bounds for

|T1| and |T2| for the region R∗
in(D1, D2) can be conducted in a similar manner. We will

need the support lemma (Lemma 5.6), which is based on Carathéodory’s theorem.

Using this lemma, we will show that for any given PX1T1|U1 and PX2T2|U2 , there exists

a RV T̂1 with |T̂1| ≤ |U1||X1| + 1 only depending on U1 and X1 such that the following

quantities keep invariant,

I(T̂1; Y |T2)− I(U1; T̂1) = I(T1; Y |T2)− I(U1; T1) (7.32)

I(T2; Y |T̂1)− I(U2; T2) = I(T2; Y |T1)− I(U2; T2) (7.33)

I(T̂1, T2; Y )− I(U1; T̂1)− I(U2; T2) = I(T1, T2; Y )− I(U1; T1)− I(U2; T2),(7.34)

and that the expectation of the distortion between U1 and X1 is preserved when T1 is

replaced by T̂1. Note that the upper bound on |T̂1| does not depend on |T2|.
We first rewrite

I(T1; Y |T2)− I(U1; T1) = H(Y |T2)−H(Y |T1, T2)−H(U1) + H(U1|T1),

I(T2; Y |T1)− I(U2; T2) = H(Y |T1)−H(Y |T1, T2)− I(U2; T2),
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and

I(T1, T2; Y )−I(U1; T1)−I(U2; T2) = H(Y )−H(Y |T1, T2)−H(U1)+H(U1|T1)−I(U2; T2).

Recall that the joint distribution of (U1, U2, T2, T2, X1, X2, Y ) can be factorized as

PU1T1U2T2X1X2Y = QU1U2PT1X1|U1PT2X2|U2WY |X1X2 .

We note that there exists a Markov chain (T1, X1) → U1 → U2 → (T2, X2). Writing

PU1T1U2T2X1X2Y = PT1PU1X1|T1PU2|U1PT2X2|U2WY |X1X2 ,

and noting that PU2|U1 , PT2X2|U2 and WY |X1X2 are fixed, to apply the support lemma, we

need m − 1 functions to preserve the joint distribution of (U1, X1) (see (7.35) below),

where m , |U1||X1|. Specifically, we define the following real-valued continuous functions

of distribution PU1X1|T1(·, ·|t1) on U1 ×X1 for fixed t1 ∈ T1,

fu1,x1(PU1X1|T1(·, ·|t1)) , PU1X1|T1(u1, x1|t1)

for all (u1, x1) ∈ U1 × X1 except one pair (u1, x1). Furthermore, we define real-valued

continuous functions

fm(PU1X1|T1(·, ·|t1)) , −HP (Y |T1 = t1, T2) + HP (U1|T1 = t1),

fm+1(PU1X1|T1(·, ·|t1)) , HP (Y |T1 = t1)−HP (Y |T1 = t1, T2),

where the entropies are taken under the joint distribution induced by PU1X1|T1(·, ·|t1).
According to the support lemma, there must exist a new RV T̂1 (jointly distributed

with (U1, X1)) with alphabet size |T̂1| = m + 1 = |U1||X1|+ 1 such that the expectation

of fi, i = 1, 2, ..., m + 1, with respect to PT1 can be expressed in terms of the convex

combination of m + 1 points, i.e.,

PU1X1(u1, x1) =
∑
t1∈T1

PT1(t1)fu1,x1(PU1X1|T1(·, ·|t1))
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=
∑

bt1∈bT1

PbT1
(t̂1)fu1,x1(PU1X1|bT1

(·, ·|t̂1)), (7.35)

−H(Y |T1, T2) + H(U1|T1) =
∑
t1∈T1

PT1(t1)fm(PU1X1|T1(·, ·|t1))

=
∑

bt1∈bT1

PbT1
(t̂1)fm

(
PU1X1|bT1

(·, ·|t̂1)
)

= −H(Y |T̂1, T2) + H(U1|T̂1),

H(Y |T1)−H(Y |T1, T2) =
∑
t1∈T1

PT1(t1)fm+1(PU1X1|T1(·, ·|t1))

=
∑

bt1∈bT1

PbT1
(t̂1)fm+1(PU1X1|bT1

(·, ·|t̂1))

= H(Y |T̂1)−H(Y |T̂1, T2).

This implies that (7.32)–(7.34) hold. It should be point out that this RV T̂1 maintains

the prescribed distortion level, since PU1X1(u1, x1) is preserved. Similarly, for any given

PX1T1|U1 and PX2T2|U2 , we can show that there exists a RV T̂2 with |T̂2| ≤ |U2||X2| + 1

only depending on U2 and X2 such that

I(T1; Y |T̂2)− I(U1; T1) = I(T1; Y |T2)− I(U1; T1) (7.36)

I(T̂2; Y |T1)− I(U2; T̂2) = I(T2; Y |T1)− I(U2; T2) (7.37)

I(T1, T̂2; Y )− I(U1; T1)− I(U2; T̂2) = I(T1, T2; Y )− I(U1; T1)− I(U2; T2),(7.38)

and the distortion constraint between U2 and X2 is preserved. Thus we conclude that

the cardinality of Ti can be bounded by |Ui||Xi|+ 1, i = 1, 2.

