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Abstract

Traditionally, source coding (data compression) and channel coding (error protection) are

performed separately and sequentially, resulting in what we call a tandem (separate) coding

system. In practical implementations, however, tandem coding might involve a large delay

and a high coding/decoding complexity, since one needs to remove the redundancy in the

source coding part and then insert certain redundancy in the channel coding part. On

the other hand, joint source-channel coding (JSCC), which coordinates source and channel

coding or combines them into a single step, may offer substantial improvements over the

tandem coding approach.

This thesis deals with the fundamental Shannon-theoretic limits for a variety of commu-

nication systems via JSCC. More specifically, we investigate the reliability function (which

is the largest rate at which the coding probability of error vanishes exponentially with in-

creasing blocklength) for JSCC for the following discrete-time communication systems: (i)

discrete memoryless systems; (ii) discrete memoryless systems with perfect channel feed-

back; (iii) discrete memoryless systems with source side information; (iv) discrete systems

with Markovian memory; (v) continuous-valued (particularly Gaussian) memoryless sys-

tems; (vi) discrete asymmetric 2-user source-channel systems.

For the above systems, we establish upper and lower bounds for the JSCC reliability

function and we analytically compute these bounds. The conditions for which the upper

and lower bounds coincide are also provided. We show that the conditions are satisfied

for a large class of source-channel systems, and hence exactly determine the reliability

function. We next provide a systematic comparison between the JSCC reliability function
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and the tandem coding reliability function (the reliability function resulting from separate

source and channel coding). We show that the JSCC reliability function is substantially

larger than the tandem coding reliability function for most cases. In particular, the JSCC

reliability function is close to twice as large as the tandem coding reliability function for

many source-channel pairs. This exponent gain provides a theoretical underpinning and

justification for JSCC design as opposed to the widely used tandem coding method, since

JSCC will yield a faster exponential rate of decay for the system error probability and thus

provides substantial reductions in complexity and coding/decoding delay for real-world

communication systems.
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Chapter 1

Introduction

Traditionally, source and channel coding have been treated separately, resulting in what we

call a tandem (or separate) coding system. This is because Shannon in 1948 [83] showed

that separate source and channel coding incurs no loss of optimality (in terms of reliable

transmissibility) provided that the coding blocklength goes to infinity. In practical imple-

mentations, however, there is a price to pay in delay and complexity, for extremely long

blocklength. To begin, we note that joint source-channel coding (JSCC) might be expected

to offer improvements for the combination of a source with significant redundancy and a

channel with significant noise, since, for such a system, tandem coding would involve source

coding to remove redundancy and then channel coding to insert redundancy. It is a natural

conjecture that this is not the most efficient approach (even if the blocklength is allowed to

grow without bound). Indeed, Shannon [83] made this point as follows:

· · · However, any redundancy in the source will usually help if it is utilized at the

receiving point. In particular, if the source already has a certain redundancy and

no attempt is made to eliminate it in matching to the channel, this redundancy

will help combat noise. For example, in a noiseless telegraph channel one could

save about 50% in time by proper encoding of the messages. This is not done

and most of the redundancy of English remains in the channel symbols. This

has the advantage, however, of allowing considerable noise in the channel. A

1



Chapter 1. Introduction 2

sizable fraction of the letters can be received incorrectly and still reconstructed

by the context. In fact this is probably not a bad approximation to the ideal in

many cases · · ·

The study of JSCC dates back to as early as the 1960’s. Over the years, many works have

introduced JSCC techniques and illustrated (analytically or numerically) their benefits (in

terms of both performance improvement and increased robustness to variations in channel

noise) over tandem coding for given source and channel conditions and fixed complexity

and/or delay constraints. In JSCC systems, the designs of the source and channel codes

are either well coordinated or combined into a single step. Examples of (both constructive

and theoretical) previous lossless and lossy JSCC investigations include:

1. coding theorems on JSCC and separation principle [24], [36], [42], [46], [49], [50], [95];

2. source codes that are robust against channel errors such as optimal (or sub-optimal)

quantizer design for noisy channels [5], [13], [39], [40], [45], [61], [62], [64], [68], [74],

[89], [90], [93];

3. channel codes that exploit the source’s natural redundancy (if no source coding is

applied) or its residual redundancy (if source coding is applied) [4], [47], [67], [81], [114];

4. zero-redundancy channel codes with optimized codeword assignment for the transmis-

sion of source encoder indices over noisy channels (e.g., [39], [99]);

5. unequal error protection source and channel codes where the rates of the source and

channel codes are adjusted to provide various levels of protection to the source data

depending on its level of importance and the channel conditions (e.g., [51], [71]);

6. uncoded source-channel matching where the source is uncoded, directly matched to

the channel and optimally decoded (e.g., [3], [44], [87], [98]).

The above references are far from exhaustive as the field of JSCC has been quite active,

particularly over the last 20 years.
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In order to learn more about the performance of the best codes as a function of block-

length, much research has focused on the reliability function for source or channel coding

(see, e.g., [19], [32], [42], [57], [66], [97]). Throughout the thesis, the reliability function

refers to either the error exponent of (asymptotically) lossless coding or the excess dis-

tortion exponent of lossy coding. Roughly speaking, the error exponent (respectively, the

excess distortion exponent) E is a number with the property that the probability of de-

coding error (respectively, the probability of exceeding a prescribed distortion level) of a

good code is approximately 2−En for codes of large blocklength n. Thus the error exponent

(respectively, the excess distortion exponent) can be used to estimate the trade-off between

probability of error (respectively, probability of excess distortion) and blocklength; in such

way, we can use the reliability function as a tool to compare the performance of tandem

coding and JSCC. While jointly coding the source and channel offers no advantages over

tandem coding in terms of reliable transmissibility of the source over the channel (i.e., for

the case of memoryless systems as well as the wider class of information stable [49] single-

user systems), it is possible that the same error performance can be achieved for smaller

blocklengths via optimal JSCC coding.

The JSCC reliability function has only been partially studied in the past. The first

quantitative result on the JSCC reliability function for communication systems consisting

of a discrete source and a discrete channel was a lower bound on the (lossless) JSCC error

exponent derived in 1964 by Gallager [42, pp. 534–535]. This result also indicates that

JSCC can lead to a larger exponent than the tandem coding exponent, the exponent result-

ing from separately performing and concatenating optimal source and channel coding. In

1980, Csiszár [30] established a lower bound (based on the random-coding channel error ex-

ponent) and an upper bound (in terms of source and channel error exponents) for the JSCC

error exponent for a discrete memoryless source (DMS) and a discrete memoryless channel

(DMC). He pointed out that the bounds are tight for a large class of DMS-DMC pairs,

hence determining the JSCC error exponent exactly. He extended this work in 1982 [31] to

obtain a new expurgated lower bound (based on the expurgated channel exponent) for the

above system under some conditions, and to deal with lossy coding relative to a distortion
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threshold.

In practical applications, however, not just DMS-DMC systems are treated. As most

real-world data sources (e.g., multimedia sources) and communication channels (e.g., wire-

less channels) exhibit statistical dependency or memory, it is of natural interest to study the

JSCC reliability function for systems with memory, since the determination of the reliability

function (or its bounds), particularly in terms of computable parametric expressions, may

lead to the identification of important information-theoretic design criteria for the construc-

tion of powerful JSCC techniques that fully exploit the source-channel memory. In addition,

since there are a lot of real-world communication systems dealing with the compression and

transmission of analog signals instead of digital data, it is natural and important to study

the JSCC reliability function for the transmission of a continuous alphabet source over a

channel with continuous input/output alphabets. For instance, it is of interest to know

the best performance (e.g., excess distortion probability) that a source-channel code can

achieve if a stationary memoryless Gaussian source is coded and transmitted through an

additive white Gaussian noise channel. On the other hand, with the rapid development

of wired and wireless communication networks, increasing attentions are drawn to JSCC

for multi-terminal source-channel systems. Therefore, it is of interest to study the JSCC

reliability function for multi-terminal systems.

Following Csiszár’s work, we study the JSCC reliability function in the thesis for various

single-user source-channel systems and the asymmetric 2-user source-channel system. To

explore the potential advantages of JSCC over traditional tandem coding, we next provide

a systematic comparison between the JSCC reliability function and the tandem coding

reliability function. We demonstrate that JSCC substantially outperforms tandem coding

in terms of reliability function for most source-channel systems.

1.1 General Overview

The structure of the thesis is shown in Fig. 1.1. Each arrow “→” represents a logic flow

from chapter to chapter. Chapters 2 is a review chapter for the known results on the source
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and channel reliability functions. Chapters 3 and 4 provide technical background for the

thesis. Chapter 3 is used for establishing upper and lower bounds for the JSCC reliability

function, and Chapter 4 plays a central role for the analysis of these bounds. Chapters 5,

6, 7, and 8 deal with the JSCC reliability functions for single-user (point-to-point) systems.

More specifically, we study analytical computation of Csiszár’s lower and upper bounds for

the JSCC reliability function for discrete memoryless systems in Chapter 5. Chapter 6 is

an extension of Chapter 5, where the JSCC reliability functions for discrete memoryless

systems with feedback and source side information are investigated. In Chapters 7 and

8, we establish and analyze lower and upper bounds for the JSCC reliability functions

for discrete systems with Markovian memory and memoryless systems with continuous

alphabets, respectively. Chapter 9 deals with the reliability function for multi-terminal

systems consisting of two correlated sources and an asymmetric 2-user channel. In Chapter

10, we study the benefits of JSCC over tandem coding in terms of the reliability function for

the single-user systems treated in Chapters 5–8 and a class of multi-user systems consisting

of two correlated sources and an asymmetric multiple-access channel addressed in Chapter 9.

Chapter 11 is the conclusion chapter.

1.2 Chapter By Chapter Overview

In Chapter 2, we review the basic material regarding the source and channel reliability

functions. The topics covered in Chapter 2 are: source error exponent and source ex-

cess distortion exponent for memoryless sources, channel error exponent with or without

an input cost constraint, random-coding exponent, expurgated exponent, sphere-packing

exponent, and the important bounds for the channel error exponent. In particular, we sep-

arately discuss the source excess distortion exponent under a squared-error distortion for

the memoryless Gaussian source (MGS) and the channel error exponent with a quadratic

power input constraint for the memoryless channel with additive Gaussian noise (which we

refer to as the memoryless Gaussian channel, MGC).

Chapter 3 contains the background on the method of types which will be used to establish
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Figure 1.1: Organization of the thesis.

upper and lower bounds for the JSCC reliability function in later chapters. We first go over

the basic definitions and properties of discrete types, joint types and conditional types as

well as the corresponding type classes (type sets). We then develop a generalized joint type

packing lemma. Two continuous type classes, the Gaussian-type class and the Laplacian-
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type class are introduced. Finally, we present type covering lemmas for the discrete type

set, the Gaussian-type class, and the Laplacian-type class.

In Chapter 4, we introduce conjugate functions (which are also called convex/concave

Fenchel transforms, or convex/concave Fenchel-Legendre transforms in the literature) and

the Fenchel duality theorem (which will be used widely in later chapters to obtain equivalent

(dual) forms for the JSCC reliability function). We apply these conjugacy properties on

the source and channel reliability functions, and we show that the source/channel reliability

functions and the corresponding source/channel functions are actually related by pairs of

Fenchel transforms.

In Chapter 5, we examine the computation of Csiszár’s lower and upper bounds for

the JSCC error exponent of a communication system consisting of a DMS and a DMC by

using the results obtained in Chapter 4. For Csiszár’s JSCC random-coding bound and

JSCC sphere-packing bound, we provide equivalent expressions for these bounds which can

be readily computed for arbitrary source-channel pairs via Arimoto’s algorithm. We derive

sufficient and necessary conditions for which the bounds coincide. These conditions are

satisfied by a large class of DMS-DMC pairs, and hence determine the exponent exactly.

When the channel’s distribution satisfies a symmetry property, the bounds admit closed-

form parametric expressions. We also treat Csiszár’s JSCC expurgated bound by using a

similar approach, and we derive a sufficient and necessary condition for which the expur-

gated bound is strictly larger than the JSCC random-coding bound. We then examine this

condition to DMS’s and equidistant channels. Finally, we study the computation of the

JSCC excess distortion exponent under the Hamming distortion measure.

One may ask whether the reliability of transmission of an information source over a

communication channel can be enhanced by feedback of the channel output or side infor-

mation related to the source. In Chapter 6, we study the JSCC error exponent for discrete

memoryless systems with perfect (noiseless and instantaneous) channel output feedback

and source side information (SI) at decoder, respectively. It is seen that feedback does not

affect the reliable transmission region of a DMS over a DMC, i.e., the JSCC theorem is the

same when there is feedback. Nevertheless, we show that feedback can enlarge the JSCC
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error exponent. In particular, we establish upper and lower bounds for the JSCC error

exponent with feedback. A sufficient condition for which the exponent is determined ex-

actly is presented for binary input channels with a symmetric distribution (in the Gallager

sense). By numerically comparing this lower bound with the upper bound for the JSCC

error exponent without feedback, it is demonstrated that the JSCC error exponent can be

obviously increased in the presence of feedback. For the system with source SI at decoder,

we employ the method of types to establish a lower bound for the JSCC error exponent. As

a consequence, a JSCC theorem on the reliable transmissibility of the source over the chan-

nel is obtained. For binary sources and symmetric channels, we derive a sufficient condition

for which the SI at the decoder can strictly improve the JSCC error exponent. Numerical

results show that the availability of the SI at decoder can enlarge the region for reliable

transmissibility and increase the JSCC error exponent for a wide class of source-channel

parameters.

In Chapter 7, we investigate the JSCC error exponent for reliably transmitting a discrete

stationary ergodic Markov (SEM) source over a discrete channel with additive SEM noise

(which is referred to as the SEM channel). We first establish a sphere-packing type upper

bound for the JSCC error exponent in terms of the Rényi entropy rates of the source

and noise processes. We next investigate the analytical computation of the exponent by

comparing our bound with Gallager’s lower bound when the latter one is specialized to

the SEM source-channel system. We also note that both bounds can be represented in

Csiszár’s form, as the minimum of the sum of the source and channel error exponents. It is

seen that the JSCC error exponent can be exactly determined by the two bounds for a large

class of SEM source-channel pairs. As for the discrete memoryless case, a conceptual upper

bound for the JSCC error exponent in terms of SEM source and channel error exponents

is established by using Markov types. This upper bound might not be computable, but

it is useful for the comparison of the JSCC error exponent with the tandem coding error

exponent, which is addressed in Chapter 10.

Chapter 8 deals with the JSCC excess distortion exponent for memoryless communica-

tion systems with continuous alphabets. We first establish upper and lower bounds for the
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JSCC excess distortion exponent for systems consisting of an MGS under the squared-error

distortion fidelity criterion and an MGC with a quadratic power constraint at the channel

input. A sufficient and necessary condition for which the two bounds coincide is provided,

thus exactly determining the exponent. This condition is observed to hold for a wide range

of source-channel parameters. The extension for the bounds to transmitting memoryless

Laplacian sources over the MGC under the magnitude-error distortion is next carried out.

We also establish a lower bound for the JSCC excess distortion exponent for a certain class

of continuous source-channel pairs when the distortion measure is a metric.

In Chapter 9, we study the exponential behavior of the probabilities of error for cer-

tain multi-terminal systems. We consider transmitting two discrete memoryless correlated

sources (CS), consisting of a common and a private source, over a discrete memoryless

multi-terminal channel with two transmitters and two receivers. At the transmitter side,

the common source is observed by both encoders but the private source can only be accessed

by one encoder. At the receiver side, both decoders need to reconstruct the common source,

but only one decoder needs to reconstruct the private source. We hence refer to this system

by the asymmetric 2-user source-channel system. We derive a universally achievable JSCC

error exponent pair for the 2-user system by using the method of types. We next investigate

the largest convergence rate of asymptotic exponential decay of the system (overall) prob-

ability of erroneous transmission, i.e., the system JSCC error exponent. We obtain lower

and upper bounds for the exponent. As a consequence, we establish the JSCC theorem

with single letter characterization and we show that the separation principle holds for the

asymmetric 2-user scenario. We next specialize our results to systems consisting of two

discrete memoryless CS and an asymmetric multiple-access channel (AMAC), and systems

consisting of two discrete memoryless CS and an asymmetric broadcast channel (ABC).

Finally, we evaluate the upper and lower bounds for the system JSCC error exponent for

the CS-AMAC system when the channel admits some symmetric distribution. It is shown

that the upper and lower bounds coincide for many binary CS-AMAC pairs.

The advantage of JSCC over traditional tandem coding in terms of the reliability func-

tion is explored in Chapter 10. We first derive a formula for the tandem coding error
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exponent, which applies if the source and channel are separately coded, for arbitrary dis-

crete systems. We then use our results to provide a systematic comparison between the

JSCC error exponent and the tandem error exponent for discrete memoryless systems and

discrete systems with Markovian memory (SEM systems). It is shown that the JSCC ex-

ponent can at most double the tandem coding exponent. We establish conditions for which

the JSCC exponent is strictly larger than the tandem error exponent. Numerical examples

indicate that the JSCC exponent substantially outperforms the tandem coding exponent

(particularly, the JSCC exponent is close to twice of the tandem coding exponent) for a

large class of DMS-DMC pairs and SEM source-channel pairs. This gain translates into a

power saving larger than 2 dB for a binary source transmitted over additive white Gaussian

noise channels and Rayleigh fading channels with finite output quantization. As an exten-

sion, we show that our formula for tandem exponent remains valid for discrete memoryless

systems with channel output feedback and source SI, and the joint exponent is superior to

the corresponding tandem exponent for many cases. We also establish a formula for the

tandem coding excess distortion exponent for Gaussian systems with squared-error distor-

tion measure. By numerically comparing the lower bound of the joint exponent and the

upper bound of the tandem exponent, it is observed that, as for the discrete systems, JSCC

considerably outperforms tandem coding for many MGS-MGC pairs. For the asymmetric

2-user coding scenario studied in Chapter 9, we derive a formula for the tandem coding

error exponent as for the point-to-point systems. Numerical examples show that for a large

class of systems consisting of two correlated sources and an asymmetric multiple-access

channel with additive noise, the JSCC error exponent, as for the point-to-point systems,

considerably outperforms the corresponding tandem coding error exponent.

Chapter 11 provides a summary of the thesis contributions and contains directions for

future research.



Chapter 2

Preliminaries: Source and Channel

Reliability Functions

This chapter contains basic material on source and channel coding. Fundamental informa-

tion quantities such as entropy and mutual information, and source and channel reliability

functions will be introduced.

In Section 2.1, we first give an overview for the notation and conventions which will

be used throughout the thesis. We introduce the source error exponent and source excess

distortion exponent in Section 2.2. We then address the channel error exponent (with and

without input cost constraints) together with different types of lower and upper bounds in

Section 2.3. As a special case, the excess distortion exponent for the memoryless Gaussian

source (MGS) and the error exponent for the memoryless Gaussian channel (MGC, namely,

a continuous channel with additive memoryless Gaussian noise) is separately treated in

Section 2.4. We finally draw a conclusion in Section 2.5.

2.1 Notation and Conventions

For any finite alphabet X , the set of all probability distributions (probability mass functions

(pmf)) on X is denoted by P(X ); for any finite alphabets X ,Y, the set of all conditional

distributions VY |X is denoted by P(Y|X ). For any alphabet X and k ∈ N, let the Cartesian

11
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product of k X ’s be denoted by X k. To simplify notation, P(X × Y × X × Y) can also be

denoted by P(X 2 × Y2).

For finite alphabets X ,Y,Z with joint distribution PXY Z ∈ P(X ×Y×Z), for simplicity

we employ PX , PXY , PY Z|X , etc, to denote the corresponding marginal and conditional

probabilities induced by PXY Z unless otherwise indicated. Conversely, PXPY Z|X denotes a

joint (product) distribution on X × Y × Z with marginal distribution PX and conditional

distribution PY Z|X .

Given distributions PX and WY |X , let P
(n)
X and W

(n)
Y |X be their n-dimensional product

distributions; in other words, P
(n)
X (x) =

∏n
i=1 PX(xi) and W

(n)
Y |X(y|x) =

∏n
i=1WY |X(yi|xi),

where x , (x1, · · · , xn) ∈ X n and y , (y1, · · · , yn) ∈ Yn. Note that P
(n)
X (W

(n)
Y |X) is

different from PXn (WY n|Xn), where the later denotes a generic probability distribution on

X n (conditional distribution on X n × Yn).

For any finite set X , the size of X is denoted by |X |. The expectation of the random

variable (RV) X under the distribution PX is denoted by EPX
(X) or E(X) if PX is clear

from the context. For a given set A, Ac denotes the complement of A. Given a matrix

(vector) A, At denotes its transposition.

When we say that the probability of some events, say Pr(A), is taken under a pmf

or a probability density function (pdf) PXn on X n, this can be interpreted as Pr(A) =
∑

Xn PXn(x)1{A} or Pr(A) =
∫
Xn PXn(x)1{A}dx, respectively, where 1{·} is the indicator

function. By convention, we define throughout the thesis 0 log2 0 , 0, log2 0 = −∞, x
0 ,

+∞ for x > 0, and inf{x : x ∈ ∅} = +∞ unless otherwise indicated, where ∅ denotes the

empty set.

2.2 Source Reliability Function

Let QS be a (stationary) memoryless source with finite alphabet S and a generic pmf QS ∈

P(S). The probability distribution of a k-length source sequence s , (s1, s2, ..., sk) ∈ Sk is

given by QSk(s) = Q
(k)
S (s) =

∏k
i=1QS(si).
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2.2.1 Error Exponent for DMSs

Given a discrete memoryless source (DMS) QS, the entropy of the source is given by (e.g.,

[29])

HQS
(S) = −

∑

s∈S

QS(s) log2QS(s).

We will simply write the entropy as H(S) if QS is clear from the context.

s ∈ Sk- fsk
i ∈ {1, 2, ...,Mk} - ϕsk -ŝ ∈ Sk

Figure 2.1: Memoryless source coding system.

A (k,Mk) block source code for a DMS QS is a pair of mappings (see Fig. 2.1):

fsk : Sk −→ {1, 2, ...,Mk}

and

ϕsk : {1, 2, ...,Mk} −→ Sk.

The code rate is defined by

Rk ,
1

k
log2Mk bits/source symbol.

The probability of erroneously reconstructing the source via the (k,Mk) block source code

(fsk, ϕsk) is given by

P (k)
se (QS , Rk) ,

∑

s:s6=ϕsk(fsk(s))

Q
(k)
S (s). (2.1)

We refer to P
(k)
se by the probability of error for coding the source QS .

Shannon’s lossless source coding theorem [32, 83] states that for a DMS QS , only

HQS
(S) + ε (ε > 0) bits per source symbol are needed to encode the source with arbi-

trarily small probability of error P
(k)
se , provided that the blocklength k of encoded source

symbols is allowed to be sufficiently large. The (asymptotically) lossless source coding error
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exponent was developed to determine the asymptotics of the smallest possible probability

of incorrect decoding as a function of the coding rate.

Definition 2.1 For any R > 0, the source error exponent e(R,QS) of the DMS QS is

defined as the supremum of the set of all numbers e for which there exists a sequence of

(k,Mk) block codes (fsk, ϕsk) with

e ≤ lim inf
k→∞

−1

k
log2 P

(k)
se (QS , Rk) (2.2)

and

R ≥ lim sup
k→∞

Rk. (2.3)

For probability distributions PS , QS ∈ P(S), denote the Kullback-Leibler divergence

(relative entropy) between PS and QS by (e.g., [29])

D(PS ‖ QS) =
∑

s∈S

PS(s) log2
PS(s)

QS(s)
.

It has been shown in [32, 63] by a combinatorial approach (the method of types) that the

source error exponent for a DMS QS is equal to

e(R,QS) =





minPS :HPS
(S)≥RD(PS ‖ QS) if 0 < R ≤ log2 |S|,

∞ if R > log2 |S|,
(2.4)

and the above exponent is shown to be universally achievable [32], i.e., (2.4) can be achieved

by a sequence of source codes (fsk, ϕsk) constructed without any knowledge of the source

distribution QS. Immediately, it can be verified that e(R,QS) is zero for 0 < R ≤ HQS
(S),

and is strictly increasing, convex and hence continuous in R for HQS
(S) ≤ R ≤ log2 |S|.

Thus, a precise formula for e(R,QS) is given by

e(R,QS) =





0 if 0 < R ≤ HQS
(S),

minPS :HPS
(S)=RD(PS ‖ QS) if HQS

(S) ≤ R ≤ log2 |S|,

∞ if R > log2 |S|.

(2.5)

Furthermore, it has been shown in [19] that e(R,QS) given by (2.5) involves an equivalent

parametric form

e(R,QS) = sup
ρ≥0

[ρR − Es(ρ,QS)], (2.6)
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where

Es(ρ,QS) , (1 + ρ) log2

∑

s∈S

QS(s)
1

1+ρ (2.7)

is called Gallager’s source function, as the parametric form of e(R,QS) was first obtained

by Gallager [42] (see also [57]).

2.2.2 Excess Distortion Exponent for Memoryless Sources

Let d : S × S → [0,∞) be a single-letter distortion function. The distortion measure on

Sk × Sk is defined as

d(k)(s, s′) ,
1

k

k∑

i=1

d(si, s
′
i)

for any s , (s1, ..., sk) ∈ Sk, s′ , (s′1, ..., s
′
k) ∈ Sk. For RV’s X and Y admitting a joint pmf

PXY ∈ P(X × Y), the mutual information between X and Y is given by (e.g., [29])

IPXY
(X;Y ) =

∑

(x,y)∈X×Y

PXY (x, y) log2
PXY (x, y)

PX(x)PY (y)
.

The mutual information will be simply written as I(X;Y ) if PXY is clear from the context.

Given a distortion threshold ∆ > 0, the rate-distortion function for the DMS QS is

given by (e.g., [15])

R(QS ,∆) = inf
PS′|S :Ed(S,S′)≤∆

IQSPS′|S
(S;S′), (2.8)

where the infimum is taken over all the conditional distributions PS′|S ∈ P(S|S) subject to

Ed(S, S′) ≤ ∆.

A (k,Mk) block source code for a DMS QS is a pair of mappings (see Fig. 2.1):

fsk : Sk −→ {1, 2, ...,Mk}

and

ϕsk : {1, 2, ...,Mk} −→ Sk.

The code rate is defined by

Rk ,
1

k
log2Mk bits/source symbol.
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The probability of exceeding a given distortion threshold ∆ > 0 for the code (fsk, ϕsk,∆)

is given by

P
(k)
∆ (QS , Rk) ,

∑

s:d(k)(s,ϕsk(fsk(s)))>∆

Q
(k)
S (s). (2.9)

Note that if QS is a pdf on the continuous alphabet S ⊆ R, then the summation is replaced

by a proper integration, i.e.,

P
(k)
∆ (QS , Rk) ,

∫

s:d(k)(s,ϕsk(fsk(s)))>∆
Q

(k)
S (s)ds. (2.10)

We call P
(k)
∆ (QS , Rk) the probability of excess distortion for coding the source QS .

The lossy source coding theorem (e.g., [42]) for a memoryless source QS states that

only R(QS,∆) + ε (ε > 0) bits per source symbol are needed to reproduce the source

within a distortion threshold ∆ with arbitrarily small probability of exceeding the distortion

threshold ∆, i.e., P
(k)
∆ (QS , Rk) asymptotically vanishes with the coding blocklength. The

source coding excess distortion exponent describes the asymptotic behavior of the smallest

possible probability of excess distortion as a function of the coding rate.

Definition 2.2 For any R > 0 and ∆ > 0, the excess distortion exponent e∆(R,QS) of

the source QS is defined as the supremum of the set of all numbers e for which there exists

a sequence of (k,Mk) block codes (fsk, ϕsk,∆) with

e ≤ lim inf
k→∞

−1

k
log2 P

(k)
∆ (QS , Rk)

and

R ≥ lim sup
k→∞

Rk.

It has been shown in [54,55,108] that the excess distortion exponent for some particular

sources can be expressed in Marton’s form [66]. In other words,

e∆(R,QS) = F (R,QS ,∆) , inf
PS :R(PS ,∆)>R

D(PS ‖ QS), (2.11)

holds for the following cases:

1. DMS’s with arbitrary distortion measures [66];
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2. Memoryless Gaussian sources (MGS’s) with squared-error distortion measure [54];

3. (Stationary) memoryless sources whose alphabets are complete metric spaces with

a metric distortion measure d(·, ·) under the condition that there exists an element

so ∈ S with E exp[td(s, so)] <∞ for all t ∈ (−∞,+∞) [55].

Note that if PS and QS are pdf’s on the continuous alphabet S ⊆ R such that PS is

absolutely continuous [53, p. 21] with respect to QS (denoted by PS ≪ QS), then the

Kullback-Leibler divergence D(PS ‖ QS) should be interpreted as

D(PS ‖ QS) =

∫

S
PS(s) log2

PS(s)

QS(s)
ds.

Note also that Cases 2 is not included by Case 3. First, the squared-error distortion is

not a metric; second, the condition with respect to the metric and the source distribution

does not hold for MGS’s with squared-error distortion measure. It follows by definition

that the function F (R,QS ,∆) should be an increasing function of R, however, unlike the

source error exponent e(R,QS), F (R,QS ,∆) is not necessarily convex or even continuous

in R [2, 32,66]. In fact, F (R,QS ,∆) is an increasing function of R with at most countably

many discontinuities. We do not have a parametric form for F (R,QS ,∆) in general. When

QS is an MGS with a squared-error distortion measure, the explicit analytical form of

F (R,QS ,∆) will be given in Section 2.4.

2.3 Channel Reliability Function

Let WY |X be a memoryless channel with input and output alphabets X and Y and prob-

ability transition distribution WY |X . If the channel has a continuous output alphabet Y,

we only consider continuous channels for which a conditional pdf exists. The conditional

pmf (pdf) of receiving y , (y1, y2, ..., yn) ∈ Yn at the channel output given that the code-

word x , (x1, x2, ..., xn) ∈ X n is transmitted is given by WY n|Xn(y|x) = W
(n)
Y |X(y|x) =

∏n
i=1WY |X(yi|xi).
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2.3.1 Error Exponent for DMCs

Given a discrete memoryless channel (DMC) WY |X , the channel capacity is given by (e.g.,

[29])

C(WY |X) = max
PX∈P(X )

IPXWY |X
(X;Y ).

i ∈ {1, 2, ...,Mk}- fcn
x ∈ X n

- WY |X -y ∈ Yn
ϕcn -î ∈ {1, 2, ...,Mk}

Figure 2.2: Memoryless channel coding system.

An (n,Mn) block channel code for a DMC WY |X is a pair of mappings (see Fig. 2.2):

fcn : {1, 2, ...,Mn} −→ X n

and

ϕcn : Yn −→ {1, 2, ...,Mn}.

The code rate is defined as

Rn ,
1

n
log2Mn bits/channel use.

The (average) probability and the maximum probability of decoding error for the (fcn, ϕcn)

code are respectively given by

P (n)
ec (WY |X , Rn) ,

1

Mn

Mn∑

i=1

Mn∑

j=1,j 6=i

∑

y:ϕcn(y)=j

W
(n)
Y |X(y|fcn(i)) (2.12)

and

P (n)
max,ec(WY |X , Rn) , max

1≤i≤Mn

Mn∑

j=1,j 6=i

∑

y:ϕcn(y)=j

W
(n)
Y |X(y|fcn(i)). (2.13)

We refer to P
(n)
ec by the probability of error and to P

(n)
max,ec by the maximum probability of

error.

By Shannon’s channel coding theorem [29,83], block codes with arbitrarily small prob-

ability of block decoding error exist at any code rate smaller than the channel capacity
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C(WY |X). Like the source exponent, the channel error exponent is a quantity that de-

scribes the relation between the rate of convergence or decay for the probability of error

and the code rate (specifically for rates less than channel capacity).

Definition 2.3 For any R > 0, the channel error exponent E(R,WY |X) of the channel

WY |X is defined as the supremum of the set of all numbers E for which there exists a

sequence of (n,Mn) block codes (fcn, ϕcn) with

E ≤ lim inf
n→∞

− 1

n
log2 P

(n)
ec (WY |X , Rn)

and

R ≤ lim inf
n→∞

Rn.

We remark that, by the definition of channel error exponent and an “expurgated code-

book” argument, we can show that the probability of error P
(n)
ec and the maximal probability

of error P
(n)
max,ec for channel coding lead to the same channel error exponent [85, p. 416].

Thus, an equivalent definition for the channel error exponent follows if P
(n)
ec (WY |X , Rn) is

replaced by P
(n)
max,ec(WY |X , Rn) in the above.

Like channel capacity C(WY |X), E(R,WY |X) is a quantity that depends on the channel

characteristics. By definition, E(R,WY |X) is a non-increasing function in R ≤ C(WY |X)

and is zero for R > C(WY |X), but unlike the source exponent, the error exponent of a DMC

is not known for all R. The most familiar bounds to E(R,WY |X) are the random-coding and

expurgated lower bounds due to Fano (1961) and Gallager (1965), and the sphere-packing

and straight-line upper bounds due to Shannon-Gallager-Berlerkamp (1967) (see [32,42,57]).

We next summarize the random-coding exponent, the expurgated exponent, sphere-packing

exponent, and their corresponding channel functions.

2.3.2 Random-Coding Exponent

For a given DMC WY |X ∈ P(Y|X ) and any R > 0, define the random-coding exponent for

WY |X by

Er(R,WY |X) , max
PX∈P(X )

Er(R,PX ,WY |X) (2.14)
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where

Er(R,PX ,WY |X) , min
VY |X∈P(Y|X )

[
D(VY |X ‖WY |X |PX) +

∣∣∣IPXVY |X
(X;Y ) −R

∣∣∣
+
]
, (2.15)

where |x|+ = max{0, x} and

D(VY |X ‖WY |X |PX) =
∑

(x,y)∈X×Y

PX(x)VY |X(y|x) log2

VY |X(y|x)
WY |X(y|x)

is the Kullback-Leibler divergence between conditional distributions VY |X ∈ P(Y|X ) and

WY |X ∈ P(Y|X ) conditional on distribution PX ∈ P(X ).

It has been shown that Er(R,PX ,WY |X) has the following parametric form (e.g., [32])

Er(R,PX ,WY |X) = max
0≤ρ≤1

[Eo(ρ, PX ,WY |X) − ρR], (2.16)

where

Eo(ρ, PX ,WY |X) , − log2

∑

y∈Y

(
∑

x∈X

PX(x)W
1

1+ρ

Y |X (y|x)
)1+ρ

, ρ ≥ 0. (2.17)

Thus, the random-coding exponent can also be written by

Er(R,WY |X) = max
0≤ρ≤1

[Eo(ρ,WY |X) − ρR], (2.18)

where

Eo(ρ,WY |X) , max
PX∈P(X )

Eo(ρ, PX ,WY |X) (2.19)

is called Gallager’s channel function.

2.3.3 Expurgated Exponent

For a given DMC WY |X ∈ P(Y|X ), define a (not necessarily finite-valued) distortion mea-

sure on X × X by

dWY |X
(x, x̃) , − log2

∑

y∈Y

√
WY |X(y|x)WY |X(y|x̃),

which is called the Bhattacharya distance between two channel input symbols x and x̃ in

X . For any R > 0, define the expurgated exponent for WY |X by

Eex(R,WY |X) , max
PX∈P(X )

Eex(R,PX ,WY |X) (2.20)
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where

Eex(R,PX ,WY |X) , min
Q

XX̃
:QX=Q

X̃
=PX

I(X;X̃)≤R

[
EdWY |X

(X, X̃) + IQXX̃
(X; X̃) −R

]
. (2.21)

It has been shown that Eex(R,PX ,WY |X) admits the following parametric form (e.g.,

[32])

Eex(R,PX ,WY |X) = sup
ρ≥1

[Ex(ρ, PX ,WY |X) − ρR] (2.22)

where

Ex(ρ, PX ,WY |X) , −ρ log2

∑

x∈X

∑

x̃∈X

PX(x)PX(x̃)


∑

y∈Y

√
WY |X(y|x)WY |X(y|x̃)




1/ρ

,

(2.23)

ρ ≥ 1. Thus, the expurgated exponent can also be written by

Eex(R,WY |X) = sup
ρ≥1

[Ex(ρ,WY |X) − ρR] (2.24)

where

Ex(ρ,WY |X) , max
PX∈P(X )

Ex(ρ, PX ,WY |X). (2.25)

2.3.4 Sphere-Packing Exponent

For a given DMC WY |X ∈ P(Y|X ) and any R > 0, define the sphere-packing exponent for

WY |X by

Esp(R,WY |X) , max
PX∈P(X )

Esp(R,PX ,WY |X) (2.26)

where

Esp(R,PX ,WY |X) , min
VY |X :IPXVY |X

(X;Y )≤R
D(VY |X ‖WY |X |PX). (2.27)

Esp(R,PX ,WY |X) has a similar parametric form as Er(R,PX ,WY |X) (e.g., [32])

Esp(R,PX ,WY |X) = max
ρ≥0

[Eo(ρ, PX ,WY |X) − ρR], (2.28)

and hence Esp(R,WY |X) can be rewritten by

Esp(R,WY |X) = max
ρ≥0

[Eo(ρ,WY |X) − ρR], (2.29)

where Eo(ρ, PX ,WY |X) is defined by (2.17) and Eo(ρ,WY |X) is Gallager’s channel function

given by (2.19).
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2.3.5 Straight-Line Bound and Relations Between Exponents

First of all, Er(R,WY |X) and Eex(R,WY |X) provide lower bounds for the channel error

exponent, which are known as the random-coding lower bound and the expurgated lower

bound, respectively, and Esp(R,WY |X), known as the sphere-packing upper bound, is an

upper bound to the channel error exponent, i.e.,

max{Er(R,WY |X), Eex(R,WY |X)} ≤ E(R,WY |X) ≤ Esp(R,WY |X).

We point out that the sphere-packing boundEsp(R,WY |X) is loose for small rates (as R ↓ 0).

In fact, it is shown in [85] that when R approaches 0, the expurgated bound becomes tight,

i.e.,

lim
R↓0

E(R,WY |X) = Eex(0,WY |X).

Of course this bound is nontrivial only if Eex(0,WY |X) <∞. Furthermore, the straight line

connecting the point (0, Eex(0,WY |X)) provided that Eex(0,WY |X) < ∞ and any point on

the sphere-packing exponent (R,Esp(R,WY |X)) is an upper bound to E(R,WY |X). Thus,

let l be a straight-line passing (0, Eex(0,WY |X)) which is tangent on Esp(R,WY |X) at Rl,

then the exponent

Est(R,WY |X) =





l if 0 ≤ R ≤ Rl,

Esp(R,WY |X) if R ≥ Rl

(2.30)

gives the smallest upper bound. By definition Est(R,WY |X) is also a decreasing convex

function of R and we call Est(R,WY |X) the straight-line upper bound to E(R,WY |X).

The functions Er(R,PX ,WY |X) and Esp(R,PX ,WY |X) are equal if the maximizing ρ ≤ 1

in (2.28) or equivalently, if R ≥ Rcr(PX ,WY |X), where Rcr(PX ,WY |X) is the critical rate

of the channel WY |X under distribution PX , defined by

Rcr(PX ,WY |X) ,
∂Eo(ρ, PX ,WY |X)

∂ρ

∣∣∣∣
ρ=1

. (2.31)

For all PX , Er(R,PX ,WY |X) and Esp(R,PX ,WY |X) vanish for all R ≥ IPXWY |X
(X;Y ).

Consequently, their maxima over PX , Er(R,WY |X) and Esp(R,WY |X), vanish for R ≥
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C(WY |X) and are equal on some interval [Rcr(WY |X), C(WY |X)] where Rcr(WY |X) is the

critical rate of the channel and is defined by

Rcr(WY |X) , inf{R : Er(R,WY |X) = Esp(R,WY |X)}. (2.32)

Furthermore, it is known that Esp(R,WY |X) meets Er(R,WY |X) on its supporting line of

slope −1 [32, p. 171], which means that Er(R,WY |X) is a straight line with slope −1 for

R ≤ Rcr(WY |X) and hence

Er(R,WY |X) = Eo(1,WY |X) −R, R ≤ Rcr(WY |X). (2.33)

For all PX , the function Eex(R,PX ,WY |X) is a decreasing convex curve with a straight-

line section of slope −1 for R ≥ Rex(PX ,WY |X), and Eex(R,PX ,WY |X) > Er(R,PX ,WY |X)

for R < Rex(PX ,WY |X), where Rex(PX ,WY |X) is the “expurgated” rate of the channel

WY |X under distribution PX , defined by

Rex(PX ,WY |X) ,
∂Ex(ρ, PX ,WY |X)

∂ρ

∣∣∣∣
ρ=1

. (2.34)

Since the above are satisfied for all PX , we then obtain the following relation between the

two lower bounds: Er(R,WY |X) < Eex(R,WY |X) for R < Rex(WY |X) and Er(R,WY |X) ≥

Eex(R,WY |X) otherwise, where

Rex(WY |X) , inf{R : Er(R,WY |X) = Eex(R,WY |X)} (2.35)

is the expurgated rate of the channel.

Furthermore, it is known that Eex(R,WY |X) and Er(R,WY |X) meet their supporting

line of slope −1 (according to the fact that Eo(1,WY |X) = Ex(1,WY |X)) [42, p. 154]. This

geometric relation implies that Rex(WY |X) ≤ Rcr(WY |X) and Er(R,WY |X) = Eex(R,WY |X)

is a straight line in the region [Rex(WY |X), Rcr(WY |X)].

2.3.6 Error Exponent for Continuous Channels with Cost Constraints

We assume in this section that the memoryless channel WY |X has continuous alphabets

X = Y ⊆ R, and WY |X is a valid conditional pdf. Given an input cost function g : X →
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[0,∞) such that g(x) = 0 if and only if x = 0, and a constraint E > 0, the channel capacity

of the continuous memoryless channel WY |X is given by

C(WY |X , E) = sup
PX :Eg(X)≤E

IPXWY |X
(X;Y ). (2.36)

i ∈ {1, 2, ...,Mk}-fcn ∈ FE
cn

x ∈ X n
- WY |X -y ∈ Yn

ϕcn -î ∈ {1, 2, ...,Mk}

Figure 2.3: Memoryless channel coding system with cost constraint.

An (n,Mn) block channel code for a continuous memoryless channel WY |X with an input

cost constraint E is a pair of mappings (see Fig. 2.3):

fcn : {1, 2, ...,Mn} −→ X n

and

ϕcn : Yn −→ {1, 2, ...,Mn},

where fcn is subject to an (arithmetic average) cost constraint:

fcn ∈ FE
cn ,



fcn :

1

n

n∑

j=1

g(xj) ≤ E for all x = fcn(i), i ∈ {1, 2, ...,Mn}



 .

The code rate (measured in nats) is defined as

Rn ,
1

n
lnMn nats/channel use.

The (average) probability and the maximum probability of decoding error for the (fcn, ϕcn, E)

code are respectively given by

P (n)
ec (WY |X , Rn, E) ,

1

Mn

Mn∑

i=1

Mn∑

j=1,j 6=i

∫

y:ϕcn(y)=j
W

(n)
Y |X

(y|fcn(i))dy. (2.37)

and

P (n)
max,ec(WY |X , Rn, E) , max

1≤i≤Mn

Mn∑

j=1,j 6=i

∫

y:ϕcn(y)=j
W

(n)
Y |X(y|fcn(i))dy. (2.38)
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Definition 2.4 For any R > 0, the channel error exponent E(R,WY |X , E) of the channel

WY |X is defined as the supremum of the set of all numbers E for which there exists a

sequence of (n,Mn) block codes (fcn, ϕcn, E) with

E ≤ lim inf
n→∞

− 1

n
log2 P

(n)
ec (WY |X , Rn, E)

and

R ≤ lim inf
n→∞

Rn.

As in the channel coding case without cost constraint, the probability of error P
(n)
ec

and the maximal probability of error P
(n)
max,ec yield the same channel error exponent (cf.

[85, p. 416]). Thus, an equivalent definition for the channel error exponent follows if

P
(n)
ec (WY |X , Rn, E) is replaced by P

(n)
max,ec(WY |X , Rn, E) in the above.

For the general continuous memoryless channel with an input cost constraint, only a

lower bound for E(R,WY |X , E) due to Gallager ( [41], [42, Section 7.3]) is known, which we

refer to as Gallager’s random-coding lower bound for the channel error exponent E(R,WY |X , E),

E(R,WY |X , E) ≥ Er(R,WY |X , E) , max
0≤ρ≤1

[Eo(ρ,WY |X , E) − ρR], (2.39)

where

E0(W, E , ρ) , sup
PX :Eg(X)≤E,Eg(X)3<∞

max
r≥0

E0(ρ, r,W,PX , E) (2.40)

is Gallager’s constrained channel function with

Eo(ρ, r, PX ,WY |X , E) , − ln

∫

Y

[∫

X
PX(x)er(g(x)−E)WY |X(y|x)

1
1+ρdx

]1+ρ

dy, (2.41)

and where the supremum in (2.40) is taken over all pdfs PX(x) defined on X subject to

Eg(X) ≤ E and Eg(X)3 < ∞. The constraints are satisfied, for example, when PX is

Gaussian distribution with mean 0 variance E and g(x) = x2. The integrals should be

replaced with summations if WY |X is a memoryless channel with discrete alphabets under

a cost constraint. Note that in general we do not have an explicit formula for this bound,

because it is not known whether the supremum in (2.40) is achievable or not, and under

what distribution it is achieved. In particular, when WY |X is the memoryless Gaussian
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channel (MGC) with a power cost constraint (g(x) = x2), we have an upper bound for

E(R,WY |X , E) due to Shannon [84]. We will discuss that bound in detail in the next

section.

2.4 Reliability Functions for MGSs and MGCs

For the sake of convenience, all the logarithms and exponentials used in the section (for

Gaussian systems) are in natural base. Consider an MGS with alphabet S = R, mean zero,

variance σ2
S , and pdf

QS(s) =
1√

2πσ2
S

exp

{
− s2

2σ2
S

}
, s ∈ S,

denoted by QS ∼ N (0, σ2
S), and an MGC WY |X with common input, output, and additive

noise alphabets X = Y = Z = R and described by Yi = Xi + Zi, where Yi, Xi and Zi

are the channel’s output, input and noise symbols at time i. We assume that Xi and Zi

are independent of each other. The noise admits a zero-mean σ2
Z -variance Gaussian pdf,

denoted by PZ ∼ N (0, σ2
Z) and thus the transition pdf of the channel is given by

WY |X(y|x) = PZ(z) =
1√

2πσ2
Z

exp

{
− z2

2σ2
Z

}
, z = y − x ∈ Z.

We assume the squared-error distortion measure for the source given by d(s, s′) = (s −

s′)2 for any s, s′ ∈ R and extended for k-tuples as

d(k)(s, s′) =
1

k

k∑

i=1

(si − s′i)
2

for any s, s′ ∈ R
k.

Let S = S ′ ⊆ R and let PSS′ be a pdf on continuous alphabet S × S ′. Then the mutual

information between RV’s S and S′ is given by (e.g., [29])

IPSS′ (S;S′) =

∫

S×S′

PSS′(s, s′) ln
PSS′(s, s′)

PS(s)PS′(s′)
dsds′,

or simply written as I(S;S′) if PSS′ is clear from the context.
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Given a distortion threshold ∆ > 0, the rate-distortion function for MGS QS is given

by (e.g., [42])

R(QS ,∆) = inf
PS′|S :Ed(S,S′)≤∆

I(S;S′) =





1
2 ln

σ2
S

∆ 0 < ∆ < σ2
S ,

0 σ2
S ≤ ∆.

(2.42)

When 0 < ∆ < σ2
S , the infimum of (2.42) is achieved by a conditional Gaussian pdf [97]

P ∗
S′|S(s′|s) =

1√
2π

∆(σ2
S−∆)

σ2
S

exp




−

(
s′ − σ2

S−∆

σ2
S

s
)2

2∆(σ2
S−∆)

σ2
S




, (2.43)

and hence the marginal pdf of s′ under P ∗
S′|S(s′|s) is given by

P ∗
S′(s′) =

∫
QS(s)P ∗

S′|S(s′|s)ds =
1√

2π(σ2
S − ∆)

exp

{
− s′2

2(σ2
S − ∆)

}
. (2.44)

When σ2
S ≤ ∆, trivially, R(QS ,∆) can be achieved by setting s′ = 0 and the resulting

marginal distribution of S′ is an identity function.

The excess distortion exponent e∆(R,QS) for the MGS under the squared-error distor-

tion measure admits an explicit formula [54]: for the MGS QS ∼ N (0, σ2
S) and any R > 0,

the excess distortion exponent e∆(R,QS) is determined exactly by F (R,QS ,∆) defined in

(2.11), which admits the following parametric form

F (R,QS ,∆) =





1
2

(
∆β
σ2

S

− ln ∆β
σ2

S

− 1
)

if R > R(QS ,∆),

0 otherwise,
(2.45)

where β = e2R. Note that the function F (R,QS ,∆) might have a jump at R = 0 by

definition. This is not good since we later need to deal with the source exponent as a

convex and continuous function on [0,∞). Since e∆(R,QS) is not meaningful at R = 0, we

define a new function FG(R,QS ,∆) by

FG(R,QS ,∆) , F (R,QS ,∆) (2.46)

for R > 0, and

FG(0, QS ,∆) , lim
R↓0

F (R,QS ,∆) =





1
2

(
∆
σ2

S

− ln ∆
σ2

S

− 1
)

if R(QS ,∆) = 0,

0 if R(QS ,∆) > 0,
(2.47)
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Consequently, FG(R,QS ,∆) is convex strictly increasing in R ∈ [0,∞) and we still have

e∆(R,PS) = FG(R,QS ,∆) for any R > 0. In the sequel, we will refer to FG(R,QS ,∆) as

the MGS exponent.

Given an input cost function g(x) = x2 (power cost constraint) and a constraint E > 0,

the channel capacity of MGC WY |X is given by

C(WY |X , E) = sup
PX :EX2≤E

I(X;Y ) =
1

2
ln (1 + SNR) , (2.48)

where SNR , E/σ2
Z is the signal-to-noise ratio. It is known that the supremum in (2.48) is

achieved by the Gaussian distribution [29,42]

P ∗
X(x) =

1√
2πE

exp

{
−x2

2E

}
, (2.49)

and the corresponding channel output has the pdf

P ∗
Y (y) =

1√
2π(E + σ2

Z)
exp

{
− y2

2(E + σ2
Z)

}
. (2.50)

As mentioned before, the error exponent for the MGC E(R,WY |X , E) is only partially

known. In the last fifty years, the error exponent for the MGC was actively studied and

several lower and upper bounds were established (see, e.g., [12, 42, 84]). The most familiar

upper bound is obtained by Shannon [84], called the sphere-packing upper bound for the

MGC and given by

Esp(R,WY |X , E) ,
SNR

4β

[
(β + 1) − (β − 1)

√
1 +

4β

SNR(β − 1)

]

+
1

2
ln

{
β − SNR(β − 1)

2

[√
1 +

4β

SNR(β − 1)
− 1

]}
, (2.51)

where β = e2R, R ≤ C(WY |X , E). Note that Esp(R,WY |X , E) has the following important

properties.1

Lemma 2.1 Esp(R,WY |X , E) is convex strictly decreasing in R ≤ C(WY |X , E) and vanishes

for R ≥ C(WY |X , E). Furthermore, Esp(R,WY |X , E) → ∞ as R ↓ 0.

1The properties of Esp(R,WY |X , E) were described in Gallager [42, Chapter 7] without a proof.
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Proof : Since Esp(R,WY |X , E) is a differentiable function for R > 0, we have

∂Esp(R,WY |X , E)

∂R

=
β
[
−SNRβ2 − 4SNRβ + SNR2 + (SNR + 2)Ψ

]

Ψ [2β + SNRβ − SNR − Ψ]

=

[
−SNR2β − 4SNRβ + SNR2 + Ψ(SNR + 2)

]
(2β + SNRβ − SNR + Ψ)

4βΨ

=
2SNR2 − 2SNR2β − 8SNRβ + (4β − 2SNR)Ψ

4βΨ

= 1 − SNR

2β

(
1 +

√
1 +

4β

SNR(β − 1)

)
, (2.52)

where β = e2R and

Ψ =
√

(SNRβ − SNR + 4β)SNR(β − 1).

Now solving

1 − SNR

2β

(
1 +

√
1 +

4β

SNR(β − 1)

)
≤ 0

yields

R ≤ 1

2
ln(1 + SNR) = C(WY |X , E).

Particularly, we have

lim
R→C(WY |X ,E)

∂Esp(R,WY |X , E)

∂R
= 0 and lim

R↓0

∂Esp(R,WY |X , E)

∂R
= −∞.

Hence, Esp(R,WY |X , E) is a strictly decreasing function in R ∈ (0, C(WY |X , E)] with a slope

ranging from −∞ to 0.

It follows from (2.52) that for R ∈ (0, C(WY |X , E)],

∂2Esp(R,WY |X , E)

∂R2
=

SNR

β

[
1 +

√
1 +

4β

SNR(β − 1)

]

+
2

SNR2(β − 1)2
√

1 + 4β

SNR(β−1)

> 0. (2.53)

This demonstrates the (strict) convexity of Esp(R,WY |X , E). �

For the lower bound, we specialize Gallager’s random-coding lower bound (2.39) (note

that the logarithm and exponential here are in natural base) for the MGC WY |X as follows:
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choosing the channel input distribution PX(x) as the Gaussian distribution P ∗
X(x) given in

(2.49), and replacing g(x) by our square cost function x2 yield the following lower bound

for E0(WY |X , E , ρ)

E0(WY |X , E , ρ) ≥ Ẽo(WY |X , E , ρ) , max
r≥0

E0(WY |X , E , ρ, r, P ∗
X )

= max
0≤r≤1/2E

{
r(1 + ρ)E +

1

2
ln(1 − 2rE) +

ρ

2
ln

[
1 − 2rE +

E
(1 + ρ)σ2

Z

]}
. (2.54)

(2.55)

We hereby call Ẽo(WY |X , E , ρ) Gallager’s Gaussian-input channel function. Note also that

Esp(R,WY |X , E) = max
ρ≥0

[−ρR+ Ẽo(WY |X , E , ρ)],

and the inner function is concave in ρ. Thus, the random-coding lower boundEr(R,WY |X , E)

can be further lower bounded by [42, pp. 339–340]

E†(R,WY |X , E) = max
0≤ρ≤1

[−ρR+ Ẽo(WY |X , E , ρ)]

=





Esp(R,WY |X , E),

Rcr(WY |X) ≤ R ≤ C(WY |X , E),

1 − γ + SNR
2 + 1

2 ln
(
γ − SNR

2

)
+ 1

2 ln γ −R

0 ≤ R ≤ Rcr(WY |X),

(2.56)

where

γ ,
1

2


1 +

SNR

2
+

√

1 +
SNR2

4


 ,

and

Rcr(WY |X) ,
1

2
ln


1

2
+

SNR

4
+

1

2

√

1 +
SNR2

4




is the critical rate of the MGC (obtained by solving for the R where the straight-line of

slope −1 is tangent to E†(R,WY |X , E)). It is easy to show that E†(R,WY |X , E) is convex

strictly decreasing in 0 < R ≤ C(WY |X , E) with a straight-line section of slope −1 for R ≤

Rcr(WY |X). It has to be pointed out [42] that E†(R,WY |X , E) is not the real random-coding

bound (as given in (2.39)) for R < Rcr(WY |X), but it admits a computable parametric form
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and it coincides with the upper bound Esp(R,WY |X , E) for R ≥ Rcr(WY |X). Thus, we will

refer to E†(R,WY |X , E) as the Gaussian input random-coding exponent, and the channel

coding error exponent E(R,WY |X , E) is determined for high rates (R ≥ Rcr(WY |X)).2

2.5 Concluding Remarks

In this chapter, we presented the basic material on the source and channel coding reliability

functions for memoryless systems that will be widely used in the thesis. In the fifty-year

development of Shannon theory, the source reliability function has been exactly determined

for DMS’s (in both lossless and lossy coding cases), MGS’s with the squared-error distortion,

and certain memoryless sources with a metric distortion measure under some finiteness

constraints, while the channel error exponent for DMC’s and MGC’s is only known for high

rates. In Chapter 7 we derive a sphere-packing type upper bound for the error exponent

for discrete additive channels with Markovian memory, and in Chapter 8, we determine

the source excess distortion exponent for memoryless Laplacian sources with magnitude

distortion measure.

We note that the the source error exponent for DMS can be expressed in two forms:

the constrained divergence form (2.4) and the parametric form in terms of Gallager’s source

function (2.6). The random-coding exponent and the sphere-packing exponent can also be

expressed in a form in terms of Gallager’s channel function and alternately in a constrained

divergence form. In Chapter 4, we re-examine these exponents, and a conjugacy relation

between these exponents and the corresponding source/channel functions will be illustrated.

2In the recent work of [14], the lower bound E†(R,WY |X , E) is improved and is shown to be tight in a

interval slightly below the critical rate, i.e., it is shown that the error exponent of the MGC is determined

by E†(R,WY |X , E) for rates R ≥ R1 and R1 can be less than Rcr(WY |X).



Chapter 3

Background and Fundamental

Results on the Method of Types

This chapter provides a technical background which will be used to establish upper and lower

bounds for the JSCC reliability function (error exponent and excess distortion exponent)

in later chapters.

It is well known that the method of types is a very useful tool in information theory,

particularly in Shannon theory, hypothesis testing and large deviation theory (e.g., [32,33]).

For a DMS QS ∈ P(S), the type-P class of k-length sequences s , (s1s2 · · · sk) ∈ Sk is

the set of sequences that have single-symbol empirical distribution equal to P . Thus, by

partitioning all sequences in Sk into type classes where the number of distinct classes grows

sub-exponentially with k, the probability of a particular event (the probability of error,

say) can be obtained by summing the probabilities of its intersections with the various type

classes which decay exponentially as the sequence length k approaches infinity [32].

In Section 3.1, we go through the concept of types, joint types, and conditional types

as well as the corresponding type classes for (memoryless) sequences with finite alphabets.

For simplicity, we refer to these type classes of discrete sequences as discrete type classes.

In Section 3.2, we develop a joint type packing lemma for a (2-dimensional) joint type

setting which will be used (in Chapter 9) to establish a lower bound for the JSCC reliability

32
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function. The counterparts of the discrete type class in R
k are next investigated in Section

3.3. We first introduce the notion of a Gaussian-type class proposed in [6]. We also propose

a Laplacian-type class. The properties of the two continuous type classes are discussed. In

Section 3.4, we introduce another fundamental lemma on the method of types, the type

covering lemma, for the discrete type class, Gaussian-type class and Laplacian-type class,

respectively. We finally conclude in Section 3.5.

3.1 Types, Joint Types, and Conditional Types

The following notation and conventions are adopted from [30,32]. The type of an n-length

sequence x ∈ X n is the empirical probability distribution Px ∈ P(X ) defined by

Px(a) ,
1

n
N(a|x), a ∈ X ,

where N(a|x) is the number of occurrences of a in x. Let Pn(X ) ⊆ P(X ) be the collection

of all types of sequences in X n. For any PX ∈ Pn(X ), the set of all x ∈ X n with type PX

is denoted by TPX
, or simply by TX if PX is understood. We also call TPX

or TX a type

class.

Similarly, the joint type of n-length sequences x ∈ X n and y ∈ Yn is the empirical joint

probability distribution Pxy ∈ P(X × Y) defined by

Pxy(a, b) ,
1

n
N(a, b|x,y), (a, b) ∈ X × Y.

Let Pn(X × Y) ⊆ P(X × Y) be the collection of all joint types of sequences in X n × Yn.

The set of all x ∈ X n and y ∈ Yn with joint type PXY ∈ Pn(X × Y) is denoted by TPXY
,

or simply by TXY .

The conditional type of y ∈ Yn given x ∈ TPX
is the empirical conditional probability

distribution Py|x ∈ P(Y|X ) defined by

Py|x(b|a) =
N(a, b|x,y)

N(a|x)
,

whenever N(a|x) > 0; otherwise (if N(a|x) = 0) define Py|x(b|a) = 0, (a, b) ∈ X × Y.
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Let Pn(Y|PX) be the collection of all conditional distributions VY |X which are condi-

tional types of y ∈ Yn given an x ∈ TPX
. For any conditional type VY |X ∈ Pn(Y|PX), the

set of all y ∈ Yn for a given x ∈ TPX
satisfying Py|x = VY |X is denoted by TVY |X

(x), or

simply by TY |X(x), which is also called a conditional type class (V -shell) with respect to x.

Note that for a given joint type PXY ∈ Pn(X × Y), for any x ∈ TPX
, TPY |X

(x) = {y :

(x,y) ∈ TPXY
}. Note also that

{
PXVY |X : PX ∈ Pn(X ), VY |X ∈ Pn(Y|PX )

}
= Pn(X × Y).

In addition, we denote

Pn(Y|X ) ,
⋃

PX∈Pn(X )

Pn(Y|PX) ⊆ P(Y|X ).

To distinguish between different distributions (or types) defined on the same alphabet,

we use sub-subscripts, say, i, j, in PXi
, PXiYj

, TXiYj
, and so on. For example, TXiYj

is the

type class of the joint type PXiYj
∈ Pn(X ×Y). The following facts will be frequently used

throughout the thesis.

Lemma 3.1 [32]

(a) |Pn(X )| ≤ (n+ 1)|X |, |Pn(Y|X )| ≤ (n + 1)|Y||X |.

(b) For any PX , QX ∈ Pn(X ), we have

(n+ 1)−|X |2nHPX
(X) ≤ |TPX

| ≤ 2nHPX
(X),

Q
(n)
X (x) = 2−n[D(PX‖QX)+HPX

(X)] if x ∈ TPX
,

and hence

(n+ 1)−|X |2−nD(PX‖QX) ≤ Q
(n)
X (TPX

) ≤ 2−nD(PX‖QX).

(c) For any x ∈ TPX
, y ∈ TVY |X

(x) and WY |X , VY |X ∈ Pn(Y|PX ), we have

(n+ 1)−|X ||Y|2
nHPXVY |X

(Y |X) ≤ |TVY |X
(x)| ≤ 2

nHPXVY |X
(Y |X)

,

W
(n)
Y |X(y|x) = 2

−n[D(VY |X‖WY |X |PX)+HPXVY |X
(Y |X)]

,
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and hence

(n+ 1)−|X ||Y|2−nD(VY |X‖WY |X |PX) ≤W
(n)
Y |X(TVY |X

(x)|x) ≤ 2−nD(VY |X‖WY |X |PX).

Proof: (a) is trivial. For (b), we only need to prove the bounds for |TPX
|. For PX ∈ Pn(X ),

and an n-length sequence x ∈ TPX
, by the definition of type,

P
(n)
X (x) =

∏

a∈X

PX(a)N(a|x) = 2−nHPX
(X).

Since each sequence in TPX
are equiprobable, the size of the type class is

|TPX
| = P

(n)
X (TPX

)2nHPX
(X).

The upper bound for |TPX
| is obvious since P

(n)
X (TPX

) ≤ 1. If we can show

P
(n)
X (TPX

) ≥ P
(n)
X (T bPX

) (3.1)

for any P̂X ∈ Pn(X ) which implies that TPX
has the largest probability among the |Pn(X )|

types, then by (a),

P
(n)
X (TPX

) ≥ 1

|Pn(X )| ≥ (n+ 1)−|X |

and thus the lower bound for |TPX
| is proved. Now we show (3.1). For any P̂X ∈ Pn(X ),

the probability of the type class T bPX
under the distribution PX is given by

P
(n)
X (T bPX

) = |T bPX
|
∏

a∈X

PX(a)n
bPX(a) =

n!
∏
a∈X (nP̂X(a))!

∏

a∈X

PX(a)n
bPX(a).

It follows that

P
(n)
X (T bPX

)

P
(n)
X (TPX

)
=
∏

a∈X

∏
a∈X (nPX(a))!

∏
a∈X (nP̂X(a))!

PX(a)n( bPX(a)−PX (a)).

Applying the inequality n!/m! ≤ nn−m yields

P
(n)
X (T bPX

)

P
(n)
X (TPX

)
≤
∏

a∈X

nn(PX(a)− bPX (a)) = nn(
P

a∈X PX(a)−
P

a∈X
bPX(a)) = 1.

(c) is proved similarly as (b). �
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3.2 A Joint Type Packing Lemma

We generalize Csiszár’s type packing lemma [30, Theorem 5] from a (1-dimensional) single-

letter type setting to a (2-dimensional) joint type setting. This packing lemma will play

a key role in deriving an exponentially achievable upper bound for the probability of erro-

neous transmission for the DMC in Proposition 6.1 and the asymmetric 2-user channel in

Proposition 9.1.

Lemma 3.2 (Joint Type Packing Lemma) Given finite sets A and B, a sequence of pos-

itive integers {mn}, and a sequence of positive integers {m′
in} associated with every i =

1, 2, ...,mn, for arbitrary (not necessarily distinct) types PAi
∈ Pn(A) and conditional types

PBj |Ai
∈ Pn(B|PAi

), and positive integers Ni and Mij , i = 1, 2, ...,mn and j = j(i) =

1, 2, ...,m′
in with

1

n
log2Ni < HPAi

(A) − δ, (3.2)

and

1

n
log2Mij < HPAi

PBj |Ai
(B|A) − δ, (3.3)

where

δ ,
2

n

[
|A|2|B|2 log2(n + 1) + log2mn + log2(max

i
m′
in) + log2 12

]
,

there exist mn disjoint subsets

Ωi =
{
a(i)
p

}Ni

p=1
⊆ TAi

, TPAi

such that

|TVA′|A
(a(i)
p )
⋂

Ωk| ≤ Nk2
−n

h
IPAi

V
A′|A

(A;A′)−δ
i

, (3.4)

for every i, k, p and VA′|A ∈ Pn(A|A), with the exception of the case when both i = k and

VA′|A is the conditional distribution such that VA′|A(a′|a) is 1 if a′ = a and 0 otherwise;

furthermore, for every u
(i)
p ∈ Ωi and every i, there exist m′

in disjoint subsets

Ωij(a
(i)
p ) =

{
(a(i)
p , b

(j)
p,q)
}Mij

q=1
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such that b
(j)
p,q ∈ TBj |Ai

(a
(i)
p ) , TPBj |Ai

(a
(i)
p ) and

∣∣∣∣∣∣
TVA′B′|AB

(a(i)
p , b

(j)
p,q)
⋂ Nk⋃

p′=1

Ωkl(a
(k)
p′ )

∣∣∣∣∣∣
≤ NkMkl2

−n

»
IPAiBj

V
A′B′|AB

(A,B;A′,B′)−δ

–

, (3.5)

∣∣∣∣∣∣
TVA′B′|AB

(a(i)
p , b

(j)
p,q)
⋂ Ni⋃

p′=1

Ωil(a
(i)
p′ )

∣∣∣∣∣∣
≤Mil2

−n

»
IPAiBj

V
A′B′|AB

(B;B′|A)−δ

–

, (3.6)

for any i, j, k, l, p, q and VA′B′|AB ∈ Pn(A× B|A × B), with the exception of the case when

both i = k, j = l and VA′B′|AB is the conditional distribution such that VA′B′|AB(a′, b′|a, b)

is 1 if (a′, b′) = (a, b) and 0 otherwise.

T
V

A’B’|AB

(a,b)

Ω
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Ω
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Ω
3,4

Ω
3,3
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Ω
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Ω
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Ω
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An× BnΩ
1,1

Figure 3.1: A graphical illustration of the (2-dimensional) joint type packing lemma. There

exist disjoint subsets Ωij’s with bounded cardinalities in the “2-dimensional” space An×Bn

such that for any (a,b) ∈ Ωij (say, (a,b) ∈ Ω1,1), the conditional type class TVA′B′|AB
(a,b)

is “almost disjoint” with these subsets Ωk,l’s, provided that VA′B′|AB is not the conditional

distribution such that VA′B′|AB(a′, b′|a, b) = 1 if (a′, b′) = (a, b) and 0 otherwise.
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We remark that the assertion of (3.4) is Csiszár’s type packing lemma [30, Theorem 5]

for a single-letter type setting. Roughly and intuitively, if (a,b) is a pair of transmitted

codewords, then the possible sequences decoded as (a,b) can be seen as elements in the

“sphere” TVA′B′|AB
(a,b) “centered” at (a,b) for some VA′B′|AB . The packing lemma states

that there exist disjoint sets Ωkl =
⋃Nk

p′=1 Ωkl(a
(k)
p′ ) with bounded cardinalities such that the

size of the intersection between the sphere TVA′B′|AB
(a,b) for every (a,b) ∈ Ωij and every

set Ωkl is “exponentially small” compared with the size of each Ωkl; see Fig. 3.1. So the

packing lemma can be used to prove the existence of good codes that have an exponentially

small probability of error.

Note also that the above extended packing lemma is analogous to, but different from

the one introduced by Körner and Sgarro [60], which is used to prove a lower bound for

the asymmetric broadcast channel coding exponent. Lemma 3.2 here is used for the JSCC

problem.

Proof of Lemma 3.2: Although the result (3.4) of Lemma 3.2 was already shown in [30],

we include its proof here since we need to show that (3.4) holds simultaneously with (3.5)

and (3.6). We employ a random selection argument as used in [30]. For each i = 1, 2, ...,mn,

we randomly generate a set of 2Ni sequences (according to a uniform distribution) from

the type class TAi
= TPAi

, Ci ,

{
a

(i)
1 ,a

(i)
2 , ...,a

(i)
2Ni

}
⊆ TAi

, i.e., each a
(i)
p is randomly

drawn from the type class TAi
with probability 1/|TAi

|, p = 1, 2, ..., 2Ni. Each sets has 2Ni

elements rather than Ni because an expurgate operation will be performed later. Also, we

denote the set Cpi , Ci/
{
a

(i)
p

}
.

Now for each i with associated j = j(i) = 1, 2, ...,m′
in, we randomly generate 4NiMij

sequences (according to a uniform distribution)

{
b

(j)
11 ,b

(j)
12 , ...,b

(j)
1,2Mij

,b
(j)
21 ,b

(j)
22 , ...,b

(j)
2,2Mij

, · · · ,b(j)
2Ni,1

,b
(j)
2Ni,2

, ...,b
(j)
2Ni,2Mij

}

such that the set

Cij ,

{(
a

(i)
1 ,b

(j)
11

)
,
(
a

(i)
1 ,b

(j)
12

)
, ...,

(
a

(i)
1 ,b

(j)
1,2Mij

)
,

(
a

(i)
2 ,b

(j)
21

)
,
(
a

(i)
2 ,b

(j)
22

)
, ...,

(
a

(i)
2 ,b

(j)
2,2Mij

)
,



3.2. A Joint Type Packing Lemma 39

· · · · · ·
(
a

(i)
2Ni

,b
(j)
2Ni,1

)
,
(
a

(i)
2Ni

,b
(j)
2Ni,2

)
, ...,

(
a

(i)
2Ni

,b
(j)
2Ni,2Mij

)}
⊆ TAiBj

= TPAi
PBj |Ai

.

In other words, each b
(j)
p,q is drawn from TBj |Ai

(
a

(i)
p

)
with probability 1/

∣∣∣TBj |Ai

(
a

(i)
p

)∣∣∣,

q = 1, 2, ...,Mij , and hence each pair
(
a

(i)
p ,b

(j)
p,q

)
is drawn from TAiBj

with probability

1/
∣∣TAiBj

∣∣. Furthermore, we denote the set Cpqij , Cij/
{(

a
(i)
p ,b

(j)
p,q

)}
. For any 1 ≤ i, k ≤ mn,

1 ≤ j ≤ m′
in and 1 ≤ l ≤ m′

kn, define

Vi,k ,

{
VA′|A ∈ Pn (A|PAi

) :
∑

a∈A

PAi
(a)VA′|A(a′|a) = PAk

(a′)

}

and

Vij,kl ,
{
VA′B′|AB ∈ Pn

(
A× B|PAiBj

)
:

∑

(a,b)∈A×B

PAiBj
(a, b)VA′B′|AB(a′, b′|a, b) = PAkBl

(a′, b′)
}
.

Based on the above set-up, the following inequalities hold.

1. For any (i, j) 6= (k, l) and any VA′B′|AB ∈ Vij,kl,

E

∣∣∣TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)⋂
Ckl
∣∣∣

≤ E

∣∣∣
{
(p′, q′) :

(
a

(k)
p′ ,b

(l)
p′,q′

)
∈ TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)}∣∣∣

= 4NkMklPr
{(

a
(k)
1 ,b

(l)
1,1

)
∈ TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)}

= 4NkMkl

∣∣∣TVA′B′|AB

(
a

(i)
p ,b

(j)
p,q

)∣∣∣
|TAkBl

|
≤ 4NkMkl(n + 1)|A||B|2

−nIPAiBj
V

A′B′|AB
(A′,B′;A,B)

, (3.7)

where the above expectation and probability are taken over the uniform distribution

P̂k,l

(
a

(k)
p′ ,b

(l)
p′,q′

)
,

1

|TAkBl
|

∀ 1 ≤ k ≤ mn, 1 ≤ l ≤ m′
kn, 1 ≤ p′ ≤ Nk, 1 ≤ q′ ≤Mkl, (3.8)

and (3.7) follows from the basic facts (Lemma 3.1) that

∣∣∣TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)∣∣∣ ≤ 2
nHPAiBj

V
A′B′|AB

(A′,B′|A,B)
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and that

|TAkBl
| ≥ (n+ 1)−|A||B|2

nHPAkBl
(A′,B′)

,

noting that the marginal distribution of PAiBj
VA′B′|AB for RV’s (A′, B′) is PAkBl

.

2. For any (i, j) = (k, l) and any VA′B′|AB ∈ Vij,ij, likewise,

E

∣∣∣TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)⋂
Cpqij
∣∣∣ ≤ 4NiMij(n+ 1)|A||B|2

−nIPAiBj
V

A′B′|AB
(A′,B′;A,B)

,

(3.9)

where the expectation is taken over the uniform distribution P̂i,j defined by (3.8).

3. For any i and j 6= l, and any VAB′|AB ∈ Vij,il, similarly we have

E

∣∣∣TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)⋂
Cil
∣∣∣ ≤ 4NiMil(n+ 1)|A||B|2

−nIPAiBj
V

AB′|AB
(A,B′;A,B)

.

Using the identity

IPAiBj
VAB′|AB

(A,B′;A,B) = HPAi
(A) + IPAiBj

VAB′|AB
(B′;B|A)

and assumption (3.2)

1

n
log2Ni < HPAi

(A) − δ,

we obtain another bound

E

∣∣∣TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)⋂
Cil
∣∣∣ ≤ 4Mil(n+ 1)|A||B|2

−nIPAiBj
V

A′B′|AB
(B′;B|A)

, (3.10)

where the expectation is taken over the uniform distribution P̂i,l.

4. For any i and j = l, and any VA′B′|AB ∈ Vij,il, likewise,

E

∣∣∣TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)⋂
Cpqij
∣∣∣ ≤ 4Mij(n+ 1)|A||B|2

−nIPAiBj
V

A′B′|AB
(B′;B|A)

, (3.11)

where the expectation is taken over the uniform distribution P̂i,j .

5. For any i 6= k and any VA′|A ∈ Vi,k,

E

∣∣∣TVA′|A

(
a(i)
p

)⋂
Ck
∣∣∣ ≤ E

∣∣∣
{
p′ : a

(k)
p′ ∈ TVA′|A

(
a(i)
p

)}∣∣∣

= 2NkPr
{
a

(i)
1 ∈ TVA′|A

(
a(i)
p

)}

= 2Nk

∣∣∣TVA′|A

(
a

(i)
p

)∣∣∣
|TAk

|
≤ 2Nk(n+ 1)−|A|2

−nIPAi
V

A′|A
(A′;A)

, (3.12)
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where the above expectation and probability are taken over the uniform distribution

P̃k(a
(k)
p′ ) ,

1

|TAk
| , ∀ 1 ≤ k ≤ mn, 1 ≤ p′ ≤ Nk, (3.13)

and (3.12) follows from the basic facts (Lemma 3.1) that

∣∣∣TVA′|A

(
a

(i)
1

)∣∣∣ ≤ 2
nHPAi

V
A′|A

(A′|A)

and that

|TAk
| ≥ (n+ 1)|A|2

nHPAk
(A′)

,

noting that the marginal distribution of PAi
VA′|A for the RV A′ is PAk

.

6. For any i = k and any VA′|A ∈ Vi,k, likewise,

E

∣∣∣TVA′|A

(
a(i)
p

)⋂
Cpi
∣∣∣ ≤ 2Nk(n + 1)−|A|2

−nIPAi
V

A′|A
(A′;A)

, (3.14)

where the expectation is taken over the uniform distribution P̃i defined in (3.13).

Note also if VA′B′|AB /∈ Vij,kl
∣∣∣TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)⋂
Ckl
∣∣∣ = 0,

and if VA′B′|AB /∈ Vij,ij ∣∣∣TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)⋂
Cpqij
∣∣∣ = 0.

Therefore, it follows from (3.7) and (3.9) that for any VA′B′|AB ∈ Pn(A× B|A× B),

E

∣∣∣TVA′B′|AB

(
a

(i)
p ,x

(j)
p,q

)⋂ Cpqij
∣∣∣

4NiMij
+

∑

(k,l)6=(i,j)

E

∣∣∣TVA′B′|AB

(
a

(i)
p ,b

(j)
p,q

)⋂ Ckl
∣∣∣

4NkMkl

≤ mn(max
i
m′
in)(n + 1)|A||B|2

−nIPAiBj
V

A′B′|AB
(A′,B′;A,B)

. (3.15)

Taking the sum over all VA′B′|AB ∈ Pn(A× B|A × B), and using the fact (Lemma 3.1)

|Pn(A× B|A × B)| ≤ (n+ 1)|A|2|B|2

and |A|2|B|2 + |A||B| ≤ 2|A|2|B|2, we obtain

ESpqij ≤ (n+ 1)2|A|2|B|2mn(max
i
m′
in)
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where

Spqij ,
∑

VA′B′|AB∈Pn(A×B|A×B)

2
nIPAiBj

V
A′B′|AB

(A′,B′;A,B)

×




∣∣∣TVA′B′|AB

(
a

(i)
p ,b

(j)
p,q

)⋂ Cpqij
∣∣∣

4NiMij
+

∑

(k,l)6=(i,j)

∣∣∣TVA′B′|AB

(
a

(i)
p ,b

(j)
p,q

)⋂ Ckl
∣∣∣

4NkMkl


 .

Immediately, normalizing by 4NiMij and taking the sum over 1 ≤ i ≤ mn, 1 ≤ j ≤ m′
in,

1 ≤ p ≤ Ni,1 ≤ q ≤Mij yields

E

mn∑

i=1

m′
in∑

j=1

1

4NiMij

2Ni∑

p=1

2Mij∑

q=1

Spqij ≤ (n+ 1)2|A|2|B|2m2
n(max

i
m′
in)

2. (3.16)

Similarly, it follows from (3.10) and (3.11) that

E

mn∑

i=1

m′
in∑

j=1

1

4NiMij

2Ni∑

p=1

2Mij∑

q=1

Kpq
ij ≤ (n+1)2|A|2|B|2mn(max

i
m′
in)

2 ≤ (n+1)2|A|2|B|2m2
n(max

i
m′
in)

2,

(3.17)

where

Kpq
ij ,

∑

VA′B′|AB∈Pn(A×B|A×B)

2
nIPAiBj

V
A′B′|AB

(B′;B|A)

×




∣∣∣TVA′B′|AB

(
a

(i)
p ,b

(j)
p,q

)⋂ Cpqij
∣∣∣

4Mij
+
∑

l 6=j

∣∣∣TVA′B′|AB

(
a

(i)
p ,b

(j)
p,q

)⋂ Cil
∣∣∣

4Mil


 ,

and it follows from (3.12) and (3.14) that

E

mn∑

i=1

m′
in∑

j=1

1

4NiMij

2Ni∑

p=1

2Mij∑

q=1

Lpqij ≤ (n+ 1)2|A|2m2
n(max

i
m′
in) ≤ (n+ 1)2|A|2|B|2mn(max

i
m′
in)

2,

(3.18)

where Lpqij is actually independent of j and q and is given by

Lpqij = Lpi ,
∑

VA′|A∈Pn(A|A)

2
nIPAi

V
A′|A

(A′;A)

×




∣∣∣TVA′|A

(
a

(i)
p

)⋂ Cpi
∣∣∣

2Ni
+
∑

k 6=i

∣∣∣TVA′|A

(
a

(i)
p

)⋂ Ck
∣∣∣

2Nk


 .

