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Abstract

We investigate the computation of Csiszár’s bounds for the joint source-channel

coding (JSCC) error exponent, EJ , of a communication system consisting of a dis-

crete memoryless source and a discrete memoryless channel. We provide equivalent

expressions for these bounds and derive explicit formulas for the rates where the

bounds are attained. These equivalent representations can be readily computed for

arbitrary source-channel pairs via Arimoto’s algorithm. When the channel’s dis-

tribution satisfies a symmetry property, the bounds admit closed-form parametric

expressions. We then use our results to provide a systematic comparison between the

JSCC error exponent EJ and the tandem coding error exponent ET , which applies

if the source and channel are separately coded. It is shown that ET ≤ EJ ≤ 2ET .

We establish conditions for which EJ > ET and for which EJ = 2ET . Numerical

examples indicate that EJ is close to 2ET for many source-channel pairs. This gain

translates into a power saving larger than 2 dB for a binary source transmitted over

additive white Gaussian noise channels and Rayleigh fading channels with finite

output quantization. Finally, we study the computation of the lossy JSCC error

exponent under the Hamming distortion measure.

Index Terms: Joint source-channel coding, tandem source and channel coding, error expo-

nent, reliability function, Fenchel’s Duality, Hamming distortion measure, random-coding

exponent, sphere-packing exponent, symmetric channels, discrete memoryless sources and

channels.
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1 Introduction

Traditionally, source and channel coding have been treated independently, resulting in

what we call a tandem (or separate) coding system. This is because Shannon in 1948

[45] showed that separate source and channel coding incurs no loss of optimality (in

terms of reliable transmissibility) provided that the coding blocklength goes to infinity.

In practical implementations, however, there is a price to pay in delay and complexity, for

extremely long blocklength. To begin, we note that joint source-channel coding (JSCC)

might be expected to offer improvements for the combination of a source with significant

redundancy and a channel with significant noise, since, for such a system, tandem coding

would involve source coding to remove redundancy and then channel coding to insert

redundancy. It is a natural conjecture that this is not the most efficient approach (even if

the blocklength is allowed to grow without bound). Indeed, Shannon [45] made this point

as follows:

· · · However, any redundancy in the source will usually help if it is utilized

at the receiving point. In particular, if the source already has a certain re-

dundancy and no attempt is made to eliminate it in matching to the channel,

this redundancy will help combat noise. For example, in a noiseless telegraph

channel one could save about 50% in time by proper encoding of the messages.

This is not done and most of the redundancy of English remains in the channel

symbols. This has the advantage, however, of allowing considerable noise in

the channel. A sizable fraction of the letters can be received incorrectly and still

reconstructed by the context. In fact this is probably not a bad approximation

to the ideal in many cases · · ·

The study of JSCC dates back to as early as the 1960’s. Over the years, many works

have introduced JSCC techniques and illustrated (analytically or numerically) their bene-

fits (in terms of both performance improvement and increased robustness to variations in

channel noise) over tandem coding for given source and channel conditions and fixed com-

plexity and/or delay constraints. In JSCC systems, the designs of the source and channel

codes are either well coordinated or combined into a single step. Examples of (both

constructive and theoretical) previous lossless and lossy JSCC investigations include:

(a) JSCC theorems and the separation principle [6], [10], [15], [20], [23], [26], [28], [29],

[32], [51];
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(b) source codes that are robust against channel errors such as optimal (or sub-optimal)

quantizer design for noisy channels [4], [9], [21], [22], [25], [33]–[35], [39], [41], [47],

[48], [50];

(c) channel codes that exploit the source’s natural redundancy (if no source coding is

applied) or its residual redundancy (if source coding is applied) [3], [27], [38], [44],

[57];

(d) zero-redundancy channel codes with optimized codeword assignment for the trans-

mission of source encoder indices over noisy channels (e.g., [21], [54]);

(e) unequal error protection source and channel codes where the rates of the source and

channel codes are adjusted to provide various levels of protection to the source data

depending on its level of importance and the channel conditions (e.g., [30], [40]);

(f) uncoded source-channel matching where the source is uncoded, directly matched to

the channel and optimally decoded (e.g., [2], [24], [46], [53]).

The above references are far from exhaustive as the field of JSCC has been quite active,

particularly over the last 20 years.

In order to learn more about the performance of the best codes as a function of

blocklength, much research has focused on the error exponent or reliability function for

source or channel coding (see, e.g., [13], [19], [23], [31], [37], [52]). Roughly speaking, the

error exponent E is a number with the property that the probability of decoding error

of a good code is approximately 2−En for codes of large blocklength n. Thus the error

exponent can be used to estimate the trade-off between error probability and blocklength.

In this paper we use the error exponent as a tool to compare the performance of tandem

coding and JSCC. While jointly coding the source and channel offers no advantages over

tandem coding in terms of reliable transmissibility of the source over the channel (for

the case of memoryless systems as well as the wider class of stationary information stable

[15, 28] systems), it is possible that the same error performance can be achieved for smaller

blocklengths via optimal JSCC coding.

The first quantitative result on error exponents for lossless JSCC was a lower bound on

the error exponent derived in 1964 by Gallager [23, pp. 534–535]. This result also indicates

that JSCC can lead to a larger exponent than the tandem coding exponent, the expo-

nent resulting from separately performing and concatenating optimal source and channel
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coding. In 1980, Csiszár [17] established a lower bound (based on the random-coding

channel error exponent) and an upper bound for the JSCC error exponent EJ(Q, W, t)

of a communication system with transmission rate t source symbols/channel symbol and

consisting of a discrete memoryless source (DMS) with distribution Q and a discrete mem-

oryless channel (DMC) with transition distribution W . He showed that the upper bound,

which is expressed as the minimum of the sum of te(R/t, Q) and E(R, W ) over R, i.e.,

min
R

[
te

(
R

t
, Q

)
+ E(R, W )

]
, (1)

where e(R, Q) is the source error exponent [13], [17], [31] and E(R, W ) is the channel error

exponent [17], [23], [31], is tight if the latter minimum is attained for an R strictly larger

than the critical rate of the channel. Another (looser) upper bound to EJ(Q, W, t) directly

results from (1) by replacing E(R, W ) by the sphere-packing channel error exponent. He

extended this work in 1982 [18] to obtain a new expurgated lower bound (based on the

expurgated channel exponent) for the above system under some conditions, and to deal

with lossy coding relative to a distortion threshold. Our first objective in this work is

to recast Csiszár’s results in a form more suitable for computation and to examine the

connection between Csiszár’s upper and lower bounds, and also the relation between the

lower bounds of Gallager and Csiszár. After this, we go on to compare the tandem

coding and joint coding error exponents in order to discover how much potential for

improvement there is via JSCC. Since error exponents give only asymptotic expressions

for system performance, our results do not have direct application to the construction

of good codes. Rather, they point out certain systems for which a search for good joint

codes might prove fruitful.

We first investigate the analytical computation of Csiszár’s random-coding lower bound

and sphere-packing upper bound for the JSCC error exponent. By applying Fenchel’s

Duality Theorem [36] regarding the optimization of the sum of two convex functions,

we provide equivalent expressions for these bounds which involve a maximization over

a non-negative parameter of the difference between the concave hull of Gallager’s chan-

nel function and Gallager’s source function [23]; hence, they can be readily computed

for arbitrary source-channel pairs by applying Arimoto’s algorithm [8]. When the chan-

nel’s distribution is symmetric [23], our bounds admit closed-form parametric expressions.

We also provide formulas of the rates for which the bounds are attained and establish

explicit computable conditions in terms of Q and W under which the upper and lower

bounds coincide; in this case, EJ can be determined exactly. A byproduct of our results
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is the observation that Csiszár’s JSCC random-coding lower bound can be larger than

Gallager’s earlier lower bound obtained in [23]. Using a similar approach, we obtain the

equivalent expression of Csiszár’s expurgated lower bound [18] and establish the condition

when the random-coding lower bound can be improved by the expurgated bound. As an

example, we give closed-form parametric expressions of the improved lower bound and

the corresponding condition for equidistant DMCs.

We next employ our results to provide a systematic comparison of the JSCC exponent

EJ(Q, W, t) and the tandem coding exponent ET (Q, W, t) for a DMS-DMC pair (Q, W )

with the same transmission rate t. Since EJ ≥ ET in general (as tandem coding is a special

case of JSCC), we are particularly interested in investigating the situation where EJ > ET .

Indeed, this inequality, when it holds, provides a theoretical underpinning and justification

for JSCC design as opposed to the widely used tandem approach, since the former method

will yield a faster exponential rate of decay for the error probability, which may translate

into substantial reductions in complexity and delay for real-world communication systems.

We establish sufficient (computable) conditions for which EJ > ET for any given source-

channel pair (Q, W ), which are satisfied for a large class of memoryless source-channel

pairs. Furthermore, we show that EJ ≤ 2ET . Numerical examples show that EJ can

be nearly twice as large as ET for many DMS-DMC pairs. Thus, for the same error

probability, JSCC would require around half the delay of tandem coding. This potential

benefit translates into more than 2 dB power gain for binary DMS sent over binary-

input quantized-output additive white Gaussian noise and memoryless Rayleigh-fading

channels.

We also partially address the computation of Csiszár’s lower and upper bounds for

the lossy JSCC exponent with distortion threshold ∆, E∆
J (Q, W, t). Under the case of the

Hamming distortion measure, and for a binary DMS and an arbitrary DMC, we express

the bounds for E∆
J (Q, W, t) and the rates for which the bounds are attained as in the

lossless case.