Finally, we remark that the support lemma cannot be used to bound the cardinality

for T1 and T2 for the region Rout(D1, D2) and R∗
out(D1, D2). For example, to bound the

cardinality of T1 for Rout(D1, D2), we need |U1||U2||X1||X2||T2|−1 real-valued continuous

functions to preserve the joint distribution of (U1, U2, T2, X1, X2). Therefore, we may

need |U1||U2||X1||X2||T2|+ 1 letters and this upper bound depends on |T2|. 2
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7.4 Conclusions

In this chapter, we studied the public multi-user information embedding system for

which two secret information messages are independently embedded into two correlated

host sources and are transmitted through a multiple-access attack channel. The tradeoff

between the achievable embedding rates and the average distortions for the two embed-

ders is investigated. For given distortion levels, an inner bound and outer bound for the

embedding capacity region for the public two-user information embedding system are

obtained with single-letter characterization. The bounds are next sharpened when the

host sources are independent.
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Chapter 8

Summary and Conclusions

In this dissertation, we studied a hybrid digital-analog source-channel coding system

for the transmission of a discrete-time memoryless Gaussian source over a discrete-time

memoryless Gaussian channel under bandwidth compression. We designed an image

communication system based on hybrid digital-analog coding. We then studied the error

exponent performance for a joint compression and private information hiding system

with Gaussian source-channel pairs under the single-user setting. We next investigated

information hiding problems over memoryless multiple access attack channels for multi-

user applications. Both private and public information hiding systems are studied. The

contributions of this dissertation are summarized in the following.

• For the HDA system, we established information-theoretic upper bounds (under

both matched and mismatched channel conditions) on the asymptotically optimal

mean squared error distortion. We derived a power allocation scheme for dis-

tributing the channel input power between the analog and the digital signals for

the mismatched HDA system. We proposed and implemented a low-complexity

and low-delay version of the system. An iterative optimization algorithm was next
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designed and numerical results were presented, which show that the proposed HDA

system performs within 0.3 dB of the mismatch distortion upper bound. We de-

signed an image communication system, which combines the proposed bandwidth

compression system with the bandwidth expansion system of Skoglund et al. [69].

We compared our system to other schemes. Numerical results show that the pro-

posed HDA image coding scheme is robust and superior to purely analog and

purely digital systems for a wide range of CSNRs. One direction for future work

may include the optimization of the power allocation when the CSNR is governed

by a given distribution.

• For a single-user joint compression and private information hiding system with

Gaussian source-channel pairs, we derived a random coding error exponent. Our

proof methods incorporate a Gallager-type random coding technique, properties

of stationary memoryless Gaussian sources and techniques to derive the exponent

for Gaussian sources. Numerical results were proposed which show that the error

exponent is positive within almost the entire achievable region derived by Karakos

and Papamarcou [33].

• We extended the single-user joint compression and private information hiding sys-

tem to a multi-user setting. In particular, for the case of embedding two indepen-

dent secret messages into two correlated DMS’s and transmitting over MAC, we

derived an inner bound and outer bound with single-letter characterization for the

achievable compression and watermarking rate region with respect to the distor-

tion levels. Next, we studied a multi-user information hiding model for the trans-

mission of two correlated secret sources over memoryless multiple attack access

channel with common host data. We derived a sufficient condition with single-

letter characterization for hiding correlated sources against MAC attacks. We also
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presented an uncomputable (and somewhat trivial) outer bound (converse condi-

tion) by applying Fano’s inequality in terms of a sequence of n-dimensional joint

distributions.

• For the multi-user public information hiding problem, we established inner and

outer bounds with single-letter characterization for the embedding capacity region

of the two-user information embedding system. The outer bound follows from

Fano’s inequality and standard information-theoretical bounding arguments. The

bounds are tightened in the case that the host sources are independent.

A number of possibly difficult problems have remained open. For example, in Chap-

ter 4, the random coding error exponent was shown to be positive only on a (large)

subset of the whole achievable rate region. This might be due to the inefficiency of the

proposed bounding techniques, or it could be an inherent trait of the joint compression

and watermarking problem. In Chapter 5, we did not provide the conditions where the

inner bound and the outer bound are tight. It is still an open problem whether or not a

tight bound exists. In Chapter 6, we only have a single-letter sufficient condition for the

proposed information hiding problem. The converse condition is in terms of an “infinite

dimensiona” characterization, which is uncomputable. A single-letter converse condition

seems very difficult for this multi-user joint source-channel coding over a MAC problem.

In Chapter 7, we also do not have conditions under which the inner and outer bounds

are tight. Furthermore, for the outer bounds, we do not have a bound on the cardinality

of the auxiliary RVs T1 and T2. Finally, we remark that multi-user information hid-

ing problems tend to inherit the difficulty inherent in multi-user (joint) source/channel

coding, where a large number of problems are still open.
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