Summing (3.16), (3.17) and (3.18) together, we obtain

E

mn∑

i=1

m′
in∑

j=1

1

4NiMij

2Ni∑

p=1

2Mij∑

q=1

(
Spqij +Kpq

ij + Lpqij

)
≤ 3(n + 1)2|A|2|B|2m2

n(max
i
m′
in)

2. (3.19)
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Therefore, there exists at least a selection of these sets {Ĉi}mn

i=1 and {Ĉij}i=mn,j=m′
in

i=1,j=1 such

that

mn∑

i=1

m′
in∑

j=1

1

4NiMij

2Ni∑

p=1

2Mij∑

q=1

(
Spqij +Kpq

ij + Lpqij

)
≤ 3(n+ 1)2|A|2|B|2m2

n(max
i
m′
in)

2,

which implies that for all i = 1, 2, ...,mn and j = 1, 2, ...,m′
in the following is satisfied

1

4NiMij

2Ni∑

p=1

2Mij∑

q=1

(
Spqij +Kpq

ij + Lpqij

)
≤ 3(n + 1)2|A|2|B|2m2

n(max
i
m′
in)

2. (3.20)

We next proceed the proof with an expurgation argument. Without loss of generality, we

assume

1

2Mij

2Mij∑

q=1

(
S1q
ij +K1q

ij + L1q
ij

)
≤ 1

2Mij

2Mij∑

q=1

(
S2q
ij +K2q

ij + L2q
ij

)
≤ · · ·

≤ 1

2Mij

2Mij∑

q=1

(
S2Ni,q
ij +K2Ni,q

ij + L2Ni,q
ij

)
,

then we must have, for every 1 ≤ p ≤ Ni,

1

2Mij

2Mij∑

q=1

Spqij +Kpq
ij + Lpqij ≤ 6(n + 1)2|A|2|B|2m2

n(max
i
m′
in)

2.

Similarly, suppose for each p = 1, 2, ...,Ni ,

Sp1ij +Kp1
ij + Lp1ij ≤ Sp2ij +Kp2

ij + Lp2ij ≤ · · · ≤ S
p,2Mij

ij +K
p,2Mij

ij + L
p,2Mij

ij ,

the above implies that for each p = 1, 2, ...,Ni and each q = 1, 2, ...,Mij ,

Spqij +Kpq
ij + Lpqij ≤ 12(n + 1)2|A|2|B|2m2

n(max
i
m′
in)

2. (3.21)

We now let for i = 1, 2, ...,mn, p = 1, 2, , , .,Ni, Ωi ,

{
a

(i)
1 ,a

(i)
2 , ...,a

(i)
Ni

}
⊆ Ĉi, Ωp

i ,

Ωi/
{
a

(i)
p

}
⊆ Ĉpi and for j = 1, 2, ...,m′

in, q = 1, 2, ...,Mij , let Ωij(a
(i)
p ) =

{
(a

(i)
p ,b

(j)
p,q)
}Mij

q=1

such that

Ωij ,

Ni⋃

p=1

Ωij(a
(i)
p ) =

{(
a

(i)
1 ,b

(j)
11

)
,
(
a

(i)
1 ,b

(j)
12

)
, ...,

(
a

(i)
1 ,b

(j)
1,Mij

)
,

(
a

(i)
2 ,b

(j)
21

)
,
(
a

(i)
2 ,b

(j)
22

)
, ...,

(
a

(i)
2 ,b

(j)
2,Mij

)
,

· · · · · ·
(
a

(i)
Ni
,b

(j)
Ni,1

)
,
(
a

(i)
Ni
,b

(j)
Ni,2

)
, ...,

(
a

(i)
Ni
,b

(j)
Ni,Mij

)}
⊆ Ĉij,
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and denote also Ωpq
ij , Ωij/

{(
a

(i)
p ,b

(j)
p,q

)}
⊆ Ĉpqij . Immediately, it follows from (3.21) that

for every i = 1, 2, ...,mn, j = 1, 2, ...,m′
in, k = 1, 2, ...,mn, l = 1, 2, ...,m′

kn, p = 1, 2, ...,Ni,

q = 1, 2, ...,Mij , and every VA′B′|AB ∈ Pn(A× B|A × B) and VA′|A ∈ Pn(A|A)

∣∣∣TVA′B′|AB

(
a

(i)
p ,b

(j)
p,q

)⋂
Ωkl

∣∣∣
NkMkl

≤ 2
−n

»
IPAiBj

V
A′B′|AB

(A′,B′;A,B)−δ

–

, (k, l) 6= (i, j),(3.22)
∣∣∣TVA′B′|AB

(
a

(i)
p ,b

(j)
p,q

)⋂
Ωpq
ij

∣∣∣
NiMij

≤ 2
−n

»
IPAiBj

V
A′B′|AB

(A′,B′;A,B)−δ

–

, (3.23)

∣∣∣TVA′B′|AB

(
a

(i)
p ,b

(j)
p,q

)⋂
Ωil

∣∣∣
Mil

≤ 2
−n

»
IPAiBj

V
A′B′|AB

(B′;B|A)−δ

–

, l 6= j, (3.24)
∣∣∣TVA′B′|AB

(
a

(i)
p ,b

(j)
p,q

)⋂
Ωpq
ij

∣∣∣
Mij

≤ 2
−n

»
IPAiBj

V
A′B′|AB

(B′;B|A)−δ

–

, (3.25)

∣∣∣TVA′|A

(
a

(i)
p

)⋂
Ωk

∣∣∣
Nk

≤ 2
−n

h
IPAi

V
A′|A

(A′;A)−δ
i

, k 6= i, (3.26)
∣∣∣TVA′|A

(
a

(i)
p

)⋂
Ωp
i

∣∣∣
Ni

≤ 2
−n

h
IPAi

V
A′|A

(A′;A)−δ
i

, (3.27)

where

δ =
2

n

[
|A|2|B|2 log2(n + 1) + log2mn + log2(max

i
m′
in) + log2 12

]
.

Now we proved the existence of the sets Ωi and Ωij with elements selected uniformly from

each TAi
and TAiBj

satisfying the inequalities (3.22)–(3.27) for any VA′|A and VA′B′|AB. It

remains to show that these sets are disjoint and have distinct elements provided assumptions

(3.2) and (3.3). Indeed, since (3.26) and (3.27) hold for every VA′|A ∈ Pn(A|A), they of

course hold when VA′|A is a conditional distribution such that V ∗
A′|A(a′|a) is 1 if a′ = a and

0 otherwise. It then follows from (3.2)

1

n
log2Ni < HPAi

(A) − δ = IPAi
V ∗

A′|A
(A′;A) − δ

that
∣∣∣TV ∗

A′|A

(
a

(i)
p

)⋂
Ωk

∣∣∣ =
∣∣∣
{
a

(i)
p

}⋂
Ωk

∣∣∣ < 1 or equivalently,
∣∣∣
{
a

(i)
p

}⋂
Ωk

∣∣∣ = 0, which

means any elements in Ωi does not belong to Ωk for i 6= k, i.e., Ωi and Ωk are disjoint.

Likewise, using assumption (3.2) in (3.27), we see that

∣∣∣TV ∗
A′|A

(
a(i)
p

)⋂
Ωp
i

∣∣∣ =
∣∣∣
{
a(i)
p

}⋂
Ωp
i

∣∣∣ = 0,
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which means that Ωi has Ni disjoint elements. Similarly, setting VA′B′|AB be the conditional

distribution such that V ∗
A′B′|AB(a′, b′|a, b) is 1 if a′ = a, b′ = b and 0 otherwise, and using

(3.3)

1

n
log2Mij < HPAi

PBj |Ai
(B|A) − δ,

we see that for any a
(i)
p ∈ Ωi, Ωij(a

(i)
p )’s are disjoint and the elements in Ωij(a

(i)
p ) are all

distinct, i.e., |Ωij(a
(i)
p )| = Mij for every a(i) ∈ Ωi. Finally, when VA′|A is not the conditional

distribution such that VA′|A(a′|a) is 1 if a′ = a and 0 otherwise, we can write (3.26) and

(3.27) in the same way as (3.4), and when VA′B′|AB is not the conditional distribution such

that VA′B′|AB(a′, b′|a, b) is 1 if a′ = a, b′ = b and 0 otherwise, we can write (3.22)–(3.23) as

(3.5), and write (3.24)–(3.25) as (3.6), since

∣∣∣TVA′|A

(
a(i)
p

)⋂
Ωp
i

∣∣∣ =
∣∣∣TVA′|A

(
a(i)
p

)⋂
Ωi

∣∣∣ ,
∣∣∣TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)⋂
Ωpq
ij

∣∣∣ =
∣∣∣TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)⋂
Ωij

∣∣∣ ,
∣∣∣TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)⋂
Ωpq
ij

∣∣∣ =
∣∣∣TVA′B′|AB

(
a(i)
p ,b

(j)
p,q

)⋂
Ωij

∣∣∣ .

�

3.3 Type Classes for Sequences with Continuous Alphabets

Partitioning the sequence space into disjoint type classes (type sets) and analyzing the prob-

ability of a particular event for each single type class is the essential idea of the method

of types. The type and type class defined in the sense of a common composition of single-

symbol frequencies, however, cannot be implemented to sequences with a continuous al-

phabet. In order to apply the method of types to sequences in a continuous space, say

the k-dimensional Euclidean space, we need to find a counterpart to the type classes which

partition the whole space R
k, while keeping an exponentially small probability with respect

to k.
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3.3.1 Gaussian-Type Classes

In [6, Sec. VI. A], a continuous-alphabet analog to the method of types was studied for

the MGS by introducing the notion of Gaussian-type classes. Given σ2 > 0 and ǫ ∈ (0, σ2),

the Gaussian-type class, denoted by T
ǫ(σ2), is the set of all k-length sequences s ∈ R

k such

that

|sts− kσ2| ≤ kǫ, (3.28)

where t is the transpose operation. A typical 2-dimensional Gaussian-type class with σ2 = 5

and ǫ = 1 is a ring and is shown in Fig. 3.2 (a). Based on a sequence of (appropriate)

positive parameters {σ2
i }∞i=1, say σ2

1 = 5 and σ2
i = σ2

i−1 + 2 for i ≥ 2, the Euclidean space

R
k, say k = 2, can be partitioned using the sequence of rings given by (3.28) together with

the disc {s : sts ≤ kǫ}; see Fig. 3.2 (b). Like the discrete type classes, the size (which is

volume here) of a particular Gaussian-type class grows exponentially with the dimension

k, and the probability of each type class defined by (3.28) under a zero-mean Gaussian

distribution decays exponentially in k; see the following lemma.
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Figure 3.2: (a) A typical Gaussian-type class with k = 2, σ2 = 5, ǫ = 1; (b) R
2 is partitioned

by a sequence of Gaussian-type classes.
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Lemma 3.3 [6] Let Vol{A} ,
∫
s∈A ds be the volume of set A. For any σ̂2

S > ǫ > 0, we

have (
1 − 2σ̂4

S

kǫ2

)[
2πσ̂2

Se
1− ǫ

bσ2
S

]k/2
≤ Vol

{
T
ǫ(σ̂2)

}
≤ [2πe(σ̂2 + ǫ)]k/2. (3.29)

Furthermore, let QS ∼ N (0, σ2
S) be a Gaussian distribution with mean zero and variance

σ2
S. Then

(
1 − 2σ̂4

S

kǫ2

)
exp

{
−k
(
D(Q̂S ‖ QS) + ζ0(ǫ)

)}

≤ Q
(k)
S

(
T
ǫ(σ̂2

S)
)

≤ exp
{
−k
(
D(Q̂S ‖ QS) + ζ1(ǫ)

)}
, (3.30)

where Q̂S ∽ N (0, σ̂2
S),

D(Q̂S ‖ QS) =
1

2

(
σ̂2
S

σ2
S

− ln
σ̂2
S

σ2
S

− 1

)
(3.31)

is the Kullback-Leibler divergence between the two Gaussian distributions Q̂S and QS,

ζ0(ǫ) =
1

2

(
ǫ

σ2
S

+
ǫ

σ̂2
S

)
,

and

ζ1(ǫ) = − ǫ

σ2
S

− ln

(
1 +

ǫ

σ̂2
S

)
.

Remark 3.1 Since the exponentially vanishing probability Q
(k)
S

(
T
ǫ(σ̂2

S)
)

does not hold in

general, the Gaussian-type class can only be applied to MGS’s.

Proof: Consider an auxiliary zero-mean Gaussian distribution with variance σ̂2
S + ǫ. Then

the upper bound of Vol
{
T
ǫ(σ̂2)

}
follows from

1 ≥
∫

{s:|sts−kbσ2
S |≤kǫ}

1
[√

2π(σ̂2
S + ǫ)

]k e
− sts

2(bσ2
S

+ǫ)ds

≥
∫

{s:|sts−kbσ2
S |≤kǫ}

1
[√

2π(σ̂2
S + ǫ)

]k e
−

k((bσ2
S+ǫ))

2(bσ2
S

+ǫ) ds

=
1

[
2πe(σ̂2

S + ǫ)
]k/2 Vol

{
T
ǫ(σ̂2

S)
}
.



3.3. Type Classes for Sequences with Continuous Alphabets 48

To lower bound the volume, consider an auxiliary MGS Q̃S ∽ N (0, σ̂2
S) with k-tuple distri-

bution

Q̃
(k)
S (s) =

1
[
2πσ̂2

S

]k/2 e
− sts

2bσ2
S .

Based on Q̃S, we can bound the probability

Q̃
(k)
S

(
T
ǫ(σ̂2

S)
)

=

∫

{s:|sts−kbσ2
S|≤kǫ}

1
[
2πσ̂2

S

]k/2 e
− sts

2bσ2
S ds

≤
∫

{s:|sts−kbσ2
S|≤kǫ}

1
[
2πσ̂2

S

]k/2 e
−

k(bσ2
S−ǫ)

2bσ2
S ds

=


 1

2πσ̂2
Se

1− ǫ

bσ2
S



k/2

Vol{Tǫ(σ̂2
S)}. (3.32)

On the other hand, we can upper bound

1 − Q̃
(k)
S

(
T
ǫ(σ̂2

S

)
= Q̃

(k)
S

(∣∣∣∣
1

k
sts− σ̂2

S

∣∣∣∣ > ǫ

)

≤ 2σ̂4
S

kǫ2
, (3.33)

where the inequality follows from the Chebychev inequality by noting that E[s2i ] = σ̃2
S.

Plugging (3.33) into (3.32) yields the left inequality in (3.29). Similarly, (3.30) follows from

Q
(k)
S

(
T
ǫ(σ̂2

S)
)

=

∫

{s:|sts−kbσ2
S |≤kǫ}

1
[√

2πσ2
S

]k e
− sts

2σ2
S ds

≤
∫

{s:|sts−kbσ2
S |≤kǫ}

1
[√

2πσ2
S

]k e
−

k(bσ2
S−ǫ)

2σ2
S ds

≤ e
−

k(bσ2
S−ǫ)

2σ2
S

[
e(σ̂2

S + ǫ)

σ2
S

]k/2
(3.34)

and

Q
(k)
S

(
T
ǫ(σ̂2

S)
)

=

∫

{s:|sts−kbσ2
S |≤kǫ}

1
[√

2πσ2
S

]k e
− sts

2σ2
S ds

≥
∫

{s:|sts−kbσ2
S |≤kǫ}

1
[√

2πσ2
S

]k e
−

k(bσ2
S+ǫ)

2σ2
S ds

≥ e
−

k(bσ2
S+ǫ)

2σ2
S

(
1 − 2σ̂4

S

kǫ2

)[
σ̂2
S

σ2
S

e
1− ǫ

bσ2
S

]k/2
(3.35)
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where (3.34) and (3.35) follow from (3.29). �

3.3.2 Laplacian-Type Classes

Of course, in addition to (3.28), there are other ways to partition the whole Euclidean space

R
k. For given α > 0 and 0 < ǫ < α, we define a Laplacian-type class T

ǫ(α) by the set of all

k-vectors s ∈ R
k such that

∣∣∣
∑k

i=1 |si| − kα
∣∣∣ ≤ kǫ, i.e.,

T
ǫ(α) ,

{
s :

∣∣∣∣∣

k∑

i=1

|si| − kα

∣∣∣∣∣ ≤ kǫ

}
. (3.36)

A typical shape of a 2-dimensional Laplacian-type class with α = 5 and ǫ = 1 is shown in

Fig. 3.3 (a). Based on a sequence of (appropriate) positive parameters {αi}∞i=1, say α1 = 5

and αi = αi−1 + 2 for i ≥ 2, the Euclidean space R
k, say k = 2, can be partitioned using

the sequence of T
ǫ(α) together with the rhombus {s :

∑k
i=1 |si| ≤ kǫ}; see Fig. 3.3 (b). We

can bound the volume of the Laplacian-type class as for the Gaussian-type class. It turns

out that the probability of a Laplacian-type class vanishes exponentially under a zero-mean

Laplacian distribution. Thus, analogously to the Gaussian-type class, the Laplacian-type

class can be used to deal with memoryless Laplacian sources (MLSs).

Lemma 3.4 For any α̃ > ǫ > 0, we have

[
1 − 2α̃2

kǫ2

](
2α̃e1−

ǫ
eα

)k
≤ Vol{Tǫ(α̃)} ≤ [2e(α̃ + ε)]k. (3.37)

Furthermore, let QS ∼ L(0, α) be a Laplacian distribution with mean zero and first moment

α (or variance 2α2 equivalently). Then

[
1 − 2α̃2

kǫ2

]
exp

{
−k
(
D(Q̃S ‖ QS) + ζ̂0(ǫ)

)}

≤ Q
(k)
S (Tǫ(α̃))

≤ exp
{
−k
(
D(Q̃S ‖ QS) + ζ2(ǫ)

)}
(3.38)

where

D(Q̃S ‖ QS) =
α̃

α
− ln

α̃

α
− 1 (3.39)
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Figure 3.3: (a) A typical Laplacian-type class with k = 2, α = 5, ǫ = 1; (b) R
2 is partitioned

by a sequence of Laplacian-type classes.

is the Kullback-Leibler divergence between the two Laplaxian distributions Q̃S and QS,

ζ̂0(ǫ) =
ǫ

α
+
ǫ

α̃
,

and

ζ2(ǫ) = − ǫ

α
− ln

(
1 +

ǫ

α̃

)
.

The proof is similar to the last one and is omitted. �

3.4 Type Covering Lemmas for Discrete and Continuous Type

Classes

When we transmit an information source over a noisy or noiseless channel with a fidelity

criterion, we usually expect that the resulting distortion between the original source se-

quence and the recovered sequence is less than some distortion threshold, say ∆, with a

high probability. To design a code with a small probability of exceeding the distortion ∆,

we can employ the “∆-admissible” quantization approach proposed by Berger [15]. Specifi-
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cally, we first perform vector quantization on each source sequence with quantization error

less than ∆, then we transmit these quantized discrete sequences (i.e., quantization cells)

and estimate them at the receiver losslessly. The coding scheme will be described in detail

in Chapter 8, where we apply it to obtain an upper bound for the probability of excess

distortion.

In this section, we address the following quantization problem: how many codewords

are needed to ensure that for every source sequence, say s in Sk, there exists a codeword

c with distortion less than ∆? In other words, from a geometric point of view, how many

k-dimensional balls of size ∆ do we need to at least entirely cover the whole source space

Sk? When S is a finite alphabet, this problem is tackled in [15] by the method of types (also

cf. [32]). Recalling that the source space Sk can be partitioned by a polynomial number of

different type classes (with respect to k), the following type covering lemma states that, for

each particular type, exponential number of ∆-size balls (with respect to k) are required to

cover the type class (see Fig. 3.4).

Lemma 3.5 (Covering Lemma for Discrete Type Classes [15,32]) Given µ > 0, for

each sufficiently large k depending only on the distortion measure d(·, ·) and µ, for every

type class there exists a set CPS
⊂ Sk of size

|CPS
| ≤ exp{k[R(PS ,∆) + µ]}

such that every sequence s ∈ TPS
is contained, for some cPS

∈ CPS
, in the ball of size ∆

B(cPS
,∆) ,

{
s : d(k)(s, cPS

) ≤ ∆
}
,

where R(PS ,∆) is the rate-distortion function of the DMS PS.

When S = R, we have similar results for the Gaussian-type and Laplacian-type classes.

The type covering lemma for Gaussian-type classes is proved in [6]. We only give the proof

for the type covering lemma for Laplacian-type classes.
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T  ⊂ Sk
p
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k
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Figure 3.4: A graphical illustration of the type covering lemma. We need at least

≈ exp{kR(PS ,∆)} k-dimensional balls of size ∆ to entirely cover the type class TPS
.

Lemma 3.6 (Covering Lemma for Gaussian-Type Classes [6]) Given σ2
S > ∆ and

µ > 0, for sufficiently small ǫ and for sufficiently large k, there exists a set C ⊂ R
k of size

|C| ≤ exp{k[R(PS ,∆) + ζ3(ǫ)] + µ}

with

ζ3(ǫ) =
1

2
ln

∆

(
√

∆ − ǫ)2 − ǫ∆
(
1 + 4

√
∆
σ2

S

) + 2ǫ+ 2 ln

[
1 + ǫ

(
1 + 4

√
∆

σ2
S − ∆

)]

such that every sequence s ∈ T
ǫ(σ2

S) is contained, for some c ∈ C, in the ball of size ∆

B(c,∆) ,

{
s :

1

k

k∑

i=1

(si − ci)
2 ≤ ∆

}
,

where R(PS ,∆) is the rate-distortion function of MGS PS ∼ N (0, σ2
S).
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Lemma 3.7 (Covering Lemma for Laplacian-Type Classes) Given α > ∆ and µ >

0, for sufficiently small ǫ and for sufficiently large k, there exists a set C ⊂ R
k of size

|C| ≤ exp{k[R(PS ,∆) + ζ4(ǫ)] + µ} with

ζ4(ǫ) = ln
∆

∆ − ǫ
+ ln

(
1 +

ǫ

α− ∆ + ǫ

)
+

2αǫ

(α− ∆ + ǫ)(∆ − ǫ)

such that every sequence in T
ǫ(α) is contained, for some c ∈ C, in the ball (cube)

B(c,∆) ,

{
s :

1

k

k∑

i=1

|si − ci| ≤ ∆

}

of size ∆, where R(PS ,∆) is the rate distortion function of Laplacian source PS ∽ L(0, α).

Proof: Before we proceed with the proof, we introduce a “shifted” Laplacian-type class.

Given a sequence s∗ = (s∗1 · · · s∗k), denote

T
ǫ(α|s∗) ,

{
s :

∣∣∣∣∣

k∑

i=1

|si − s∗i | − kα

∣∣∣∣∣ ≤ kǫ

}
.

Clearly, T
ǫ(α|s∗) is a shifted set generated from T

ǫ(α) and by Lemma 3.4

Vol{Tǫ(α|s∗)} = Vol{Tǫ(α)} ≥
[
1 − α2

kǫ2

](
2αe1−

ǫ
α

)k
.

We start by assuming that α ≥ ∆ since when α < ∆ the type class T
ǫ(α) is covered by

the ball B(0,∆) for ǫ sufficiently small (ǫ < ∆−α), i.e., for α < ∆ and for ǫ < ∆−α there

exists a code with size |C| = 1 that covers T
ǫ(α).

Construct a grid X(δ) of all vectors in the Euclidean space R
k whose components are

integer multiples of δ for some small 0 < δ < ∆ (we set δ = ǫ in the following) and

consider the k-dimensional balls of size δ, centered at the grid points. Now we randomly

(independently) choose M vectors c(1), ..., c(M) in the set T
ξ(α− (∆ − δ)) according to the

uniform pdf P (c) , 1/Vol
{
T
ξ(α− (∆ − δ))

}
, where ξ ,

[
1 +

(
1 − ∆−δ

α

)2]
ǫ and

exp
{
k[R(PS ,∆) + ζ4(ǫ)] +

µ

2

}
≤M ≤ exp {k[R(PS ,∆) + ζ4(ǫ)] + µ} . (3.40)

Define the set U(∆) by

U(∆) =



s ∈ T

ǫ(α)
⋂
X(δ) :

1

k

k∑

j=1

|sj − c
(i)
j | > ∆ − δ, for all i = 1, 2, ...,M



 .
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Clearly, U(∆) is a set of all grid points in set T
ǫ(α) which are not covered by the codewords

in C , {c(1), ..., c(M)} of size M within distortion threshold ∆ − δ. Now if we can show

that EP |U(∆)| < 1, where the expectation is taken under the uniform distribution P (c),

then there must exist a code for which U(∆) is empty. For such code C, U(∆) is covered

by the union of cubes B
(
c(i),∆ − δ

)
, i = 1, 2, ...,M , which then implies that, T

ǫ(α) is

entirely covered by the union of cubes B
(
c(i),∆

)
. According to the above random selection

assumption,

EP |U(∆)| = EP





∑

s∈Tǫ(α)
T
X(δ)

M∏

i=1

1


1

k

k∑

j=1

|sj − c
(i)
j | > ∆ − δ







=
∑

s∈Tǫ(α)
T
X(δ)

M∏

i=1


1 − P



c(i) :

1

k

k∑

j=1

|sj − c
(i)
j | ≤ ∆ − δ






 . (3.41)

Now for each s ∈ T
ǫ(α), we consider the auxiliary set T

ǫ
(
D − D2

α

∣∣∣
(
1 − D

α

)2
s
)

where

D , ∆ − δ < α. It is seen that T
ǫ
(
D − D2

α

∣∣∣
(
1 − D

α

)2
s
)
⊆ T

ξ(α−D) since

k

(
1 − D

α

)2

(α+ ǫ) + k

(
D − D2

α

)
+ kǫ = k(α −D + ξ)

and

k

(
1 − D

α

)2

(α− ǫ) − k

(
D − D2

α

)
− kǫ = k(α−D − ξ),

and similarly it can be readily checked that for any s ∈ T
ǫ(α)

T
ǫ

(
D − D2

α

∣∣∣∣∣

(
1 − D

α

)2

s

)
⊆



c(i) :

1

k

k∑

j=1

|sj − c
(i)
j | ≤ D



 .

Since the codewords are distributed uniformly in T
ξ(α −D), applying Lemma 3.4 and

recalling that δ = ǫ we have

P



c(i) :

1

k

k∑

j=1

|sj − c
(i)
j | ≤ D



 ≥

Vol
{

T
ǫ
(
D − D2

α

∣∣∣
(
1 − D

α

)2
s
)}

Vol {Tξ(α−D)}

≥ exp
{
−k
[
ln
α

∆
+ ζ̃4(ǫ)

]
+ o(k)

}
, (3.42)

where

ζ̃4(ǫ) = − ln
∆ − ǫ

∆
+ ln

(
1 +

ǫ

α−D

)
+

ξα

D(α−D)
= ζ4(ǫ)
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and o(k) = ln
[
1 − D−D2/α

kξ2

]
. Substituting (3.42) into (3.41) yields

EP |U(∆)| ≤ |Tǫ(α)
⋂
X(δ)|

[
1 − exp

{
−k
[
ln
α

∆
+ ζ4(ǫ)

]
+ o(k)

}]M
(3.43)

≤
[
2e(α + ǫ)

δ

]k
exp

{
−M exp

{
−k
[
ln
α

∆
+ ζ4(ǫ)

]
+ o(k)

}}
, (3.44)

where (3.43) holds since each codeword is independently selected and (3.44) follows from

the inequality (1 − x)M ≤ e−Mx and the fact that the number of balls in T
ǫ(α) is bounded

by the ratio between the volumes of T
ǫ(α) and of a ball δk. From (3.44) we note that

for sufficiently small ǫ (ǫ < D − D2/α), δ = ǫ, and any given µ > 0, there exists a set

of codewords with size M of exponential order exp{k[ln(α/∆) + ζ4(ǫ)] + µ} (see (3.40))

such that |U(∆)| = 0 as k goes to infinity, which means that there exists a code of such

exponential size covering T
ǫ(α) within distortion ∆ for sufficiently large k. �

3.5 Concluding Remarks

In this chapter we established some necessary background on the method of types. We

reviewed the properties of classical discrete types and type classes, and we introduced

two continuous type classes: the Gaussian-type class and the Laplacian type class. The

important feature of the Gaussian-type class (Laplacian-type class) is that the volume

of each type class is exponentially large, while the probability of each type class under

a Gaussian (Laplacian) product distribution is exponentially small. A generalized joint

type packing lemma was developed, which will be used to upper bound the probability of

error for coding DMS’s over DMC’s and 2-user asymmetric channels in Chapters 6 and 9,

respectively. We also summarized different versions of type covering lemmas, which will be

used to bound the size of a quantization codebook in a “∆-admissible” coding scheme in

Chapter 8. We remark that except for the packing lemma and the covering lemma, the

method of types will be frequently used throughout Chapters 6–9. Markov types will be

further discussed in Chapter 7.



Chapter 4

Conjugate Functions: Fenchel

Transforms

In this chapter, we introduce conjugate convex/concave functions and study their applica-

tions to source and channel reliability functions. An important duality result, called Fenchel

duality theorem, is presented.

In Sections 4.1, we introduce conjugate convex/concave functions (which are also called

convex/concave Fenchel transforms, or convex/concave Fenchel-Legendre transforms in the

literature) and we present the Fenchel duality theorem regarding the optimization of the

sum of two convex (not necessarily differentiable) functions, which will be widely used in

the following chapters. In Section 4.2, we recast the source and channel reliability functions

introduced in Chapter 2 and derive their conjugate functions. Several pairs of Fenchel

transforms are revealed. We finally state concluding remarks in Section 4.3.

4.1 Conjugate Functions and Fenchel Duality Theorem

For any function f defined on F ⊂ R, define its convex Fenchel transform (conjugate

function, Legendre transform 4.1) f∗ by

f∗(y) , sup
x∈F

[xy − f(x)]

56
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and let F ∗ be the set {y : f∗(y) < ∞}. It is easy to see from its definition that f∗ is a

convex function on F ∗. Moreover, if f is convex and continuous, then (f∗)∗ = f . More

generally, f∗∗ ≤ f and f∗∗ is the convex hull of f , i.e. the largest convex function that is

bounded above by f [79, Section 3], [17, Section 7.1].

Similarly, for any function g defined on G ⊂ R, define its concave Fenchel transform g∗

by

g∗(y) , inf
x∈G

[xy − g(x)]

and let G∗ be the set {y : g∗(y) > −∞}. It is easy to see from its definition that g∗ is a

concave function on G∗. Moreover, if g is concave and continuous, then (g∗)∗ = g. More

generally, g∗∗ ≥ g and g∗∗ is the concave hull of g, i.e. the smallest concave function that is

bounded below by g.

Fenchel Duality Theorem [65, p. 201] Assume that f and g are, respectively, convex

and concave functions on the non-empty intervals F and G in R and assume that F ∩ G

has interior points. Suppose further that µ = infx∈F∩G[f(x) − g(x)] is finite. Then

µ = inf
x∈F∩G

[f(x) − g(x)] = max
y∈F ∗∩G∗

[g∗(y) − f∗(y)], (4.1)

where the maximum on the right is achieved by some y0 ∈ F ∗ ∩G∗. If the infimum on the

left is achieved by some x0 ∈ F ∩G, then

max
x∈F

[xy0 − f(x)] = x0y0 − f(x0) (4.2)

and

min
x∈G

[xy0 − g(x)] = x0y0 − g(x0). (4.3)

The Fenchel duality theorem will be widely used in the thesis to obtain dual (equivalent)

forms of the lower and upper bounds for the JSCC reliability function. As will become more

clear in the next chapter, Fenchel duality plays an important role in studying the JSCC

reliability function. First, it facilitates the computation of the JSCC reliability function;

second, it is a tool to evaluate the tightness of the bounds and to establish the lower/upper

bound for the JSCC reliability function.
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We remark that all the concepts and results can be easily extended to vector functions

(on subsets of R
k).

4.2 Applications: Source and Channel Reliability Functions

Revisited

In this section we revisit the source and channel reliability functions and theirs bounds

presented in Chapter 2. The conjugacy between the source and channel reliability functions

and the corresponding source and channel functions are studied.

Lemma 4.1 The source function Es(ρ,QS) defined by (2.7) is a strictly convex function of

ρ if QS is not a uniform distribution; otherwise Es(ρ,QS) is a linear function of ρ. Thus,

the DMS error exponent e(R,QS) given in (2.4) and Es(ρ,QS) are a pair of convex Fenchel

transforms, i.e.,

e(R,QS) = (Es(ρ,QS))∗, R ∈ [HQS
(S), log2 |S|]

and

Es(ρ,QS) = (e(R,QS))∗, ρ ∈ [0,+∞).

Proof: Since Es(ρ,QS) is differentiable in ρ, it can be easily verified that the second

derivative is nonnegative, and strictly positive if QS is not the uniform distribution (also

see (5.3) and Lemma 5.1). It then follows from the parametric form of the source error

exponent (2.6) that e(R,QS) and Es(ρ,QS) are a pair of Fenchel transforms. �

The relation between Gallager’s channel function Eo(ρ,WY |X) and the random-coding

and sphere-packing bounds is more complicated. First of all, recall that for each PX ∈ P(S),

Er(R,PX ,WY |X) as defined in (2.15) is a convex non-increasing function for all R, and is

a linear function of R with slope −1 for R ≤ Rcr(PX ,WY |X) [42, p. 143 ]. It will be

convenient to regard this linear function as defining Er(R,PX ,WY |X) for all negative R.

The random-coding bound Er(R,WY |X), which is the maximum of this family of convex

functions, is a convex strictly decreasing function of R for R < C(WY |X), and is a linear
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function of R with slope −1 for all R below the critical rate Rcr(WY |X). For R ≥ C(WY |X),

Er(R,WY |X) = 0. Since Er(R,WY |X) is convex, then −Er(R,WY |X) is concave. Let

Tr(ρ,WY |X) be the concave transform of −Er(R,WY |X), i.e.,

Tr(ρ,WY |X) , inf
R∈R

[ρR +Er(R,WY |X)]. (4.4)

It follows from the properties of Er(R,WY |X) noted above that Tr(ρ,WY |X) = −∞ for

ρ < 0 and ρ > 1 and that Tr(ρ,WY |X) is finite for ρ ∈ [0, 1].

Lemma 4.2 The function Tr(ρ,WY |X) defined by (4.4) is the concave hull on the inter-

val [0, 1] of the channel function Eo(ρ,WY |X) defined in (2.19). Thus, Eo(ρ,WY |X) ≤

Tr(ρ,WY |X) for 0 ≤ ρ ≤ 1.

Proof : We form the concave transform of Eo(R,WY |X) on the interval [0, 1] to get

(
Eo(ρ,WY |X)

)
∗

= inf
0≤ρ≤1

[ρR− Eo(ρ,WY |X)] = − sup
0≤ρ≤1

[Eo(ρ,WY |X) − ρR].

Now use, in succession, (2.19), (2.16), and (2.18) to get

(
Eo(ρ,WY |X)

)
∗

= − sup
0≤ρ≤1

max
PX

[Eo(ρ, PX ,WY |X) − ρR]

= −max
PX

sup
0≤ρ≤1

[Eo(ρ, PX ,WY |X) − ρR]

= −max
PX

Er(R,PX ,WY |X)

= −Er(R,WY |X).

Since Tr(ρ,WY |X) is the concave transform of the concave function, −Er(R,WY |X), we have

that

(
−Er(R,WY |X)

)
∗

= Tr(ρ,WY |X) and so
(
Eo(ρ,WY |X)

)
∗∗

= Tr(ρ,WY |X).

Hence, Tr(ρ,WY |X) is the concave hull on [0, 1] of Eo(ρ,R). �

Similarly to the above, recall that Esp(R,WY |X), defined in (2.26) is convex, zero for

R ≥ C(WY |X), positive for R < C(WY |X), and finite if R > R∞(WY |X) [32, 42], where

R∞(WY |X) is given by

R∞(WY |X) , lim
ρ→∞

Eo(ρ,WY |X)

ρ
. (4.5)
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A computable expression for R∞(WY |X) is given in [42, p. 158]. The normal situation is

R∞(WY |X) = 0. (As shown by Gallager, R∞(WY |X) = 0 unless each channel output symbol

is unreachable from at least one input. In the latter case, R∞(WY |X) > 0.) We now let

Tsp(ρ,WY |X) be the concave transform of the concave function −Esp(R,WY |X), i.e.,

Tsp(ρ,WY |X) , inf
R∞(WY |X)<R<∞

[ρR+ Esp(R,WY |X)]. (4.6)

It follows that Tsp(ρ,WY |X) = −∞ for ρ < 0 and that 0 ≤ Tsp(ρ,WY |X) <∞ for ρ ≥ 0.

Lemma 4.3 The function Tsp(ρ,WY |X) defined by (4.6) is the concave hull on [0,∞) of

the channel function Eo(ρ,WY |X) defined in (2.19).

Proof : We now form the concave transform of Eo(ρ,WY |X) on the interval [0,∞) to get

(
Eo(ρ,WY |X)

)
∗

= inf
0≤ρ<∞

[ρR− Eo(ρ,WY |X)] = − sup
0≤ρ<∞

[Eo(ρ,WY |X) − ρR].

Now use (2.19), (2.28), and (2.29) to get

(
Eo(ρ,WY |X)

)
∗

= − sup
0≤ρ<∞

max
PX

[Ẽ0(ρ, PX ,WY |X) − ρR]

= −max
PX

sup
0≤ρ<∞

[Ẽ0(ρ, PX ,WY |X) − ρR]

= −max
PX

Ẽsp(R,PX ,WY |X)

= −Esp(R,WY |X).

As in the previous proof,
(
Eo(ρ,WY |X)

)
∗∗

= Tsp(ρ,WY |X). Hence, Tsp(ρ,WY |X) is the

concave hull on [0,∞) of Eo(ρ,R). �

Observation 4.1 Note that the function Eo(ρ, PX ,WY |X) is concave in ρ for each PX [42,

p. 142]. Hence, if the maximizing PX in (2.19) is independent of ρ, Eo(ρ,WY |X) is concave

and thus Tr(ρ,WY |X) and Tsp(ρ,WY |X) are equal to Eo(ρ,WY |X). This situation holds if

the channel is symmetric in the sense of Gallager [42, p. 94] (also see Example 5.3.3). For

this case, the maximizing distribution is the uniform distribution PX(x) = 1/|X | for all

x ∈ X . However, there are channels for which Eo(ρ,WY |X) is not concave. One example

of such a channel is provided by Gallager [42, Fig. 5.6.5]. For this particular (6-ary input,
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4-ary output) channel, we plot Eo(ρ,WY |X) against ρ in Fig. 4.1. It is noted that the

derivative of Eo(ρ,WY |X) has a positive jump increase at around ρ = 0.51 (see [42, Fig.

5.6.5]), and its concave hull Tr(ρ,WY |X) is strictly larger than Eo(ρ,WY |X) in the interval

ρ ∈ (0.41, 0.62).
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Figure 4.1: Example of a 6-ary input, 4-ary output DMC (see [42, Fig. 5.6.5]) for which

Eo(ρ,WY |X) is not concave.

We next prove another two pairs of Fenchel transforms for the memoryless Gaussian

system, which will be used in Chapter 8.

Given ρ ≥ 0, for the continuous memoryless source QS , S = R, define source function

E(QS ,∆, ρ) , sup
PS

[ρR(PS ,∆) −D(PS ‖ QS)], (4.7)

where the supremum is taken over all the probability distributions PS ’s defined on S such

that R(PS ,∆) and D(PS ‖ QS) are well-defined and finite. We remark that (4.7) is equal to

the guessing exponent for MGS’s [6] under the squared-error distortion measure and admits
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an explicit form

E(QS ,∆, ρ) = max

{
0,

1

2

[
ρ ln

σ2
S

∆
+ (1 + ρ) ln(1 + ρ) − ρ

]}
. (4.8)

Lemma 4.4 E(QS ,∆, ρ) and the MGS exponent FG(R,QS ,∆) defined by (2.46) and (2.47)

are a pair of convex Fenchel transforms ρ ≥ 0 and R ≥ 0, i.e.,

E(QS ,∆, ρ) = FG(R,QS ,∆)∗ for all ρ ≥ 0

and

FG(R,QS ,∆) = E(QS ,∆, ρ)
∗ for all R ≥ 0.

Proof: By definition,

FG(R,QS ,∆)∗ = sup
R≥0

[ρR− F (R,QS ,∆)] = sup
R≥R(QS ,∆)

f(R)

where

f(R) = ρR− 1

2

(
∆e2R

σ2
S

− ln
∆e2R

σ2
S

− 1

)
.

Since

∂f(R)

∂R
= 1 + ρ− ∆e2R

σ2
S

,

it is seen that f(R) is concave and

sup
R≥R(QS ,∆)

f(R) = f

(
1

2
ln
σ2
S(1 + ρ)

∆

)
=

1

2

[
ρ ln

σ2
S

∆
+ (1 + ρ) ln(1 + ρ) − ρ

]
> 0

if ∆
σ2

S

≤ 1 + ρ, and f(R) is concave decreasing with

sup
R≥R(QS ,∆)

f(R) = sup
R≥0

f(R) = f(0) = 0 >
1

2

[
ρ ln

σ2
S

∆
+ (1 + ρ) ln(1 + ρ) − ρ

]

if ∆
σ2

S

> 1+ρ, which implies that E(QS ,∆, ρ) is the convex Fenchel transform of FG(R,QS ,∆),

i.e.,

FG(R,QS ,∆)∗ = E(QS ,∆, ρ) = max

{
0,

1

2

[
ρ ln

σ2
S

∆
+ (1 + ρ) ln(1 + ρ) − ρ

]}
.

Finally, FG(R,QS ,∆) is also the convex Fenchel transform of E(QS ,∆, ρ) since FG(R,QS ,∆)

is convex. �
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Lemma 4.5 The negative MGC sphere-packing exponent −Esp(R,WY |X , E) given in (2.51)

and the Gaussian input Gaussian-input channel function Ẽo(WY |X , E , ρ) given in (2.54) are

a pair of concave Fenchel transforms for ρ ≥ 0 and R > 0, i.e.,

−Esp(R,WY |X , E) = Ẽ0(WY |X , E , ρ)∗ for all R > 0

and

Ẽ0(WY |X , E , ρ) = (−Esp(R,WY |X , E))∗ for all ρ ≥ 0.

Proof: Note that

Esp(R,W, E) = max
ρ≥0

[−ρR+ Ẽ0(W, E , ρ)] = − inf
ρ≥0

[ρR− Ẽ0(W, E , ρ)],

which implies that −Esp(R,W, E) is the concave transform of Ẽ0(W, E , ρ) on

{R : −Esp(R,W, E) > −∞} = R
+.

Thus, the transform

(−Esp(R,W, E))∗ = inf
R∈R+

[ρR+ Esp(R,W, E)]

is the concave hull of Ẽ0(W, E , ρ) in ρ ∈ [0,∞). We next show (−Esp(R,W, E))∗ =

Ẽ0(W, E , ρ) by definition. Now if we set

∂

∂R
[ρR+ Esp(R,W, E)] = 0,

we have (refer to Lemma 2.1)

√
1 +

4β

SNR(β − 1)
=

2β

SNR
(1 + ρ) − 1, (4.9)

where β = e2R. Substituting (4.9) back into (−Esp(R,W, E))∗ and using (2.51) yield

(−Esp(R,W, E))∗ =
1

2

[
ρ lnβ∗ + (1 − β∗)(1 + ρ) + SNR + ln

(
β∗ − SNR

1 + ρ

)]
, (4.10)

where β∗ is determined by (4.9), which can be equivalently written by

−(1 + ρ) +
1 + ρ

β(1 + ρ) − SNR
+
ρ

β
= 0, (4.11)
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subject to β > SNR/(1+ ρ) according to (4.10). In this range the left-hand side of (4.11) is

decreasing in β and ranges from +∞ to the negative number −(1 + ρ), which means there

is a unique β∗ satisfying (4.11). Solving the function (4.11) for the stationary point β∗ we

obtain

β∗ =
1

2

(
1 +

SNR

1 + ρ

)[
1 +

√
1 − 4SNRρ

(1 + ρ+ SNR)2

]
. (4.12)

On the other hand, we can replace

β̂ = 1 − 2rE +
SNR

1 + ρ

in the expression of Ẽo(W, E , ρ) given by (2.54) and obtain

Ẽo(W, E , ρ) = max
SNR
1+ρ

<bβ<1+SNR
1+ρ

1

2

[
ρ ln β̂ + (1 − β̂)(1 + ρ) + SNR + ln

(
β̂ − SNR

1 + ρ

)]
.

Maximizing the above over β̂ (see [42, p. 339] for details), we see that Ẽo(W, E , ρ) has the

same parametric form as (4.10), which implies

(−Esp(R,W, E))∗ = Ẽo(W, E , ρ),

and hence Ẽo(W, E , ρ) is the concave transform of −Esp(R,W, E). �

Lemma 4.6 The negative Gaussian input random-coding exponent −E†(R,WY |X , E) given

in (2.56) and Ẽo(WY |X , E , ρ) are a pair of concave Fenchel transforms for 0 ≤ ρ ≤ 1 and

R ≥ 0, i.e.,

−E†(R,WY |X , E) = Ẽ0(WY |X , E , ρ)∗ for all R > 0

and

Ẽ0(WY |X , E , ρ) = (−E†(R,WY |X , E))∗ for all 0 ≤ ρ ≤ 1.

Proof: Recall that by Gallager [42, Chapter 7]

E†(R,W, E) = max
0≤ρ≤1

[−ρR+ Ẽ0(W, E , ρ)] = − inf
0≤ρ≤1

[ρR− Ẽ0(W, E , ρ)],

which means that −E†(R,W, E) is the concave transform of Ẽ0(W, E , ρ) on

{R : −E†(R,W, E) > −∞} = R
+.
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Thus, the transform

(−E†(R,W, E))∗ = inf
R∈R+

[ρR+ E†(R,W, E)]

is the concave hull of Ẽ0(W, E , ρ) in ρ ∈ [0, 1]. Lemma 4.5 implies that Ẽ0(W, E , ρ) is concave

in [0,∞). Thus we have (−E†(R,W, E))∗ = Ẽ0(W, E , ρ) for all ρ ∈ [0, 1]. �

We close this section by summarizing these Fenchel transform pairs in the following

table.

System Conjugacy Source/Channel Exponents Source/Channel Functions

DMS Convex e(R,QS) Es(ρ,QS)

MGS Convex FG(R,QS ,∆) E(QS ,∆, ρ)

DMC Concave −Er(R,WY |X) Tr(ρ,WY |X)

DMC Concave −Esp(R,WY |X) Tsp(ρ,WY |X)

MGC Concave −E†(R,W, E) Ẽ0(WY |X , E , ρ)

MGC Concave −Esp(R,WY |X) Ẽ0(WY |X , E , ρ)

Table 4.1: Useful Fenchel transform pairs.

4.3 Concluding Remarks

In this chapter, we introduced one-dimensional conjugate convex and concave functions and

the Fenchel duality theorem. Note that similar results can be easily carried out for vector

functions; readers may refer to [17], [65], [79]. Consequently, we applied these properties

of conjugacy to the source and channel reliability functions introduced in Chapter 2. The

Fenchel transforms of these functions are summarized in Table 4.1.



Chapter 5

JSCC Reliability Function for

Discrete Memoryless Systems

In this chapter, we study the JSCC reliability function for discrete memoryless systems. In

particular, we investigate the computation of Csiszár’s bounds for the JSCC error exponent,

EJ , of a communication system consisting of a DMS QS and a DMC WY |X .

We first formally describe the system and define the JSCC error exponent in Section 5.1.

In Section 5.2, we investigate the analytical computation of Csiszár’s random-coding lower

bound and sphere-packing upper bound for the JSCC error exponent. By applying the

Fenchel duality theorem introduced in the last chapter, we provide equivalent expressions

for these bounds which involve a maximization over a non-negative parameter of the differ-

ence between the concave hull of Gallager’s channel function and Gallager’s source function;

hence, they can be readily computed for arbitrary source-channel pairs by applying Ari-

moto’s algorithm [9]. When the channel’s distribution is symmetric, our bounds admit

closed-form parametric expressions.

In Section 5.3, we provide formulas of the rates for which the bounds are attained and

establish explicit computable sufficient and necessary conditions in terms of QS and WY |X

under which the upper and lower bounds coincide; in this case, EJ can be determined

exactly. A byproduct of our results is the observation that Csiszár’s JSCC random-coding

66
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lower bound can be larger than Gallager’s earlier lower bound obtained in [42]. Using a

similar approach, we obtain in Section 5.4 the equivalent expression of Csiszár’s expurgated

lower bound [31] and establish the condition when the random-coding lower bound can

be improved by the expurgated bound. As an example, we give closed-form parametric

expressions of the improved lower bound and the corresponding condition for DMSs and

equidistant DMCs.

In Section 5.5, we partially address the computation of Csiszár’s lower and upper bounds

for the (lossy) JSCC excess distortion exponent with distortion threshold ∆, E∆
J . Under

the case of the Hamming distortion measure, and for a binary DMS and an arbitrary DMC,

we express the bounds for E∆
J and the rates for which the bounds are attained as in the

lossless case. Finally, we state our conclusions in Section 5.6.

5.1 Definitions and System Description

5.1.1 JSCC System and JSCC Error Exponent

We consider throughout this chapter a communication system consisting of a DMS QS

with finite alphabet S and distribution QS , and a DMC WY |X with finite input alphabet

X , finite output alphabet Y, and transition probability WY |X . Without loss of generality

we assume that QS(s) > 0 for each s ∈ S. Also, if the source distribution is uniform,

optimal (lossless) JSCC amounts to optimal channel coding which is already well-studied.

Therefore, we assume throughout this chapter that QS is not the uniform distribution on

S except in Section 5.5 where we deal with JSCC under a fidelity criterion.

s ∈ Sτn - fn
x ∈ X n

- WY |X -y ∈ Yn
ϕn -ŝ ∈ Sτn

Figure 5.1: JSCC system consisting of a DMS and a DMC.

A joint source-channel (JSC) code with blocklength n and transmission rate τ > 0
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(measured in source symbols/channel use) is a pair of mappings

fn : Sτn −→ X n

and

ϕn : Yn −→ Sτn.

That is, blocks s , (s1, s2, ..., sτn) of source symbols of length τn are encoded as blocks

x , (x1, x2, ..., xn) = fn(s) of symbols from X of length n, transmitted, received as blocks

y , (y1, y2, ..., yn) of symbols from Y of length n and decoded as blocks of source symbols

ϕn(y) of length τn; see Fig. 5.1. The probability of erroneously decoding the block is

P (n)
e (QS ,WY |X , τ) ,

∑

{(s,y):ϕn(y)6=s}

Q
(τn)
S (s)W

(n)
Y |X (y|fn(s)) . (5.1)

Definition 5.1 The JSCC error exponent EJ(QS ,WY |X , τ) is defined as the supremum

of the set of all numbers E for which there exists a sequence of JSC codes (fn, ϕn) with

transmission rate τ and blocklength n such that

E ≤ lim inf
n→∞

− 1

n
log2 P

(n)
e (QS ,WY |X , τ).

When there is no possibility of confusion, EJ(QS ,WY |X , τ) will be written as EJ . We know

from the JSCC theorem (e.g., [29, p. 218], [42]) that EJ can be positive if and only if

τHQS
(S) < C(WY |X).

5.1.2 Tilted Distributions

We associate with the source distribution QS a family of tilted distributions Q
(ρ)
S defined

by

Q
(ρ)
S (s) ,

Q
1

1+ρ

S (s)
∑

s′∈S Q
1

1+ρ

S (s′)

, s ∈ S, ρ ≥ 0. (5.2)

Lemma 5.1 [32, p. 44] The entropy H
Q

(ρ)
S

(S) is a strictly increasing function of ρ except

in the case that QS(s) = 1/|S| for all s ∈ S . Moreover, for HQS
(S) ≤ R ≤ log2 |S|,

the equation H
Q

(ρ)
S

(S) = R is satisfied by a unique value ρ∗ (where we define ρ∗ , ∞ if

R = log2 |S| and define H
Q

(∞)
S

(S) , log2 |S|).
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The proof thatH
Q

(ρ)
S

(S) is increasing follows easily from differentiation with respect to ρ and

a use of the Cauchy-Schwarz inequality. The remainder of the proof follows from the facts

that H
Q

(0)
S

(S) = HQS
(S), limρ→∞H

Q
(ρ)
S

(S) = log2 |S| and that H
Q

(ρ)
S

(S) is a continuous

function of ρ.

It is easily seen that

H
Q

(ρ)
S

(S) =
∂Es(ρ,QS)

∂ρ
, (5.3)

where Es(ρ,Q) is defined by (2.7). From this we see that for R ≥ HQS
(S) the supremum

in (2.6) is achieved at ρ∗.

5.2 Csiszár’s Random-Coding and Sphere-Packing Bounds

In [30], Csiszár establishes a lower and an upper bound for the JSCC error exponent EJ in

terms of the source and channel error exponents. Given a DMS QS, a DMC WY |X , and the

transmission rate τ (source symbol/channel use), he proved that the JSCC error exponent

in definition 5.1 satisfies

EJr(QS ,WY |X , τ) ≤ EJ(QS ,WY |X , τ) ≤ inf
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ E(R,WY |X)

]
,

(5.4)

where e(R,QS) is the source error exponent, E(R,WY |X) is the channel error exponent,

and

EJr(QS ,WY |X , τ) , min
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Er(R,WY |X)

]
(5.5)

is called Csiszár’s source-channel random-coding lower bound since it contains Er(R,WY |X)

in its expression. It is shown that if the zero-error capacity1 of the channel WY |X is positive,

i.e., if E(R,WY |X) = ∞ for some R positive, then the upper bound given by (5.4) is tight.

The proof of the upper bound in (5.4) follows from a simple type counting argument. We will

recast the proof in Observation 6.1. The lower bound is proved by employing a generalized

minimum mutual information decoding rule. We will recast the proof for EJr(QS ,WY |X , τ)

in Observation 6.2.

1The zero-error capacity C0(WY |X) is defined by C0(WY |X) , sup{R : E(R,WY |X) = ∞}.
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Note that the channel error exponent is only partially known, and hence the upper

bound in (5.4), although looking elegant, is uncomputable in general. We then further

upper bound it by replacing the channel error exponent E(R,WY |X) by the sphere-packing

upper bound, i.e.,

EJ(QS ,WY |X , τ) ≤ inf
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ E(R,WY |X)

]
≤ EJsp(QS ,WY |X , τ)

where

EJsp(QS ,WY |X , τ) , inf
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+Esp(R,WY |X)

]
(5.6)

is called Csiszár’s source-channel sphere-packing upper bound. In the following we address

the computation of the lower and upper bounds EJr(QS ,WY |X , τ) and EJsp(QS ,WY |X , τ).

Applying Fenchel duality theorem, these bounds EJr and EJsp can be expressed in a

form more adapted to calculation as follows.

Theorem 5.1 Let τHQS
(S) < C(WY |X) and let τ log2 |S| > R∞(WY |X). Then

EJr(QS ,WY |X , τ) = max
0≤ρ≤1

[Tr(ρ,WY |X) − τEs(ρ,QS)] (5.7)

and

EJsp(QS ,WY |X , τ) = max
0≤ρ<∞

[Tsp(ρ,WY |X) − τEs(ρ,QS)] (5.8)

where Tr(ρ,WY |X) and Tsp(ρ,WY |X) are the concave hulls of Eo(ρ,WY |X) on [0, 1] and

[0,∞) defined in (4.4) and (4.6), respectively, and R∞ is defined in (4.5). If the maxi-

mizing PX in (2.19) is independent of ρ, Tr(ρ,WY |X) and Tsp(ρ,WY |X) can be replaced by

Eo(ρ,WY |X).

Remark 5.1 When τHQS
(S) ≥ C(WY |X), EJr(QS ,WY |X , τ) = EJsp(QS ,WY |X , τ) = 0.

Observation 5.1 According to Lemma 4.2, Eo(ρ,WY |X) ≤ Tr(ρ,WY |X). Thus the lower

bound EJr(QS ,WY |X , τ) can be replaced by the possibly looser lower bound

max
0≤ρ≤1

[Eo(ρ,WY |X) − τEs(ρ,QS)]. (5.9)
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This is the lower bound implied by Gallager’s work [42, p. 535]. As noted earlier, if the

maximizing PX in (2.19) is independent of ρ (e.g., for symmetric channels, see Section 5.3.3),

the two lower bounds are identical.

Proof of Theorem 5.1: We first apply Fenchel’s Duality Theorem (4.1) to the lower

bound EJr(QS ,WY |X , t). From Lemma 4.1, (2.6), and (2.5), τe(R/τ,QS) is convex on

(−∞, τ log |S|] and has convex transform τEs(ρ,QS) on the set [0,∞). Also, from the

discussion preceding Lemma 4.2, −Er(R,WY |X) is concave on R and has concave transform

Tr(ρ,WY |X) which is bounded on [0, 1]. Thus, by Fenchel’s Duality Theorem,

inf
−∞≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Er(R,WY |X)

]
= max

0≤ρ≤1
[Tr(ρ,WY |X) − τEs(ρ,QS)]. (5.10)

Now the convex function τe(R/τ,QS) + Er(R,WY |X) is non-increasing for R ≤ τHQS
(S)

since τe(R/τ,QS) = 0 in this region. This implies that the infimum on the left side of

(5.10) can be restricted to the interval τHQS
(S) ≤ R ≤ τ log2 |S|. Since this is now the

infimum of a continuous function on a finite interval this will be a minimum. Hence, (5.7)

is an equivalent representation of EJr(QS ,WY |X , τ).

Similarly, for the upper bound, recall from the discussion preceding Lemma 4.3 that

−Esp(R,WY |X) is concave and finite for R > R∞(WY |X) and has a concave transform

Tsp(ρ,WY |X), which is finite on 0 ≤ ρ <∞. Thus, by Fenchel’s Duality Theorem,

inf
R∞(WY |X)<R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Esp(R,WY |X)

]
= max

0≤ρ<∞
[Tsp(ρ,WY |X) − τEs(ρ,QS)].

(5.11)

The assumption R∞(WY |X) < τ log2 |S| ensures that the infimum on the left of (5.11)

is taken over a set with interior points. If R∞(WY |X) < τHQS
(S), the infimum can be

replaced by a minimum on the interval τHQS
(S) ≤ R ≤ τ log2 |S| by the same argument

as for the lower bound. If R∞(WY |X) ≥ τHQS
(S), we no longer form the infimum of a

continuous function, but it can still be shown that there is a minimum point which lies in

the interval τHQS
(S) ≤ R ≤ τ log2 |S|. Hence, (5.11) is an equivalent representation of

EJsp(QS ,WY |X , τ). �
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Observation 5.2 The parametric form of the lower and upper bounds (5.7) and (5.8)

indeed facilitates the computation of Csiszár’s bounds. In order to compute the bounds

for general non-symmetric channels (when τHQS
(S) < C(WY |X) and τ log2 |S| > R∞),

one could employ Arimoto’s algorithm [9] to find the maximizing distribution and thus

Eo(ρ,WY |X). We then can immediately obtain the concave hulls Tr(ρ,WY |X) and Tsp(ρ,WY |X)

numerically (e.g., using Matlab) and thus the maxima of Tr(ρ,WY |X) − τEs(ρ,QS) and

Tsp(ρ,WY |X) − τEs(ρ,QS). This significantly reduces the computation complexity since

to compute (5.5) and (5.6), we need to first compute Er(R,WY |X) and Esp(R,WY |X) for

each R, which requires almost the same complexity as above, and then we need to find the

minima by searching over all R’s. For symmetric channels, (5.7) and (5.8) are analytically

solved; see Section 5.3.3.
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Figure 5.2: Csiszár’s random-coding and sphere-packing bounds for the system of Exam-

ple 5.1.
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Example 5.1 Consider a communication system with a binary DMS with distribution

QS = {q, 1 − q} and a DMC with |X | = 6, |Y| = 4, and transition probability matrix

WY |X =




1 − 18ε 6ε 6ε 6ε

6ε 1 − 18ε 6ε 6ε

6ε 6ε 1 − 18ε 6ε

6ε 6ε 6ε 1 − 18ε

0.5 − ε 0.5 − ε ε ε

ε ε 0.5 − ε 0.5 − ε




, 0 ≤ ε ≤ 1

18
.

We then compute Csiszár’s random-coding and sphere-packing bounds,EJr(QS ,WY |X , τ)

and EJsp(QS ,WY |X , τ). For fixedQS and transmission rate τ , we plot these bounds in terms

of ε in Fig. 5.2. Our numerical results show that EJ could be determined exactly for a

large class of (q, ε, τ) triplets: when source QS = {0.1, 0.9} and rate τ = 0.75, EJ is

exactly known for ε ≥ 0.0025; when QS = {0.1, 0.9} and τ = 1, EJ is known for ε ≥ 0.002;

and when QS = {0.2, 0.8} and τ = 1.25, EJ is known for ε ≥ 0.001. Since for this chan-

nel Eo(ρ,WY |X) might not be concave (e.g., when ε = 0.01, WY |X reduces to the DMC

discussed in Observation 4.1 at the end of Section 4.2), our results indicate that Csiszár’s

lower bound is slightly but strictly larger (by ≈ 0.0001) than Gallager’s lower bound (5.9)

for q = 0.1, τ = 1, and ε around 0.02. This is illustrated in Fig. 5.3.

5.3 Tightness of the Upper and Lower Bounds

One important objective in investigating the bounds for the JSCC error exponent EJ is

to ascertain when the bounds EJr(QS ,WY |X , τ) and EJsp(QS ,WY |X , τ) are tight so that

the exact value of EJ is obtained. According to Csiszár’s result (5.4), we note that if

the minimum in the expressions of EJr(QS ,WY |X , τ) or EJsp(QS ,WY |X , τ) is attained for

a rate (strictly) larger than the critical rate Rcr(WY |X), then the two bounds coincide

and thus EJ is determined exactly. This raises the following question: how can we check

whether the minimum in EJr(QS ,WY |X , τ) or EJsp(QS ,WY |X , τ) is attained for a rate
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Figure 5.3: Csiszár’s random-coding bound vs Gallager’s lower bound for the system of

Example 5.1.

larger than Rcr(WY |X)? One may indeed wonder if there exist explicit conditions for which

EJr(QS ,WY |X , τ) = EJsp(QS ,WY |X , τ). The answer is affirmative; furthermore, we can

verify whether the two bounds are tight in two ways: one is to compare τH
Q

(1)
S

(S) with

Rcr(WY |X), and the other is to compare the minimizer of EJsp(QS ,WY |X , τ) in (5.8), ρ∗

say, with 1.

5.3.1 A Sufficient and Necessary Condition

Before we present these conditions, we first define the following quantities which achieve

the bounds EJr(QS ,WY |X , τ) and EJsp(QS ,WY |X , τ) under the assumptions τHQS
(S) <

C(WY |X) and τ log2 |S| > R∞(WY |X):

Rm , arg min
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Er(R,WY |X)

]
, (5.12)
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Rm , arg min
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Esp(R,WY |X)

]
, (5.13)

ρ∗ , arg max
0≤ρ≤1

[Tr(ρ,WY |X) − τEs(ρ,QS)], (5.14)

ρ∗ , arg max
0≤ρ<∞

[Tsp(ρ,WY |X) − τEs(ρ,QS)]. (5.15)

Since the functions between brackets to be minimized (or maximized) in (5.12)-(5.15) are

strictly convex (or concave) functions of R (or ρ), Rm, Rm, ρ∗ and ρ∗ are well-defined and

unique. We then have the following relations.

Lemma 5.2 Let τHQS
(S) < C(WY |X) and let τ log2 |S| > R∞(WY |X). Then:

(a) ρ∗ and ρ∗ are positive and finite.

(b) Rm = τH
Q

(ρ∗)
S

(S).

(c) Rm = τH
Q

(ρ∗)

S

(S) if ρ∗ < 1; Rm ≥ τH
Q

(1)
S

(S) if ρ∗ = 1.

Proof : We first prove (a). Since Tsp(ρ,WY |X) is the concave hull of Eo(ρ,WY |X), we have

the following relation

lim
ρ↓0

Tsp(ρ,WY |X)

ρ
≥ lim

ρ↓0

E0(ρ,WY |X)

ρ
= C(WY |X)

where the last equality follows from [8, Lemma 2]. Since limρ↓0Es(ρ,QS)/ρ = H(QS) by

(5.3) and Lemma 5.1, we have

lim
ρ↓0

Tsp(ρ,WY |X) − τEs(ρ,QS)

ρ
≥ C(WY |X) − τHQS

(S) > 0.

Note that the right-derivative of Tsp(ρ,WY |X) (at ρ = 0) must exist due to its concavity [80,

pp. 113–114], and hence limρ↓0 Tsp(ρ,WY |X)/ρ exists. Next we denote ε = τ log2 |S| −

R∞(WY |X) > 0. It follows from the definition of Tsp(ρ,WY |X) that

lim
ρ→∞

Tsp(ρ,WY |X)

ρ
≤ lim

ρ→∞

ρ(R∞(WY |X) + ε/2) + Esp(R∞(WY |X) + ε/2,WY |X)

ρ

= R∞(WY |X) + ε/2

because of the finiteness of Esp(R,WY |X) for R > R∞(WY |X). This together with

lim
ρ→∞

Es(ρ,QS)

ρ
= log2 |S|
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implies

lim
ρ→∞

Tsp(ρ,WY |X) − τEs(ρ,QS)

ρ
≤ R∞(WY |X) + ε/2 − τ log2 |S| < 0.

Since Tsp(ρ,WY |X)− τEs(ρ,QS) is 0 and has a positive right slope at ρ = 0 and is negative

for ρ sufficiently large, by the strict concavity of Tsp(ρ,WY |X)− τEs(ρ,QS), the maximum

in (5.15) must be achieved by a positive finite ρ∗. The positivity of ρ∗ can be shown in the

same way and ρ∗ is finite by its definition.

We next prove (b). If we now regard τe(R/τ,QS) as f∗(y) and τEs(ρ,QS) as f(x) (by

noting that f∗∗ = f), then according to (4.2) in Fenchel’s Duality Theorem,

max
0≤ρ<∞

[ρRm − τEs(ρ,QS)] = ρ∗Rm − τEs(ρ
∗, QS).

Setting the derivative of ρRm−τEs(ρ,QS) equal to 0, we can solve for the stationary point2

ρ∗, which gives Rm = τH
Q

(ρ∗)
S

(S).

For the lower bound, using a similar argument, we obtain the relation

max
0≤ρ≤1

[ρRm − τEs(ρ,QS)] = ρ∗Rm − τEs(ρ
∗, QS).

Recalling that the function between the brackets to be maximized is strictly concave, if

the above maximum is achieved by ρ∗ ∈ (0, 1), then we can solve for the stationary point

as above and obtain Rm = τH
Q

(ρ∗)

S

(S). If the maximum is achieved at ρ∗ = 1, then the

stationary point is beyond (at least equal to) 1, and hence Rm ≥ τH
Q

(1)
S

(S). Thus (c)

follows. �

In order to summarize the explicit conditions for the calculation of EJ it is convenient

to define a critical rate for the source by

R(s)
cr (QS) ,

∂Es(ρ,QS)

∂ρ

∣∣∣∣
ρ=1

= H
Q

(1)
S

(S), (5.16)

recalling that Q
(1)
S (s) =

√
QS(s)/(

∑
s′∈S

√
QS(s′)), s ∈ S.

Theorem 5.2 Let τHQS
(S) < C(WY |X) and let τ log2 |S| > R∞(WY |X). Then

2The stationary points of a differentiable function f(x) are the solutions of f ′(x) = 0.
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• τR
(s)
cr (QS) ≥ Rcr(WY |X) ⇐⇒ ρ∗ ≤ 1 ⇐⇒ τR

(s)
cr (QS) ≥ Rm = Rm ≥ Rcr(WY |X). In

this case,

EJ(QS ,WY |X , τ) = Tsp(ρ
∗,WY |X) − τEs(ρ

∗, QS).

• τR
(s)
cr (QS) < Rcr(WY |X) ⇐⇒ ρ∗ > 1 ⇐⇒ Rcr(WY |X) ≥ Rm > Rm = τR

(s)
cr (QS). In

this case,

Eo(1,WY |X) − τEs(1, QS) ≤ EJ(QS ,WY |X , τ) ≤ Tsp(ρ
∗,WY |X) − τEs(ρ

∗, QS).

Remark 5.2 Under the condition τR
(s)
cr (QS) > Rcr(WY |X), ρ∗ = 1 is possible. However,

if τR
(s)
cr (QS) = Rcr(WY |X), then we definitely have ρ∗ = 1 and τR

(s)
cr (QS) = Rm = Rm =

Rcr(WY |X).

Remark 5.3 It can be shown that Tsp(1,WY |X) = Eo(1,WY |X) and thus when ρ∗ = 1, the

JSCC error exponent is determined by

EJ(QS ,WY |X , t) = Eo(1,WY |X) − τEs(1, QS).

Corollary 5.1 Let τHQS
(S) < C(WY |X) and let τ log2 |S| > R∞(WY |X). Then ρ∗ =

min{1, ρ∗} and Rm = τH
Q

(ρ∗)

S

(S).

The proof of Theorem 5.2 and Corollary 5.1 is deferred to the next subsection.

Corollary 5.2 If Rm ≥ Rcr(WY |X) or Rm > Rcr(WY |X), then τR
(s)
cr (QS) ≥ Rm = Rm ≥

Rcr(WY |X), and the other equivalent conditions in Theorem 5.2 hold.

Proof : If Rm ≥ Rcr(WY |X) or Rm > Rcr(WY |X), then Rm = Rm by Lemma 5.4.

τR
(s)
cr (QS) ≥ Rm immediately follows from Corollary 5.1. �

Remark 5.4 Corollary 5.2 states that if Rm ≥ Rcr(WY |X) or Rm > Rcr(WY |X), then EJ

is determined exactly. Note that when Rm = Rcr(WY |X), the upper and lower bounds of EJ

may not be tight. In that case Rm < Rcr(WY |X) = Rm is possible. The relation between

Rm and Rm is summarized in Lemma 5.4.
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We point out that, in both the computation and analysis aspects, the above conditions

play an important role in verifying whether EJ can be determined exactly or not. For

the class of symmetric DMCs, we can use the conditions τR
(s)
cr (QS) ≥ Rcr(WY |X) and

τR
(s)
cr (QS) < Rcr(WY |X) to derive explicit formulas for EJ , see Section 5.3.3. In Section 10.2,

we apply Theorem 5.2 to establish the conditions for which the JSCC exponent is larger than

the tandem coding exponent. Note that when τR
(s)
cr (QS) ≤ Rcr(WY |X), the source-channel

random-coding bound admits a simple expression

Er(QS ,WY |X , t) = Eo(1,WY |X) − τEs(1, QS). (5.17)

Consequently, we have the following statement.

Corollary 5.3 If τR
(s)
cr (QS) ≤ Rcr(WY |X), then Csiszár’s random-coding bound and Gal-

lager’s lower bound (5.9) are identical.

Proof : Recall Gallager’s lower bound to EJ given by (5.9)

max
0≤ρ≤1

[Eo(ρ,WY |X) − tEs(ρ,QS)] ≥ Eo(1,WY |X) − tEs(1, QS).

Since in general Gallager’s lower bound cannot be larger than Csiszár’s random-coding

bound, they must be equal when τR
(s)
cr (QS) ≤ Rcr(WY |X). �

5.3.2 Proof of Theorem 5.2 and Corollary 5.1

Theorem 5.2 is shown by a left- and right- derivatives argument combined with the results of

Lemma 5.2. Let sl(R) and sr(R) be the left and right slopes (or left- and right- derivatives)

of Esp(R,WY |X) at each R > R∞(WY |X). Let rl(R) and rr(R) be the left and right

slopes of Er(R,WY |X) at each R ≥ 0. Let ρ(R) be the slope of τe(R/τ,QS) for any

R ∈ [τHQS
(S), τ log2 |S|]. It is easy to verify that these slopes have the following properties

(cf. [19], [42], [80]):

(a) sl(R) and sr(R) exist for every R > R∞(WY |X) and are nondecreasing in R.

(b) rl(R) and rr(R) exist for every R ≥ 0 and are nondecreasing in R.
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(c) sl(R) ≤ sr(R) < −1 for R < Rcr(WY |X), −1 ≤ sl(R) ≤ sr(R) ≤ 0 for Rcr(WY |X) <

R < C(WY |X), and sl(R) = sr(R) = 0 for R > C(WY |X). sl(Rcr(WY |X)) ≤ −1 ≤

sr(Rcr(WY |X)) and sl(C(WY |X)) ≤ 0 = sr(C(WY |X)).

(d) rl(R) = rr(R) = −1 for R < Rcr(WY |X), rl(R) = sl(R) for R > Rcr(WY |X), and

rr(R) = sr(R) for R ≥ Rcr(WY |X). rl(Rcr(WY |X)) = −1 ≤ rr(Rcr(WY |X)).

(e) ρ(R) is a strictly increasing function of R and is determined by R = tH
(
Q

(ρ(R))
S

)
for

τHQS
(S) ≤ R ≤ τ log2 |S|. Specifically, ρ(τHQS

(S)) = 0 and ρ(τ log2 |S|) = ∞.

(f) ρ∗ = ρ(Rm), where ρ∗ and Rm are defined in (5.13) and (5.15), respectively.

Proof of (a)–(f): (a) and (b) follows from the convexity of Esp(R,WY |X) for R >

R∞(WY |X) and Er(R,WY |X) for R ≥ 0, see [80, pp. 113–114]. Recalling that Er(R,WY |X)

involves a straight-line section with slope −1 for R ∈ [0, Rcr(WY |X)] and Er(R,WY |X) =

Esp(R,WY |X) only for R ≥ Rcr(WY |X), where they both are equal to 0 for R ≥ C(WY |X),

we obtain (c) and (d) from (a) and (b). From (2.5) and (5.3), we know that τe(R/τ,QS) =

tD
(
Q

(ρ∗)
S ‖ QS

)
for τHQS

(S) ≤ R ≤ τ log2 |S|, where ρ∗ is the unique root of τH
Q

(ρ)
S

(S) =

R. Also, it is easy to verify [19] that such ρ∗ is exactly the slope of τe(R/τ,QS) at R, i.e.,

∂τe(R/τ,QS)

∂R
= ρ∗.

Thus (e) follows. Recalling also that in Lemma 5.2 we have shown the relation Rm =

τH
Q

(ρ∗)
S

(S), since there is unique ρ satisfying this equation, we obtain (f). �

Based on the above setup, the following lemma illustrates the geometric conditions for

which EJr(QS ,WY |X , τ) and EJsp(QS ,WY |X , τ) are attained.

Lemma 5.3 Let τHQS
(S) < C(WY |X) and let R∞(WY |X) < τ log2 |S|. The minimum in

(5.6) is attained at Rm if and only if −sl(Rm) ≥ ρ(Rm) ≥ −sr(Rm), and the minimum in

(5.5) is attained at Rm if and only if −rl(Rm) ≥ ρ(Rm) ≥ −rr(Rm).

Proof :

1. Forward part: We only show the case for the upper bound EJsp(QS ,WY |X , τ), since
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the case for the lower bound can be shown in a similar manner. We first show that a

rate R1 ∈ [τHQS
(S), τ log2 |S|] satisfying −sl(R1) ≥ ρ(R1) ≥ −sr(R1) must achieve the

minimum in EJsp(QS ,WY |X , τ). Define functions

f1(R) ,





Esp(R,WY |X) if R ≤ R1,

Esp(R1,WY |X) − |sl(R1)|+|ρ(R1)|
2 (R −R1) if R ≥ R1.

and

g1(R) ,





τe
(
R
τ , QS

)
if R ≤ R1,

τe
(
R1
τ , QS

)
+ |ρ(R1)|+|sl(R1)|

2 (R −R1) if R ≥ R1.

Since −sl(R1) ≥ ρ(R1) implies sl(R1) ≤ −(|sl(R1)| + |ρ(R1)|)/2 and ρ(R1) ≤ (|ρ(R1)| +

|sl(R1)|)/2, we claim that f1(R) and g1(R) are both convex functions and hence their sum

is convex,

f1(R) + g1(R) =





τe
(
R
τ , QS

)
+ Esp(R,WY |X) if R ≤ R1,

τe
(
R1
τ , QS

)
+ Esp(R1,WY |X) if R ≥ R1.

Since the convex function f1(R) + g1(R) is constant for R ≥ R1 (noting that the convexity

is strict in the interval [τHQS
(S), R1]), we may write

min
τHQS

(S)≤R≤R1

[
τe

(
R

τ
,QS

)
+ Esp(R,WY |X)

]
= τe

(
R1

τ
,QS

)
+ Esp(R1,WY |X).

Similarly, using the relation ρ(R1) ≥ −sr(R1) we can construct convex functions

f2(R) ,





Esp(R,WY |X) if R ≥ R1,

Esp(R1,WY |X) + sr(R1)−ρ(R1)
2 (R−R1) if R ≤ R1.

and

g2(R) ,





τe
(
R
τ , QS

)
if R ≥ R1,

τe
(
R1
τ , QS

)
+ ρ(R1)−sr(R1)

2 (R−R1) if R ≤ R1,

and use them to show that the minimum

min
R1≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Esp(R,WY |X)

]
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is attained at R1. Thus, R1 is the minimizer of EJsp(QS ,WY |X , τ), i.e.,

min
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Esp(R,WY |X)

]
= τe

(
R1

τ
,QS

)
+ Esp(R1,WY |X).

2. Converse part: We assume Rm ∈ (R∞(WY |X), τ log2 |S|) achieves the minimum in

(5.6) but ρ(Rm) < −sr(Rm). Note that ρ(τ log2 |S|) = ∞ > −sr(τ log2 |S|) provided that

τ log2 |S| > R∞(WY |X). Now let R1 be the smallest rate in [R∞(WY |X), τ log2 |S|] satisfying

ρ(R1) ≥ −sr(R1). According to our assumption together with (a) and (e), R1 > Rm.

However, using our previous method, we can construct two convex functions f1(R) and

g1(R) associated with R1 to show

min
τHQS

(S)≤R≤R1

[
τe

(
R

τ
,QS

)
+ Esp(R,WY |X)

]
= τe

(
R1

τ
,QS

)
+ Esp(R1,WY |X).

This is clearly contradicted with the assumption that the minimum is attained at Rm, a

rate smaller than R1, since there is a unique minimum due to the strict convexity. Thus,

at Rm we must have ρ(Rm) ≥ −sr(Rm). Consequently, we can show in a similar manner

that ρ(Rm) ≤ −sl(Rm). �

The following facts immediately follow from Lemma 5.3.

Lemma 5.4 We have the following relations between Rm and Rm:

(1). If Rm > Rcr(WY |X) or Rm ≥ Rcr(WY |X), then Rm = Rm > Rcr(WY |X) and

EJsp(QS ,W, t) = EJr(QS ,W, t).