The rest of this paper is arranged as follows. In Section 2 we describe the system, define

the terminologies and introduce some material on convexity and Fenchel duality. Section 3

is devoted to study the analytical computation of EJ based on Csiszár’s work [17], [18]. In

Section 4, we assess the merits of JSCC by comparing EJ with ET . The computation of

the lossy JSCC exponent is partially studied in Section 5. Finally, we state our conclusions

in Section 6.
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2 Definitions and System Description

2.1 System

We consider throughout this paper a communication system consisting of a DMS {Q : S}
with finite alphabet S and distribution Q, and a DMC {W : X → Y} with finite input

alphabet X , finite output alphabet Y, and transition probability W , PY |X . Without

loss of generality we assume that Q(s) > 0 for each s ∈ S. Also, if the source distribution

is uniform, optimal (lossless) JSCC amounts to optimal channel coding which is already

well-studied. Therefore, we assume throughout that Q is not the uniform distribution on

S except in Section 5 where we deal with JSCC under a fidelity criterion.

A joint source-channel (JSC) code with blocklength n and transmission rate t > 0

(measured in source symbols/channel use) is a pair of mappings fn : Stn −→ X n and

ϕn : Yn −→ Stn. That is, blocks stn , (s1, s2, ..., stn) of source symbols of length tn

are encoded as blocks xn , (x1, x2, ..., xn) = fn(stn) of symbols from X of length n,

transmitted, received as blocks yn , (y1, y2, ..., yn) of symbols from Y of length n and

decoded as blocks of source symbols ϕn(yn) of length tn. The probability of erroneously

decoding the block is

P (n)
e (Q, W, t) ,

∑

{(stn,yn):ϕn(yn)6=stn}

Qtn(stn)Pn,Y |X

(
yn|fn(s

tn)
)
.

Here, Qtn and Pn,Y |X are the tn- and n-dimensional product distributions corresponding

to Q and PY |X respectively.

Throughout the paper, log will denote a base 2 logarithm, |S| will mean the number

of elements in S and similarly for the other alphabets, C will denote the capacity of the

DMC given by

C = max
PX

I(PX ; W ),

where I(PX ; W ) is the mutual information between the channel input and the channel

output [23]. Finally, H(·) will denote the entropy of a discrete probability distribution.

2.2 Error Exponents

Definition 1 The JSCC error exponent EJ(Q, W, t) is defined as the largest number

E for which there exists a sequence of JSC codes (fn, ϕn) with transmission rate t and
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blocklength n such that

E ≤ lim inf
n→∞

− 1

n
log P (n)

e (Q, W, t).

When there is no possibility of confusion, EJ(Q, W, t) will be written as EJ . We know

from the JSCC theorem (e.g., [16, p. 216], [23]) that EJ can be positive if and only if

tH(Q) < C.

For future use, we recall the source and channel functions used by Gallager [23] in

his treatment of the JSCC theorem. We also introduce some useful notation and some

elementary relations among these functions. Let Gallager’s source function be

Es(ρ, Q) , (1 + ρ) log
∑

s∈S

Q(s)
1

1+ρ , ρ ≥ 0. (2)

Let

Ẽ0(ρ, PX , W ) , − log
∑

y∈Y

(
∑

x∈X

PX(x)P
1

1+ρ

Y |X (y|x)

)1+ρ

, ρ ≥ 0, (3)

and

Ẽx(ρ; PX , W ) , −ρ log
∑

x∈X

∑

x′∈X

PX(x)PX(x′)

(
∑

y∈Y

√
PY |X(y | x)PY |X(y | x′)

)1/ρ

, ρ ≥ 1.

(4)

PX in (3) and (4) is an unspecified probability distribution on X . Connected with these

functions are the source error exponent,

e(R, Q) = sup
0≤ρ<∞

[ρR − Es(ρ, Q)], (5)

and three intermediate channel error exponents

Ẽr(R, PX , W ) , max
0≤ρ≤1

[Ẽ0(ρ, PX , W ) − ρR], (6)

Ẽex(R, PX , W ) , sup
ρ≥1

[Ẽx(ρ, PX , W ) − ρR], (7)

and

Ẽsp(R, PX , W ) , sup
0≤ρ<∞

[Ẽ0(ρ, PX , W ) − ρR]. (8)

From these, we can form the random-coding lower bound for the channel error expo-

nent E(R, W ),

Er(R, W ) , max
PX

Ẽr(R, PX , W ), (9)
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the expurgated lower bound

Eex(R, W ) , max
PX

Ẽex(R, PX , W ), (10)

and the sphere-packing upper bound

Esp(R, W ) , max
PX

Ẽsp(R, PX , W ). (11)

In other words, max{Er(R, W ), Eex(R, W )} ≤ E(R, W ) ≤ Esp(R, W ). Also, we can form

Gallager’s channel functions

E0(ρ, W ) , max
PX

Ẽ0(ρ, PX , W ) (12)

and

Ex(ρ, W ) , max
PX

Ẽx(ρ, PX , W ). (13)

It should be noted that maximization over PX means maximization over the closed

bounded set {(p1, . . . , p|X |) : pi ≥ 0,
∑

pi = 1}. Thus, if the function involved is con-

tinuous, the maximum is achieved for some distribution P X .

The functions Ẽr(R, PX , W ) and Ẽsp(R, PX , W ) in (6) and (8) are equal if the maxi-

mizing ρ ≤ 1 in (8) or equivalently, if R ≥ Rcr(PX , W ), where Rcr(PX , W ) is the critical

rate of the channel W under distribution PX , defined by

Rcr(PX , W ) ,
∂Ẽ0(ρ, PX , W )

∂ρ

∣∣∣∣
ρ=1

. (14)

For all PX , Ẽr(R, PX , W ) and Ẽsp(R, PX , W ) vanish for all R ≥ C. Consequently, their

maxima over PX , Er(R, W ) and Esp(R, W ), vanish for R ≥ C and are equal on some

interval [Rcr(W ), C] where Rcr(W ) is the critical rate of the channel and is defined by

Rcr(W ) , inf{R : Er(R, W ) = Esp(R, W )}. (15)

Furthermore, it is known that Esp(R, W ) meets Er(R, W ) on its supporting line of slope

−1 [19, p. 171], which means that Er(R, W ) is a straight line with slope −1 for R ≤
Rcr(W ) and hence

Er(R, W ) = E0(1, W ) − R, R ≤ Rcr(W ). (16)

For all PX , the function Ẽex(R, PX , W ) is a decreasing convex curve with a straight-

line section of slope −1 for R ≥ Rex(PX , W ), and Ẽex(R, PX , W ) > Ẽr(R, PX , W ) for
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R < Rex(PX , W ), where Rex(PX , W ) is the “expurgated” rate of the channel W under

distribution PX , defined by

Rex(PX , W ) ,
∂Ẽx(ρ, PX , W )

∂ρ

∣∣∣∣
ρ=1

. (17)

Since the above are satisfied for all PX , we then obtain the following relation between the

two lower bounds: Er(R, W ) < Eex(R, W ) for R < Rex(W ) and Er(R, W ) ≥ Eex(R, W )

otherwise, where

Rex(W ) , inf{R : Er(R, W ) = Eex(R, W )} (18)

is the expurgated rate of the channel. Furthermore, it is known that Eex(R, W ) and

Er(R, W ) meet their supporting line of slope −1 (according to the fact that E0(1, W ) =

Ex(1, W )) [23, p. 154]. This geometric relation implies that Rex(W ) ≤ Rcr(W ) and

Er(R, W ) = Eex(R, W ) is a straight line in the region [Rex(W ), Rcr(W )].

We remark that Csiszár [17] defines e(R, Q), Ẽr(R, PX , W ), and Ẽsp(R, PX , W ) using

expressions involving constrained minima of Kullback-Leibler divergences. He also defines

Ẽex(R, PX , W ) in terms of the Bhattacharya distance and the mutual information between

two channel inputs. Our expressions are equivalent, as can be shown by the Lagrange

multiplier method; see also [19, pp. 192–193] and [13].

2.3 Tilted Distributions

We associate with the source distribution Q a family of tilted distributions Q(ρ) defined

by

Q(ρ)(s) ,
Q

1
1+ρ (s)

∑
s′∈S Q

1
1+ρ (s′)

, s ∈ S, ρ ≥ 0. (19)

Lemma 1 [19, p. 44] The entropy H(Q(ρ)) is a strictly increasing function of ρ except in

the case that Q(s) = 1/|S| for all s ∈ S . Moreover, for H(Q) ≤ R ≤ log |S|, the equation

H(Q(ρ)) = R is satisfied by a unique value ρ∗ (where we define ρ∗ , ∞ if R = log |S| and

define H(Q(∞)) , log |S|).

The proof that H(Q(ρ)) is increasing follows easily from differentiation with respect to ρ

and a use of the Cauchy-Schwarz inequality. The remainder of the proof follows from the

facts that H(Q(0)) = H(Q), limρ→∞ H(Q(ρ)) = log |S| and that H(Q(ρ)) is a continuous

function of ρ.

10



It is easily seen that

H(Q(ρ)) =
∂Es(ρ, Q)

∂ρ
, (20)

where Es(ρ, Q) is defined by (2). From this we see that for R ≥ H(Q) the supremum in

(5) is achieved at ρ∗.

2.4 Fenchel Duality

Although many of our results can be obtained by the use of the Lagrange multiplier

method, the Fenchel Duality Theorem gives more succinct proofs and seems particularly

well-adapted to the elucidation of the connection between error exponents on the one

hand, and source and channel functions on the other.1 We present here a simplified one-

dimensional version which is adequate for our purposes. For more detailed discussion, the

reader may consult [36, pp. 190–202], [12, Chapter 7], or [42].

For any function f defined on F ⊂ R, define its convex Fenchel transform (conjugate

function, Legendre transform) f ∗ by

f ∗(y) , sup
x∈F

[xy − f(x)]

and let F ∗ be the set {y : f ∗(y) < ∞}. It is easy to see from its definition that f ∗ is a

convex function on F ∗. Moreover, if f is convex and continuous, then (f ∗)∗ = f . More

generally, f ∗∗ ≤ f and f ∗∗ is the convex hull of f , i.e. the largest convex function that is

bounded above by f [42, Section 3], [12, Section 7.1].

Similarly, for any function g defined on G ⊂ R, define its concave Fenchel transform

g∗ by

g∗(y) , inf
x∈G

[xy − g(x)]

and let G∗ be the set {y : g∗(y) > −∞}. It is easy to see from its definition that g∗ is a

concave function on G∗. Moreover, if g is concave and continuous, then (g∗)∗ = g. More

generally, g∗∗ ≥ g and g∗∗ is the concave hull of g, i.e. the smallest concave function that

is bounded below by g.

Fenchel Duality Theorem [36, p. 201] Assume that f and g are, respectively, convex

and concave functions on the non-empty intervals F and G in R and assume that F ∩ G

1Another related application of Fenchel duality is carried out in [5] in the context of guessing subject

to distortion, where it is shown that the guessing exponent is the Fenchel transform of the error exponent

for source coding with a fidelity criterion.
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has interior points. Suppose further that µ = infx∈F∩G[f(x) − g(x)] is finite. Then

µ = inf
x∈F∩G

[f(x) − g(x)] = max
y∈F ∗∩G∗

[g∗(y) − f ∗(y)], (21)

where the maximum on the right is achieved by some y0 ∈ F ∗ ∩ G∗. If the infimum on

the left is achieved by some x0 ∈ F ∩ G, then

max
x∈F

[xy0 − f(x)] = x0y0 − f(x0) (22)

and

min
x∈G

[xy0 − g(x)] = x0y0 − g(x0). (23)

2.5 Properties of the Source and Channel Functions

Lemma 2 The source function Es(ρ, Q) defined by (2) is a strictly convex function of ρ.

Convexity follows directly from (20) and Lemma 1. Strict convexity is a consequence of

our general assumption that Q is not the uniform distribution. It will be seen from (5)

that e(R, Q) is the convex Fenchel transform of Es(ρ, Q). In fact, it is easily checked that

(e.g., cf. [19, pp. 44–45])

e(R, Q) =





0 if R ≤ H(Q),

D(Q(ρ∗)‖Q) if H(Q) ≤ R ≤ log |S| ,

∞ if R > log |S| ,

(24)

where D(·‖·) denotes the Kullback-Leibler divergence and ρ∗ is the solution of H(Q(ρ)) =

R. Note that (24) implies that e(R, Q) is strictly convex in R on [H(Q), log |S|] when the

source is nonuniform; otherwise H(Q) = log |S|.
The relation between the Gallager’s channel function E0(ρ, W ) and the random-coding

and sphere-packing bounds is more complicated. First of all, recall that for each PX ,

Ẽr(R, PX , W ) as defined in (6) is a convex non-increasing function for all R, and is a

linear function of R with slope −1 for R ≤ Rcr(PX , W ) [23, p. 143 ]. It will be convenient

to regard this linear function as defining Ẽr(R, PX , W ) for all negative R. The random

coding bound Er(R, W ), which is the maximum of this family of convex functions, is a

convex strictly decreasing function of R for R < C, and is a linear function of R with

slope −1 for all R below the critical rate Rcr(W ). For R ≥ C, Er(R, W ) = 0. Since
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Er(R, W ) is convex, then −Er(R, W ) is concave. Let Tr(ρ, W ) be the concave transform

of −Er(R, W ), i.e.

Tr(ρ, W ) , inf
R∈R

[ρR + Er(R, W )]. (25)

It follows from the properties of Er(R, W ) noted above that Tr(ρ, W ) = −∞ for ρ < 0

and ρ > 1 and that Tr(ρ, W ) is finite for ρ ∈ [0, 1].

Lemma 3 The function Tr(ρ, W ) defined by (25) is the concave hull on the interval

[0, 1] of the channel function E0(ρ, W ) defined in (12). Thus, E0(ρ, W ) ≤ Tr(ρ, W ) for

0 ≤ ρ ≤ 1.

Proof : We form the concave transform of E0(R, W ) on the interval [0, 1] to get

(E0(ρ, W ))∗ = inf
0≤ρ≤1

[ρR − E0(ρ, W )] = − sup
0≤ρ≤1

[E0(ρ, W ) − ρR].

Now use, in succession, (12), (6), and (9) to get

(E0(ρ, W ))∗ = − sup
0≤ρ≤1

max
PX

[Ẽ0(ρ, PX , W ) − ρR]

= −max
PX

sup
0≤ρ≤1

[Ẽ0(ρ, PX , W ) − ρR]

= −max
PX

Ẽr(R, PX , W )

= −Er(R, W ).

Since Tr(ρ, W ) is the concave transform of the concave function, −Er(R, W ), we have

that

(−Er(R, W ))∗ = Tr(ρ, W ) and so (E0(ρ, W ))∗∗ = Tr(ρ, W ).

Hence, Tr(ρ, W ) is the concave hull on [0, 1] of E0(ρ, R). �

Similarly to the above, recall that Esp(R, W ), defined in (11) is convex, zero for R ≥ C,

positive for R < C, and finite if R > R∞(W ) [19], [23], where R∞(W ) is given by

R∞(W ) , lim
ρ→∞

E0(ρ, W )

ρ
. (26)

A computable expression for R∞(W ) is given in [23, p. 158]. The normal situation is

R∞(W ) = 0. (As shown by Gallager, R∞(W ) = 0 unless each channel output symbol

is unreachable from at least one input. In the latter case, R∞(W ) > 0.) We now let

Tsp(ρ, W ) be the concave transform of the concave function −Esp(R, W ), i.e.

Tsp(ρ, W ) , inf
R∞(W )<R<∞

[ρR + Esp(R, W )]. (27)

It follows that Tsp(ρ, W ) = −∞ for ρ < 0 and that 0 ≤ Tsp(ρ, W ) < ∞ for ρ ≥ 0.
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Lemma 4 The function Tsp(ρ, W ) defined by (27) is the concave hull on [0,∞) of the

channel function E0(ρ, W ) defined in (12).

Proof : We now form the concave transform of E0(ρ, W ) on the interval [0,∞) to get

(E0(ρ, W ))∗ = inf
0≤ρ<∞

[ρR − E0(ρ, W )] = − sup
0≤ρ<∞

[E0(ρ, W ) − ρR].

Now use (12), (8), and (11) to get

(E0(ρ, W ))∗ = − sup
0≤ρ<∞

max
PX

[Ẽ0(ρ, PX , W ) − ρR]

= −max
PX

sup
0≤ρ<∞

[Ẽ0(ρ, PX , W ) − ρR]

= −max
PX

Ẽsp(R, PX, W )

= −Esp(R, W ).

As in the previous proof, (E0(ρ, W ))∗∗ = Tsp(ρ, W ). Hence, Tsp(ρ, W ) is the concave hull

on [0,∞) of E0(ρ, R). �

Observation 1 Note that the function Ẽ0(ρ, PX , W ) is concave in ρ for each PX [23, p.

142]. Hence, if the maximizing PX in (12) is independent of ρ, E0(ρ, W ) is concave and

thus Tr(ρ, W ) and Tsp(ρ, W ) are equal to E0(ρ, W ). This situation holds if the channel

is symmetric in the sense of Gallager [23, p. 94] (also see Example 2). For this case,

the maximizing distribution is the uniform distribution PX(x) = 1/|X | for all x ∈ X .

However, there are channels for which E0(ρ, W ) is not concave. One example of such a

channel is provided by Gallager [23, Fig. 5.6.5]. For this particular (6-ary input, 4-ary

output) channel, we plot E0(ρ, W ) against ρ in Fig. 1. It is noted that the derivative of

E0(ρ, W ) has a positive jump increase at around ρ = 0.51 (see [23, Fig. 5.6.5]), and its

concave hull Tr(ρ, W ) is strictly larger than E0(ρ, W ) in the interval ρ ∈ (0.41, 0.62).

3 Bounds on the JSCC Error Exponent

3.1 Csiszár’s Random-Coding and Sphere-Packing Bounds

Csiszár [17] proved that for a DMS and a DMC the JSCC error exponent in Definition 1

satisfies

Er(Q, W, t) ≤ EJ(Q, W, t) ≤ Esp(Q, W, t), (28)
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where

Er(Q, W, t) , min
tH(Q)≤R≤t log |S|

[
te

(
R

t
, Q

)
+ Er(R, W )

]
, (29)

and

Esp(Q, W, t) , inf
tH(Q)≤R≤t log |S|

[
te

(
R

t
, Q

)
+ Esp(R, W )

]
(30)

are called the source-channel random-coding lower bound and the source-channel sphere-

packing upper bound, since they respectively contain Er(R, W ) and Esp(R, W ) in their

expressions. These bounds can be expressed in a form more adapted to calculation as

follows.

Theorem 1 Let tH(Q) < C and let t log |S| > R∞(W ). Then

Er(Q, W, t) = max
0≤ρ≤1

[Tr(ρ, W ) − tEs(ρ, Q)] (31)

and

Esp(Q, W, t) = max
0≤ρ<∞

[Tsp(ρ, W ) − tEs(ρ, Q)] (32)

where Tr(ρ, W ) and Tsp(ρ, W ) are the concave hulls of E0(ρ, W ) on [0, 1] and [0,∞) defined

in (25) and (27), respectively. If the maximizing PX in (12) is independent of ρ, Tr(ρ, W )

and Tsp(ρ, W ) can be replaced by E0(ρ, W ).