(2). If Rm = Rcr(WY |X), then Rm ≤ Rcr(WY |X).

(3). Rm ≥ Rm.

Proof : We first show (1). If Rm > Rcr(WY |X), then we have

min
Rcr(WY |X)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+Esp(R,WY |X)

]
= τe

(
Rm
τ
,QS

)
+ Esp(Rm,WY |X),

which means that

min
Rcr(WY |X)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Er(R,WY |X)

]
= τe

(
Rm
τ
,QS

)
+ Er(Rm,WY |X).
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Since the minimum of the convex function τe
(
R
τ , QS

)
+ Er(R,WY |X) of R is achieved by

Rm > Rcr(WY |X), we must have

min
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Er(R,WY |X)

]
= τe

(
Rm
τ
,QS

)
+ Er(Rm,WY |X),

i.e., Rm = Rm. On the other hand, if Rm ≥ Rcr(WY |X), then we have

e

(
Rm
τ
,QS

)
+ Er(Rm,WY |X) = e

(
Rm
τ
,QS

)
+ Esp(Rm,WY |X)

≥ min
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Esp(R,WY |X)

]
,

but by definition we have

e

(
Rm
τ
,QS

)
+ Er(Rm,WY |X) = min

τHQS
(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Er(R,WY |X)

]

≤ min
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Esp(R,WY |X)

]
.

It then follows from the above two inequalities that Rm = Rm.

e

(
Rm
τ
,QS

)
+ Er(Rm,WY |X) ≤ e

(
R

τ
,QS

)
+ Er(R,WY |X)

≤ e

(
R

τ
,QS

)
+ Esp(R,WY |X)

for all R > 0, which means that Rm = Rm.

We next show (b). If Rm = Rcr(WY |X), then by Lemma 5.3 and (d), ρ(Rcr(WY |X)) ≥

−sr(Rcr(WY |X)) = −rr(Rcr(WY |X)). Using Lemma 5.3 again we obtain (2). To show (3),

we only need to show the case when Rm < Rcr(WY |X). According to Lemma 5.3 together

with (c) and (d), we see ρ(Rm) > 1 and ρ(Rm) = 1. It follows from (e) that Rm > Rm.

�

This lemma emphasizes that when the JSCC error exponent upper bound is achieved

at a rate equal to the channel critical rate Rcr(WY |X), the lower bound could be achieved

at a rate smaller than Rcr(WY |X).

In the sequel we shall use properties (c)-(f), and Lemmas 5.2, 5.3 and 5.4 to prove

Theorem 5.2. To show A ⇐⇒ B ⇐⇒ C, we only need to show: A =⇒ B (Forward) and
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B =⇒ C =⇒ A (Converse).

1. Converse Part. We start from

ρ∗ < 1

=⇒ ρ(Rm) < 1 (by (f))

=⇒ Rm < τR
(s)
cr (QS) (by (e))

and sr(Rm) > −1 (by Lemma 5.3)

=⇒ Rm ≥ Rcr(WY |X) (by (c))

=⇒ τR
(s)
cr (QS) > Rm = Rm > Rcr(WY |X) (by Lemma 5.4 (1)) (5.18)

or τR
(s)
cr (QS) > Rm = Rcr(WY |X) ≥ Rm (by Lemma 5.4 (2)) (5.19)

=⇒ 0 < ρ∗ = ρ∗ < 1 (5.20)

and τR
(s)
cr (QS) > Rm = Rm ≥ Rcr(WY |X), (5.21)

where (9.56) and (5.21) are explained as follows. We first claim ρ∗ < 1, because ρ∗ = 1

would yield Rm ≥ τR
(s)
cr (QS) by Lemma 5.2 (3), which is contradicted with (9.54) and

(9.55). Since now ρ∗ < 1, from Lemma 5.3 and (d) we know Rm ≥ Rcr(WY |X). Thus

in (9.55) we must have Rm = Rcr(WY |X) and consequently (9.54) and (9.55) can both be

summarized by (5.21). Meanwhile, ρ∗ = ρ∗ follows by Lemma 5.2. If now

ρ∗ = 1

=⇒ ρ(Rm) = 1 (by (f))

=⇒ Rm = τR
(s)
cr (QS) (by (e))

and sl(Rm) ≤ −1 ≤ sr(Rm) (by Lemma 5.3)

=⇒ Rm ≥ Rcr(WY |X) (by (c))

=⇒ τR
(s)
cr (QS) = Rm = Rm > Rcr(WY |X) (by Lemma 5.4 (1)) (5.22)

or τR
(s)
cr (QS) = Rm = Rcr(WY |X) ≥ Rm (by Lemma 5.4 (2)) (5.23)

=⇒ ρ∗ = ρ∗ = 1 (5.24)

and τR
(s)
cr (QS) = Rm = Rm ≥ Rcr(WY |X), (5.25)
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where (5.24) and (5.25) are explained as follows. We first claim that ρ∗ = 1. If ρ∗ < 1,

then by Lemma 5.2 (3) we have Rm < τR
(s)
cr (QS). In (5.22), we see Rm = τR

(s)
cr (QS),

contradicted. In (5.23), it is still impossible that Rm < τR
(s)
cr (QS) = Rcr(WY |X), because

in that case we have ρ(Rm) < ρ(τR
(s)
cr (QS)) = 1 by (e), which violates Lemma 5.3 since

Rm < Rcr(WY |X) implies ρ(Rm) = 1. Thus we must have ρ∗ = 1 and (5.24) follows.

According to Lemma 5.2 (3) again, ρ∗ = 1 implies Rm ≥ τR
(s)
cr (QS). Hence in (5.23) we

must have Rm = τR
(s)
cr (QS). (5.22) and (5.23) can both be summarized by (5.25). Next if

ρ∗ > 1

=⇒ ρ(Rm) > 1 (by (f))

=⇒ Rm > τR
(s)
cr (QS) (by (e)) (5.26)

and sl(Rm) < −1 (by Lemma 5.3)

=⇒ Rm ≤ Rcr(WY |X) (by (c))

=⇒ Rm ≤ Rm ≤ Rcr(WY |X) (by Lemma 5.4 (1) and (3))

=⇒ Rm < Rcr(WY |X) (5.27)

=⇒ rl(Rm) = −1 = rr(Rm) (by (d))

=⇒ ρ(Rm) = 1 (by Lemma 5.3)

=⇒ Rm = τR
(s)
cr (QS) (by (e)) (5.28)

=⇒ ρ∗ = 1 (by Lemma 5.2 (3))

and Rm > Rm. (by (5.26) and (5.28)).

To see (5.27), we let Rm = Rm = Rcr(WY |X). Then using (d) and Lemma 5.3 yields

ρ(Rm) ≤ 1, which is contradicted with the assumption ρ(Rm) = ρ(Rm) > 1. To show the

last step, we assume ρ∗ < 1, then Lemma 5.2 (3) ensures Rm = τH
Q

(ρ∗)

S

(S) < τR
(s)
cr (QS),

which is contradicted with the last second step.

2. Forward Part. First recall that ρ(τR
(s)
cr (QS)) = 1 by (e). Now if τR

(s)
cr (QS) ≥

Rcr(WY |X), then Rm cannot be strictly larger than τR
(s)
cr (QS) because in that case ρ(Rm) >

ρ(τR
(s)
cr (QS)) = 1, −sl(Rm) ≤ 1 by (c), which violates Lemma 5.3. It then follows
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Rm ≤ τR
(s)
cr (QS) and hence ρ∗ ≤ 1 by (e). Conversely, if τR

(s)
cr (QS) < Rcr(WY |X), then Rm

cannot be less than (or equal to) τR
(s)
cr (QS) because in that case ρ(Rm) ≤ ρ(τR

(s)
cr (QS)) = 1,

−sr(Rm) > 1 by (c), which violates Lemma 5.3. It then follows Rm > τR
(s)
cr (QS) and hence

ρ∗ > 1 by (e).

Finally, we should note that when τR
(s)
cr (QS) < Rcr(WY |X), or ρ∗ > 1, the lower bound

is achieved by Rm = τR
(s)
cr (QS) < Rcr(WY |X) and ρ∗ = 1. Thus

EJr(QS ,WY |X , τ) = τe

(
Rm
τ
,QS

)
+ Er(Rm,WY |X)

=
[
ρ∗Rm − τEs(ρ

∗, QS)
]
+
[
Eo(1,WY |X) − ρ∗Rm

]

= Eo(1,WY |X) − τEs(1, QS).

Meanwhile, Corollary 5.1 immediately follows by the above argument. �

5.3.3 DMS and Symmetric DMC

Consider a DMS QS and a symmetric3 DMC WY |X with rate τ , where the channel transition

matrix WY |X can be partitioned along its columns into sub-matrices WY |X,1, WY |X,2, · · · ,

WY |X,s, such that in each WY |X,i with size |X | × |Yi|, each row is a permutation of each

other row and each column is a permutation of each other column. Denote the transition

probabilities in any column of sub-matrix WY |X,i, i = 1, 2, · · · , s, by
{
pi1, pi2, ..., pi|X |

}
.

Then both Eo(ρ,WY |X) and the channel capacity are achieved by the uniform distribution

PX = 1/|X | and have the form

E0(ρ,WY |X) = (1 + ρ) log |X | − log





s∑

i=1

|Yi|




|X |∑

j=1

p
1

1+ρ

ij




1+ρ
 (5.29)

and

C(WY |X) = log |X | − 1

|X |
s∑

i=1

|Yi|




|X |∑

j=1

pij


H

P
(0)
i

(IX ),

3Here symmetry is defined in the Gallager sense [42, p. 94]; it is a generalization of the standard notion

of symmetry [29] (which corresponds to s = 1 above).
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where the tilted distribution P
(α)
i , α ≥ 0, for each i = 1, 2, · · · , s, is defined on IX ,

{1, 2, · · · , |X |} by

P
(α)
i (j) ,

p
1

1+α

ij

(
∑|X |

j=1 p
1

1+α

ij )
, j ∈ IX .

Since now E0(ρ,WY |X) is a concave and differentiable function of ρ, the bounds EJr and

EJsp can be analytically obtained. If

1

|X |
s∑

i=1

|Yi|




|X |∑

j=1

pij


H

P
(0)
i

(IX ) + τHQS
(S) < log2 |X | (5.30)

and ∑s
i=1 |Yi|

(∑|X |
j=1

√
pij

)2
H
P

(1)
i

(IX )

∑s
i=1 |Yi|

(∑|X |
j=1

√
pij

)2 + τH
Q

(1)
S

(S) ≥ log2 |X |, (5.31)

then the source-channel exponent is positive and is exactly determined by

EJ(QS ,WY |X , τ)

= (1 + ρ∗) log |X | − log








s∑

i=1

|Yi|




|X |∑

j=1

p
1

1+ρ∗

ij




1+ρ∗


(
∑

s∈S

Q
1

1+ρ∗

S (s)

)τ(1+ρ∗)



,

(5.32)

where ρ∗ is the unique root of the equation

∑s
i=1 |Yi|

(∑|X |
j=1 p

1
1+ρ

ij

)1+ρ

H
P

(ρ)
i

(IX )

∑s
i=1 |Yi|

(∑|X |
j=1 p

1
1+ρ

ij

)1+ρ + τH
Q

(ρ)
S

(S) = log2 |X |. (5.33)

In the case when (5.30) does not hold, which means τHQS
(S) ≥ C(WY |X), EJ is zero. When

(5.30) holds but (5.31) does not hold, the right-hand side of (5.32) becomes the upper bound

EJsp(QS ,WY |X , τ) and meanwhile, EJ is lower bounded by Eo(1,WY |X)−τEs(1, QS), where

Eo(ρ,WY |X) is given by (5.29).

Example 5.2 Now we apply the conditions (5.30) and (5.31) to a communication system

with a binary source with distribution {q, 1 − q}, a binary symmetric channel (BSC) with

crossover probability ε and transmission rates τ =0.5, 0.75, 1, and 1.25. Note that

Rcr(WY |X) = 1 − hb

( √
ε√

ε+
√

1 − ε

)
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Figure 5.4: The regions for the (ε, q) pairs in the binary DMS {q, 1−q} and BSC (ε) system of

Example 5.2 for different transmission rates τ . Note that EJ = 0 on the boundary between

Regions A and B; EJ is exactly determined on the boundary between Regions B and C.

In Region A, EJ = 0. In Region B, EJ is positive and known exactly. In Region C, EJ is

positive and can be bounded above and below.

and

R(s)
cr (QS) = hb

( √
q

√
q +

√
1 − q

)
,

where hb(·) is binary entropy function. In Fig. 5.4, we partition the set of possible points

for the (ε, q) pairs into three regions: A, B and C. If (ε, q) ∈ B, where conditions (5.30)

and (5.31) hold, i.e., τHQS
(S) < C(WY |X) and τR

(s)
cr (QS) ≥ Rcr(WY |X), then the corre-

sponding EJ is positive and exactly known. Furthermore, if (ε, q) ∈ C, then EJ is bounded

above (below, respectively) by the right-hand side of (5.32) (Eo(1,WY |X) − τEs(1, QS),

respectively). When (ε, q) ∈ A, where τHQS
(S) > C(WY |X), EJ is zero, and the error

probability of this communication system converges to 1 for n sufficiently large. So we are
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only interested in the cases when (ε, q) ∈ B ∪ C.

5.4 Csiszár’s Expurgated Bound

5.4.1 Equivalent Expression

In [31], Csiszár extended his work and obtained another lower bound to EJ for a class

of source-channel pairs: for a DMS and a DMC with zero-error capacity equal to 0, if

Eex(R,WY |X) = maxPX∈P(X )Eex(R,PX ,WY |X) is attained for a PX not depending on R,

then

EJ(QS ,WY |X , τ) ≥ EJex(QS ,WY |X , τ) (5.34)

where

EJex(QS ,WY |X , τ) , min
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Eex(R,WY |X)

]
(5.35)

is called Csiszár’s source-channel expurgated lower bound since it contains Eex(R,WY |X) in

its expression. We then use Fenchel’s Duality Theorem to derive an equivalent expression

of EJex.

Theorem 5.3 For a DMS and a DMC with zero-error capacity equal to 0, if

Eex(R,WY |X) = max
PX∈P(X )

Eex(R,PX ,WY |X)

is attained for a PX not depending on R, then

EJex(QS ,WY |X , t) = sup
ρ≥1

[Ex(ρ,WY |X) − τEs(ρ,QS)]. (5.36)

Proof : Recall that Ex(ρ, PX ,WY |X) is concave in ρ on the interval G = [1,+∞) [42,

pp. 153–154]. Note that

−Eex(R,PX ,WY |X) , − sup
ρ∈G

[Ex(ρ, PX ,WY |X) − ρR] = inf
ρ∈G

[ρR −Ex(ρ;PX ,WY |X)]

is the concave transform of Ex(ρ, PX ,WY |X) on R ∈ G∗ = {R : −Eex(R,PX ,WY |X) >

−∞} = [0,+∞) for DMCs with zero-error capacity equal to 0. Also recall that τEs(ρ,QS)
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is strictly convex in ρ on the interval F = [0,+∞). Its convex transform

sup
ρ∈F

[ρR− τEs(ρ,QS)] = τe

(
R

τ
,QS

)

is a function of R on F ∗ = {R : τe(R/τ,QS) < +∞} = (−∞, τ log2 |S|]. Fenchel duality

theorem states that

inf
ρ∈F∩G

[τEs(ρ,QS) − Ex(ρ, PX ,WY |X)] = max
R∈F ∗∩G∗

[
−Eex(R,PX ,WY |X) − τe

(
R

τ
,QS

)]

or

sup
ρ≥1

[Ex(ρ, PX ,WY |X) − τEs(ρ,QS)] = min
0<R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Eex(R,PX ,WY |X)

]
.

We can now maximize over PX and get the two equivalent lower bounds:

sup
ρ≥1

[Ex(ρ,WY |X) − τEs(ρ,QS)]

= max
PX

min
0<R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Eex(R,PX ,WY |X)

]

(a)
= min

0<R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ max

PX

Eex(R,PX ,WY |X)

]

(b)
= min

τHQS
(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Eex(R,WY |X)

]

= EJex(QS ,WY |X , τ),

where (a) follows by assumption that the maximizing PX does not depend on R and (b)

holds since the convex function τe(R/τ,QS) + Eex(R,WY |X) is either infinity or strictly

decreasing for R < τHQS
(S). �

In the following lemma we note that the supremum in (5.36) can be replaced by a

maximum, and the relation between the maximizer ρ
x

and its dual minimizer Rxm is given.

Lemma 5.5 For DMC with zero-error capacity equal to 0, the function Ex(ρ,WY |X) −

τEs(ρ,QS) has a global maximum at a finite ρ ≥ 1. Let

ρ
x

, arg max
ρ≥1

[Ex(ρ,WY |X) − τEs(ρ,QS)] (5.37)

and

Rxm , arg min
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Eex(R,WY |X)

]
. (5.38)
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Then Rxm = τH
Q

(ρ
x
)

S

(S) if ρ
x
> 1; Rxm ≤ τR

(s)
cr (QS) if ρ

x
= 1.

Remark 5.5 Since the function between brackets to be optimized in (5.37) (or (5.38)) is

strictly concave (or convex), ρ
x

and Rxm are well-defined and unique.

Proof : We first show that ρ
x

is finite. Recall that for any PX , Gallager’s source function

Es(ρ,QS) given in (2.7) and Ex(ρ;PX ,WY |X) given in (2.25) at ρ = 1 reduce to

Es(1, QS) = log2

(
∑

s∈S

√
QS(s)

)2

and

Ex(1;PX ,WY |X) = − log2

∑

y∈Y

(
∑

x∈X

PX(x)
√
PY |X(y|x)

)2

.

Using Jensen’s inequality [29] on the convex function x2, we obtain

Es(1, QS) ≤ log2

∑

s∈S

(QS(s)QS(s)−1) = log2 |S|

with equality if and only if QS is uniform, and

Ex(1;PX ,WY |X) ≥ − log2

∑

y∈Y

∑

x∈X

PX(x)WY |X(y|x) = 0.

Therefore,

Ex(1,WY |X) − τEs(1, QS) > − log2 |S|

because of the nonuniform source assumption. On the other hand, because the zero-error

capacity is 0 we know that limρ→∞
Ex(ρ,WY |X)

ρ = 0 (from [42, p. 155]) and hence

lim
ρ→∞

Ex(ρ,WY |X) − τEs(ρ,QS)

ρ
≤ −τ log2 |S|.

Clearly, since the concave function Ex(ρ,WY |X) − τEs(ρ,QS) is finite (bounded below) at

ρ = 1, and approaches to −∞ as ρ→ ∞, there exists a global maximum at a finite ρ
x
. We

next show the relation between ρ
x

and Rxm. Following the proof of Theorem 5.3, let f∗(y)

be τe(R/τ,QS) and let f(x) be Es(ρ,QS). Fenchel’s Duality Theorem (4.2) says that ρ
x

and Rxm should satisfy

max
ρ≥1

[ρRxm − τEs(ρ,QS)] = ρ
x
Rxm − τEs(ρ,QS).
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If ρ
x
> 1, then ρ

x
is the stationary point of the concave function ρRxm − τEs(ρ,QS), and

hence

Rxm = τH
Q

(ρ
x
)

S

(S).

Otherwise (if ρ
x

= 1), which means that the stationary point is less than or equal to 1,

Rxm ≤ τR
(s)
cr (QS). �

Analogously to Theorem 5.2, we have the following explicit conditions regarding the

expurgated lower bound to the JSCC exponent.

Theorem 5.4 For the expurgated lower bound in Theorem 5.3, the following conditions are

equivalent.

• τR
(s)
cr (QS) < Rex(WY |X) ⇐⇒ ρ

x
> 1 ⇐⇒ τR

(s)
cr (QS) < Rxm ≤ Rex(WY |X). Thus,

EJ(QS ,WY |X , t) ≥ Ex(ρx,WY |X) − τEs(ρx, QS).

• τR
(s)
cr (QS) ≥ Rex(WY |X) ⇐⇒ ρ

x
= 1 ⇐⇒ Rxm = τR

(s)
cr (QS) ≥ Rex(WY |X). Thus,

EJ(QS ,WY |X , t) ≥ Ex(1,WY |X) − τEs(1, QS).

The proof of Theorem 5.4 is similar to that of Theorem 5.2 and is hence omitted. We

next use Theorems 5.2 and 5.4 to compare Csiszár’s random-coding and expurgated lower

bounds.

5.4.2 Random-coding Lower Bound vs Expurgated Lower Bound

Of clear interest is the case when the expurgated bound improves upon the random-coding

bound.

Corollary 5.4 The source-channel random-coding bound is improved by the expurgated

bound (i.e., EJr < EJex) if and only if τR
(s)
cr (QS) < Rex(WY |X), where Rex(WY |X) is

defined in (2.35).
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Proof : When τR
(s)
cr (QS) < Rex(WY |X), we must have that τR

(s)
cr (QS) < Rcr(WY |X), since

Rex(WY |X) is never larger than Rcr(WY |X). It follows from Theorem 5.2 that the random-

coding lower bound is attained at Rm = τR
(s)
cr (QS). By Theorem 5.4 the expurgated lower

bound is attained at Rex(WY |X) ≥ Rxm > τR
(s)
cr (QS). On account of Lemma 5.5, this must

happen if Rxm = τH
Q

(ρ
x
)

S

(S) with ρ
x
> 1. Thus, Rxm > Rm and

EJr(QS ,WY |X , τ) = Er(Rm,WY |X) + τe

(
Rm
τ
,QS

)

< Er(Rxm,WY |X) + τe

(
Rxm
τ

,QS

)

≤ Eex(Rxm,WY |X) + τe

(
Rxm
τ

,QS

)

= EJex(QS ,WY |X , τ).

In this case, the source-channel expurgated lower bound is tighter than the random-coding

lower bound. We then show that EJr(QS ,WY |X , τ) ≥ EJex(QS ,WY |X , τ) if τR
(s)
cr (QS) ≥

Rex(WY |X).

When Rex(WY |X) ≤ τR
(s)
cr (QS) ≤ Rcr(WY |X), it follows from Theorems 5.2 and 5.4 that

EJr(QS ,WY |X , τ) = Eo(1,WY |X) − τEs(1, QS)

= Ex(1,WY |X) − τEs(1, QS)

= EJex(QS ,WY |X , τ),

where the second equality follows from the fact that, for any PX , Gallager’s channel func-

tions Eo(1, PX ,WY |X) and Ex(1, PX ,WY |X) are equal [42], and hence their maxima are

equal. In this case, the source-channel random-coding lower bound is identical to the ex-

purgated lower bound.

When τR
(s)
cr (QS) > Rcr(WY |X), we must have τR

(s)
cr (QS) > Rex(WY |X). Then the

expurgated lower bound is attained at Rxm = τR
(s)
cr (QS) by Theorem 5.4. On account

of Theorems 5.2 and Corollary 5.1, the random-coding lower bound is attained at Rm =
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τH
Q

(ρ∗)

S

(S) ≥ Rcr(WY |X) with ρ∗ ≤ 1. Consequently,

EJr(QS ,WY |X , τ) = Er(Rm,WY |X) + τe

(
Rm
τ
,QS

)

≥ Eex(Rm,WY |X) + τe

(
Rm
τ
,QS

)

≥ Eex(Rxm,WY |X) + τe

(
Rxm
τ

,QS

)

= EJex(QS ,WY |X , τ).

In this case, the source-channel random-coding lower bound is tighter than or equal to the

expurgated lower bound. �

5.4.3 DMS and Equidistant DMC

A DMC WY |X is called equidistant if there exists a number β > 0 such that for all pairs of

inputs x 6= x̃,
∑

y

√
WY |X(y|x)WY |X(y|x̃) = β.

Note that equidistant DMCs have 0 zero-error capacity, and every DMC with binary input

alphabet is equidistant. It is shown in [57] that for an equidistant channel, Ex(ρ,WY |X) is

achieved in the range ρ ≥ 1 by a uniform input distribution PX(x) = 1/|X |. Therefore, we

can write Ex(ρ,WY |X) as

Ex(ρ,WY |X) = −ρ log2

( |X | − 1

|X | β
1
ρ +

1

|X |

)
for ρ ≥ 1.

Now we apply Theorems 5.3 and 5.4 to DMS QS and equidistant DMC WY |X with

transmission rate τ . We then see that if

τH
Q

(1)
S

(S) + log2

( |X | − 1

|X | β +
1

|X |

)
≤ β log β

β + 1
|X |−1

, (5.39)

the expurgated JSCC lower bound is tighter than the random-coding lower bound and is

given by

EJ(QS ,WY |X , t) ≥ −ρ
x
log2

( |X | − 1

|X | β
1

ρ
x +

1

|X |

)
− τ(1 + ρ

x
) log2

∑

s∈S

Q
1

1+ρ
x

S (s), (5.40)
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where ρ
x

is the unique root of the equation

τH
Q

(ρ)
S

(S) + log2

( |X | − 1

|X | β
1
ρ +

1

|X |

)
=
ρ−1β

1
ρ log2 β

β
1
ρ + 1

|X |−1

.
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Figure 5.5: The regions for the (α, q) pairs in the binary DMS {q, 1 − q} and BEC (α)

system of Example 5.3 with τ = 1. Note that EJ = 0 on the boundary between Regions A

and B; EJ is determined on the boundary between Regions B and C1; The random-coding

bound and expurgated bound to EJ are equal on the boundary between Regions C1 and

C2.

Example 5.3 Consider a communication system with a binary source with distribution

{q, 1− q}, a binary erasure channel (BEC) with erasure probability α and transmission rate

τ = 1 (similar results hold for other cases, as in the last example). Using the conditions

(5.30), (5.31) in Section 5.3.3, and together with (5.39), we present in Fig. 5.5 the set

of (α, q) points, partitioned into four regions. If the pair (α, q) is located in Region B,

then the system EJ is positive and exactly known. If (α, q) ∈ C = C1 ∪ C2, then upper

and lower bounds for EJ are known. Here, Region C2 consists of the values of (α, q) for
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which the source-channel expurgated lower bound given in (5.40) is tighter than the source-

channel random-coding lower bound. Finally, when (α, q) ∈ A, EJ(QS ,WY |X , τ) = 0. In

Fig. 5.6, we plot the random-coding and expurgated lower bounds for different source and

BEC pairs. We observe that when the source distribution is QS={0.1,0.9} (respectively

QS={0.2,0.8}), the expurgated lower bound for EJ is tighter than the random-coding lower

bound if α < 0.0297 (respectively if α < 0.0102).
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Figure 5.6: Improvement due to the expurgated lower bound for the binary DMS (α, q) and

BEC (α) system of Example 5.3 with τ = 1. Exp-LB and RC-LB stand for the expurgated

and random-coding lower bounds, respectively.
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5.5 JSCC Excess Distortion Exponent with Hamming Dis-

tortion Measure

Since in this section we study the (lossy) JSCC excess distortion exponent with a criterion

fidelity, we allow the source distribution QS to be uniform. Given a distortion measure d(·, ·)

on S × S, a JSC code (fn, ϕn,∆, τ) with blocklength n and transmission rate τ > 0 for a

τn-length DMS QS ∈ P(S) and a DMC WY |X ∈ P(Y|X ) with a threshold ∆ of tolerated

distortion is a pair of mappings (see Fig. 5.1)

fn : Sτn −→ X n

and

ϕn : Yn −→ Sτn.

The probability of failing to decode the JSC code (fn, ϕn,∆, τ) within a prescribed distortion

level ∆ > 0 is called the probability of excess distortion and defined by

P
(n)
∆ (QS ,WY |X , τ) ,

∑

{(s,y):d(τn)(s,ϕn(y))>∆}

Q
(n)
S (s)W

(n)
Y |X(y|fn(s)).

Definition 5.2 The JSCC excess distortion exponent E∆
J (QS ,WY |X ,∆, τ) is defined as

the supremum of the set of all numbers E∆ for which there exists a sequence of JSC codes

(fn, ϕn,∆, τ) with blocklength n and transmission rate τ such that

E∆ ≤ lim inf
n→∞

− 1

n
logP

(n)
∆ (QS ,WY |X , τ).

When there is no possibility of confusion, E∆
J (QS ,WY |X , t) will often be written E∆

J . In [31],

Csiszár proved that for a DMS QS and a DMC WY |X , the JSCC error exponent under

distortion threshold ∆ satisfies

E∆
Jr(QS ,WY |X , τ) ≤ E∆

J (QS ,WY |X ,∆, τ) ≤ E
∆
Jsp(QS ,WY |X , τ), (5.41)

where

E∆
Jr(QS ,WY |X , τ) , inf

R>0

[
τF

(
R

τ
,QS ,∆

)
+Er(R,WY |X)

]
(5.42)
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and

E
∆
Jsp(QS ,WY |X , τ) , inf

R>0

[
τF

(
R

τ
,QS ,∆

)
+ Esp(R,WY |X)

]
. (5.43)

In the above, F (R,QS ,∆) is defined by (2.11) and is the true value of the DMS excess

distortion exponent e∆(R,PS), and Er(R,WY |X) and Esp(R,WY |X) are the random-coding

and sphere-packing bounds to the channel error exponent. Likewise, if the infimum in (5.42)

or (5.43) is attained for a rate larger than the channel critical rate, then the lower and upper

bounds coincide (cf. Lemma 5.4), and we can determine E∆
J exactly. Of course, the two

bounds are nontrivial if and only if τR(QS ,∆) < C(WY |X) by the lossy JSCC theorem.

By definition F (R,QS ,∆) is a nondecreasing, but not necessarily convex or even con-

tinuous in R (cf. Section 2.2.2). Therefore, it is hard to analytically compute the JSCC

exponent E∆
J in general. In this section we only address the computation of E∆

J for a binary

DMS and an arbitrary DMC under the Hamming distortion measure dH(·, ·), given by

dH(s, s̃) =





1, if s 6= s̃,

0, if s = s̃.
(5.44)

We first need to derive a parametric form of F (R,QS ,∆). Define

E∆
s (ρ,QS) , (1 + ρ) log

(
q

1
1+ρ + (1 − q)

1
1+ρ

)
− ρhb(∆). (5.45)

Lemma 5.6 For binary DMS QS , {q, 1 − q} (q ≤ 1/2) under the Hamming distortion

measure (5.44) and distortion threshold ∆ such that ∆ ≤ 1/2, the function F (R,QS ,∆)

given by (2.11) is equivalent to

F (R,QS ,∆) =





+∞, R > 1 − hb(∆),

supρ≥ρ0 [ρR− τE∆
s (ρ,QS)], R(QS ,∆) < R ≤ 1 − hb(∆),

0, R ≤ R(QS ,∆),

(5.46)

where the rate-distortion function R(QS,∆) = hb(q)−hb(∆) and ρ0 = 0 if q ≥ ∆; otherwise

R(QS,∆) = 0 and ρ0 is the unique root of equation H(Q
(ρ)
S ) = hb(∆) such that ρ0 > 0.
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Proof: Recall that the rate-distortion function R(QS ,∆) for a binary DMS QS = {q, 1−q}

under the Hamming distortion measure is given by (e.g., [29])

R(QS ,∆) =





hb(q) − hb(∆), 0 ≤ ∆ ≤ q,

0, ∆ > q.
(5.47)

Clearly, F (R,QS ,∆) = 0 for R ≤ 0 since the infimum in (2.11) is attained at PS = QS.

Similarly, since R(PS ,∆) ≤ 1− hb(∆) for all PS , F (R,QS ,∆) = ∞ for R > 1− hb(∆). For

the remainder of the proof, we assume 0 < R ≤ 1 − hb(∆).

(1)Case of 0 ≤ ∆ ≤ q. For R ≤ R(QS,∆) = hb(q) − hb(∆), we have

F (R,QS ,∆) = inf
PS :R(PS ,∆)>R

D(PS ‖ QS) = D(PS ‖ QS)

∣∣∣∣
PS=QS

= 0.

For hb(q) − hb(∆) < R ≤ 1 − hb(∆), we have

F (R,QS ,∆) = inf
PS :R(PS ,∆)>R

D(PS ‖ QS)

= min
PS,{p,1−p}:R(PS ,∆)=R

D(PS ‖ QS) (5.48)

= min
p:hb(p)−hb(∆)=R

D(PS ‖ QS)

= e(R+ hb(∆), QS), for H(QS) ≤ R+ hb(∆) ≤ log |S| (5.49)

= sup
ρ≥0

[ρ(R+ hb(∆)) − Es(ρ)] (5.50)

= sup
ρ≥0

[ρR− (Es(ρ) − ρhb(∆))].

Here (5.48) follows from the facts that the continuous function θ(p) , p log p
q+(1−p) log 1−p

1−q

is increasing for p ≥ q and R(PS ,∆) given in (5.56) is continuous and increasing in p for

∆ ≤ p ≤ 1
2 . In (5.49), we note that H(QS) = hb(q) and that log |S| = 1 as the source

is binary. (5.50) follows by the well known parametric form of source exponent function

introduced by Blahut [19] and noting that R′ , R+ hb(∆) ∈ [H(QS), log |S|].

(2) Case of ∆ > q. For 0 < R ≤ 1 − hb(∆), similarly as (5.49), we have

F (R,QS ,∆) = e(R′, QS) = sup
ρ∈A

[ρR′ − Es(ρ)],
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where R′ = R+ hb(∆) such that H(QS) < hb(∆) < R′ ≤ 1 = log |S| and

A =

{
ρ∗ :

∂[ρR′ − Es(ρ)]

∂ρ

∣∣∣∣
ρ=ρ∗

= 0, hb(∆) ≤ R′ ≤ 1

}

=
{
ρ∗ : hb(∆) ≤ R′ = H(Q

(ρ∗)
S ) ≤ 1

}

= {ρ∗ : ρ0 ≤ ρ∗ <∞}, (5.51)

where ρ0 is the unique root of equation H(Q
(ρ)
S ) = hb(∆) and ρ0 > 0. Here (5.51) follows

from the monotone property of H(Q
(ρ)
S ). Therefore, we write

F (R,QS ,∆) = sup
ρ≥ρ0

[ρR− (Es(ρ) − ρhb(∆))].

In fact, it can be shown that ρ0 is the right slope of F (R,QS ,∆) at R = R(QS ,∆). �

Define the binary divergence by

D̃(∆ ‖ q) , ∆ log
∆

q
+ (1 − ∆) log

1 − ∆

1 − q
. (5.52)

Theorem 5.5 Given a binary DMS (q ≤ 1/2) and a DMC WY |X under the Hamming

distortion measure and distortion threshold ∆ (∆ ≤ 1/2), the JSCC exponent satisfies the

following.

1) Lower Bound: If 0 ≤ ∆ <
√
q/(

√
q +

√
1 − q), then ρ0 < 1 and

E∆
r (QS ,WY |X , τ) = max

ρ0≤ρ≤1
[Tr(ρ,WY |X) − τE∆

s (ρ,QS)], (5.53)

Otherwise, if ∆ ≥ √
q/(

√
q +

√
1 − q), then

E∆
r (QS ,WY |X , τ) = τD̃(∆ ‖ q) +E0(1,WY |X). (5.54)

2) Upper Bound:

E
∆
sp(QS ,WY |X , τ) = sup

ρ≥ρ0

[Tsp(ρ,WY |X) − τE∆
s (ρ,QS)]. (5.55)

Proof: It can be easily verified that F (R,QS ,∆) is continuous and convex in R ∈ (−∞, 1−

hb(∆)] if q ≥ ∆ and F (R,QS ,∆) is continuous and convex in R ∈ (0, 1 − hb(∆)] and has a
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jump at R = R(QS ,∆) = 0 if q < ∆. In either case, F (R,QS ,∆) has a right-slope ρ0 at

R = 0, where ρ0 is defined in Lemma 5.6.

It follows from a geometric argument (as in Lemma 5.3) regarding the right- and left-

slopes that if ρ0 ≥ 1, or equivalently, if ∆ ≥ √
q/(

√
q+

√
1 − q), E∆

r (QS ,WY |X , τ) in (5.42)

is achieved at R ↓ 0+, and

E∆
r (QS ,WY |X , τ) = lim

R↓0+

[
τF

(
R

τ
,QS ,∆

)
+Er(R,WY |X)

]

= lim
R↓0+

[
τ inf
PS :R(PS ,∆)>R

τ

D(PS ‖ QS) + E0(1,WY |X) −R

]

= τD̃(∆ ‖ q) + E0(1,WY |X).

Otherwise, if ρ0 < 1, E∆
r (QS ,WY |X , τ) in (5.42) is achieved at R > 0. In this case, we

define

F̃ (R,QS ,∆) =





F (R,QS ,∆), R > 0,

limR↓0 F (R,QS ,∆), R = 0.
(5.56)

Clearly, replacing F (R,QS ,∆) by F̃ (R,QS ,∆) in E∆
Jr(QS ,WY |X , τ) does not affect the

lower bound. In fact, we can rewrite

E∆
Jr(QS ,WY |X , τ) = inf

0≤R≤1−hb(∆)

[
τF̃

(
R

τ
,QS ,∆

)
+ Er(R,WY |X)

]
.

For the upper bound, noting that ρ0 is finite, we always can write

E
∆
Jsp(QS ,WY |X , τ) , inf

0≤R≤1−hb(∆)

[
τF̃

(
R

τ
,QS ,∆

)
+ Esp(R,WY |X)

]
,

since the above infimum can never be achieved at R = 0 by a simple right- (left-) slope

argument (cf. Lemma 5.3). Now F̃ (R,QS ,∆) is convex and continuous in [0, 1 − hb(∆)].

It follows by Lemma 5.6 that F̃ (R,QS ,∆) and E∆
s (ρ,QS) are a pair of convex Fenchel

transforms, i.e.,

F̃ (R,QS ,∆) = (E∆
s (ρ,QS))∗, R ∈ [0, 1 − hb(∆)]

and

E∆
s (ρ,QS) = (F̃ (R,QS ,∆))∗, R ∈ [ρ0,+∞).
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Adopting the approach of Section 5.2, we can apply Fenchel duality theorem to E∆
Jr(QS ,WY |X , τ)

for the case ρ0 < 1, i.e., 0 ≤ ∆ <
√
q/(

√
q +

√
1 − q), and E

∆
Jsp(QS ,WY |X , τ) and obtain

equivalent computable bounds (5.53) and (5.55). �

Remark 5.6

1) As in the lossless case, if τ(hb(q) − hb(∆)) ≥ C(WY |X), then E∆
r (QS ,WY |X , τ) =

E
∆
sp(QS ,WY |X , τ) = 0. If R∞(WY |X) > τ(1 − hb(∆)), then E

∆
sp(QS ,WY |X , τ) = +∞.

2) In the special case where the binary source is uniform, i.e., q = 1/2, Theorem 5.5

reduces to

max
0≤ρ≤1

[
−ρτ(1 − hb(∆)) + Tr(ρ,WY |X)

]
≤ E∆

J (QS ,WY |X , τ)

≤ sup
ρ≥0

[
−ρτ(1 − hb(∆)) + Tsp(ρ,WY |X)

]
.

This is clearly equivalent to

Er
(
τ(1 − hb(∆)),WY |X

)
≤ E∆

J (QS ,WY |X , τ) ≤ Esp
(
τ(1 − hb(∆)),WY |X

)
(5.57)

by the definition of Tr and Tsp. In other words, E∆
J is bounded by the channel random-

coding and sphere-packing bounds at rate τ(1−hb(∆)). If τ(1−hb(∆)) ≥ Rcr(WY |X),

then E∆
J is exactly determined.

3) When the source is nonuniform, E∆
s (ρ,QS) = Es(ρ,QS)− ρτhb(∆) is strictly concave

in ρ. In this case, the maximizer

ρ∆ , arg sup
ρ≥ρ0

[Tsp(ρ,WY |X) − τE∆
s (ρ,QS)]

is strictly larger than ρ0 if τ(hb(q) − hb(∆)) < C(WY |X) and R∞(WY |X) ≤ τ(1 −

hb(∆)). Particularly, ρ∆ < ∞ if R∞(WY |X) < t(1 − hb(∆)). As counterparts of

Lemma 5.2 and Corollary 5.1, it can be shown that the upper bound E
∆
sp(QS ,WY |X , τ)

in (5.43) is attained at R
∆
m = H

Q
(ρ∆)
S

(S) − hb(∆) and the lower bound in (5.42) is

attained at R∆
m = H

Q
(ρ∆)

S

(S) − hb(∆), where ρ∆ = min{ρ∆, 1}. Consequently, other

similar results to the lossless case regarding these optimizers can be obtained.
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Figure 5.7: The regions for the (ε, q) pairs in the binary DMS {q, 1−q} and BSC (ε) system

of Example 5.4 with Hamming distortion for different values of the distortion threshold ∆

with t = 1. Note that E∆
J = 0 on the boundary between Regions A and B, and E∆

J > 0 is

determined on the boundary between Regions B and C1.

Example 5.4 For a binary DMS {q, 1 − q} (q ≤ 0.5) and a BSC (ε) under transmission

rate t = 1, we compute the JSCC error exponent under the Hamming distortion measure

with distortion threshold ∆ (∆ < 1
2). In Fig. 5.7, if the pair (ε, q) is located in Region B,

then the corresponding JSCC exponent can be determined exactly (the lower and upper

bounds are equal). If (ε, q) is located in Region C1, then E∆
J is bounded by (5.53) and

(5.55). If (ε, q) is located in Region C2, then E∆
J is bounded by (5.54) and (5.55). When

(ε, q) ∈ A, E∆
J is zero, and the error probability of this communication system converges to

1 for n sufficiently large. So we are only interested in the cases when (ε, q) ∈ B ∪C1 ∪C2.
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Fig. 5.8 shows the JSCC error exponent lower bound of the binary DMS {q, 1 − q}

(q < 0.5) and BSC (ε) pairs under different distortion thresholds. We fix the BSC parameter

ε = 0.2, and vary q from 0 to 0.5. In Fig. 5.8, Segment 1 is determined by (5.54), and

Segments 2 and 3 are determined by (5.53). Furthermore, the lower bound coincides with

the upper bound (5.55) in Segment 3; i.e., the JSCC exponent is exactly determined in

Segment 3.
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Figure 5.8: Fix ε = 0.2. The JSCC excess ditortion exponent lower bound of the binary

DMS {q, 1 − q} (q ≤ 0.5) and BSC (ε) pairs under Hamming distortion with τ = 1. For

∆ = 0, E∆
J is determined if q ∈ [0.0001, 0.0481], which is the same as the random-coding

lower bound for the lossless JSCC error exponent. For ∆ = 0.1, E∆
J is determined if

q ∈ [0.0209, 0.2129]. For ∆ = 0.2, E∆
J is determined if q ∈ [0.0955, 0.5]. For ∆ = 0.3, E∆

J is

determined if q ∈ [0.2854, 0.5].
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5.6 Conclusion

In this chapter, we established equivalent parametric representations of Csiszár’s lower and

upper bounds, EJr, EJex and EJsp, for the JSCC exponent EJ of a communication system

with a DMS and a DMC. As a result, the computation of the bounds for EJ is facilitated for

arbitrary DMS-DMC pairs. Furthermore, the bounds enjoy closed-form expressions when

the channel is symmetric (in the Gallager sense). Notice that Csiszár’s random-coding

lower bound for EJ is in general larger than Gallager’s lower bound; they are identical

if the channel is symmetric. We obtained explicit sufficient and necessary conditions for

EJr = EJsp and EJex > EJr. Finally, we partially investigated the computation of Csiszár’s

lower and upper bounds for the lossy JSCC exponent for binary sources and DMCs under

the Hamming distortion measure, and obtained equivalent representations for these bounds

using the same approach as for the lossless JSCC exponent.



Chapter 6

JSCC Error Exponent with

Feedback/Source Side Information

In this chapter we discuss the JSCC error exponent with feedback or source side information

(SI). The question we aim to answer, is whether output feedback or source SI can strictly

increase the JSCC error exponent.

In Section 6.1, we consider the discrete memoryless JSCC system with perfect (noiseless

and instantaneous) causal feedback. We obtain an upper and a lower bound for the JSCC

error exponent with feedback EJ,fb. The upper bound follows directly from the definition

of the exponent and the corresponding channel error exponent with feedback by using

Csiszár’s approach based on the method of types. More specifically, we actually show

that Csiszár’s JSCC sphere packing upper bound EJsp(QS ,WY |X , τ) given by (5.6) is still

valid for the feedback case, i.e., EJ,fb ≤ EJsp. We next establish a Gallager-type lower

bound for EJ,fb, expressed in terms of source and channel functions (see (5.9)), using an

iterative coding scheme proposed by Zigangirov [115]. We then examine this lower bound

for channels with binary input alphabet and a symmetric distribution (in the Gallager

sense). A sufficient condition for which EJ,fb is determined exactly by its lower and upper

bound is provided. In Section 6.2, we investigate the situation for which the JSCC error

exponent with feedback can be strictly larger than the exponent when there is no feedback.

105
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By numerically comparing the lower bound for EJ,fb and the upper bound of EJ , the JSCC

error exponent without feedback, we present a few examples to show that EJ,fb could be

considerably larger than EJ .

We next extend the JSCC problem by considering the availability of SI on the trans-

mitted source at the decoder. We establish an (achievable) lower bound for the JSCC error

exponent. The lower bound follows from a two-stage encoding two-stage decoding scheme

which combines the approaches of Csiszár [30] and Oohama and Han [73] and is based on

the method of types. In particular, at the decoding side, we employ a generalized maximum

mutual information decoder followed by a minimum conditional entropy decoder.

Furthermore, in Section 6.5, we analytically compare the lower bound for the exponent

with source SI at the decoder, ESIDJ , with EJsp, the sphere-packing upper bound for the

exponent without SI. We derive a sufficient condition for which the source SI at the decoder

can strictly enlarge the JSCC error exponent for a system consisting of a binary source and

a symmetric channel. The sufficient and necessary condition for which the source can be

reliably transmitted over the channel, i.e., the JSCC theorem, is also formulated in Section

6.4. It is seen that the source-channel separation principle holds. Finally, a conclusion is

drawn in Section 6.6.

6.1 Systems with Feedback

Before we deal with the JSCC feedback system, we first introduce the channel coding

problem with feedback and review some results on the channel error exponent with feedback.

6.1.1 Literature Review: Channel Coding with Perfect Feedback

Given a message set Mn , {1, 2, ...,Mn} and a DMC WY |X ∈ P(Y|X ) with finite input

alphabet X and finite output alphabet Y, a causal channel code with block length n and

perfect (noiseless and instantaneous) output feedback (see Fig. 6.1) consists a set of encoder-

mappings {fc,r}nr=1, where

fc,r : Mn ×Yr−1 −→ X , 1 ≤ r ≤ n,
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and one decoder-mapping

ϕcn : Yn −→ Mn.

m ∈ Mn- {fr}nr=1
xr ∈ X- WY |X -yr ∈ Y

ϕn -

6
yr−1 ∈ Y

m′ ∈ Mn

Figure 6.1: Causal channel coding system with perfect feedback.

Let the transmitted message m be uniformly and independently drawn from the message

set Mn. The rate of the channel code ({fc,r}nr=1, ϕcn) is defined by

Rn ,
log2Mn

n
bits/channel use.

Let the corresponding n-length codeword be x = (x1, x2, ..., xn) ∈ X n and the received

codeword be y = (y1, y2, ..., yn) ∈ Yn. Then the probability of receiving yr (1 ≤ r ≤ n)

at the r-th instant under the conditions that the message m is transmitted, that the input

codeword is x1, x2, ...xr, and that y1, y2, ..., yr−1 has been previously accepted is given by

Pr(Yr = yr|Y1 = y1, Y2 = y2, ..., Yr−1 = yr−1,m) = WY |X(yr|xr).

For the sake of convenience, we denote the r-th component of the codeword

xr = fc,r(y1, y2, ..., yr−1,m)

by fc,r(m). Therefore, the probability that a sequence y is received conditional on that the

message m has been transmitted is given by

PWn,fc(y|m) ,

n∏

r=1

WY |X(yr|fcr(m)),

and the probability of error for the channel code ({fc,r}nr=1, ϕcn) with rate Rn is given by

P
(n)
efb (Rn,WY |X) =

1

Mn

Mn∑

m=1

∑

y:ϕcn(y)6=m

PWn,fc(y|m). (6.1)
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Definition 6.1 For any R > 0, the channel error exponent Efb(R,WY |X) with perfect

feedback is defined as the supremum of all numbers Ec for which there exists a sequence of

channel codes ({fc,r}nr=1, ϕcn) with

Ec ≤ lim inf
n→∞

− 1

n
log2 P

(n)
efb (R,WY |X).

and

R ≤ lim inf
n→∞

Rn.

Lower and upper bounds for the (fixed-length) channel coding error exponent with

feedback have been studied in [11,22,37,88,115]. Sheverdyaev [88] proved that the sphere-

packing upper bound for the DMC without feedback is also valid in the feedback case, i.e.,

for R > 0, Efb(R,WY |X) ≤ Esp(R,WY |X). On the other hand, Zigangirov [115] proposed

a coding scheme based on a set of likelihood functions and obtained a lower bound for the

error exponent for the BSC with feedback. His lower bound was extended by D’yachkov [37]

for K-ary symmetric channels with feedback and the bound for the BSC was later improved

for small rates by Burnashev [22]. These works show that at least for the DMC with binary

input, the error exponent for channel coding with feedback is determined exactly by the

sphere-packing bound in the interval R > Rcr,fb(WY |X) for some Rcr,fb(WY |X) strictly less

than the critical rate Rcr(WY |X) for the channel. Furthermore, it is shown in [37] that at

zero rate, the channel error exponent with feedback strictly outperforms the one without

feedback for both the K-ary symmetric DMC and the DMC with binary input, whenever

the zero-error capacity of the channel is equal to zero.

6.1.2 JSCC System with Perfect Feedback

We now extend the channel coding with feedback to a JSCC setup. Consider the following

causal JSCC system with perfect feedback (see Fig. 6.2). Given a DMS {QS : S} with

alphabet S, a DMC {WY |X : X → Y} with finite input alphabet X and finite output

alphabet Y, and the transmission rate τ (source symbol/channel use), a causal JSC code

with block length n with perfect feedback consists a set of encoder-mappings {fr}nr=1 where

fr : Sτn × Yr−1 −→ X , 1 ≤ r ≤ n,
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and one decoder-mapping

ϕn : Yn −→ Sτn.

s ∈ Sτn- {fr}nr=1
xr - WY |X -yr ϕn -

6
yr−1

ŝ ∈ Sτn

Figure 6.2: Causal JSCC system with perfect feedback.

Let the transmitted source message be s ∈ Sτn, the corresponding n-length codeword be

x ∈ X n and the received codeword be y ∈ Yn. Then similarly to the channel coding system,

the probability of receiving yr (1 ≤ r ≤ n) at the r-th instant under the conditions that the

message s is transmitted, that the input codeword is x1, x2, ...xr, and that y1, y2, ..., yr−1

has been previously accepted is given by

Pr(Yy = yr|Y1 = y1, Y2 = y2, ..., Yr−1 = yr−1, S
n = s) = WY |X(yr|xr).

For the sake of convenience, we denote the r-th component of the codeword

xr = fr(y1, y2, ..., yr−1, s)

by fr(s). The probability that a sequence y is received conditional on that the source s has

been transmitted is given by

PWn,f (y|s) ,

n∏

r=1

WY |X(yr|fr(s)),

and the probability of error for the JSC code ({fr}nr=1, ϕn) is given by

P
(n)
efb (QS ,WY |X , τ) =

∑

{(s,y):ϕn(y)6=s}

QSτn(s)PWn,f (y|s). (6.2)

Definition 6.2 The JSCC error exponent EJfb(QS ,WY |X , τ) with perfect feedback is de-

fined as the supremum of all numbers E for which there exists a sequence of JSC codes

({fr}nr=1, ϕn) with

E ≤ lim inf
n→∞

− 1

n
log2 P

(n)
efb (QS ,WY |X , τ).
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When there is no possibility of confusion, EJfb(QS ,WY |X , τ) will be written as EJfb.

In the following we shall derive an upper bound and a lower bound for EJfb.

6.1.3 Upper Bound for JSCC Error Exponent with Feedback

First of all, we can upper bound EJfb(QS ,WY |X , τ) in the same way as Csiszár’s did for

the JSCC upper bound (5.4) without feedback by using a simple type-partitioning (or type

counting) argument.

Theorem 6.1 Given QS, WY |X , and τ > 0 with perfect feedback,

EJfb(QS ,WY |X , τ) ≤ inf
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Efb(R,WY |X)

]
, (6.3)

where e(R,QS) is the source error exponent, and Efb(R,WY |X) is the channel error expo-

nent with feedback defined by Definition 6.1.

Proof : Due to (2.5), we first write

inf
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Efb(R,WY |X)

]

= inf
PS∈P(S)

[
τD(PS‖QS) + Efb(τHPS

(S),WY |X)
]
.

We assume that the above is finite (the upper bound is trivial if it is infinity) and the

infimum actually becomes a minimum. Let the minimum be achieved by distribution P ∗
S ∈

P(S), then there must exist a sequence of types
{
P̂S ∈ Pτn(S)

}∞

n=no

such that P̂S → P ∗
S

uniformly.1

Next rewrite the probability of error given in (6.2) as a sum of probabilities of types

and lower bound it by

P
(n)
efb (QS ,WY |X , τ) =

∑

PS∈Pτn(S)

Q
(τn)
S (TPS

)Pefb(TPS
) ≥ Q

(τn)
S (T bPS

)Pefb(T bPS
) (6.4)

1The sequence
n

bPS ∈ Pτn(S)
o∞

n=no

here denotes a sequence for n = no, 2no, 3no, ..., where no is the

smallest integer such that τn is also an integer.
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where

Pefb(T bPS
) ,

1

|T bPS
|
∑

s∈T bPS

∑

y:ϕn(y)6=s

PWn,f (y|s).

Note that Pefb(T bPS
) can be interpreted as the probability of error of an n-block channel code

({fc,r}nr=1, ϕcn) with message set Mn = T bPS
for the channel WY |X , since all the sequences

s ∈ T bPS
are equiprobable. Now setting Rn = 1

n log2 |T bPS
|, by the definition of the channel

error exponent with feedback and Lemma 3.1,

lim inf
n→∞

− 1

n
log2 Pefb(T bPS

) ≤ E
(
lim inf
n→∞

Rn,WY |X

)
= E(τH bPS

(S),WY |X) (6.5)

for any sequence of JSC codes ({fr}nr=1, ϕn). According to Lemma 3.1 again, we know that

for any P̂S ∈ Pτn(S)

− 1

τn
log2Q

(τn)
S (T bPS

) ≤ D(P̂S‖QS) + |S| 1

τn
log2(1 + τn)

which implies

lim sup
n→∞

− 1

n
log2Q

(τn)
S (T bPS

) ≤ τD(P̂S‖QS). (6.6)

It then follows from (6.4), (6.5), and (6.6) that

lim inf
n→∞

− 1

n
log2 P

(n)
efb (QS ,WY |X , τ)

≤ lim inf
n→∞

[
− 1

n
log2Q

(τn)
S (T bPS

) − 1

n
log2 Pefb(TPS

)

]

≤ lim sup
n→∞

− 1

n
log2Q

(τn)
S (T bPS

) + lim inf
n→∞

− 1

n
log2 Pefb(T bPS

)

≤ τD(P ∗
S‖QS) + Efb(τHP ∗

S
(S),WY |X).

Since the above bound holds for any sequence of JSC codes, we complete the proof of

Theorem 6.1. �

Observation 6.1 As we mentioned before, we can see from the proof that this approach

to prove the JSCC upper bound, based on a type counting argument, can be adapted to

other discrete JSCC systems. Indeed, as long as we can partition the source space via a

polynomial number of type classes, and we can rewrite the averaged probability of error for

each type class as a channel coding probability error, then we can obtain a similar conceptual
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bound expressed in terms of the sum of source and channel error exponents. Note that this

conceptual bound cannot currently be computed as the channel error exponent is not yet

fully known for all coding rates, but it directly implies that any upper bound for the channel

error exponent yields a corresponding upper bound for the JSCC error exponent.

Since Efb(R,WY |X) ≤ Esp(R,WY |X) due to Sheverdyaev [88], the following bound is

obvious.

Corollary 6.1 Given QS, WY |X , and τ > 0 with perfect feedback,

EJfb(QS ,WY |X , τ) ≤ EJsp(QS ,WY |X , τ) (6.7)

where EJsp(QS ,WY |X , τ) is Csiszár’s source-channel sphere-packing upper bound given by

(5.6).

By definition, the error exponent for systems with feedback must be larger than the

one without feedback; otherwise we just ignore the feedback information and then we can

achieve the same performance as the one without feedback. Thus, a trivial lower bound for

EJfb(QS ,WY |X , τ) follows

EJfb(QS ,WY |X , τ) ≥ EJ(QS ,WY |X , τ) ≥ max{EJr(QS ,WY |X , τ), EJex(QS ,WY |X , τ)},

(6.8)

and consequently the following condition follows from the results of Chapter 5.

Corollary 6.2 If τR
(s)
cr (QS) ≥ Rcr(WY |X), then feedback cannot improve the JSCC relia-

bility function, i.e.,

EJfb(QS ,WY |X , τ) = EJ(QS ,WY |X , τ).

6.1.4 Lower Bound for JSCC Error Exponent with Feedback

In the sequel, we are hence interested in the case when τR
(s)
cr (QS) < Rcr(WY |X). A Gallager-

type lower bound will be derived by modifying the approach in [115] (also see [22, 37]) for

the channel coding exponent bound with feedback.
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We first introduce the coding scheme. Let PX(x) be an arbitrary distribution on X with

PX(x) > 0 for any x ∈ X , and let B = [bxy]|X |×|Y| be an arbitrary |X | × |Y| matrix with

nonnegative components and nonzero columns (B will be specified in the proof of Theorem

6.2). For each transmission instant r = 1, 2, ..., n, we consider a set of likelihood functions

Tr(s) for each source message s ∈ Sτn such that

∑

s

Tr(s) = 1 and Tr(s) ≥ 0.

Thus each Tr = {Tr(s)} can be regarded as a probability distribution. The initial distribu-

tion T1, and the iterative algorithm between Tr and Tr+1 will be specified below.

When r = 1, let the initial distribution T1 be the tilted distribution (see Section 5.1.2)

of the source distribution T1 = Q
(λ)
Sτn defined on Sτn, where λ ≥ 0 is arbitrary and will

be optimized later. Note that this is different with the coding scheme in [115] for channel

coding with feedback, where T1 is set to be a uniform distribution, i.e., T1 = 1/Mn where

Mn is the size of the message set. Now both the encoder and the decoder know T1, and

they would employ the same algorithm to calculate the next likelihood function for each s.

We assume at the r-th transmission instant, the encoder and decoder have Tr.

Encoding rule. Denote M = |S|τn and K = |X | with X = {x(1), x(2), ..., x(K)}. Be-

fore each transmission and based on Tr, the encoder distributes all the M possible source

messages into K groups in the following way. The encoder orders the likelihood func-

tions and the distribution PX decreasingly, say, Tr(s1) ≥ Tr(s2) ≥ · · · ≥ Tr(sM ) and

PX(x(1)) ≥ PX(x(2)) ≥ · · · ≥ PX(x(K)). For the first K source messages, we assign s1 to

group G1, assign s2 to group G2,..., and finally, we assign sK to group GK . This procedure

is to make each group nonempty. For the source messages sK+1 up to sM , we successively

assign each source message to a group Gj according to the following rule:

j = arg min
1≤i≤K

∑
s∈Gi

Tr(s)

PX(x(i))
.

With the grouping completed, if the transmitted source message s ∈ Gi, then transmit

the channel symbol x(i).
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Iterative algorithm. For both the encoder and the decoder, after transmitting xr at the

r-th instant, assume the channel output is yr. The encoder and the decoder calculate the

next likelihood function Tr+1(·) for each s using Tr and yr in the following way:

Tr+1(s) =
bx(s)yr

Tr(s)∑
s bx(s)yr

Tr(s)

where x(s) = x(i) if s ∈ Gi, i = 1, 2, ...,K. Note that the decoder also makes the grouping

to obtain the same Gi’s. Clearly, Tr+1(s) is also a probability distribution.

Decoding rule. After the n-th transmission, the decoder would make a decision to say

which source message was transmitted. Based on the likelihood functions and the last

received symbol yn, the decoder computes Tn+1 and output the source message s with the

largest likelihood function

ŝ = arg max
s∈Sτn

Tn+1(s).

We next show that under the above coding and decoding procedure, the following bound

is achievable.

Theorem 6.2 Given QS, WY |X , and τ > 0 with perfect feedback,

EJfb(QS ,WY |X , τ) ≥ sup
ρ≥0

[
Efbo (ρ,WY |X) − τEs(ρ,QS)

]
, (6.9)

where

Efbo (ρ,WY |X) = max
µ≥0

max
PX

min
a∈X

min
q:q(a)≤PX(a)

Efbo (ρ,WY |X , µ, PX , a, q)

where the minimum is taken over the probability distribution q on X (i.e.,
∑

x∈X q(x) = 1,

q(x) ≥ 0) such that q(a) ≤ PX(a) and

Efbo (ρ,W, µ, PX , a, q) = − log2

∑

y∈Y

W
1+µ−ρ
1+µ

Y |X (y|a)
[
∑

x∈X

q(x)W
1

1+µ

Y |X (y|x)
]ρ
.

Proof : According to the decoding rule, an error occurs if Tn+1(s) is not the largest when

s is the transmitted source message. Clearly, an upper bound follows

P (n)
e (QS ,WY |X , τ) =

∑

s

QSτn(s)Pr (Tn+1(s) is not the largest| s is transmitted)

≤
∑

s

QSτn(s)Pr

(
Tn+1(s) ≤

1

2

∣∣∣∣ s is transmitted

)
.
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Let

V0 ,
T1(s)

1 − T1(s)
=

QSτn(s)
1

1+λ

P
sQSτn(s)

1
1+λ

1 − QSτn(s)
1

1+λ

P
sQSτn(s)

1
1+λ

and

Vr ,
Tr+1(s)

1 − Tr+1(s)

1 − Tr(s)

Tr(s)
, r = 1, 2, ..., n.

We may write, for any ρ ≥ 0,

P (n)
e (QS ,WY |X , τ)

≤
∑

s

QSτn(s)Pr

(
Tn+1(s)

1 − Tn+1(s)
≤ 1

∣∣∣∣ s is transmitted

)

=
∑

s

QSτn(s)Pr

(
n∏

r=1

V −ρ
r ≥ V ρ

0

∣∣∣∣∣ s is transmitted

)

(a)

≤
∑

s

QSτn(s)V −ρ
0 E

[
n∏

r=1

V −ρ
r

∣∣∣∣∣ s is transmitted

]

≤
(
∑

s′

QSτn(s′)
1

1+λ

)ρ∑

s

QSτn(s)
1+λ−ρ
1+λ E

[
n∏

r=1

V −ρ
r

∣∣∣∣∣ s is transmitted

]
, (6.10)

where (a) follows from Markov’s inequality. At this point we need to borrow an important

result from [37]. It has been shown in [37] that for arbitrary channel input distribution PX ,

E

[
n∏

r=1

V −ρ
r

∣∣∣∣∣ s is transmitted

]
≤ H(ρ,B, PX ,WY |X)n,

where

H(ρ,B, PX ,WY |X) = max
a∈X

H(ρ,B, PX ,WY |X , a)

is independent of s with

H(ρ,B, PX ,WY |X , a) = max
q:q(a)≤PX(a)

∑

y∈Y

WY |X(y|a)
[∑

x∈X q(x)bxy

bay

]ρ
,

where the maximum is taken over the probability distribution q on X (i.e.,
∑

x∈X q(x) = 1,

q(x) ≥ 0) such that q(a) ≤ PX(a). Now setting bxy = WY |X(y|x)
1

1+µ for an arbitrary µ ≥ 0,

and noting that the distribution PX is arbitrary, we obtain

E

[
n∏

r=1

V −ρ
r

∣∣∣∣∣ s is transmitted

]
≤ 2−nE

fb
o (ρ,WY |X). (6.11)
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On the other hand, by noting that the source is a DMS with QSτn(s) =
∏τn
i=1QS(si),

we have (
∑

s′

QSτn(s′)
1

1+λ

)ρ(∑

s

QSτn(s)
1+λ−ρ
1+λ

)
= f(λ)τn,

where

f(λ) =

(
∑

s

QS(s)
1+λ−ρ
1+λ

)(
∑

s

QS(s)
1

1+λ

)ρ
, λ ≥ 0.

To obtain a good upper bound on the probability of error, we need to optimize the parameter

λ for fixed ρ. It is not hard to check that

∂f(λ)

∂λ

∣∣∣∣
λ=ρ

= 0 and
∂2f(λ)

∂λ2

∣∣∣∣
λ=ρ

≥ 0.

Thus

min
λ≥0

f(λ) ≤
(
∑

s

QS(s)
1

1+ρ

)1+ρ

= 2Es(ρ,Q). (6.12)

In the above, we write “≤” instead of “=” because we do not know whether λ = ρ is a

global minimum point. Finally, substituting (6.11) and (6.12) into (6.10) and maximizing

the exponent over all ρ ≥ 0 yields the desired lower bound (6.9). �

Remark 6.1 Unlike λ in the proof, we are not able to find the best µ for a fixed ρ (especially

for ρ ≥ 1) for general DMC’s.

The lower bound (6.9) has a similar parametric form as Gallager’s lower bound for JSCC

error exponent without feedback (5.9), i.e.,

max
0≤ρ≤1

[Eo(ρ,WY |X) − τEs(ρ,QS)],

and we have shown that, Gallager’s lower bound is equal to Csiszár’s lower bound EJr if

the channel function Eo(ρ,WY |X) is achieved by a distribution PX independent of ρ. In

fact, we have the following relation.

Corollary 6.3 For DMC with binary input alphabet X = {0, 1}, the lower bound given in

(6.9) is at least as large as Gallager’s random-coding lower bound without feedback.
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Proof : We first restrict the range of ρ by

sup
ρ≥0

[
Efbo (ρ,WY |X) − τEs(ρ,QS)

]
≥ max

0≤ρ≤1

[
Efbo (ρ,WY |X) − τEs(ρ,QS)

]
.

It then suffices to show Efbo (ρ,WY |X) ≥ Eo(ρ,WY |X) for any given ρ ∈ [0, 1]. When

0 ≤ ρ ≤ 1, the function [
∑

x′∈X

q(x′)W
1

1+µ

Y |X (y|x′)
]ρ

is a concave function of q and the constraints
∑

x q(x) = 1 and q(a) ≤ PX(a) will be

achieved with equality. Thus,

max
a∈X

max
q:q(a)≤PX(a)

∑

y∈Y

W
1+µ−ρ
1+µ

Y |X
(y|a)

[
∑

x∈X

q(x)W
1

1+µ

Y |X
(y|x)

]ρ

= max
a∈{0,1}

∑

y∈Y

W
1+µ−ρ
1+µ

Y |X (y|a)
[
∑

x∈X

PX(x)W
1

1+µ

Y |X (y|x)
]ρ
.

Next we set µ = ρ and choose P ∗
X (P ∗

X(a) > 0) such that

∑

y∈Y

W
1

1+ρ

Y |X (y|a)
[
∑

x∈X

P ∗
X(x)W

1
1+ρ

Y |X (y|x)
]ρ

=
∑

y∈Y

[
∑

x∈X

P ∗
X(x)W

1
1+ρ

Y |X (y|x)
]1+ρ

for every a ∈ X . We know from [42, Theorem 5.6.5] that such P ∗
X must achieve the maximum

of Eo(ρ,WY |X). Thus

Efbo (ρ,WY |X) ≥ min
a∈X

min
q:q(a)≤P ∗

X(a)
Efbo (ρ,W, µ = ρ, PX = P ∗

X , a,q) = Eo(ρ,WY |X).

�

However, it is difficult to evaluate the bound (6.9) for general DMC’s, and we do not

know if the lower bound can improve Gallager’s bound in general, since when ρ ≥ 1, it

turns out that
∑

y∈Y

WY |X(y|x)
[∑

x′∈X q(x
′)bx′y

bx′y

]ρ

is a convex function of q, and the maximum would be achieved at some boundary points.

When WY |X is a K-ary symmetric channel2 and a DMC with binary input, an analytic

formula for Efbo (ρ,WY |X) is given in [37].

2In this case WY |X is determined by only two parameters, i.e., the elements on the diagonal of the K×K

transition matrix are the same, and the other elements are the same.
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To be simple, we next use the results of [37] to specialize the lower bound given in (6.9)

for binary input channels with symmetric distribution (in the Gallager sense, cf. Section

5.3.3), and derive a sufficient condition in terms of information rates for which EJfb is

determined exactly. Let the DMC have binary input alphabet X = {0, 1}. For x ≥ 0 define

functions

g0(x) ,
∑

y∈Y

WY |X(y|0) 1
1+xWY |X(y|1) x

1+x

and

g1(x) ,
∑

y∈Y

WY |X(y|1) x
1+xWY |X(y|0) 1

1+x .

It has been shown in [37] that for such channel

Efbo (ρ,WY |X) = Eo(ρ,WY |X) (6.13)

for ρ ≤ ρ∗ where ρ∗ = min{ρ1, ρ2} and ρi > 1 (i = 1, 2) is the unique root of

− log2 gi (ρ) = Eo(ρ,WY |X).

Otherwise (if ρ ≥ ρ∗ and hence ρ > 1),

Efbo (ρ,WY |X) = − log2 min
µ≥ρ−1

max

{
f1(ρ, µ, 0), f2(ρ, µ, 0), f1

(
ρ, µ,

1

2

)
, f1

(
ρ, µ,

1

2

)}

(6.14)

where

f1(ρ, µ, q) ,
∑

y∈Y

WY |X(y|0)1−
ρ

1+µ

[
WY |X(y|0)

1
1+µ q +WY |X(y|1)

1
1+µ (1 − q)

]ρ
,

f2(ρ, µ, q) ,
∑

y∈Y

WY |X(y|1)1−
ρ

1+µ

[
WY |X(y|1)

1
1+µ q +WY |X(y|0)

1
1+µ (1 − q)

]ρ
.

Theorem 6.3 Let |X | = 2, τHQS
(S) < C(WY |X), and log2 |S| > R∞(WY |X). If Eo(ρ,WY |X)

is achieved by a PX independent of ρ, then

EJfb(QS ,WY |X , τ) = EJsp(QS ,WY |X , τ), (6.15)

for the source-channel pairs satisfying

τH
Q

(ρ∗)
S

(S) ≥ Rcr,fb(WY |X), (6.16)
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where Q
(ρ∗)
S is the tilted distribution with respect to ρ∗ and Rcr,fb(WY |X) = E′

o(ρ
∗,WY |X) is

a number strictly less than the critical rate Rcr(WY |X).

Remark 6.2 For symmetric channels (in the Gallager sense) Eo(ρ,WY |X) is achieved by

uniform input distributions and hence it is differentiable with respect to ρ (cf. Section

5.3.3).

Proof of Theorem 6.3: The proof is straightforward since if (6.16) holds then EJsp given

in the parametric form (5.8) would be achieved by a ρ ≤ ρ∗ by noting that Tsp(ρ,WY |X) =

Eo(ρ,WY |X) is differentiable, and hence Efbo (ρ,WY |X) = Eo(ρ,WY |X) by (6.13) and (6.15)

follows. �
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Figure 6.3: The regions for the (ε, q) pairs in the binary DMS {q, 1 − q} and BSC (ε)

system of Example 6.1 with τ = 0.5. EJ,fb is exactly determined in Region A (including the

boundary). Furthermore, in Region B (including the boundary with A), EJ,fb = EJ > 0;

in Region C (including the boundary with B), EJ,fb = EJ = 0. Note that in Region D, EJ

is not exactly determined.

Example 6.1 Now we apply the conditions (6.16) to a communication system with a binary

source with distribution {q, 1 − q} (q < 0.5), a BSC with crossover probability ε (ε < 0.5)
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and transmission rates τ = 0.5. For such channel

g0(x) = g1(x) = ε
1

1+x (1 − ε)
x

1+x + ε
x

1+x (1 − ε)
1

1+x .

Fig. 6.3 (left) shows that the JSCC error exponent with feedback EJ,fb is determined ex-

actly by the sphere-packing upper bound EJsp(QS ,WY |X , τ) in Region A (including the

boundary). Comparing with Region B in Fig. 6.3 (right), where EJ is determined by

EJsp(QS ,WY |X , τ), A is much bigger than B ∪ C. In other words, the sphere-packing

upper bound determines the JSCC error exponent with feedback for many source-channel

pairs in Region D, where EJ is not determined there.

6.2 Feedback Can Increase the JSCC Error Exponent

For discrete memoryless source-channel systems, feedback does not improve the region for

reliable transmissibility (i.e., we have the same JSCC theorem for systems with feedback),

but it might improve the reliability function. In the last section we studied the lower

and upper bounds for the JSCC error exponent with perfect feedback EJ,fb, and the most

important result is that we obtain a nontrivial Gallager-type lower bound which can be

easily computed when the channel has binary input alphabet and a symmetric distribution.

Consequently, we can compare it with the upper bound of EJ and study the situation when

EJ,fb can be strictly larger than EJ .

From Fig. 6.3, we note that when EJ is determined EJ,fb is equal to EJ in Regions B

and C, and EJ,fb > EJ is possible only if the source-channel pairs are in Region D. In that

case, the lower and upper bounds EJr(QS ,WY |X , τ) and EJsp(QS ,WY |X , τ) are not equal,

and more specifically, the upper bound

EJsp(QS ,WY |X , τ) = inf
τHQS

(S)≤R≤τ log2 |S|

[
te

(
R

τ
,QS

)
+ Esp(R,WY |X)

]

would be achieved by some R ≤ Rcr(WY |X). Considering that the sphere-packing channel

exponent Esp(R,WY |X) is a loose bound for low rates and that

EJ(QS ,WY |X , τ) ≤ inf
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ E(R,WY |X)

]
,
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we replace Esp(R,WY |X) by the straight-line bound Est(R,WY |X), which leads to a tighter

upper bound for EJ

EJ(QS ,WY |X , τ) ≤ EJst(QS ,WY |X , τ) , inf
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ Est(R,WY |X)

]
.

(6.17)

In the following we will analytically compute the new upper bound EJst(QS ,WY |X , τ) and

numerically compare it with the lower bound given of Theorem 6.2 for binary input channels

with symmetric distribution.

Since for channels with symmetric distribution Esp(R,WY |X) is differentiable with re-

spect to R, the supporting line of Esp(R,WY |X) at every R > 0 is tangent to Esp(R,WY |X)

and we have an analytical form for its slope. We know that the supporting line of −Esp at

Rl is given by (cf. [17, Section 7.1])

−Esp(Rl,WY |X) = ρlRl − (−Esp(Rl,WY |X))∗ = ρlRl − Eo(ρl,WY |X)

with slope ρl, where the second equality holds since Eo(ρl,WY |X) is concave. This means

that

sup
ρ≥0

[ρRl − Eo(ρ,WY |X)] = ρlRl − Eo(ρl,WY |X)

and hence E′
o(ρl,WY |X) = Rl as Eo(ρl,WY |X) is differentiable.

On the other hand, for binary input channels (which are equidistant channels, see Section

5.4.3), Eex(0,WY |X) is achieved by uniform input distribution and by [42, p. 156]

Eex(0,WY |X) = −
∑

x1,x2∈X

1

4
log2


∑

y∈Y

√
WY |X(y|x1)WY |X(y|x2)


 <∞.

We can express the straight-line exponent analytically by

Est(R,WY |X) =





Eex(0,WY |X) − ρlR if 0 ≤ R ≤ Rl,

Esp(R,WY |X) if R ≥ Rl,
(6.18)

where ρl is the unique solution of

Eo(ρl,WY |X) = −
∑

x1,x2∈X

1

4
log2


∑

y∈Y

√
WY |X(y|x1)WY |X(y|x2)


 . (6.19)
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and Rl = E′
o(ρl,WY |X). By the Fenchel duality theorem, it can be shown in a similar

manner as Theorem 5.1 that

EJst(QS ,WY |X , τ) = max
0≤ρ≤ρl

[Eo(ρ,WY |X) − τEs(ρ,QS)]. (6.20)

We then compare the lower bound of EJfb with the new upper bound EJst(QS ,WY |X , τ)

in the following example.

Example 6.2 Let the source be a binary source with distribution {q, 1 − q} (q < 0.5),

and let the channel be a BSC with crossover probability ε (ε < 0.5). We choose small

transmission rates τ = 0.25 and 0.4 here since we want to make the infimum of (6.17)

achieved by small R so that the lower bound of EJ,fb given by Theorem 6.2 is able to

outperform the upper bound of EJ computed from (6.20). Indeed, as seen from Fig. 6.4,

when τ = 0.25, the lower bound of EJ,fb is obviously larger than the upper bound of EJ

for q = 0.1 and 0.2 and small ε’s. When τ = 0.4, the lower bound of EJ,fb still has slight

advantage over the upper bound of EJ for ε ≤ 0.001. Thus we have demonstrated that

feedback can improve the JSCC reliability function for some discrete memoryless systems.

Remark 6.3 It is known [37], [115] that for certain DMC’s (e.g. BSC’s) the channel error

exponent with feedback is strictly larger than the one without feedback for rates in an

interval below the channel critical rate. Our results coincide with the previous results since

the upper and lower bounds for the JSCC reliability function reduces to the channel error

exponent bounds if the source distribution is uniform.

6.3 Systems with Source Side Information at the Decoder

6.3.1 System Description

We consider in this section a communication system consisting of two correlated DMSs

QSL ∈ P(S × L) with finite alphabet S × L and joint distribution QSL, and a DMC

WY |X ∈ P(Y|X ) with finite input alphabet X , finite output alphabet Y, and transition
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Figure 6.4: Feedback can enlarge the JSCC error exponent for different (ε, q) pairs in the

binary DMS {q, 1 − q} and BSC (ε) system of Example 6.2.

probability distribution WY |X . We need to transmit the source QS over the channel WY |X

with side information QL available at the decoder only.

The system is depicted in Fig. 6.5. The source message pair (s, l) of length τn is drawn

in an independent and identically distributed (i.i.d.) manner from a joint distribution

QSL ∈ P(S ×L). We need to transmit the source message s over the DMC WY |X via JSCC

block codes of length n and transmission rate τ . The source message l, viewed as a noisy

observation of s, contains the source SI and helps the decoder reconstruct s.

A JSC code of block length n and transmission rate τ > 0 for the system with SI at the
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s ∈ Sτn-

l ∈ Lτn
6

fn
x ∈ X n

- W
(n)
Y |X -y ∈ Yn

ϕn -ŝ ∈ Sτn

Figure 6.5: JSCC system with source SI.

decoder is a pair of mappings, (fn, ϕn), where

fn : Sτn −→ X n

is the encoder, and

ψn : Yn × Lτn −→ Sτn

is the decoder (see Fig. 6.5). The probability of error is given by

PSIDe,n (QSL,WY |X , τ) ,
∑

(s,l)∈Sτn×Lτn

Q
(τn)
SL (s, l)

∑

y:ϕn(y,l)6=s

W
(n)
Y |X(y|fn(s)). (6.21)

Definition 6.3 GivenQSL,WY |X and τ > 0, the JSCC error exponentESIDJ (QSL,WY |X , τ)

is defined as supremum of the set of all numbers E for which there exists a sequence of JSC

codes (fn, ϕn) with blocklength n and transmission rate τ such that

E ≤ lim inf
n→∞

− 1

n
log2 P

SID
e,n (QSL,WY |X , τ). (6.22)

6.3.2 A Lower Bound

For the joint distribution of the sources QSL, we can look at the conditional distribution

QL|S ∈ P(L|S) as a dummy channel between QS and QL. For any PS ∈ P(S) and any

R ≤ HPS
(S), we define an exponent for the dummy channel QL|S by

er(R,QL|S , PS) , Er(HPS
(S) −R,QL|S, PS)

= min
PL|S∈P(L|S)

[
D(PL|S‖QL|S |PS) + |R−HPSPL|S

(S|L)|+
]
. (6.23)
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Recall that Er(R,WY |U ) is a strictly decreasing function of R and vanishes at the channel

capacity of WY |X . Accordingly, er(R,QL|S , PS) is a strictly increasing function of R and is

zero if and only if R ≤ HPSQL|S
(S|L). Let

ESI(PS , QL|S ,WY |X) , max
0≤R≤τHPS

(S)
min

{
Er(R,WY |X), τer

(
R

τ
,QL|S , PS

)}
. (6.24)

For x ∈ X n, y ∈ Yn, since the joint type Pxy can also be represented as distribu-

tions of dummy RV’s, we define the empirical mutual information and conditional entropy

respectively by

I(x;y) , IPxy(X;Y )

and

H(x|y) , HPxy(X|Y ).