Remark 1 When tH(Q) ≥ C, Er(Q, W, t) = Esp(Q, W, t) = 0.

Observation 2 According to Lemma 3, E0(ρ, W ) ≤ Tr(ρ, W ). Thus the lower bound

Er(Q, W, t) can be replaced by the possibly looser lower bound2

max
0≤ρ≤1

[E0(ρ, W ) − tEs(ρ, Q)]. (33)

This is the lower bound implied by Gallager’s work [23, p. 535]. As noted earlier, if the

maximizing PX in (12) is independent of ρ (e.g., for symmetric channels, see Example 2),

the two lower bounds are identical.

2In [56], [55], we incorrectly stated that Csiszár’s random-coding lower bound E
r
(Q, W, t) given in

(29) and Gallager’s lower bound given in (33) are identical. This is indeed not always true; it is true if

E0(ρ, W ) is a concave function of ρ (e.g., for symmetric channels) or tH(Q(1)) ≤ Rcr(W ) (see Corollary

3). Thus, although both lower bounds are “random coding” type bounds, Csiszár’s bound is in general

tighter.
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Proof of Theorem 1: We first apply Fenchel’s Duality Theorem (21) to the lower bound

Er(Q, W, t). From Lemma 2, (5), and (24), te(R/t, Q) is convex on (−∞, t log |S|] and has

convex transform tEs(ρ, Q) on the set [0,∞). Also, from the discussion preceding Lemma

3, −Er(R, W ) is concave on R and has concave transform Tr(ρ, W ) which is bounded on

[0, 1]. Thus, by Fenchel’s Duality Theorem,

inf
−∞≤R≤t log |S|

[
te

(
R

t
, Q

)
+ Er(R, W )

]
= max

0≤ρ≤1
[Tr(ρ, W ) − tEs(ρ, Q)]. (34)

Now the convex function te(R/t, Q) + Er(R, W ) is non-increasing for R ≤ tH(Q) since

te(R/t, Q) = 0 in this region. This implies that the infimum on the left side of (34)

can be restricted to the interval tH(Q) ≤ R ≤ t log |S|. Since this is now the infimum

of a continuous function on a finite interval this will be a minimum. Hence, (31) is an

equivalent representation of Er(Q, W, t).

Similarly, for the upper bound, recall from the discussion preceding Lemma 4 that

−Esp(R, W ) is concave and finite for R > R∞(W ) and has a concave transform Tsp(ρ, W ),

which is finite on 0 ≤ ρ < ∞. Thus, by Fenchel’s Duality Theorem,

inf
R∞(W )<R≤t log |S|

[
te

(
R

t
, Q

)
+ Esp(R, W )

]
= max

0≤ρ<∞
[Tsp(ρ, W ) − tEs(ρ, Q)]. (35)

The assumption R∞(W ) < t log |S| ensures that the infimum on the left of (35) is taken

over a set with interior points. If R∞(W ) < tH(Q), the infimum can be replaced by a

minimum on the interval tH(Q) ≤ R ≤ t log |S| by the same argument as for the lower

bound. If R∞(W ) ≥ tH(Q), we no longer form the infimum of a continuous function, but

it can still be shown that there is a minimum point which lies in the interval tH(Q) ≤
R ≤ t log |S|. Hence, (35) is an equivalent representation of Esp(Q, W, t). �

Observation 3 The parametric form of the lower and upper bounds (31) and (32) in-

deed facilitates the computation of Csiszár’s bounds. In order to compute the bounds for

general non-symmetric channels (when tH(Q) < C and t log |S| > R∞), one could employ

Arimoto’s algorithm [8] to find the maximizing distribution and thus E0(ρ, W ). We then

can immediately obtain the concave hulls of E0(ρ, W ), Tr(ρ, W ) and Tsp(ρ, W ), numeri-

cally (e.g., using Matlab) and thus the maxima of Tr(ρ, W ) − tEs(ρ, Q) and Tsp(ρ, W ) −
tEs(ρ, Q). This significantly reduces the computational complexity since to compute (29)

and (30), we need to first compute Er(R, W ) and Esp(R, W ) for each R, which requires

almost the same complexity as above, and then we need to find the minima by searching

over all R’s. For symmetric channels, (31) and (32) are analytically solved; see Example 2.
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Example 1 Consider a communication system with a binary DMS with distribution

Q = {q, 1 − q} and a DMC with |X | = 6, |Y| = 4, and transition probability matrix

W =




1 − 18ε 6ε 6ε 6ε

6ε 1 − 18ε 6ε 6ε

6ε 6ε 1 − 18ε 6ε

6ε 6ε 6ε 1 − 18ε

0.5 − ε 0.5 − ε ε ε

ε ε 0.5 − ε 0.5 − ε




, 0 ≤ ε ≤ 1

18
.

We then compute Csiszár’s random-coding and sphere-packing bounds, Er(Q, W, t)

and Esp(Q, W, t). For fixed Q and transmission rate t, we plot these bounds in terms of

ε in Fig. 2. Our numerical results show that EJ could be determined exactly for a large

class of (q, ε, t) triplets: when source Q = {0.1, 0.9} and rate t = 0.75, EJ is exactly

known for ε ≥ 0.0025; when Q = {0.1, 0.9} and t = 1, EJ is known for ε ≥ 0.002; and

when Q = {0.2, 0.8} and t = 1.25, EJ is known for ε ≥ 0.001. Since for this channel

Eo(ρ, W ) might not be concave (e.g., when ε = 0.01, W reduces to the DMC discussed

in Observation 1 at the end of Section 2), our results indicate that Csiszár’s lower bound

is slightly but strictly larger (by ≈ 0.0001) than Gallager’s lower bound (33) for q = 0.1,

t = 1, and ε around 0.02. This is illustrated in Fig. 3.

3.2 When Does Er(Q, W, t) = Esp(Q, W, t) ?

One important objective in investigating the bounds for the JSCC error exponent EJ is to

ascertain when the bounds are tight so that the exact value of EJ is obtained. According

to Csiszár’s result (28), we note that if the minimum in the expressions of Er(Q, W, t) or

Esp(Q, W, t) is attained for a rate (strictly) larger than the critical rate Rcr(W ), then the

two bounds coincide and thus EJ is determined exactly. This raises the following question:

how can we check whether the minimum in Er(Q, W, t) or Esp(Q, W, t) is attained for a

rate larger than Rcr(W )? One may indeed wonder if there exist explicit conditions for

which Er(Q, W, t) = Esp(Q, W, t). The answer is affirmative; furthermore, we can verify

whether the two bounds are tight in two ways: one is to compare tH(Q(1)) with Rcr(W ),

and the other is to compare the minimizer of Esp(Q, W, t) in (32), ρ∗ say, with 1. Before we

present these conditions, we first define the following quantities which achieve the bounds
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Er(Q, W, t) and Esp(Q, W, t) under the assumptions tH(Q) < C and t log |S| > R∞:

Rm , arg min
tH(Q)≤R≤t log |S|

[
te

(
R

t
, Q

)
+ Er(R, W )

]
, (36)

Rm , arg min
tH(Q)≤R≤t log |S|

[
te

(
R

t
, Q

)
+ Esp(R, W )

]
, (37)

ρ∗ , arg max
0≤ρ≤1

[Tr(ρ, W ) − tEs(ρ, Q)], (38)

ρ∗ , arg max
0≤ρ<∞

[Tsp(ρ, W ) − tEs(ρ, Q)]. (39)

Since the functions between brackets to be minimized (or maximized) in (36)-(39) are

strictly convex (or concave) functions of R (or ρ), Rm, Rm, ρ∗ and ρ∗ are well-defined and

unique. We then have the following relations.

Lemma 5 Let tH(Q) < C and let t log |S| > R∞(W ). Then:

(1). ρ∗ and ρ∗ are positive and finite.

(2). Rm = tH(Q(ρ∗)).

(3). Rm = tH(Q(ρ∗)) if ρ∗ < 1; Rm ≥ tH(Q(1)) if ρ∗ = 1.

Proof : We first prove (1). Since Tsp(ρ, W ) is the concave hull of E0(ρ, W ), we have the

following relation

lim
ρ↓0

Tsp(ρ, W )

ρ
≥ lim

ρ↓0

E0(ρ, W )

ρ
= C.

where the last equality follows from [7, Lemma 2]. Since limρ↓0 Es(ρ, Q)/ρ = H(Q) by

(20) and Lemma 1, we have

lim
ρ↓0

Tsp(ρ, W ) − tEs(ρ, Q)

ρ
≥ C − tH(Q) > 0.

Note that the right-derivative of Tsp(ρ, W ) (at ρ = 0) must exist due to its concavity [43,

pp. 113–114], and hence limρ↓0 Tsp(ρ, W )/ρ exists. Next we denote ε = t log |S|−R∞(W ) >

0. It follows from the definition of Tsp(ρ, W ) that

lim
ρ→∞

Tsp(ρ, W )

ρ
≤ lim

ρ→∞

ρ(R∞(W ) + ε/2) + Esp(R∞(W ) + ε/2, W )

ρ
= R∞(W ) + ε/2

because of the finiteness of Esp(R, W ) for R > R∞(W ). This together with limρ→∞ Es(ρ, Q)/ρ =

log |S| implies

lim
ρ→∞

Tsp(ρ, W ) − tEs(ρ, Q)

ρ
≤ R∞(W ) + ε/2 − t log |S| < 0.
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Since Tsp(ρ, W ) − tEs(ρ, Q) is 0 and has a positive right-slope at ρ = 0 and is negative

for ρ sufficiently large, by the strict concavity of Tsp(ρ, W ) − tEs(ρ, Q), the maximum in

(39) must be achieved by a positive finite ρ∗. The positivity of ρ∗ can be shown in the

same way and ρ∗ is finite by its definition.