To establish a lower bound for ESIDJ (QSL,WY |X , τ), we need the following auxiliary result.

Proposition 6.1 [30, Theorem 5] Given finite sets X and Y, a sequence of positive integers

{mn} with

1

n
log2mn → 0,

for δ > 0, n = n(δ, |X |, |Y|) sufficiently large, arbitrary (not necessarily distinct) types

PXi
∈ Pn(X ), and positive integers Ni, i = 1, 2, ...,mn with

Ri ,
1

n
log2Ni < HPXi

(X) − δ,

there exist mn disjoint subsets Ωi =
{
x

(i)
p

}Ni

p=1
⊆ TPXi

for every i, and a mapping ϕ
(0)
n :

Yn → Ω, where Ω ,
⋃
iΩi, such that the probability of erroneous transmission of an x ∈ Ω

using ϕ
(0)
n is bounded for WY |X as

∑

y:ϕ
(0)
n (y)6=x

W
(n)
Y |X (y|x) ≤ 2−n[Er(Ri,PXi

,WY |X)−δ] (6.25)

if x ∈ Ωi for every i.

Proof: The proof is based on the type packing lemma (here we only need (3.4) of Lemma

3.2, which is Csiszár’s type packing lemma [30, Theorem 5] for a single-letter type setting)

and a generalized maximum mutual information decoding rule.
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In the sequel of the proof, we look at X as the RV A in Lemma 3.2. For the {mn} and

PXi
given in Proposition 6.1, according to the first part of Lemma 3.2, there exist pairwise

disjoint subsets Ωi satisfying (3.4) for every 1 ≤ i ≤ mn, 1 ≤ p ≤ Ni, VX′|X ∈ Pn(X|X ),

with the exception of the case that i = k and VX′|X is the conditional distribution such that

VX′|X(x′|x) is 1 if x′ = x and 0 otherwise. We shall show that for such Ωi, there exists a

mapping ϕ
(0)
n such that (6.25) is satisfied.

For any x ∈ Ω and y ∈ Yn, let

α(x;y) , I(x;y) −Ri,

where Ri = 1
n log2Ni if x ∈ Ωi. Define ϕ

(0)
n : Yn → Ω by

ϕ(0)
n (y) , arg max

x∈Ω
α(x;y).

Using the decoder ϕ
(0)
n , we can upper bound the probability of error (assuming that x ∈ Ωi

is sent through the channel) as follows

P (n)
e (x) = W

(n)
Y |X

({
y : ϕ(0)

n (y) 6= x
}∣∣∣x

)

≤
∑

bVY |X∈Pn(Y|PXi
)

W
(n)
Y |X

(
TbVY |X

(x)
⋂{

y : ϕ(0)
n (y) 6= x

}∣∣∣x
)
. (6.26)

Using the identity (Lemma 3.1) that for any x ∈ Ωi ⊆ TPXi
and y ∈ TbVY |X

(x)

W
(n)
Y |X

(y|x) = 2
−n

»
D(bVY |X‖WY |X |PXi)+HPXi

bVY |X
(Y |X)

–

,

we obtain

∑

bVY |X∈Pn(Y|PXi
)

W
(n)
Y |X

(
TbVY |X

(x)
⋂{

y : ϕ(0)
n (y) 6= x

}∣∣∣x
)

=

∣∣∣∣∣∣∣∣
TbVY |X

(x)
⋂{

y : ϕ(0)
n (y) 6= x

}

︸ ︷︷ ︸
,E

∣∣∣∣∣∣∣∣
2
−n

»
D(bVY |X‖WY |X |PXi)+HPXi

bVY |X
(Y |X)

–

.

Thus we only need to upper bound
∣∣∣TbVY |X

(x)
⋂ E

∣∣∣. If we fix a k = 1, 2, ...,mn, then

E is the set of all y such that there exist some x′ ∈ Ωk, (x,x′,y) admits a joint type
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Pxx′y ∈ Pn(X × X × Y) and

I(x′;y) −Rk ≥ I(x;y) −Ri. (6.27)

Note that (6.27) can be represented as for dummy R.V.’s X ∈ X , X ′ ∈ X , and Y ∈ Y, the

following holds under the joint distribution PXX′Y = Pxx′y,

IPX′Y
(X ′;Y ) −Rk ≥ IPXY

(X;Y ) −Ri,

where PX′Y and PXY are the corresponding marginal distributions induced by PXX′Y .

Thus, TbVY |X
(x)
⋂ E can be written as a union of subsets

TbVY |X
(x)
⋂

E =
mn⋃

k=1

⋃

PXX′Y ∈Ck(x)

Fk(x, PXX′Y ) (6.28)

where

Ck(x) ,





PXX′Y

∈ Pn(X 2 × Y) :

PX = PXi
, PX′ = PXk

PY |X = V̂Y |X ,

IPX′Y
(X ′;Y ) −Rk

≥ IPXY
(X;Y ) −Ri





,

where PX , PX′ and PY |X , etc, are the corresponding marginal and conditional distributions

induced from PXX′Y , and

Fk(x, PXX′Y ) ,



y :

∃ x′

such that

(x,x′,y) ∈ TXX′Y

x′ ∈ Ωk



 ,

where TXX′Y , TPXX′Y
. Clearly, given any k, and PXX′Y ,

|Fk(x, PXX′Y )| ≤

∣∣∣∣∣∣



(x′,y) :

(x,x′,y) ∈ TXX′Y

x′ ∈ Ωk, x′ 6= x





∣∣∣∣∣∣

=

∣∣∣∣∣∣



x′ :

(x,x′) ∈ TXX′

x′ ∈ Ωk, x′ 6= x





∣∣∣∣∣∣
×
∣∣TY |XX′(x,x′)

∣∣

≤ Nk2
−n

h
IP

XX′ (X;X′)−η
i
× 2

nHP
XX′Y

(Y |X,X′)
, (6.29)
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where the last inequality follows from Lemma 3.2 (3.4). Meanwhile, when x ∈ Ωi, the

following simple bound also holds

|Fk(x, PXX′Y )| ≤
∣∣TY |X(x)

∣∣ ≤ 2nHPXY
(Y |X) = 2

nH
PXi

bVY |X
(Y |X)

(6.30)

since for each TXX′Y ∈ Ck(x), we have PX = PXi
, PY |X = V̂Y |X and hence PXY = PXi

V̂Y |X .

Now substituting the following inequality

HPXX′Y
(Y |X,X ′) − IPXX′ (X;X ′)

= HPXX′Y
(X,X ′, Y ) −HPX

(X) −HPX′ (X
′)

= HPXY
(X,Y ) +HPXX′Y

(U ′,X ′|X,Y ) −HPX
(X) −HPX′ (X

′)

= HPXY
(Y |X) − IPXX′Y

(X ′;X,Y )

≤ HPXY
(Y |X) − IPX′Y

(X ′;Y )

= H
PXi

bVY |X
(Y |X) − IPX′Y

(X ′;Y ) (6.31)

into (6.29), combining with (6.30) together, we obtain

|Fk(x, PXX′Y )| ≤ 2
n

»
H

PXi
bVY |X

(Y |X)−
˛̨
˛IP

X′Y
(X′;Y )−Rk

˛̨
˛
+

–

. (6.32)

Again recall that for PXX′Y ∈ Ck(x), PXY = PXi
V̂Y |X , and note that

IPX′Y
(X ′;Y ) −Rk ≥ IPXY

(X;Y ) −Ri.

This implies when PXX′Y ∈ Ck(x)

|Fk(x, PXX′Y )| ≤ 2
n

"
H

PXi
bVY |X

(Y |X)−

˛̨
˛̨I

PXi
bVY |X

(X;Y )−Ri

˛̨
˛̨
+

#

,

and hence

∣∣∣TbVY |X
(x)
⋂

E
∣∣∣ ≤ mn(n+ 1)|X |2|Y|

×2
n

"
H

PXi
bVY |X

(Y |X)−

˛̨
˛̨(I

PXi
bVY |X

(X;Y )−Ri

˛̨
˛̨
+

#

, (6.33)

since by Lemma 3.1

|Ck(x)| ≤
∣∣Pn(X 2 × Y)

∣∣ ≤ (n+ 1)|X |2|Y|.
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Finally, we complete the proof by plugging (6.33) into (6.26) and by noting that |Pn(Y|PXi
)|

is also a polynomial function of n by Lemma 3.1. �

Theorem 6.4 Given QSL, WY |X and τ > 0, when the SI QL is available only at the

decoder, the JSCC error exponent satisfies

ESIDJ (QSL,WY |X , τ) ≥ ESIDJ (QSL,WY |X , τ) , min
PS∈P(S)

[
τD(PS‖QS) + E∗

r (PS ,WY |X)
]
,

(6.34)

where

E∗
r (PS ,WY |X) = max

{
Er(τHPS

(S),WY |X), ESI(PS , QL|S ,WY |X)
}
.

Remark 6.4 Note that if sources QS and QL are independent, i.e., QSL = QSQL, then

the lower bound (6.34) reduces to (5.5) as expected.

Proof:

Step 1: Outline of Proof

We employ a two-stage encoding two-stage decoding rule by combining the approaches

of [30] and [73] to show the existence of JSC codes (fn, ϕn) such that for any δ > 0,

PSIDe,n (QSL,WY |X , τ) ≤ 2−n[E
SID
J (QSL,WY |X ,τ)−δ]

for n = n(δ, |X |, |Y|) sufficiently large. In the first stage coding, there are two coding

schemes for the encoder to choose based on the type Ps of the source word s.

(a) If τHPs(S) > R̃i, then encode s using a unique index in {1, 2, 3, ..., ⌈2n eRi ⌉} ,where

R̃i achieves the error exponent ESI for the fixed type Ps, i.e., the cross point of the

channel coding error exponent and the source coding error exponent with source SI.

(b) If τHPs(S) = R̃i, then map each s to an index in a one-to-one manner.

In the second stage coding, we employ Csiszár’s JSCC scheme [30].
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Step 2: First Stage Encoding

Set mn , |Ptn(S)|. Note that mn here is polynomial of n and hence 1
n log2mn → 0. For

each type PSi
∈ Ptn(S), i = 1, 2, ...,mn, let Ni , {1, 2, ...,Ni} where Ni = ⌈2n eRi⌉ and R̃i

achieves ESI(PSi
, QL|S ,WY |X) defined in (6.24), i.e., R̃i is the intersection of Er(R,WY |X)

and τer
(
R
τ , QL|S , PSi

)
in the domain [0, τHPSi

(S)] if any; in that case

ESI(PSi
, QL|S,WY |X) = Er(R̃i,WY |X) = τer

(
R̃i
τ
,QL|S , PSi

)
≥ Er(τHPSi

(S),WY |X),

(6.35)

where the last inequality holds since Er(R,WY |X) is a decreasing function of R. By defini-

tion, we thus obtain that

E∗
r (PSi

,WY |X) = ESI(PSi
, QL|S ,WY |X). (6.36)

If there is no intersection between Er(R,WY |X) and τer
(
R
τ , QL|S , PSi

)
in the domain R ≤

τHPSi
(S), the maximum in (6.24) would be achieved by R̃i = τHPSi

(S). In that case

E∗
r (PSi

,WY |X) = Er(τHPSi
(S),WY |U) ≥ ESI(PSi

, QL|S,WY |X). (6.37)

Lemma 6.1 [32, p. 264, Problem 5], [43] If R̃i < τHPSi
(S), then there exists a pair of

mappings f̂
(1)
n,i : TPSi

→ Ni and ϕ̂
(1)
n,i : Ni × Lτn → TPSi

such that for δ > 0,

∑

l:bϕ(1)
n,i

“
bf(1)
n,i (s),l

”
6=s

Q
(τn)
L|S (l|s) ≤ 2

−τ

»
er

„
eRi
τ
,QL|S,PSi

«
−δ

–

(6.38)

if s ∈ TSi
for n sufficiently large.

Proof: Let s ∈ TSi
be the transmitted source message. Write

∑

l:bϕ(1)
n,i

“
bf(1)
n,i (s),l

”
6=s

Q
(τn)
L|S (l|s) =

∑

PL|S∈Pn(L|PSi
)

∑

l∈TPL|S
(s)

Q
(τn)
L|S (l|s) 1

{
ϕ̂

(1)
n,i

(
f̂

(1)
n,i (s), l

)
6= s
}
.

(6.39)

To show the existence of mappings (f̂
(1)
n,i , ϕ̂

(1)
n,i) satisfying (6.38), we consider a family of

mapping pairs (f
(1)
n,i , ϕ

(1)
n,i) as follows. f

(1)
n,i : TPSi

→ Ni is a random binning function that

maps each s ∈ TPSi
to an index w ∈ Ni with probability 1/Ni. ϕ

(1)
n,i : Ni × Lτn → TPSi

is
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a minimum conditional entropy decoder which searches all the source sequences s ∈ TPSi

such that the empirical conditional entropy H(s|l) is minimized,

ϕ
(1)
n,i(w, l) = arg min

s∈TPSi
:f

(1)
n,i (s)=w

H(s|l).

We then bound the above probability averaged over all possible pairs (f
(1)
n,i , ϕ

(1)
n,i),

E




∑

l:ϕ
(1)
n,i

“
f
(1)
n,i (s),l

”
6=s

Q
(τn)
L|S (l|s)




=
∑

PL|S∈Pn(L|PSi
)

∑

l∈TPL|S
(s)

Q
(τn)
L|S (l|s) E

[
1
{
ϕ

(1)
n,i

(
f

(1)
n,i (s), l

)
6= s
}]

,

where the expectation is taken with respect to the distribution PW (w) = 1/Ni, w ∈ Ni. Let

A0 be the event that source messages s and l were transmitted. According to the minimum

conditional entropy decoding rule

E

[
1
{
ϕ

(1)
n,i

(
f

(1)
n,i (s), l

)
6= s
}]

= Pr
({

∃ ŝ ∈ TSi
, ŝ 6= s such that H (̂s|l) ≤ H(s|l), f (1)

n,i (s) = f
(1)
n,i (̂s)

}∣∣∣A0

)

≤
∑

bs∈TSi
:bs6=s,H(bs|l)≤H(s|l)

Pr
({

f
(1)
n,i (s) = f

(1)
n,i (̂s)

}∣∣∣A0, ŝ
)

=
∑

bs∈TSi
:bs6=s,H(bs|l)≤H(s|l)

Ni∑

w=1

PW (f
(1)
n,i (s) = w)PW (f

(1)
n,i (̂s) = w)

=
∑

bs∈TSi
:bs6=s,H(bs|l)≤H(s|l)

1

Ni

≤ |{ŝ ∈ TSi
: H (̂s|l) ≤ H(s|l)}|

Ni
. (6.40)

It follows from the method of types (cf. Lemma 3.1) that

|{ŝ ∈ TSi
: H (̂s|l) ≤ H(s|l)}|

=

∣∣∣∣∣∣

⋃

PSL∈Pτn(S×L):HPSL
(S|L)≤H(s|l)

{ŝ ∈ TSi
: (̂s, l) ∈ TPSL

}

∣∣∣∣∣∣

≤
∑

PSL∈Pτn(S×L):HPSL
(S|L)≤H(s|l)

2τnHPSL
(S|L)

≤ (τn+ 1)|S||L|2τnH(s|l). (6.41)
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Plugging (6.41) into (6.40), and noting that the expectation should be no greater than 1,

we obtain

E

[
1
{
ϕ

(1)
n,i

(
f

(1)
n,i (s), l

)
6= s
}]

≤ (τn+ 1)|S||L|2−τn|
eRi/t−H(s|l)|+.

Also, by Lemma 3.1,

Q
(τn)
L|S

(
TPL|S

(s)
∣∣∣ s
)
≤ 2−τnD(PL|S‖QL|S |PSi

).

Thus

E




∑

l:ϕ
(1)
n,i

“
f
(1)
n,i (s),l

”
6=s

Q
(τn)
L|S (l|s)




≤ (τn+ 1)2|S||L|2
−τnminPL|S

h
D(PL|S‖QL|S |PSi

)+|Ri/t−HPSi
PL|S

(S|L)|+
i
.

This implies that there exists a pair of mappings (f̂
(1)
n,i , ϕ̂

(1)
n,i) such that for any s ∈ TSi

the

upper bound (6.38) holds. �

We next define the first encoding function f̃
(1)
n =

{
f̃

(1)
n,i

}mn

i=1
: Sτn → ⋃mn

i=1 Ni as follows.

For every i = 1, 2, ...,mn, and the choice of Ni,

• if R̃i = τHPSi
(S), then f̃

(1)
n,i : TPSi

→ Ni maps each s ∈ TPSi
to a unique index w ∈ Ni,

since |TPSi
| ≤ 2

nHPSi
(S)

.

• if R̃i < τHPSi
(S), then let f̃

(1)
n,i = f̂

(1)
n,i .

Note that the decoding function ϕ̂
(1)
n,i corresponding to each of the above cases will be

used in the decoding stage.

Step 3: Second Stage Encoding

For the index set Ni = {1, 2, ..., Ni} with Ri , 1
n log2Ni (note that Ri → R̃i as n→ ∞), let

P ∗
Xi

∈ Pn(X ) be a type3 that maximizes the exponent Er(Ri,WY |X) = Er(Ri,WY |X , P
∗
Xi

)

for each i = 1, 2, ...,mn. Assume (without loss of generality) that Ri < HP ∗
Xi

(X) − δ is

3Note that the maximizer can be approximated (with arbitrarily high accuracy) by a type.
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satisfied for i = 1, 2, ...,m′
n (where m′

n ≤ mn). Then for the m′
n types P ∗

Xi
’s, according

to Proposition 6.1, there exist disjoint sets Ωi ∈ TP ∗
Xi

with |Ωi| = Ni, i = 1, 2, ...,m′
n and

a mapping ϕ
(0)
n such that (9.15) holds. Now for each i = 1, 2, ...,mn, define the second

encoding function f
(2)
n =

{
f

(2)
n,i

}mn

i=1
:
⋃mn

i=1 Ni → X n as follows.

• If i ≤ m′
n, i.e., if Ri < HP ∗

Xi
(X)− δ is satisfied for such i, then f

(2)
n,i maps each w ∈ Ni

to a unique codeword x ∈ Ωi.

• If i > m′
n, i.e., if Ri ≥ HP ∗

Xi
(X) − δ holds for such i, then let f

(2)
n,i (w) = 0 ∈ X n for

every w ∈ Ni (assume without loss of generality that 0 /∈ Ω), and an error is declared.

Step 4: First Stage Decoding

Based upon received n-length sequence y at the channel output, we first employ ϕ
(0)
n : Yn →

Ω to estimate the codeword x. According to Proposition 6.1, there exist such function ϕ
(0)
n

such that if the transmitted index x ∈ Ωi, i = 1, 2, ...,m′
n, then the probability of error is

bounded by

∑

y:ϕ
(0)
n (y)6=x

W
(n)
Y |X (y|x) ≤ 2

−n
h
Er

“
Ri,WY |X ,P

∗
Xi

”
−δ

i
= 2−n[Er(Ri,WY |X)−δ].

If the transmitted codeword x /∈ Ω, then the probability of error is bounded by 1. We then

use ϕ
(0)
n to define the decoding function ϕ

(2)
n : Yn → ⋃mn

i=1 Ni as follows. Let ϕ
(0)
n (y) = x̂ ∈

Ωi, then the decoder ϕ
(2)
n outputs the index ŵ ∈ Ni such that f

(2)
n,i (ŵ) = x̂.

Step 5: Second Stage Decoding

Let ŵ ∈ Ni be the output of ϕ
(2)
n . Define the decoding function ϕ̃

(1)
n = {ϕ̃(1)

n,i}mn

i=1 :
⋃mn

i=1 Ni×

Lτn → Sτn as follows.

• If R̃i = τHPSi
(S), then ϕ̃

(1)
n,i : Ni × Lτn → TPSi

outputs the unique s such that

f̃
(1)
n,i (s) = ŵ.

• If R̃i < τHPSi
(S), then set ϕ̃

(1)
n,i = ϕ̂

(1)
n,i , where ϕ̂

(1)
n,i is the minimum conditional entropy

decoder corresponding to f̂
(1)
n,i used in the first stage decoding.
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Step 6: Analysis of the Probability of Error

Let fn(s) , f
(2)
n (f̃

(1)
n (s)) and ϕn(y, l) , ϕ̃

(1)
n (ϕ

(2)
n (y), l). Rewrite the probability of error

(6.21) as

PSIDe,n (QSL,WY |X , t) =
∑

PSi
∈Pn(S)

∑

s∈TPSi

Q
(τn)
S (s)

∑

l∈Lτn

Q
(τn)
L|S (l|s)

∑

y:ϕn(y,l)6=s

W
(n)
Y |X(y|fn(s)).

(6.42)

In the following we bound

P (s) ,
∑

l∈Lτn

Q
(τn)
L|S (l|s)

∑

y∈Yn

W
(n)
Y |X(y|fn(s))1 {ϕn(y, l) 6= s}

assuming that the transmitted source messages is s ∈ TPSi
. There are two cases to consider.

Case 1: If R̃i = τHPSi
(S), then

P (s) =
∑

l∈Lτn

Q
(τn)
L|S (l|s)

∑

y∈Yn

W
(n)
Y |X(y|f (2)

n (w))1
{
ϕ(2)
n (y) 6= w

}
=

∑

y:ϕ
(2)
n (y)6=w

W
(n)
Y |X(y|f (2)

n (w)),

(6.43)

where w = f̃
(1)
n (s). If f

(2)
n (w) ∈ Ω (i.e., Ri < HP ∗

Xi
(X) − δ), it follows from Step 3 that

∑

y:ϕ
(2)
n (y)6=w

W
(n)
Y |X(y|f (2)

n (w)) ≤ 2−n[Er(Ri,WY |X)−δ]

for n sufficiently large. If f
(2)
n (w) /∈ Ω (i.e., Ri ≥ HP ∗

Xi
(X) − δ), the above bound trivially

holds since Ri ≥ HP ∗
Xi

(X) − δ yields

Er
(
Ri,WY |X

)
= Er

(
Ri,WY |X , P

∗
Xi

)
≤ |IP ∗

Xi
WY |X

(X;Y ) −Ri|+ ≤ δ. (6.44)

Above all, we can bound for n sufficiently large,

P (s) ≤ 2−n[Er(Ri,WY |X)−δ] ≤ 2−n[Er( eRi,WY |X)−2δ] = 2−n[E
∗
r (PSi

,WY |X)−2δ] (6.45)

if s ∈ TSi
, where the second inequality holds since Ri = 1

n log2⌈2n
eRi⌉ can be arbitrarily close

to R̃i as n goes to infinity, and the last equality follows from (6.35)–(6.37).
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Case 2: If R̃i < τHPSi
(S), then

P (s) ≤
∑

l∈Lτn

Q
(τn)
L|S (l|s)

∑

y∈Yn

W
(n)
Y |X(y|f (2)

n (w))

[
1
{
ϕ(2)
n (y) 6= w

}
+ 1

{
ϕ(2)
n (y) = w

}
1
{
ϕ̃(1)
n

(
ϕ(2)
n (y), l

)
6= s
}]

≤
∑

y∈Yn

W
(n)
Y |X(y|f (2)

n (w))1
{
ϕ(2)
n (y) 6= w

}
+
∑

l∈Lτn

Q
(τn)
L|S (l|s)1

{
ϕ̃(1)
n (w, l) 6= s

}

where w = f̃
(1)
n (s). As in Case 1, for any s ∈ TSi

, we can bound, for δ′ = δ − 1
2n ,

∑

y∈Yn

W
(n)
Y |X(y|f (2)

n (w))1
{
ϕ(2)
n (y) 6= w

}
≤ 2−n[Er(Ri,WY |X)−δ′]

≤ 2−n[Er( eRi,WY |X)−2δ′]

=
1

2
2−n[E

∗
r(PSi

,WY |X)−2δ]

for n sufficiently large, where the last equality follows from (6.35) and (6.36). On the other

hand, it follows from Lemma 6.1, (6.35), and (6.36) that, for δ′′ = δ − 1
τn ,

∑

l∈Lτn

Q
(τn)
L|S (l|s)1

{
ϕ̃(1)
n (w, l) 6= s

}
≤ 2

−τn

»
er

„
eRi
τ
,QL|S ,PS

«
−δ′′

–

=
1

2
2−n[E

∗
r (PSi

,WY |X)−2δ]

for n sufficiently large. Therefore, we can also bound

P (s) ≤ 2−n[E
∗
r(PSi

,WY |X)−2δ] (6.46)

for n sufficiently large. Substituting (6.45) and (6.46) into (6.42) we obtain

PSIDe,n (QSL,WY |X , t) ≤
∑

PSi
∈Pn(S)

∑

s∈TPSi

Q
(τn)
S (s)2−n[E

∗
r (PSi

,WY |X)−2δ] (6.47)

for n sufficiently large. Since |Pn(S)| ≤ (τn+ 1)|S|, Q
(τn)
S (TPSi

) ≤ 2−τnD(PSi
‖QS), we obtain

that for such JSC codes

PSIDe,n (QSL,WY |X , t) ≤ 2−n{minPS∈P(S)[τD(PS‖QS)+E∗
r (PS ,WY |X)]−2δ}

for n sufficiently large. �
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Observation 6.2 Note that the above proof generalize the one of Csiszár’s [30, Theorem

3] for the JSCC lower bound EJr(QS ,WY |X , τ) given in (5.5). In Csiszár’s proof, Ri in the

second-stage encoding is simply chosen to be τHPSi
(S), and there is no first-stage encoding

and second-stage decoding. Thus Theorem 6.4 applies to the JSCC system without any

SI. In fact, if the source SI is independent of the transmitted source, i.e., if we can write

QSL(s, l) = QS(s)QL(l) for any s ∈ S and l ∈ L, then er(R,QL|S , PS) is zero identically.

and hence ESI(PS , QL|S ,WY |X) = Er(HPS
(S),WY |X). It then follows that

ESIDJ (QSL,WY |X , τ) = min
PS∈P(S)

[
τD(PS‖QS) + Er(HPS

(S),WY |X)
]

= min
R

[
τe

(
R

τ
,QS

)
+ Er(R,WY |X)

]
= EJr(QS ,WY |X , τ).

One may ask what happens if the source SI QL is available at both the encoder and

decoder; do we have a lower and/or upper bound for the JSCC system? The answer is yes.

In fact, when QL is available at both the encoder and decoder, the encoding function fn is

a mapping

fn : Sτn × Lτn −→ X n,

and the probability of error is given by

PSIEDe,n (QSL,WY |X , τ) ,
∑

(s,l)∈Sτn×Lτn

Q
(τn)
SL (s, l)

∑

y:ϕn(y,l)6=s

W
(n)
Y |X(y|fn(s, l)). (6.48)

We can write

PSIEDe,n (QSL,WY |X , τ) =
∑

l∈Lτn

Q
(n)
L (l)PSIEDe,n (QSL,WY |X , τ, l)

where

PSIEDe,n (QSL,WY |X , τ, l) =
∑

s∈Sτn

Q
(τn)
S|L (s|l)

∑

y:ϕn(y,l)6=s

W
(n)
Y |X(y|fn(s, l))

can be interpreted as the JSCC conditional probability of error given the SI l (cf. Section

5.1). Now simply applying the results of Chapter 5 and using a type counting argument as

in the proof of Theorem 6.1, it is easy to show that the error exponent is lower bounded by

min
PSL

[τD(PSL‖QSL) + Er(τHPSL
(S|L),WY |X)]
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and upper bounded by

inf
PSL

[τD(PSL‖QSL) + Esp(τHPSL
(S|L),WY |X)],

where the bounds coincide if the minimum (or infimum) is achieved by some PSL such that

τHPSL
(S|L) is greater than the critical rate of the DMC, hence determining the exponent

exactly. So the case when source SI is available at both the encoder and decoder can be

viewed as an easy consequence of the results of Chapter 5 and is of less interest in this

chapter. Finally, note that we do not yet know whether the availability of the source SI at

the encoder would yield a strictly larger JSCC error exponent. To answer this question, we

may need to establish an upper bound for ESIDJ ; this may be considered in future research.

Another interesting problem for future research is whether the lower bound ESID
J still holds

if the random-coding channel exponent Er(τHPS
(S),WY |X) is replaced by the expurgated

channel exponent Eex(τHPS
(S),WY |X).

6.4 JSCC Theorem for Systems with Source Side Informa-

tion

By examining the sufficient condition for the positivity of the lower bound ESID
J , we obtain

a sufficient condition for which the source QS can be reliably transmitted over the channel.

We also can prove a necessary condition using Fano’s inequality [29], and thus complete the

JSCC theorem.

Theorem 6.5 [86] (JSCC Theorem with source SI) Given QSL, WY |X and τ > 0, when

SI QL is available either at only the decoder, we have the following conditions.

(a) The source QS can be transmitted over the channel WY |X with an arbitrarily small

probability of error if tHQSL
(S|L) < C(WY |X), where C(WY |X) is the channel capacity

of WY |X .

(b) Conversely, if the source QS can be transmitted over the channel WY |X with an

arbitrarily small probability of error, then tHQSL
(S|L) ≤ C(WY |X).
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We point out that the JSCC theorem for systems with source SI available at decoder

was initially obtained in [86], and a lossy version JSCC theorem was established in [87]. It

was further extended to JSCC systems allowing a Gel’fand-Pinsker channel (rather than a

DMC) in [69], whose state is known to the encoder. We still give a proof here for the sake

of completeness.

Proof of Theorem 6.5:

Forward Part : Since Er(τHPS
(S),WY |U) is positive if and only if τHPS

(S) < C(WY |X), and

ESI(PS , QL|S,WY |U ) is positive if and only if HPSQL|S
(S|L) < C(WY |X) by definition, it

immediately follows that E∗
r (PS ,WY |X) is positive if and only if HPSQL|S

(S|L) < C(WY |X)

since HPSQL|S
(S|L) < HPS

(S). Now if ESID
J given by (6.34) is achieved by a PS not equal

to QS , ESIDJ must be positive. If ESIDJ is achieved by a PS = QS, and additionally if

τHQSL
(S|L) < C(WY |X), then ESID

J = E∗
r (QS ,WY |X) > 0. Above all, we see that the

lower bound ESID
J given by (6.34) is positive if τHQSL

(S|L) < C(WY |X). The forward part

follows.

Converse Part : Set k = τn. Fano’s inequality gives

H(Sk|Lk, Y n) ≤ PSIDe,n log2 |Sk| +H(PSIDe,n ) , nεn.

Clearly, PSIDe,n → 0 implies that εn → 0 (as n→ ∞). It then follows that

kH(S|L) = H(Sk|Lk)

= I(Sk;Y n|Lk) +H(Sk|Lk, Y n)

(a)

≤ I(Xn;Y n|Lk) + nεn

(b)
=

n∑

i=1

I(Xn;Yi|Lk, Y i−1) + nεn

=
n∑

i=1

[H(Yi|Lk, Y i−1) −H(Yi|Lk, Y i−1,Xn)] + nεn

(c)

≤
n∑

i=1

[H(Yi) −H(Yi|Xi)] + nεn

=

n∑

i=1

I(Xi;Yi) + nεn

≤ nC(WY |X) + nεn,
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where (a) follows from Fano’s inequality and the data processing inequality [29] since Sk →

Xn → Y n form a Markov chain, in (b) Y i−1 , (Y1, ..., Yi−1), and (c) holds since conditioning

reduces entropy and Yi is only dependent on Xi since the channel is memoryless. The proof

of the converse part is completed by letting PSIDe,n → 0. �

Observation 6.3 (Separation Principle Holds) It is readily verified that the condition

tHQSL
(S|L) < C(WY |X) can be achieved by separate source coding with SI and chan-

nel coding. Therefore, separation of source and channel coding is optimal from the point of

view of reliable transmissibility with source SI.

Remark 6.5 Note that the same JSCC theorem holds for the JSCC system when source

SI is available at both the encoder and decoder, and the separation principle also holds for

this case.

6.5 Source Side Information Can Increase the JSCC Error

Exponent

We next observe that the SI does not only enlarge the achievable region for transmission

(see Theorem 6.5 and recall that HQSL
(S|L) ≤ HQS

(S)), but also improves the reliability

of transmission. Obviously, if the sources QSL and the channel WY |X satisfy τHQSL
(S|L) <

C(WY |X) < τHQS
(S), then we have

ESIDJ (QSL,WY |X , τ) ≥ ESIDJ (QSL,WY |X , τ) > 0 = EJ(QSL,WY |X , τ).

Recalling that we also have an upper bound for EJ given by (5.6), thus, we can study

the benefits of ESIDJ over EJ by comparing the lower bound ESIDJ (QSL,WY |X , τ) with the

upper bound EJsp(QSL,WY |X , τ).

Given a nonuniform DMS QS , a DMC WY |X and τ > 0 such that τHQS
(S) < C(WY |X),

we recall from Theorem 5.2 that EJsp(QSL,WY |X , τ) = EJr(QSL,WY |X , τ) if and only if

ρ∗ ≤ 1, where

ρ∗ , arg max
0≤ρ<∞

[Tsp(ρ,WY |X) − τEs(ρ,QS)]. (6.49)
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Furthermore, the upper and lower bound would be achieved by Rm = Rm = Rm =

τH
Q

(ρ∗)
S

(S) < C(WY |X), i.e.,

EJ(QS ,WY |X , τ) = EJ(QS ,WY |X , τ) = Tsp(ρ
∗,WY |X) − τEs(ρ

∗, QS)

= τe

(
Rm
τ
,QS

)
+ Esp(Rm,WY |X) > 0. (6.50)

This means that the minimums in

EJsp(QS ,WY |X , τ) = min
PS

[τD(PS‖QS) + Esp(τH(PS),WY |X)]

and

EJr(QS ,WY |X , τ) = min
PS

[τD(PS‖QS) + Er(τH(PS),WY |X)]

would be uniquely achieved by P ∗
S = Q

(ρ∗)
S .

Assume that for PS satisfying τHPS
(S) = Rm, ESI(PS , QL|S ,WY |X) in (6.24) is achieved

by an R∗ < τHPS
(S) = Rm, then we must have

E∗
r (PS ,WY |X) = ESI(PS , QL|S ,WY |X) = Er(R

∗,WY |X) > Er(Rm,WY |X)

since Er(R,WY |X) is strictly decreasing at Rm. This yields

min
PS :τHPS

(S)=Rm

[
τD(PS‖QS) + E∗

r (HPS
(S),WY |X)

]

> min
PS :τHPS

(S)=Rm

[τD(PS‖QS) + Er(τHPS
(S),WY |X)]

≥ min
PS

[τD(PS‖QS) + Er(τHPS
(S),WY |X)]

= EJ(QS ,WY |X , τ) = EJ(QS ,WY |X , τ) = EJ(QS ,WY |X , τ). (6.51)

Now we claim that if ρ∗ ≤ 1 and (6.24) is achieved by an R∗ < τHPS
(S) = Rm, then

ESID
J (QS ,WY |X , τ) > EJ(QS ,WY |X , τ).

Indeed, if ESID
J given in (6.34) is achieved by a P̂S such that τH bPS

(S) 6= Rm, then by

definition of E∗
r (PS ,WY |X),

ESIDJ (QS ,WY |X , t) ≥ τD(P̂S‖QS) + Er(τH bPS
(S),WY |X)

> τD(Q
(ρ∗)
S ‖QS) +Er(τHQ

(ρ∗)
S

(S),WY |X)

= EJr(QS ,WY |X , t) = EJsp(QS ,WY |X , τ) = EJ(QS ,WY |X , τ).
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Otherwise if τH bPS
(S) = Rm, then (6.51) ensures thatESID

J (QS ,WY |X , t) > EJ(QS ,WY |X , t).

In order to guarantee that (6.24) is achieved by an R∗ < τHPS
(S) = Rm, noting that Er is

decreasing in R and that er is increasing in R, we only need that there exists an intersection

between Er and er, i.e., we need the condition

Er(Rm,WY |X) < min
PS :τHPS

(S)=Rm

τer(HPS
(S), QL|S , PS). (6.52)

Since

EJr(QS ,WY |X , τ) = τe

(
Rm
τ
,QS

)
+ Er(Rm,WY |X) = τD(Q

(ρ∗)
S ‖QS) +Er(Rm,WY |X),

and

er(HPS
(S), QL|S , PS) = Er(0, PS , QL|S) = Eo(1, PS , QL|S),

where Eo(1, PS , QL|S) is given in (2.19), we may write (6.52) by

Tsp(ρ
∗,WY |X) − τEs(ρ

∗, QS) + τD(Q
(ρ∗)
S ‖QS) < min

HPS
(S)=H

Q
(ρ∗)
S

(S)
tEo(1, PS , QL|S).

This together with ρ∗ ≤ 1 yields a sufficient condition for which ESID
J > EJ . In general, we

need to first compute Eo(ρ
∗,WY |X) and take a concave hull to obtain Tsp(ρ

∗,WY |X), and

we need to minimize Eo(1, PS , QL|S) over PS , but if the source is binary and the channel is

symmetric, the above condition can be further simplified and easily verified.

Corollary 6.4 Let QS = {q, 1 − q} (q < 0.5) be a binary DMS, and WY |X be symmetric

such that τHQS
(S) < C(WY |X). If ρ∗ ≤ 1 and

Eo(ρ
∗,WY |X) − τEs(ρ

∗, QS) < τEo(1, Q
(ρ∗)
S , QL|S) − τD(Q

(ρ∗)
S ‖QS),

then ESIDJ > EJ , where ρ∗ achieves the maximum of Eo(ρ,WY |X)−τEs(ρ,QS) and is given

by (5.33).

Example 6.3 Let the transmitted source QS be a binary DMS with distribution QS =

{q, 1 − q} (q < 0.5), and let the channel WY |X be a binary symmetric channel (BSC)

with crossover probability ε ∈ (0, 0.5). The source QL is a noisy version of QS described
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by L = S ⊕ N mod 2 (L = N = {0, 1}) with noise distribution PN (N = 1) = 0.05,

i.e., the SI is transmitted through a dummy BSC QL|S with crossover probability 0.05.

Set the transmission rate t = 0.75. Fig. 6.6 shows the regions of the binary source and

the BSC parameters, i.e., (ε, q) pairs, for which the source can be reliably transmitted

over the channel and ESIDJ can be strictly larger than EJ by Lemma 6.4. Region A

(including the boundary with B) is the region where τHQSL
(S|L) ≥ C(WY |X), i.e., where

both ESIDJ and EJ are zero. Region B (including the boundary with C) is the region where

τHQSL
(S|L) < C(WY |X) ≤ τHQS

(S), i.e., where EJ is zero, but ESIDJ is positive. Region

C (not including the boundary with D) is the region where both ESIDJ and EJ are positive,

but the condition given in Lemma 6.4 holds, i.e., ESIDJ > EJ > 0. In Region D, both

exponents ESIDJ and EJ are positive, and the condition in Lemma 6.4 is not satisfied. Note

that Lemma 6.4 only gives a sufficient condition which can be easily verified. This condition

is however not necessary for having ESIDJ > EJ ; this is illustrated in Fig. 6.7, where we

note that ESIDJ > EJ for some (ε, q) ∈ D.

We plot in Fig. 6.7 the lower bound ESIDJ given in (6.34), the sphere-packing upper

bound EJsp given in (5.6), and the random-coding lower bound EJr given in (5.5) for the

above DMS(q)–BSC(ε) system with q = 0.1. The plots show that ESIDJ is strictly larger

than EJ for ε > 0.0045, and ESID
J coincides with EJ for ε ≤ 0.002. We note that when

the channel has large noise (ε > 0.01), the SI can substantially improve the error exponent.

Furthermore, EJ is zero for ε ≥ 0.175, but ESIDJ is still positive until ε = 0.29. Thus with

the SI QL at the decoder, ESIDJ > EJ holds for a large class of source-channel conditions.

6.6 Conclusion

In Chapter 5 we mainly focused on the analytical computation of lower and upper bounds

for the JSCC error exponent, while in this chapter we dealt with more on the bounding

technique.

For the system with feedback, we established a conceptual upper bound for EJ,fb by

using a simple type counting argument. We will employ the same approach to other discrete
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Figure 6.6: Side information at the decoder can enlarge the source-channel parameters for

reliable transmissibility for the binary DMS(q)–BSC(ε) system of Example 6.3, τ = 0.75.

systems (in Chapters 7 and 9). The lower bound for EJ,fb is obtained by slightly modifying

Zigangirov’s iterative coding scheme. Although this bound is hard to compute in general, we

showed that it is at least as good as Gallager’s lower bound for EJ for binary input channels,

and that it does coincide with the upper bound EJsp for much more source-channel pairs

than Gallager’s bound. Using this lower bound, we numerically illustrated that feedback

can strictly increase the JSCC error exponent for channels with binary input alphabet and

a symmetric distribution.

For the system with source SI at decoder, an achievable lower bound for the JSCC

error exponent is obtained by using the method of types. The proofs generalize the one

of Csiszár’s for the random-coding lower bound EJr. In particular, to prove the lower

bound, we combined the maximum mutual information decoder of [30] and the minimum

conditional entropy decoder of [73]. Consequently, JSCC theorem for system with source

SI is formulated. Finally, we compared the lower bound ESID
J with the upper bound EJsp,
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Figure 6.7: SI at the decoder can increase the JSCC error exponent for the binary DMS(q)–

BSC(ε) system of Example 6.3, q = 0.1, τ = 0.75.

and a sufficient condition for which ESIDJ > EJ is given for binary DMSs and symmetric

DMCs. Numerical results show that SI (at the decoder) not only enlarges the region of

the source-channel parameters for which reliable transmissibility is possible, but it can also

provide a noticeable increase in the JSCC error exponent for a large class of source-channel

pairs.



Chapter 7

JSCC Error Exponent for Discrete

Systems with Markovian Memory

In this chapter, we investigate the JSCC error exponent, EJ , for a discrete communication

system with Markovian memory. Specifically, we establish a (computable) upper bound

for EJ for transmitting a stationary ergodic (irreducible) Markov (SEM) source QS over

a channel WY|X with additive SEM noise PZ (for the sake of brevity, we hereafter refer

to this channel as the SEM channel WY|X). Note that Markov sources are widely used to

model realistic data sources, and binary SEM channels can approximate well binary input

hard-decision demodulated fading channels with memory (e.g., see [75], [100], [101]).

Section 7.1 contains JSCC system description and preliminaries on the information

rates for systems with memory. In Section 7.2, we prove a strong converse JSCC theorem

for systems consisting of an ergodic discrete source and a discrete channel with modulo-

additive ergodic noise. We then introduce the notion of artificial (or auxiliary) Markov

sources adopted from [94] in Section 7.3. Some interesting results involving Markov sources

and their artificial counterparts are presented.

In Section 7.4, we deal with the main results regarding the upper and lower bounds for

the JSCC error exponent EJ for SEM source-channel pairs. We first derive a computable

sphere-packing type upper bound for EJ . The proof of the bound, following the standard

145
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lower bounding technique for the average probability of error, is based on the judicious

construction from the original SEM source-channel pair (QS,WY|X) of an artificial Markov

source Q̃
(α∗)
S and an artificial channel VY|X with additive Markov noise P̃

(α∗)
Z , where α∗ is a

parameter to be optimized, such that the stationarity and ergodicity properties are retained

by Q̃
(α∗)
S and P̃

(α∗)
Z . The proof then employs the strong converse JSCC Theorem for ergodic

sources and channels with ergodic additive noise and the fact that the normalized log-

likelihood ratio between n-tuples of two SEM sources asymptotically converges (as n→ ∞)

to their Kullback-Leibler divergence rate. As by-products, we obtain upper bounds for the

error exponent for SEM sources and SEM channels.

We next examine Gallager’s lower bound for EJ (which is valid for arbitrary source-

channel pairs with memory), when specialized to the SEM source-channel system. By

comparing our upper bound with Gallager’s lower bound, we provide the condition under

which they coincide, hence exactly determining EJ . We note that this condition holds for

a large class of SEM source-channel pairs. Using the Fenchel duality theorem, we provide

equivalent representations for these bounds. We show that our upper bound (respectively

Gallager’s lower bound) to EJ , can also be represented by the minimum of the sum of

SEM source error exponent and the upper (respectively lower) bound of SEM channel error

exponent. In this regard, our result is a natural extension of Csiszár’s bounds from the case

of memoryless systems to the case of SEM systems.

We next introduce Markov types and employ the method of types to prove another

upper bound for the JSCC error exponent in terms of the SEM source exponent and the

SEM channel exponent. This upper bound may not be computable, but we will use it as a

tool to compare the JSCC error exponent with tandem coding error exponent in Chapter

10. In Section 7.5, we briefly remark the extension of our results to SEM systems with

arbitrary Markovian orders. Finally, a conclusion is drawn in Section 7.6.
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7.1 System Description and Definitions

7.1.1 System

We consider a communication system with transmission rate τ (source symbols/channel

use) consisting of a discrete source with finite alphabet S described by the sequence of τn-

dimensional distributions QS , {QSτn ∈ P(Sτn)}∞τn=1, and a discrete channel described by

the sequence of n-dimensional transition distributions WY|Z , {WY n|Xn ∈ P(Yn|X n)}∞n=1

with common input and output alphabets X = Y = {0, 1, ..., B − 1}.

A JSC code with blocklength n and transmission rate τ is a pair of mappings:

fn : Sτn −→ X n

and

ϕn : Yn −→ Sτn.

In this chapter, we confine our attention to discrete channels with (modulo B) additive

noise of n-dimensional distribution PZ , {PZn ∈ P(Zn)}∞n=1; see Fig. 7.1. The channels

are described by

Yi = Xi ⊕ Zi (mod B),

where Yi, Xi and Zi are the channel’s output, input and noise symbols at time i, and

Zi ∈ Z = {0, 1, ..., B − 1} is independent of Xi, i = 1, 2, ..., n.

s ∈ Sτn - fn
x ∈ X n

-
?

z ∈ Zn

⊕
-y ∈ Yn

ϕn -ŝ ∈ Sτn

Figure 7.1: JSCC system for discrete sources and discrete channels with additive noise.

Denote the transmitted source message by s ∈ Sτn, the corresponding n-length codeword

by fn(s) = x , (x1, x2, ..., xn) ∈ X n and the received codeword at the channel output by



7.1. System Description and Definitions 148

y , (y1, y2, ..., yn) ∈ Yn. Then the probability of receiving y under the conditions that the

message s is transmitted (i.e., the input codeword is fn(s) = x) is given by

Pr(Y n = y|Sτn = s) = WY n|Xn(y|fn(s)) = WY n|Xn(y|x) = WY n|Xn(y ⊖ x|x) = PZn(z),

where the last equality follows by the independence of input codeword x and the additive

noise z = y⊖x, noting that ⊖ is modulo-B subtraction here. The decoding operation ϕn is

the rule decoding on a set of non-intersecting sets of output words As such that
⋃

sAs = Yn.

If y ∈ As′ , then we conclude that the source message s′ has been transmitted. If the source

message s has been transmitted, the conditional error probability in decoding is given by

Pr ({y : y ∈ Acs}| s) ,
∑

y:y∈Ac
s

WY n|Xn(y|fn(s)),

and the probability of error of the code (fn, ϕn) is

P (n)
e (QS,WY|X, τ) =

∑

(s,y):y∈Ac
s

QSτn(s)WY n|Xn(y|fn(s)). (7.1)

Definition 7.1 The JSCC error exponent EJ(QS,WY|X, τ) for source QS and channel

WY|X is defined as the supremum of the set of all numbers E for which there exists a

sequence of JSC codes (fn, ϕn) with transmission rate τ blocklength n such that

E ≤ lim inf
n→∞

− 1

n
log2 P

(n)
e (QS,WY|X, τ).

When there is no possibility of confusion, EJ(QS,WY|X, τ) will be written as EJ . A

lower bound for EJ for arbitrary discrete source-channel pairs with memory was already

obtained by Gallager [42, Problem 5.16]. In Section 7.4, we will establish a computable

upper bound for EJ and compare it with Gallager’s bound.

7.1.2 Information Rates

For a discrete source QS, its (limsup) entropy rate is defined by

HQS
(S) , lim sup

k→∞

1

k
HQ

Sk
(Sk),
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whereHQ
Sk

(Sk) is the Shannon entropy of QSk . HQS
(S) admits an operational meaning (in

the sense of the lossless fixed length source coding theorem) if QS is information stable [49].

The source Rényi entropy rate of order α (α ≥ 0) is defined by

H
(α)
QS

(S) , lim sup
k→∞

1

k
H

(α)
Q

Sk
(Sk),

where

H
(α)
Q

Sk
(Sk) ,

1

1 − α
log2

∑

s∈Sk:Q
Sk(s)>0

QSk(s)α,

is the Rényi entropy of QSk , and the special case of α = 1 should be interpreted as

H
(1)
Q

Sk
(Sk) , lim

α→1

1

1 − α
log2

∑

s∈Sk:Q
Sk(s)>0

QSk(s)α = HQ
Sk

(Sk).

The channel capacity for any discrete (information stable [49], [96]) channel WY|X is given

by

C(WY|X) = lim inf
n→∞

1

n
sup
PXn

IPXnWY n|Xn (Xn;Y n).

For discrete channels with finite-input finite-output alphabets, the supremum is achievable

and can be replaced by maximum. If the channel WY|X is an additive noise channel with

noise process PW, then

C(WY|X) = log2B −HPZ
(Z),

where HPZ
(Z) is the noise entropy rate.

7.2 A Strong Converse JSCC Theorem

We first prove a strong converse JSC coding theorem for ergodic sources and channels with

additive ergodic noise; no Markov assumption for either the source or the channel is needed

for this result. We will employ it to prove an upper bound for EJ .

Theorem 7.1 (Strong converse JSCC Theorem) For a source QS and a channel WY|X

with additive noise PZ such that QS and PZ are ergodic processes, if

C(WY|X) = log2B −HPZ
(Z) < τHQ(S),
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then

lim
n→∞

P (n)
e (QS,WY|X, τ) = 1.

Proof : Assume C(WY|X) = τHQS
(S) − ε (ε > 0). We first recall the fact that for addi-

tive channels the channel capacity C(WY|X) is achieved by the uniform input distribution

P̂Xn(x) , 1/Bn. Furthermore, this uniform input distribution yields a uniform distribution

at the ouput

P̂Y n(y) ,
∑

x∈Xn

P̂Xn(x)WY n|Xn(y|x) =
1

Bn
.

Define for some δ (0 < δ < ε)

Âs =

{
y : log2

WY n|Xn(y|fn(s))QSτn(s)

P̂Y n(y)
≤ n

(
C(WY|X) − τHQS

(S) + δ
)
}
.

Since

P (n)
e (QS,WY|X, τ) = 1 −

∑

(s,y):y∈As

QSτn(s)WY n|Xn(y|fn(s)), (7.2)

we need to show that

Pr ({(s,y) : y ∈ As}) =
∑

(s,y):y∈As

QSτn(s)WY n|Xn(y|fn(s))

vanishes as n goes to infinity. Note that

Pr ({(s,y) : y ∈ As}) ≤ Pr
({

(s,y) : y ∈ As ∩ Âs

})
+ Pr

({
(s,y) : y ∈ Âcs

})
.

For the first sum, we have

Pr ({(s,y) : y ∈ As})

=
∑

s

QSτn(s)
∑

y∈As∩ bAs

WY n|Xn(y|fn(s))

≤
∑

s

QSτn(s)
∑

y∈As∩ bAs

P̂Y n(y)

QSτn(s)
2n(C(WY|X)−τHQS

(S)+δ)

≤ 2n(C(WY|X)−τHQS
(S)+δ)

∑

s

∑

y∈As

P̂Y n(y)

= 2−n(ε−δ). (7.3)
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For the second sum, we have

Pr
({

(s,y) : y ∈ Âcs

})

= Pr

({
(s,y) :

1

n
log2

WY n|Xn(y|fn(s))QSτn(s)

P̂Y n(y)
−
(
C(WY|X) − τHQS

(S)
)
> δ

})

≤ Pr

({
(s,y) :

∣∣∣∣∣
1

n
log2

WY n|Xn(y|fn(s))QSτn(s)

P̂Y n(y)
−
(
C(WY|X) − τHQS

(S)
)
∣∣∣∣∣ > δ

})

= Pr

({
(s,y) :

∣∣∣∣−
1

n
log2WY n|Xn(y|fn(s)) −

1

n
log2QSτn(s)

−HPZ
(Z) − τHQS

(S)
∣∣∣ > δ

})

≤ Pr

({
s :

∣∣∣∣−
1

τn
log2QSτn(s) −HQS

(S)

∣∣∣∣ >
δ

2τ

})

+Pr

({
(s,y) :

∣∣∣∣−
1

n
log2WY n|Xn(y|fn(s)) −HPZ

(Z)

∣∣∣∣ >
δ

2

})

= Pr

({
s :

∣∣∣∣−
1

τn
log2QSτn(s) −HQS

(S)

∣∣∣∣ >
δ

2τ

})

+Pr

({
z :

∣∣∣∣−
1

n
log2 PZn(z) −HPZ

(Z)

∣∣∣∣ >
δ

2

})
(7.4)

where the above probabilities are taken under the joint distributionQSτn(s)WY n|Xn(y|fn(s)),

and (7.4) follows from an exchange of RV z = y ⊖ fn(s) and the fact that PZn(z) =

WY n|Xn(y|fn(s)). It follows from the well known Shannon-McMillan-Breiman Theorem for

ergodic processes [18] that the above probabilities converge to 0 as n goes to infinity. On

account of (7.3), (7.4) and (7.2), the proof is complete. �

7.3 Markov Sources and Artificial Markov Sources

Without loss of generality, we consider first-order Markov sources since any L-th order

Markov source can be converted to a first-order Markov source by L-step blocking it (see

Section 7.5). For the sake of convenience (since we will apply the following results to

both the SEM source and the SEM channel), we use, throughout this section, PU ,

{PUn ∈ P(Un)}∞n=1 to denote a first-order SEM source with finite alphabet U , {1, 2, ...,M},

initial distribution

pi , Pr{U1 = i}, i ∈ U
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and transition distribution

pij , Pr{Uk+1 = j|Uk = i}, i, j ∈ U ,

so that the n-tuple probability is given by

PUn(in) , Pr{U1 = i1, ..., Un = in}

= pi1pi1i2 · · · pin−1in , i1, ..., in ∈ U .

Denote the transition matrix by P , [pij ]M×M , we then set, for any 0 ≤ α ≤ 1,

P (α) ,
[
pαij
]
M×M

,

which is nonnegative and irreducible M ×M matrix (here we define 00 = 0). The Perron-

Frobenius Theorem [82] asserts that the matrix P (α) possesses a maximal positive eigen-

value λα(PU) with positive (right) eigenvector v(α) = (v1(α), ..., vM (α))t such that

∑

i

vi(α) = 1.

As in [94], we define the artificial Markov source P̃
(α)
U ,

{
P̃

(α)
Un ∈ P(Un)

}∞

n=1
with respect

to the original source PU such that the transition matrix is P̃ (α) , [p̃ij(α)]M×M , where

p̃ij(α) ,
pαijvj(α)

λα(PU)vi(α)
. (7.5)

It can be easily verified that
∑

j p̃ij(α) = 1. We emphasize that the artificial source retains

the stochastic characteristics (irreducibility) of the original source because p̃ij(α) = 0 if and

only if pij = 0, and clearly, for all n, the nth marginal of P̃
(α)
U is absolutely continuous with

respect to the nth marginal of PU. The entropy rate of the artificial Markov process is

hence given by

H eP(α)
U

(S) = −
∑

i

∑

j

πi(α)p̃ij(α) log2 p̃ij(α),

where π(α) , (π(α)1, π(α)2, ..., π(α)M ) is the stationary distribution of the stochastic

matrix P̃ (α). We call the artificial Markov source with initial distribution π(α) the ar-

tificial SEM source. It is known [94, Lemmas 2.1-2.4] that H eP(α)
U

(S) is a continuous
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and non-increasing function of α ∈ [0, 1]. In particular, H eP(0)
U

(S) = log2 λ0(PU) and

H eP(1)
U

(S) = H ePU
(S). The following lemma illustrates the relation between H eP(0)

U

(S) and

the entropy of the DMS with uniform distribution
(

1
M , ...,

1
M

)
.

Lemma 7.1 H eP(0)
U

(S) ≤ log2M with equality if and only if P > [0]M×M , i.e., pij > 0 for

all i, j ∈ U .

Proof: Let A be the M ×M matrix with all components equal to 1, i.e., A , [1]M×M .

Clearly, u , [ 1
M , ...,

1
M ] is the unique normalized positive eigenvector (Perron vector) of A

with associated positive eigenvalue M ; thus when P > [0]M×M , λ0(PU) = M . We next

show by contradiction that λ0(PU) < M if there are zero components in matrix P . We

assume that there exist some pij = 0 and λ0(PU) ≥M . Then

λ0(PU)u ≥Mu = Au = Av(0),

where the last equality holds since u and v(0) are both normalized vectors. We thus have

(A− P (0))v(0) ≤ λ0(PU)(u − v(0)).

Now summing all the components of the vectors on both sides, we obtain

∑

i,j

aijvj(0) ≤ 0,

where aij is the (i, j)th component of the matrix A − P (0) such that aij = 0 if pij > 0

and aij = 1 if pij = 0. This contradicts with the fact that all vj(0)’s are positive and

thus λ0(PU) < M if PU has zero components. We also conclude that P > [0]M×M is the

sufficient and necessary condition for λ0(PU) = M . �

The following properties regarding the artificial SEM source are important in deriving

the (computable) upper and lower bounds for the JSCC exponent of SEM source-channel

pairs.

Lemma 7.2 Let {Ui}∞i=1 be an SEM source under PU and P̃
(α)
U (0 < α ≤ 1), then

1

n
log2

P̃
(α)
Un (Un)

PUn(Un)
−→ 1 − α

α
H eP(α)

U

(S) − 1

α
log2 λα(PU),
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almost surely under P̃
(α)
Un as n→ ∞.

Proof: Since {Ui}∞i=1 is SEM source under PU and P̃
(α)
U , it follows by the Ergodic Theo-

rem [18] that the normalized log-likelihood ratio between PU and P̃
(α)
U converges to their

Kullback-Leibler divergence rate almost surely, i.e.,

1

n
log2

P̃
(α)
Un (Un)

PUn(Un)
−→ D(P̃

(α)
U ‖PU)

almost surely under P̃
(α)
Un as n→ ∞, where

D(P̃
(α)
U ‖PU) , lim

n→∞

1

n
D(P̃

(α)
Un ‖PUn).

Note that for any n we can write

1

n
D(P̃

(α)
Un ‖PUn) = − 1

n
H eP (α)

Un
(Un) − 1

n

∑

in

P̃
(α)
Un (in) log2 PUn(in), in = (i1 · · · in) ∈ Un.

(7.6)

Recalling that PU is described by the initial stationary distribution π = {π1, π2, ..., πM}

and transition matrix P = [pij]M×M , and that P̃
(α)
U is described by the initial stationary

distribution π(α) = (π(α)1, π(α)2, ..., π(α)M ) and transition matrix P̃ (α) , [p̃ij(α)]M×M

given by (7.5), we have

P̃
(α)
Un (in) = π(α)i1

pαi1i2 · · · pαin−1in

λα(PU)n−1

vin(α)

vi1(α)

=
PUn(in)α

λα(PU)n−1

π(α)i1vin(α)

παi1vi1(α)
(7.7)

for all in ∈ U . Consequently, using (7.6) and (7.7), we have

1

n
D(P̃

(α)
Un ‖PUn) =

1 − α

α

1

n
H eP(α)

U

(S) − 1

α

n− 1

n
log2 λα(PU)

− 1

n

1

α

∑

i1,in

p̃α(i1, in) log2

(
παi1vi1(α)

π(α)i1vin(α)

)
. (7.8)

Taking the limit on both sides of (7.8), and noting that the last term approaches 0 since

∣∣∣∣∣∣
1

α

∑

i1,in

p̃α(i1, in) log2

(
παi1vi1(α)

π(α)i1vin(α)

)∣∣∣∣∣∣
≤ M2

α
max
i1,in

∣∣∣∣log2

(
παi1vi1(α)

π(α)i1vin(α)

)∣∣∣∣ < +∞,



7.4. Upper and Lower Bounds 155

where π, π(α), and v(α) are all positive for SEM sources (according to the Perron-Frobenius

Theorem [82]). We hence obtain

D(P̃
(α)
U ‖PU) =

1 − α

α
H eP(α)

U

(S) − 1

α
log2 λα(PU).

�

Lemma 7.3 [77], [94] For an SEM source PU and any ρ ≥ 0, we have

ρH
( 1
1+ρ

)

PU
(S) = (1 + ρ) log2 λ 1

1+ρ
(PU),

and

H
eP

( 1
1+ρ )

U

(S) =
∂

∂ρ
(1 + ρ) log2 λ 1

1+ρ
(PU).

Lemma 7.3 follows directly from [77, Lemma 1] and [94, Lemma 2.3]. Note that there

is a slight error in the expression of H(α) in [94, Lemma 2.3], where a factor α is missing

in the second term of the right-hand side of (2.11).

7.4 Upper and Lower Bounds

7.4.1 A Sphere-Packing Type Upper Bound

We first establish a sphere-packing type upper bound for EJ for SEM source-channel pairs

(QS,WY|X). Before we proceed, we define the following function for an SEM source-channel

pair:

F (ρ) , ρ log2B − (1 + ρ) log2

[
λτ 1

1+ρ

(QS)λ 1
1+ρ

(PZ)

]
, ρ ≥ 0. (7.9)

Lemma 7.4 F (ρ) has the following properties:

(a) F (0) = 0 and

f(ρ) ,
∂

∂ρ
F (ρ) = log2B −

(
τH

eQ
( 1
1+ρ )

S

(S) +H
eP

( 1
1+ρ )

Z

(Z)

)
(7.10)

is continuous non-increasing in ρ.



7.4. Upper and Lower Bounds 156

(b) F (ρ) is concave in ρ; hence every local maximum (stationary point) of F (·) is the

global maximum.

(c) supρ≥0 F (ρ) is positive if and only if τHQS
(S) < C(WY|X); otherwise supρ≥0 F (ρ) =

0.

(d) supρ≥0 F (ρ) is finite if λτ0(QS)λ0(PZ) > B and infinite if λτ0(QS)λ0(PW) < B.

Remark 7.1 If λτ0(QS)λ0(PZ) ≥ B, then supρ≥0 F (ρ) = limρ→∞ F (ρ), no matter whether

the limit is finite or not.

Proof : We start from (a). F (0) = 0 since the largest eigenvalue for any stochastic ma-

trix is 1. (7.10) follows from Lemma 7.3. f(ρ) is continuous non-increasing function since

H
eQ

( 1
1+ρ )

S

(S) and H
eP

( 1
1+ρ )

Z

(Z) are both continuous nondecreasing functions. (b) follows im-

mediately from (a). (c) follows from the concavity of F (ρ) and the facts that F (0) = 0 and

that f(0) = C(WY|X) − τHQS
(S). (d) follows from the concavity of F (ρ) and the facts

that F (0) = 0 and that limρ→∞ f(ρ) = log2B − log2[λ
τ
0(QS)λ0(PZ)]. �

Theorem 7.2 For an SEM source QS and a discrete channel WY|X with additive SEM

noise PZ such that τHQS
(S) < C(WY|X) and λτ0(QS)λ0(PZ) > B, the JSCC error expo-

nent EJ(QS,WY|X, τ) satisfies

EJ(QS,WY|X, τ) ≤ max
ρ≥0

F (ρ). (7.11)

Remark 7.2 We point out that the condition λτ0(QS)λ0(PZ) > B holds for most cases

of interest. First note that the eigenvalues λ0(QS) and λ0(PZ) are no less than 1. By

Lemma 7.1, we have that λ0(PZ) = B if the noise transition matrix PW has positive

entries (i.e., PW > [0]B×B); in that case, the condition λτ0(QS)λ0(PZ) > B is satisfied if

λτ0(QS) > 1 (i.e., if the source transition matrix Q is not a deterministic matrix). In fact,

when λτ0(QS)λ0(PZ) < B, maxρ≥0 F (ρ) = +∞ by Lemma 7.4 (d), and hence it gives a

trivial upper bound for EJ . When λτ0(QS)λ0(PZ) = B, we do not have an upper bound for

EJ .
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Remark 7.3 Using the first identity of Lemma 7.3, the upper bound can be equivalently

represented as

EJ(QS,WY|X, τ) ≤ max
ρ≥0

{
ρ

[
log2B − τH

( 1
1+ρ

)

QS
(S) −H

( 1
1+ρ

)

PZ
(Z)

]}

where H
( 1
1+ρ

)

QS
(S) and H

( 1
1+ρ

)

PZ
(Z) are the Rényi entropy rates of QS and PZ, respectively.

Meanwhile, the upper bound (7.11) holds for any one of the following source-channel pairs:

DMS Q and SEM channel WY|X, SEM source QS and additive DMC W , and DMS source

Q and additive DMC WY |X , all with finite alphabets. For example, when the source is

DMS with distribution q , {q1, q2, ..., qM} such that qi > 0 for all i = 1, 2, ...,M , the source

could be regarded as an SEM source QS with transition matrix

Q =




q1 q2 · · · qM

q1 q2 · · · qM
...

...
...

...

q1 q2 · · · qM




and initial distribution q. It is easy to verify that for such a Q, the eigenvalue λ 1
1+ρ

(Q)

reduces to λ 1
1+ρ

(QS) =
∑

i q
1/1+ρ
i , which agrees with the results for memoryless systems

given Chapter 5. Thus, the above bound is a sphere-packing type upper bound for EJ for

SEM source-channel systems.

Proof of Theorem 7.2: Under the assumption

τHQS
(S) < C(WY|X) and λτ0(QS)λ0(PZ) > B,

it follows from Lemma 7.4 that f(0) > 0 and limρ→∞ f(ρ) < 0. Since f(ρ) is continuous and

non-increasing, there must exist some ρo ∈ (0,+∞) such that f(ρo) + ε = 0, where ε > 0

is small enough. For the SEM source QS, we introduce an artificial SEM source Q̃
(αo)
S (as

described in Section 7.3) such that αo , 1/(1 + ρo) ∈ (0, 1). For the SEM channel WY|X,

we introduce an artificial additive channel VY|X for which the corresponding SEM noise is

P̃
(αo)
Z .
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Based on the construction of the artificial SEM source-channel pair (Q̃
(αo)
S ,VY|X), we

define for some δ1 (δ1 > 0) the set

Ãs =

{
y : log2

WY n|Xn(y|fn(s))QSτn(s)

VY n|Xn(y|fn(s))Q̃(αo)
Sτn (s)

≥ −n
(

1 − αo
αo

(log2B + ε) − 1

αo
log2

[
λταo

(QS)λαo(PZ)
]
+ δ1

)}
,

where we set Ãs = ∅ for those s such that WY n|Xn(y|fn(s))QSτn(s) = 0 for some y ∈ Yn.

We then have a lower bound for the average probability of error

P (n)
e (QS,WY|X, τ) ≥

∑

s

QSτn(s)
∑

y∈Ac
s∩

eAs

WY n|Xn(y|fn(s))

≥ 2
−n

“
1−αo

αo
(log2B+ε)− 1

αo
log2[λτ

αo
(QS)λαo (PZ)]+δ1

”

·
∑

(s,y):y∈Ac
s∩ eAs

Q̃
(αo)
Sτn (s)VY n|Xn(y|fn(s)), (7.12)

where the last sum can be lower bounded as follows

∑

(s,y):y∈Ac
s∩

eAs

Q̃
(αo)
Sτn (s)VY n|Xn(y|fn(s))

≥
∑

(s,y):y∈Ac
s

Q̃
(αo)
Sτn (s)VY n|Xn(y|fn(s)) −

∑

(s,y):y∈ eAc
s

Q̃
(αo)
Sτn (s)VY n|Xn(y|fn(s)). (7.13)

We point out that the first sum in the right-hand side of (7.13) is exactly the error probability

of the JSC system consisting of the artificial SEM source Q̃
(αo)
S and the artificial SEM

channel VY|X. Since by definition f(ρo) < 0, which implies

τH eQ(αo)
S

(S) > log2B −H eP(αo)
Z

(Z) = C(VY|X),

then applying the strong converse JSCC Theorem (Theorem 7.1) to Q̃
(αo)
S and VY|X, the

first sum in the right-hand side of (7.13) converges to 1 as n goes to infinity. We next show

that the second term in the right-hand side of (7.13)

Pr
({

(s,y) : y ∈ Ãcs

})
=

∑

(s,y):y∈ eAc
s

Q̃
(αo)
Sτn (s)VY n|Xn(y|fn(s))
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vanishes asymptotically.

Pr
({

(s,y) : y ∈ Ãcs

})

= Pr

({
(s,y) :

1

n
log2

WY n|Xn(y|fn(s))QSτn(s)

VY n|Xn(y|fn(s))Q̃(αo)
Sτn (s)

+

(
1 − αo
αo

(log2B + ε) − 1

αo
log2

[
λταo

(QS)λαo(PZ)
])

< −δ1
})

≤ Pr

({
(s,y) :

∣∣∣∣∣
1

n
log2

WY n|Xn(y|fn(s))QSτn(s)

VY n|Xn(y|fn(s))Q̃(αo)
Sτn (s)

+

(
1 − αo
αo

(log2B + ε) − 1

αo
log2

[
λταo

(QS)λαo(PZ)
])∣∣∣∣ > δ1

})

= Pr

({
(s, z) :

∣∣∣∣∣
1

n
log2

P̃αo

Zn(z)

PZn(z)
+

1

n
log2

Q̃
(αo)
Sτn (s)

QSτn(s)

−
[
τ

(
1 − αo
αo

H eQ(αo)
S

(S) − 1

αo
log2 λαo(QS)

)

+
1 − αo
αo

H eP(αo)
Z

(Z) − 1

αo
log2 λαo(PZ)

]∣∣∣∣ > δ1

})
(7.14)

≤ Pr

({
s :

∣∣∣∣∣
1

τn
log2

Q̃
(αo)
Sτn (s)

QSτn(s)
−
[
1 − αo
αo

H eQ(αo)
S

(S) − 1

αo
log2 λαo(QS)

]∣∣∣∣∣ >
δ1
2τ

})

+Pr





z :

∣∣∣∣∣∣
1

n
log2

P̃
(n)
Wαo

(z)

P
(n)
W (z)

−
[
1 − αo
αo

H eP(αo)
Z

(Z) − 1

αo
log2 λαo(PZ)

]∣∣∣∣∣∣
>
δ1
2






 ,

(7.15)

where the probabilities are taken under the joint distribution Q̃
(αo)
Sτn (s)VY n|Xn(y|fn(s)),

and (7.14) follows from the facts that PZn(z) = WY n|Xn(y|fn(s)) and that P̃
(αo)
Zn (z) =

VY n|Xn(y|fn(s)) for z = y⊖ fn(s).

Applying Lemma 7.2, the above probabilities converge to 0 as n → ∞.1 On account of

(8.15), (7.13) and (7.15) and noting that ε and δ1 are arbitrary, we obtain

lim inf
n→∞

− 1

n
log2 P

(n)
e (QSτn ,WY n|Xn , τ) ≤ 1 − αo

αo
log2B − 1

αo
log2

[
λταo

(QS)λαo(PZ)
]
.

Finally, replacing αo by 1/(1 + ρo) in the above right-hand side terms and taking the

maximum over ρo complete the proof. �

1Convergence almost surely implies convergence in probability.
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7.4.2 Gallager’s Lower Bound for Systems with Memory

In Observation 5.1, we showed that Gallager’s JSCC lower bound [42, Problem 5.16] may

not as good as Csiszár’s source-channel random-coding lower bound. However, Gallager’s

lower bound is more powerful in the sense that it applies for discrete source and channel

pairs with arbitrary memory, i.e., for a discrete source QS and a discrete channel WY|X

with transmission rate τ , we have

EJ(QS,WY|X, τ) ≥ max
0≤ρ≤1

[Eo(ρ,QS) − τEs(ρ,WY|X)]

in which

Es(ρ,QS) , lim sup
τn→∞

(1 + ρ)

τn
log2

∑

s∈Sn

QSτn(s)
1

1+ρ (7.16)

is Gallager’s source function for the discrete source QS with arbitrary memory, and

Eo(ρ,WY|X) , lim inf
n→∞

max
PXn

1

n
Eo(ρ, PXn) (7.17)

with

Eo(ρ, PXn) , − log2

∑

y∈Yn

(
∑

x∈Xn

PXn(x)WY n|Xn(y|x)
1

1+ρ

)1+ρ

is Gallager’s channel function for the discrete channel WY|X with arbitrary memory.

We next specialize Gallager’s lower bound for SEM source-channel pairs by using Lemma

7.3. We recall when the channel is symmetric (in the Gallager sense, see Section 5.3.3), which

directly applies to channels with additive noise, the maximum in (7.17) is achieved by the

uniform distribution: PXn(x) = 1/|X |n for all x ∈ X n. Thus for our (modulo B) additive

noise channels, Eo(ρ) reduces to

Eo(ρ,QS) − τEs(ρ,WY|X) = ρ log2B − lim sup
n→∞

(1 + ρ)

n
log2

(
∑

z∈Zn

PZn(z)
1

1+ρ

)
. (7.18)

It immediately follows by Lemma 7.3 that for our SEM source-channel pair,

Eo(ρ,QS) − τEs(ρ,WY|X) = ρ log2B − ρτH
( 1
1+ρ

)

QS
(S) − ρH

( 1
1+ρ

)

PZ
(Z) = F (ρ). (7.19)

That is, the SEM source-channel function we defined in (7.9) is exactly the same as the

difference of Gallager’s channel and source function. In light of Theorem 7.2, we obtain the

following regarding the computation of EJ .
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Theorem 7.3 For an SEM source QS and an SEM channel WY|X with noise PZ such

that τHQS
(S) < C(WY|X) and λτ0(QS)λ0(PZ) > B, EJ(QS,WY|X, τ) is positive and

determined exactly by EJ(QS,WY|X, τ) = F (ρ∗) if ρ∗ ≤ 1, where ρ∗ is the smallest positive

number satisfying the equation f(ρ∗) = 0. Otherwise (if ρ∗ > 1), the following bounds hold:

log2B − 2 log2

[
λτ1

2
(QS)λ 1

2
(PZ)

]
≤ EJ(QS,WY|X, τ) ≤ F (ρ∗).

Remark 7.4 If τHQS
(S) +HPZ

(Z) ≥ log2B, then EJ(QS,WY|X, τ) = 0.

Remark 7.5 According to Lemma 7.4 (c) and (d), there must exist a positive and finite

ρ∗ provided that τHQS
(S) < C(WY|X) and λτ0(QS)λ0(PZ) > B. Using Lemma 7.4 (a),

such ρ∗ can be numerically determined.

The proof of Theorem 7.3 directly follows from Theorem 7.2, the comparison of Gal-

lager’s lower bound, and Lemma 7.4.

Example 7.1 We consider a system consisting of a binary SEM source QS and a binary

SEM channel WY|X with transmission rate t = 1, both with symmetric transition matrices

given by

Q =


 q 1 − q

1 − q q


 and PZ =


 p 1 − p

1 − p p


 ,

such that 0 < p, q < 1. The upper and lower bounds for EJ(QS,WY|X, τ) are plotted as a

function of parameters p and q in Fig. 7.2. It is observed that for this source-channel pair,

the bounds are tight for a large class of (p, q) pairs. Only when p or q is extremely close to

0 or 1, is EJ not exactly known.

7.4.3 Error Exponents for SEM Sources and SEM Channels

In this section we investigate two special cases of Theorem 7.2. One special case is that when

the SEM channel is a noiseless channel, and the other is that when the SEM source is uniform

source. In the first case, the upper bound for EJ reduces to an upper bound for the SEM

source error exponent, and in the second case, Theorem 7.2 reduces to an upper bound to the
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Figure 7.2: The lower and upper bounds of EJ for the binary SEM source and the binary

SEM channel of Example 7.1 with τ = 1.

SEM channel error exponent. Note that the SEM source error exponent has been studied

in [72] and [94], and our results coincide with their results. The upper bound for the channel

error exponent for SEM channels, however, has not been addressed before. We next need

to extend the definition of the DMS error exponent for SEM sources; to be more general,

we define the error exponent for arbitrarily discrete sources QS , {QSτn ∈ P(Sτn)}∞τn=1.

A (k,Mk) block source code for a discrete source QS, which is defined the same as the

block source code for a DMS, is a pair of mappings

fsk : Sk −→ {1, 2, ...,Mk}

and

ϕsk : {1, 2, ...,Mk} −→ Sk.
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The code rate is defined by

Rk ,
1

k
log2Mk bits/source symbol.

The probability of erroneously reconstructing the source via the (k,Mk) block source code

(fsk, ϕsk) is given by

P (k)
se (QS, Rk) ,

∑

s:ϕsk(fsk(s))6=s

QSk(s). (7.20)

Definition 7.2 For any R > 0, the source error exponent e(R,QS) of the discrete source

QS is defined as the supremum of the set of all numbers e for which there exists a sequence

of (k,Mk) block codes (fsk, ϕsk) with

e ≤ lim inf
n→∞

− 1

n
log P (k)

se (QS, Rk) (7.21)

and

R ≥ lim sup
k→∞

Rk. (7.22)

The following by-product result regarding the error exponent for SEM sources immedi-

ately follow from Theorem 7.2.

Corollary 7.1 [94] For any rate 0 < R < log2 λ0(QS), the source error exponent e(R,QS)

for an SEM source QS satisfies

e(R,QS) ≤ e(R,QS), (7.23)

where

e(R,QS) , sup
ρ≥0

[Rρ− (1 + ρ) log2 λ 1
1+ρ

(QS)]. (7.24)

In particular, e(R,QS) = 0 for 0 < R < HQS
(S).

Note that log2 λ0(QS) = log2 |S| when the source reduces to a DMS (with alphabet S).

This upper bound is exactly the same as the one given by Vašek [94]. In fact, he shows that

e(R,QS) is the real source error exponent (also see [25]) for all R > 0. We point out that

e(R,QS) can be equivalently expressed in terms of a constrained minimum of Kullback-

Leibler divergence [72], as the error exponent for DMS (2.4); also see (7.34) in the Section

7.4.5.
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Similarly, before we specialize our bound to SEM channel error exponent, we first define

the channel error exponent for an arbitrary discrete channel WY|Z , {WY n|Xn ∈ P(X n →

Yn)}∞n=1.

An (n,Mn) block channel code for a discrete channel WY|X, which is defined the same

as the block code for a DMC, is a pair of mappings

fcn : {1, 2, ...,Mn} −→ X n

and

ϕcn : Yn −→ {1, 2, ...,Mn}.

The code rate is defined as

Rn ,
1

n
log2Mn bits/channel use.

The (average) probability of decoding error for the (fcn, ϕcn) code is given by

P (n)
ec (WY|X, Rn) ,

1

Mn

Mn∑

i=1

Mn∑

j=1,j 6=i

∑

y:ϕcn(y)=j

WY n|Xn(y|fcn(i)). (7.25)

Definition 7.3 For any R > 0, the channel error exponent E(R,WY|X) of the discrete

channel WY|X is defined as the supremum of the set of all numbers E for which there exists

a sequence of (n,Mn) block codes (fcn, ϕcn) with

E ≤ lim inf
n→∞

− 1

n
lnP (n)

ec (WY|X, Rn)

and

R ≤ lim inf
n→∞

Rn.

The following by-product results regarding the error exponent for SEM channels imme-

diately follow from Theorem 7.2.

Corollary 7.2 For any rate log2 (B/λ0(PZ)) < R < +∞, the channel error exponent

E(R,WY|X) for an SEM channel WY|X with additive noise PZ satisfies

E(R,WY|X) ≤ Esp(R,WY|X), (7.26)



7.4. Upper and Lower Bounds 165

where

Esp(R,WY|X) , sup
ρ≥0

{
ρ(log2B −R) − (1 + ρ) log2 λ 1

1+ρ
(PZ)

}
. (7.27)

In particular, E(R,WY|X) = 0 for C(WY|X) ≤ R < +∞.

When the SEM channel reduces to an additive noise DMC, log2 (B/λ0(PZ)) = R∞. Note

that the usual case (when the transition matrix is positive) is that log2 (B/λ0(PZ)) = 0 (see

Lemma 7.1). It can be shown that Esp(R,WY|X) is positive, non-increasing and convex,

and hence strictly decreasing in R. Comparing with Gallager’s random-coding lower bound

for E(R,WY|X) [42, Theorem 5.6.1] (when specialized for SEM channels) given by

Er(R,WY|X) , max
0≤ρ≤1

{
ρ(log2B −R) − (1 + ρ) log2 λ 1

1+ρ
(PZ)

}
, (7.28)

and applying the results of Section 7.3, we note that the upper and lower bounds are tight

if R ≥ Rcr(WY|X), where

Rcr , log2B −H eP( 1
2 )

Z

(Z)

is the critical rate of the SEM channel. Thus, the channel error exponent for SEM channel

is determined exactly for R ≥ Rcr(WY|X).

Example 7.2 Consider a binary SEM channel WY|X with noise process

PZ = {PZn ∈ P(Zn)}∞n=1

whose transition matrix is given by

PZ =


 ε+ (1 − ε)(1 − p) (1 − ε)p

(1 − ε)(1 − p) ε+ (1 − ε)p


 ,

where 0 ≤ ε < 1 is the noise correlation coefficient and 0 < p < 1. It is easy to see that the

stationary distribution of the noise process is π = [1−p, p]. Note also that the SEM channel

reduces to a (memoryless) BSC with crossover probability p when we choose ε = 0. In Fig.

7.3, we plot the upper and lower bounds for the SEM channel error exponent (7.27) and

(7.28) for p = 0.01 and ε = 0.5, and for p = 0.01 and ε = 0.9. We also plot the upper and

lower bounds for the BSC error exponent with crossover probability p = 0.01 for comparison.
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It is seen that for the SEM channel with parameters p = 0.01 and ε = 0.5, the channel

exponent is determined exactly between Rcr(WY|X) = 0.39 and C(WY|X) = 0.95; for the

SEM channel with parameters p = 0.01 and high correlation ε = 0.9, the channel exponent

is determined exactly between Rcr(WY|X) = 0.57 and C(WY|X) = 0.98; while for the BSC

with p = 0.01, the channel exponent is determined exactly between Rcr(WY |X) = 0.55 and

C(WY |X) = 0.92. For rates close to capacity, since the channel capacity of the SEM channel

is generally larger than the capacity of BSC, the corresponding channel error exponent of

SEM channel is larger; this is the case for example, when 0.75 < R < 0.95, for the SEM

channel exponent with p = 0.01 and ε = 0.5. However, for middle rates, when R is between

0.2 and 0.75, the BSC error exponent beats the SEM channel error exponent with p = 0.01

and ε = 0.5 (since the lower bound of the BSC error exponent is above the upper bound

of the SEM channel exponent). In Fig. 7.4, we plot the upper and lower bounds for the

SEM error exponent vs the noise correlation coefficient ε. When p = 0.01 and R = 0.4,

we see that the upper and lower bounds coincide for ǫ ∈ [0.27, 0.65], and hence exactly

determine the exponent E(R,WY|X). When p = 0.01 and R = 0.5, the SEM channel error

exponent is determined for ǫ ∈ [0.05, 0.83]. When p = 0.01 and R = 0.5, the SEM channel

error exponent is determined for ǫ ∈ [0, 0.93]. This example demonstrates that the channel

noise memory does not necessarily increase the channel error exponent and the critical

rate (as seen in Figs. 7.3 and 7.4). However, we also stress that since in general the SEM

capacity is larger than the capacity of the BSC with the same parameter p, there might be a

considerable gain of error exponent at a rate below the SEM capacity. For instance, we plot

the upper and lower bounds for the SEM channel error exponent for p = 0.1 and ε = 0.8,

and the BSC error exponent with crossover probability p = 0.1. As shown in Fig. 7.5, in

this case, the capacity of the SEM channel (C(WY|X) = 0.79) is noticeably larger than

the capacity of the BSC (C(WY |X) = 0.52). Thus, as expected, the SEM error exponent

considerably outperforms the BSC error exponent for a wide range of rates below the SEM

capacity.
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Figure 7.3: The upper and lower bounds for the channel error exponents of Example 7.2 in

terms of rates R for p = 0.01.

7.4.4 Equivalent Bounds

One may next ask if the lower and upper bounds for the SEM source-channel pair enjoy

a form that is similar to Csiszár’s bounds for DMS-DMC pairs, EJr(QS ,WY |X , τ) given

by (5.5) and EJsp(QS ,WY |X , τ) given by (5.6), which are expressed as the minimum of the

sum of the source error exponent and the lower/upper bound of the channel error exponent.

The answer is indeed affirmative, as given in the following theorem.

Theorem 7.4 Let τHQS
(S) < C(WY|X) and λτ0(QS)λ0(PZ) > B. The following equiva-
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Figure 7.4: The upper and lower bounds for the channel error exponents of Example 7.2 in

terms of ε.

lent representations hold

max
ρ≥0

F (ρ) = min
log2(B/λ0(PZ))<R<τ log2(λ0(QS))

[
τe

(
R

τ
,QS

)
+ Esp(R,WY|X)

]
, (7.29)

max
0≤ρ≤1

F (ρ) = min
0<R<τ log2(λ0(QS))

[
τe

(
R

τ
,QS

)
+ Er(R,WY|X)

]
. (7.30)

where F (ρ) is defined in (7.9), e(R,QS) = e(R,QS) is given in Corollary 7.1, Esp(R,WY|X)

and Er(R,WY|X) are given in Corollary 7.2 and (7.28).

Remark 7.6 The assumption λτ0(QS)λ0(PZ) > B ensures that the right-hand side of (7.29)

is finite and the minimum is attained by some R ∈ (log2(B/λ0(PZ)), τ log2 λ0(QS)).

Theorem 7.4 is proved in a similar manner as Theorem 5.1 based on Fenchel dual-

ity theorem. Note that here the equivalent expressions for these bounds can also be
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Figure 7.5: The upper and lower bounds for the channel error exponents of Example 7.2 in

terms of rates R for p = 0.1.

proved via the technique of Lagrange multipliers, since the functions log2 λ1/(1+ρ)(QS) and

log2 λ1/(1+ρ)(PZ) are differentiable functions of ρ and their derivatives admit closed-form

expressions (recall Lemma 7.3). When the source QS and channel WY|X are discrete mem-

oryless, the right-hand side of (7.29) and (7.30) reduce to Csiszár’s lower and upper bounds

EJr(QS ,WY |X , τ) and EJsp(QS ,WY |X , τ).

We point out that the parametric expressions of these bounds (the left-hand side of

(7.29) and (7.30)) facilitate the computation of EJ , while the bounds in Csiszár’s form (the

right-hand side of (7.29) and (7.30)) are instrumental for the comparison of JSC and tandem

coding exponents.
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7.4.5 Markov Types and A Conceptual Upper Bound

Recall that Csiszár originally establishes the upper bound for EJ for a DMS-DMC pair

(QS ,WY |X) by the exact source and channel exponents e(R,QS) and E(R,WY |X),

EJ(QS ,WY |X , τ) ≤ min
R

[
τe

(
R

τ
,QS

)
+ E(R,WY |X)

]
(7.31)

and Csiszár’s source-channel sphere-packing bound EJsp is obtained by replacing the chan-

nel error exponent E(R,WY |X) by its sphere-packing upper boundEsp(R,WY |X). In Section

6.1.3, we proved that the JSCC error exponent with feedback can be upper bounded by

EJfb(QS ,WY |X , τ) ≤ min
R

[
τe

(
R

τ
,QS

)
+ Efb(R,WY |X)

]
(7.32)

where Efb(R,WY |X) is the channel error exponent for a DMC with feedback. We also

pointed out in Observation 6.1 that this kind of conceptual upper bound, expressed in

terms of source and channel error exponent, holds for many discrete systems, as long as we

can partition the source space by polynomial numbers of type classes, and we can rewrite

the averaged probability of error for each type class as a channel coding probability error.

Now for the SEM source-channel pairs, this is still true, i.e., EJ is upper bounded by the

minimum of the sum of the SEM source exponent e(R,QS) and the SEM channel exponent

E(R,WY|X).

In the following we prove this conceptual bound for SEM system by introducing Markov

types. Like (7.31) and (7.32), the bound in terms of e(R,QS) and E(R,WY|X), though

tighter than the sphere-packing type bound (7.29), is not computable in general, since the

behavior of the SEM channel error exponent E(R,WY|X) is unknown for rates smaller than

the critical rate Rcr(WY|X). In Chapter 10, we shall use this bound to prove that the JSCC

error exponent can at most double the tandem coding exponent.

We first set up some notations and basic facts regarding Markov types adopted from [34]

and [72]. Given a source sequence s = (s1, s2, ..., sk) ∈ Sk (|S| = M), let kij(s) be the

number of transitions from i ∈ S to j ∈ S in s with the cyclic convention that s1 follows

sk. We denote the matrix [
kij(s)

k

]

M×M



7.4. Upper and Lower Bounds 171

by Φ(k)(s) and call it the Markov type (empirical matrix) of s, where
∑

i,j kij(s) = k and

it is easily seen that
∑

j kij =
∑

j kji for all i. In other words, the (k-length) sequence s of

type P (which is an M ×M matrix) has the empirical matrix Φ(k)(s) which is equal to P .

The set of all types of k-length sequences will be denoted by Ek. Next we introduce a class

of matrices that includes Ek for all k as a dense subset. Let

E =



P : P = [pij]M×M ,

∑

i,j

pij = 1, and pij ≥ 0,
∑

j

pij =
∑

j

pji for all i



 .

Note that Ek → E as k → ∞ in the sense that for any P ∈ E , there exists a sequence of

{Φ(k)} ∈ Ek, such that Φ(k) → P uniformly.

For P ∈ E and any M × M transition (stochastic) matrix Q = [qij ]M×M (such that
∑

j qij = 1 for all i), define

Hc(P ) , −
∑

i,j

pij log
pij∑
j pij

be the conditional entropy of P and

Dc(P ‖ Q) ,
∑

i,j

pij log
pij

qij
∑

j pij

be the conditional divergence of P over Q. Let P ∈ Ek be a Markov type, and let

TP =
{
s ∈ Sk : Φ(k)(s) = P

}

be a Markov type class. We define

MP (i, j) , {s = (s1, s2, ..., sk) ∈ TP : s1 = i, sk = j} .

Clearly, MP (i, j) partitions the entire type class TP over (i, j) ∈ S × S, and all sequences

in MP (i, j) are equiprobable under QSk(·).

Lemma 7.5 [34] Let QS be a first-order finite-alphabet irreducible Markov source with

transition matrix Q = [qij]M×M and arbitrary initial distribution q > 0. Let α , mini qi.

Then we have the following bounds.

(1) For any i, j ∈ S and P ∈ Ek such that MP (i, j) 6= ∅, |MP (i, j)| ≥ k−M (k+1)−M
2
2kHc(P ).

(2) QSk(TP ) ≥ k−M (k + 1)−M
2
α2−kDc(P‖Q).
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Remark 7.7 Remark that in [34], the authors assume both irreducibility and aperiodicity

for the Markov source QS and also derive an upper bound for the probability of type classes

QSk(TP ). Here we only need the lower bound above for QSk(TP ); thus the aperiodicity

assumption is not required.

Note also that M and α are quantities independent of k, and that for SEM sources, the

stationary distribution (which is the initial distribution) is unique and positive.

Theorem 7.5 For an SEM source QS and a discrete channel WY|X with additive SEM

noise PW such that τHQS
(S) < C(WY|X), the JSCC error exponent EJ(QS,WY|X, τ)

satisfies

EJ(QS,WY|X, τ) ≤ inf
τHQS

(S)≤R≤τ log2 λ0(QS)

[
τe

(
R

τ
,QS

)
+ E(R,WY|X)

]
(7.33)

Proof: We know from [34] that the source error exponent for the SEM source admits the

following divergence form

e

(
R

t
,QS

)
= min

P∈E:Hc(TP )≥R/t
Dc(P ‖ Q) = min

P∈E:Hc(TP )=R/t
Dc(P ‖ Q), (7.34)

which is an equivalent representation of e(R,QS) given in Corollary 7.1 (see [72]), where

the second equality of (7.34) follows from the strict monotonicity of e(R,QS) in the interval

[HQS
(S), log2 λ0(QS)]. Thus, we can write

inf
τHQS

(S)≤R≤τ log2 λ0(QS)

[
τe

(
R

τ
,QS

)
+ E(R,WY|X)

]

= inf
P∈E

[
τDc(P ‖ Q) + E

(
τHc(P ),WY|X

)]
. (7.35)

We assume that the above is finite (the upper bound is trivial if it is infinity) and the

infimum actually becomes a minimum. Let the minimum be achieved by a matrix (joint

distribution) P ∗ ∈ E , then there must exist a sequence of Markov types
{
P̂S ∈ Eτn

}∞

n=no

such that P̂ → P ∗ uniformly. Next rewrite the probability of error given in (7.1) as a sum



7.4. Upper and Lower Bounds 173

of probabilities of types and lower bound it by

P (n)
e (QS,WY|X, τ)

=
∑

P∈Eτn

∑

s∈TP

QSτn(s)
∑

y∈Ac
s

WY n|Xn(y|fn(s))

≥
∑

s∈T bP

QSτn(s)
∑

y∈Ac
s

WY n|Xn(y|fn(s))

=
∑

(i,j)∈S×S:M bP
(i,j)6=∅

∑

s∈M bP
(i,j)

QSτn(s)
∑

y∈Ac
s

WY n|Xn(y|fn(s))

=
∑

(i,j)∈S×S:M bP
(i,j)6=∅


 ∑

s′∈M bP
(i,j)

QSτn(s′)




∑

s∈M(i,j)

QSτn(s)∑
s′∈M bP

(i,j)QSτn(s′)

∑

y∈Ac
s

WY n|Xn(y|fn(s))

=
∑

(i,j)∈S×S:M bP
(i,j)6=∅

∑

s′∈M bP
(i,j)

QSτn(s′)Pe(M bP (i, j))

≥
∑

(i,j)∈S×S:M bP
(i,j)6=∅

∑

s′∈M bP
(i,j)

QSτn(s′) min
(i,j)∈S×S:M bP

(i,j)6=∅
Pe(MP (i, j))

= QSτn(T bP ) min
(i,j)∈S×S:M bP

(i,j)6=∅
Pe(M bP (i, j)), (7.36)

where

Pe(M bP (i, j)) ,
1

|M bP (i, j)|
∑

s∈M bP
(i,j)

∑

y∈Ac
s

WY n|Xn(y|fn(s)).

We note that Pe(M bP (i, j)) is actually the (average) probability of error of the n-block

channel code (fn, ϕn) with message set (source) M bP (i, j) and channel WY|X. Now set-

ting Rn(i, j) = 1
n log2 |M bP (i, j)|, by the definition of the channel error exponent for SEM

channels (Definition 7.3) and Lemma 7.5

lim inf
n→∞

− 1

n
log2 Pe(M bP (i, j)) ≤ E

(
lim inf
n→∞

Rn(i, j),WY|X

)
= E

(
τHc(P̂ ),WY|X

)

for any sequence of JSC codes (fn, ϕn) and for any (i, j) ∈ S × S such that M bP (i, j) 6= ∅.

It then follows from (7.36) and Lemma 7.5 again that

lim inf
n→∞

− 1

n
log2 P

(n)
e (QS,WY|X, τ)

≤ lim inf
n→∞

[
− 1

n
log2QSτn(T bP ) − 1

n
log2 min

(i,j)∈S×S:M bP
(i,j)6=∅

Pe(M bP (i, j))

]
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≤ lim sup
n→∞

− 1

n
log2QSτn(T bP ) + lim inf

n→∞
− 1

n
log2 min

(i,j)∈S×S:M bP
(i,j)6=∅

Pe(M bP (i, j))

≤ τDc(P
∗ ‖ Q) + E

(
τHc(P

∗),WY|X

)
.

Since the above bound holds for any sequence of JSC codes, we complete the proof of

Theorem 7.5. �

7.5 Systems with Arbitrary Markovian Orders

Suppose that the SEM source {Ui}∞n=1 with alphabet U has a Markovian order Ks ≥ 1.

Define process {Si}∞n=1 obtained by Ks-step blocking the Markov source, i.e.,

Sn , (Un, Un+1, ..., Un+Ks−1).

Then

Pr(Sn = jn|Sn−1 = jn−1, ..., S1 = j1) = Pr(Sn = jn|Sn−1 = jn−1), j1, ..., jn ∈ S = UKs

and the source QS = {QSn ∈ P(Sn)}∞n=1 is a first order SEM source with |U|Ks states.

Therefore, all the results in this paper can be readily extended to SEM systems with arbi-

trary order by converting the Ks-th order SEM source to a first order SEM source of larger

alphabet. Also, if the additive SEM noise PZ of the channel has Markovian order Kc ≥ 1,

we can similarly convert it to a first order SEM noise with expanded alphabet. In Section

10.3 we will compare the JSCC error exponent with the tandem coding error exponent for

a Markovian system consisting of an SEM source (of order Ks = 1) and the queue based

channel (QBC) [101] with memory Kc = 2 (see Example 10.4).

7.6 Conclusion

In this chapter, we established a computable upper bound for the JSCC error exponent

EJ for SEM source-channel systems. As special cases, the upper bound to EJ leads to an

upper bound for the SEM source (channel) error exponent. We next examined Gallager’s

lower bound for EJ for the Markovian systems. The lower/upper bound can be expressed
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in terms of a maximum of the difference source and channel functions, and equivalently,

can be expressed in terms of the minimum of the sum of the SEM source error exponent

and the lower/upper bound of the SEM channel exponent. It was shown that EJ can be

exactly determined by the two bounds for a large class of SEM source-channel pairs. We

next established a conceptual upper bound for EJ in terms of SEM source and channel error

exponents by introducing Markov types. This upper bound will be applied in Chapter 10

to compare the JSCC error exponent with the tandem coding error exponent.



Chapter 8

JSCC Excess Distortion Exponent

for Memoryless

Continuous-Alphabet Systems

In this chapter, we address the JSCC excess distortion exponent for a communication system

consisting of a (stationary continuous) memoryless source QS with a distortion measure

and a (stationary continuous) memoryless channel WY |X with an input cost constraint.

Specifically, we first focus on the memoryless Gaussian system and then extend our results

to other continuous source-channel pairs such as the Laplacian-source Gaussian-channel

pair, and a certain class of source-channel pairs when the distortion is a metric.

We first define the JSCC excess distortion exponent and formulate our problem in

Section 8.1. In Section 8.2, we establish upper and lower bounds for the JSCC excess

distortion exponent for Gaussian systems. For a Gaussian communication system consist-

ing of an MGS QS with the squared-error distortion and an MGC WY |X with additive

noise PZ and the power input constraint, we show that the JSCC excess distortion ex-

ponent E∆,E
J (QS ,WY |X , τ) with transmission rate τ , under a distortion threshold ∆ and

power constraint E , is upper bounded by the minimum of the sum of the MGS exponent

τFG(R/τ,QS ,∆) defined in (2.46) and (2.47) and the sphere-packing upper bound of the

176
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Gaussian channel error exponent Esp(R,WY |X , E) given by (2.51). The proof of the up-

per bound relies on a strong converse JSCC theorem and the judicious construction of an

auxiliary MGS and an auxiliary MGC to lower bound the probability of excess distortion.

We also establish a lower bound for E∆,E
J (QS ,WY |X , τ). As a matter of fact, we derive

the lower bound for MGSs and general continuous memoryless channels with an input cost

constraint. To prove the lower bound, we employ a concatenated “quantization – lossless

JSCC” scheme as in [7], use the type covering lemma for Gaussian-type classes (Lemma

3.6), and then bound the probability of error for the lossless JSCC part, which involves

a memoryless source with a countably infinite alphabet and the memoryless continuous

channel, by using a modified version of Gallager’s random-coding bound for the JSCC er-

ror exponent for DMS-DMC pairs [42, Problem 5.16] (the modification is made to allow

for input cost constrained channels with countably-infinite input alphabets and continuous

output alphabets). This lower bound is expressed by the maximum of the difference of

Gallager’s constrained-input channel function E0(WY |X , E , ρ) given in (2.40) and the source

function τE(QS ,∆, ρ) given in (4.7). Note that when the channel is an MGC with an input

power constraint, a computable but somewhat looser lower bound is obtained by replac-

ing E0(WY |X , E , ρ) by Gallager’s Gaussian-input channel function Ẽ0(WY |X , E , ρ) given by

(2.54). Also we remind that the source function E(QS ,∆, ρ) for the MGS is equal to the

guessing exponent [6] and admits an explicit analytic form (4.8).

As in our previous chapters for discrete systems (Chapters 5 and 7), we derive equiva-

lent expressions for the lower and upper bounds by applying Fenchel duality theorem. We

show that the upper bound, though proved in the form of a minimum of the sum of source

and channel exponents, can also be represented as a (dual) maximum of the difference of

Gallager’s channel function Ẽ0(WY |X , E , ρ) and the source function τE(QS ,∆, ρ). Analo-

gously, the lower bound, which is established in Gallager’s form, can also be represented in

Csiszár’s form, as the minimum of the sum of the source exponent and the lower bound of

the channel exponent. In this regard, our upper and lower bounds are natural extension

of Csiszár’s upper and lower bounds from the case of (finite alphabet) discrete memoryless

systems to the case of memoryless Gaussian systems. We then compare the upper and lower
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bounds using their equivalent forms and derive explicit analytical conditions for which the

two bounds coincide.

We next observe that upper and lower bounds forE∆,E
J can also be proved for memoryless

Laplacian sources (MLSs) under the magnitude-error distortion measure. In Section 8.3,

using a similar approach, we establish upper and lower bounds for the JSCC excess distortion

exponent for the lossy transmission of MLSs over MGCs.

In Section 8.4, we considerably modify our approach in light of the result of [55] to prove

a lower bound for some continuous source-channel pairs when the distortion is a metric. We

show that the lower bound for MGSs and continuous memoryless channels, expressed by

the maximum of the difference of source and channel functions, still holds for a continuous

source-channel pair if there exists an element so ∈ R with E exp[td(s, so)] < ∞ for all

t ∈ (−∞,+∞), where the expectation is taken over the source distribution defined on R

(see Theorem 8.7). Although the condition does not hold for both MGSs with the squared-

error distortion and MLSs with the magnitude-error distortion, it holds for generalized

MGSs with parameters (α, σ) under the distortion d(x, y) = |x − y|p, p < α, and p ≤ 1.

Finally, we draw a conclusion in Section 8.5.

8.1 Definitions and System Description

8.1.1 Notation

Since only continuous systems are treated in this chapter, we assume that the source and

channel alphabets are all real space, i.e., S = X = Y ⊆ R. The source distribution QS is

a valid pdf on S, and the channel transition distribution WY |X is a valid conditional pdf

on X × Y. We next introduce some new notation for this chapter. o(n) serves as a generic

notation for a vanishing quantity with respect to n such that limn→∞ o(n)/n = 0. ζ(ǫ) serves

as a generic notation for a vanishing quantity with respect to ǫ such that limǫ→0 ζ(ǫ) = 0.
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s ∈ Sτn - fn ∈ FE
n

x ∈ X n
- WY |X -y ∈ Yn

ϕn -ŝ ∈ Sτn

Figure 8.1: JSCC system consisting of a memoryless source and a memoryless channel with

continuous alphabets.

8.1.2 JSCC System and JSCC Excess Distortion Exponent

Given a source distribution measure d(·, ·) : S × S → [0,∞) and a channel input function

g(·) : X → [0,∞), a JSC code (fn, ϕn,∆, E , τ) with blocklength n and transmission rate τ

(source symbols/channel use) for the memoryless source QS , and the memoryless channel

WY |X with input cost constraint E is a pair of mappings (see Fig. 8.1):

fn : Sτn −→ X n

and

ϕn : Yn −→ Sτn,

where fn ∈ FE
n , and

FE
n ,

{
fn :

1

n

n∑

i=1

g(xi) ≤ E for all x = fn(s)

}
. (8.1)

Here s ∈ Sτn is the transmitted source message and x = fn(s) ∈ X n is the corresponding

n-length codeword. The conditional pdf of receiving y ∈ Yn at the channel output given

that the message s is transmitted is given by

W
(n)
Y |X(y|fn(s)) =

n∏

i=1

WY |X(yi|xi).

The probability of failing to decode the JSC code (fn, ϕn,∆, E , τ) within a prescribed dis-

tortion level ∆ > 0 is called the probability of excess distortion and defined by

P
(n)
∆ (QS ,WY |X , E , τ) ,

∫

Sτn

Q
(τn)
S (s)

∫

y:d(τn)(s,ϕn(y))>∆
W

(n)
Y |X(y|fn(s))dyds.
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Definition 8.1 The JSCC excess distortion exponent E∆,E
J (QS ,WY |X , τ) for the above

memoryless source QS and memoryless channel WY |X is defined as the supremum of the set

of all numbers E for which there exists a sequence of source-channel codes (fn, ϕn,∆, E , τ)

with blocklength n such that

E ≤ lim inf
n→∞

− 1

n
lnP

(n)
∆ (QS ,WY |X , E , t).

When there is no possibility of confusion, throughout the sequel the JSCC excess dis-

tortion exponent EJ(QS ,WY |X ,∆, E , τ) will be written as E∆,E
J .

8.2 JSCC Excess Distortion Exponent for Gaussian Systems

We now focus on the communication system consisting of an MGS and an MGC (S = X =

Y = R) with squared-error distortion measure and input power constraint. We establish an

upper and a lower bound for the JSCC excess distortion exponent for the Gaussian system

in Sections 8.2.2 and 8.2.4. The bounds will be evaluated in Section 8.2.5,

8.2.1 A Strong Converse (Lossy) JSCC Theorem

We first derive a strong converse JSCC theorem under the probability of excess distortion

criterion for the Gaussian system. We use later this result to obtain an upper bound for

the excess distortion exponent E∆,E
J .

Theorem 8.1 (Strong Converse JSCC Theorem) For an MGS QS and an MGC WY |X , if

τR(QS,∆) > C(WY |X , E), then

lim
n→∞

P
(n)
∆ (QS ,WY |X , E , τ) = 1

for any sequence of JSC codes (fn, ϕn,∆, E , τ).

Proof: Assume that C(WY |X , E) = τR(QS ,∆)− ε, where ε is a positive number. For some

δ (0 < δ < ε) define

Ã =



(s,y) : ln

W
(n)
Y |X(y|fn(s))P ∗(τn)

S′ (ϕn(y))

P ∗(n)
Y (y)P ∗(τn)

S′|S((ϕn(y))|s)
≤ n

(
C(WY |X , E) − τR(QS ,∆) + δ

)


 ,
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where P ∗(τn)
S′|S

and P ∗(τn)
S′ are the τn−dimensional product distributions corresponding to

P ∗
S′|S and P ∗

S′ given in (2.43) and (2.44) respectively, and P ∗(n)
Y is the n−dimensional product

distribution corresponding to P ∗
Y given in (2.50). Recalling that

P
(n)
∆ (QS ,WY |X , E , τ) = 1 − Pr

({
d(τn) (s, ϕn(y)) ≤ ∆

})
, (8.2)

where the probability is with respect to the joint distribution Q
(τn)
S (·)W (n)

Y |X(·|·), it suffices

to show that the probability Pr
({
d(τn) (s, ϕn(y)) ≤ ∆

})
approaches 0 asymptotically for

any sequence of JSC codes (fn, ϕn,∆, E , τ). We decompose it as follows

Pr
({
d(τn) (s, ϕn(y)) ≤ ∆

})

= Pr
({
d(τn) (s, ϕn(y)) ≤ ∆

}⋂
Ã
)

+ Pr
({
d(τn) (s, ϕn(y)) ≤ ∆

}⋂
Ãc
)
. (8.3)

For the first probability in (8.3), we can bound it by using the property of set Ã

Pr
({
d(τn) (s, ϕn(y)) ≤ ∆

}⋂
Ã
)

=

∫

{(s,y):d(τn)(s,ϕn(y))≤∆}T eA
Q

(τn)
S (s)W

(n)
Y |X(y|fn(s))dsdy

≤
∫

{(s,y):d(τn)(s,ϕn(y))≤∆}T eA
en(C(WY |X ,E)−τR(QS ,∆)+δ)

·Q(τn)
S (s)

P ∗(n)
Y (y)P ∗(τn)

S′|S((ϕn(y))|s)
P ∗(τn)

S′ (ϕn(y))
dsdy

≤ e−n(ε−δ)

∫

Yn

P ∗(n)
Y (y)

P ∗(τn)
S′ (ϕn(y))

∫

s:d(τn)(s,ϕ(y))≤∆
Q

(τn)
S (s)P ∗(τn)

S′|S(ϕn(y)|s)ds
︸ ︷︷ ︸

≤P ∗(τn)

S′ (ϕn(y))

dy

≤ e−n(ε−δ)

∫

Yn

P ∗(n)
Y (y)dy

= e−n(ε−δ). (8.4)

It remains to bound the second probability in (8.3). Using the expressions of the pdf’s, we

have

1

n
ln
W

(n)
Y |X(y|fn(s))P ∗(τn)

S′ (ϕn(y))

P ∗(n)
Y (y)P ∗(τn)

S′|S((ϕn(y))|s)
= C(WY |X , E) +

yTy

2n(E + σ2
Z)

− zTz

2nσ2
Z

− τR(QS ,∆) +
τd(τn)(ϕn(y), s)

2∆
− sT s

2nσ2
S

.
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Hence,

Pr
({
d(τn) (s, ϕn(y)) ≤ ∆

}⋂
Ãc
)

= Pr

({
d(τn) (s, ϕn(y)) ≤ ∆

}⋂{
yTy

2n(E + σ2
Z)

− zTz

2nσ2
Z

+
τd(τn)(ϕn(y), s)

2∆
− sT s

2nσ2
S

> δ

})

≤ Pr

(
yTy

2n(E + σ2
Z)

− zTz

2nσ2
Z

+
τ

2
− sT s

2nσ2
S

> δ

)

≤ Pr

(
yTy

n(E + σ2
Z)

− 1 >
2δ

3

)
+ Pr

(
zTz

nσ2
Z

− 1 < −2δ

3

)
+ Pr

(
sT s

nσ2
S

− τ < −2δ

3

)

. (8.5)

It suffices to show

lim
n→∞

Pr

(
yTy

n(E + σ2
Z)

− 1 >
2δ

3

)
= 0, (8.6)

lim
n→∞

Pr

(
zTz

nσ2
Z

− 1 < −2δ

3

)
= 0, (8.7)

and

lim
n→∞

Pr

(
sT s

nσ2
S

− τ < −2δ

3

)
= 0. (8.8)

Clearly, (8.7) and (8.8) follow by the weak law of large numbers (WLLN), noting that s and

z are memoryless sequences. To derive (8.6), we write, as in the proof of [70, Lemma 4])

Pr

(
yTy

n(E + σ2
Z)

− 1 >
2δ

3

)

= Pr

(
xTx

n
+

zTz

n
+

2xTz

n
− (E + σ2

Z) >
2δ

3
(E + σ2

Z)

)

≤ Pr

(
zTz

n
+

2xTz

n
− σ2

Z >
2δ

3
(E + σ2

Z)

)

≤ Pr

(
zTz

n
− σ2

Z >
δ

3
(E + σ2

Z)

)
+ Pr

(
2xTz

n
>
δ

3
(E + σ2

Z)

)
, (8.9)

where the first inequality follows from the power constraint (8.1), the first probability in

(8.9) converges to zero as n→ ∞ by the WLLN and the second probability in (8.9) converges

to zero as n→ ∞ by the WLLN, the fact the z’s have zero mean, and the independence of

x and z. Thus, (8.6), (8.7) and (8.8) yield

lim
n→∞

Pr

(
yTy

2n(E + σ2
Z)

− zTz

2nσ2
Z

+
τ

2
− sT s

2nσ2
S

> δ

)
= 0. (8.10)
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On account of (8.4), (8.10) and (8.2), we complete the proof. �

Note that the above theorem also holds for a slightly wider class of MGCs with scaled

inputs, described by Yi = bXi +Zi (Xi and Zi are independent from each other), and with

transition pdf

WY |X(y|x) = PZ(y − bx) =
1√

2πσ2
Z

e
− (y−bx)2

2σ2
Z ,

where b is a nonzero constant. We next apply this result to prove the upper bound of E∆,E
J .

It follows from Theorem 8.1 that the JSCC excess distortion exponent is 0 if the source

rate-distortion function is larger than the channel capacity, i.e., τR(QS ,∆) > C(WY |X , E).

We thus confine our attention to the case of τR(QS ,∆) < C(WY |X , E) in the following

theorem.

8.2.2 The Upper Bound

Theorem 8.2 For an MGS QS and an MGC WY |X with τR(QS ,∆) < C(WY |X , E), the

JSCC excess distortion exponent satisfies

E∆,E
J (QS ,WY |X , τ) ≤ E

∆,E
Jsp (QS ,WY |X , τ), (8.11)

where

E
∆,E
Jsp (QS ,WY |X , τ) , min

τR(QS ,∆)≤R≤C(WY |X ,E)

[
τFG

(
R

τ
,QS ,∆

)
+ Esp(R,WY |X , E)

]
,

(8.12)

where (R,QS ,∆) is the MGS exponent given in (2.46) and (2.47) and Esp(R,WY |X , E) is

the sphere-packing bound of the channel error exponent for an MGC WY |X given in (2.51).

Proof: For any sufficiently small ε > 0, fix an R ∈ [τR(QS ,∆) + ε,C(WY |X , E)]. Define

an auxiliary MGS for this R with alphabet S = R and distribution Q̃S ∼ N (0, σ̃2
S), where

σ̃2
S , ∆e2R/τ , so that the rate-distortion function of Q̃S is given by

R(Q̃S ,∆) =
1

2
ln max

{
σ̃2
S

∆
, 1

}
=
R

τ
.
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Also, it can be easily verified that the Kullback-Leibler divergence between the auxiliary

MGS Q̃S and the original source QS is

D(Q̃S ‖ QS) =
1

2

(
σ̃2
S

σ2
S

− ln
σ̃2
S

σ2
S

− 1

)
= FG

(
R

τ
,QS ,∆

)
.

Next we define for R′ , R− ε
2 > 0 an auxiliary MGC with scaled inputs W̃Y |X associated

with the original MGC WY |X with the alphabets X = Y = R and transition pdf

W̃Y |X(y|x) ,
1√

2πσ̃2
Z

e
−

(y+ax)2

2eσ2
Z

where the parameter a is uniquely determined by β′ (β′ = e2R
′
) and SNR as follows

a ,
−SNR(β′ − 1) −

√
SNR2(β′ − 1)2 + 4SNRβ′(β′ − 1)

2SNRβ′
< 0, (8.13)

and

σ̃2
Z ,

a2E
β′ − 1

. (8.14)

It can be verified that the capacity of the MGC W̃ is given by

C(W̃Y |X , E) = sup
PX :EX2≤E

I(X;Y ) =
1

2
ln

(
1 +

a2E
σ̃2
Z

)
= R′,

where the supremum is achieved by the Gaussian distribution PX = P ∗
X given in (2.49).

For some δ > 0, define the set

Â ,



(s,y) : ln

Q̃
(τn)
S (s)W̃

(n)
Y |X(y|fn(s))

Q
(τn)
S (s)W

(n)
Y |X(y|fn(s))

≤ n

(
τFG

(
R

τ
,QS ,∆

)
+ Esp(R

′,WY |X , E) + δ

)
 .

Consequently, we can use Â to lower bound the probability of excess distortion of any

sequence of JSC codes (fn, ϕn,∆, E , τ),

P
(n)
∆ (QS ,WY |X , E , τ)

≥
∫

{(s,y):d(τn)(s,ϕn(y))>∆)}∩ bA
Q

(τn)
S (s)W

(n)
Y |X(y|fn(s))dsdy

≥ e−n(τFG(R
τ
,QS,∆)+Esp(R′,WY |X ,E)+δ)

∫

{(s,y):d(τn)(s,ϕn(y))>∆)}∩ bA
Q̃

(τn)
S (s)W̃

(n)
Y |X(y|fn(s))dsdy, (8.15)
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and the last integration can be decomposed as

∫

{(s,y):d(τn)(s,ϕn(y))>∆)}∩ bA
Q̃

(τn)
S (s)W̃

(n)
Y |X(y|fn(s))dsdy

≥
∫

(s,y):d(τn)(s,ϕn(y))>∆)
Q̃

(τn)
S (s)W̃

(n)
Y |X(y|fn(s))dsdy

−
∫

bAc

Q̃
(τn)
S (s)W̃

(n)
Y |X(y|fn(s))dsdy

= P
(n)
∆ (Q̃S , W̃Y |X , E , τ) − Pr

(
Âc
)
, (8.16)

where the probabilities are with respect to the joint distribution Q̃
(τn)
S (·)W̃ (n)

Y |X(·|·). Note

that the first term in the right-hand side of (8.16) is exactly the probability of excess

distortion for the joint source-channel system consisting of the auxiliary MGS Q̃S and the

auxiliary MGC W̃Y |X with transmission τ , and, according to our setting, with

τR(Q̃S ,∆) = R > R′ = C(W̃Y |X , E).

Thus, this quantity converges to 1 as n goes to infinity according to the strong converse

JSCC theorem. It remains to show that the second term in the right-hand side of (8.16)

vanishes asymptotically. Note that

Pr
(
Âc
)

≤ Pr

(
1

τn
ln
Q̃

(τn)
S (s)

Q
(τn)
S (s)

> FG

(
R

τ
,QS ,∆

)
+

δ

2τ

)

+Pr


 1

n
ln
W̃

(n)
Y |X(y|x)

W
(n)
Y |X(y|x)

> Esp(R
′,WY |X , E) +

δ

2


 . (8.17)

It follows by the WLLN that as n→ ∞,

Q̃
(τn)
S (s)

Q
(τn)
S (s)

−→ E eQS

[
ln
Q̃S(s)

QS(s)

]
= FG

(
R

τ
,QS ,∆

)
in Prob.,

which implies that

lim
n→∞

Pr

(
1

τn
ln
Q̃

(τn)
S (s)

Q
(τn)
S (s)

> FG

(
R

τ
,QS ,∆

)
+

δ

2τ

)
= 0. (8.18)

For the second term of (8.17), setting z = y + ax, we can write

1

n
ln
W̃

(n)
Y |X(y|x)

W
(n)
Y |X(y|x)

=
1

2

[
ln
σ2
Z

σ̃2
Z

− zTz

nσ̃2
Z

+
zTz

nσ2
Z

− 2(a+ 1)xTz

nσ2
Z

+
(a+ 1)2xTx

nσ2
Z

]
.
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On the other hand, recalling that a is given in (8.13) and σ̃2
Z is given in (8.14), and noting

that

σ̃2
Z

σ2
Z

=
SNR(β′ − 1) + 2β′ +

√
SNR2(β′ − 1)2 + 4SNRβ′(β′ − 1)

2β′2

=
4β′2

2β′2[SNR(β′ − 1) + 2β′ −
√

SNR2(β′ − 1)2 + 4SNRβ′(β′ − 1)]

=
2

2β′ + SNR(β′ − 1)
[
1 −

√
1 + 4β′

SNR(β′−1)

] ,

where β′ = e2R
′
, we see that

1

2

[
σ̃2
Z

σ2
Z

− ln
σ̃2
Z

σ2
Z

+
(a+ 1)2

σ2
Z

E − 1

]

=
SNR

4β′

[
(β′ + 1) − (β′ − 1)

√
1 +

4β′

SNR(β′ − 1)

]

+
1

2
ln

{
β′ − SNR(β′ − 1)

2

[√
1 +

4β′

SNR(β′ − 1)
− 1

]}
,

which is exactly the sphere-packing bound Esp(R
′,WY |X , E). Therefore, it suffices to show

that

Pr


 1

n
ln
W̃

(n)
Y |X(y|x)

W
(n)
Y |X(y|x)

>
1

2

[
σ̃2
Z

σ2
Z

− ln
σ̃2
Z

σ2
Z

+
(a+ 1)2

σ2
Z

E − 1

]
+
δ

2




= Pr

[(
1

σ2
Z

− 1

σ̃2
Z

)(
zTz

n
− σ̃2

Z

)
− 2(a+ 1)xTz

nσ2
Z

+
(a+ 1)2

σ2
Z

(
xTx

n
− E

)
> δ

]

converges to 0 as n goes to infinity. This is true (as before) since the above probability is

less than

Pr

[(
1

σ2
Z

− 1

σ̃2
Z

)(
zTz

n
− σ̃2

Z

)
− 2(a+ 1)xTz

nσ2
Z

> δ

]
(8.19)

by the power constraint (8.1), and zTz/n → σ̃2
Z and xTz/n → 0 in probability 1. This

yields

lim
n→∞

Pr


 1

n
ln
W̃

(n)
Y |X(y|x)

W
(n)
Y |X(y|x)

≤ 1

2

[
σ̃2
Z

σ2
Z

− ln
σ̃2
Z

σ2
Z

+
(a+ 1)2

σ2
Z

E − 1

]
+
δ

2


 = 0. (8.20)

On account of (8.15), (8.16), (8.18) and (8.20), we obtain

lim inf
n→∞

− 1

n
lnP

(n)
∆ (QS ,WY |X , E , τ) ≤ τFG

(
R

τ
,QS ,∆

)
+ Esp

(
R− ε

2
,WY |X , E

)
+ δ.
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Since the above inequality holds for any rate R in the region [τR(QS ,∆) + ε,C(WY |X , E)]

and δ and ε can be arbitrarily small, we obtain that

lim inf
n→∞

− 1

n
lnP

(n)
∆ (QS ,WY |X , E , τ)

≤ min
τR(QS ,∆)≤R≤C(WY |X ,E)

[
τFG

(
R

τ
,QS ,∆

)
+ Esp(R,WY |X , E)

]
. (8.21)

�

Since the MGS exponent τFG(R/τ,QS ,∆) is convex increasing for R ≥ τR(QS,∆) and

the sphere-packing bound Esp(R,WY |X , E) is convex decreasing in R ≤ C(WY |X , E), their

sum is also convex and there exists a global minimum in the interval [τR(QS ,∆), C(WY |X , E)]

for the upper bound given in (8.11). For R ∈ [τR(QS ,∆), C(WY |X , E)], setting

τ
∂FG

(
R
τ , QS ,∆

)

∂R
+
∂Esp(R,WY |X , E)

∂R
= 0,

which gives (cf. Lemma 2.1)

β
1
τ

SDR
=

SNR

2β

(
1 +

√
1 +

4β

SNR(β − 1)

)
, (8.22)

where SDR , σ2
S/∆ is called the source-to-distortion ratio (i.e., the source variance to

distortion threshold ratio), and β = e2R. Thus, the minimum of the upper bound is achieved

by the R which is the (unique) root of (8.22).

8.2.3 Gallager’s Lower Bound for Lossless JSCC Error Exponent

In this section, we modify Gallager’s upper bound for the error probability of JSCC for

discrete memoryless systems, so that it is applicable to a JSCC system consisting of a DMS

and a continuous memoryless channel with cost constraint E . In the next section we shall

apply this auxiliary bound to a system consisting of an MGS and a memoryless channel.

A JSC code (f̃n, ϕ̃n) [107] for a DMS PC and a continuous MC with transition pdfWY |X

is a pair of mappings f̃n : C −→ X n and ϕ̃n : Yn −→ C, where C ⊆ Sτn. That is, each

source message s ∈ C with pmf PC(s) is encoded as blocks x = f̃n(s) of symbols from X of

length n, transmitted, received as blocks y of symbols from Y of length n and decoded as
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source symbol ϕ̃n(y) ∈ S. Denote the codebook for the codewords be B , {x = f̃(s)}. The

probability of decoding error is

P (n)
e (PC ,WY |X) = P (n)

e (PC ,WY |X ,B) ,
∑

s∈C

PC(s)

∫

y∈Yn

W
(n)
Y |X (y|x) 1{ϕ̃n(y) 6= s}dy.

We next recast Gallager’s random-coding bound for the JSCC probability of error [42,

Problem 5.16] for DMS’s and continuous MC’s and we show the following bound.

Proposition 8.1 For each n ≥ 1, given pdf PXn defined on X n ⊆ R
n, there exists a

sequence of JSC codes (f̃n, ϕ̃n) such that for any 0 ≤ ρ ≤ 1 the probability of error is upper

bounded by

P (n)
e (PC ,W ) ≤

[
∑

s∈C

PC(s)
1

1+ρ

]1+ρ ∫

y∈Yn

[∫

x∈Xn

PXn(x)W
(n)
Y |X(y|x)

1
1+ρdx

]1+ρ

dx. (8.23)

Proof: The bound is shown analogously to [42, Problem 5.16] based on a random-coding

argument. Consider the following random encoder: for each source message s, we indepen-

dently generate a codeword xn, which are R
n-valued vectors, according to pdf PXn . So

the codebook Pr(B) is generated with pdf Pr(B) =
∏

bx∈B PXn(x̂). Consider a maximum

a-posteriori probability (MAP) decoder, which, given y, chooses the source message s that

maximizes PC(s)W
(n)
Y |X

(
y|f̃n(s)

)
. In the following, we will bound the averaged probability

of error over all possible codebooks B, under the MAP decoding rule by

P
(n)
e (PC ,W,B) =

∫

B
Pr(B)P (n)

e (PC ,WY |X ,B)dB

≤
[
∑

s∈C

PC(s)
1

1+ρ

]1+ρ ∫

y∈Yn

[∫

x∈Xn

PXn(x)W
(n)
Y |X(y|x)

1
1+ρdx

]1+ρ

dx.

(8.24)

Then from (8.24) we can conclude that, there must exist a sequence of JSC codes (f̃n, ϕ̃n)

such that (8.23) is valid.

It remains to show (8.24). Given source message s ∈ C, codeword x = f̃n(s), and

received y, define the event for an s′ 6= s by

Es′ : PC(s′)W
(n)
Y |X

(
y|x′)

)
≥ PC(s)W

(n)
Y |X (y|x)) ,
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where x′ = f̃n(s
′). Thus, when message s ∈ C is sent, an error can occur only if Es′ occurs

for some s′ 6= s. This yields the following upper bound

Pr ({ϕ̃n(y) 6= s}| s,x,y) ≤ Pr


⋃

s′ 6=s

Es′


 ≤

∑

s′ 6=s

Pr (Es′) ≤


∑

s′ 6=s

Pr (Es′)



ρ

(8.25)

for any ρ ∈ [0, 1]. On the other hand, since the codebook B is generated according to a pdf

Pr(B) =
∏

x′∈B PXn(x′), by the definition of Es′ , we have

Pr (Es′) =

∫

B
Pr(B)1

{
PC(s′)W

(n)
Y |X

(
y|x′)

)
≥ PC(s)W

(n)
Y |X (y|x))

}
dB

=

∫

x′∈Xn

PXn(x′)1
{
PC(s′)W

(n)
Y |X

(
y|x′)

)
≥ PC(s)W

(n)
Y |X (y|x))

}
dx

≤
∫

x′∈B
PXn(x′)


PC(s′)W

(n)
Y |X (y|x′))

PC(s)W
(n)
Y |X (y|x))




1
1+ρ

dx. (8.26)

Plugging (8.26) into (8.25), we obtain

P
(n)
e (PC ,W,B) =

∫

B
Pr(B)

∑

s∈C

PC(s)

∫

y∈Yn

W
(n)
Y |X (y|x) Pr ({ϕ̃n(y) 6= s}| s,x,y) dB

=

[
∑

s∈C

PC(s)
1

1+ρ

]1+ρ ∫

y∈Yn

[∫

x∈Xn

PXn(x)W
(n)
Y |X(y|x)

1
1+ρdx

]1+ρ

dx.

�

Next, we need a small modification of (8.23) for the DMS PC and the MC WY |X to

incorporate the channel input cost constraint. Let P ∗
X be an arbitrary pdf of the channel

input on X satisfying Eg(X) ≤ E and Eg(X)3 < ∞ (these restrictions are made to make

the term
[
erη

κ

]1+ρ
in (8.27) grow sub-exponentially with respect to n) and let P ∗(n)

X be the

corresponding n-dimensional pdf on sequences of n channel inputs, i.e., the product pdf

of P ∗
X . We then adopt the technique of Gallager [42, Chapter 7], by setting PXn(x) =

κ−1Φ(x)P ∗(n)
X (x), where

Φ(x) =





1 if nE − η ≤∑n
i=1 g(xi) ≤ nE ,

0 otherwise,

in which η > 0 is arbitrary, and κ =
∫
x
P ∗(n)

X (x)Φ(x)dx is a normalizing constant. Thus,

PXn is a valid probability density that satisfies the constraint (8.1). We thus have, for any
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r ≥ 0,

PXn(x) ≤ κ−1erηP ∗(n)
X (x)er[

Pn
i=1 g(xi)−nE].

Substituting the above into (8.23) for the memoryless channel WY |X , changing the

summation to integration, and denoting the probability of error under constraint E by

P
(n)
e (QS ,WY |X , E), we have

P (n)
e (PC ,WY |X , E) ≤

[
erη

κ

]1+ρ
[
∑

s∈C

PC(s)
1

1+ρ

]1+ρ

×
∫

y∈Yn

[∫

x∈Xn

P ∗(n)
X (x)er[

Pn
i=1 g(xi)−nE]W

(n)
Y |X(y|x)

1
1+ρdx

]1+ρ

dy. (8.27)

We remark that
[
erη

κ

]1+ρ
grows with n as n(1+ρ)/2 and does not affect the exponential

dependence of the bound on n [41], [42, pp. 326–333]. Thus, applying the upper bound for

the DMS PC and the memoryless channel W with cost constraint (8.1), and noting that

P ∗
X is an arbitrary pdf satisfying Eg(X) ≤ E and Eg(X)3 <∞, we obtain

P (n)
e (PC ,WY |X , E) ≤ exp

{
−n max

0≤ρ≤1

[
Eo(WY |X , E , ρ) − E(n)

s (ρ, PC)
]

+ o(n)

}
, (8.28)

where Eo(WY |X , E , ρ) is the Gallager’s constraint channel function given by (2.40), o(n)

has the form c1 lnn+ c2 for some constants c1 and c2, and E
(n)
s (ρ,QS) is Gallager’s source

function

E(n)
s (ρ, PC) ,

1 + ρ

n
ln

[
∑

s∈C

PC(s)
1

1+ρ

]
.

8.2.4 The Lower Bound

Theorem 8.3 For an MGS QS and a continuous memoryless channel WY |X with a cost

constraint E at the channel input, the JSCC excess distortion exponent satisfies

E∆,E
J (QS ,WY |X , τ) ≥ E∆,E

RC (QS ,WY |X , τ), (8.29)

where

E∆,E
RC (QS ,WY |X , τ) , max

0≤ρ≤1
[Eo(WY |X , E , ρ) − τE(QS ,∆, ρ)], (8.30)
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where Eo(WY |X , E , ρ) is Gallager’s constrained channel function given by (2.40) and E(QS ,∆, ρ)

is the source function for the MGS QS given by (4.8). Furthermore, if WY |X is an MGC,

we have

E∆,E
J (QS ,WY |X , τ) ≥ E∆,E

Jr (QS ,WY |X , τ), (8.31)

where

E∆,E
Jr (QS ,W, t) , max

0≤ρ≤1
[Ẽo(WY |X , E , ρ) − tE(QS ,∆, ρ)], (8.32)

where Ẽo(WY |X , E , ρ) is Gallager’s Gaussian-input channel function given by (2.54).

Proof: Fix τ > 0. In the sequel we let k = τn and assume that k (and hence n) is sufficiently

large. For a given ǫ ∈ (0,∆) small enough, we construct a sequence of Gaussian-type classes

Ti , T
ǫ(σ2(i)) by σ2(i) = ∆ + (2i− 1)ǫ, i = 1, 2, · · · . That is,

Ti ,
{
s :
∣∣sT s− k(∆ + (2i− 1)ǫ)

∣∣ ≤ kǫ
}

=
{
s : k(∆ + (2i− 2)ǫ) ≤ sT s ≤ k(∆ + 2iǫ)

}
, i = 1, 2, · · · . (8.33)

Also, we define the set T0 , {s : sT s ≤ k∆} such that all these type classes (T1,T2, · · · )

together with T0 partition the whole space R
k. For this special set T0, we shall use the

trivial bound Q
(k)
S (T0) ≤ 1 and by definition T0 is covered by the ball B(0,∆); thus, we

say that T0 satisfies the type covering lemma (Lemma 3.6) in the sense that there exists a

set C , {0} of size |C| = 1 ≤ exp{k[R(Q̂S ,∆)]} such that every s ∈ T0 is covered by the

the ball of size ∆, where we let Q̂S ∼ N (0,∆) and hence R(Q̂S ,∆) = 0.

Based on the above setup, we claim that, first, by Lemma 3.28, for all i = 1, 2, · · · , the

probability of Ti under the k-dimensional Gaussian pdf Q
(k)
S , denoted by Q

(k)
S (Ti), decays

exponentially at the rate of D(Q
(i)
S ‖ QS) + ζ̃1(ǫ) in k, where Q

(i)
S is a zero-mean Gaussian

source with variance σ2(i) = ∆ + (2i − 1)ǫ, and

ζ̃1(ǫ) = − ǫ

σ2
S

− ln
(
1 +

ǫ

∆

)
≥ ζ1(ǫ) (8.34)

is a vanishing term independent of i. Second, the type covering lemma is applicable for all

Ti, i = 1, 2, · · · . Note that when σ2(i) > ∆, ζ2(ǫ) in the type covering lemma (Lemma 3.6)
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can be bounded by

ζ2(ǫ) ≤ ζ̃2(ǫ) ,
1

2
ln

∆

(
√

∆ − ǫ)2 − 5ǫ∆
+ 2ǫ+ 2 ln[1 + ǫ+ 4

√
∆ǫ] (8.35)

and is also independent of i. In the sequel, we will denote, without loss of generality, that

all these vanishing terms ζ̃1(ǫ) and ζ̃2(ǫ) by ζ(ǫ).

We next employ a concatenated “quantization – lossless JSCC” scheme [7] to show the

existence of a sequence of JSC codes for the source-channel pair (QS ,W ) such that its

probability of excess distortion is upper bounded by

exp[−nERC(QS ,WY |X ,∆, E , τ) + o(n)]

for n sufficiently large.

First Stage Coding: ∆-admissible Quantization.

It follows from the above setup and the type covering lemma (Lemma 3.6) that for each Ti

(i = 1, 2, · · · ), there exists a code Ci = {c(i)} with codebook size |Ci| ≤ exp{k[R(Q
(i)
S ,∆) +

ζ(ǫ)] + o(k)} that covers Ti. Recall that we also have, trivially, that a code C0 = {0} with

|C0| = 1 which covers T0. Therefore, we can employ a ∆-admissible quantizer via the sets

Ci, i = 0, 1, 2, ... as follows:

f∆,k : R
k −→

∞⋃

i=0

Ci

such that for every s ∈ R
k, the output of f∆,k with respect to s has a distortion less than

∆. We denote the DMS at the output of f∆,k by P with alphabet
⋃∞
i=0 Ci and pmf

P (c(i)) =

∫

s∈Ti:f∆,k(s)=c(i)

Q
(k)
S (s)ds, ∀ c(i) ∈ Ci, i = 0, 1, 2, ...

Second Stage Coding and Decoding: Lossless JSCC with Power Constraint E.

For the DMS P and the continuous memoryless channel WY |X , a pair of (asymptotically)

lossless JSC code

f̃n :

∞⋃

i=0

Ci −→ X n and ϕ̃n : Yn −→
∞⋃

i=0

Ci
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is applied, where the encoder is subject to a cost constraint E , i.e., f̃n ∈ FE
n . Note that the

decoder ϕ̃n creates an approximation ĉ = ϕ̃n(y) of c(i) based upon the sequence y received

at the channel output. According to a modified version of Gallager’s JSCC random-coding

bound (derived in the last section), there exists a sequence of lossless JSC codes (f̃n, ϕ̃n, E)

with bounded probability of error

P (n)
e (P,WY |X , E) , Pr(ĉ 6= c(i))

=
∑

S∞
i=0 Ci

P (c(i))

∫

y:eϕn(y)6=c(i)

W
(n)
Y |X

(
y
∣∣∣f̃n(c(i))

)
dy

≤ exp

{
−n max

0≤ρ≤1

[
Eo(WY |X , E , ρ) − E(n)

s (ρ, P )
]

+ o(n)

}
,

whereE0(WY |X , E , ρ) is Gallager’s constrained channel function given in (2.40) and E
(n)
s (ρ, P )

is Gallager’s source function here given by

E(n)
s (ρ, P ) =

1 + ρ

k
ln





∞∑

i=0

∑

c(i)∈Ci

P (c(i))
1

1+ρ



 .

Probability of Excess Distortion.

According to the ∆-admissible quantization rule, if the distortion between the source mes-

sage s and the reproduced sequence ĉ is larger than ∆, then we must have ĉ 6= c(i). This

implies that

P
(n)
∆ (QS ,WY |X , E , τ)

= Pr
(
d(k)(ĉ, s) > ∆

)

≤ Pr
(
ĉ 6= c(i)

)

≤ exp

{
−n max

0≤ρ≤1

[
Eo(WY |X , E , ρ) − E(n)

s (ρ, P )
]

+ o(n)

}
. (8.36)

Next we bound E
(n)
s (ρ, P ) in terms of QS for k (also n) sufficiently large and when ǫ goes

to zero (when N goes to infinity). Rewrite

E(n)
s (ρ, P ) =

1 + ρ

k
ln





∞∑

i=0

∑

c∈Ci

[
Q

(k)
S (Ti)P

(i)

Sk (c(i))
] 1

1+ρ
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=
1 + ρ

k
ln





∞∑

i=0

Q
(k)
S (Ti)

1
1+ρ

∑

c∈Ci

P
(i)

Sk (c(i))
1

1+ρ





≤ 1 + ρ

k
ln



1 +

∞∑

i=1

Q
(k)
S (Ti)

1
1+ρ

∑

c∈Ci

P
(i)

Sk (c(i))
1

1+ρ





where

P
(i)

Sk (c(i)) ,
P (c(i))

Q
(k)
S (Ti)

is the normalized probability over Ti for each i = 0, 1, .... By Jensen’s inequality and the

type covering lemma, the sum over each Ci can be bounded by

∑

c(i)∈Ci

P
(i)

Sk (c(i))
1

1+ρ ≤ |Ci|
ρ

1+ρ ≤ exp

{
ρ

1 + ρ
[kR(Q

(i)
S ,∆) + ζ(ǫ)] + o(k)

}

for k sufficiently large and ǫ sufficiently small (N sufficiently large). Recalling that

Q
(k)
S (Ti) ≤ exp{−k[D(Q

(i)
S ‖ QS) + ζ(ǫ)]},

we have

E(n)
s (ρ, P ) ≤ 1 + ρ

k
ln

{
1 +

∞∑

i=1

exp

[
k

1 + ρ

(
ρR(Q

(i)
S ,∆) −D(Q

(i)
S ‖ QS) + ζ(ǫ)

)
+ o(k)

]}

(8.37)

for k sufficiently large and ǫ sufficiently small (N sufficiently large). Recall that P
(i)
S denotes

the Gaussian source with mean zero and variance σ2(i) = ∆ + (2i − 1)ǫ. Consequently,

using the fact [6] that if the exponential rate of each term, as a function of i, is of the form

Ui = ln(Ai+B)−Ci, where A, B, and C are positive reals, then the term with the largest

exponent dominates the exponential behavior of the summation, i.e.,

lim
k→∞

1

k
ln

{
1 +

∞∑

i=1

exp [k(ln(Ai+B) − Ci) + o(k)]

}
= max

i≥1
[ln(Ai+B) − Ci], (8.38)

we obtain

lim
n→∞

E(n)
s (ρ, P ) ≤ τ max

i≥1
[ρR(Q

(i)
S ,∆) −D(Q

(i)
S ‖ QS) + ζ(ǫ)]. (8.39)

Note also that the sequence
{
ρR(Q

(i)
S ,∆) −D(Q

(i)
S ‖ QS)

}∞

i=1
is non-increasing after some

finite i, which means the maximum of (8.39) is achieved for some finite σ2(i). Letting ǫ go
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to zero, it follows by the continuity of R(Q
(i)
S ,∆) and D(Q

(i)
S ‖ QS) as functions of σ2(i)

that

lim
ǫ→0

sup
σ2(i)

[ρR(Q
(i)
S ,∆) −D(Q

(i)
S ‖ QS) + ζ(ǫ)]

= max[ρR(Q̃S ,∆) −D(Q̃S ‖ QS)] (8.40)

where the maximum in (8.40) is taken over all the MGS Q̃S with mean zero and variance

σ2 > ∆. Therefore, we have

lim
n→∞

E(n)
s (ρ, P ) ≤

{
0,
τ

2

[
ρ ln

σ2
S

∆
+ (1 + ρ) ln(1 + ρ) − ρ

]}
= τE(QS ,∆, ρ). (8.41)

Finally, on account of (8.36) and (8.41), we may claim that, there exists a sequence of JSC

codes (fn, ϕn,∆, E , t), where fn = f̃n ◦ f∆,k and ϕn = ϕ̃n, such that for n sufficiently large,

P
(n)
∆ (QS ,WY |X , E , τ) ≤ exp

{
−n max

0≤ρ≤1

[
Eo(WY |X , E , ρ) − τE(QS ,∆, ρ)

]
+ o(n)

}
,

by which we establish the lower bound EJr(QS ,WY |X ,∆, E , τ) given in (8.30). Furthermore,

when WY |X is an MGC, the bound (8.31) holds trivially since Ẽo(WY |X , E , ρ) is a lower

bound of Eo(WY |X , E , ρ). �

8.2.5 Tightness of the Upper and Lower Bounds

Applying Fenchel duality theorem in Chapter 4 to our source and channel functionsE(QS ,∆, ρ)

and Ẽ0(WY |X , E , ρ) with respect to their Fenchel transforms in Lemmas 4.4, 4.5 and 4.6,

we obtain the following equivalent bounds.

Theorem 8.4 Let τR(QS,∆) < C(WY |X , E). Then

E
∆,E
Jsp (QS ,W, t) = max

0≤ρ<∞
[Ẽ0(WY |X , E , ρ) − τE(QS ,∆, ρ)]

= min
R≥0

[
τFG

(
R

τ
,QS ,∆

)
+ Esp(R,WY |X , E)

]
, (8.42)

E∆,E
Jr (QS ,W, t) = max

0≤ρ≤1
[Ẽ0(WY |X , E , ρ) − τE(QS ,∆, ρ)]

= min
R≥0

[
τFG

(
R

τ
,QS ,∆

)
+ E†(R,WY |X , E)

]
. (8.43)
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The proof of the theorem follows in a similar manner as Theorem 5.1. We next provide

a necessary and sufficient condition under which E
∆,E
Jsp = E∆,E

Jr for the MGS-MGC pair.

Theorem 8.5 Let τR(QS ,∆) < C(WY |X , E). The upper and lower bounds for E∆,E
J given

in Theorem 8.2 and (8.31) of Theorem 8.3 are equal if and only if

2(2SDR)τ − 2(2SDR)τ

2(2SDR)τ − 1
≥ SNR. (8.44)

Remark 8.1 For τR(QS ,∆) ≥ C(WY |X , E), E∆,E
J (QS ,WY |X , τ) = 0.

Proof: By comparing (8.42) and (8.43) we observe that the two bounds are identical if

and only if the minimum of (8.42) (or (8.43)) is achieved at a rate no less than the channel

critical rate, i.e.,

Rm ≥ Rcr(WY |X) =
1

2
ln


1

2
+

SNR

4
+

1

2

√

1 +
SNR2

4




where Rm is the solution of (8.22). Let

f(R) ,
β

1
τ

SDR
− SNR

2β

(
1 +

√
1 +

4β

SNR(β − 1)

)
,

which is a strictly increasing function of R (refer to (2.53)), where β = e2R. In order to

ensure that the root of f(R), Rm, is no less than Rcr(WY |X), we only need f(Rcr(WY |X)) ≤

0. This reduces to the condition (8.44). �

In Fig. 8.2, we partition the SDR-SNR plane into three parts for transmission rate

τ = 0.5, 1, 1.5 and 2: in Region A (including the boundary between A and B) τR(QS ,∆) ≥

C(WY |X , E) and E∆,E
J = 0; in Region B (including the boundary between B and C),

E
∆,E
Jsp = E∆,E

Jr and hence E∆,E
J is determined exactly; and in Region C, EJ > 0 is bounded

by E
∆,E
Jsp and E∆,E

Jr . Fig. 8.3 shows the two bounds E
∆,E
Jsp and E∆,E

Jr for different SDR-SNR

pairs and transmission rate τ = 1. We observe from the two figures that the two bounds

coincide for a large class SDR-SNR pairs.
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Figure 8.2: MGS-MGC source-channel pair: the regions for SNR and SDR pairs (both in

dB) for different τ . In Region A (including the boundary between A and B) E∆,E
J = 0; in

Region B (including the boundary between B and C), E∆,E
J is determined exactly; and in

region C, E∆,E
J > 0 is bounded by (8.11) and (8.31).

8.3 Laplacian Sources with the Magnitude-Error Distortion

over MGCs

In image coding applications, the Laplacian distribution is well known to provide a good

model to approximate the statistics of transform coefficients such as discrete cosine and

wavelet transform coefficients [78, 91]. Thus, it is of interest to study the theoretical per-

formance for the lossy transmission of MLSs, say, over an MGC.

Consider an MLS QS with alphabet S = R, mean zero, variance 2α2, and pdf

QS(s) =
1

2α
exp

{
−|s|
α

}
, s ∈ S,
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Figure 8.3: MGS-MGC source-channel pair: the upper and lower bounds for E∆,E
J with

τ = 1.

denoted by QS ∽ L(0, α). Note that for QS ∽ L(0, α), E|s| = α. We assume that the

distortion measure is the magnitude-error distortion given by d(s, s′) , |s − s′| for any

s, s′ ∈ R. The pdf for k-tuple source symbols is hence given by

Q
(k)
S (s) =

[
1

2α

]k
exp

{
−
∑k

i=1 |si|
α

}
, s ∈ Sk

and the distortion for any s, s′ ∈ R
k is hence given by

d(k)(s, s′) =
1

k

∑

i

|si − s′i|.

For QS ∽ L(0, α), the differential entropy1 and the rate-distortion function (under the

magnitude-error distortion measure) are respectively given by

HQS
(S) = 1 + ln(2α)

1The differential entropy of a source with alphabet S ⊆ R and a pdf QS is defined by (e.g., [29])

HQS
(S) = −

R
S
QS(s) log2QS(s)ds.



8.3. Laplacian Sources with the Magnitude-Error Distortion over MGCs 199

and

R(QS ,∆) = max
{

0, ln
α

∆

}
.

Recall that the Kullback-Leibler divergence between two MLS Q̂S ∽ L(0, α̂) and QS ∽

L(0, α) is equal to

D(Q̂S ‖ QS) =
α̂

α
− ln

α̂

α
− 1.

The Laplacian sources enjoys the follows properties.

Lemma 8.1 Let PS be an arbitrary pdf on S = R such that EPS
|s| = α < ∞. Consider

two MLS QS ∽ L(0, α) and Q̃S ∽ L(0, α̃). Then

(a) HPS
(S) ≤ HQS

(S) with equality if and only if PS = QS;

(b) D(PS ‖ Q̃S) ≥ D(QS ‖ Q̃S) with equality if and only if PS = QS;

(c) R(PS ,∆) ≤ R(QS ,∆) for any ∆ > 0 with equality if PS = QS (‘only if ’ holds when

∆ ≤ α).

Proof: (a) follows from

0 ≤ D(PS ‖ QS) = −HPS
(S) −

∫
PS(s) lnQS(s)ds

= −HPS
(S) + (1 + ln(2α))

= −HPS
(S) +HQS

(S). (8.45)

From the above we note that EPS
|s| <∞ also implies that PS ≪ QS . Similarly, we write

D(PS ‖ Q̃S) = −HPS
(S) +

∫
PS(s) ln Q̃S(s)ds

and

D(QS ‖ Q̃S) = −HQS
(S) +

∫
QS(s) ln Q̃S(s)ds.

Noting that
∫
PS(s) ln Q̃S(s)ds =

∫
QS(s) ln Q̃S(s)ds, (b) immediately follows from (a).

Next we prove (c). Without loss of generality, we assume PS has mean zero. Recalling that

R(PS ,∆) = inf
PS′|S :E|S′−S|≤∆

I(S;S′),
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where S and S′ are RV’s in R. So for arbitrary conditional density P (S′|S) satisfying the

constraint, we have R(PS ,∆) ≤ I(S;S′). We first assume α ≥ ∆, and consider the test

channel

S′ =

(
1 − ∆

α

)2

S + sgn(S)|W |,

where sgn(S) is equal to 1 if S ≥ 0 and is equal to −1 if S < 0, W is a dummy Laplacian

RV with mean 0 and E|W | = (1 − ∆/α)∆, and S is independent of W . We thus have

E|S′| = E

∣∣∣∣∣

(
1 − ∆

α

)2

S + sgn(S)|W |
∣∣∣∣∣

=

(
1 − ∆

α

)2

E|S| + E|W |

=

(
1 − ∆

α

)2

α+

(
1 − ∆

α

)
∆

= α− ∆, (8.46)

and

E|S′ − S| = E

∣∣∣∣∣

(
1 − ∆

α

)2

S + sgn(S)|W | − S

∣∣∣∣∣

=

∣∣∣∣
∆

α

(
2 − ∆

α

)
E|S| − E|W |

∣∣∣∣

=

∣∣∣∣
∆

α

(
2 − ∆

α

)
α−

(
1 − ∆

α

)
∆

∣∣∣∣

= ∆, (8.47)

Now for the choice of S′, we have

R(PS ,∆) ≤ I(S;S′)

= H(S′) −H(S′|S)

(1)
= H(S′) −H(sgn(S)|W ||S)

= H(S′) −H(|W ||S) − ln |sgn(S)|
(2)
= H(S′) −H(|W |)
(3)
= H(S′) −H(W )

(4)

≤ ln[2e(α − ∆)] − ln[2e(1 − ∆/α)∆]

= ln
α

∆
,
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where the mutual information and entropies are taken under the joint distribution PSPS′|S,

(1) holds since the differential entropy is invariant under translation, (2) holds since S is

independent of W , (3) holds since Laplace distribution is symmetric, and (4) follows from

the (a), noting that the equality in (4) is achieved if and only if PS ∽ L(0, α).

For ∆ > α, let S′ satisfy Pr(S′ = 0) = 1 and S′ ⊥ S. Then E|S − S′| ≤ E|S| + E|S′| =

α < ∆. For this choice of S′, R(PS ,∆) ≤ I(S;S′) = 0 implies that R(PS ,∆) = 0. �

Due to the striking similarity between the Laplacian source and the Gaussian source,

the results in this above (especially regarding the bounds for EJ(QS ,W,∆, E , t)) can be

easily extended to a system composed by an MLS under the magnitude-error distortion

measure and an MGC.

We remark that to employ the two-stage coding scheme as in the proof of Theorem 8.3

to derive a lower bound for transmitting the MLS over the MGC with magnitude distortion

measure, we need to employ the type covering lemma (Lemma 3.7) for Laplacian-type

classes.

For an MLS QS ∼ L(0, α) and distortion threshold ∆, we define the MLS exponent

function

FL(R,QS ,∆) =





eR∆
α − ln eR∆

α − 1 if R > ln α
∆ ,

0 otherwise.
(8.48)

if α > ∆; otherwise (if α ≤ ∆), let

FL(R,QS ,∆) =





eR∆
α − ln eR∆

α − 1 if R > 0,

∆
α − ln ∆

α − 1 otherwise.
(8.49)

Consequently, by using Lemma 3.7, similar versions of Theorems 8.2 and 8.3 can be

deduced by replacing the MGS by an MLS and we obtain the following results.

Theorem 8.6 For the MLS QS and the MGC WY |X with transmission rate τ ,

EJ(QS ,W,∆, E , τ) ≤ min
R≥0

[
τFL

(
R

τ
,QS ,∆

)
+Esp(R,WY |X , E)

]

and

EJ(QS ,W,∆, E , τ) ≥ min
R≥0

[
τFL

(
R

τ
,QS ,∆

)
+ E†(R,WY |X , E)

]
,
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where Esp(R,WY |X , E) and E†(R,WY |X , E) are given by (2.51) and (2.56) respectively.

It can be easily shown (by setting the channel to be a noiseless channel) that FL(R,QS ,∆)

(R > 0) determines the lossy source excess distortion exponent for the MLS, i.e,

e∆(R,PS) = FL(R,QS ,∆),

for any R > 0. Meanwhile, like the MGS exponent with squared-error distortion, we can

show that the MLS excess distortion exponent with magnitude-error distortion can also be

expressed in Marton’s form, as shown in the following lemma.

Lemma 8.2 For the MLS QS ∼ L(0, α) and distortion threshold ∆,

FL(R,QS ,∆) = inf
PS∈P(S):R(PS ,∆)>R

D(PS ‖ QS), R > 0, (8.50)

where the infimum is taken over all distribution PS defined on R.

Proof: We only need to consider the pdf PS defined on R with PS ≪ QS and R(PS ,∆) ≥ R.

Suppose the expectation E|s| under PS is equal to γ. According to Lemma 8.1, the Laplacian

pdf Q∗
S ∽ L(0, γ) satisfies D(Q∗

S ‖ QS) ≤ D(PS ‖ QS) and R(Q∗
S ,∆) ≥ R(PS ,∆) ≥ R.

Therefore,

inf
PS :R(PS ,∆)≥R

D(PS ‖ QS) = inf
Q∗

S∽L(0,γ):R(Q∗
S ,∆)≥R

D(Q∗
S ‖ QS)

=





γ∗

α − ln γ∗

α − 1 for R > R(QS,∆),

0 otherwise,

where γ∗ is determined by R = ln(γ∗/∆). This is exactly the exponent FL(R,QS ,∆) given

by (8.48). �

8.4 Memoryless Systems with a Metric Source Distortion

In this section we consider the transmission of a class of continuous memoryless sources

with alphabet S = R over continuous memoryless channels when the source distortion

function is a metric such that for s, s′ ∈ S (1) d(s, s′) ≥ 0 with equality if and only if
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s = s′; (2) d(s, s′) = d(s′, s); (3) the triangle inequality holds, i.e., for any s1, s2, s3 ∈ S,

d(s1, s2) + d(s2, s3) ≥ d(s1, s3). We still assume that for any s, s′ ∈ Sk,

d(k)(s, s′) ,
1

k

k∑

i=1

d(si, s
′
i).

Theorem 8.7 For the continuous memoryless source QS with a distortion being a metric

and the continuous memoryless channel WY |X with a cost constraint E at the channel input,

if there exists an element so ∈ R with E exp[td(s, so)] <∞ for all t ∈ (−∞,+∞), the JSCC

excess distortion exponent satisfies

E∆,E
J (QS ,WY |X , τ) ≥ max

0≤ρ<1
[E0(WY |X , E , ρ) − τE(QS ,∆, ρ)], (8.51)

where Eo(WY |X , E , ρ) is Gallager’s constrained channel function given by (2.40) and E(QS ,∆, ρ)

is the source function for QS given by (4.7). Furthermore, if WY |X is an MGC, we have

E∆,E
J (QS ,WY |X , τ) ≥ max

0≤ρ<1
[Ẽ0(WY |X , E , ρ) − τE(QS ,∆, ρ)], (8.52)

where Ẽ0(WY |X , E , ρ) is Gallager’s Gaussian-input channel function given by (2.54).

Observation 8.1 Although Theorem 8.7 does not apply to MGSs under the squared-error

distortion (which is not a metric) and MLSs under the magnitude-error distortion (which

does not satisfy the finiteness condition), it applies to MGSs under the magnitude-error

distortion, and more generally, it applies to generalized MGSs with parameters (α, σ) under

the distortion function d(s, s′) , |s− s′|p for any s, s′ ∈ R, whenever 0 < p ≤ 1 and p < α;

see the following example.

Example 8.1 The Gaussian and Laplacian distributions belong to the class of generalized

Gaussian distributions, which are widely used in image coding applications. It is well known

that the distribution of image subband coefficients is well approximated by the generalized

Gaussian distribution [26,91]. A generalized MGS QS with parameters (α, σ) has alphabet

S = R, mean zero, variance σ2, and pdf

QS(s) =
αη(α, σ)

2Γ(1/α)
exp {−(η(α, σ)|s|)α} , s ∈ S,
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where Γ(·) is the Gamma function and

η(α, σ) ,
1

σ

(
Γ(3/α)

Γ(1/α)

) 1
2

α > 0.

Note that the pdf reduces to the Gaussian and Laplacian pdf’s for α = 2 and 1, respectively.

When 0 < p ≤ 1, the distortion d(s, s′) , |s − s′|p is a metric. If we choose so = 0, then

E exp[τd(s, so)] would have the form

E exp[td(s, so)] =

∫ +∞

−∞
Ae−B|s|p(|s|α−p+Ct)ds = 2

∫ +∞

0
Ae−B|s|p(|s|α−p+Ct)ds

where A > 0, B > 0, and C are independent of s. Clearly, the above integral is finite for

any Ct ≥ 0. If Ct < 0, and α > p is provided, the integral can be bounded by

∫ +∞

0
Ae−B|s|p(|s|α−p+Ct)ds ≤

∫ x

0
Ae−BCt|s|

p

ds+

∫ +∞

x
Ae−B|s|αds

which is also finite, where x > 0 satisfies xα−p + Ct = 0.

For general continuous memoryless sources, unfortunately, we do not have counterparts

to the type class and the type covering results of Lemmas 3.6 and 3.7 (for MGSs and MLSs,

respectively). Hence, to establish the lower bound for the JSCC excess distortion exponent,

we need to modify the proof of Theorem 8.3. We will use a different approach based on the

technique introduced in [55] and the type covering lemma (Lemma 3.5) for finite alphabet

DMS’s.

Proof of Theorem 8.7:

Since the lower bound (8.52) immediately follows from (8.51), we only show the existence

of a sequence of JSC codes for the source-channel pair (QS ,W ) such that its probability of

excess distortion is upper bounded by

exp

{
−n max

0≤ρ<1
[E0(WY |X , E , ρ) − tE(QS ,∆, ρ)] + o(n)

}

for n sufficiently large. We shall employ a concatenated “scalar discretization - vector

quantization - lossless JSCC” scheme as shown in Fig. 8.4. Throughout the proof, we let

k = τn, where t > 0 is finite, and set 0 < ǫ < ∆ and 0 < δ < ∆ − ǫ.