We next prove (2). If we now regard te(R/t, Q) as f ∗(y) and tEs(ρ, Q) as f(x) (by

noting that f ∗∗ = f), then according to (22) in Fenchel’s Duality Theorem,

max
0≤ρ<∞

[ρRm − tEs(ρ, Q)] = ρ∗Rm − tEs(ρ
∗, Q).

Setting the derivative of ρRm−tEs(ρ, Q) equal to 0, we can solve for the stationary point3

ρ∗, which gives Rm = tH(Q(ρ∗)).

For the lower bound, using a similar argument, we obtain the relation

max
0≤ρ≤1

[ρRm − tEs(ρ, Q)] = ρ∗Rm − tEs(ρ
∗, Q).

Recalling that the function between the brackets to be maximized is strictly concave, if

the above maximum is achieved by ρ∗ ∈ (0, 1), then we can solve for the stationary point

as above and obtain Rm = tH(Q(ρ∗)). If the maximum is achieved at ρ∗ = 1, then the

stationary point is beyond (at least equal to) 1, and hence Rm ≥ tH(Q(1)). Thus (3)

follows. �

In order to summarize the explicit conditions for the calculation of EJ it is convenient

to define a critical rate for the source by

R(s)
cr (Q) ,

∂Es(ρ, Q)

∂ρ

∣∣∣∣
ρ=1

= H(Q(1)), (40)

recalling that Q(1)(s) =
√

Q(s)/(
∑

s′∈S

√
Q(s′)), s ∈ S.

Theorem 2 Let tH(Q) < C and let t log |S| > R∞(W ). Then

• tR
(s)
cr (Q) ≥ Rcr(W ) ⇐⇒ ρ∗ ≤ 1 ⇐⇒ tR

(s)
cr (Q) ≥ Rm = Rm ≥ Rcr(W ). In this case,

EJ(Q, W, t) = Tsp(ρ
∗, W ) − tEs(ρ

∗, Q).

• tR
(s)
cr (Q) < Rcr(W ) ⇐⇒ ρ∗ > 1 ⇐⇒ Rcr(W ) ≥ Rm > Rm = tR

(s)
cr (Q). In this case,

E0(1, W ) − tEs(1, Q) ≤ EJ(Q, W, t) ≤ Tsp(ρ
∗, W ) − tEs(ρ

∗, Q).

3The stationary points of a differentiable function f(x) are the solutions of f ′(x) = 0.
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Remark 2 Under the condition tR
(s)
cr (Q) > Rcr(W ), ρ∗ = 1 is possible. However, if

tR
(s)
cr (Q) = Rcr(W ), then we definitely have ρ∗ = 1 and tR

(s)
cr (Q) = Rm = Rm = Rcr(W ).

Remark 3 It can be shown that Tsp(1, W ) = E0(1, W ) and thus when ρ∗ = 1, the JSCC

exponent is determined by

EJ(Q, W, t) = E0(1, W ) − tEs(1, Q).

Corollary 1 Let tH(Q) < C and let t log |S| > R∞(W ). Then ρ∗ = min{1, ρ∗} and

Rm = tH(Q(ρ∗)).

The proof of Theorem 2 involves a geometric argument involving the left- and right-

slopes of the convex functions Er(R, W ) and Esp(R, W ) and is deferred to Appendix A.

Corollary 1 could be regarded as a complement of Lemma 5 (3) and it is also proved in

Appendix A.

Corollary 2 If Rm ≥ Rcr(W ) or Rm > Rcr(W ), then tR
(s)
cr (Q) ≥ Rm = Rm ≥ Rcr(W ),

and the other equivalent conditions in Theorem 2 hold.

Proof : If Rm ≥ Rcr(W ) or Rm > Rcr(W ), then Rm = Rm by Lemma 9 in Appendix A.

tR
(s)
cr (Q) ≥ Rm immediately follows from Corollary 1. �

Remark 4 Corollary 2 states that if Rm ≥ Rcr(W ) or Rm > Rcr(W ), then EJ is deter-

mined exactly. Note that when Rm = Rcr(W ), the upper and lower bounds of EJ may

not be tight. In that case Rm < Rcr(W ) = Rm is possible. The relation between Rm and

Rm is summarized in Lemma 9 in Appendix A.

We point out that, in both the computation and analysis aspects, the above conditions

play an important role in verifying whether EJ can be determined exactly or not. For the

class of symmetric DMCs, we can use the conditions tR
(s)
cr (Q) ≥ Rcr(W ) and tR

(s)
cr (Q) <

Rcr(W ) to derive explicit formulas for EJ , see Example 2. In Section 4, we apply Theorem

2 to establish the conditions for which the JSCC exponent is larger than the tandem coding

exponent. Note that when tR
(s)
cr (Q) ≤ Rcr(W ), the source-channel random-coding bound

admits a simple expression

Er(Q, W, t) = E0(1, W ) − tEs(1, Q). (41)

Consequently, we have the following statement.
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Corollary 3 If tR
(s)
cr (Q) ≤ Rcr(W ), then Csiszár’s random-coding bound and Gallager’s

lower bound (33) are identical.

Proof : Recall Gallager’s lower bound to EJ given by (33)

max
0≤ρ≤1

[E0(ρ, W ) − tEs(ρ, Q)] ≥ E0(1, W ) − tEs(1, Q).

Since in general Gallager’s lower bound cannot be larger than Csiszár’s random-coding

bound, they must be equal when tR
(s)
cr (Q) ≤ Rcr(W ). �

Example 2 (DMS and Symmetric DMC) Consider a DMS {Q : S} and a symmetric4

DMC {W : X → Y} with rate t, where the channel transition matrix W can be partitioned

along its columns into sub-matrices W1, W2, · · · , Ws, such that in each Wi with size |X |×
|Yi|, each row is a permutation of each other row and each column is a permutation of

each other column. Denote the transition probabilities in any column of sub-matrix Wi,

i = 1, 2, · · · , s, by
{
pi1, pi2, ..., pi|X |

}
. Then both E0(ρ, W ) and the channel capacity are

achieved by the uniform distribution PX = 1/|X | and have the form

E0(ρ, W ) = (1 + ρ) log |X | − log





s∑

i=1

|Yi|




|X |∑

j=1

p
1

1+ρ

ij




1+ρ
 (42)

and

C = log |X | − 1

|X |

s∑

i=1

|Yi|




|X |∑

j=1

pij


H(P

(0)
i ),

where the tilted distribution P
(α)
i , α ≥ 0, for each i = 1, 2, · · · , s, is defined on IX ,

{1, 2, · · · , |X |} by

P
(α)
i (j) ,

p
1

1+α

ij

(
∑|X |

j=1 p
1

1+α

ij )
, j ∈ IX .

Since now E0(ρ, W ) is a concave and differentiable function of ρ, the bounds Er(Q, W, t)

and Esp(Q, W, t) can be analytically obtained. If

1

|X |

s∑

i=1

|Yi|




|X |∑

j=1

pij


H(P

(0)
i ) + tH(Q) < log |X | (43)

4Here symmetry is defined in the Gallager sense [23, p. 94]; it is a generalization of the standard notion

of symmetry [16] (which corresponds to s = 1 above).
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and ∑s
i=1 |Yi|

(∑|X |
j=1

√
pij

)2

H(P
(1)
i )

∑s
i=1 |Yi|

(∑|X |
j=1

√
pij

)2 + tH(Q(1)) ≥ log |X |, (44)

then the source-channel exponent is positive and is exactly determined by

EJ(Q, W, t) = (1+ρ∗) log |X |−log








s∑

i=1

|Yi|




|X |∑

j=1

p
1

1+ρ∗

ij




1+ρ∗


(
∑

s∈S

Q
1

1+ρ∗ (s)

)t(1+ρ∗)





,

(45)

where ρ∗ is the unique root of the equation

∑s
i=1 |Yi|

(∑|X |
j=1 p

1
1+ρ

ij

)1+ρ

H(P
(ρ)
i )

∑s
i=1 |Yi|

(∑|X |
j=1 p

1
1+ρ

ij

)1+ρ + tH(Q(ρ)) = log |X |. (46)

In the case when (43) does not hold, which means tH(Q) ≥ C, EJ(Q, W, t) = 0. When

(43) holds but (44) does not hold, the right-hand side of (45) becomes the upper bound

Esp(Q, W, t) and meanwhile, EJ is lower bounded by E0(1, W )−tEs(1, Q), where E0(ρ, W )

is given by (42).