8.4. Memoryless Systems with a Metric Source Distortion 205

s ∈ Sk

ĉ ∈ ⋃ CPbS�

- fǫ,k

ϕn

-
s̃ ∈ S̃k

�
y ∈ Yn

fM,k

W

-
ŝ ∈ Ŝk

�
x ∈ X n

f∆−ǫ−δ,k

fn ∈ FE
n

?

cPbS
∈ CPbS

Quantization Part

Lossless JSCC Part

Figure 8.4: “Quantization plus lossless JSCC” scheme.

First Stage Coding: ǫ-Neighborhood Scalar Quantization

As in [55], we approximate the continuous memoryless source QS by a DMS P̃eS with count-

ably infinite alphabet S̃ via an ǫ-neighborhood scalar quantization scheme. In particular,

for any given 0 < ǫ < ∆, there exists a countable set S̃ = {si, i = 1, 2, ...} ⊆ R with

corresponding mutually disjoint subsets Si ⊆ {s ∈ R : d(si, s) ≤ ǫ}, i = 1, 2, ..., such that
⋃∞
i=1 Si = R. Specifically, the subsets {Si} partition R; for example, a specific partition

could be S1 = {s ∈ R : d(s1, s) ≤ ǫ} and

Si = {s ∈ R : d(si, s) ≤ ǫ and d(sj , s) > ǫ for any j < i}

for i ≥ 2. Consequently, we can employ a scalar quantizer fǫ : S −→ S̃ to discretize the

original memoryless source QS , such that fǫ(s) = si if s ∈ Si. Therefore, the first stage

coding can be described as a mapping:

fǫ,k : Sk −→ S̃k
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where fǫ,k(s) = (fǫ(s1), fǫ(s2), ..., fǫ(sk)). We denote the source obtained at the output of

fǫ,k by P̃eS with alphabet S̃ and pmf

P̃eS(si) =

∫

s∈Si

QS(s)ds, si ∈ S̃.

Lemma 8.3 For any ǫ > 0 and ρ > 0, E
(
P̃eS ,∆ + ǫ, ρ

)
≤ E(QS ,∆, ρ).

Proof: The proof is similar to the one of [55, Proposition 3], where the authors show

that the rate-reliability function of the original source is bounded by that of its discretized

version. Note that

E(PS ,∆, ρ) = sup
QS

[ρR(QS,∆) −D(QS ‖ PS)]

where the supremum is taken over all the distributions QS ’s defined on S = R such that

R(QS,∆) and D(QS ‖ PS) are well-defined and finite, and similarly,

E
(
P̃eS ,∆ + ǫ, ρ

)
= sup

eQeS

[ρR(Q̃eS ,∆ + ǫ) −D(Q̃eS ‖ P̃eS)],

where the supremum is taken over all the pmf’s Q̃eS ’s defined on S̃ such that R(Q̃eS,∆ + ǫ)

and D(Q̃eS ‖ P̃eS) are finite. Now for any given Q̃eS on S̃ which is absolutely continuous with

respect to P̃eS , let pi = P̃eS(s = si) and qi = Q̃eS(s = si), i = 1, 2, .... We then construct a

pdf QS on R by

QS(s) =





PS(s) qipi
, s ∈ Si, pi 6= 0 i = 1, 2, ...,

0, s ∈ Si, pi = 0, i = 1, 2, ...

It has been shown in the proof of [56, Proposition 3] that for such QS

D(QS ‖ PS) = D(Q̃eS ‖ P̃eS) and R(Q̃eS ,∆ + ǫ) ≤ R(QS,∆).

Since the above holds for all Q̃eS , it then follows that

sup
QS

[ρR(QS ,∆) −D(QS ‖ PS)] ≥ sup
eQeS

[ρR(Q̃eS ,∆ + ǫ) −D(Q̃eS ‖ P̃eS)].

�
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Second Stage Coding: Truncating Source Alphabet

We next truncate the alphabet S̃ to obtain a finite-alphabet source. Without loss of gener-

ality, assuming that S̃ = {s1, s2, ...} such that

P̃eS(s1) ≥ P̃eS(s2) ≥ P̃eS(s3) ≥ · · · ,

then for M sufficiently large, we take Ŝ be the set of the first M elements, i.e., Ŝ =

{s1, s2, ..., sM}. For s ∈ S̃ = {s1, s2, ...} define function

fM (s) =





s if s ∈ Ŝ,

s1 otherwise.

Then the second stage coding is a mapping:

fM,k : S̃k −→ Ŝk

where fM,k(s) = (fM (s1), fM (s2), ..., fM (sk)). We denote the finite-alphabet DMS at the

output of fM,k by P̂bS with alphabet Ŝ and pmf

P̂bS(s) =
∑

si∈ eS:fM (si)=s

P̃eS(si) s ∈ Ŝ.

If we let M go to infinity, P̂bS → P̃eS , i.e., the statistics of P̂bS approaches that of P̃eS .

Furthermore, we have the following results.

Lemma 8.4 For any δ > 0 and ρ > 0, E
(
P̂bS ,∆ + δ, ρ

)
≤ E(P̃eS ,∆, ρ) for M large enough.

The proof of this lemma is similar to that of Lemma 8.3 and is omitted; readers may

also refer to [55].

Lemma 8.5 [55, Lemma 1] For any δ such that

Ed [fǫ(s), fM (fǫ(s))] < δ < sup{d [fǫ(s), fM (fǫ(s))] : s ∈ R},

if there exists an element so ∈ R with E exp[td(s, so)] <∞ for all t ∈ (−∞,+∞), then

lim
k→∞

−1

k
lnPr

{
d(k) [fǫ,k(s), fM,k(fǫ,k(s))] > δ

}
= r(M)
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such that r(M) → ∞ as M → ∞, where the expectations are taken under PS, and the

probability is taken under Q
(k)
S .

Remark 8.2 Note also that Ed [fǫ(s), fM (fǫ(s))] → 0 as M → ∞. Equivalently, Lemma

8.5 states that for any 0 < δ < sup{d [fǫ(s), fM (fǫ(s))] : s ∈ R} and r > 0,

lim
k→∞

−1

k
ln Pr

{
d(k) [fǫ,k(s), fM,k(fǫ,k(s))] > δ

}
≥ r

for M sufficiently large.

Third Stage Coding: (∆ − ǫ− δ)-Admissible Quantization

Consider transmitting the DMS P̂bS over the continuous memoryless channel WY |X . Since

P̂bS has a finite alphabet {s1, s2, ..., sM}, we now can employ a similar method as used in the

proof of Theorem 8.3. Now we partition the k-dimensional source space Ŝk by a sequence

of type classes
{

TPbS
: PbS ∈ Pk(Ŝ)

}
.

Let δ be a number satisfying 0 < δ < sup{d [fǫ(s), fM (fǫ(s))] : s ∈ R}. Setting “∆” in

the type covering lemma (Lemma 3.5) to be ∆−ǫ−δ , we can employ a (∆−ǫ−δ)-admissible

quantizer via the sets CPbS
as follows:

f∆−ǫ−δ,k : Ŝk −→
⋃

PbS
∈Pk( bS)

CPbS

such that for every s ∈ Ŝk, the output of f∆−ǫ−δ,k with respect to s has a distortion less

that ∆−ǫ−δ and each |CPbS
| is bounded by exp{k[R(PbS ,∆−ǫ−δ)+µ]} for sufficiently large

k. We denote the finite DMS at the output of f∆−ǫ−δ,k by P with alphabet
⋃
PbS

∈Pk( bS) CPbS

and pmf

P (cPbS
) =

∑

s∈TP
bS
:f∆−ǫ−δ,k(s)=cP

bS

P̂bSk(s), cPbS
∈ CPbS

, PbS ∈ Pk(Ŝ).
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Fourth Stage Coding and Decoding: Lossless JSCC with Cost Constraint E

For the DMS P and the continuous memoryless channel WY |X , a pair of (asymptotically)

lossless JSC code

f̃n :
⋃

PbS
∈Pk( bS)

CPbS
−→ X n and ϕ̃n : Yn −→

⋃

PbS
∈Pk( bS)

CPbS

is applied, where the encoder is subject to a cost constraint E , i.e., fn ∈ FE
n . Note that

the decoder ϕn creates an approximation ĉ = ϕn(y) of cPbS
based on the sequence y.

According to a modified version of Gallager’s JSCC random-coding bound (which is derived

in Appendix 8.2.3), there exists a sequence of lossless JSC codes (f̃n, ϕ̃n, E) with bounded

probability of error

P (n)
e (P,WY |X , E) , Pr(ĉ 6= cPbS

)

≤ exp

{
−n max

0≤ρ≤1

[
Eo(WY |X , E , ρ) − E(n)

s (ρ, P )
]

+ o(n)

}
.

Analysis of the Probability of Excess Distortion

For the sake of simplicity, let (see Fig. 8.4)

s̃ = fǫ,k(s)

ŝ = fM,k(̃s) ∈ TPbS

cPbS
= f∆−ǫ−δ,k(̂s)

x = fn(cPbS
)

ĉ = ϕn(y).

Since

d(k)(s, ĉ) ≤ d(k)(s, s̃) + d(k)(̃s, ŝ) + d(k)(̂s, ĉ) ≤ ǫ+ d(k)(̃s, ŝ) + d(k)(̂s, ĉ),
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we have

Pr(d(k)(s, ĉ) > ∆)

≤ Pr(d(k) (̃s, ŝ) + d(k)(̂s, ĉ) > ∆ − ǫ)

≤ Pr
(
d(k)(̃s, ŝ) + d(k)(̂s, ĉ) > ∆ − ǫ, d(k)(̃s, ŝ) < δ

)
+ Pr(d(k)(̃s, ŝ) ≥ δ)

≤ Pr
(
d(k)(̂s, ĉ) > ∆ − ǫ− δ

)
+ Pr(d(k) (̃s, ŝ) ≥ δ),

where the probabilities are taken under the joint distribution Q
(k)
S (·)W (n)

Y |X(·|·). According

to the (∆− ǫ− δ)-admissible quantization rule, d(k)(̂s, ĉ) > ∆− ǫ− δ implies that cPbS
6= ĉ,

therefore, we can further bound

Pr(d(k)(s, ĉ) > ∆)

< Pr(cPbS
6= ĉ) + Pr(d(k)(̃s, ŝ) ≥ δ)

≤ exp

{
−n
[

max
0≤ρ≤1

[
Eo(WY |X , E , ρ) − E(n)

s (ρ, P )
]

+ o(n)

]}
+ Pr(d(k) (̃s, ŝ) ≥ δ)

for k sufficiently large. It follows from Lemma 8.5 (also see the remark after it) that

lim
k→∞

−1

k
lnPr(d(k)(̃s, ŝ) ≥ δ) → ∞

as M → ∞. When we take the sum of two exponential functions that both converge to 0,

the one with a smaller convergence rate would dominate the exponential behavior of the

sum. Therefore, for sufficiently large M which only depends on δ, noting that k = τn, we

have

lim inf
n→∞

− 1

n
ln Pr(d(k)(s, ĉ) > ∆) ≥ lim inf

n→∞
max

0≤ρ≤1

[
Eo(WY |X , E , ρ) − E(n)

s (ρ, P )
]
. (8.53)

Consequently, it can be shown by using the method of types (in a similar manner as the

proof of Theorem 8.3) that for M sufficiently large

lim
n→∞

E(n)
s (ρ, P ) ≤ τE(P̂bS ,∆ − ǫ− δ, ρ).

Using Lemmas 8.4 and 8.3 successively, we can approximate E(P̂bS ,∆ − ǫ− δ, ρ) by

lim
n→∞

E(n)
s (ρ, P ) ≤ τE(P̃eS ,∆ − ǫ− 2δ, ρ)

≤ τE(QS ,∆ − 2ǫ− 2δ, ρ). (8.54)
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Finally, substituting (8.54) back into (8.53), and letting ǫ→ 0 and δ → 0, we complete the

proof of Theorem 8.7. �

8.5 Conclusion

In this chapter, we investigated the JSCC excess distortion exponent E∆,E
J for memory-

less communication systems with continuous alphabets. For the Gaussian system with the

squared-error source distortion measure and a power channel input constraint, we derived

upper and lower bounds for the excess distortion exponent. The bounds extend the ear-

lier results for discrete systems (Chapters 5 and 7) in such a way that the lower/upper

bound can be expressed in terms of the sum of source and channel exponents. They can

also be expressed in equivalent parametric forms as differences of source and channel func-

tions. We then extended these bounds to Laplacian-Gaussian source-channel pairs with

the magnitude-error distortion. By employing a different technique, we established a lower

bound (of similar parametric form) for E∆,E
J for a class of memoryless source-channel pairs

under a metric distortion measure and some finiteness condition. For the Gaussian system,

a sufficient and necessary condition for which the two bounds of E∆,E
J coincide was provided.

It was observed that the two bounds coincide for lots of source-channel parameters, thus

exactly determining E∆,E
J .



Chapter 9

Multi-Terminal Systems:

Asymmetric 2-User Discrete

Memoryless Systems

In the previous chapters, we investigated the JSCC reliability function for discrete and

continuous single-user systems. It is of natural interest to study the JSCC error exponent

for multi-terminal source-channel systems.

In this chapter, we address the asymmetric 2-user source-channel coding system de-

picted in Fig. 9.1. Two discrete memoryless correlated source messages (s, l) ∈ Sτn × Lτn

drawn from a joint distribution QSL ∈ S × L, consisting of a common source message s

and a private source message l of length τn, are transmitted over a discrete memoryless

asymmetric communication channel described by WY Z|UX ∈ P(Y × Z|U × X ) with block

codes of length n, where τ > 0 (measured in source symbol/channel use) is the overall

transmission rate. The common source can be accessed by both encoders, but the private

source can only be observed by one encoder (say, Encoder 1). In this set-up, the goal is to

send the common information to both receivers, and send the private information to only

one receiver (say, Decoder 1).

It is worthwhile to point out that the asymmetric 2-user system can be specialized to

212
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l ∈ Lτn- Encoder 1

fn(·)
-x ∈ X n

s ∈ Sτn 6

?
Encoder 2

gn(·)
-u ∈ Un

W
(n)
Y Z|UX

-y ∈ Yn

-z ∈ Zn

Decoder 1

ϕn(·)

Decoder 2

ψn(·)

-(s′, l′) ∈ Sτn × Lτn

-s′′ ∈ Sτn

Figure 9.1: Transmitting two CS over the asymmetric 2-user communication channel.

the following two classical asymmetric multi-terminal scenarios.

(a) The CS-AMAC system: If we remove Decoder 2 from Fig. 9.1, and let |Z| = 1, then

the channel reduces to a multiple-access channel WY |UX , and the coding problem

reduces to transmitting two correlated sources (CS) over an asymmetric multiple-

access channel (AMAC) with one receiver.

(b) The CS-ABC system: If we remove Encoder 2 from Fig. 9.1, and let |U| = 1, then

the channel reduces to a broadcast channel WY Z|X , and the coding problem reduces

to transmitting two CS over an asymmetric broadcast channel (ABC) with one trans-

mitter.

The sufficient and necessary condition for the reliable transmission of CS over the AMAC

– i.e., the JSCC theorem for the CS-AMAC system – has been derived with single letter

characterization in [20]. For the CS-ABC system, neither the sufficient nor the necessary

condition is known to the best of our knowledge. In this chapter, we study a refined version

of the JSCC theorem for the general asymmetric 2-user system (depicted in Fig. 9.1), by

investigating the achievable JSCC error exponent pair (for two receivers) as well as the

system JSCC error exponent, i.e., the largest convergence rate of asymptotic exponential

decay of the system (overall) probability of erroneous transmission. We also apply our

results to the CS-AMAS and CS-ABC systems.

At this point we pause to mention some related works in the literature on the multi-
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terminal JSCC of CS. The JSCC theorem for transmitting two CS over a (symmetric)

multiple access channel (each encoder can only access one source) has been studied in

[1, 28, 35, 56, 58, 76], and the JSCC theorem for transmitting two CS over a (symmetric)

broadcast channel (each decoder needs to reconstruct one source) has been addressed in

[27, 48]. These works focus on the case when the overall transmission rate τ is 1 and

establish some sufficient and/or necessary conditions for which the sources can be reliably

transmitted over the channel. However, for both (symmetric) systems, no matter whether

the transmission rate τ is 1 or not, the tight sufficient and necessary condition (JSCC

theorem) with single-letter characterization is still unknown.

In Section 9.1 we formally describe the 2-user source-channel system and define achiev-

able error exponents and the system JSCC error exponent. The idea of superposition

encoding for the 2-user asymmetric system is next introduced in Section 9.2.

By employing the joint type packing lemma and generalized maximum mutual infor-

mation decoders, we establish in Section 9.3 achievable exponential upper bounds for the

probabilities of erroneous transmission over an augmented 2-user channel WY Z|TUX for a

given triple of n-length sequences (t,u,x); see Proposition 9.1. Here, the augmented chan-

nel WY Z|TUX is induced from the original 2-user channel WY Z|UX by adding an auxiliary

random variable (RV) T such that T , (UX), and (Y Z), form a Markov chain in this or-

der. We introduce the RV T because we will employ superposition encoding which maps

a source message pair (s, l) to a codeword triplet (t,u,x), where t is the auxiliary super-

position codeword. For the asymmetric 2-user system, since one of the encoders has full

access to both sources, it knows the output of the other encoder. By properly designing the

two (superposition) encoders, we apply Proposition 9.1 to establish a universally achievable

error exponent pair for the two receivers (namely, the pair of exponents can be achieved

by a sequence of source-channel codes independently of the statistics of the source and the

channel); this generalizes Körner and Sgarro’s exponent pair for ABC coding (with uni-

formly distributed message sets) [59]. We also employ Proposition 9.1 to establish a lower

bound for the system JSCC error exponent.

Note that one consequence of our results is a sufficient condition (forward part) for
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the JSCC theorem. In Section 9.4, we use Fano’s inequality to prove a necessary condition

(converse part) which coincides with the sufficient condition, and hence completes the JSCC

theorem. In Section 9.5 we demonstrate that the separation principle holds for the 2-user

system, i.e., there exists a separate source and channel coding system which can achieve

optimality from the point of view of reliable transmissibility.

Using an approach analogous to Theorem 6.1 in Chapter 6 and Theorem 7.5 in Chapter

7, we also obtain an upper bound for the system JSCC error exponent in Section 9.6.

As applications, we then specialize these results to the CS-AMAC and CS-ABC systems

in Section 9.7. The computation of the lower and upper bounds for the system JSCC

error exponent is partially studied for the CS-AMAC system when the channel admits a

symmetric conditional distribution. Finally, we state our conclusions in Section 9.9.

9.1 System Description

Let WY Z|UX ∈ P(Y × Z|U × X ) be a 2-user discrete memoryless channel with finite input

alphabet U×X , finite output alphabet Y×Z, and a transition distributionWY Z|UX(y, z|u, x)

such that the n-tuple transition probability is

W
(n)
Y Z|UX(y, z|u,x) =

n∏

i=1

WY Z|UX(yi, zi|ui, xi),

where u ∈ U , x ∈ X , y ∈ Y, z ∈ Z, u , (u1, ..., un) ∈ Un, x , (x1, ..., , xn) ∈ X n, y ,

(y1, ..., yn) ∈ Yn, and z , (z1, ..., zn) ∈ Zn. Denote the marginal transition distributions of

WY Z|UX at its Y -output (respectively Z-output) by WY |UX ,
∑

ZWY Z|UX (respectively

WZ|UX ,
∑

Y WY Z|UX). The marginal distributions of W
(n)
Y Z|UX are denoted by W

(n)
Y |UX

and W
(n)
Z|UX , respectively.

Consider two discrete memoryless CS with a generic joint distribution QSL defined on

the finite alphabet S × L such that the k-tuple joint distribution is

Q
(k)
SL(s, l) =

k∏

i=1

QSL(si, li),

where (s, l) ∈ S × L, and (s, l) , ((s1, l1), ..., (sk , lk)) ∈ Sk × Lk. For each pair of source

messages (s, l) drawn from the above joint distribution, we need to transmit the common
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message s over the channel WY Z|UX to Receivers Y and Z and transmit the private message

l only to Receiver Y .

A JSC code with block length n and positive transmission rate τ (source sumbol/channel

use) for transmitting QSL through WY Z|UX is a quadruple of mappings, (fn, gn, ϕn, ψn),

where

fn : Sτn × Lτn −→ X n

and

gn : Sτn −→ Un

are called encoders, and

ϕn : Yn −→ Sτn × Lτn

and

ψn : Zn → Sτn

are referred to as Y -decoder and Z-decoder, respectively; see Fig. 9.1.

The probabilities of Y - and Z-error are given by

P
(n)
Y e (QSL,WY Z|UX , τ) , Pr({ϕn(Y n) 6= (Sτn, Lτn)})

=
∑

s,l

Q
(τn)
SL (s, l)

∑

y:ϕn(y)6=(s,l)

W
(n)
Y |UX(y|u,x) (9.1)

and

P
(n)
Ze (QSL,WY Z|UX , τ) , Pr({ψn(Zn) 6= Sτn}) =

∑

s,l

Q
(τn)
SL (s, l)

∑

z:ψn(z)6=s

W
(n)
Z|UX(z|u,x)

(9.2)

where x , fn(s, l) and u , gn(s) are the corresponding codewords of the source message

pair (s, l) and the source message s, and y and z are the received codewords at the Receivers

Y and Z, respectively. Since we will study the exponential behavior of these probabilities

using the method of types, it might be a better way to rewrite the probabilities of Y - and

Z- error as a sum of probabilities of types

P
(n)
ie (QSL,WY Z|UX , τ) =

∑

PSL∈Pτn(S×L)

Q
(τn)
SL (TSL)Pie(TSL), i = Y,Z, (9.3)
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where TSL , TPSL
, and

PY e(TSL) =
1

|TSL|
∑

(s,l)∈TSL

∑

y:ϕn(y)6=(s,l)

W
(n)
Y |UX(y|u,x) (9.4)

and

PZe(TSL) =
1

|TSL|
∑

(s,l)∈TSL

∑

z:ψn(z)6=s

W
(n)
Z|UX(z|u,x). (9.5)

We say that the JSCC error exponent pair (EAY , EAZ) is achievable with respect to τ > 0

if there exists a sequence of JSC codes (fn, gn, ϕn, ψn) with transmission rate τ such that

the probabilities of Y -error and Z-error are simultaneously bounded by

P
(n)
ie (QSL,WY Z|UX , τ) ≤ 2−n[EAi−δ], i = Y,Z (9.6)

for n sufficiently large and any δ > 0. As the point-to-point system, we denote the system

(overall) probability of error by

P (n)
e (QSL,WY Z|UX , τ) , Pr ({ϕn(Y n) 6= (Sτn, Lτn)} ∪ {ψn(Zn) 6= Sτn}) , (9.7)

where (Sτn, Lτn) are drawn according to Q
(τn)
SL .

Definition 9.1 Given CS QSL, 2-user discrete memoryless channel WY Z|UX and trans-

mission rate τ > 0, the system JSCC error exponent EJ(QSL,WY Z|UX , τ) is defined as

supremum of the set of all numbers E for which there exists a sequence of JSC codes

(fn, gn, ϕn, ψn) with blocklength n and transmission rate τ such that

E ≤ lim inf
n→∞

− 1

n
log2 P

(n)
e (QSL,WY Z|UX , τ). (9.8)

Since the system probability of error must be larger than P
(n)
Y e and P

(n)
Ze defined by (9.1)

and (9.2), and is also upper bounded by the sum of the two, it follows that for any sequence

of JSC codes (fn, gn, ϕn, ψn)

lim inf
n→∞

− 1

n
log2 P

(n)
e (QSL,WY Z|UX , τ) = lim inf

n→∞
− 1

n
log2 max

(
P

(n)
Y e , P

(n)
Ze

)
. (9.9)
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Satellite
codewords

Clouds

Figure 9.2: Relation between clouds and satellite codewords in superposition coding.

9.2 Superposition Encoding for Asymmetric 2-User Chan-

nels

Given an asymmetric 2-user channel WY Z|UX , at the encoder side, we can artificially aug-

ment the channel input alphabet by introducing an auxiliary (arbitrary and finite) alphabet

T , and then look at the channel as a discrete memoryless channel WY Z|TUX = WY Z|UX

with marginal distributions WY |TUX and WZ|TUX such that

WY Z|TUX(y, z|t, u, x) = WY Z|UX(y, z|u, x)

for any t ∈ T , u ∈ U , x ∈ X , y ∈ Y and z ∈ Z. In other words, we introduce a

dummy RV T ∈ T such that T , (U,X), and (Y,Z) form a Markov chain in this order, i.e.,

T → (U,X) → (Y,Z).

The idea of superposition coding is described as follows. The encoder gn first maps the

source message s to a pair of n-length sequences (t,u) ∈ T n × Un with a fixed type, say

PTU , and then sends the codeword u over the channel. The encoder fn first maps each pair
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(s, l) to a triple of sequences (t,u,x) ∈ T n × Un ×X n such that x ∈ TPX|TU
(t,u), then fn

sends the codeword x over the channel. In other words, fn maps (s, l) to the same (t,u) as

gn such that (t,u,x) has a joint type PTUPX|TU .

SinceW
(n)
Y Z|TUX(y, z|t,u,x) is equal to W

(n)
Y Z|UX(y, z|u,x) and is independent of t, trans-

mitting the codewords (u,x) through the channel WY Z|UX can be viewed as transmitting

the codewords (t,u,x) over the augmented channel WY Z|TUX . Here, the common outputs

of gn and fn, (t,u)’s, are called auxiliary cloud centers according to the traditional super-

position coding notion [16], which convey the information of the common message s, and

the codewords x’s corresponding to the same (t,u) are called satellite codewords of (t,u),

which contain both the common and private information. At the decoding stage, Receiver

Z only needs to figure out which cloud (t,u) was transmitted, and Receiver Y needs to

estimate not only the cloud but also the satellite codeword x; see Fig. 9.2. We next employ

superposition encoding to derive the achievable error exponent pair and the lower bound of

system JSCC error exponent.

9.3 Universal Achievable Exponent Pair and a Lower Bound

for EJ

Given arbitrary and finite alphabet T , for any joint distribution PTUX ∈ P(T × U × X )

and every R1 > 0, R2 > 0, define

EY (R1, R2,WY |TUX , PTUX) , min
VY |TUX

[
D(VY |TUX ‖WY |TUX |PTUX)

+ min

(∣∣∣IPTUXVY |TUX
(T,U,X;Y ) − (R1 +R2)

∣∣∣
+
,
∣∣∣IPTUXVY |TUX

(X;Y |T,U) −R2

∣∣∣
+
)]

,

(9.10)

and

EZ(R1, R2,WZ|TUX , PTUX)

, min
VZ|TUX

[
D(VZ|TUX ‖WZ|TUX |PTUX) +

∣∣∣IPTUXVZ|TUX
(T,U ;Z) −R1

∣∣∣
+
]
, (9.11)
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where |x|+ = max(0, x), and the outer minimum in (9.10) (respectively (9.11)) is taken over

all conditional distributions on P(Y|T ×U ×X ) (respectively P(Z|T ×U ×X )). Note that

EZ only depends on R1, but as will be seen, it is convenient to write EZ as a function of

R1 and R2. It immediately follows by definition that EY (R1, R2,WY |TUX , PTUX) is zero if

and only if at least one of the following is satisfied

R1 +R2 ≥ IPTUXWY |TUX
(T,U,X;Y ), (9.12)

R2 ≥ IPTUXWY |TUX
(X;Y |T,U), (9.13)

and EZ(R1, R2,WZ|TUX , PTUX) is zero if and only if

R1 ≥ IPTUXWZ|TUX
(T,U ;Z). (9.14)

Using Lemma 3.2 and employing generalized maximum mutual information decoders at the

two receivers, we can prove the following auxiliary bounds.

Proposition 9.1 Given finite sets T , U , X , Y, Z, a sequence of positive integers {mn},

and a sequence of positive integers {m′
in} associated with every i = 1, 2, ...,mn with

1

n
log2mn → 0 and

1

n
log2 max

i
m′
in → 0,

for any δ > 0, n sufficiently large, arbitrary (not necessarily distinct) types P(TU)i
∈

Pn(T × U) and conditional types PXj |(TU)i
∈ Pn(X|P(TU)i

), and positive integers Ni and

Mij, i = 1, 2, ...,mn and j = j(i) = 1, 2, ...,m′
in with Ri < HP(TU)i

(T,U) − δ and Rij <

HP(TU)i
PXj |(TU)i

(X|T,U) − δ, where Ri , 1
n log2Ni and Rij , 1

n log2Mij , there exist mn

disjoint subsets Ωi =
{

(t,u)
(i)
p

}Ni

p=1
⊆ T(TU)i

, m′
in disjoint subsets

Ωij((t,u)(i)p ) =
{(

(t,u)(i)p ,x
(j)
p,q

)}Mij

q=1

with x
(j)
p,q ∈ TXj |(TU)i

((t,u)
(i)
p ) for every (t,u)

(i)
p ∈ Ωi and every i, and a pair of map-

pings (decoding functions) ϕ
(0)
n : Yn → Ω and ψ

(0)
n : Zn → Ω, where Ω ,

⋃
ij Ωij, where

Ωij =
⋃Ni

p=1 Ωij((t,u)
(i)
p ), such that the probabilities of erroneous transmission of a triplet
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(t,u,x) ∈ Ω over the augmented channel WY Z|TUX using decoders (ϕ
(0)
n , ψ

(0)
n ) are simulta-

neously bounded by

P
(n)
Y e (t,u,x) ,

∑

y:ϕ
(0)
n (y)6=((t,u),x)

W
(n)
Y |TUX(y|t,u,x)

≤ 2
−n

h
EY

“
Ri,Rij ,WY |TUX ,P(TU)i

PXj |(TU)i

”
−δ

i
(9.15)

and

P
(n)
Ze (t,u,x) ,

∑

z:ψ
(0)
n (z)=((t,u)′,x′) such that (t,u)′ 6=(t,u)

W
(n)
Z|TUX(z|t,u,x)

≤ 2
−n

h
EZ

“
Ri,Rij ,WZ|TUX ,P(TU)i

PXj |(TU)i

”
−δ

i
(9.16)

if ((t,u),x) ∈ Ωij for every i, j.

Proof: We apply the packing lemma (Lemma 3.2) and a generalized maximum mutual

information decoding rule. In the sequel of the proof, we look at TU (respectively X)

as the RV A (respectively B) in Lemma 3.2. For the {mn}, {m′
in}, P(TU)i

, PXj |(TU)i

given in Proposition 9.1, according to Lemma 3.2, there exist pairwise disjoint subsets Ωi

and Ωij((t,u)
(i)
p ) satisfying (3.4), (3.5), and (3.6) for every 1 ≤ i ≤ mn, 1 ≤ j ≤ m′

in,

1 ≤ p ≤ Ni, V(TU)′|TU ∈ Pn(T ×U|T × U), and V(TU)′X′|TUX ∈ Pn(T ×U ×X|T ×U ×X ),

with the exception of the two cases that i = k and V(TU)′|TU is the conditional distribution

such that V(TU)′|TU ((t, u)′|(t, u)) is 1 if (t, u)′ = (t, u) and 0 otherwise, and that i = k, j = l

and V(TU)′X′|TUX is the conditional distribution such that V(TU)′X′|TUX((t, u)′, x′|t, u, x) is

1 if (t, u)′ = (t, u), x′ = x and 0 otherwise. Let

Ωij =

Ni⋃

p=1

Ωij((t,u)(i)p ) and Ω =
⋃

ij

Ωij.

We shall show that for such Ωij, there exists a pair of mappings (ϕ
(0)
n , ψ

(0)
n ) such that (9.15)

and (9.16) are satisfied.

We first show that there exists a Y -decoder ϕ
(0)
n such that (9.15) holds. For any

((t,u),x) ∈ Ω and y ∈ Yn, let

α((t,u),x;y) , I((t,u),x;y) − (Ri +Rij),
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where Ri = 1
n log2Ni and Rij = 1

n log2Mij if ((t,u),x) ∈ Ωij. Define Y -decoder ϕ
(0)
n :

Yn → Ω by

ϕ(0)
n (y) , arg max

((t,u),x)∈Ω
α((t,u),x;y).

Using the decoder ϕ
(0)
n , we can upper bound the probability of error (assuming that ((t,u),x) ∈

Ωij is sent through the channel) as follows

P
(n)
Y e ((t,u),x) = W

(n)
Y |TUX

({
y : ϕ(0)

n (y) 6= ((t,u),x)
}∣∣∣ (t,u),x

)

≤
∑

bVY |TUX∈Pn(Y|P(TU)iXj
)

W
(n)
Y |TUX

(
TbVY |TUX

((t,u),x)
⋂{

y : ϕ(0)
n (y) 6= ((t,u),x)

}∣∣∣ t,u,x
)

. (9.17)

For any particular V̂Y |TUX , since

{
y : ϕ(0)

n (y) 6= ((t,u),x)
}

=
{
y : ϕ(0)

n (y) = ((t,u)′,x′), (t,u)′ 6= (t,u)
}

︸ ︷︷ ︸
,E1

⋃{
y : ϕ(0)

n (y) = ((t,u),x′),x′ 6= x
}

︸ ︷︷ ︸
,E2

,

we can upper bound

W
(n)
Y |TUX

(
TbVY |TUX

((t,u),x)
⋂{

y : ϕ(0)
n (y) 6= ((t,u),x)

}∣∣∣ t,u,x
)

≤
∑

y∈T bVY |TUX
((t,u),x)

T
E1

W
(n)
Y |TUX (y|t,u,x) +

∑

y∈T bVY |TUX
((t,u),x)

T
E2

W
(n)
Y |TUX (y|t,u,x) .

(9.18)

According to Lemma 3.1 when ((t,u),x) ∈ Ωij ⊆ T(TU)iXj
and y ∈ TbVY |TUX

((t,u),x),

we have the following identity

W
(n)
Y |TUX (y|(t,u),x) = 2

−n

»
D

“
bVY |TUX‖WY |TUX |P(TU)iXj

”
+H

P(TU)iXj
bVY |TUX

(Y |T,U,X)

–

. (9.19)

This means that we only need to bound
∣∣∣TbVY |TUX

((t,u),x)
⋂ E1

∣∣∣ and
∣∣∣TbVY |(TU)X

((t,u),x)
⋂ E2

∣∣∣.

Upper Bound on
∣∣∣TbVY |TUX

((t,u),x)
⋂ E1

∣∣∣.

If we fix a k = 1, 2, ...,mn and a l = 1, 2, ...,m′
kn, then E1 is the set of all y such that there

exist some ((t,u)′,x′) ∈ Ωkl, (t,u)′ 6= (t,u), ((t,u),x, (t,u)′,x′,y) admits a joint type
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P(t,u)x(t,u)′x′y ∈ Pn(T × U × X × T × U × X × Y) and

I((t,u)′,x′;y) − (Rk +Rkl) ≥ I((t,u),x;y) − (Ri +Rij). (9.20)

Note that (9.20) can be represented as for dummy R.V.’s (TU) ∈ T ×U , X ∈ X , (TU)′ ∈ T ×

U , X ′ ∈ X , and Y ∈ Y, the following holds under the joint distribution P(TU)X(TU)′X′Y =

P(t,u)x(t,u)′x′y,

IP(TU)′X′Y
((T,U)′,X ′;Y ) − (Rk +Rkl) ≥ IPTUXY

((T,U),X;Y ) − (Ri +Rij),

where P(TU)′X′Y and PTUXY are the corresponding marginal distributions induced by

P(TU)X(TU)′X′Y . Thus, TbVY |TUX
((t,u),x)

⋂ E1 can be written as a union of subsets

TbVY |(TU)X
((t,u),x)

⋂
E1 =

mn⋃

k=1

m′
kn⋃

l=1

⋃

P(TU)X(TU)′X′Y ∈Ck,l((t,u),x)

Fk,l((t,u),x, P(TU)X(TU)′X′Y )

(9.21)

where

Ck,l((t,u),x)

,





P(TU)X(TU)′X′Y

∈ Pn(T 2 × U2 ×X 2 × Y) :

P(TU)X = P(t,u)x = P(TU)iXj
,

P(TU)′X′ = P(TU)kXl
, PY |(TU)X = V̂Y |(TU)X ,

IP(TU)′X′Y
((T,U)′,X ′;Y ) − (Rk +Rkl)

≥ IP(TU)XY
((T,U),X;Y ) − (Ri +Rij)





,

where P(TU)X , P(TU)′X′ and PY |(TU)X , etc, are the corresponding marginal and conditional

distributions induced by P(TU)X(TU)′X′Y , and

Fk,l((t,u),x, P(TU)X(TU)′X′Y )

,



y :

∃ ((t,u)′,x′)

such that

((t,u),x, (t,u)′,x′,y) ∈ T(TU)X(TU)′X′Y

((t,u)′,x′) ∈ Ωkl, (t,u)′ 6= (t,u)



 ,
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where T(TU)X(TU)′X′Y , TP(TU)X(TU)′X′Y
. Clearly, given any k, l, and P(TU)X(TU)′X′Y ,

∣∣Fk,l((t,u),x, P(TU)X(TU)′X′Y )
∣∣

≤

∣∣∣∣∣∣



((t,u)′,x′,y) :

((t,u),x, (t,u)′,x′,y) ∈ T(TU)X(TU)′X′Y

((t,u)′,x′) ∈ Ωkl, (t,u)′ 6= (t,u)





∣∣∣∣∣∣

=

∣∣∣∣∣∣



((t,u)′,x′) :

((t,u),x, (t,u)′,x′) ∈ T(TU)X(TU)′X′

((t,u)′,x′) ∈ Ωkl, (t,u)′ 6= (t,u)





∣∣∣∣∣∣

×
∣∣TY |(TU)X(TU)′X′((t,u),x, (t,u)′,x′)

∣∣

≤ NkMkl2
−n

h
IP

(TU)X(TU)′X′ ((T,U),X;(T,U)′,X′)−η
i

× 2
nHP

(TU)X(TU)′X′Y
(Y |(T,U),X,(T,U)′,X′)

(9.22)

where the last inequality follows from Lemma 3.2. Meanwhile, when ((t,u),x) ∈ Ωij, the

following simple bound also holds

∣∣Fk,l((t,u),x, P(TU)X(TU)′X′Y )
∣∣ ≤

∣∣TY |(TU)X((t,u),x)
∣∣

≤ 2
nHP(TU)XY

(Y |(T,U),X)

= 2
nH

P((TU))iXj
bVY |(TU)X

(Y |(T,U),X)
(9.23)

since for each T(TU)X(TU)′X′Y ∈ Ck,l((t,u),x), we have P(TU)X = P((TU))iXj
, PY |(TU)X =

V̂Y |(TU)X and hence P(TU)XY = P((TU))iXj
V̂Y |(TU)X . Now substituting the following in-

equality (cf. (6.31))

HP(TU)X(TU)′X′Y
(Y |(T,U),X, (T,U)′,X ′) − IP(TU)X(TU)′X′ ((T,U),X; (T,U)′,X ′)

= HP(TU)XY
(Y |(T,U),X) − IP(TU)X(TU)′X′Y

((T,U)′,X ′; (T,U),X, Y )

≤ HP(TU)XY
(Y |(T,U),X) − IP(TU)′X′Y

((T,U)′,X ′;Y ) (9.24)

into (9.22), combining with (9.23) together, we obtain

∣∣Fk,l((t,u),x, P(TU)X(TU)′X′Y )
∣∣

≤ 2
n

»
H

P((TU))iXj
bVY |(TU)X

(Y |(T,U),X)−
˛̨
˛IP

(TU)′X′Y
((T,U)′,X′;Y )−(Rk+Rkl)

˛̨
˛
+

–

. (9.25)
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Again recall that for P(TU)X(TU)′X′Y ∈ Ck,l((t,u),x), P(TU)XY = P((TU))iXj
V̂Y |(TU)X , and

note that

IP(TU)′X′Y
((T,U)′,X ′;Y ) − (Rk +Rkl) ≥ IP(TU)XY

((T,U),X;Y ) − (Ri +Rij).

This implies when P(TU)X(TU)′X′Y ∈ Ck,l((t,u),x)

∣∣Fk,l((t,u),x, P(TU)X(TU)′X′Y )
∣∣

≤ 2
n

"
H

P((TU))iXj
bVY |(TU)X

(Y |(T,U),X)−

˛̨
˛̨I

P((TU))iXj
bVY |(TU)X

((T,U),X;Y )−(Ri+Rij)

˛̨
˛̨
+

#

,

and hence

∣∣∣TbVY |(TU)X
((t,u),x)

⋂
E1

∣∣∣ ≤ mn

(
max
i
m′
in

)
(n+ 1)|T ×U|2|X |2|Y|

×2
n

"
H

P((TU))iXj
bVY |(TU)X

(Y |(T,U),X)−

˛̨
˛̨(I

P((TU))iXj
bVY |(TU)X

((T,U),X;Y )−(Ri+Rij))

˛̨
˛̨
+

#

,(9.26)

since by Lemma 3.1

|Ck,l((t,u),x)| ≤
∣∣Pn(T 2 × U2 ×X 2 × Y)

∣∣ ≤ (n+ 1)|T ×U|2|X |2|Y|.

Upper Bound on
∣∣∣TbVY |(TU)X

((t,u),x)
⋂ E2

∣∣∣.

If we fix an i = 1, 2, ...,mn and an l = 1, 2, ...,m′
in, then E2 is the set of all y such that

there exist some ((t,u),x′) ∈ Ωil, x′ 6= x, ((t,u),x,x′,y) admits a joint type P(t,u)xx′y ∈

Pn(T × U × X × X ×Y) and

I((t,u),x′;y) − (Ri +Ril) ≥ I((t,u),x;y) − (Ri +Rij). (9.27)

Using the identity

I((T,U),X;Y ) = I(T,U ;Y ) + I(X;Y |T,U),

on both sides of (9.27) we see it is equivalent to

I(x′;y|t,u) −Ril ≥ I(x;y|t,u) −Rij . (9.28)
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Note that (9.28) can be represented as for dummy R.V.’s (TU) ∈ T × U , X ∈ X , X ′ ∈ X ,

and Y ∈ Y, the following holds under the joint distribution P(TU)XX′Y = P(t,u)xx′y,

IP(TU)X′Y
(X ′;Y |T,U) −Ril ≥ IP(TU)XY

(X;Y |T,U) −Rij,

where P(TU)XY and P(TU)X′Y are the corresponding marginal distributions induced by

P(TU)XX′Y . Thus, TbVY |(TU)X
((t,u),x)

⋂ E2 can be written as a union of subsets

TbVY |(TU)X
((t,u),x)

⋂
E2 =

m′
in⋃

l=1

⋃

P(TU)XX′Y ∈Cl((t,u),x)

Fl((t,u),x, P(TU)XX′Y ) (9.29)

where

Cl((t,u),x) ,





P(TU)XX′Y

∈ Pn(T × U × X 2 × Y) :

P(TU)X = P(t,u)x = P(TU)iXj
,

P(TU)X′ = P(TU)iXl
, PY |(TU)X = V̂Y |TUX

IP(TU)X′Y
(X ′;Y |T,U) −Ril

≥ IP(TU)XY
(X;Y |T,U) −Rij





,

where P(TU)X , P(TU)X′ and PY |(TU)X , etc, are the corresponding marginal and conditional

distributions induced by P(TU)XX′Y , and

Fl((t,u),x, P(TU)XX′Y ) ,



y :

∃ ((t,u),x′)

such that

((t,u),x,x′,y) ∈ T(TU)XX′Y

((t,u),x′) ∈ Ωil, x′ 6= x



 ,

where T(TU)XX′Y = TP(TU)XX′Y
. Using a similar counting argument, and applying Lemma

3.2, we can bound, for any l = 1, 2, ...,m′
in and P(TU)XX′Y ∈ Cl((t,u),x),

∣∣Fl((t,u),x, P(TU)XX′Y )
∣∣

≤ 2
n

"
H

P((TU))iXj
bVY |(TU)X

(Y |(T,U),X)−

˛̨
˛̨I

P((TU))iXj
bVY |(TU)X

(X;Y |T,U)−Rij

˛̨
˛̨
+

#

,

and finally, we obtain,

∣∣∣TbVY |(TU)X
((t,u),x)

⋂
E2

∣∣∣ ≤
(

max
i
m′
in

)
(n+ 1)|T ×U||X |2|Y|

×2
n

"
H

P((TU))iXj
bVY |(TU)X

(Y |(T,U),X)−

˛̨
˛̨I

P((TU))iXj
bVY |(TU)X

(X;Y |T,U)−Rij

˛̨
˛̨
+

#

(9.30)
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since |Cl((t,u),x)| ≤ (n+ 1)|T ×U||X |2|Y|.

Now using (9.19) together with (9.26) and (9.30), we obtain

∑

y∈T bVY |TUX
((t,u),x)

T
A

W
(n)
Y |TUX (y|((t,u),x) ∈ Ωij) ≤ mn

(
max
i
m′
in

)
(n+ 1)|T ×U|2|X |2|Y|

×2
−n

"
D

“
bVY |TUX‖WY |TUX |P(TU)iXj

”
+

˛̨
˛̨I

P(TU)iXj
bVY |TUX

(T,U,X;Y )−(Ri+Rij)

˛̨
˛̨
+

#

, (9.31)

and

∑

y∈T bVY |TUX
((t,u),x)

T
B

W
(n)
Y |TUX (y|((t,u),x) ∈ Ωij) ≤

(
max
i
m′
in

)
(n+ 1)|T ×U||X |2|Y|

×2
−n

"
D

“
bVY |TUX‖WY |TUX |P(TU)iXj

”
+

˛̨
˛̨I

P(TU)iXj
bVY |TUX

(X;Y |T,U)−Rij

˛̨
˛̨
+

#

. (9.32)

Substituting (9.31) and (9.32) back into (9.18) and (9.17) successively, noting that

|Pn(Y|P(TU)iXj
)|

is polynomial in n by Lemma 3.1, we obtain that, for any δ > 0, there exists a Y -decoder

ϕ
(0)
n such that, given ((t,u),x) ∈ Ωij, the probability of Y -error is bounded by

P
(n)
Y e ((t,u),x) ≤ 2

−n
h
EY

“
Ri,Rij ,WY |TUX ,P(TU)i

PXj |(TU)i

”
−δ

i
(9.33)

for sufficiently large n.

Similarly, we can design a decoder for Receiver Z as follows. For any ((t,u),x) ∈ Ω and

z ∈ Zn, let

β((t,u),x; z) = β((t,u); z) , I((t,u); z) −Ri,

where Ri = 1
n log2Ni if (t,u) ∈ Ωi. Note that β((t,u),x; z) is independent of x. Let

Ω̃ =
∑mn

i=1 Ωi. The Z-decoder ψ
(0)
n : Zn → Ω is defined by

ϕ(0)
n (z) = arg max

((t,u),x)∈Ω
β((t,u),x; z)

= ((t,u)′,x′) such that





(t,u)′ = arg max
(t,u)∈eΩ β((t,u); z),

x′ is arbitrary.
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It can be shown in a similar manner by using (3.4) in Lemma 3.2 that, under the decoder

ψ
(0)
n , the probability of the Z-error is bounded by

P
(n)
Ze ((t,u),x) ≤ 2

−n
h
EZ

“
Ri,Rij ,WZ|TUX ,P(TU)i

PXj |(TU)i

”
−δ

i
(9.34)

for sufficiently large n. Finally, we remark that Lemma 3.2 ensures that there exist mappings

(ϕ
(0)
n , ψ

(0)
n ) such that (9.34) holds simultaneously with (9.33). �

Proposition 9.1 is an auxiliary result for the channel coding problem for the 2-user

asymmetric channel. To apply it to our 2-user source-channel system, we need to design

encoders which can map a pair of correlated source messages to a particular (t,u,x) with

a joint type, so that the total probabilities of error still vanish exponentially. We hence can

establish the following bounds.

Theorem 9.1 Given an arbitrary and finite alphabet T , for any P̃TUX ∈ P(T × U × X ),

the following exponent pair is universally achievable,

EJY (QSL,WY Z|TUX , P̃TUX , τ)

, min
PSL

[
τD(PSL ‖ QSL) + EY (τHP (S), τHP (L|S),WY |TUX , P̃TUX)

]
, (9.35)

and

EJZ(QSL,WY Z|TUX , P̃TUX , τ)

, min
PSL

[
τD(PSL ‖ QSL) + EZ(τHP (S), τHP (L|S),WZ|TUX , P̃TUX)

]
, (9.36)

where WY |TUX and WZ|TUX are marginal distributions of WY Z|TUX, which is the aug-

mented conditional distribution from WY Z|UX . Furthermore, given QSL, WY Z|UX, and τ ,

the system JSCC error exponent satisfies

EJ(QSL,WY Z|UX , τ) ≥ min
PSL

[
τD(PSL ‖ QSL) + Er(τHP (S), τHP (L|S),WY Z|UX)

]
(9.37)

where

Er(R1, R2,WY Z|UX) , sup
T

max
PTUX

Er(R1, R2,WY Z|TUX , PTUX), (9.38)
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where the supremum is taken over all finite alphabets T , and the maximum is taken over

all the joint distributions on P(T × U × X ) and Er(R1, R2,WY Z|TUX , PTUX) is given by

min
{
EY (R1, R2,WY |TUX , PTUX), EZ(R1, R2,WZ|TUX , PTUX)

}
,

where EY and EZ are given by (9.10) and (9.11), respectively.

We remark that (9.35) and (9.36) can be achieved by a sequence of codes without the

knowledge of QSL and WY Z|UX , but the lower bound (9.37) is achieved by a sequence of

codes that needs to know the statistics of the channel.

Proof of Theorem 9.1: We first prove the achievable error exponent pair (9.35) and

(9.36). We need to show that, for any given P̃TUX ∈ P(T ×U×X ) and δ > 0, there exists a

sequence of JSC codes such that both the probabilities of decoding error are upper bounded

by

P
(n)
ke (QSL,WY Z|UX , τ) ≤ 2−n[EJk(QSL,WY Z|TUX , ePTUX ,τ)−δ], k = Y,Z,

where EJY and EJZ are given by (9.35) and (9.36).

To apply Proposition 9.1, set mn , |Pτn(S)|. For each type PSi
∈ Pτn(S), i =

1, 2, ...,mn, denote Ni be the cardinalities of these type classes, Ni , |TSi
|, and set m′

in ,

|Pτn(L|PSi
)|. For each conditional type PLj |Si

∈ Pτn(L|PSi
), j = 1, 2, ...,m′

in, denote Mij

be the cardinalities of these type classes, Mij , |TLj |Si
(s)| where s is an arbitrary sequence

in TSi
. Note that |TLj |Si

(s)| is constant for all s ∈ TSi
. Ri and Rij are respectively given

by 1
n log2Ni and 1

n log2Mij .

Now no matter whether the given P̃TUX belongs to Pn(T × U × X ) or not, we always

can find a sequence of joint types {PTUX ∈ Pn(T × U × X )}∞n=1 such that PTUX → P̃TUX

uniformly1 as n→ ∞. Thus, we can choose, by the continuity of Ek(Ri, Rij ,Wk|TUX , P̃TUX)

with respect to P̃TUX , for each i = 1, 2, ...,mn, and j = j(i) = 1, 2, ...,m′
in, the joint type

P(TU)iXj
= PTUX such that the following are satisfied

∣∣∣Ek(Ri, Rij ,Wk|TUX , PTUX) − Ek(Ri, Rij ,Wk|TUX , P̃TUX)
∣∣∣ < δ

4
, k = Y,Z

1We say that a sequence of distributions {PXi
∈ P(X )}∞i=1 uniformly converges to P ∗

X ∈ P(X ) if the

variational distance between PXi
and P ∗

X converges to zero as n→ ∞.
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for n sufficiently large. Since the type PTUX can also be regarded as a joint distribution,

let P(TU)i
= PTU ∈ Pn(T × U) be the marginal distribution on T × U induced by PTUX

and let PXj |(TU)i
= PX|TU ∈ Pn(X|PTU ) be the corresponding conditional distribution, i.e.,

PX|TU (x|t,u) = PTUX(t,u,x)/PTU (t,u) for any (t,u,x) ∈ TTUX .

Without loss of generality, we assume, for the choice of Ni, Mij, P(TU)i
, and PXj |(TU)i

,

the following conditions are satisfied for i = 1, 2, ..., m̂n, j = 1, 2, ..., m̂′
in,

Ri < HP(TU)i
(T,U) − δ

4
, i = 1, 2, ..., m̂n (9.39)

and

Rij < HP(TU)iXj
(X|T,U) − δ

4
, i = 1, 2, ..., m̂n, j = j(i) = 1, 2, ..., m̂′

in, (9.40)

where m̂n ≤ mn and m̂′
in ≤ m′

n. Then according to Proposition 9.1, there exist pairwise

disjoint subsets Ωij ⊆ T(TU)iXj
with |Ωij | = NiMij, i = 1, 2, ..., m̂n, j = 1, 2, ..., m̂′

in, and

a pair of mappings
(
ϕ

(0)
n , ψ

(0)
n

)
, such that the probabilities of erroneous transmission of a

((t,u),x) ∈ Ωij are simultaneously bounded for the channel WY Z|TUX as

P
(n)
Y e (t,u,x) ≤ 2

−n
h
EY

“
Ri,Rij ,WY |TUX ,P(TU)iXj

”
−δ/4

i

≤ 2−n[EY (Ri,Rij ,WY |TUX , ePTUX)−δ/2] (9.41)

and

P
(n)
Ze (t,u,x) ≤ 2

−n
h
EZ

“
Ri,Rij ,WZ|TUX ,P(TU)iXj

”
−δ/4

i

≤ 2−n[EZ(Ri,Rij ,WZ|TUX , ePTUX)−δ/2]. (9.42)

For the Ni, Mij , P(TU)i
, and PXj |(TU)i

violating (9.39) or (9.40) (i.e., for i > m̂n or

j > m̂′
in), (9.41) and (9.42) trivially hold for arbitrary choice of disjoint subsets Ωij since

EY

(
Ri, Rij ,WY |TUX , P(TU)iXj

)
or EZ

(
Ri, Rij ,WZ|TUX , P(TU)iXj

)
would be less than δ/4.

In fact, the functions EY and EZ are trivially bounded by the following linear functions of

Ri and Rij with slope −1,

EY

(
Ri, Rij ,WY |TUX , P(TU)iXj

)
≤ min

{
IP(TU)iXj

WY |TUX
(T,U,X;Y ) −Ri −Rij,

IP(TU)iXj
WY |TUX

(X;Y |T,U) −Rij

}
(9.43)
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and

EZ

(
Ri, Rij ,WZ|TUX , P(TU)iXj

)
≤ IP(TU)iXj

WZ|TUX
(T,U ;Z) −Ri. (9.44)

If

Ri ≥ HP(TU)i
(T,U) − δ

4
≥ IP(TU)iXj

WZ|TUX
(T,U ;Z) − δ

4
,

then by (9.44) EZ

(
Ri, Rij ,WZ|TUX , P(TU)iXj

)
≤ δ

4 . Similarly, if

Rij ≥ HP(TU)iXj
(X|T,U) − δ

4
,

then by (9.43) EY

(
Ri, Rij ,WY |TUX , P(TU)iXj

)
≤ δ

4 .

Therefore, we may construct the JSC code (fn, gn, ϕn, ψn) for CS QSL and the 2-user

channel WY Z|UX as follows.

Encoder gn: For the message s ∈ TSi
such that i > m̂n, let gn(s) = 0 ∈ Un. Denote

Ω̃ =
⋃
iΩi. For the s ∈ TSi

such that i ≤ m̂n, let g
(1)
n : Sτn → Ω̃ be a bijection that maps

each s ∈ TSi
to the corresponding (t,u) ∈ Ωi, by noting that |Ωi| = |TSi

| = Ni. Finally, let

gn(s) be the second component u of g
(1)
n (s).

Encoder fn: For the message pair (s, l) ∈ TSiLj
such that i > m̂n or j > m̂′

in, let

fn(s, l) = 0 ∈ X n. For the (s, l) ∈ TSiLj
such that i ≤ m̂n and j ≤ m̂′

in, noting that

|TLj |Si
(s)| = |Ωij(ϕn(s))| = Mij if s ∈ TSi

, let f
(1)
n (s, ·) : TLj |Si

(s) → Ωij(gn(s)) be a

bijection such that f
(1)
n (s, l) = (g

(1)
n (s),x) ∈ Ωij. Let fn(s, l) be the third component x of

f
(1)
n (s, l).

Clearly, the JSC encoders (fn, gn), although working independently, they map each

(s, l) ∈ TSiLj
to a unique pair (u,x) when i ≤ m̂n and j ≤ m̂′

in, and to (·,0) otherwise (in

this case an error is declared).

Y-Decoder ϕn: The Y−decoder is defined by

ϕn(y) ,





(s′, l′) if ∃ (s′, l′) ∈ Sn × Ln such that f
(1)
n (s′, l′) = ϕ

(0)
n (y),

(0,0) Otherwise.
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Z-Decoder ψn: The Z−decoder is defined by

ψn(z) ,





s′ if ∃ s′ ∈ Sn such that g
(1)
n (s′) are equal to

the first two components of ψ
(0)
n (z),

0 Otherwise.

For such JSC code (fn, gn, ϕn, ψn), the probabilities of Y -error and Z-error are bounded

by

P
(n)
Y e (s, l) ≤ 2−n[EY (Ri,Rij ,WY |TUX , ePTUX)−δ/2] if (s, l) ∈ TSiLj

(9.45)

and

P
(n)
Ze (s, l) ≤ 2−nEZ(Ri,Rij ,WZ|TUX , ePTUX)−δ/2] if (s, l) ∈ TSiLj

. (9.46)

Substituting (9.45) and (9.46) into (9.3) and using the fact (Lemma 3.1) Q
(τn)
SL (TSL) ≤

2−nτD(PSL‖QSL), we obtain, for n sufficiently large,

P
(n)
Y e (QSL,WY Z|UX , τ)

≤
∑

i,j

2
−n[τD(PSiLj

‖QSL)+EY (Ri,Rij ,WY |TUX , ePTUX)−δ/2]

≤
∑

PSL

2−n[τD(PSL‖QSL)+EY (τHP (S)−o1(n)/n,τHP (L|S)−o2(n)/n,WY |TUX , ePTUX)−δ/2]

≤
∑

PSL

2−n[τD(PSL‖QSL)+EY (τHP (S),τHP (L|S),WY |TUX , ePTUX)−δ] (9.47)

and

P
(n)
Ze (QSL,WY Z|UX , τ)

≤
∑

i,j

2
−n[τD(PSiLj

‖QSL)+EZ(Ri,Rij ,WZ|TUX , ePTUX)−δ/2]

≤
∑

PSL

2−n[τD(PSL‖QSL)+EZ(τHP (S)−o1(n)/n,τHP (L|S)−o2(n)/n,WZ|TUX , ePTUX)−δ/2]

≤
∑

PSL

2−n[τD(PSL‖QSL)+EZ(τHP (S),τHP (L|S),WZ|TUX , ePTUX)−δ], (9.48)

where o1(n) = |S| log2(τn + 1) and o2(n) = |S||L| log2(τn + 1). Finally, the bounds (9.35)

and (9.36) follow from (9.47) and (9.48), and the fact that the cardinality of set of joint

types Pτn(S × L) is upper bounded by (τn+ 1)|S||L|.
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To prove the lower bound (9.37), we slightly modify the above approach by choosing

P(TU)iXj
= P̃ ∗

(TU)iXj
which achieves the maximum and the supremum ofEr(Ri, Rij ,WY Z|UX)

in (9.38) for every Ri and Rij, i = 1, 2, ...,mn, j = 1, 2, ...,m′
in. Then the probabilities of

Y -error and Z-error in (9.45) and (9.46) are bounded by

P
(n)
Y e (s, l) ≤ 2

−n[EY

„
Ri,Rij ,WY |TUX , eP ∗

(TU)iXj

«
−δ/2]

≤ 2−n[Er(Ri,Rij ,WY Z|UX)−δ/2] if (s, l) ∈ TSiLj
(9.49)

and

P
(n)
Ze (s, l) ≤ 2

−nEZ

“
Ri,Rij ,WZ|TUX , eP ∗

TUiXj

”
−δ/2]

≤ 2−n[Er(Ri,Rij ,WY Z|UX)−δ/2] if (s, l) ∈ TSiLj
(9.50)

for n sufficiently large. The rest of the proof is similar to the proofs of (9.35) and (9.36).

�

9.4 JSCC Theorem for the Asymmetric 2-User System

By examining the positivity of the lower bound to EJ , we obtain a sufficient condition for

reliable transmissibility for the asymmetric 2-user system. For the sake of completeness, we

also prove a converse by using Fano’s inequality, and hence establish the JSCC theorem for

this system. Given WY Z|UX , define

R(WY Z|UX) ,
⋃

T :|T |≤|U||X |+2

⋃

PTUX∈P(T ×U×X )

R(WY Z|TUX , PTUX) (9.51)

where

R(WY Z|TUX , PTUX) ,





(R1, R2) :

R1 +R2 < I(T,U,X;Y ) = I(U,X;Y )

R1 < I(T,U ;Z)

R2 < I(X;Y |T,U)




,

where the mutual informations are taken under the joint distribution PTUXY Z = PTUXWY Z|UX .

It can be shown that R(WY Z|UX) is convex and denote R(WY Z|UX) be the closure of

R(WY Z|UX).
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Theorem 9.2 (JSCC Theorem) Given QSL, WY Z|UX and τ > 0, the following statements

hold.

(1) The sources QSL can be transmitted over the channel WY Z|UX with probability of error

P
(n)
e → 0 as n→ ∞ if (τHQ(S), τHQ(L|S)) ∈ R(WY Z|UX);

(2) Conversely, if the sources QSL can be transmitted over the channel WY Z|UX with an arbi-

trarily small probability of error P
(n)
e as n→ ∞, then (τHQ(S), τHQ(L|S)) ∈ R(WY Z|UX).

Proof:

Forward Part (1): It follows from (9.12)-(9.14) that Er(R1, R2,WY Z|TUX , PTUX) > 0 if

and only if (R1, R2) ∈ R(WY Z|TUX , PTUX). It then follows that Er(R1, R2,WY Z|UX) > 0

if (R1, R2) ∈ R(WY Z|UX). According to Theorem 9.1 and the definition of the sys-

tem JSCC error exponent, P
(n)
e → 0 if the lower bound (9.37) is positive, which needs

Er(τHP (S), τHP (L|S),WY Z|UX) > 0. This means P
(n)
e → 0 if the pair

(τHQ(S), τHQ(L|S)) ∈ R(WY Z|UX).

Converse Part (2): The proof follows from a similar manner as the converse part of [38,

Theorem 1] for a broadcast channel. For the sake of completeness, we also provide a

full proof here since we deal with a 2-user channel. First, we remark that (as shown

in [38, Theorem 2]) the region R(WY Z|TUX , PTUX) can be equivalently rewritten by

R(WY Z|TUX , PTUX) =





(R1, R2) :

R1 +R2 < I(U,X;Y )

R1 < I(T,U ;Z)

R1 +R2 < I(X;Y |T,U) + I(T,U ;Z)




.

It suffices to show that, for any ǫ > 0, if

max
{
P

(n)
Y e (QSL,WY Z|XU , τ), P

(n)
Ze (QSL,WY Z|UX , τ)

}
≤ ǫn → 0

as n goes to infinity, then there exists a RV T satisfying T → (U,X) → (Y,Z), i.e., the

joint distribution PTUXY Z can be factorized as PTPUX|TWY Z|UX , such that

(τHQ(S), τHQ(L|S)) ∈ R(WY Z|UX , PTUX)
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with < replaced by ≤, i.e.,

τHQ(S,L) ≤ min{I(U,X;Y ), I(X;Y |T,U) + I(T,U ;Z)},

τHQ(S) ≤ I(T,U ;Z).

Fix k = τn. Fano’s inequality gives

H(Sk, Lk|Y n) ≤ P
(n)
Y e log2 |Sk × Lk| +H

(
P

(n)
Y e

)
, nǫ1n (9.52)

H(Sk|Zn) ≤ P
(n)
Ze log2 |Sk| +H

(
P

(n)
Ze

)
, nǫ2n, (9.53)

where Sk , (S1, S2, · · · , Sk); similar definitions apply for the other tuples. It follows from

(9.52)-(9.53) that

kH(S,L) = H(Lk|Sk) +H(Sk)

= I(Lk;Y n|Sk) +H(Lk|Sk, Y n) + I(Sk;Zn) +H(Sk|Zn)

≤
n∑

i=1

[I(Lk;Yi|Sk, Y i−1) + I(Sk;Zi|Zi+1)] +H(Sk, Lk|Y n) + nǫ2n

≤
n∑

i=1

[
I(Lk;Yi|Sk, Y i−1,Zi+1) + I(Zi+1;Yi|Sk, Y i−1)

+I(Sk,Zi+1, Y i−1;Zi) − I(Y i−1;Zi|Sk,Zi+1)
]

+ n(ǫ1n + ǫ2n),

where Y i−1 = (Y1, Y2, ..., Yi−1) and Zi+1 , (Zi+1, Zi+2, ..., Zn). Substituting the identity

[32, Lemma 7]
n∑

i=1

I(Zi+1;Yi|Sk, Y i−1) =

n∑

i=1

I(Y i−1;Zi|Sk,Zi+1)

into the above, and setting Ti = (Sk, Y i−1,Zi+1) for 1 ≤ i ≤ n yields

kH(S,L) ≤
n∑

i=1

[
I(Lk;Yi|Ti) + I(Ti;Zi)

]
+ n(ǫ1n + ǫ2n)

(a)
=

n∑

i=1

[
I(Lk;Yi|Ti, Ui) + I(Ti, Ui;Zi)

]
+ n(ǫ1n + ǫ2n)

(b)

≤
n∑

i=1

[I(Xn;Yi|Ti, Ui) + I(Ti, Ui;Zi)] + n(ǫ1n + ǫ2n)

(c)
=

n∑

i=1

[I(Xi;Yi|Ti, Ui) + I(Ti, Ui;Zi)] + n(ǫ1n + ǫ2n), (9.54)
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where (a) holds since Ui is a deterministic function of Sk and hence of Ti, (b) follows from

the data processing inequality, and (c) holds since Yi is only determined by Ui and Xi due to

the memoryless property of the channel. On the other hand, kH(S,L) can also be bounded

by

kH(S,L) = H(Sk, Lk)

= I(Sk, Lk;Y n) +H(Sk, Lk|Y n)

≤ I(Xn, Un;Y n) + nǫ1n

=
n∑

i=1

I(Ui,Xi;Yi) + nǫ1n. (9.55)

Likewise, it follows from (9.53) that

kH(S) = H(Sk)

= I(Sk;Zn) +H(Sk|Zn)

=

n∑

i=1

I(Sk;Zi|Zi+1) +H(Sk|Zn)

≤
n∑

i=1

I(Sk,Zi+1;Zi) + nǫ2n

≤
n∑

i=1

I(Sk, Y i−1,Zi+1, Ui;Zi) + nǫ2n

=

n∑

i=1

I(Ti, Ui;Zi) + nǫ2n. (9.56)

Note also that Ti −→ (Ui,Xi) −→ (Yi, Zi) for all 1 ≤ i ≤ n. According to (9.54), (9.55),

and (9.56), and recalling that k = τn, it is easy to show (e.g., see [32]) that there exists an

auxiliary RV T with PTUXY Z = PTPUX|TWY Z|UX such that

τH(S,L) ≤ min {IPUXY Z
(U,X;Y ), IPTUXY Z

(X;Y |T,U) + IPTUXY Z
(T,U ;Z)}

τH(S) ≤ IPTUXY Z
(T,U ;Z),

which is equivalent to

τH(S,L) ≤ IPUXY Z
(U,X;Y ),

τH(S) ≤ IPTUXY Z
(T,U ;Z),

τH(L|S) ≤ IPTUXY Z
(X;Y |T,U).
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Finally, by using the Carathéodory theorem (cf. [32, p. 311]) we can show that there exists

a RV T̂ with |T̂ | ≤ |U||X | + 1 such that PbTUXY Z = PbTPUX| bTWY Z|UX and

(IPUXY Z
(U,X;Y ), IPTUXY Z

(T,U ;Z), IPTUXY Z
(X;Y |T,U))

= (IPUXY Z
(U,X;Y ), IP bT UXY Z

(T̂ , U ;Z), IP bT UXY Z
(X;Y |T̂ , U)).

This completes the proof of the converse part. �

9.5 Separation Principle for the Asymmetric 2-User System

It can be verified that the condition (τHQ(S), τHQ(L|S)) ∈ R(WY Z|UX) of Theorem 9.2

can be achieved by separate source and channel coding. The separate coding system of rate

τ (source symbol/channel symbol) (we refer to it as the tandem coding system) is depicted

in Figs. 9.3 and 9.4

l ∈ Lτn

- Source

Encoder fsn

-i ∈ {1, 2, ...,Ml}

s ∈ Sτn

-

- Source
Encoder gsn

j ∈ {1, 2, ...,Ms}

6

Source
Encoder gsn

-j ∈ {1, 2, ...,Ms}

Channel
Encoder fcn

-x ∈ Xn

Channel
Encoder gcn

-u ∈ Un

Encoder fn

Encoder gn

Figure 9.3: Tandem source-channel coding system - encoders.

The encoder fn is composed of two source encoders fsn : Lτn → {1, 2, ...,Ml} and

gsn : Sτn → {1, 2, ...,Ms} with private coding rate R̂l , 1
τn log2Ml and common coding

rate R̂s , 1
τn log2Ms and a channel encoder {1, 2, ...,Ml} × {1, 2, ...,Ms} → X n. Similarly,

the encoder gn is composed of a source encoder gsn : Sτn → {1, 2, ...,Ms} with common

coding rate R̂s and a channel encoder gcn : {1, 2, ...,Ms} → Un.
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y ∈ Yn

- Channel

Decoder ϕcn

-
(πf (bj), πg(bi)) ∈ {1, 2, ...,Ms}

×{1, 2, ...,Ml}

z ∈ Zn

-πg(ej) ∈ {1, 2, ...,Ms}Channel
Decoder ψcn

Source
Decoder ϕsn

-(s′, l′) ∈ Sτn × Lτn

Source
Decoder ψsn

-s′′ ∈ Sτn

Decoder ϕn

Decoder ψn

Figure 9.4: Tandem source-channel coding system - decoders.

At the receiver side, the decoder ϕn is composed of a channel decoder ϕcn : Yn →

{1, 2, ...,Ml} × {1, 2, ...,Ms}, and a source decoder ϕsn : {1, 2, ...,Ml} × {1, 2, ...,Ms} →

Sτn × Lτn which outputs the approximation of the source messages s′ and l′. Similarly,

the decoder ψn is composed of a channel decoder ψcn : Zn → {1, 2, ...,Ms}, and a source

decoder ψsn : {1, 2, ...,Ms} → Sτn.

To show that the condition (τHQ(S), τHQ(L|S)) ∈ R(WY Z|UX) can be achieved by the

above tandem system, we need to apply the following 2-user source and channel coding

theorems (we only state the forward parts of the theorems). Note that both of these

theorems are special case of Theorem 9.2.

Let (fsn, gsn, ϕsn, ψsn) be a sequence of source codes for CS QSL with common source

rate R̂s and private source rate R̂l as defined above. The probability of the overall 2-user

source coding error is given by

P (n)
es (R̂s, R̂l, QSL) , Pr

(
{ϕsn(gsn(Sτn), fsn(Lτn)) 6= (Sτn, Lτn)}

⋃
{ψsn(gsn(Sτn)) 6= Sτn}

)
.

(9.57)

Then by the 2-user source coding theorem, there exists a sequence of source codes

(fsn, gsn, ϕsn, ψsn) with rates R̂s and R̂l such that P
(n)
es (R̂s, R̂l, QSL) → 0 as n → ∞ if the

rates satisfy R̂s > HQ(S) and R̂l > HQ(L|S), i.e., (R̂s, R̂l) lies in the upper-right infinite

rectangle with vertex given by the point (HQ(S),HQ(L|S)).

We next state the forward part of channel coding theorem for the asymmetric 2-user

channel. Let the (common and private) message pair (j, i) be uniformly drawn from
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the finite set Ms × Ml, where Ms , {1, 2, ...,Ms} and Ml , {1, 2, ...,Ml}, and let

(fcn, gcn, ϕcn, ψcn) be an asymmetric 2-user channel code with block length n and com-

mon and private message sets Ms and Ml. Let Rs , 1
n log2Ms and Rl , 1

n log2Ml be

the common and private rates of the channel code, respectively. The average probability of

error for asymmetric 2-user channel coding is given by

P (n)
ec (Rs, Rl,WY Z|UX) , Pr

(
{ϕcn(Y n) 6= (J, I)}

⋃
{ψcn(Zn) 6= J}

)
, (9.58)

where (J, I) are uniformly drawn from Ms × Ml. The maximum probability for error of

asymmetric 2-user channel coding is given by

P (n)
ec,max(Rs, Rl,WY Z|UX)

, max
(j,i)∈Ms×Ml

Pr
(
{ϕcn(Y n) 6= (J, I)}

⋃
{ψcn(Zn) 6= J}

∣∣∣ J = j, I = i
)
, (9.59)

Then there exists a sequence of channel codes (fcn, gcn, ϕcn, ψcn) such that P
(n)
ec (Rs, Rl,WY Z|UX)

goes to 0 as n → ∞ if (Rs, Rl) ∈ R(WY Z|UX). Furthermore, it can be readily shown by a

standard expurgation argument [29, p. 204] that P
(n)
ec,max(Rs, Rl,WY Z|UX) → 0 as n → ∞

if (Rs, Rl) ∈ R(WY Z|UX).

Now by (9.7), the overall probability of error for the tandem system is given by

P (n)
e , Pr

(
{ϕsn [ϕcn(Y

n)] 6= (Sτn, Lτn)}
⋃

{ψsn [ψcn(Z
n)] 6= Sτn}

)
.

By the union bound, it is easy to see that P
(n)
e is upper bounded by

P (n)
e ≤ Pr

(
{ϕsn(gsn(Sτn), fsn(Lτn)) 6= (Sτn, Lτn)}

⋃
{ψsn(gsn(Sτn)) 6= Sτn}

)

+ Pr
(
{ϕcn(Y n) 6= (gsn(S

τn), fsn(L
τn))}

⋃
{ψcn(Zn) 6= gsn(S

τn)}
)

= P (n)
es (R̂s, R̂l, QSL) +

∑

(j,i)∈Ms×Ml

Pr (gsn(S
τn) = j, fsn(L

τn) = i)

Pr
(
{ϕcn(Y n) 6= (J, I)}

⋃
{ψcn(Zn) 6= J}

∣∣∣ J = j, I = i
)

≤ P (n)
es (R̂s, R̂l, QSL) + P (n)

ec,max(τR̂s, τ R̂l,WY Z|UX)

where P
(n)
ec,max(τR̂s, τ R̂l,WY Z|UX) is the maximum channel coding probability of error with

common rate τR̂s and private rate τR̂l. Clearly, by combining the 2-user source coding
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theorem and the asymmetric 2-user channel coding theorem, if (τHQ(S), τHQ(L|S)) ∈

R(WY Z|UX), then there exist a sequence of source codes (fsn, gsn, ϕsn, ψsn) and a sequence

of channel codes (fcn, gcn, ϕcn, ψcn) such that the overall tandem system probability of error

P
(n)
e → 0 as n → ∞. Therefore, separation of source and channel coding is optimal from

the point of view of reliable transmissibility.

9.6 An Upper Bound for EJ

We know that Csiszár also established an upper bound for the JSCC error exponent for

the point-to-point discrete memoryless source-channel system in terms of the source and

channel error exponents by a simple type counting argument. He shows that the JSCC

error exponent is always less than the infimum of the sum of the source and channel error

exponent, even though the channel error exponent is only partially known for high rates.

This conceptual bound cannot currently be computed as the channel error exponent is not

yet fully known for all achievable coding rates, but it directly implies that any upper bound

for the channel error exponent yields a corresponding upper bound for the JSCC error

exponent. For the asymmetric 2-user channel, a similar bound can be shown.

As a special case of the JSCC system, let the (common and private) message pair (j, i)

be uniformly drawn from the finite set Ms × Ml, where Ms , {1, 2, ...,Ms} and Ml ,

{1, 2, ...,Ml}. An asymmetric 2-user channel code with block length n for transmitting

the uniform message set is a quadruple of mappings, (fcn, gcn, ϕcn, ψcn), where fcn : Ms ×

Ml → X n and gcn : Ms → Un are the channel encoders, and ϕcn : Yn → Ms × Ml and

ψcn : Zn → Ms are respectively the Y -decoder and Z-decoder. Let Rs , 1
n log2Ms and

Rl , 1
n log2Ml be the common and private rates of the code, respectively. The probabilities

of Y - and Z-error of the channel coding are respectively given by

P
(n)
Y ec(Rs, Rl,WY Y |UX) , Pr({ϕcn(Y n) 6= (J, I)}) =

1

2R1+R2

∑

Ms×Ml

∑

y:ϕcn(y)6=(j,i)

W
(n)
Y |X(y|u,x)

(9.60)
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and

P
(n)
Zec(Rs, Rl,WY Z|UX) , Pr({ψcn(Zn) 6= J}) =

1

2R1+R2

∑

Ms×Ml

∑

z:ψcn(z)6=j

W
(n)
Z|X(z|u,x)

(9.61)

where x , fcn(j, i) and u , gcn(j). Similarly, the probability of the overall asymmetric

2-user channel coding error is given by

P (n)
ec (Rs, Rl,WY Z|UX) , Pr ({ϕcn(Y n) 6= (J, I)} ∪ {ψcn(Zn) 6= J}) , (9.62)

where (J, I) are uniformly drawn from Ms ×Ml.

Definition 9.2 The asymmetric 2-user channel coding error exponent E(R1, R2,WY Z|UX),

for any R1 > 0 and R2 > 0, is defined by the supremum of the set of all numbersEc for which

there exists a sequence of asymmetric channel codes (fcn, gcn, ϕcn, ψcn) with blocklength n,

the common rate no less than R1, and the private rate no less than R2, such that

Ec ≤ lim inf
n→∞

− 1

n
log2 P

(n)
e (R1, R2,WY Z|UX). (9.63)

Clearly, for any sequence of channel codes (fcn, gcn, ϕcn, ψcn), P
(n)
e (R1, R2,WY Z|UX)

must be larger than P
(n)
Y e (R1, R2,WY |UX) and P

(n)
Ze (R1, R2,WZ|UX)) but less than the sum

of the two, so we have

lim inf
n→∞

− 1

n
log2 P

(n)
e (R1, R2,WY Z|UX)

= lim inf
n→∞

− 1

n
log2 max

(
P

(n)
Y e (R1, R2,WY |UX), P

(n)
Ze (R1, R2,WZ|UX)

)
. (9.64)

Our upper bound for the system JSCC error exponent is stated as follows.

Theorem 9.3 Given QSL, WY Z|UX, and τ , the system JSCC error exponent satisfies

EJ (QSL,WY Z|UX , τ) ≤ inf
PSL

[
τD(PSL ‖ QSL) +E(τHP (S), τHP (L|S),WY Z|UX)

]
, (9.65)

where E(·, ·,WY Z|UX) is the corresponding channel coding error exponent for the asymmetric

2-user channel.
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Proof: First, we write from (9.3) that

P
(n)
ie (QSL,WY Z|UX , τ) ≥ max

PSL∈Pτn(S×L)
Q

(τn)
SL (TSL)Pie(TSL) i = Y,Z, (9.66)

where PY e(TSL) and PZe(TSL) are given by (9.4) and (9.5). Comparing (9.4) with (9.60),

and comparing (9.5) with (9.61), we note that PY e(TSL) and PZe(TSL) can be interpreted

as the probabilities of Y -error and Z-error of the asymmetric 2-user channel coding with

(common and private) message sets TSL, since (s, l) are uniformly distributed on TSL. For

any PSL ∈ Pτn(S × L), let PS and PL|S be the marginal and conditional distributions

induced by PSL. Recall that for each s ∈ TS = TPS
,

TL|S(s) , TPL|S
(s) = {l : (s, l) ∈ TSL}

and that TL|S(s) is the same set for all s ∈ TS. Hence, we can write TSL by the product of

two sets TSL = TS × TL|S(s). Setting R̃1 = 1
n log2 |TS | and R̃2 = 1

n log2 |TL|S(s)|, it follows

that, by the definition of asymmetric 2-user channel coding error exponent and (10.51),

lim inf
n→∞

− 1

n
log2 max

i=Y,Z
Pie(TSL) ≤ E(lim inf

n→∞
R̃1, lim inf

n→∞
R̃2,WY Z|UX)

= E(τHP (S), τHP (L|S),WY Z|UX) (9.67)

for any sequence of JSC codes (fn, ϕn, ψn), recalling Lemma 3.1 that

(τn+ 1)−|S|2nτHP (S) ≤ |TS| ≤ 2nτHP (S)

and

(τn+ 1)−|S||L|2nτHP (L|S) ≤ |TL|S(s)| ≤ 2nτHP (L|S).

According to (9.9), we write

lim inf
n→∞

− 1

n
log2 P

(n)
e (QSL,WY Z|UX , τ)

= lim inf
n→∞

− 1

n
log2 max

(
P

(n)
Y e (QSL,WY |X , τ), P

(n)
Ze (QSL,WZ|X , τ)

)

≤ lim inf
n→∞

− 1

n
log2 max

i=Y,Z
max

PSL∈Pτn(S×L)
Q

(τn)
SL (TSL)Pie(TSL)

= lim inf
n→∞

min
PSL∈Pτn(S×L)

− 1

n
log2Q

(τn)
SL (TSL) max

i=Y,Z
Pie(TSL)

= lim inf
n→∞

min
PSL∈Pτn(S×L)

[
− 1

n
log2Q

(τn)
SL (TSL) − 1

n
log2 max

i=Y,Z
Pie(TSL)

]
. (9.68)
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By Lemma 3.1, for any PSL ∈ Pτn(S × L),

− 1

τn
log2Q

(τn)
SL (TSL) ≤ D(PSL ‖ QSL) + |S||L| 1

τn
log2(1 + τn)

which implies

lim sup
n→∞

− 1

n
log2Q

(τn)
SL (TSL) ≤ τD(PSL ‖ QSL). (9.69)

Now assume that

inf
PSL∈P(S×L)

[
τD(PSL ‖ QSL) + E(τHP (S), τHP (L|S),WY Z|UX)

]

is finite (the upper bound is trivial if it is infinity) and the infimum actually becomes a

minimum. Let the minimum be achieved by distribution P ∗
SL ∈ P(S ×L), then there must

exists a sequence of types
{
P̂SL ∈ Pτn(S × L)

}∞

n=no

such that P̂SL → P ∗
SL uniformly2. It

then follows from (9.68), (9.67) and (9.69) that

lim inf
n→∞

− 1

n
log2 P

(n)
e (QSL,WY Z|UX , τ)

≤ lim inf
n→∞

[
− 1

n
log2Q

(τn)
SL (T bPSL

) − 1

n
log2 max

i=Y,Z
Pie(T bPSL

)

]

≤ τD(P ∗
SL ‖ QSL) + E(τHP ∗(S), τHP ∗(L|S),WY Z|UX). (9.70)

Since the above bound holds for any sequence of JSC codes, we complete the proof of

Theorem 9.3. �

9.7 Applications to CS-AMAC and CS-ABC Systems

As pointed out in the introduction, our results obtained in the previous section can be

directly applied to the CS-AMAC and CS-ABC source-channel systems.

9.7.1 CS-AMAC System

Setting |Z| = 1 and removing the decoder ψn, the 2-user asymmetric channel WY Z|UX

reduces to an AMAC WY |UX . Since the CS-AMAC system is a special case of the 2-user

2The sequence
n

bPSL ∈ Pτn(S × L)
o∞

n=no

here denotes a sequence for n = no, 2no, 3no, ..., where no is

the smallest integer such that τno is also an integer.
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system, the quantities defined before, including the system (overall) probability of error,

the system JSCC error exponent, and also the channel error exponent still hold for the

CS-AMAC system. Note that there is only one decoder, so we do not have the Z-error

probability (nor exponent) here. The first union in (9.51) can be removed since the largest

region is given by |T | = 1. In fact, for any T → (U,X) → Y , I(T,U,X;Y ) = I(U,X;Y )

and I(X;Y |T,U) ≤ I(X;Y |U). Thus Theorem 9.2 reduces to the same JSCC theorem

established in [20] for the CS-AMAC system.

Given WY |UX , R(WY Z|UX) of (9.51) reduces to R(WY |UX) given by

R(WY |UX) ,
⋃

PUX∈P(U×X )

R(WY |UX , PUX) (9.71)

where

R(WY |TX , PUX) =



(R1, R2) :

R1 +R2 < I(U,X;Y )

R2 < I(X;Y |U)



 ,

where the mutual informations are taken under the joint distribution PUXY = PUXWY |UX .

We remark that the following JSCC theorem for the CS-AMAC system coincides with the

one established in [20]. Note that R(WY |TX , PUX) is convex and denote R(WY |TX , PUX)

be the closure of R(WY |TX , PUX).

Corollary 9.1 (JSCC Theorem for CS-AMAC system [20]) Given QSL, WY |UX and τ > 0,

the sources can be transmitted over the channel with P
(n)
e → 0 as n→ ∞ if

(τHQ(S), τHQ(L|S)) ∈ R(WY |UX);

Conversely, if the sources can be transmitted over the channel with an arbitrarily small

probability of error P
(n)
e as n→ ∞, then (τHQ(S), τHQ(L|S)) ∈ R(WY |UX.

To specialize Theorems 9.1 and 9.3 to the CS-AMAC system, we simply choose the

auxiliary alphabet |T | = 1, which yields the following corollaries.

Corollary 9.2 Given QSL, WY |UX and τ , the system JSCC error exponent satisfies

EJ(QSL,WY |UX , τ) ≥ min
PSL

[
τD(PSL ‖ QSL) + Er(τHP (S), τHP (L|S),WY |UX)

]
, (9.72)



9.7. Applications to CS-AMAC and CS-ABC Systems 245

and

EJ(QSL,WY |UX , τ) ≤ inf
PSL

[
τD(PSL ‖ QSL) +E(τHP (S), τHP (L|S),WY |UX)

]
, (9.73)

where E(τHP (S), τHP (L|S),WY |UX) is the channel error exponent of the AMAC WY |UX

defined in (9.63) with |Z| = 1, and

Er(R1, R2,WY |UX) = max
PUX

EY (R1, R2,WY |UX , PUX) (9.74)

where EY (R1, R2,WY |UX , PUX) is defined in (9.10) with |T | = 1.

It has been shown in [10] that for any R1 > 0 and R2 > 0, the channel exponent for

AMAC WY |UX satisfies

E(R1, R2,WY Z|X) ≤ Esp(R1, R2,WY |UX),

where

Esp(R1, R2,WY |UX) , max
PUX∈P(U×X )

minD(VY |UX ‖WY |UX |PUX), (9.75)

where the minimum is taken over VY |UX ∈ P(Y|U × X ) such that IPUXVY |UX
(U,X;Y ) ≤

R1 +R2 or IPUXVY |UX
(X;Y |U) ≤ R2.

As a consequence, we obtain that

EJ (QSL,WY |UX , τ) ≤ inf
PSL

[
τD(PSL ‖ QSL) + Esp(τHP (S), τHP (L|S),WY |UX)

]
. (9.76)

In Section 9.8, we investigate the evaluation of lower bound (9.72) and upper bound (9.76)

when the AMAC has a symmetric distribution.

9.7.2 CS-ABC System

Setting |U| = 1 and removing the encoder gn, the 2-user asymmetric channel WY Z|UX

reduces to an ABC WY Z|X . The quantities defined before, including the probabilities of

error at Y -decoder and Z-decoder, the achievable error exponent pair, system (overall)

probability of error, the system JSCC error exponent, and the channel error exponent

still hold for the CS-ABC system. Given an arbitrary and finite auxiliary alphabet T ,
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we augment the channel WY Z|X to WY Z|TX by introducing a RV T ∈ T such that T →

X → (Y Z). Similarly, the marginal distributions of the augmented channel are denoted

by WY |TX and WZ|TX . We then specialize Theorems 9.1, 9.2 and 9.3 to the following

corollaries.

Given WY Z|X , R(WY Z|UX) of (9.51) reduces to R(WY Z|X) given by

R(WY Z|X) ,
⋃

T :|T |≤|X |+2

⋃

PTX∈P(T ×X )

R(WY Z|TX , PTX) (9.77)

where

R(WY Z|TX , PTX) =





(R1, R2) :

R1 +R2 < I(T,X;Y ) = I(X;Y )

R1 < I(T ;Z)

R2 < I(X;Y |T )




,

where the mutual informations are taken under the joint distribution PTXY Z = PTXWY Z|X .

We remark that the closure of R(WY Z|X), denoted by R(WY Z|X), is the capacity region of

the ABC WY Z|X [59].

Corollary 9.3 (JSCC Theorem for CS-ABC system) Given QSL, WY Z|X and τ > 0, the

following statements hold.

(1) The sources QSL can be transmitted over the ABC WY Z|X with P
(n)
e → 0 as n → ∞ if

(τHQ(S), τHQ(L|S)) ∈ R(WY Z|X);

(2) Conversely, if the sources QSL can be transmitted over the ABC WY Z|X with an arbi-

trarily small probability of error P
(n)
e as n→ ∞, then (τHQ(S), τHQ(L|S)) ∈ R(WY Z|X)..

Corollary 9.4 Given an arbitrary and finite alphabet T , for any P̃TX ∈ P(T × X ), the

following exponent pair is universally achievable,

EJY (QSL,WY Z|TX , P̃TX , τ)

, min
PSL

[
τD(PSL ‖ QSL) + EY (τHP (S), τHP (L|S),WY |TX , P̃TX)

]
, (9.78)

and

EJZ(QSL,WY Z|TX , P̃TX , τ)

, min
PSL

[
τD(PSL ‖ QSL) + EZ(τHP (S), τHP (L|S),WZ|TX , P̃TX)

]
, (9.79)
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where EY and EZ are defined in (9.10) and (9.11) by setting |U| = 1. Furthermore, given

QSL, WY Z|X , and τ , the system JSCC error exponent satisfies

EJ(QSL,WY Z|X , τ) ≥ min
PSL

[
τD(PSL ‖ QSL) + Er(τHP (S), τHP (L|S),WY Z|X)

]
(9.80)

and

EJ(QSL,WY Z|X , τ) ≤ inf
PSL

[
τD(PSL ‖ QSL) + E(τHP (S), τHP (L|S),WY Z|X)

]
(9.81)

where Er(R1, R2,WY Z|X) is given by Er(R1, R2,WY Z|UX) in (9.38) with |U| = 1, and

E(R1, R2,WY Z|X) is the channel error exponent for the ABC WY Z|X.

9.8 Evaluation of the Bounds for EJ

We established the lower and upper bounds for the JSCC error exponent of the asymmetric

2-user JSCC system. However, we are not able to simplify these bounds for general 2-user

JSCC systems (not even for general CS-AMAC and CS-ABC systems) into computable

parametric forms as we did for the point-to-point systems [107, 109]. In the following, we

only address a special case of CS-AMAC systems where the channel admits a symmetric

transition probability distribution. We first introduce the parametric forms of functions

Er(R1, R2,WY |UX) and Esp(R1, R2,WY |UX) defined in (9.74) and (9.75), respectively. For

any R1, R2 > 0, rewrite

EY (R1, R2,WY |UX , PUX) = min
{
E(1)
r (R1 +R2,WY |UX , PUX), E(2)

r (R2,WY |UX , PUX)
}

where

E(1)
r (R,WY |UX , PUX) , min

VY |UX

[
D(VY |UX ‖WY |UX |PUX) +

∣∣∣IPUXVY |UX
(U,X;Y ) −R

∣∣∣
+
]

(9.82)

and

E(2)
r (R,WY |UX , PUX) , min

VY |UX

[
D(VY |UX ‖WY |UX |PUX) +

∣∣∣IPUXVY |UX
(X;Y |U) −R

∣∣∣
+
]
.

(9.83)
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Also, rewrite

Esp(R1, R2,WY |UX) = max
PUX

Esp(R1, R2,WY |UX , PUX)

where

Esp(R1, R2,WY |UX , PUX) = min
{
E(1)
sp (R1 +R2,WY |UX , PUX), E(2)

sp (R2,WY |UX , PUX)
}

where

E(1)
sp (R,WY |UX , PUX) , min

VY |UX

(
D(VY |UX ‖WY |UX |PUX) : IPUXVY |UX

(U,X;Y ) ≤ R
)

(9.84)

and

E(2)
sp (R,WY |UX , PUX) , min

VY |UX

(
D(VY |UX ‖WY |UX |PUX) : IPUXVY |UX

(X;Y |U) ≤ R
)
.

(9.85)

Note that E
(1)
r and E

(2)
r (respectively E

(1)
sp and E

(2)
sp ) are the random-coding (respectively

sphere-packing) type exponents expressed in terms of constrained Kullback-Leibler diver-

gences and mutual informations [32]. In fact, it has been shown in [10] that

E(i)
sp (R,WY |UX , PUX) = max

ρ≥0
[Ei(ρ,WY |UX , PUX) − ρR], i = 1, 2,

where

E1(ρ1,WY |UX , PUX) , − log2

∑

y∈Y


 ∑

(u,x)∈U×X

PUX(u, x)WY |UX(y|u, x)
1

1+ρ1




1+ρ1

, (9.86)

and

E2(ρ2,WY |UX , PUX) = − log2

∑

u∈U

PU (u)
∑

y∈Y

(
∑

x∈X

PX|U (x|u)WY |UX(y|u, x)
1

1+ρ2

)1+ρ2

.

(9.87)

Analogous to [32, Lemma 5.4, Corollary 5.4, p. 168], we can prove the following results;

some of them have been proved in [10].

Lemma 9.1 Let i = 1, 2. E
(i)
r (R,WY |UX , PUX) coincides with E

(i)
sp (R,WY |UX , PUX) if

R ≥ R
(i)
cr (WY |UX , PUX) where

R(i)
cr (WY |UX , PUX) =

∂Ei(ρ,WY |UX , PUX)

∂ρ

∣∣∣∣
ρ=1

,
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and is a straight line tangent on E
(i)
sp (R,WY |UX , PUX) with slope −1 if R ≤ R

(i)
cr (WY |UX , PUX),

i.e.

E(i)
r (R,WY |UX , PUX) =





E
(i)
sp (R,WY |UX , PUX),

if R ≥ R
(i)
cr (WY |UX , PUX),

E
(i)
sp

(
R

(i)
cr (WY |UX , PUX),WY |UX , PUX

)

+R
(i)
cr (WY |UX , PUX) −R,

if 0 < R ≤ R
(i)
cr (WY |UX , PUX).

Furthermore, E
(i)
r (R,WY |UX , PUX) has the parametric form

E(i)
r (R,WY |UX , PUX) = max

0≤ρ≤1
[Ei(ρ,WY |UX , PUX) − ρR]

where E1(ρ,WY |UX , PUX) and E2(ρ,WY |UX , PUX) are given in (9.86) and (9.87) respec-

tively.

Therefore, we can write the functions Er in (9.74) and Esp in (9.75) as follows.

Er(R1, R2,WY |UX) = max
PUX

min
i=1,2

max
0≤ρ≤1

[Ei(ρ,WY |UX , PUX) − ρiR̂i] (9.88)

and

Esp(R1, R2,WY |UX) = max
PUX

min
i=1,2

max
ρ≥0

[Ei(ρi,WY |UX , PUX) − ρR̂i] (9.89)

where R̂1 = R1+R2 and R̂2 = R2. Since it is in general hard to find the optimizing solution

PUX for Er and Esp above, we next confine our attention to multiple access channels with

some symmetric distributions.

Definition 9.3 [10] We say that the multiple access channel WY |UX is U -symmetric if

for every u ∈ U the transition matrix WY |UX(·|u, ·) is symmetric in the sense that the

rows (respectively columns) are permutations of each other. An X-symmetric multiple

access channel is defined similarly. We then say that WY |UX is symmetric if it is both

U -symmetric and X-symmetric.

It follows that the multiple access channel with additive noise is symmetric (e.g., see the

example below), where a multiple access channel WY |UX with (modulo B) additive noise
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{PF : F} is described as

Yi = Ui ⊕Xi ⊕ Fi (mod B)

where Yi ∈ Y, Xi ∈ X , Ui ∈ U and Fi ∈ F are the channel’s output, two input and noise

symbols at time i such that Y = U = X = F = {0, 1, 2, ..., B − 1}, and Fi is independent of

Xi and Ui, i = 1, 2, ..., n.

It is shown in [10] that if the multiple access channel WY |UX is U -symmetric, then

the outer maximum of (9.90) and (9.91) is achieved by a joint distribution of the form

PUX(u, x) = PU (u)/|X | for every x and u. It then follows that for the symmetric multiple

access channel, the maximum of (9.90) and (9.91) is achieved by a uniform joint distribution

P ∗
UX(u, x) =

1

|U||X | ,

which is independent of ρ. Substituting P ∗
UX in (9.90) and (9.91) yields

Er(R1, R2,WY |UX) = min
i=1,2

max
0≤ρ≤1

[Ẽi(ρ,WY |UX) − ρR̂i] (9.90)

and

Esp(R1, R2,WY |UX) = min
i=1,2

max
ρ≥0

[Ẽi(ρ,WY |UX) − ρR̂i] (9.91)

where R̂1 = R1 +R2, R̂2 = R2,

Ẽ1(ρ,WY |UX) = (1 + ρ) log2(|U||X |) − log2

∑

y∈Y


 ∑

(u,x)∈U×X

WY |UX(y|u, x)
1

1+ρ




1+ρ

and

Ẽ2(ρ,WY |UX) = (1 + ρ) log2 |X | + log2 |U| − log2

∑

(u,y)∈U×Y

(
∑

x∈X

WY |UX(y|u, x)
1

1+ρ

)1+ρ

.

We recall the following identities.

min
PSL:HPSL

(S,L)=R
D(PSL‖QSL) = max

ρ≥0
[ρR− Es1(ρ,QSL)] , (9.92)

min
PSL:HPSL

(L|S)=R
D(PSL‖QSL) = max

ρ≥0
[ρR− Es2(ρ,QSL)] , (9.93)

where

Es1(ρ,QSL) = (1 + ρ) log2

∑

(s,l)∈S×L

QSL(s, l)
1

1+ρ
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and

Es2(ρ,QSL) = (1 + ρ)
∑

s∈S

QS(s) log2

∑

l∈L

QL|S(l|s)
1

1+ρ .

Note that Es1(ρ,QSL) and Es2(ρ,QSL) are both concave in ρ. Clearly, if the marginal

distribution QS(s) is uniform, then (9.92) and (9.93) are equal. Using (9.90) we now can

write (9.72) as

min
PSL

[
τD(PSL ‖ QSL) + Er(τHP (S), τHPSL

(L|S),WY |UX)
]

= min

{
min
PSL

[
τD(PSL ‖ QSL) + max

0≤ρ1≤1
[Ẽ1(ρ1,WY |UX) − ρ1τHPSL

(S,L)]

]
,

min
PSL

[
τD(PSL ‖ QSL) + max

0≤ρ2≤1
[Ẽ2(ρ2,WY |UX) − ρ2τHPSL

(L|S)]

]}

= min

{
min
R

[
min

PSL:τHPSL
(S,L)=R

τD(PSL ‖ QSL) + max
0≤ρ1≤1

[Ẽ1(ρ1,WY |UX) − ρ1R]

]
,

min
R

[
min

PSL:τHPSL
(L|S)=R

τD(PSL ‖ QSL) + max
0≤ρ2≤1

[Ẽ2(ρ2,WY |UX) − ρ2R]

]}
(9.94)

and similarly using (9.91) we can write (9.73) as

inf
PSL

[
τD(PSL ‖ QSL) + Esp(τHP (S), τHPSL

(L|S),WY |UX)
]

= min

{
inf
R

[
min

PSL:τHPSL
(S,L)=R

τD(PSL ‖ QSL) + max
ρ1≥0

[Ẽ1(ρ1,WY |UX) − ρ1R]

]
,

inf
R

[
min

PSL:τHPSL
(L|S)=R

τD(PSL ‖ QSL) + max
ρ2≥0

[Ẽ2(ρ2,WY |UX) − ρ2R]

]}
. (9.95)

Consequently, applying Fenchel duality theorem as in the precious chapters and (9.92) and

(9.93), we obtain the following.

Theorem 9.4 Given QSL, WY |UX , and the transmission rate τ , the lower bound of the

JSCC error exponent given in (9.72) and the upper bound given in (9.76) can be equivalently

expressed as

min
i=1,2

max
0≤ρ≤1

[Ẽi(ρ,WY |UX) − τEsi(ρ,QSL)] ≤ EJ(QSL,WY |UX , τ)

≤ min
i=1,2

max
ρ≥0

[Ẽi(ρ,WY |UX) − τEsi(ρ,QSL)].

(9.96)
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Example 9.1 (Binary CS-AMAC System) Now consider binary CS QSL with distri-

bution

QSL(S = 0, L = 0) =
2(1 − q)

3
, QSL(S = 1, L = 0) =

q

2
,

QSL(S = 0, L = 1) =
q

2
, QSL(S = 1, L = 1) =

1 − q

3
,

where 0 < q < 1/2. Then

Es1(ρ,QSL) = (1 + ρ) log2

{[(
2

3

) 1
1+ρ

+

(
1

3

) 1
1+ρ

]
(1 − q)

1
1+ρ + 2

(q
2

) 1
1+ρ

}
,

Es2(ρ,QSL) = (1 + ρ)

(
2(1 − q)

3
+
q

2

)
log2



(

2(1−q)
3

2(1−q)
3 + q

2

) 1
1+ρ

+

(
q
2

2(1−q)
3 + q

2

) 1
1+ρ




+(1 + ρ)

(
1 − q

3
+
q

2

)
log2



(

1−q
3

1−q
3 + q

2

) 1
1+ρ

+

(
q
2

1−q
3 + q

2

) 1
1+ρ


 .

Consider a binary multiple access channel WY |UX with binary additive noise PF (F = 1) = ǫ

(0 < ǫ < 1/2). That is, the transition probabilities are given by

PY |UX(Y = 0|U = 0,X = 0) = 1 − ǫ, PY |UX(Y = 1|U = 0,X = 0) = ǫ

PY |UX(Y = 0|U = 0,X = 1) = ǫ, PY |UX(Y = 1|U = 0,X = 1) = 1 − ǫ

PY |UX(Y = 0|U = 1,X = 0) = ǫ, PY |UX(Y = 1|U = 1,X = 0) = 1 − ǫ

PY |UX(Y = 0|U = 1,X = 1) = 1 − ǫ, PY |UX(Y = 1|U = 1,X = 1) = ǫ.

It follows that

Ẽ1(ρ,WY |UX) = Ẽ2(ρ,WY |UX) = ρ log2 2 − (1 + ρ) log2

(
ǫ

1
1+ρ + (1 − ǫ)

1
1+ρ

)
.

In Fig. 9.5, we plot the lower and upper bounds for the JSCC error exponent EJ for

different (q, ǫ) pairs with transmission rate t = 0.25 and 0.35. As illustrated, the upper and

lower bounds coincide (this can also be proved by checking that the two outer minimums

in (9.96) are achieved by the same i and that the inner maximum in the upper bound is

achieved by ρ ≤ 1) for many (q, ǫ) pairs (e.g., when τ = 0.25, q = 0.1, ǫ ≥ 0.0205 and when

τ = 0.35, q = 0.1, ǫ ≥ 0.0056), and hence exactly determine the exponent.
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Figure 9.5: The lower bound (solid line) and the upper bound (dash line) for the system

JSCC error exponent for transmitting binary CS over the binary AMAC with binary additive

noise in Example 9.1.

9.9 Conclusion

In this chapter, we studied the exponential behavior of the probabilities of error for trans-

mitting correlated sources over asymmetric 2-user channels by JSCC. We first established

universally achievable error exponent pairs for the two receivers by using the joint type-

packing lemma and generalized mutual information decoders. We also defined the system

JSCC error exponent and derived lower and upper bounds for the exponent. By definition,

when the system JSCC error exponent is positive, the sources can be reliably transmitted

over the channel. Thus by examining the positivity of the lower bound for the exponent we

obtained the forward part for the JSCC theorem. We also proved the converse part by Fano’s

inequality and hence we established the JSCC theorem for the asymmetric multi-terminal

scenario. It is demonstrated that the condition can actually be achieved by a tandem cod-
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ing scheme, which combines separate source and channel coding. This means that tandem

coding does not lose optimality from the point of view of reliable transmissibility.

We next specialized our results to CS-AMAC systems and CS-ABC systems. We analyt-

ically computed the system JSCC error exponent for the CS-AMAC case when the channel

admits a symmetric distribution. Numerical examples showed that our bounds are tight,

hence exactly determining the exponent, for a large range of source-channel parameters.



Chapter 10

When is JSCC Worthwhile: JSCC

vs Tandem Coding Reliability

Functions

So far we have obtained computable lower and upper bounds for the JSCC reliability func-

tion (error exponent/excess distortion exponent) for different single-user communication

systems and the asymmetric 2-user system. In this chapter, we employ these results to pro-

vide a systematic comparison of the JSCC reliability function and the corresponding tandem

coding reliability function with the same transmission rate. As can be shown, JSCC re-

liability function is at least as large as the tandem coding reliability function; however,

we are particularly interested in investigating the situation where a strict inequality holds.

Indeed, this inequality, when it holds, provides a theoretical underpinning and justification

for JSCC design as opposed to the widely used tandem approach, since the former method

will yield a faster exponential rate of decay for the error probability, which may translate

into substantial reductions in complexity and delay for real-world communication systems.

In Section 10.1, we derive a formula for the (lossless) tandem coding error exponent

ET for discrete systems (consisting of an arbitrary discrete source and an arbitrary discrete

channel). The exponent is conceptually represented in terms of the discrete source and

255
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channel error exponents and is in general not computable, as the channel error exponent

is not fully known even for DMCs. However, for discrete memoryless systems and SEM

systems, we can obtain upper and lower bounds for the tandem error exponent by replacing

the channel error exponent by its upper and lower bounds.

We then address the comparison of the JSCC error exponent EJ with the tandem coding

error exponent ET for discrete memoryless systems in Section 10.2. We first show that EJ

can at most double ET , and then we establish sufficient (computable) conditions for which

EJ > ET for any given source-channel pair (QS ,WY |X), which are satisfied for a large class

of memoryless source-channel pairs. As an application, we estimate the power savings of

JSCC over tandem coding for transmitting binary DMS over binary-input quantized-output

additive white Gaussian noise and memoryless Rayleigh-fading channels; it turns out that

the advantage of JSCC in terms of the reliability function translates into more than 2 dB

power gain for those systems. The comparison of EJ and ET for SEM systems (which

consist of an SEM source and an SEM channel) is provided in Section 10.3. As in the

preceding section, we prove that EJ ≤ 2ET and establish sufficient (computable) conditions

for which EJ > ET . We observe via numerical examples that such conditions are satisfied

by a wide class of SEM source-channel pairs.

It is seen in Section 10.4 that our formula for the tandem error exponent remains valid

for a discrete memoryless system involving channel output feedback and source SI. For

systems with feedback, we show that ET,fb ≤ EJ,fb ≤ 2ET,fb; for systems with source SI

at the decoder, we also prove that ESIDT ≤ ESIDJ . Additionally, we provide numerical

examples to show that the JSCC error exponent is superior to the corresponding tandem

coding error exponent in most cases.

In Section 10.5, we compare the JSCC excess distortion exponent with the tandem cod-

ing excess distortion exponent for Gaussian systems. For an MGS and an MGC, the tandem

coding excess exponent results from separately performing and concatenating optimal lossy

Gaussian source coding and channel coding for MGC. We derive a formula for the tandem

coding excess distortion exponent for the case when SDR ≥ 4 (≈ 6dB) (i.e., when the

distortion threshold is less than 1/4 of the source variance). The exponent admits a similar
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form as the discrete tandem error exponent in terms of the MGS exponent and the MGC

exponent. We next numerically compare the lower bound of the JSCC exponent with the

upper bound of the tandem exponent and observe that the JSCC exponent can be strictly

superior to the tandem exponent for many SNR-SDR pairs.

We next address the tandem coding error exponent for asymmetric 2-user systems in

Section 10.6. As for the point-to-point systems, we derive a conceptual formula for the

tandem coding error exponent in terms of the corresponding 2-user source error exponent

and the asymmetric 2-user channel error exponent. By numerically comparing the lower

bound of the JSCC error exponent and the upper bound of the tandem coding error ex-

ponent, we illustrate that, JSCC can considerably outperform tandem coding in terms of

error exponent for a large class of binary CS-AMAC systems with additive noise. Finally a

conclusion is given in Section 10.7.

10.1 Tandem Error Exponent for Discrete Systems

Our aim in this section is to derive a formula for the tandem coding error exponent for

a general discrete system (with memory) consisting of a discrete source QS = {QSτn ∈

P(Sτn)}∞τn=1 and a discrete channel WY|X = {WY n|Xn ∈ P(Yn|X n)}∞n=1.

Conceptually and essentially, a tandem code (f∗n, ϕ
∗
n) , (fsn, fcn, ϕcn, ϕsn) is composed

of two “separately” designed codes: a (τn,Mn) block source code (fsn, ϕsn) with source

code rate1

Rs,n ,
log2Mn

τn
source code bits/source symbol,

and an (n,Mn) block channel code (fcn, ϕcn) with channel code rate

Rc,n ,
log2Mn

n
source code bits/channel use,

assuming that the limit limn→∞ logMn/n exists, i.e.,

lim sup
n→∞

logMn

n
= lim inf

n→∞

logMn

n
.

1Since in the tandem system k = τn and τ is a constant, to simplify our notation, we denote the source

rate by Rs,n instead of Rs,k or Rs,τn.
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Here “separately” means that the source code is designed without the knowledge of the

channel statistics, and the channel code is designed without the knowledge of the source

statistics. However, as long as the source encoder is directly concatenated by a channel

encoder, the source statistics would be automatically brought into the channel coding stage.

Thus common randomization is also needed to decouple source and channel coding (e.g.,

[51]). Specifically, we assume that the source coding index i = fsn(s) is mapped to a channel

index through a permutation mapping πm : {1, 2, ...,Mn} → {1, 2, ...,Mn}, commonly called

an index assignment (πm is assumed to be known at both the transmitter and the receiver;

see Fig. 10.1). Furthermore, the choice of πm is assumed random and equally likely from

all the Mn! different possible index assignments, so that the indices fed into the channel

encoder have a uniform distribution, i.e.,

Pr(πm[fsn(S
τn)] = l) =

Mn∑

i=1

Pr(fsn(S
τn) = i)Pr(πm(i) = l|fsn(Sτn) = i)

=

Mn∑

i=1

Pr(fsn(S
τn) = i)

(Mn − 1)!

Mn!

=
1

Mn
(10.1)

for any l ∈ {1, 2, ...,Mn}. Hence common randomization achieves statistical separation

between the source and channel coding operations in the sense that the channel coding error

probability is not a function of the source statistics and the source coding error probability

is not a function of the channel statistics when no channel decoding error occurs.

In what follows we need to make another assumption regarding the source code in order

to analyze the probability of error. Let the source codebook be C = {c1, ..., cMn} ⊆ Sτn. We

assume that (A1) the source code satisfies the condition (for every n): QSτn(f−1
sn (i)) > 0 and

ci ∈ f−1
sn (i) for every i = 1, 2, ...,Mn, where f−1

sn (i) , {s ∈ Sτn : fsn(s) = i}; see Fig. 10.2.

Clearly, the assumption has practical meaning. If QSτn(f−1
sn (i)) = 0 for some i, then the

codeword ci is redundant, and we can remove it from the codebook C. If ci /∈ f−1
sn (i), we

can map the index i to some source message ŝ such that QSτn (̂s) > 0 and fsn(̂s) = i, so
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Figure 10.1: Tandem coding system for discrete sources and discrete channels.

that the source coding probability of error

P (τn)
es (QS, Rs,n) =

∑

s:ϕsn(fsn(s))6=s

QSτn(s) (10.2)

is strictly reduced by setting ŝ as the codeword ci. We remark that the source code satisfying

(A1) does not lose optimality (in the sense of achieving the source error exponent).

By introducing the uniform index assignment assumption and (A1), the error probability

of the tandem code (f∗n, ϕ
∗
n) is given by

P
(n)
e∗ (QS,WY|X, τ)

, Pr
(
ϕsn

[
π−1
m (ϕcn(Y

n))
]
6= Sτn

)

=

Mn∑

l=1

Pr(πm[fsn(S
τn)] = l)︸ ︷︷ ︸

=1/Mn

[
Pr (ϕcn(Y

n) 6= l|πm[fsn(S
τn)] = l) +

Pr
(
{ϕcn(Y n) = l} ∩ {ϕsn[π−1

m (l))] 6= Sτn}
∣∣ πm[fsn(S

τn)] = l
)]

(10.3)

=

Mn∑

l=1

1

Mn
Pr (ϕcn(Y

n) 6= l|l is sent)

+Pr (ϕsn(fsn(S
τn)) 6= Sτn)

Mn∑

l=1

1

Mn
Pr (ϕcn(Y

n) = l|l is sent) (10.4)

= P (n)
ec (WY|X, Rc,n) + (1 − P (n)

ec (WY|X, Rc,n))P
(τn)
es (QS, Rs,n), (10.5)
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sn (i)) > 0 and ci ∈ f−1
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where (10.3) follows from the assumption (A1), which implies that a channel decoding error

must cause an overall system decoding error, and in (10.5)

P (n)
ec (WY|X, Rc,n) =

1

Mn

Mn∑

l=1

∑

y:ϕcn(y)6=l

WY n|Xn (y|fcn(l)) (10.6)

is the probability of error for channel coding, and P
(τn)
es (QS, Rs,n) is the probability of error

for source coding given by (10.2).

Definition 10.1 The tandem coding error exponent ET (QS,WY|X, τ) for source QS and

channel WY|X is defined as the supremum of the set of all numbers Ê for which there exists

a sequence of tandem codes (f∗n, ϕ
∗
n) satisfying (A1) with transmission rate τ such that

Ê ≤ lim inf
n→∞

− 1

n
log2 P

(n)
e∗ (QS,WY|X, τ).

When there is no possibility of confusion, ET (QS,WY|X, τ) will often be written as ET .

Proposition 10.1 EJ(QS,WY|X, τ) ≥ ET (QS,WY|X, τ).

Proof: For any sequence of tandem codes {(f∗n, ϕ∗
n)}∞n=1 composed of a sequence of source

codes {(fsn, ϕsn)}∞n=1 and a sequence of channel codes {(fcn, ϕcn)}∞n=1, we have

P
(n)
e∗ (QS,WY|X, τ) =

Mn!∑

m=1

1

Mn!
Pr
(
ϕsn

[
π−1
m (ϕcn(Y

n))
]
6= Sτn|πm is fixed

)

≥ min
1≤m≤Mn!

Pr
(
ϕsn

[
π−1
m (ϕcn(Y

n))
]
6= Sτn|πm is fixed

)
.

Let the above minimum be achieved by m∗ = m∗(n), then there exists a sequence of JSC

codes {(fn, ϕn)}∞n=1 with fn = fcn ◦ πm∗ ◦ fsn and ϕn = ϕsn ◦ π−1
m∗ ◦ ϕcn such that

P
(n)
e∗ (QS,WY|X, τ) ≥ P (n)

e (QS,WY|X, τ) for any n ≥ 1,

where “◦” denotes composition and P
(n)
e (QS,WY|X, τ) is the probability of error induced

by the JSC codes {(fn, ϕn)}. Since this holds for any sequence of tandem codes (satisfying

(A1)), it then follows from the definition of joint and tandem exponents that EJ ≥ ET . �
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Theorem 10.1 For a discrete source-channel pair (QS,WY|X) and transmission rate τ ,

ET (QS,WY|X, τ) = sup
R>0

min

{
τe

(
R

τ
,QS

)
, E(R,WY|X)

}

where e(R,QS) is the source error exponent defined in Def. 7.2 and E(R,WY|X) is the

channel error exponent defined in Def. 7.3.

Remark 10.1 Note that the formula for the tandem error exponent has been simply men-

tioned by Csiszár [30] without stating any assumptions (i.e., common randomization, As-

sumption (A1)) for the tandem system.

Proof:

Forward Part: We show that there exists a sequence of tandem codes

(f∗n, ϕ
∗
n) = (fsn, fcn, ϕcn, ϕsn)

satisfying (A1) with rate τ such that

lim inf
n→∞

− 1

n
log2 P

(n)
e∗ (QS,WY|X, τ) > sup

R>0
min

{
τe

(
R

τ
,QS

)
, E(R,WY|X)

}
− δ

for any δ > 0. It follows from (10.5) that

P
(n)
e∗ (QS,WY|X, τ) ≤ 2max{P (τn)

es (QS, Rs,n), P
(n)
ec (WY|X, Rc,n)},

or equivalently,

lim inf
n→∞

− 1

n
log2 P

(n)
e∗ (QS,WY|X, τ) ≥ min

{
lim inf
n→∞

− 1

n
log2 P

(τn)
es (QS, Rs,n),

lim inf
n→∞

− 1

n
log2 P

(n)
ec (WY|X, Rc,n)

}
.

Now fix R > 0 and δ > 0. According to the definition of the source error exponent, there

exists a sequence of (τn, M̃n) source codes (f̃sn, ϕ̃sn) satisfying (A1) (since (A1) does not

lose optimality) such that

lim inf
n→∞

− 1

τn
log2 Pr

(
ϕ̃sn

[
f̃sn(S

τn)
]
6= Sτn

)
> e(R,QS) − δ and lim sup

n→∞

log2 M̃n

τn
≤ R.
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Since a source code with a codebook size larger than M̃n would have a smaller probability of

error, there must exist a sequence of (τn, ⌈2τnR⌉) source codes (fsn, ϕsn) (satisfying (A1))

such that

lim inf
n→∞

− 1

τn
Pr (ϕsn [fsn(S

τn)] 6= Sτn) > e(R,QS) − δ.

Similarly, for given τR, the definition of channel error exponent asserts that there exists a

sequence of (n, M̂n) channel codes (f̂cn, ϕ̂cn) such that

lim inf
n→∞

− 1

n
log2 Pr (ϕ̂cn(Y

n) 6= L) > E(τR,WY|X) − δ and lim inf
n→∞

log2 M̂n

n
≥ τR.

Since a channel code with a codebook size smaller than M̂n would have a smaller probability

of error, there must exist a sequence of (n, ⌈2τnR⌉) channel codes (fcn, ϕcn) such that

lim inf
n→∞

− 1

n
log2 Pr (ϕcn(Y

n) 6= L) > E(τR,WY|X) − δ.

Therefore, there exists a sequence of tandem codes, composed by a sequence of (τn, ⌈2τnR⌉)

source codes, and a sequence of (n, ⌈2τnR⌉) channel codes (with the same Mn = ⌈2τnR⌉),

such that

lim inf
n→∞

− 1

n
log2 P

(n)
e∗ (QS,WY|X, τ) > min

{
τe(R,QS), E(τR,WY|X)

}
− δ.

Finally, since R and δ are arbitrary, we can take the supremum over R > 0, completing the

proof of the forward part.

Converse Part: We show that for any sequence of tandem codes (f∗n, ϕ
∗
n) with rate τ

composed by source codes (fsn, ϕsn) and channel codes (fcn, ϕcn) satisfying assumption

(A1),

lim inf
n→∞

− 1

n
log2 P

(n)
e∗ (QS,WY|X, τ) ≤ sup

R>0
min

{
τe

(
R

τ
,QS

)
, E(R,WY|X)

}
. (10.7)

Consider the tandem code sequence (f∗n, ϕ
∗
n) of rate τ composed by a (τn,Mn) block

source code (fsn, ϕsn) (with rate Rs,n) and an (n,Mn) block channel code (fcn, ϕcn) (with

rate Rc,n = τRs,n).
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We first assume that lim supn→∞− 1
n log2(1 − P

(n)
ec (WY|X, Rc,n)) ≥ δ for some positive

δ independent of n, which implies that there exists a sequence n0 ≤ n1 ≤ n2 ≤ · · · ≤ ∞

such that

lim
i→∞

P (ni)
ec (WY|X, Rc,ni

) ≥ 1 − lim
i→∞

2−niδ = 1

In this trivial case,

lim inf
n→∞

− 1

n
log2 P

(n)
e∗ (QS,WY|X, τ) ≤ lim inf

n→∞
− 1

n
log2 P

(n)
ec (WY|X, Rc,n)

≤ lim
i→∞

− 1

ni
log2 P

(ni)
ec (WY|X, Rc,ni

)

= 0

and (10.7) holds. Next we assume that lim supn→∞− 1
n log2(1 − P

(n)
ec (WY|X, Rc,n)) = 0. It

then follows from (10.5) that

lim inf
n→∞

− 1

n
log2 P

(n)
e∗ (QS,WY|X, τ)

≤ lim inf
n→∞

− 1

n
log2

[
(1 − P (n)

ec (WY|X, Rc,n))P
(τn)
es (QS, Rs,n)

]

≤ lim inf
n→∞

− 1

n
log2 P

(τn)
es (QS, Rs,n) (10.8)

and

lim inf
n→∞

− 1

n
log2 P

(n)
e∗ (QS,WY|X, τ) ≤ lim inf

n→∞
− 1

n
log2 P

(n)
ec (WY|X, Rc,n). (10.9)

Let

R = lim
n→∞

Rs,n = lim
n→∞

log2Mn

τn
.

By definition, the source error exponent e(R,QS) is the largest (supremum) number e such

that there exists a sequence of (τn, M̃n) source codes (f̃sn, ϕ̃sn) satisfying

lim inf
n→∞

− 1

τn
log2 Pr

(
ϕ̃sn

[
f̃sn(S

τn)
]
6= Sτn

)
≥ e and lim sup

n→∞

log2 M̃n

τn
≤ R.

This means that

lim inf
n→∞

− 1

τn
log2 Pr

(
ϕ̃sn

[
f̃sn(S

τn)
]
6= Sτn

)
≤ e(R,QS)

holds for all the codes (f̃sn, ϕ̃sn) with lim supn→∞
log2

fMn

τn ≤ R, and hence holds for the

sequence of (τn,Mn) block codes satisfying (A1).
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Similarly, note that

τR = lim
n→∞

Rc,n = lim
n→∞

log2Mn

n
.

By the definition of the channel error exponent,

lim inf
n→∞

− 1

n
log2 Pr (ϕcn(Y

n) 6= L) ≤ E(τR,WY|X)

holds for all the (n, M̂n) block channel codes (f̂cn, ϕ̂cn) with lim infn→∞
log2

cMn

n ≥ τR, and

of course holds for the sequence of (n,Mn) block codes.

Putting things together, (10.8) and (10.9) yield

lim inf
n→∞

− 1

n
log2 P

(n)
e∗ (QS,WY|X, τ) ≤ min{τe(R,QS), E(τR,WY|X)},

holds for all the (τn,Mn) block source codes satisfying (A1) and all the (n,Mn) block

channel codes with limn→∞
log2Mn

τn = R. Since the above is satisfied for any sequence of

Mn > 0 and hence for all R > 0, we take the supremum of R > 0 and obtain (10.7). �

10.2 Discrete Memoryless Systems

In this section, we assume that the source is a DMS, i.e., QS = Q
(τn)
S , and that the channel

is a DMC, i.e., WY|X = W
(n)
Y |X . We hence have the following corollary.

Corollary 10.1 Let τHQS
(S) < C(WY |X) and let τ log2 |S| > R∞(WY |X). Then

ETr(QS ,WY |X , τ) ≤ ET (QS ,WY |X , τ)

= sup
τHQS

(S)≤R≤C(WY |X)
min

{
τe

(
R

τ
,QS

)
, E(R,WY |X)

}
(10.10)

≤ ETsp(QS ,WY |X , τ), (10.11)

where

ETr(QS ,WY |X , τ) , sup
τHQS

(S)≤R≤C(WY |X)
min

{
τe

(
R

τ
,QS

)
, Er(R,WY |X)

}
(10.12)

and

ETsp(QS ,WY |X , τ) , sup
τHQS

(S)≤R≤C(WY |X)
min

{
τe

(
R

τ
,QS

)
, Esp(R,WY |X)

}
(10.13)
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Remark 10.2 If τHQS
(S) ≥ C(WY |X), ET (QS ,WY |X , τ) = 0.

Note that

sup
R≤τ log2 |S|

τe

(
R

τ
,QS

)
= τe(log2 |S|, QS) = −τ log2(|S|QS(s)),

where QS(s) is the geometric mean of the source probabilities, i.e.

QS(s) ,

(
∏

s∈S

QS(s)

)1/|S|

≤ 1/|S|.

If −τ log2(|S|QS(s)) ≥ E(τ log2 |S|,WY |X), then the graphs of τe(R/τ,QS) and E(R,WY |X)

must have exactly one intersection Ro and by (10.10)

ET (QS ,W, τ) = τe

(
Ro
τ
,QS

)
= E(Ro,WY |X), (10.14)

since τe(R/τ,QS) is strictly increasing in R ∈ [τHQS
(S), τ log2 |S|] and E(R,WY |X) is non-

increasing in R. If −τ log2(|S|QS(s)) < E(τ log2 |S|,WY |X), then there is no intersection

between τe(R/τ,QS) and E(R,WY |X). Recall (2.5) that τe(R/τ,QS) is infinite in the open

interval (τ log2 |S|,∞). In this case, we have that

ET (QS ,W, τ) = E(τ log2 |S|,WY |X) (10.15)

by (10.10). Without loss of generality, we denote

Ro ,





the rate satisfying τe(Ro

τ , QS) = E(Ro,WY |X)

if −τ log2(|S|QS(s)) ≥ E(τ log2 |S|,WY |X),

τ log2 |S|

if −τ log2(|S|QS(s)) < E(τ log2 |S|,WY |X),

(10.16)

so that we can always write that ET (QS ,W, τ) = E(Ro,WY |X).

10.2.1 EJ Can At Most Double ET

When the DMS is uniform, the optimal source coding operation reduces to the trivial

enumerating (identity) function with M = |S|τn as the source is incompressible. Hence

only channel coding is performed in both JSCC and tandem coding and EJ(QS ,WY |X , τ) =



10.2. Discrete Memoryless Systems 267

ET (QS ,WY |X , τ) = E(τ log2 |S|,WY |X). Thus, our comparison of the two exponents is

nontrivial only if the source is nonuniform and τHQS
(S) < C(WY |X). Even though we

know that EJ is never worse than ET , the following theorem gives a limit on how much EJ

can outperform ET .

Theorem 10.2 JSCC exponent can at most be equal to double the tandem coding exponent,

i.e.,

EJ(QS ,WY |X , τ) ≤ 2ET (QS ,WY |X , τ),

with equality if τR
(s)
cr (QS) ≥ Rcr(WY |X) and Tsp(ρ

∗,W ) = τEs(ρ
∗, QS) + 2τD(Q

(ρ∗)
S ‖ QS).

Remark 10.3 Equivalently, this upper bound also implies that EJ can at most exceed ET

by EJ/2, i.e.,

EJ(QS ,WY |X , τ) − ET (QS ,WY |X , τ) ≤
1

2
EJ(QS ,WY |X , τ). (10.17)

Proof of Theorem 10.2: We first refer to the upper bound of EJ(QS ,WY |X , τ) given by

(5.4)

EJ(QS ,WY |X , τ) ≤ min
τHQS

(S)≤R≤τ log2 |S|

[
τe

(
R

τ
,QS

)
+ E(R,WY |X)

]
, (10.18)

where τe(R/τ,QS) is the source error exponent, which is strictly convex and increasing in

[τHQS
(S), τ log2 |S|], and E(R,WY |X) is the channel error exponent, which is a positive and

non-increasing in [0, C(WY |X)). Unlike the source exponent, the behavior of E(R,WY |X)

is unknown for R < Rcr(WY |X). Let C0 be the zero-error capacity of the channel W , i.e.,

E(R,WY |X) = ∞ if and only if R < C0 [42]. If C0 > τ log2 |S|, obviously, we have

EJ(QS ,WY |X , τ) = ET (QS ,WY |X , τ) = +∞.
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If C0 ≤ τ log2 |S|, the upper bound in (10.18) is finite and the minimum must be achieved

by some rate, say Rm, in the interval [C0, τ log2 |S|]. Then

EJ(QS ,WY |X , τ)
(a)

≤ τe

(
Rm
τ
,QS

)
+ E(Rm,WY |X)

(b)

≤ τe

(
Ro
τ
,QS

)
+ E(Ro,WY |X)

(c)

≤ 2E(Ro,WY |X)

= 2ET (QS ,WY |X , τ).

Here, (a) holds with equality if our computable upper and lower bounds, EJsp and EJr,

are equal. To ensure this, we need the condition τR
(s)
cr (QS) ≥ Rcr(WY |X) by Theorem 5.2.

(b) holds with equality if Rm = Ro by definition of Rm. (c) holds with equality if and

only if there is an intersection between τe(R/τ,QS) and E(R,WY |X), i.e., τe(Ro/τ,QS) =

E(Ro,WY |X). Now taking these considerations together, and applying Theorem 5.2 again,

we conclude that EJ = 2ET if τR
(s)
cr (QS) ≥ Rcr(WY |X) and Tsp(ρ

∗,W ) − τEs(ρ
∗, QS) =

2τe(Rm/τ,QS) = 2τD(Q
(ρ∗)
S ‖ QS). �

Observation 10.1 The condition for the equality states that, if the minimum in the expres-

sion of EJr given in (5.5) is attained at the intersection of τe(Rτ ,WY |X) and Er(R,WY |X)

which is no less than the critical rate of the channel, then the JSCC exponent is twice as

large as the tandem coding exponent. In that case, the rate of decay of the error probability

for the JSCC system is double that for the tandem coding system. In other words, for the

same probability of error Pe, the delay of (optimal) JSCC is approximately half of the delay

of (optimal) tandem coding,

Pe ≈ 2−nET (QS ,WY |X ,τ) = 2−
n
2
EJ (QS ,WY |X ,τ) for n sufficiently large.
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10.2.2 Sufficient Conditions for which EJ > ET

In the following we will use our previous results to derive computable sufficient conditions

for which EJ > ET . We first define

γ ,





the root of τH(Q
(γ)
S ) = Rcr(WY |X) if τHQS

(S) ≤ Rcr(WY |X) ≤ τ log2 |S|,

0 if τHQS
(S) > Rcr(WY |X).

(10.19)

such that the source error exponent τe(R/τ,QS) has a parametric expression at Rcr(WY |X)

τe

(
Rcr(WY |X)

τ
,QS

)
= τD(Q

(γ)
S ‖ QS). (10.20)

Note that γ is well defined only if Rcr(WY |X) ≤ τ log2 |S|. Denote

T (ρ∗) , Tsp(ρ
∗,WY |X) − τEs(ρ

∗, QS). (10.21)

Theorem 10.3 Let Rcr(WY |X) ≤ τ log2 |S|. If

max
{
τR(s)

cr (QS), Eo(1,WY |X) − τD(Q
(γ)
S ‖ QS)

}
≥ Rcr(WY |X), (10.22)

then

EJ(QS ,WY |X , τ) > ET (QS ,WY |X , τ).

More precisely, we have the following bounds.

(a) If min
{
τR

(s)
cr (QS), Eo(1,WY |X) − τD(Q

(γ)
S ‖ QS)

}
≥ Rcr(WY |X), then

EJ(QS ,WY |X , τ) −ET (QS ,WY |X , τ) ≥
1

2
T (ρ∗) −

∣∣∣∣
1

2
T (ρ∗) − τD(Q

(ρ∗)
S ‖ QS)

∣∣∣∣ ≥ 0,

(10.23)

where the two equalities in (10.23) cannot hold simultaneously.

(b) If τR
(s)
cr (QS) ≥ Rcr(WY |X) > Eo(1,WY |X) − τD(Q

(γ)
S ‖ QS), then

EJ(QS ,WY |X , τ) − ET (QS ,WY |X , τ) > T (ρ∗) − τD(Q
(γ)
S ‖ QS) ≥ 0. (10.24)

(c) If Eo(1,WY |X) − τD(Q
(γ)
S ‖ QS) ≥ Rcr(WY |X) > τR

(s)
cr (QS), then

EJ(QS ,WY |X , τ) − ET (QS ,WY |X , τ) ≥ Rcr(WY |X) − τEs(1, QS) > 0. (10.25)



10.2. Discrete Memoryless Systems 270

Proof : We shall show that, in each of the three cases, (a), (b), and (c), we have EJ > ET .

(a). Assume τR
(s)
cr (QS) ≥ Rcr(WY |X) and Eo(1,WY |X)− τD(Q

(γ)
S ‖ QS) ≥ Rcr(WY |X). By

definition of γ, we have τD(Q
(γ)
S ‖ QS) = τe(Rcr(WY |X)/τ,QS), see (2.5) and (10.20). Thus,

the latter condition is equivalent to E(Rcr(WY |X),WY |X) ≥ τe(Rcr(WY |X)/τ,QS) and by

(2.33) and the related discussion it guarantees that Ro ≥ Rcr(WY |X), where Ro is defined

in (10.16). According to Theorem 5.2, when τR
(s)
cr (QS) ≥ Rcr(WY |X), EJsp(QS ,WY |X , τ)

is attained by Rm ≥ Rcr(WY |X) and EJ is determined by

EJ(QS ,WY |X , τ) = τe

(
Rm
τ
,QS

)
+ Esp(Rm,WY |X).

Since Ro ≥ Rcr(WY |X), ET is determined by Esp(Ro,WY |X). If Ro 6= Rm, we must have

ET (QS ,WY |X , τ) < max

{
τe

(
Rm
τ
,QS

)
, Esp(Rm,WY |X)

}
,

because τe(R/τ,QS) is strictly increasing and Esp(R,WY |X) is strictly decreasing at Rm.

Thus,

EJ(QS ,WY |X , τ)−ET (QS ,WY |X , τ) > min

{
τe

(
Rm
τ
,QS

)
, Er(Rm,WY |X)

}
≥ 0, (10.26)

where equality holds if Rm = C(WY |X). If Ro = Rm, then immediately,

EJ(QS ,WY |X , τ) − ET (QS ,WY |X , τ) = τe

(
Rm
τ
,QS

)
= τD(Q

(ρ∗)
S ‖ QS), (10.27)

where the above is positive since ρ∗ > 0 by Lemma 5.2 (1). Note also that in this case

τe(Rm/τ,QS) = Er(Rm,WY |X), so (10.26) and (10.27) can be summarized by (10.23).

(b). In this case, we have Rm ≥ Rcr(WY |X) > Ro. We can upper bound ET by

ET (QS ,WY |X , τ) = τe

(
Ro
τ
,QS

)
< τe

(
Rcr(WY |X)

τ
,QS

)
= τD(Q

(γ)
S ‖ QS)

and hence

EJ(QS ,WY |X , τ) − ET (QS ,WY |X , τ) > Tsp(ρ
∗,W ) − τEs(ρ

∗, QS) − τD(Q
(γ)
S ‖ QS).
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The above lower bound must be nonnegative since

Tsp(ρ
∗,W ) − τEs(ρ

∗, QS) − τD(Q
(γ)
S ‖ QS)

= Er(Rm,WY |X) + τ

[
e

(
Rm
τ
,QS

)
− e

(
Rcr(WY |X)

τ
,QS

)]

≥ Er(Rm,WY |X)

≥ 0,

and it is equal to 0 if Rcr(WY |X) = Rm = C(WY |X).

(c). In this case, we have Ro ≥ Rcr(WY |X) > Rm and from (5.17) EJ is bounded by

EJ(QS ,WY |X , τ) ≥ E0(1,WY |X) − τEs(1, QS).

On the other hand, by the monotonicity of Er(R,WY |X), we can upper bound ET by

ET (QS ,WY |X , τ) = Er(Ro,WY |X) ≤ Er(Rcr(WY |X),WY |X) = E0(1,WY |X) −Rcr(WY |X).

Thus we obtain

EJ(QS ,WY |X , τ) − ET (QS ,WY |X , τ) ≥ Rcr(WY |X) − τEs(1, QS).

The above is positive since

E0(1,WY |X) − τEs(1, QS) = τe

(
Rm
τ
,QS

)
+ Er(Rm,WY |X)

> Er(Rm,WY |X)

> Er(Rcr(WY |X),WY |X)

= E0(1,WY |X) −Rcr(WY |X),

where the first inequality follows from the fact that Rm > τHQS
(S) by Lemma 5.2 and

Corollary 5.1.

�

As pointed out in the proof, the condition τR
(s)
cr (QS) ≥ Rcr(WY |X) means that the

JSCC exponent EJ is achieved at a rate no less than Rcr(WY |X). The second condition,
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Eo(1,WY |X)− τD(Q
(γ)
S ‖ QS) ≥ Rcr(WY |X) means that the tandem coding exponent ET is

achieved at a rate no less than Rcr(WY |X). Hence (10.22) in Theorem 10.3 states that EJ

would be strictly larger than ET if either EJ or ET is determined exactly. Conversely, if the

conditions in Theorem 10.3 are not satisfied, then neither EJ nor ET are exactly known.

Nevertheless, if the lower bound of EJ is strictly larger than the upper bound of ET , then

we must have EJ > ET . Hence we obtain the following sufficient conditions.

Theorem 10.4 Let Eex(0,WY |X) <∞ and let τ log2 |S| ≥ Rcr(WY |X), where Eex(R,WY |X)

is the expurgated channel error exponent. If

E0(1,WY |X) − τEs(1, QS) ≥ ERl
,
k1k2τ log2 |S| + k2τ log2(|S|QS(s)) + k1Eex(0,WY |X)

k1 − k2
,

where

k1 =
D
(
Q

(1)
S ‖ QS

)
+ log2(|S|QS(s))

H
(
Q

(1)
S

)
− log2 |S|

and k2 =
E0(1,WY |X) − Eex(0,WY |X)

Rcr(WY |X)
− 1,

then EJ(QS ,WY |X , τ) > ET (QS ,WY |X , τ).

Proof: We first recall that if −τ log(|S|QS(s)) < E(τ log |S|,WY |X), then there is no

intersection between τe(R/τ,QS) and E(R,WY |X). Clearly, the tandem coding exponent

satisfies

ET (QS ,W, τ) = E(τ log |S|,WY |X)

= Er(τ log |S|,WY |X) (10.28)

< Er(Rm,WY |X) (10.29)

≤ EJ(QS ,W, τ),

Here, (10.28) follows by hypothesis Rcr(WY |X) ≤ τ log |S|. (10.29) holds since Rm must be

a quantity smaller than τ log |S| by Corollary 5.1.

We hence assume that −τ log(|S|QS(s) ≥ E(τ log |S|,WY |X), i.e., we assume that

τe(R/τ,QS) and E(R,WY |X) intersect at rate Ro. If Ro ≥ Rcr(WY |X), which means

Eo(1,WY |X) − Rcr(WY |X) ≥ τe(Rcr(WY |X)/τ,QS), then Theorem 10.3 guarantees that
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EJ > ET . If Rm ≥ Rcr(WY |X), which implies τR
(s)
cr (QS) ≥ Rcr(WY |X) by Corollary 5.2.

This ensures EJ > ET by Theorem 10.3. Furthermore, if Rcr(WY |X) > Rm ≥ Ro, then

EJ(QS ,W, τ) ≥ τe

(
Rm
τ
,QS

)
+ Er(Rm,WY |X)

> τe

(
Rm
τ
,QS

)

≥ τe

(
Ro
τ
,QS

)

= ET (QS ,W, τ).

In the remaining, we assume that τe(R/τ,QS) and E(R,WY |X) intersect at rate Ro and

that Rm < Ro < Rcr.

For a DMC with Eex(0,WY |X) < ∞, we may use the straight-line upper bound for the

channel error exponent Esl(R,WY |X) given by (2.30) such that Esl(R,WY |X) is a straight

line passing (0, Eex(0,WY |X)) in [0, Rl] (Rl ≤ Rcr(WY |X)) and is tangent to the sphere-

packing bound at Rl. So Esl(R,WY |X) is also convex in 0 ≤ R ≤ C(WY |X), and

Esl(0,WY |X) = Eex(0,WY |X).

Now connect (0, Esl(0,WY |X)) and (Rcr(WY |X), Esl(Rcr(WY |X),WY |X)) with a straight

line, denoted by l1, where

Esl(Rcr(WY |X),WY |X) = Er(Rcr(WY |X),WY |X) = E0(1,WY |X) −Rcr(WY |X).

Again, connect (Rm, τe(Rm/τ,QS)) and (τ log |S|, τe(log |S|, QS)) with a straight line, de-

noted by l2, where

τe

(
Rm
τ
,QS

)
= τD(Q

(1)
S ‖ QS),

and

τe(log |S|, QS) = −τ log(|S|QS(s)).

Suppose that the intersection of Esl(R,WY |X) and τe(R/τ,QS) is (R1, τe(R1/τ,QS)), and

that the intersection of l1 and l2 is (Rl, ERl
). By assumption, Ro, the intersection of

τe(R/τ,WY |X) and E(R,WY |X), is strictly larger than Rm and strictly less than Rcr(WY |X);

hence by definition, R1, the intersection of τe(R/τ,WY |X) and Es(R,WY |X), must be
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strictly larger than Rm and strictly less than Rcr(WY |X), i.e., Rm < R1 ≤ Ro < Rcr(WY |X).

Likewise, it is easily seen that Rm < Rl < Rcr(WY |X). Furthermore, because of the convex-

ity of τe(R/τ,QS) and Esl(R,WY |X) in the region [Rm, Rcr(WY |X)], ERl
must be strictly

larger than τe(R1/τ,QS) (as τe(R/τ,WY |X) is strictly convex in this interval). It follows

that

EJ(QS ,W, τ) ≥ E0(1,WY |X) − τEs(1, QS) ≥ ERl

> τe

(
R1

τ
,QS

)
≥ τe

(
Ro
τ
,QS

)
= ET (QS ,W, τ).

�

Theorem 10.5 Let τ log2 |S| ≥ Rcr(WY |X). If E0(1,WY |X)−τEs(1, QS) ≥ τD
(
Q

(γ)
S ‖ QS

)
,

where γ is defined in (10.19), then EJ(QS ,WY |X , τ) > ET (QS ,WY |X , τ).

Proof: As in the previous proof, we only consider the case

−τ log2(|S|QS(s)) ≥ E(τ log2 |S|,WY |X)

and Rm < Ro < Rcr(WY |X). Thus, we can upper bound ET by

ET (QS ,W, τ) = τe

(
Ro
τ
,QS

)

< τe

(
Rcr(WY |X)

τ
,QS

)

= τD
(
Q

(γ)
S ‖ QS)

)

by the strict monotonicity of the source error exponent. On the other hand, Theorem 5.2

gives that

EJ(QS ,W, τ) ≥ E0(1,WY |X) − τEs(1, QS).

By assumption, if E0(1,WY |X) − τEs(1, QS) ≥ τD
(
Q

(γ)
S ‖ QS)

)
, then EJ > ET . �

In Theorems 10.4 and 10.5, we establish the sufficient conditions by comparing the

source-channel random-coding bound derived in Theorem 5.2, with the upper bound of

tandem coding exponent obtained by using the geometric characteristics of e(R,QS) and
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E(R,WY |X). These conditions can be readily computed since it only requires the knowl-

edge of Rcr(WY |X) and Eex(0,WY |X). Note that the condition Eex(0,WY |X) < ∞ in

Theorem 10.4 is satisfied by the DMCs with zero-error capacity equal to 0, see [32, p. 187].

Thus, Theorem 10.4 applies to equidistant channels, in particular, to every channel with

binary input alphabet.

Example 10.1 (When Does the JSCC Exponent Outperform the Tandem Cod-

ing Exponent?) We apply Theorems 10.3, 10.4 and 10.5 to the binary DMS with dis-

tribution {q, 1 − q} and BSC with crossover probability ε, and the binary DMS {q, 1 − q}

and BEC with erasure probability α, under different transmission rates τ . If any one of the

conditions in these theorems holds, then EJ > ET . The above conditions are summarized

by Region F in Fig. 10.3. Indeed, Region F shows that EJ > ET for a wide range of (ε, q) or

(α, q) pairs. Region G consists of the pairs (ε, q) or (α, q) such that τHQS
(S) ≥ C(WY |X);

in this case, EJ = ET = 0. Finally, when (ε, q) or (α, q) falls in Region H, we are not sure

whether EJ is still strictly larger than ET .

Example 10.2 (By How Much Can the JSCC Exponent Be Larger Than the

Tandem Coding Exponent?) In the last example we have seen that EJ > ET holds for

a wide large class of source-channel pairs. Now we evaluate the performance of EJ over ET

by looking at the ratio of the two quantities. Recall that when Theorem 10.3 (a) is satisfied,

both EJ and ET are exactly determined. In this case we can directly compute EJ (using the

results of Section 5.2) and ET (using (10.14) and (10.15)). When EJ (ET , respectively) is not

known, i.e., when τR
(s)
cr (QS) < Rcr(WY |X) (Eo(1,WY |X) − τD(Q

(γ)
S ‖ QS) < Rcr(WY |X),

respectively), we can calculate the lower bound of EJ (the upper bound of ET , respectively)

instead and thus obtain a lower bound of EJ/ET . For general DMCs, we lower bound EJ

by its random-coding lower bound EJr(QS ,WY |X , τ). For equidistant DMCs, particularly

for binary DMCs, when τR
(s)
cr (QS) < Rex(WY |X), we use the expurgated lower bound

Eex(QS ,WY |X , τ); when τR
(s)
cr (QS) ≥ Rex(WY |X), we use the random-coding lower bound

EJr(QS ,WY |X , τ). To calculate the upper bound of ET , when Eo(1,WY |X) − τD(Q
(γ)
S ‖
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Figure 10.3: The regions for binary DMS-BSC (q, ε) pairs and binary DMS-BEC (q, α) pairs

under different transmission rates τ of Example 10.1. In region F (including the boundary

between F and H), EJ > ET > 0; in region G (including the boundary between G and F),

EJ = ET = 0; and in region H, EJ ≥ ET > 0.

QS) < Rcr(WY |X) ≤ R
(s)
cr (QS), or equivalently when Ro < Rcr(WY |X) ≤ Rm, we can bound

ET by

ET (QS ,WY |X , τ) ≤ min
{
τD
(
Q

(γ)
S ‖ QS

)
, Esp(Rs,WY |X)

}
,

where Rs is the intersection of Esp(R,WY |X) and τe(R/τ,QS) if any; otherwise Rs =

τ log2 |S|. When Eo(1,WY |X) − τD(Q
(γ)
S ‖ QS) < Rcr(WY |X) and R

(s)
cr (QS) < Rcr(WY |X),

we bound ET by

ET (QS ,WY |X , τ) ≤ Esp(Rs,WY |X).

Table 10.1 exhibits EJ/ET (or its lower bound, which must be no less than 1) for the binary

DMS {q, 1 − q} and BSC (ε) systems under transmission rates τ = 0.5, 0.75 and 1. It is
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seen that the ratio EJ/ET can be very close to 2 (its upper bound) for many (q, ε) pairs.

For other systems, we have similar results: EJ substantially outperforms ET . For instance,

for binary DMS {q, 1− q} and BEC (α) with τ = 1, we can obtain EJ/ET ≥ 1.4 for a wide

range of (q, α)’s; for ternary DMS and BSC or for DMS and ternary symmetric channel,

if transmission rate τ is chosen suitably (such that τHQS
(S) < C(WY |X)), we can obtain

EJ/ET ≥ 1.5 for many source-channel pairs.

EJ/ET τ = 0.5, q = 0.1 τ = 0.75, q = 0.1 τ = 0.75, q = 0.15 τ = 1, q = 0.05

ε = 0.0005 1.0† 1.60† 1.58† 1.87†

ε = 0.001 1.0† 1.70† 1.68† 1.93†

ε = 0.005 1.36† 1.94† 1.89 1.99

ε = 0.01 1.70† 1.95 1.91 2.0

ε = 0.04 1.85 1.97 1.95 2.0

ε = 0.08 1.91 1.99 1.96 2.0

ε = 0.12 1.95 1.97 2.0 2.0

ε = 0.16 1.96 1.95 N/A 2.0

ε = 0.2 1.86 N/A N/A N/A

Table 10.1: EJ/ET for the binary DMS and BSC pairs of Example 10.2. “N/A” means that

τH(Q) > C such that EJ = ET = 0. “†” means that this quantity is only a lower bound of

EJ/ET .

10.2.3 Power Gain Due to JSCC for DMS over Binary-input AWGN and

Rayleigh-Fading Channels with Finite Output Quantization

It is well known that M -ary modulated additive white Gaussian noise (AWGN) and mem-

oryless Rayleigh-fading channels can be converted to a DMC when finite quantization is

applied at their output. For example, as illustrated in [5], [74], we know that the concate-

nation of a binary phase-shift keying (BPSK) modulated AWGN or Rayleigh-fading channel
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with m-bit soft-decision demodulation is equivalent to a binary-input, 2m-output DMC (cf.

Fig. 10.4). We next study the JSCC and tandem coding exponent for a system involving

such channels to assess the potential benefits of JSCC over tandem coding in terms of power

or channel signal-to-noise ratio (SNR) gains.

Xn - BPSK

Modulator

Un -
AWGN or

Rayleigh-Fading
Channel

-Zn m-bit
Soft-Decision
Demodulator

-Yn

Binary-input 2m-output DMC

Figure 10.4: Binary-input AWGN or Rayleigh-fading channel with finite output quantiza-

tion.

We assume that the BPSK signal Un ∈ {−1,+1} corresponding to the signal input

Xn is of unit energy, and Vn is a zero-mean independent and identically distributed (i.i.d.)

Gaussian random process with variance No/2. The channel SNR is defined by SNR ,

E[U2
n]/E[V 2

n ] = 2/No and the received signal is

Zn = AnUn + Vn, n = 1, 2, ...,

where An is 1 for the AWGN channel (no fading), and for the Rayleigh-fading channel,

{An} is the amplitude fading process assumed to be i.i.d. with pdf

fA(a) =





2ae−a
2
, if a > 0,

0, otherwise,

such that E[A2
n] = 1. We also assume for the Rayleigh-fading channel that An, Un and Vn

are independent of each other, and the values of An are not available at the receiver. At

the receiver, as shown in Fig. 10.4, each Zn ∈ R is demodulated via an m-bit uniform scalar

quantizer with quantization step ∆ to yield Yn ∈ {0, 1}m. If the channel input alphabet is

X = {0, 1} and the channel output alphabet is Y = {0, 1, 2, ..., 2m − 1}, then the transition

probability matrix Π is given by

Π = [πij], i ∈ X , j ∈ Y,
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where

πij , P (Y = j|X = i) = QS

(
(Tj−1 − (2i− 1))

√
SNR

)
−QS

(
(Tj − (2i− 1))

√
SNR

)

for the AWGN channel [74], and

πij , P (Y = j|X = i) = FZ|X(Tj |i) − FZ|X(Tj−1|i)

for the Rayleigh-fading channel [5]. Here FZ|X(z|i) = Pr{Z ≤ z|Z = i} is given by [5], [92]

FZ|X(z|1) = 1 − FZ|X(−z|0)

= 1 −QS

(
z√
No/2

)
− e−(z2/(No+1))

√
No + 1

×
[
1 −QS

(
z√

No(No + 1)/2

)]
,

where QS(x) is the complementary error function

QS(x) =
1√
2π

∫ ∞

x
exp

{
−t2/2

}
dt,

and {Tj} are the thresholds of the receiver’s soft-decision quantizer given by

Tj =





−∞, if j = −1,

(j + 1 − 2m−1)∆, if j = 0, 1, ..., 2m − 2,

+∞, if j = 2m − 1

(10.30)

with uniform step-size ∆. For each channel SNR, the suitable quantization step ∆ is chosen

as in [74], [5] to yield the maximum capacity of the binary-input 2m-output DMC.

We compute the JSCC and tandem coding exponents for the binary source and the

binary-input 2m-output DMC converted from the AWGN (Rayleigh-fading, respectively)

channel under transmission rate τ = 0.75 (τ = 1, respectively), and illustrate the power

gain due to JSCC. In Figs. 10.5 and 10.6, we plot EJ and ET for binary DMSQS = {0.1, 0.9}

and m = 1, 2, 3 by varying the channel SNR (in dB). We point out that in both the two

figures, when SNR ≤ 6 dB for m = 2, 3 and when SNR ≤ 8 dB for m = 1, EJ and ET are

determined exactly. We observe that for the same SNR, EJ is almost twice as large as ET

(EJ ≈ 2ET for 1dB≤SNR≤ 8dB, m = 1, and for 0dB≤SNR≤ 6dB, m = 2, 3). Furthermore,

for the same exponent and the same (asymptotic) encoding length, JSCC would yield the

same probability of error as tandem coding with a power gain of more than 2 dB. A similar

behavior was noted for other values of transmission rate τ .
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Figure 10.5: The power gain due to JSCC for binary DMS and binary-input 2m-output

DMC (AWGN channel) with τ = 0.75.

10.3 Systems with Markovian Memory

In this section, we assume that the source QS is an SEM source and the channel WY|X is

an SEM channel. We hence have the following corollary.

Corollary 10.2 Let τHQS
(S) < C(WY|X) and let λτ0(QS)λ0(PW) > B. Then

ETr(QS,WY|X, τ) ≤ ET (QS,WY|X, τ)

= sup
τHQS

(S)≤R≤C(WY|X)

min

{
τe

(
R

τ
,QS

)
, E(R,WY|X)

}
(10.31)

≤ ETsp(QS,WY|X, τ), (10.32)

where

ETr(QS,WY|X, τ) , sup
τHQS

(S)≤R≤C(WY|X)

min

{
τe

(
R

τ
,QS

)
, Er(R,WY|X)

}
(10.33)
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Figure 10.6: The power gain due to JSCC for binary DMS and binary-input 2m-output

DMC (Rayleigh-fading channel) with τ = 1.

and

ETsp(QS,WY|X, τ) , sup
τHQS

(S)≤R≤C(WY|X)

min

{
τe

(
R

τ
,QS

)
, Esp(R,WY|X)

}
(10.34)

where e (R,QS) = e(R,QS) is the SEM source error exponent given in Corollary 7.1, and

Esp(R,WY|X) and Er(R,WY|X) are respectively the upper and lower bounds for the SEM

channel error exponent given in Corollary 7.2 and (7.28).

Remark 10.4 If τHQS
(S) ≥ C(WY|X), ET (QS,WY|X, τ) = 0.

To evaluate ET for an SEM source-channel pair (QS,WY|X), we recall that e(R,QS)

is 0 for R ≤ H(QS), strictly increasing in H(QS) ≤ R ≤ log2 λ0(QS) and infinity for

R > log2 λ0(QS) ( [72], [94]), while E(R,WY|X) is non-increasing and positive in R <

C(WY|X), and vanishes at R = C(WY|X).
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Therefore, if the graphs of τe (R/τ,QS) and E(R,WY|X) have an intersection at Ro,

then it immediately follows from (10.31) that

ET (QS,WY|X, τ) = τe

(
Ro
τ
,QS

)
= E(Ro,WY|X).

If there is no intersection between τe (R/τ,QS) and E(R,WY|X) then by (10.31)

ET (QS,WY|X, τ) = E(τ log2 λ0(QS),WY|X).

10.3.1 EJ Can At Most Double ET

Similarly as DMS-DMC pairs, for SEM source-channel pairs, the JSCC coding exponent

can at most double the tandem coding exponent.

Theorem 10.6 For an SEM source QS and an SEM channel WY|X, the JSCC error

exponent is upper bounded by twice the tandem coding exponent

EJ(QS,WY|X, τ) ≤ 2ET (QS,WY|X, τ).

This relation follows from Theorem 7.5 and Corollary 10.2. The proof is similar as the

one of Theorem 10.2 and is omitted.

10.3.2 Sufficient Conditions for which EJ > ET

When the entropy rate of the SEM source is equal to log2 λ0(QS), the error exponent would

be zero for R ≤ log2 λ0(QS) and infinity otherwise. In this case, the source is incompressible

and only channel coding is performed in both JSCC and tandem coding; as a result,

EJ (QS,WY|X, τ) = ET (QS,WY|X, τ) = E(τ log2 λ0(QS),WY|X)

by (7.29), (7.30) and (10.31). Note that log2 λ0(QS) might not be equal to log2 |S| by Lemma

7.1, as compared with the DMS. Thus, we assume in the rest of the section that HQS
(S) <

log2 λ0(QS) (such that the source is compressible ) and that τHQS
(S) < C(WY|X) (such

that both EJ and ET are positive).
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Theorem 10.7 Let f be defined by (7.10). If f(1) ≤ 0, i.e.,

τH eQ( 1
2 )

S

(S) +H eP( 1
2 )

S

(Z) ≥ log2B,

then EJ(QS,WY|X, τ) > ET (QS,WY|X, τ).

Proof : Since we assumed that τHQS
(S) < C(WY|X) or equivalently f(0) > 0 (see Lemma

7.4), if now f(1) ≤ 0, then there exists some ρ (0 < ρ ≤ 1) such that f(ρ) = 0 by the

continuity of f(·). Let ρ∗ be the smallest one satisfying f(ρ∗) = 0. According to Theorem

7.3, the JSCC error exponent is determined exactly by EJ(QS,WY|X, τ) = F (ρ∗). On the

other hand, we know from (7.29) that

F (ρ∗) = min
R

[
τe

(
R

τ
,QS

)
+ Esp(R,WY|X)

]
.

Suppose the above minimum is achieved by some Rm, i.e.,

F (ρ∗) = τe

(
Rm
τ
,QS

)
+ Esp(Rm,WY|X).

It can be shown (cf. Lemma 5.2) that Rm is related to ρ∗ as follows

Rm = τH
eQ

( 1
1+ρ∗

)

S

(S) = log2B −H
eP

( 1
1+ρ∗

)

S

(Z).

Since ρ∗ is positive, from the above we know τHQS
(S) ≤ Rm ≤ C(WY|X) by the mono-

tonicity of H
eQ

( 1
1+ρ

)

S

(S) and H
eP

( 1
1+ρ

)

S

(Z). In the following we first assume that τe(R/τ,QS)

and E(R,WY|X) intersect at Ro, i.e., there exists an Ro ∈ (τHQS
(S), C(WY|X)) such that

ET (QS,WY|X, τ) = τe

(
Ro
τ
,QS

)
= E(Ro,WY|X) > 0.

If Rm > Ro, then

EJ(QS,WY|X, τ) ≥ τe

(
Rm
τ
,QS

)
> τe

(
Ro
τ
,QS

)
= ET (QS,WY|X, τ).

If Rm = Ro, then

EJ(QS,WY|X, τ) = 2ET (QS,WY|X, τ) > ET (QS,WY|X, τ).