Now we apply the conditions (43) and (44) to a communication system with a binary

source with distribution {q, 1 − q}, a binary symmetric channel (BSC) with crossover

probability ε and transmission rates t =0.5, 0.75, 1, and 1.25. Note that

Rcr(W ) = 1 − hb

( √
ε√

ε +
√

1 − ε

)

and

R(s)
cr (Q) = hb

( √
q

√
q +

√
1 − q

)
,

where hb(·) is the binary entropy function. In Fig. 4, we partition the set of possible

points for the (ε, q) pairs into three regions: A, B and C. If (ε, q) ∈ B, where conditions

(43) and (44) hold, i.e., tH(Q) < C and tR
(s)
cr (Q) ≥ Rcr(W ), then the corresponding EJ is

positive and exactly known.5 Furthermore, if (ε, q) ∈ C, then EJ is bounded above (below,

5In light of the recent work in [11], where the random coding exponent Er(R, W ) of the BSC is shown

to be indeed the true value of the channel error exponent E(R, W ) for code rates R in some interval

directly below the channel critical rate (in other words, it is shown that for the BSC with its ε above a

certain threshold, Er(R, W ) = E(R, W ) for R1 ≤ R ≤ C where R1 can be less than Rcr(W ) [11]), we

note via (1) and the lower bound in (28)-(29) that region B where EJ is exactly known can be enlarged.
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respectively) by the right-hand side of (45) (E0(1, W ) − tEs(1, Q), respectively). When

(ε, q) ∈ A, where tH(Q) > C, EJ is zero, and the error probability of this communication

system converges to 1 for n sufficiently large. So we are only interested in the cases when

(ε, q) ∈ B ∪ C.

3.3 Csiszár’s Expurgated Lower Bound

In [18], Csiszár extended his work and obtained another lower bound to EJ for a class of

source-channel pairs: for a DMS and a DMC with zero-error capacity equal to 0,

EJ(Q, W, t) ≥ Eex(Q, W, t) (47)

if Eex(R, W ) = maxPX
Ẽex(R, PX , W ) is attained for a PX not depending on R, where

Eex(Q, W, t) , min
tH(Q)≤R≤t log |S|

[
te

(
R

t
, Q

)
+ Eex(R, W )

]
(48)

is called the source-channel expurgated lower bound since it contains Eex(R, W ) in its

expression. We then use Fenchel’s Duality Theorem to derive an equivalent expression of

Eex(R, W, t).

Theorem 3 For a DMS and a DMC with zero-error capacity equal to 0, if Eex(R, W ) =

maxPX
Ẽex(R, PX , W ) is attained for a PX not depending on R, then

Eex(Q, W, t) = sup
ρ≥1

[Ex(ρ, W ) − tEs(ρ, Q)]. (49)

Proof : Recall that Ẽx(ρ, PX , W ) is concave in ρ on the interval G = [1, +∞) [23, pp. 153–

154]. Note that

−Ẽex(R, PX , W ) , − sup
ρ∈G

[Ex(ρ, PX , W ) − ρR] = inf
ρ∈G

[ρR − Ẽx(ρ; PX , W )]

is the concave transform of Ẽx(ρ, PX , W ) on R ∈ G∗ = {R : −Ẽex(R, PX , W ) > −∞} =

[0, +∞) for DMCs with zero-error capacity equal to 0. Also recall that tEs(ρ, Q) is strictly

convex in ρ on the interval F = [0, +∞). Its convex transform

sup
ρ∈F

[ρR − tEs(ρ, Q)] = te

(
R

t
, Q

)

is a function of R on F ∗ = {R : te(R/t, Q) < +∞} = (−∞, t log |S|]. Fenchel’s Duality

Theorem states that

inf
ρ∈F∩G

[tEs(ρ, Q) − Ẽx(ρ, PX , W )] = max
R∈F ∗∩G∗

[
−Ẽex(R, PX , W ) − te

(
R

t
, Q

)]
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or

sup
ρ≥1

[Ẽx(ρ, PX , W ) − tEs(ρ, Q)] = min
0<R≤t log |S|

[
te

(
R

t
, Q

)
+ Ẽex(R, PX , W )

]
.

We can now maximize over PX and get the two equivalent lower bounds:

sup
ρ≥1

[Ex(ρ, W ) − tEs(ρ, Q)] = max
PX

min
0<R≤t log |S|

[
te

(
R

t
, Q

)
+ Ẽex(R, PX , W )

]

(a)
= min

0<R≤t log |S|

[
te

(
R

t
, Q

)
+ max

PX

Ẽex(R, PX , W )

]

(b)
= min

tH(Q)≤R≤t log |S|

[
te

(
R

t
, Q

)
+ Eex(R, W )

]

= Eex(Q, W, t),

where (a) follows by assumption that the maximizing PX does not depend on R and

(b) holds since the convex function te(R/t, Q) + Eex(R, W ) is either infinity or strictly

decreasing for R < tH(Q). �

In the following lemma we note that the supremum in (49) can be replaced by a

maximum, and the relation between the maximizer ρ
x

and its dual minimizer Rxm is

given.

Lemma 6 For DMC with zero-error capacity equal to 0, the function Ex(ρ, W )−tEs(ρ, Q)

has a global maximum at a finite ρ ≥ 1. Let

ρ
x

, arg max
ρ≥1

[Ex(ρ, W ) − tEs(ρ, Q)] (50)

and

Rxm , arg min
tH(Q)≤R≤t log |S|

[
te

(
R

t
, Q

)
+ Eex(R, W )

]
. (51)

Then Rxm = tH(Q(ρ
x
)) if ρ

x
> 1; Rxm ≤ tR

(s)
cr (Q) if ρ

x
= 1.

Remark 5 Since the function between brackets to be optimized in (50) (or (51)) is strictly

concave (or convex), ρ
x

and Rxm are well-defined and unique.

Proof : We first show that ρ
x

is finite. Recall that for any PX , Gallager’s source and

channel functions Es(ρ, Q) and Ẽx(ρ; PX , W ) given in (4) at ρ = 1 reduce to

Es(1, Q) = log

(
∑

s∈S

√
Q(s)

)2
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and

Ẽx(1; PX, W ) = − log
∑

y∈Y

(
∑

x∈X

PX(x)
√

PY |X(y|x)

)2

.

Using Jensen’s inequality [16] on the convex function x2, we obtain

Es(1, Q) ≤ log
∑

s∈S

(Q(s)Q(s)−1) = log |S|

with equality if and only if Q is uniform, and

Ẽx(1; PX, W ) ≥ − log
∑

y∈Y

∑

x∈X

PX(x)PY |X(y|x) = 0.

Therefore,

Ex(1, W ) − tEs(1, Q) > − log |S|

because of the nonuniform source assumption. On the other hand, because the zero-error

capacity is 0 we know that limρ→∞
Ex(ρ,W )

ρ
= 0 (from [23, p. 155]) and hence

lim
ρ→∞

Ex(ρ, W ) − tEs(ρ, Q)

ρ
≤ −t log2 |S|.

Clearly, since the concave function Ex(ρ, W ) − tEs(ρ, Q) is finite (bounded below) at

ρ = 1, and approaches to −∞ as ρ → ∞, there exists a global maximum at a finite ρ
x
.

We next show the relation between ρ
x

and Rxm. Following the proof of Theorem 3, let

f ∗(y) be te(R/t, Q) and let f(x) be Es(ρ, Q). Fenchel’s Duality Theorem (22) says that

ρ
x

and Rxm should satisfy

max
ρ≥1

[ρRxm − tEs(ρ, Q)] = ρ
x
Rxm − tEs(ρ, Q).

If ρ
x

> 1, then ρ
x

is the stationary point of the concave function ρRxm − tEs(ρ, Q), and

hence

Rxm = tH(Q(ρ
x
)).

Otherwise (if ρ
x

= 1), which means that the stationary point is less than or equal to 1,

Rxm ≤ tR
(s)
cr (Q).

�

Analogously to Theorem 2, we have the following explicit conditions regarding the

expurgated lower bound to the JSCC exponent.
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Theorem 4 For the expurgated lower bound in Theorem 3, the following conditions are

equivalent.

• tR
(s)
cr (Q) < Rex(W ) ⇐⇒ ρ

x
> 1 ⇐⇒ tR

(s)
cr (Q) < Rxm ≤ Rex(W ). Thus,

EJ(Q, W, t) ≥ Ex(ρx
, W ) − tEs(ρx

, Q).

• tR
(s)
cr (Q) ≥ Rex(W ) ⇐⇒ ρ

x
= 1 ⇐⇒ Rxm = tR

(s)
cr (Q) ≥ Rex(W ). Thus,

EJ(Q, W, t) ≥ Ex(1, W ) − tEs(1, Q).

The proof of Theorem 4 is similar to that of Theorem 2 and is hence omitted. We next

use Theorems 2 and 4 to compare Csiszár’s random-coding and expurgated lower bounds.

Of clear interest is the case when the expurgated bound improves upon the random-coding

bound.

Corollary 4 The source-channel random-coding bound is improved by the expurgated

bound (i.e., Er(Q, W, t) < Eex(Q, W, t)) if and only if tR
(s)
cr (Q) < Rex(W ).

Proof : When tR
(s)
cr (Q) < Rex(W ), we must have that tR

(s)
cr (Q) < Rcr(W ), since Rex(W )

is never larger than Rcr(W ). It follows from Theorem 2 that the random-coding lower

bound is attained at Rm = tR
(s)
cr (Q). By Theorem 4 the expurgated lower bound is

attained at Rex(W ) ≥ Rxm > tR
(s)
cr (Q). On account of Lemma 6, this must happen if

Rxm = tH(Q(ρ
x
)) with ρ

x
> 1. Thus, Rxm > Rm and

Er(Q, W, t) = Er(Rm, W ) + te

(
Rm

t
, Q

)

< Er(Rxm, W ) + te

(
Rxm

t
, Q

)

≤ Eex(Rxm, W ) + te

(
Rxm

t
, Q

)

= Eex(Q, W, t).

In this case, the source-channel expurgated lower bound is tighter than the random-coding

lower bound. We then show that Er(Q, W, t) ≥ Eex(Q, W, t) if tR
(s)
cr (Q) ≥ Rex(W ).