If Rm < Ro, then

EJ(QS,WY|X, τ) ≥ Esp(Rm,WY|X) > Esp(Ro,WY|X) = ET (QS,WY|X, τ).
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We next assume that there is no intersection between τe(R/τ,QS) and E(R,WY|X), i.e.,

τe(R/τ,QS) < E(R,WY|X) for all R < τ log2 λ0(QS). If Rm = τHQS
(S), then

EJ(QS,WY|X, τ) = Esp(Rm,WY|X) > Esp(τ log2 λ0(QS),QS) = ET (QS,WY|X, τ)

since HQS
(S) < log2 λ0(QS) is assumed. If Rm > τH(QS), then

EJ(QS,WY|X, τ) ≥ τe

(
Rm
τ
,QS

)
+ Esp(τ log2 λ0(QS),QS)

> Esp(τ log2 λ0(QS),QS) = ET (QS,WY|X, τ)

since the source error exponent is positive at Rm > τHQS
(S). �

Theorem 10.7 states that if EJ is determined exactly (i.e., its upper and lower bounds

coincide), no matter whether ET is known or not, then the JSC coding exponent is larger

than the tandem exponent. Conversely, if ET is determined exactly, irrespective of whether

EJ is determined or not, the strict inequality between EJ and ET also holds, as shown by

the following results.
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Theorem 10.8

(a) If τHQS
(S) ≥ Rcr(WY|X), then EJ(QS,WY|X, τ) > ET (QS,WY|X, τ).

(b) Otherwise, if τHQS
(S) < Rcr(WY|X) and τ log2 λ0(QS) > Rcr(WY|X), there must

exist some ρ satisfying τH
eQ

( 1
1+ρ )

S

(S) = Rcr. Let ρm be the smallest one satisfying such

equation. If

(1 + ρm)τ [H
eQ

( 1
1+ρm

)

S

(S) − log2 λ 1
1+ρm

(QS)] ≤ log2B − 2 log2 λ 1
2
(PZ),

then EJ(QS,WY|X, τ) > ET (QS,WY|X, τ).

Remark 10.5 By the monotonicity of H
eQ

( 1
1+ρ )

S

(S), ρm can be solved numerically.

Proof : Recall that

Rcr(WY|X) = log2B −H eP( 1
2 )

S

(Z)

is the critical rate of the channel WY|X such that the channel exponent is determined for

R ≥ Rcr(WY|X), i.e.,

E(R,WY|X) = Er(R,WY|X) = E(R,WY|X)

if R ≥ Rcr(WY|X).

We first show that EJ > ET if τe(Rcr(WY|X)/τ,QS) ≤ E(Rcr(WY|X),WY|X), and

then we show that τe(Rcr(WY|X)/τ,QS) ≤ E(Rcr(WY|X),WY|X) if and only if (a) or (b)

holds.

Now if τe(Rcr(WY|X)/τ,QS) ≤ E(Rcr(WY|X),WY|X), then ET (QS,WY|X, τ) is de-

termined exactly. There are two cases to consider:

(a) If τe(R/τ,QS) and E(R,WY|X) intersect at Ro such that Rcr(WY|X) ≤ Ro <

C(WY|X), then

ET (QS,WY|X, τ) = τe

(
Ro
τ
,QS

)
= Er(Ro,WY|X) > 0.

On the other hand, (7.18) and (7.19) yield

EJ(QS,WY|X, τ) ≥ max
0≤ρ≤1

F (ρ) = F (ρ∗),
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where ρ∗ = min(1, ρ∗) > 0 and recall that ρ∗ is the smallest positive number satisfying

f(ρ∗) = 0. It follows from (7.30) that

F (ρ∗) = min
R

[
τe

(
R

τ
,QS

)
+ Er(R,WY|X)

]
.

Similar to Rm in the last proof, it can be shown (cf. Lemma 5.2) that the above

minimum is achieved by some Rm such that

Rm = τH
eQ

( 1
1+ρ∗

)

S

(S) ≥ τHQS
(S).

If Rm > Ro, then

EJ(QS,WY|X, τ) ≥ τe

(
Rm
τ
,QS

)
> τe

(
Ro
τ
,QS

)
= ET (QS,WY|X, τ).

If Rm = Ro, then

EJ(QS,WY|X, τ) = 2ET (QS,WY|X, τ) > ET (QS,WY|X, τ).

If Rm < Ro, likewise, we have

EJ(QS,WY|X, τ) ≥ Er(Rm,WY|X) > Er(Ro,WY|X) = ET (QS,WY|X, τ).

(b) If τe(R/τ,QS) and E(R,WY|X) have no intersection, we still have, as in the last

proof, if Rm = τHQS
(S), then

EJ(QS,WY|X, τ) ≥ Er(Rm,WY|X) > Er(τ log2 λ0(QS),QS) = ET (QS,WY|X, τ);

otherwise if Rm > τHQS
(S), then

EJ(QS,WY|X, τ) > Er(Rm,WY|X) ≥ Er(τ log2 λ0(QS),WY|X) = ET (QS,WY|X, τ).

Finally, we point out that the sufficient and necessary conditions for

τe(Rcr(WY|X)/τ,QS) ≤ E(Rcr(WY|X),WY|X)

is that

(a) τHQS
(S) ≥ Rcr(WY|X) such that τe(Rcr(WY|X)/τ,QS) = 0; or
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(b) τe(Rcr(WY|X)/τ,QS) > 0 but τe(Rcr(WY|X)/τ,QS) ≤ E(Rcr(WY|X),WY|X).

Using the fact that

E(Rcr(WY|X),WY|X) = H eP( 1
2 )

S

(Z) − 2 log2 λ 1
2
(PZ),

we obtain Condition (b) and complete the proof. �
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Figure 10.7: The regions for the ternary SEM source and the binary SEM channel of

Example 10.3 with τ = 0.5.

Example 10.3 We next examine Theorems 10.7 and 10.8 for the following simple example.

Consider a ternary SEM source QS and a binary SEM channel WY|X, both with symmetric

transition matrices given by

QS =




q (1 − q)/2 (1 − q)/2

(1 − q)/2 q (1 − q)/2

(1 − q)/2 (1 − q)/2 q




and PZ =


 p 1 − p

1 − p p




such that 0 < p, q < 0.5. Suppose now the transmission rate τ = 0.5. If (q, p) sat-

isfies any one of the conditions of Theorems 10.7 and 10.8, then EJ(QS,WY|X, τ) >



10.3. Systems with Markovian Memory 288

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.02

0.04

0.06

0.08

0.1

0.12

q

E
rr

or
 E

xp
on

en
t

JSCC error exponent, p=0.025.

Tandem coding error exponent, p=0.025.

JSCC error exponent, p=0.05.

Tandem coding error exponent, p=0.05.

Figure 10.8: Comparison of EJ and ET for the ternary SEM source and the binary SEM

channel of Example 10.3 with τ = 0.5.

ET (QS,WY|X, τ). The range for which the inequality holds is summarized in Fig. 10.7.

For the channel with p = 0.025 and p = 0.05, we plot the JSC coding and tandem coding

error exponents against the source parameter q whenever they are exactly determined, see

Fig. 10.8. We note that for these source-channel pairs, EJ(QS,WY|X, τ) substantially

outperforms ET (QS,WY|X, τ) (indeed EJ(QS,WY|X, τ) ≈ 2ET (QS,WY|X, τ)) for a large

class of (q, p) pairs. We then plot the two exponents under the transmission rate τ = 0.75

whenever they are determined exactly, and obtain similar results, see Fig. 10.9. In fact, for

many other SEM source-channel pairs (not necessarily binary SEM sources or ternary SEM

channels) with other transmission rates, we observe similar results; this indicates that the

JSC coding exponent is strictly better than the tandem coding exponent for a wide class of

SEM systems.
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Figure 10.9: Comparison of EJ and ET for the ternary SEM source and the binary SEM

channel of Example 10.3 with τ = 0.75.

In the following we present an example for the system consisting of an SEM source (of

order Ks = 1) and the queue based channel (QBC) [100] with memory Kc = 2, as the QBC

approximates well for a certain range of channel conditions the Gilbert-Elliott channel [100]

and hard decision demodulated correlated fading channels [101].

Example 10.4 (Transmission of an SEM source over the QBC) A QBC is a binary

additive channel whose noise process PZ = {PZn ∈ P(Zn)}∞n=1 (where Z = {0, 1}) is gen-

erated according to a mixture mechanism of a finite queue and a Bernoulli process [101].

At time i, the noise symbol Zi is chosen either from the queue described by a sequence of

random variables (Qi,1, ..., Qi,Kc) (Qi,j ∈ {0, 1}, j = 1, 2, ...,Kc) with probability ε or from

a Bernoulli process with probability 1 − ε such that
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• If Zi is chosen from the queue process, then

PZ(Zi = Qi,j) =





1/(Kc − 1 + α), j = 1, 2, ...,Kc − 1,

α/(Kc − 1 + α), j = Kc

if Kc > 1 and α ≥ 0 is arbitrary; otherwise PZ(Zi = Qi,Kc) = 1 if Kc = 1.

• If Zi is chosen from the Bernoulli process, then PZ(Zi = 1) = p (p ≪ 1/2) and

PZ(Zi = 0) = 1 − p.

At time i+ 1, we first shift the queue from left to right by the following rule

(Qi+1,1, ..., Qi+1,Kc) = (Zi, Qi,1, ..., Qi,Kc−1),

then we generate the noise symbol Zi+1 according to the same mechanism. It can be

shown [101] that the QBC is actually an Kc-th order SEM channel characterized only by

four parameters ε, α, p and Kc.

Now we consider transmitting the first order SEM source QS with transition matrix

QS =




0.1 0.5 0.4

0.4 0.4 0.2

0.05 0.15 0.8




under transmission rate t = 1 over the QBC with Kc = 2 such that the noise process PZ is

a second order SEM process. After 2-step blocking PZ, we obtain a first order SEM process

PKc

Z with transition matrix

PKc

Z =




ε+ (1 − ε)(1 − p) 0 (1 − ε)p 0

ε
1+α + (1 − ε)(1 − p) 0 εα

1+α + (1 − ε)p 0

0 εα
1+α + (1 − ε)(1 − p) 0 ε

1+α + (1 − ε)p

0 (1 − ε)(1 − p) 0 ε+ (1 − ε)p




.

We next compute EJ and ET for the ternary SEM source and the QBC given above.

When p = 0.05, α = 1, EJ and ET are both determined exactly if ε ∈ [0.001, 0.992].

We plot the two exponents by varying ε. We see from Fig. 10.10 that EJ ≈ 2ET for

all the ε ∈ [0.001, 0.992]. When we choose p = 0.05, α = 0.1 for which EJ and ET
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are both determined exactly if ε ∈ [0.001, 0.968], we have similar results, see Fig. 10.10.

It is interesting to note that when ε gets smaller, EJ and ET approach the exponents

resulting from the SEM source QS and the binary symmetric channel (BSC) with crossover

probability p = 0.05. This is indeed expected since the QBC reduces to the BSC when

ε = 0 [101].
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Figure 10.10: Comparison of EJ and ET for the SEM source and the QBC of Example 10.4

with τ = 1.

10.4 Tandem Error Exponent with Feedback/Source Side In-

formation

We have obtained the formula for tandem error exponent for discrete systems, which is

expressed in terms of the source and channel error exponents. In fact, it can be seen that



10.4. Tandem Error Exponent with Feedback/Source Side Information 292

the formula for tandem error exponent is still valid for discrete memoryless systems with

channel output feedback or source SI.

10.4.1 Tandem Exponent with Perfect Feedback

A tandem code (f∗n,fb, ϕ
∗
n,fb) , (fsn, {fcr}nr=1, ϕcn, ϕsn) for a DMS QS and a DMC WY |X

with perfect channel output feedback is composed of two separately designed codes: a

(τn,Mn) block source code (fsn, ϕsn) with source code rate

Rs,n ,
log2Mn

τn
source code bits/source symbol,

and an (n,Mn) block channel code with perfect feedback ({fcr}nr=1, ϕcn) with channel code

rate

Rc,n ,
log2Mn

n
source code bits/channel use,

assuming that the limit limn→∞ logMn/n exists, i.e.,

lim sup
n→∞

logMn

n
= lim inf

n→∞

logMn

n
.

To render the source and channel coding operations independent of each other, as in Sec-

tion 10.1, a random index assignment πm is performed between the source and channel

encoders/decoders, and each πm is independently and equally likely chosen from the Mn!

different possible index assignments; see Fig. 10.11. Also, we assume that (A1) still holds for

the source code, i.e., for every n, QSτn(f−1
sn (i)) > 0 and ci ∈ f−1

sn (i) for every i = 1, 2, ...,Mn,

where f−1
sn (i) , {s ∈ Sτn : fsn(s) = i}.

Similarly, the error probability of the tandem code (f∗n,fb, ϕ
∗
n,fb) is given by

P
(n)
e∗,fb(QS ,WY |X , τ)

= P
(n)
ecfb(WY |X , Rc,n) + (1 − P

(n)
ecfb(WY |X , Rc,n))P

(τn)
es (QS , Rs,n),

where P
(n)
ecfb(WY |X , Rc,n) is the channel coding probability of error with feedback given by

(6.1), and P
(τn)
es (QS , Rs,n) is the probability of error for DMS given by (2.1).

Definition 10.2 The tandem coding error exponent ET,fb(QS ,WY |X , τ) for DMS QS and

DMC WY |X with feedback is defined as the supremum of the set of all numbers Ê for which
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Figure 10.11: Tandem coding system for discrete memoryless source-channel systems with

perfect feedback.

there exists a sequence of tandem codes (f∗n,fb, ϕ
∗
n,fb) satisfying (A1) with transmission rate

τ such that

Ê ≤ lim inf
n→∞

− 1

n
log2 P

(n)
e∗,fb(QS ,WY |X , τ).

We have the following similar results.

Theorem 10.9

ET,fb(QS ,WY |X , τ) = sup
R>0

min

{
τe

(
R

τ
,QS

)
, Efb(R,WY |X)

}

where e(R,QS) is the source error exponent defined in (7.2) and Efb(R,WY |X) is the channel

error exponent with feedback (cf. Definition 6.1).

Remark 10.6 Recalling that the sphere-packing exponentEsp(R,WY |X) is an upper bound

for Efb(R,WY |X) (see Section 6.1.1), we can upper bound ET,fb(QS ,WY |X , τ) by

ET,fb(QS ,WY |X , τ) ≤ sup
R>0

min

{
τe

(
R

τ
,QS

)
, Esp(R,WY |X)

}
. (10.35)

Clearly, if τHQS
(S) ≥ C(WY |X), ET,fb(QS ,WY |X , τ) = 0.
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Theorem 10.10 ET,fb(QS ,WY |X , τ) ≤ EJ,fb(QS ,WY |X , τ) ≤ 2ET,fb(QS ,WY |X , τ).

The proofs of Theorems 10.9 and 10.10 are similar to the proofs of Theorems 10.1 and

10.2 and are omitted.

In the following, we present an example to illustrate the gain of JSCC exponent over

tandem exponent by numerically comparing the lower bound of EJ,fb and the upper bound

of ET,fb for binary DMS Q = {q, 1− q} (q < 0.5) and BSC WY |X with crossover probability

ǫ (ǫ < 0.5). Here we use the lower bound (6.9) for EJ,fb and the upper bound (10.35) for

ET,fb. Since we know that the lower bound (6.9) is at least as large as Gallager’s lower

bound for EJ (without feedback) for binary input channels with a symmetric distribution

(in the Gallager sense, cf. Corollary 6.3), it is hoped that the lower bound is larger than the

upper bound (10.35) for ET for a lot of source and channel parameters. As expected, for

fixed q and τ , we see from Fig. 10.12 that the joint exponent almost doubles the tandem

exponent for a wide range of ǫ. Note that similar results hold for other DMS’s and binary

channels with a symmetric distribution.

10.4.2 Tandem Exponent with Source Side Information

In the section we address the case of source SI at the decoder, since in Section 6.3 we have

derived a valid computable lower bound for ESIDJ (QSL,WY |X , τ) and we could use it to

evaluate the gain of JSCC error exponent over the tandem coding error exponent.

A tandem code (f∗n,SID, ϕ
∗
n,SID) , (fsn, fcn, ϕcn, ϕsn) for a DMS QS and a DMC WY |X

with source SI QL at the decoder (which is correlated with QS through QL|S) is com-

posed of separately designed source and channel codes: a (τn,Mn) block source code

(fsn,SID, ϕsn,SID) with source code rate

Rs,n ,
log2Mn

τn
source code bits/source symbol,

where

fsn,SID : Stn → {1, 2, ...,Mn}

and

ϕsn,SID : {1, 2, ...,Mn} × Lτn → Stn
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Figure 10.12: The lower bound of EJ,fb vs the upper bound of ET,fb.

are the source encoder and decoder with source SI, and an (n,Mn) block channel code

(fcn, ϕcn) with channel code rate

Rc,n ,
log2Mn

n
source code bits/channel use,

assuming that the limit limn→∞ logMn/n exists, i.e.,

lim sup
n→∞

logMn

n
= lim inf

n→∞

logMn

n
.

Again, as in Section 10.1, the source and channel operations are statistically decoupled

via a random index assignment πm between the source and channel encoders/decoders.

Each πm is independently and equally likely chosen from the Mn! different possible index

assignments; see Fig. 10.13. In addition, we assume (A2) that for every n, QSτn(f−1
sn (i)) > 0

and
⋃

l∈Lτn

{ϕsn,SID(i, l)} ⊆ f−1
sn (i)
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Figure 10.13: Tandem coding system for discrete memoryless source-channel systems with

source SI at the decoder.

for every i = 1, 2, ...,Mn, where f−1
sn (i) , {s ∈ Sτn : fsn(s) = i}. Like assumption (A1),

the assumption (A2) has the same practical meaning. If QSτn(f−1
sn (i)) = 0 for some i, then

the output codeword is redundant, and we can remove it from the codebook. If there exists

one ϕsn,SID(i, l) /∈ f−1
sn (i), we can map the index i and the SI sequence l to some source

message ŝ such that QSτn (̂s) > 0 and fsn(̂s) = i, so that the source coding probability of

error

P
(τn)
es,SID(QSL, Rs,n) =

∑

(s,l)∈Sτn×Lτn:ϕsn,SID(fsn,SID(s),l)6=s

Q
(τn)
SL (s, l). (10.36)

is strictly reduced.

Similarly, the error probability of the tandem code (f∗n,SID, ϕ
∗
n,SID) is given by

P
(n)
e∗,SID(QSL,WY |X , τ)

= P (n)
ec (WY |X , Rc,n) + (1 − P (n)

ec (WY |X , Rc,n))P
(τn)
es,SID(QSL, Rs,n),

where P
(n)
ec (WY |X , Rc,n) is the channel coding probability of error (10.6), and P

(τn)
es,SID(QSL, Rs,n)

is the probability of error for DMS with source SI at the decoder given by (10.36).

Definition 10.3 For any R > 0, the source error exponent eSID(R,QSL) of the DMS QS
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with source SI QL at the decoder is defined as the supremum of the set of all numbers e for

which there exists a sequence of (n,Mn) block codes (fsn,SID, ϕsn,SID) with

e ≤ lim inf
n→∞

− 1

n
logP (n)

se (QS , Rn) (10.37)

and

R ≥ lim sup
n→∞

Rn, (10.38)

where the source code rate Rn = 1
n log2Mn.

Definition 10.4 The tandem coding error exponent ESIDT (QSL,WY |X , τ) for DMS QS and

DMC WY |X with source SI QL at the decoder is defined as the supremum of the set of all

numbers Ê for which there exists a sequence of tandem codes (f∗n,SID, ϕ
∗
n,SID) satisfying

(A1) with transmission rate τ such that

Ê ≤ lim inf
n→∞

− 1

n
log2 P

(n)
e∗,SID(QSL,WY |X , τ).

We have the following similar results.

Proposition 10.2 ESIDT (QS ,WY |X , τ) ≤ ESIDJ (QS ,WY |X , τ).

Theorem 10.11

ESIDT (QS ,WY |X , τ) = sup
R>0

min

{
τeSID

(
R

τ
,QSL

)
, E(R,WY |X)

}

where eSID(R,QSL) is the source error exponent with source SI at the decoder and E(R,WY |X)

is the channel error exponent (cf. Definition 6.1).

Remark 10.7 If τHQSL
(S|L) ≥ C(WY |X), ET,SID(QS ,WY |X , τ) = 0.

According to [32], for source coding with source SI at the decoder, we have a somewhat

loose2 upper bound for eSID(R,QSL),

eSID(R,QSL) ≤ eSID(R,QSL) , min
PSL:HPSL

(S|L)≥R
D(PSL ‖ QSL).

2In fact, this upper bound is obtained by assuming that the source SI is available at both the encoder and

the decoder; thus, the upper bound is actually an upper bound for the source error exponent with source SI

at both the encoder and the decoder.
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It is easy to verify that the minimum of the above is achieved by a tilted distribution

P ∗
SL(s, l) = QS(s)

QL|S(l|s)
1

1+ρ∗

∑
l′∈LQL|S(l′|s)

1
1+ρ∗

, ∀s ∈ S, l ∈ L,

where ρ∗ is the root of HPSL
(L|S) = R. Plugging P ∗

SL(s, l) into D(PSL‖QSL) we obtain the

parametric form

min
PSL:HPSL

(S|L)=R
D(PSL‖QSL) = max

ρ≥0
[ρR− Es2(ρ,QSL)] (10.39)

where

Es2(ρ,QSL) = (1 + ρ)
∑

l∈L

QL(l) log2

∑

s∈S

QS|L(s|l)
1

1+ρ .

Now, replacing the source and channel error exponents by their upper bounds, we obtain a

computable upper bound for ESIDT (QS ,WY |X , τ)

ESIDT (QS ,WY |X , τ) ≤ sup
R>0

min

{
τeSID

(
R

τ
,QSL

)
, Esp(R,WY |X)

}
. (10.40)

In the following, we present an example to see the gain of JSCC exponent over tandem

exponent by numerically comparing the lower bound of ESIDJ and the upper bound of

ESIDT for binary DMS Q = {q, 1 − q} (q < 0.5) and BSC WY |X with crossover probability

ǫ (ǫ < 0.5). The source QL is a noisy version of QS described by L = S ⊕ N mod 2

(L = N = {0, 1}) with noise distribution PN (N = 1) = 0.05, i.e., the SI is transmitted

through a dummy BSC QL|S with crossover probability 0.05. Here we use the lower bound

ESIDJ defined in (6.34) and the upper bound for ESIDT given above. It is seen from Fig.

10.14 that for fixed q and transmission rate τ , ESID
J substantially outperforms the upper

bound for ESIDT . We remark that similar results hold for other DMS and DMC pairs.

10.5 Memoryless Gaussian Source-Channel Systems

In this section we study the advantage of JSCC over tandem coding in terms of the excess

distortion exponent for Gaussian systems. A tandem code

(f∗n, ϕ
∗
n,∆, E , τ) , (fsn, fcn, ϕcn, ϕcn,∆, E , t, P )
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Figure 10.14: The lower bound for ESIDJ vs the upper bound for ESIDT .

with blocklength n and transmission rate τ (source symbols/channel use) for the MGS QS

and the MGC WY |X is composed (see Fig. 10.15) of two separately designed codes: a

(τn,Mn) block source code (fsn, ϕsn,∆) with codebook C , {c1, c2, ..., cMn} ⊆ Sτn and

source code rate

Rs,n =
lnMn

τn
source code nats/source symbol,

Mn! index assignments (which are permutation functions) πm, such that each πm is chosen

with probability 1/Mn!, m = 1, 2, ...,Mn!, and an (n,Mn) block channel code (fcn, ϕcn, E)

with channel code rate

Rc,n =
lnMn

n
source code nats/channel use,
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Figure 10.15: Tandem MGS-MGC system.

where fcn ∈ FE
cn with g(x) = x2. We assume as before that the limit limn→∞

lnMn

n exists,

i.e.,

lim sup
n→∞

lnMn

n
= lim inf

n→∞

lnMn

n
.

The (overall) excess distortion probability of the tandem code (f∗n, ϕ
∗
n,∆, E , τ) is hence

given by

P
(n)
∆∗ (QS ,WY |X , E , τ)

, Pr
(
d(τn)

(
s, ϕsn

{
π−1
m [ϕcn(y)]

})
> ∆

)

=

Mn!∑

m=1

1

Mn!
Pr
(
d(τn)

(
s, ϕsn

{
π−1
m [ϕcn(y)]

})
> ∆

∣∣∣πm
)

=
Mn!∑

m=1

1

Mn!

∫

Sτn

Q
(τn)
S (s)

∫

y:d(τn)(s,ϕsn{π−1
m [ϕcn(y)]})>∆

W
(n)
Y |X (y | fcn {πm[fsn(s)]}) dyds, .

Recall that the codebook of the source code (fsn, ϕsn,∆) is C = {c1, c2, ..., cMn}. To make

the notations simpler, we denote (cf. Fig. 10.15)

i = fsn(s),

j = π−1
m (ϕcn(y)),

Di = {s ∈ Sn : fsn(s) = i},
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for i, j ∈ {1, 2, ...,Mn}, where the (disjoint) sets D1,D2, ...,DMn partition Sτn. Thus, we

can write

P
(n)
∆∗ (QS ,WY |X , E , τ)

=
Mn!∑

m=1

1

Mn!

Mn∑

i=1

Mn∑

j=1

PW (πm(j)|πm(i))

∫

Di

Q
(τn)
S (s)1

{
d(τn)(s, cj) > ∆

}
ds, (10.41)

and

PW (πm(j)|πm(i)) ,

∫

y:ϕcn(y)=πm(j)
W

(n)
Y |X(y|fcn(πm(i)))dy.

The excess distortion probability (2.10) for the source code can also be rewritten by

P
(n)
∆ (QS , Rs,n) =

Mn∑

i=1

∫

Di

PSτn(s)1
{
d(τn)(s, ci) > ∆

}
ds,

and the probability of error (2.12) for the channel code can be written by

P (n)
ec (WY |X , Rc,n, E) =

1

Mn

Mn∑

i=1

Mn∑

j=1,j 6=i

PW (j|i).

Meanwhile, the maximal probability of error (2.13) for the channel code is given by

P (n)
max,ec(WY |X , Rc,n, E) = max

1≤i≤Mn

Mn∑

j=1,j 6=i

PW (j|i).

In order to facilitate the evaluation of the tandem excess distortion probability P
(n)
∆∗ ,

we simplify the problem by making the following assumptions on the channel code and the

source code (which are statistically decoupled from each other via common randomization).

(a) Defining

Ξ(WY |X , E) ,

{
(fcn, ϕcn, E) : lim sup

n→∞
P (n)
ec (WY |X , Rc,n, E) < γ for all γ > 0

}
,

we say that a sequence of channel codes (fcn, ϕcn, E) is a sequence of “good chan-

nel codes” if (fcn, ϕcn, E) ∈ Ξ(WY |X , E). In the tandem system, we will restrict

(fcn, ϕcn, E) to be good channel codes.

(b) In source coding, the objective is to construct a code, or equivalently, find a code-

book C = {c1, c2, ..., cMn} and the corresponding partition {D1,D2, ...,DMn} so that
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P
(n)
∆ (QS , Rs,n) is as small as possible. For the source codes (fsn, ϕsn,∆), we assume

the following constraint. Letting

Ω(QS,∆) ,

{
(fsn, ϕsn,∆) : lim inf

n→∞
− 1

τn
lnP

(n)
∆ (QS , Rs,n) ≥ F (R,QS ,∆) > 0,

where R = limn→∞Rs,n

}
,

we say that a sequence of source codes (fsn, ϕsn,∆) is a sequence of “good source

codes” if (fsn, ϕsn,∆) ∈ Ω(QS ,∆). In the tandem system, we will only consider such

good source codes.

Recall that the converse JSCC theorem (Theorem 8.1) states that the MGS cannot

be reliably transmitted over the MGC if τR(QS ,∆) > C(WY |X , E), and also note that if

τR(QS,∆) > C(WY |X , E) then either Ξ(WY |X , E) = ∅ or Ω(QS,∆) = ∅. Thus, we are

only interested in the case τR(QS ,∆) < C(WY |X , E) as before. In order to guarantee the

existence of good source and channel codes, we focus on the sequences of tandem codes

with (f∗n, ϕ
∗
n,∆, E , τ) ∈ Λ(QS ,WY |X ,∆, E , τ), where

Λ(QS ,WY |X ,∆, E , τ) ,

{
(f∗n, ϕ

∗
n,∆, E , τ) : τR(QS ,∆) < lim

n→∞

lnMn

n
< C(WY |X , E)

}
.

Assumptions (a) and (b) are needed for the proof of the converse part of Theorem 10.12.

Definition 10.5 The tandem coding excess distortion exponent E∆,E
T (QS ,WY |X , τ) for the

MGS QS and the MGC WY |X is defined as the supremum of the set of all numbers Ê for

which there exists a sequence of tandem codes (f∗n, ϕ
∗
n,∆, E , τ) composed by good source

and channel codes with blocklength n provided (f∗n, ϕ
∗
n,∆, E , τ) ∈ Λ(QS ,WY |X ,∆, E , τ),

such that

Ê ≤ lim inf
n→∞

− 1

n
lnP

(n)
∆∗ (QS ,WY |X , E , τ).

When there is no possibility of confusion, throughout the sequel, the tandem coding

excess distortion exponent E∆,E
T (QS ,WY |X , τ) will be written as E∆,E

T .

Theorem 10.12 For the tandem MGS-MGC system provided τR(QS ,∆) < C(WY |X , E)

and SDR ≥ 4,

E∆,E
T (QS ,WY |X , τ) = sup

τR(QS ,∆)<R<C(WY |X ,E)
min

{
τFG

(
R

τ
,QS ,∆

)
, E(R,WY |X , E)

}
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where FG(R,QS ,∆) is the MGS excess distortion exponent given by (2.46) and (2.47) and

E(R,WY |X , E) is the MGC error exponent defined by Definition 2.4.

Remark 10.8 Since τFG(R/τ,QS ,∆) is a strictly increasing function of R for R ≥ 0, and

E(R,WY |X , E) is decreasing function of R for 0 < R ≤ C(WY |X , E), the supremum must

be achieved at their intersection3

E∆,E
T (QS ,WY |X , τ) = τFG

(
Ro
τ
,QS ,∆

)
= E(Ro,WY |X , E),

with τR(QS,∆) < Ro < C(WY |X , E).

We require that the distortion threshold cannot be too large; we restrict SDR ≥ 4

(≈ 6dB). As will be seen in the proof of the converse part of Theorem 10.12, this assumption

ensures that the ball B(0, 4∆) is covered by o(Mn) balls with size ∆; see Lemma 10.1 in

the below. In fact, a large distortion threshold is useless in practice.

Lemma 10.1 Let SDR =
σ2

S

∆ > 4. Only L2n = o(Mn) balls of size ∆ are needed to cover

B(0, 4∆) for R > R(QS ,∆), i.e., every sequence in B(0, 4∆) is contained in the union of

L2n balls of size ∆.

Proof: Let k = tn. For N ∈ N which will be specified later, we partition B(0, 4∆) by a

sequence of sets: T0 , {s : ‖s‖2 = sT s ≤ k∆} and Ti , T ǫ(σ2(i)) by σ2(i) = ∆ + (2i − 1)ǫ,

where ǫ = 3∆
2N , for i = 1, 2, · · · , N , i.e.,

Ti =
{
s : k [∆ + (2i− 2)ǫ] ≤ sT s ≤ k [∆ + 2iǫ]

}
, i = 1, 2, · · · , .N.

Note that T0 is covered by one ball with size ∆, B(0,∆). It follows from the type covering

lemma for Gaussian-type classes (Lemma 3.6) that each Ti (1 ≤ i ≤ N) is covered by

L(i) = exp

{
k

[
R
(
Q

(i)
S ,∆

)
+ ζ̃2

(
3∆

2N

)]
+ o(k)

}

3Unlike the discrete case in [107] and Section 10.2, the intersection always exists since source exponent

is continuous and increasing in R > 0.
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balls with size ∆ for k and N sufficiently large, where Q
(i)
S ∼ N (0,∆+3(2i− 1)∆/2N) and

ζ̃2(·), given by (8.35), is independent of i. Clearly, B(0, 4∆) is covered by

L2n = 1 +

N∑

i=1

L(i)

≤ (N + 1) exp

{
k

[
max

1≤i≤N
R
(
Q

(i)
S ,∆

)
+ ζ̃2

(
3∆

2N

)]
+ o(k)

}

≤ exp

{
k

[
1

2
ln 4 + ζ̃2

(
3∆

2N

)
+

ln(N + 1)

k

]
+ o(k)

}

size ∆ balls. Recall that Mn = exp{kRs,n} and by assumption

lim
n→∞

Rs,n = R > R(QS ,∆) =
1

2
ln
σ2
S

∆
≥ 1

2
ln 4.

Set δ = R − 1
2 ln 4 > 0. Finally, if we let N be the smallest integer satisfying ζ̃2

(
3∆
2N

)
≤ δ

2

(noting that ζ̃2
(

3∆
2N

)
→ 0 as N → ∞), we have

lim
n→∞

L2n

Mn
≤ lim

n→∞
exp

{
−tn

[
δ − ζ̃2

(
3∆

2N

)
− ln(N + 1)

tn

]
+ o(n)

}
= 0.

�

Proof of Theorem 10.12:

Forward Part: We show that there exists a sequence of tandem codes (f∗n, ϕ
∗
n,∆, E , τ) ∈

Λ(QS ,WY |X ,∆, E , τ) composed by good source and channel codes such that

lim inf
n→∞

− 1

n
lnP

(n)
∆∗ (QS ,WY |X , E , τ)

≥ sup
τR(QS ,∆)<R<C(WY |X ,E)

min

{
τFG

(
R

τ
,QS ,∆

)
, E(R,WY |X , E)

}
− δ

for any δ > 0. First note that for any given index assignment πm, it follows from (10.41)

that

Pr
(
d(τn) (s, cj) > ∆

∣∣∣πm
)

=

Mn∑

i=1

PW (πm(i)|πm(i))︸ ︷︷ ︸
≤1

∫

Di

Q
(τn)
S (s)1

{
d(τn)(s, ci) > ∆

}
ds
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+

Mn∑

i=1

Mn∑

j=1,j 6=i

PW (πm(j)|πm(i))

∫

Di

Q
(τn)
S (s)1

{
d(τn)(s, cj) > ∆

}

︸ ︷︷ ︸
≤1

ds

≤
Mn∑

i=1

∫

Di

Q
(τn)
S (s)1

{
d(τn)(s, ci) > ∆

}
ds +

Mn∑

i=1

Q
(τn)
S (Di)

Mn∑

j=1,j 6=i

PW (πm(j)|πm(i))

≤ P
(n)
∆ (QS , Rs,n) + P (n)

max,ec(WY |X , Rc,n, E),

which only depends on the source and channel codes and is independent of πm. Thus, for

any sequence of tandem codes we have

P
(n)
∆∗ (QS ,WY |X , E , τ) ≤ P

(n)
∆ (QS , Rs,n) + P (n)

max,ec(WY |X , Rc,n, E)

≤ 2max
{
P

(n)
∆ (QS , Rs,n), P

(n)
max,ec(WY |X , Rc,n, E)

}

or equivalently,

lim inf
n→∞

− 1

n
lnP

(n)
∆∗ (QS ,WY |X , E , τ) ≥ min

{
lim inf
n→∞

− 1

n
lnP

(n)
∆ (QS , Rs,n),

lim inf
n→∞

− 1

n
lnP (n)

max,ec(WY |X , Rc,n, E)

}
.

Now fix R > 0 and δ > 0. According to the definition of the source error exponent

(Definition 2.2), there exists a sequence of (τn, M̃n) source codes (f̃sn, ϕ̃sn,∆) (with rate

R̃s,n = ln fMn

τn ) such that

lim inf
n→∞

− 1

τn
lnP

(n)
∆ (QS , R̃s,n) ≥ FG(τR,QS ,∆) − δ and lim sup

n→∞
R̃s,n ≤ R.

Since a source code with a larger codebook size would have a smaller probability of excess

distortion, there must exist a sequence of (τn, ⌈2tnR⌉) source codes (fsn, ϕsn,∆) such that

lim inf
n→∞

− 1

τn
lnP

(n)
∆ (QS , Rs,n) ≥ FG(τR,QS ,∆) − δ.

Similarly, for given τR, the definition of channel error exponent (Definition 2.4 and the corre-

sponding remark) asserts that there exists a sequence of (n, M̂n) channel codes (f̂sn, ϕ̂cn, E)

(with rate R̂c,n = ln cMn

n ) such that

lim inf
n→∞

− 1

n
lnP (n)

max,ec(WY |X , R̂c,n, E) ≥ E(τR,WY |X , E) − δ and lim inf
n→∞

R̂c,n ≥ τR.
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Since a channel code with a smaller codebook size would have a smaller (maximum) prob-

ability of error, there must exist a sequence of (n, ⌈2tnR⌉) channel codes (fcn, ϕcn, E) such

that

lim inf
n→∞

− 1

n
lnP (n)

max,ec(WY |X , Rc,n, E) ≥ E(τR,WY |X , E) − δ.

If we restrict R ∈ (R(QS ,∆), C(WY |X , E)/τ), then there exists a sequence of tandem codes,

composed by a sequence of (τn, ⌈2tnR⌉) good source codes, and a sequence of (n, ⌈2tnR⌉)

good channel codes (with the same Mn = ⌈2tnR⌉), such that

lim inf
n→∞

− 1

n
lnP

(n)
∆∗ (QS ,WY |X , E , τ) ≥ min

{
τFG (R,QS ,∆) , E(τR,WY |X , E)

}
− δ.

Finally, since R and δ are arbitrary, we can take the supremum over R(QS ,∆) < R <

C(WY |X , E)/τ , completing the proof of the forward part.

Converse Part: We next show that for any sequence of tandem codes (f∗n, ϕ
∗
n,∆, E , τ) ∈

Λ(QS ,WY |X ,∆, E , τ) composed by good source and channel codes

lim inf
n→∞

− 1

n
lnP

(n)
∆∗ (QS ,WY |X , E , τ)

≤ sup
τR(QS ,∆)<R<C(WY |X ,E)

min

{
τFG

(
R

τ
,QS ,∆

)
, E(R,WY |X , E)

}
. (10.42)

As in [51], we decompose the probability of excess distortion for any given tandem codes as

follow,

P
(n)
∆∗ (QS ,WY |X , E , τ)

=
1

Mn!

Mn!∑

m=1

Mn∑

i=1

PW (πm(i)|πm(i))

∫

Di

Q
(τn)
S (s)1

{
d(τn)(s, ci) > ∆

}
ds

+
1

Mn!

Mn!∑

m=1

Mn∑

i=1

Mn∑

j=1,j 6=i

PW (πm(j)|πm(i))

∫

Di

Q
(τn)
S (s)1

{
d(τn)(s, cj) > ∆

}
ds.

Note that for fixed i,

1

Mn!

Mn!∑

m=1

PW (πm(i)|πm(i)) =
1

Mn

Mn∑

j=1

PW (j|j)

is actually the arithmetic mean of PW (i|i) and is independent of i. Similarly, for fixed i and

j 6= i,

1

Mn!

Mn!∑

m=1

PW (πm(j)|πm(i)) =
1

Mn(Mn − 1)

Mn∑

k=1

Mn∑

l=1,l 6=k

PW (l|k)
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is actually the arithmetic mean of PW (l|k) (l 6= k) and is independent of l and k. Thus,

P
(n)
∆∗ (QS ,WY |X , E , τ)

=

[
1

Mn

Mn∑

i=1

PW (j|j)
]
Mn∑

i=1

∫

Di

Q
(τn)
S (s)1

{
d(τn)(s, ci) > ∆

}
ds

+

Mn∑

i=1

Mn∑

j=1,j 6=i




1

Mn(Mn − 1)︸ ︷︷ ︸
≥1/M2

n

Mn∑

k=1

Mn∑

l=1,l 6=k

PW (l|k)




∫

Di

Q
(τn)
S (s)1

{
d(τn)(s, cj) > ∆

}
ds

≥
(
1 − P (n)

ec (WY |X , Rc,n, E)
)
P

(n)
∆ (QS , Rs,n) + P (n)

ec (WY |X , Rc,n, E)

1

Mn

Mn∑

i=1

∫

Di

Mn∑

j=1,j 6=i

Q
(τn)
S (s)1

{
d(τn)(s, cj) > ∆

}
ds. (10.43)

We then bound

1

Mn

Mn∑

i=1

∫

Di

Mn∑

j=1,j 6=i

Q
(τn)
S (s)1

{
d(τn)(s, cj) > ∆

}
ds

≥
Mn∑

i=1

∫

Di

Q
(τn)
S (s)

1

Mn



Mn∑

j=1

1

{
d(τn)(s, cj) > ∆

}
− 1


 ds

≥ D(n)(QS , Rs,n,∆) − 1

Mn
,

where

D(n)(QS , Rs,n,∆) , min
s∈Sτn

1

Mn

Mn∑

j=1

1

{
d(τn) (s, cj) > ∆

}
.

Substituting the above into (10.43) gives

P
(n)
∆∗ (QS ,WY |X , E , τ) ≥

(
1 − P (n)

ec (WY |X , Rc,n, E)
)
P

(n)
∆ (QS , Rs,n)

+P (n)
ec (WY |X , Rc,n, E)

(
D(n)(QS , Rs,n,∆) − 1

Mn

)
.(10.44)

By definition, for any good channel codes (fcn, ϕcn, E) ∈ Ξ(WY |X , E), 1−P (n)
ec (WY |X , Rc,n, E)

is bounded away from zero for n sufficiently large.

Lemma 10.2 Let SDR =
σ2

S

∆ ≥ 4. For any sequence of good source codes (fsn, ϕsn,∆) ∈

Ω(QS,∆) with rate Rs,n such that limn→∞Rs,n = R, there exists some δ > 0 such that

lim sup
n→∞

D(n)(QS , Rs,n,∆) > δ.
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Proof: It suffices to show if

lim sup
n→∞

D(n)(QS , Rs,n,∆) = 0,

then (fsn, ϕsn,∆) /∈ Ω(QS ,∆), i.e.,

lim inf
n→∞

− 1

n
lnP

(n)
∆ (QS , Rs,n) < F

(
lim
n→∞

Rs,n, QS ,∆
)

for such sequence of source codes (fsn, ϕsn,∆). Let
{
s∗ = s∗(n) ∈ R

tn
}

be the sequence of

source vectors achieving the minimum in D(n)(QS , Rs,n,∆) for every n. Then

lim sup
n→∞

D(n)(QS , Rs,n,∆) = lim sup
n→∞

1

Mn

Mn∑

j=1

1

{
d(tn) (s∗, cj) > ∆

}
= 0 (10.45)

implies that the source codebook C has only L1n codewords outside the ball B(s∗,∆) such

that

lim sup
n→∞

L1n

Mn
= 0,

recalling that under the squared-error distortion measure

B(s∗,∆) =
{
s ∈ Stn : ‖s∗ − s‖2 ≤ tn∆

}
,

where ‖s∗ − s‖ =
√∑tn

i=1(s
∗
i − si)2. It then follows that

lim sup
n→∞

P
(n)
∆ (QS , Rs,n)

= lim sup
n→∞



1 −Q

(tn)
S


⋃

ci∈C

B(ci,∆)







≥ lim sup
n→∞



1 −Q

(tn)
S


 ⋃

ci∈B(s∗,∆)

B(ci,∆)


−Q

(tn)
S


 ⋃

ci /∈B(s∗,∆)

B(ci,∆)





 .

Clearly, the squared distance between any vector s in the ball B(ci,∆) and the “center” s∗

is bounded by

‖s∗ − s‖2 ≤ (‖s∗ − ci‖ + ‖ci − s‖)2 ≤ (
√
tn∆ +

√
tn∆)2 = 4tn∆.

We hence can bound

Q
(tn)
S


 ⋃

ci∈B(s∗,∆)

B(ci,∆)


 ≤ Q

(tn)
S

(
s : ‖s∗ − s‖2 ≤ 4tn∆

)
≤ Q

(tn)
S

(
s : ‖s‖2 ≤ 4tn∆

)
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where the last inequality holds since the zero-mean MGS has a larger density in the the

neighborhood of origin 0.

Now, based on Lemma 10.1, we claim that, there exists a sequence of (tn, L1n + L2n)

source codes (f̃sn, ϕ̃sn,∆) with code rate

RL,n =
ln(L1n + L2n)

n

such that the probability of excess distortion is less than

1 −Q
(tn)
S


 ⋃

ci∈B(s∗,∆)

B(ci,∆)


−Q

(tn)
S


 ⋃

ci /∈B(s∗,∆)

B(ci,∆)


 .

In other words, for any given sequence of source codes with

lim sup
n→∞

D(n)(QS , Rs,n,∆) = 0,

the corresponding probability of excess distortion can be lower bounded by another sequence

of codes with rate RL,n, i.e.,

lim sup
n→∞

P
(n)
∆ (QS , Rs,n) ≥ lim sup

n→∞
P

(n)
∆ (QS , RL,n).

It is easy to see that

lim sup
n→∞

RL,n ≤ lim
n→∞

Rs,n − ǫ = R− ǫ

for some ǫ > 0 since

lim sup
n→∞

L1n + L2n

Mn
= 0.

Therefore, by the definition of source excess distortion exponent (Definition 2.2),

lim inf
n→∞

− 1

tn
lnP

(n)
∆ (QS , Rs,n) ≤ F (R− ǫ,QS ,∆) < F (R,QS ,∆)

since F (R,QS ,∆) is strictly increasing and continuous at R = limn→∞
Mn

tn > R(QS ,∆). �

Thus, for any sequence of tandem codes composed by good channel and source codes,

there exists some δ > 0 (independent of n) such that

lim sup
n→∞

P
(n)
∆∗ (QS ,WY |X , E , τ) ≥ lim sup

n→∞
δ
(
P

(n)
∆ (QS , Rs,n) + P (n)

ec (WY |X , Rc,n, E)
)

≥ lim sup
n→∞

δmax{P (n)
∆ (QS , Rs,n), P

(n)
ec (WY |X , Rc,n, E)}

(10.46)
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or equivalently

lim inf
n→∞

− 1

n
lnP

(n)
∆∗ (QS ,WY |X , E , τ) ≤ min

{
lim inf
n→∞

− 1

n
lnP

(n)
∆ (QS , Rs,n),

lim inf
n→∞

− 1

n
lnP (n)

ec (WY |X , Rc,n, E)

}
.

Now for any sequence of tandem codes (f∗n, ϕ
∗
n,∆, E , τ) ∈ Λ(QS ,WY |X ,∆, E , τ), let

R = lim
n→∞

lnMn

τn
∈ (R(QS ,∆), C(WY |X , E)/τ).

By the definition of the source excess distortion exponent (Definition 2.2)

lim inf
n→∞

− 1

n
lnP

(n)
∆ (QS , Rs,n) ≤ τFG(R,QS ,∆)

holds for any sequence of (τn,Mn) block source codes since lim supn→∞
lnMn

τn ≤ R. Simi-

larly, by the definition of the channel error exponent (Definition 2.4)

lim inf
n→∞

− 1

n
lnP (n)

ec (WY |X , Rc,n, E) ≤ E(τR,WY |X , E)

holds for any sequence of (n,Mn) block channel codes since lim infn→∞
lnMn

n ≥ τR. There-

fore,

lim inf
n→∞

− 1

n
lnP

(n)
∆∗ (QS ,WY |X , E , τ) ≤ min{τFG(R,QS ,∆), E(τR,WY |X , E)}

holds for any sequence of tandem codes (f∗n, ϕ
∗
n,∆, E , τ) ∈ Λ(QS ,WY |X ,∆, E , τ) composed

by good source and channel codes. Since R = limn→∞ ln Mn

τn ∈ (R(QS ,∆), C(WY |X , E)/τ)

is arbitrary, we can take the supremum of R over this region, which yields the upper bound

(10.42). �

Since the MGC error exponent is not known for low rates, we can obtain computable

lower and upper bounds to E∆,E
T by replacing E(R,WY |X , E) by its lower and upper bounds.

Corollary 10.3

E∆,E
Tr (QS ,WY |X , τ) ≤ E∆,E

T (QS ,WY |X , τ) ≤ E
∆,E
Tsp(QS ,WY |X , τ)

where

E∆,E
Tr (QS ,WY |X , τ) , sup

τR(QS ,∆)<R<C(WY |X ,E)
min

{
τFG

(
R

τ
,QS ,∆

)
, E†(R,WY |X , E)

}
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and

E
∆,E
Tsp(QS ,WY |X , τ) , sup

τR(QS ,∆)<R<C(WY |X ,E)
min

{
τFG

(
R

τ
,QS ,∆

)
, Esp(R,WY |X , E)

}
.
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Figure 10.16: The regions for the MGS-MGC pairs with τ = 1. Note that the region for

E∆,E
J > E∆,E

T does not include the boundary.

Obviously, the tandem exponent is exactly determined if

τFG(R/τ,QS ,∆) and Esp(R,WY |X , E)

intersects at rate R′
o ≥ Rcr(WY |X) (in that case R′

o = Ro). Furthermore, it can be seen

that the JSCC exponent strictly outperform the tandem coding exponent (E∆,E
J > E∆,E

T )

if E∆,E
J is determined exactly by its two bounds, i.e., if (8.44) is satisfied; or if the tandem

coding exponent is determined by E∆,E
Tr and E

∆,E
Tsp, i.e. R′

o ≥ Rcr(WY |X).

In contrast to the discrete systems studied in Chapters 5 and 7, the source and channel

exponents for the Gaussian system have very simple analytical (computable) form, which are

also continuous and differentiable functions of rate R (their expressions do not include any

optimization operation). Therefore, the advantage of the JSCC exponent over the tandem
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Figure 10.17: MGS-MGC source-channel pair: the lower bound of E∆,E
J vs the upper bound

of E∆,E
T for τ = 1.

exponent can be assessed by numerically comparing the lower bound of joint exponent E∆,E
Jr

and the upper bound of tandem exponent E
∆,E
Tsp. For transmission rate τ = 1, we partition in

Fig. 10.16 the SNR-SDR plane into three regions. When SDR ≥ 4 (≈ 6dB), E∆,E
Jr > E

∆,E
Tsp

(which means E∆,E
J > E∆,E

T ) for a large class of source-channel pairs. For example, when

SDR = 7 dB, E∆,E
J > E∆,E

T holds for 10 dB ≤ SNR ≤ 24 dB (approximately). We also

compute the two bounds of E∆,E
J and E∆,E

T , no matter they are determined or not, and we

see from Fig. 10.17 that when SDR = 8 dB, E∆,E
J (or its lower bound) almost double E∆,E

T

(or its upper bound) for 8dB ≤ SNR ≤ 15dB. It is also observed that for the same exponent

(e.g. 0.2 ∼ 1.1), the gain of JSCC over tandem coding could be as large as 2dB in SNR.

Similar results are observed for other parameters, see Figs. 10.18 and 10.19 for τ = 1.5.
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Figure 10.18: The regions for the MGS-MGC pairs with τ = 1.5. Note that the region for

E∆,E
J > E∆,E

T does not include the boundary.

10.6 Asymmetric 2-User Systems

10.6.1 Tandem System with Common Randomization

In Section 9.5, we showed that the reliable transmissibility condition (τHQ(S), τHQ(L|S)) ∈

R(WY Z|UX) in the JSCC theorem (Theorem 9.4) for asymmetric 2-user systems can be

achieved by a tandem coding system where separately designed source and channel coding

operations are sequentially applied; see Figs. 9.3 and 9.4. Note however that, as long as the

source encoder is directly concatenated by a channel encoder, the source statistics would be

automatically brought into the channel coding stage. Thus, the performance of the channel

code is affected by that of the source code (since the compressed messages (indices) fed into

the channel encoders are not necessarily uniformly distributed). Similar to the single-user

systems, to statistically decouple the source and channel coding operations, we need to

employ common randomization between the source and channel coding components. This

results in a “complete” tandem coding system with fully separate source and channel coding
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Figure 10.19: MGS-MGC source-channel pair: the lower bound of E∆,E
J vs the upper bound

of E∆,E
T for τ = 1.5.

operations, and for which we can establish an expression for its error exponent in terms of

the source coding and channel coding exponents. The tandem coding system is depicted in

Figs. 10.20 and 10.21.

As in Section 9.5, the encoder fn is composed of two source encoders fsn and gsn and

one channel encoder fcn. The difference is that the indices i = fsn(l) and j = gsn(s) are

separately mapped to channel indices through permutation functions πf : {1, 2, ...,Ml} →

{1, 2, ...,Ml} and πg : {1, 2, ...,Ms} → {1, 2, ...,Ms}, which are usually called index assign-

ments (πf and πg are assumed to be known at both the transmitter and the receiver).

Furthermore, the choice of πf (πg, respectively), is assumed random and equally likely from

all Ml! (Ms!, respectively) different possible index assignments, so that the indices fed into

the channel encoder have a uniform distribution and are mutually independent:

Pr(πf (fsn(L
τn)) = a) =

Ml∑

i=1

Pr(fsn(L
τn) = i)Pr(πf (i) = a|fsn(Lτn) = i)
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πg(j) ∈ {1, 2, ...,Ms}

6

Source
Encoder gsn

-j ∈ {1, 2, ...,Ms} πg -πg(j) ∈ {1, 2, ...,Ms}
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Encoder fn

Encoder gn

Figure 10.20: Tandem source-channel coding system - encoders.

=

Ml∑

i=1

Pr(fsn(L
τn) = i)

(Ml − 1)!

Ml!
=

1

Ml
,

Pr(πg(gsn(S
τn)) = b) =

1

Ms
,

Pr(πg(fsn(L
τn)) = a, πg(gsn(S

τn)) = b) = Pr(πf (fsn(L
τn)) = a)Pr(πg(gsn(S

τn)) = b),

for any (a, b) ∈ {1, 2, ...,Ml}×{1, 2, ...,Ms}. Hence common randomization achieves statis-

tical separation between the source and channel coding operations.

Similarly, the encoder gn is independently composed of a source encoder gsn, an index

mapping πg : {1, 2, ...,Ms} → {1, 2, ...,Ms}, and a channel encoder gcn : {1, 2, ...,Ms} → Un.

At the receiver side, the decoder ϕn is composed of a channel decoder ϕcn, a pair of index

mappings (π−1
f , π−1

g ) which maps every channel index pair (πf (̂i), πg(ĵ)) back to a source

index pair (̂i, ĵ), and a source decoder ϕsn which outputs the approximation of the source

messages s′ and l′. Similarly, the decoder ψn is composed of a channel decoder ψcn : Zn →

{1, 2, ...,Ms}, an index mapping π−1
g , and a source decoder ψsn : {1, 2, ...,Ms} → Sτn.

For the above tandem system we assume that the following limits exist:4

lim inf
n→∞

1

n
log2Ml = lim sup

n→∞

1

n
log2Ml = lim

n→∞

1

n
log2Ml

4This assumption is used later to upper bound the tandem coding error exponent in Theorem 10.13.
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Figure 10.21: Tandem source-channel coding system - decoders.

and

lim inf
n→∞

1

n
log2Ms = lim sup

n→∞

1

n
log2Ms = lim

n→∞

1

n
log2Ms.

10.6.2 Tandem Coding Error Exponent

We now can study the error performance and exponent of tandem source-channel coding

(with common randomization) for the asymmetric 2-user system. Since the tandem code

consists of a source code (fsn, gsn, ϕsn, ψsn) and a channel code (fcn, gcn, ϕcn, ψcn), we first

define the corresponding source coding error exponent (note that the corresponding channel

coding error exponent for the asymmetric 2-user channel was defined in Section 9.6).

Let (fsn, gsn, ϕsn, ψsn) be a sequence of source code for CS QSL with common source

rate R̂s and private source rate R̂l as defined in the last section. The probabilities of Y -

and Z- error for the source coding are respectively given by

P
(n)
Y es(R̂s, R̂l, QSL) , Pr({ϕsn(i, j) 6= (Sτn, Lτn)}) =

∑

(s,l):ψsn(i,j)6=(s,l)

Q
(n)
SL(s, l) (10.47)

and

P
(n)
Zes(R̂s, R̂l, QSL) = P

(n)
Ze (R̂s, QS) , Pr({ψsn(j) 6= Sτn}) =

∑

s:ψsn(i)6=s

Q
(n)
S (s) (10.48)

where i , fsn(l) and j , gsn(s). The probability of the overall 2-user source coding error

is given by

P (n)
es (R̂s, R̂l, QSL) , Pr ({ϕsn(i, j) 6= (Sτn, Lτn)} ∪ {ψsn(i) 6= Sτn}) . (10.49)
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Definition 10.6 The 2-user source coding error exponent E(R1, R2, QSL), for any R1 > 0

and R2 > 0, is defined by the supremum of the set of all numbers Es for which there exists a

sequence of source codes (fsn, gsn, ϕsn, ψsn) with blocklength n, the common rate no larger

than R1, and the private rate no larger than R2, such that

Es ≤ lim inf
n→∞

− 1

n
log2 P

(n)
es (R1, R2, QSL). (10.50)

Clearly, for any sequence of source codes (fsn, gsn, ϕsn, ψsn), the error probability

P (n)
es (R1, R2, QSL)

must be larger than P
(n)
Y es(R1, R2, QSL) and P

(n)
Zes(R1, R2, QSL)) but less than the sum of the

two, so we have

lim inf
n→∞

− 1

n
log2 P

(n)
es (R1, R2, QSL)

= lim inf
n→∞

− 1

n
log2 max

(
P

(n)
Y es(R1, R2, QSL), P

(n)
Zes(R1, R2, QSL)

)
. (10.51)

In what follows we need to make two assumptions regarding the source codes in order

to analyze the probability of error of the overall tandem system. Let the source codebook

for (gsn, ψsn) (Receiver Z) be C(g) = {c(g)
1 , ..., c

(g)
Ml

} ⊆ Sτn, and let the source codebook for

(fsn, gsn, ϕsn) (Receiver Y ) be C(f) × C(g) where C(f) = {c(f)
1 , ..., c

(f)
Ms

} ⊆ Lτn. We assume

that (A1) the source encoder fsn satisfies the condition (for every n): QτnL (f−1
sn (i)) > 0

and c
(f)
i ∈ f−1

sn (i) for every i = 1, 2, ...,Ml , where f−1
sn (i) , {l ∈ Lτn : fsn(l) = i}. If

QτnL (f−1
sn (i)) = 0 for some i, then the codeword c

(f)
i is redundant, and we can remove

it from the codebook C(f). If c
(f)
i /∈ f−1

sn (i), we can map the index i to some source

message l̂ such that QτnL (̂l) > 0 and fsn(̂l) = i, so that the source coding probability of

error P
(n)
Y es(R̂s, R̂l, QSL) is strictly reduced by setting l̂ as the codeword c

(f)
i (note that

P
(n)
Zes(R̂s, R̂l, QSL) is independent of fsn). Similarly, we assume that (A2) the source code

gsn satisfies the condition (for every n): QτnS (g−1
sn (j)) > 0 and c

(g)
j ∈ g−1

sn (j) for every j =

1, 2, ...,Ms, where g−1
sn (j) , {s ∈ Sτn : gsn(s) = j}. If QτnS (g−1

sn (j)) = 0 for some j, then the

codeword c
(g)
j is redundant, and we can remove it from the codebook C(g). If c

(g)
j /∈ g−1

sn (j),

we can map the index j to some source message ŝ such that QτnS (̂s) > 0 and gsn(̂s) = j,
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so that the source coding error probabilities P
(n)
Y es(R̂s, R̂l, QSL) and P

(n)
Zes(R̂s, R̂l, QSL) are

strictly reduced by setting ŝ as the codeword c
(g)
j . We remark that the source code satisfying

(A1) and (A2) does not lose optimality (in the sense of achieving the source error exponent).

Denote π−1(i, j) , (π−1
f (i), π−1

g (j)). By introducing (A1) and (A2), the error probability

of the tandem code (f∗n, ϕ
∗
n) , (fsn, gsn, ϕsn, ψsn, fcn, gcn, ϕcn, ψcn) is given by

P
(n)
e∗ (QSL,WY Z|UX , τ)

, Pr
({
ϕsn

[
π−1(ϕcn(Y

n))
]
6= (Sτn, Lτn)

}⋃
{ψsn

[
π−1
g (ψcn(Z

n))
]
6= Sτn}

)

=

Ml∑

a=1

Ms∑

b=1

Pr(πf [fsn(L
τn)] = a)︸ ︷︷ ︸

=1/Ml

Pr(πg[gsn(S
τn)] = b)︸ ︷︷ ︸

=1/Ms[
Pr
(
{ϕcn(Y n) 6= (a, b)}

⋃
{ψcn(Zn) 6= b}

∣∣∣ πf [fsn(Lτn)] = a, πg[gsn(S
τn)] = b

)
+

Pr ({ϕcn(Y n) = (a, b) and ψcn(Z
n) = b}

∩{ϕsn[π−1(a, b)] 6= (Sτn, Lτn) or ψsn[π
−1
g (b)] 6= Sτn}

∣∣

πf [fsn(L
τn)] = a, πg[gsn(S

τn)] = b
)]

(10.52)

=

Ml∑

a=1

Ms∑

b=1

1

MlMs
Pr
(
{ϕcn(Y n) 6= (a, b)}

⋃
{ψcn(Zn) 6= b}|(a, b) is sent

)

+Pr
(
{ϕsn[Sτn, Lτn] 6= (Sτn, Lτn)}

⋃
{ψsn[Sτn] 6= Sτn}

)

Ml∑

a=1

Ms∑

b=1

1

MlMs
Pr
(
{ϕcn(Y n) = (a, b)}

⋂
{ψcn(Zn) = b}|(a, b) is sent

)
(10.53)

= P (n)
ec (τR̂s, τ R̂l,WY Z|UX) + [1 − P (n)

ec (τR̂s, τ R̂l,WY Z|UX)]P (τn)
es (R̂s, R̂l, QSL),(10.54)

where (10.52) follows from assumptions (A1) and (A2), which imply that a channel decoding

error must cause an overall system decoding error.

Definition 10.7 The tandem coding error exponent ET (QSL,WY Z|UX , τ) for source QSL

and channel WY Z|UX is defined as the supremum of the set of all numbers Ê for which there

exists a sequence of tandem codes (f∗n, ϕ
∗
n) satisfying (A1) and (A2) with transmission rate

τ such that

Ê ≤ lim inf
n→∞

− 1

n
log2 P

(n)
e∗ (QSL,WY Z|UX , τ).
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When there is no possibility of confusion, ET (QSL,WY Z|UX , τ) will often be written as

ET . The following lemma illustrates the relation between ET and EJ . Similar to Proposition

10.1, we have the following order.

Proposition 10.3 EJ(QSL,WY Z|UX , τ) ≥ ET (QSL,WY Z|UX , τ).

We next give an explicit formula for ET in terms of the corresponding source and channel

error exponents.

Theorem 10.13

ET (QSL,WY Z|UX , τ) = sup
R1>0,R2>0

min

{
τe

(
R1

τ
,
R2

τ
,QSL

)
, E(R1, R2,WY Z|UX)

}

where e(R1, R2, QSL) is the 2-user source coding error exponent defined in (10.6) and

E(R1, R2,WY Z|UX) is the asymmetric 2-user channel coding error exponent defined in (9.2).

Proof: The proof is basically the same as the proof for Theorem 10.1 and is omitted. �

Although tandem source-channel coding can achieve the reliable transmission condition,

it might not achieve the system JSCC error exponent. In the following we consider the

tandem system consisting of CS QSL and the AMAC WY |UX . For the CS-AMAC tandem

system, we have only one receiver, Receiver Y , and the source decoder (cf. Fig. 10.21) ϕsn

becomes a Sepian-Wolf decoder [29]. Furthermore,

P (n)
es (R1, R2, QSL) = P

(n)
Y es(R1, R2, QSL) =

∑

(s,l):ψsn(i,j)6=(s,l)

Q
(n)
SL(s, l)

and

P (n)
ec (R1, R2,WY |UX) = P

(n)
Y ec(R1, R2,WY |UX) =

1

2R1+R2

∑

Ms×Ml

∑

y:ϕcn(y)6=(j,i)

W
(n)
Y |X(y|u,x).

In this case, we can upper bound the source error exponent by

e

(
R1

τ
,
R2

τ
,QSL

)
≤ min

PSL:τHP (S,L)=R1+R2

D(PSL‖QSL) = max
ρ≥0

[
ρ
R1 +R2

τ
− Es1(ρ,QSL)

]
,

(10.55)
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which is obtained by viewing the two source encoders fsn and gsn as a joint encoder, where

Es1(ρ,QSL) is given by (9.92). Therefore, we can upper bound the tandem coding error

exponent for the CS-AMAC system by

ET (QSL,WY Z|UX , τ)

≤ sup
R1>0,R2>0

min

{
max
ρ≥0

[ρ(R1 +R2) − τEs1(ρ,QSL)] , Esp(R1, R2,WY |UX)

}

(10.56)

where Esp(R1, R2,WY |UX) is an upper bound for the channel error exponent and is given

by (9.91).

Example 10.5 Now consider the same binary CS QSL given in Example 9.1 such that

Es1(ρ,QSL) = (1 + ρ) log2

{[(
2

3

) 1
1+ρ

+

(
1

3

) 1
1+ρ

]
(1 − q)

1
1+ρ + 2

(q
2

) 1
1+ρ

}
,

and consider the same binary multiple access channel WY |UX as in Example 9.1 with binary

additive noise PF (F = 1) = ǫ (0 < ǫ < 1/2) such that

Esp(R1, R2,WY |UX) = min
i=1,2

max
ρ≥0

[Ẽi(ρ,WY |UX) − ρR̂i] = max
ρ≥0

[Ẽi(ρ,WY |UX) − ρ(R1 +R2)]

where R̂1 = R1 +R2, R̂2 = R2, and

Ẽ1(ρ,WY |UX) = Ẽ2(ρ,WY |UX) = ρ− (1 + ρ) log2

(
ǫ

1
1+ρ + (1 − ǫ)

1
1+ρ

)
.

It follows from (10.56) that upper bound for ET only depends on the sum rate R1 +R2 and

hence the upper bound can be reduced to

ET (QSL,WY Z|UX , τ) ≤ sup
R>0

min

{
max
ρ≥0

[ρR− τEs1(ρ,QSL)] ,max
ρ≥0

[Ẽ1(ρ,WY |UX) − ρR

}
.

In Fig. 10.22, we plot the lower bound for EJ from (9.96), and the above upper bound

for ET for different source and channel parameters. It is seen that for a large class of (q, ǫ)

pairs with the same transmission rate τ , there is a considerable gap between the upper

bound for ET and the lower bound for EJ , which implies that JSCC can substantially

outperforms tandem coding in terms of error exponent for many binary CS-AMAC systems
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with additive noise. In fact, from Fig. 10.22, we see that EJ almost doubles ET for many

(q, ǫ) pairs. When EJ ≈ 2ET holds, it can be equivalently interpreted that, to achieve

the same system error performance, JSCC only requires around half delay of the tandem

coding, provided that the coding length is sufficiently large.
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Figure 10.22: The lower bound of EJ vs the upper bound of ET .

10.7 Conclusion

We derived a conceptual formula for the tandem coding error exponent for arbitrary discrete

systems. We hence can provide a systematic comparison between EJ and ET for DMS-DMC

pairs and SEM source-channel pairs. We showed that JSCC can at most double the error

exponent vis-a-vis tandem coding for these discrete source-channel pairs. However, we are

not able to show that the same relation is still valid for the lossy discrete case. We established

sufficient explicit conditions under which EJ > ET for discrete memoryless systems and

SEM systems. Numerical results indicate that EJ ≈ 2ET for a large class of DMS-DMC
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pairs and SEM source-channel pairs, hence illustrating the substantial potential benefit of

JSCC over tandem coding. This benefit is also shown to result into a power saving gain of

more than 2 dB for a binary DMS and a BPSK-modulated AWGN/Rayleigh channel with

finite output quantization. We next partially extended our results to discrete memoryless

systems with channel output feedback and source SI. Numerical results demonstrated that

the JSCC is superior to the corresponding tandem coding error exponent for many cases.

We also derived an expression for the tandem coding exponent for Gaussian source-

channel pairs provided that SDR ≥ 4 (≈ 6dB). The tandem Gaussian exponent has a

similar form as the discrete tandem error exponent. As in the discrete cases, the JSCC

exponent is observed to be considerable larger than the tandem exponent for a large class

of Gaussian source-channel pairs.

We then derive a formula for the tandem coding error exponent for the 2-user asymmetric

source-channel systems in terms of the 2-user source and channel exponents. To exploit the

advantage of JSCC over tandem coding for the 2-user system, we show that the tandem

coding exponent can never be larger than the JSCC exponent, and we numerically show

that there is a considerable gain of the JSCC error exponent over the tandem coding error

exponent for a large class of binary CS-AMAC systems with additive noise.



Chapter 11

Conclusion

11.1 Contributions

The main purpose of the thesis was to study the JSCC reliability function for single-user

and multi-user systems. The following techniques were used to establish and analyze lower

and upper bounds for the JSCC reliability function for different systems.

(a) We generalized Csiszár’s type packing lemma for a 2-dimensional type setting and

we proposed a new continuous-type class, the Laplacian-type class, to analyze the

memoryless Laplacian sources.

(b) Several approaches were used for upper bounding the JSCC reliability function:

• We employed the type counting argument to obtain an upper bound in terms of

the source and channel error exponents (e.g. Theorems 6.1, 7.5 and 9.3);

• We employed the strong converse JSCC theorem and the artificial source-channel

pairs to lower bound the probability of decoding error/exceeding distortion (e.g.,

Theorems 7.2, 8.2, and 8.6).

(c) To establish a lower bound for the JSCC reliability function, the following basic bound-

ing techniques were used:

323
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• We employed a joint type packing lemma combined with generalized mutual

information decoders/conditional mutual information decoders to upper bound

the probability of error (e.g., Theorems 6.4 and 9.1);

• We modified Zigangirov’s iteration algorithm to upper bound the probability of

error in the presence of feedback (e.g., Theorem 6.2).

• We employed the random-binning encoder together with a minimum conditional

entropy decoder in the two-stage JSCC to upper bound the probability of error

(e.g., Theorem 6.4);

• We employed and modified Gallager’s classical random-coding bound for lossless

JSCC with channel input cost constraints (e.g., Theorems 8.3, 8.6 and 8.7);

• We employed and extended the two-stage (∆-admissible quantization plus lossless

JSCC) JSCC scheme to upper bound the probability of excess distortion (e.g.,

Theorems 8.3, 8.6 and 8.7);

• We employed superposition coding for the transmission of two CS over a 2-user

channel to enlarge achievable error exponents (e.g., Theorem 9.1).

(d) Finally, we employed the properties of conjugate functions and Fenchel duality theo-

rem to evaluate these upper and lower bounds, and to show the relation between the

results of Gallager and Csiszár (Observation 5.1).

Now let us, chapter by chapter, go through the main contributions of the thesis.

In Chapter 3, we generalized Csiszár’s type packing lemma from a single type setting

to a 2-dimensional joint type setting. We developed Laplacian-type class and formulated a

type covering lemma for this continuous type class.

In Chapter 4, we illustrated the (Fenchel transform) relations between source/channel re-

liability functions (error exponents and excess distortion exponents) and the source/channel

functions. Several Fenchel transforms were also derived; see Table 4.1.

In Chapter 5, by employing the Fenchel duality theorem, we established equivalent

expressions in terms of the difference of source and channel functions for Csiszár’s random-
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coding source-channel exponent EJr, sphere-packing source-channel exponent EJsp, and

expurgated source-channel exponent EJex for discrete memoryless systems. A sufficient

and necessary condition for which EJr = EJsp was given. We also examined this condition

to DMS-DMC pairs when the channel admits a symmetric distribution. We derived a

sufficient and necessary condition under which EJex strictly improves EJr. This condition

has been examined for equidistant channels. Using a similar optimization technique, we

also derived equivalent expressions for Csiszár’s upper and lower bounds for the lossy JSCC

excess distortion exponent for binary input channels under Hamming source distortion.

In Chapter 6, we first established upper and lower bounds for the JSCC error expo-

nent EJ,fb for DMS-DMC system with perfect feedback. It was demonstrated by numerical

examples that feedback can strictly increase the JSCC error exponent. The source side in-

formation was next considered. When the source side information is available at the decoder

only, we established a lower bound for the JSCC error exponent ESIDJ . We established the

JSCC theorem and proved that the separation principle holds for this scenario. We showed

that, in the presence of the source side information at the decoder, the JSCC error exponent

can be strictly larger than the one without any side information. A sufficient condition for

which the source side information can improve the JSCC error exponent for a binary source

and a symmetric channel has been driven.

In Chapter 7, we mainly focused on establishing upper bounds for the JSCC error expo-

nent for SEM source-channel pairs. We first established a sphere-packing type computable

upper bound in terms of Rényi entropy rates of artificial Markovian source and noise pro-

cesses. We then established a conceptual upper bound in terms of SEM source and SEM

channel error exponents by introducing Markov types. By comparing the sphere-packing

type upper bound with Gallager’s lower bound, when the later one is specialized to SEM

source-channel systems, we obtained a sufficient and necessary condition for which the JSCC

error exponent is exactly determined by the upper and lower bounds. By using the Fenchel

duality theorem, equivalent expressions for these bounds were derived as in the case of

memoryless systems. As by-products, we obtained upper bounds for the SEM source error

exponent and the SEM channel error exponent.
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In Chapter 8, we first established upper and lower bounds for the JSCC excess distortion

E∆,E
J for an MGS (under the squared-error distortion) and an MGC (with the quadratic

power constraint). Equivalent expressions for these bounds were given, via which we ob-

tained a sufficient and necessary condition for the upper and lower bounds to coincide. We

next extended the results regarding the upper and lower bounds for the JSCC excess dis-

tortion exponent to a system consisting of an MLS under magnitude-error distortion and

an MGC. We also proved a lower bound for the JSCC exponent for a general class of con-

tinuous source-channel pairs when the distortion is a metric and if there exists an element

so ∈ R with E exp[td(s, so)] <∞ for all t ∈ (−∞,+∞), where the expectation is taken over

the source distribution.

In Chapter 9, we established universally achievable error exponent pairs for transmitting

two correlated sources over a 2-user asymmetric discrete channel. Lower and upper bounds

for the system overall JSCC error exponent EJ as well as the JSCC theorem were estab-

lished. We proved that the separation principle holds for the asymmetric 2-user scenario.

We also applied these results to CS-AMAC systems and CS-ABC systems. We finally

evaluated our bounds for EJ for certain CS-AMAC systems when the channel admits a

symmetric distribution by deriving equivalent expressions for the lower and upper bounds

for the system JSCC error exponent in terms of source and channel functions.

In Chapter 10, we first derived a formula for the tandem coding error exponent ET for

discrete system with arbitrary memory. We then compared the JSCC error exponent EJ

with the tandem coding error exponent ET for DMS-DMC pairs and SEM source-channel

pairs. For both cases, we have shown that EJ can at most double ET . Several computable

sufficient conditions for which EJ > ET was established for the discrete memoryless and

Markovian systems. The numerical results demonstrated that these conditions are satisfied

by a large class of source-channel pairs, and for many cases EJ can be close to twice ET .

Such exponent improvement due to JSCC translates into a power saving gain of more than

2 dB for a binary DMS and a BPSK-modulated AWGN/Rayleigh channel with finite output

quantization. We next derived the tandem excess distortion exponent E∆,E
T for MGS-MGC

pairs when the distortion threshold is less than 1/4 of the source variance. It was seen that
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E∆,E
T admits a similar expression as ET in the discrete case. By numerically comparing

the lower bound of the JSCC excess distortion exponent E∆,E
J with E∆,E

T , we observed that

E∆,E
J substantially outperforms E∆,E

T for many MGS-MGC pairs. We derived a formula for

the tandem coding error exponent of the asymmetric 2-user system. Numerical examples

show that for a large class of systems consisting of two correlated sources and an asym-

metric multiple-access channel with additive noise, the JSCC error exponent considerably

outperforms the corresponding tandem coding error exponent.

11.2 Suggestions for Future Research

Since the JSCC reliability function reflects the best (asymptotic) performance of transmit-

ting a single source (or multiple sources) over a communication channel, it provides an

important information-theoretic limit that points out certain systems for which a search

for good joint codes might prove fruitful. On the other hand, determining and bounding

the JSCC reliability function is one of the most challenging problems in Shannon theory.

In this section, we will touch on some open problems and indicate suggestions for future

research.

First of all, important work has to be done with respect to pursuing tighter upper

and lower bounds for EJ (or E∆
J , E∆,E

J ). Following the conceptual upper bound for the

JSCC error exponent for DMS-DMC and SEM source-channel systems (which states that

EJ is upper bounded by the smallest sum of the source and channel error exponents),

upper bounding the JSCC error exponent for the two discrete systems is strongly related

to upper bounding the channel error exponent, since a new upper bound for the channel

error exponent leads to a new JSCC error exponent upper bound. For instance, recent

works (see [14], [23] and the references therein) have proved tighter upper bounds for the

BSC. It is shown that these sharpened upper bounds coincide with the DMC random-coding

lower bound Er(R,WY |X) for some interval directly below the channel critical rate (in other

words, it is shown that for the BSC with its ε above a certain threshold, Er(R,WY |X) =

E(R,WY |X) for R1 ≤ R ≤ C(WY |X) where R1 can be less than Rcr(WY |X)). Therefore, by
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using the new upper bound for BSC error exponent in the bound

EJ(QS ,WY |X , τ) ≤ inf
R

[
τe

(
R

τ
,QS

)
+ E(R,WY |X)

]

we can enlarge Region B in Fig. 5.4., i.e., we can determine EJ for more binary source and

BSC pairs.

In Chapter 5, we examined Csiszár’s expurgated lower bound EJex for a DMS and a

DMC with zero-error capacity equal to 0 if Eex(R,WY |X) = maxPX
Eex(R,PX ,WY |X) is

attained for a PX not depending on R. We wonder whether the expurgated source-channel

lower bound holds for arbitrary DMS-DMC pairs, and more generally, whether there exists

an expurgated-type bound for other systems, say SEM source-channel systems, or MGS-

MGC systems.

In Chapter 6, we mentioned two interesting problems for future study: how to es-

tablish an upper bound for the JSCC error exponent with source SI at decoder, and we

wonder whether the lower bound ESIDJ still holds if the random-coding channel exponent

Er(τHPS
(S),WY |X) is replaced by the expurgated channel exponent Eex(τHPS

(S),WY |X)?

We also mention the need for further study with respect to the tandem coding excess

distortion exponent. After all, most of the applications used today are designed for tandem

systems. In Chapter 10, we proved that the formula for the tandem error exponent for

discrete systems, which is expressed by the maxmin of the source and channel exponents,

is still valid for MGS-MGC systems when the distortion threshold ∆ is less than 1/4 of the

source variance. It might be not difficult to extend this result to MLS-MGC systems due

to the similarity of Gaussian and Laplacian distributions, but the proof for the converse

part of the exponent (Theorem 10.12), which relies on the geometric property of Gaussian

density function, cannot be applied to other sources, say DMS’s with Hamming distortion

measure. We expect that a unified approach irrespective of the distortion measure and the

source distribution can be used to determine the tandem excess distortion exponent.

Additional results might be expected for other source-channel systems, e.g., for trans-

mitting a DMS through a time-varying channel, and for transmitting an MGS over a fading

channel. As Shannon’s source-channel separation theorem breaks down and the achievable
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rate region as well as the proper method of coding are unknown for general multi-terminal

source-channel coding systems, it is important to investigate the JSCC reliability function

for other multi-terminal systems. For example, since we do not have a single-letter char-

acterization of the JSCC theorem for transmitting correlated sources over a multi-terminal

channel, say transmitting three sources (one common source plus two private sources) over

a symmetric multiple-access channel, establishing an achievable lower bound for the JSCC

reliability function is particulalry meaningful.

Finally, note that the JSCC reliability function can be used as a tool (particularly when

it admits a simple analytical expression) for the construction of high-performing JSCC

techniques and JSC modulation constellations for communication systems, (e.g., see [52]

for such a study involving only the channel random-coding error exponent).
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