When Rex(W ) ≤ tR
(s)
cr (Q) ≤ Rcr(W ), it follows from Theorems 2 and 4 that

Er(Q, W, t) = E0(1, W ) − tEs(1, Q)

= Ex(1, W ) − tEs(1, Q)

= Eex(Q, W, t),
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where the second equality follows from the fact that, for any PX , Gallager’s channel

functions Ẽ0(1, PX, W ) and Ẽx(1, PX , W ) are equal [23], and hence their maxima are

equal. In this case, the source-channel random-coding lower bound is identical to the

expurgated lower bound.

When tR
(s)
cr (Q) > Rcr(W ), we must have tR

(s)
cr (Q) > Rex(W ). Then the expurgated

lower bound is attained at Rxm = tR
(s)
cr (Q) by Theorem 4. On account of Theorems 2 and

Corollary 1, the random-coding lower bound is attained at Rm = tH(Q(ρ∗)) ≥ Rcr(W )

with ρ∗ ≤ 1. Consequently,

Er(Q, W, t) = Er(Rm, W ) + te

(
Rm

t
, Q

)

≥ Eex(Rm, W ) + te

(
Rm

t
, Q

)

≥ Eex(Rxm, W ) + te

(
Rxm

t
, Q

)

= Eex(Q, W, t).

In this case, the source-channel random-coding lower bound is tighter than or equal to

the expurgated lower bound. �

Example 3 (DMS and Equidistant DMC) A DMC W = PY |X is called equidistant

if there exists a number β > 0 such that for all pairs of inputs x 6= x̃,

∑

y

√
PY |X(y|x)PY |X(y|x̃) = β.

Note that equidistant DMCs have 0 zero-error capacity, and every DMC with binary input

alphabet is equidistant. It is shown in [31] that for an equidistant channel, Ex(ρ, W ) is

achieved in the range ρ ≥ 1 by a uniform input distribution PX(x) = 1/|X |. Therefore,

we can write Ex(ρ, W ) as

Ex(ρ, W ) = −ρ log

( |X | − 1

|X | β
1
ρ +

1

|X |

)
for ρ ≥ 1.

Now we apply Theorems 3 and 4 to DMS Q and equidistant DMC W with transmission

rate t. We then see that if

tH(Q(1)) + log

( |X | − 1

|X | β +
1

|X |

)
≤ β log β

β + 1
|X |−1

, (52)
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the expurgated JSCC lower bound is tighter than the random-coding lower bound and is

given by

EJ(Q, W, t) ≥ −ρ
x
log

( |X | − 1

|X | β
1

ρ
x +

1

|X |

)
− t(1 + ρ

x
) log

∑

s∈S

Q
1

1+ρ
x (s), (53)

where ρ
x

is the unique root of the equation

tH(Q(ρ)) + log

( |X | − 1

|X | β
1
ρ +

1

|X |

)
=

ρ−1β
1
ρ log β

β
1
ρ + 1

|X |−1

.

Consider a communication system with a binary source with distribution {q, 1 − q},
a binary erasure channel (BEC) with erasure probability α and transmission rate t = 1

(similar results hold for other cases, as in the last example). Using the conditions (43),

(44) in Example 2, and together with (52), we present in Fig. 5 the set of (α, q) points,

partitioned into four regions. If the pair (α, q) is located in region B, then the system

EJ is positive and exactly known. If (α, q) ∈ C = C1 ∪ C2, then upper and lower

bounds for EJ are known. Here, region C2 consists of the values of (α, q) for which the

source-channel expurgated lower bound given in (53) is tighter than the source-channel

random-coding lower bound. Finally, when (α, q) ∈ A, EJ(Q, W, t) = 0. In Fig. 6, we

plot the random-coding and expurgated lower bounds for different source and BEC pairs.

We observe that when the source distribution is Q={0.1,0.9} (respectively Q={0.2,0.8}),
the expurgated lower bound for EJ is tighter than the random-coding lower bound if

α < 0.0297 (respectively if α < 0.0102).

4 When is JSCC Worthwhile: JSCC vs Tandem Cod-

ing Exponents

4.1 Tandem Coding Error Exponent

A tandem code (f ∗
n, ϕ∗

n) , (fcn ◦ fsn, ϕsn ◦ ϕcn) for a DMS {Q : S} and a DMC {W :

X → Y} with blocklength n and transmission rate t (source symbols/channel use) is

composed independently by a (tn, M) block source code (fsn, ϕsn) defined by fsn : Stn −→
{1, 2, ..., M} and ϕsn : {1, 2, ..., M} −→ S tn with source code rate

Rs ,
log M

tn
source code bits/source symbol,
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and an (n, M) block channel code (fcn, ϕcn) defined by fcn : {1, 2, ..., M} −→ X n and

ϕcn : Yn −→ {1, 2, ..., M} with channel code rate

Rc ,
log M

n
source code bits/channel use,

where “◦” means composition and Rs and Rc are independent of n. That is, blocks stn of

source symbols of length tn are encoded as integers (indices) fsn(stn) from {1, 2, ..., M},
and these integers are further encoded as blocks xn = fcn [fsn(stn)] of symbols from X of

length n, transmitted, received as blocks yn of symbols from Y of length n. These received

blocks yn are decoded as integers ϕcn(y
n) from {1, 2, ..., M}, and finally, these integers

are decoded as blocks of source symbols ϕ∗
n(yn) = ϕsn [ϕcn(yn)] of length tn. Thus, the

probability of erroneously decoding the block is

P
(n)
e∗ (Q, W, t) ,

∑

{(stn,yn):ϕsn[ϕcn(yn)]6=stn}

Qtn(stn)Pn,Y |X

(
yn
∣∣fcn

[
fsn(s

tn)
])

,

where Qtn and Pn,Y |X are the tn- and n-dimensional product distributions corresponding

to Q and PY |X . respectively.

Definition 2 The tandem coding error exponent ET (Q, W, t) is defined as the largest

number Ê for which there exists a sequence of tandem codes (f ∗
n, ϕ∗

n) = (fcn◦fsn, ϕsn◦ϕcn)

with transmission rate t and block length n such that

Ê ≤ lim inf
n→∞

− 1

n
log P

(n)
e∗ (Q, W, t).

When there is no possibility of confusion, ET (Q, W, t) will often be written as ET . In

general, we know that EJ ≥ ET since by definition tandem coding is a special case of

JSCC. We are hence interested in determining the conditions for which EJ > ET for the

same transmission rate t. Meanwhile, it immediately follows (from the JSCC theorem)

that ET can be positive if and only if tH(Q) < C; otherwise, both EJ and ET are zero.

By definition, the tandem coding exponent results from separately performing and

concatenating optimal source and channel coding, which can be expressed by (e.g., see

[17])

ET (Q, W, t) = sup
Rs,Rc:Rc=tRs

min {te(Rs, Q), E(Rc, W )}

= sup
R

min

{
te

(
R

t
, Q

)
, E(R, W )

}
, (54)
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where e(R, Q) and E(R, W ) are the source and channel error exponents, respectively.

Note that

sup
R≤t log |S|

te

(
R

t
, Q

)
= te(log |S|, Q) = −t log(|S|Q(s)),

where Q(s) is the geometric mean of the source probabilities, i.e. Q(s) ,
(∏

s∈S Q(s)
)1/|S| ≤

1/|S|. If −t log(|S|Q(s)) ≥ E(t log |S|, W ), then the graphs of te(R/t, Q) and E(R, W )

must have exactly one intersection Ro and by (54)

ET (Q, W, t) = te

(
Ro

t
, Q

)
= E(Ro, W ), (55)

since te(R/t, Q) is strictly increasing in R ∈ [tH(Q), t log |S|] and E(R, W ) is non-

increasing in R. If −t log(|S|Q(s)) < E(t log |S|, W ), then there is no intersection be-

tween te(R/t, Q) and E(R, W ). Recall (24) that te(R/t, Q) is infinite in the open interval

(t log |S|,∞). In this case, we have that

ET (Q, W, t) = E(t log |S|, W ) (56)

by (54). Without loss of generality, we denote

Ro ,





the rate satisfying te(Ro

t
, Q) = E(Ro, W )

if −t log(|S|Q(s)) ≥ E(t log |S|, W ),

t log |S|
if −t log(|S|Q(s)) < E(t log |S|, W ),

(57)

so that we can always write that ET (Q, W, t) = E(Ro, W ).

When the DMS is uniform, the optimal source coding operation reduces to the trivial

enumerating (identity) function with M = |S|tn as the source is incompressible. Hence

only channel coding is performed in both JSCC and tandem coding and EJ(Q, W, t) =

ET (Q, W, t) = E(t log |S|, W ). Thus, our comparison of the two exponents is nontrivial

only if the source is nonuniform and tH(Q) < C. Even though we know that EJ is never

worse than ET , the following theorem gives a limit on how much EJ can outperform ET .

Theorem 5 JSCC exponent can at most be equal to double the tandem coding exponent,

i.e.,

EJ(Q, W, t) ≤ 2ET (Q, W, t),

with equality if tR
(s)
cr (Q) ≥ Rcr(W ) and Tsp(ρ

∗, W ) = tEs(ρ
∗, Q) + 2tD(Q(ρ∗) ‖ Q).
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Remark 6 Equivalently, this upper bound also implies that EJ can at most exceed ET

by EJ/2, i.e.,

EJ(Q, W, t) − ET (Q, W, t) ≤ 1

2
EJ(Q, W, t). (58)

Proof : We first refer to the upper bound of EJ(Q, W, t) given by Csiszár [17, Lemma 2]

EJ(Q, W, t) ≤ min
tH(Q)≤R≤t log |S|

[
te

(
R

t
, Q

)
+ E(R, W )

]
, (59)

where te(R/t, W ) is the source error exponent, which is strictly convex and increasing

in [tH(Q), t log |S|], and E(R, W ) is the channel error exponent, which is a positive and

non-increasing in [0, C). Unlike the source exponent, the behavior of E(R, W ) is unknown

for R < Rcr(W ). Let C0 be the zero-error capacity of the channel W , i.e., E(R, W ) = ∞
if and only if R < C0 [23]. If C0 > t log |S|, obviously, we have

EJ(Q, W, t) = ET (Q, W, t) = +∞.

If C0 ≤ t log |S|, the upper bound in (59) is finite and the minimum must be achieved by

some rate, say Rm, in the interval [C0, t log |S|]. Then

EJ(Q, W, t)
(a)

≤ te

(
Rm

t
, Q

)
+ E(Rm, W )

(b)

≤ te

(
Ro

t
, Q

)
+ E(Ro, W )

(c)

≤ 2E(Ro, W )

= 2ET (Q, W, t).

Here, the equality in (a) holds if our computable upper and lower bounds, Esp(Q, W, t)

and Er(Q, W, t), are equal. To ensure this, we need the condition tR
(s)
cr (Q) ≥ Rcr(W )

by Theorem 2. The equality in (b) holds if Rm = Ro by definition of Rm. The equal-

ity (c) holds if and only if there is an intersection between te(R/t, W ) and E(R, W ),

i.e., te(Ro/t, Q) = E(Ro, W ). Now taking these considerations together, and applying

Theorem 2 again, we conclude that EJ = 2ET if tR
(s)
cr (Q) ≥ Rcr(W ) and Tsp(ρ

∗, W ) −
tEs(ρ

∗, Q) = 2te(Rm/t, Q) = 2tD(Q(ρ∗) ‖ Q). �

Observation 4 The condition for the equality states that, if the minimum in the expres-

sion of Er(Q, W, t) given in (29) is attained at the intersection of te(R
t
, W ) and Er(R, W )

which is no less than the critical rate of the channel, then the JSCC exponent is twice
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as large as the tandem coding exponent. In that case, the rate of decay of the error

probability for the JSCC system is double that for the tandem coding system. In other

words, for the same probability of error Pe, the delay of (optimal) JSCC is approximately

half of the delay of (optimal) tandem coding,

Pe ≈ 2−nET (Q,W,t) = 2−
n
2

EJ(Q,W,t) for n sufficiently large.

4.2 Sufficient Conditions for which EJ > ET

In the following we will use our previous results to derive computable sufficient conditions

for which EJ > ET . We first define

γ ,

{
the root of tH(Q(γ)) = Rcr(W ) if tH(Q) ≤ Rcr(W ) ≤ t log |S|,
0 if tH(Q) > Rcr(W ).

(60)

such that the source error exponent te(R/t, Q) has a parametric expression at Rcr(W )

te

(
Rcr(W )

t
, Q

)
= tD(Q(γ) ‖ Q). (61)

Note that γ is well defined only if Rcr(W ) ≤ t log |S|. Denote

T (ρ∗) , Tsp(ρ
∗, W ) − tEs(ρ

∗, Q). (62)

Theorem 6 Let Rcr(W ) ≤ t log |S|. If

max
{
tR(s)

cr (Q), Eo(1, W ) − tD(Q(γ) ‖ Q)
}
≥ Rcr(W ), (63)

then

EJ(Q, W, t) > ET (Q, W, t).

More precisely, we have the following bounds.

(a) If min
{
tR

(s)
cr (Q), Eo(1, W ) − tD(Q(γ) ‖ Q)

}
≥ Rcr(W ), then

EJ(Q, W, t) − ET (Q, W, t) ≥ 1

2
T (ρ∗) −

∣∣∣∣
1

2
T (ρ∗) − tD(Q(ρ∗) ‖ Q)

∣∣∣∣ ≥ 0, (64)

where the two equalities in (64) cannot hold simultaneously.

(b) If tR
(s)
cr (Q) ≥ Rcr(W ) > Eo(1, W ) − tD(Q(γ) ‖ Q), then

EJ(Q, W, t) − ET (Q, W, t) > T (ρ∗) − tD(Q(γ) ‖ Q) ≥ 0. (65)

(c) If Eo(1, W ) − tD(Q(γ) ‖ Q) ≥ Rcr(W ) > tR
(s)
cr (Q), then

EJ(Q, W, t) − ET (Q, W, t) ≥ Rcr(W ) − tEs(1, Q) > 0. (66)
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Proof : We shall show that, in each of the three cases, (a), (b), and (c), we have EJ > ET .

(a). Assume tR
(s)
cr (Q) ≥ Rcr(W ) and Eo(1, W )−tD(Q(γ) ‖ Q) ≥ Rcr(W ). By definition of

γ, we have tD(Q(γ) ‖ Q) = te(Rcr(W )/t, Q), see (24) and (61). Thus, the latter condition

is equivalent to E(Rcr(W ), W ) ≥ te(Rcr(W )/t, Q) and by (16) and the related discussion

it guarantees that Ro ≥ Rcr(W ), where Ro is defined in (57). According to Theorem 2,

when tR
(s)
cr (Q) ≥ Rcr(W ), Esp(Q, W, t) is attained by Rm ≥ Rcr(W ) and EJ is determined

by

EJ(Q, W, t) = te

(
Rm

t
, Q

)
+ Esp(Rm, W ).

Since Ro ≥ Rcr(W ), ET is determined by Esp(Ro, W ). If Ro 6= Rm, we must have

ET (Q, W, t) < max

{
te

(
Rm

t
, Q

)
, Esp(Rm, W )

}
,

because te(R/t, Q) is strictly increasing and Esp(R, W ) is strictly decreasing at Rm. Thus,

EJ(Q, W, t) − ET (Q, W, t) > min

{
te

(
Rm

t
, Q

)
, Er(Rm, W )

}
≥ 0, (67)

where equality holds if Rm = C. If Ro = Rm, then immediately,

EJ(Q, W, t) − ET (Q, W, t) = te

(
Rm

t
, Q

)
= tD(Q(ρ∗) ‖ Q), (68)

where the above is positive since ρ∗ > 0 by Lemma 5 (1). Note also that in this case

te(Rm/t, Q) = Er(Rm, W ), so (67) and (68) can be summarized by (64).

(b). In this case, we have Rm ≥ Rcr(W ) > Ro. We can upper bound ET by

ET (Q, W, t) = te

(
Ro

t
, Q

)
< te

(
Rcr(W )

t
, Q

)
= tD(Q(γ) ‖ Q)

and hence

EJ(Q, W, t) − ET (Q, W, t) > Tsp(ρ
∗, W ) − tEs(ρ

∗, Q) − tD(Q(γ) ‖ Q).

The above lower bound must be nonnegative since

Tsp(ρ
∗, W ) − tEs(ρ

∗, Q) − tD(Q(γ) ‖ Q) = Er(Rm, W ) + t

[
e

(
Rm

t
, Q

)
− e

(
Rcr(W )

t
, Q

)]

≥ Er(Rm, W )

≥ 0,
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and it is equal to 0 if Rcr(W ) = Rm = C.

(c). In this case, we have Ro ≥ Rcr(W ) > Rm and from (41) EJ is bounded by

EJ(Q, W, t) ≥ E0(1, W ) − tEs(1, Q).

On the other hand, by the monotonicity of Er(R, W ), we can upper bound ET by

ET (Q, W, t) = Er(Ro, W ) ≤ Er(Rcr(W ), W ) = E0(1, W ) − Rcr(W ).

Thus we obtain

EJ(Q, W, t) − ET (Q, W, t) ≥ Rcr(W ) − tEs(1, Q).

The above is positive since

E0(1, W ) − tEs(1, Q) = te

(
Rm

t
, Q

)
+ Er(Rm, W )

> Er(Rm, W )

> Er(Rcr(W ), W )

= E0(1, W ) − Rcr(W ),

where the first inequality follows from the fact that Rm > tH(Q) by Lemma 5 and

Corollary 1.

�

As pointed out in the proof, the condition tR
(s)
cr (Q) ≥ Rcr(W ) means that the JSCC

exponent EJ is achieved at a rate no less than Rcr(W ). The second condition, Eo(1, W )−
tD(Q(γ) ‖ Q) ≥ Rcr(W ) means that the tandem coding exponent ET is achieved at a

rate no less than Rcr(W ). Hence (63) in Theorem 6 states that EJ would be strictly

larger than ET if either EJ or ET is determined exactly. Conversely, if the conditions in

Theorem 6 are not satisfied, then neither EJ nor ET are exactly known. Nevertheless, if

the lower bound of EJ is strictly larger than the upper bound of ET , then we must have

EJ > ET . Hence we obtain the following sufficient conditions.

Theorem 7 Let Eex(0, W ) < ∞ and let t log |S| ≥ Rcr(W ), where Eex(R, W ) is the

expurgated channel error exponent [23]. If

E0(1, W ) − tEs(1, Q) ≥ ERl
,

k1k2t log |S| + k2t log(|S|Q(s)) + k1Eex(0, W )

k1 − k2
,
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where

k1 =
D
(
Q(1) ‖ Q

)
+ log(|S|Q(s))

H (Q(1)) − log |S| and k2 =
E0(1, W ) − Eex(0, W )

Rcr(W )
− 1,

then EJ(Q, W, t) > ET (Q, W, t).

Theorem 8 Let t log |S| ≥ Rcr(W ). If E0(1, W )− tEs(1, Q) ≥ tD
(
Q(γ) ‖ Q

)
, where γ is

defined in (60), then EJ(Q, W, t) > ET (Q, W, t).

In Theorems 7 and 8, we establish the sufficient conditions by comparing the source-

channel random-coding bound derived in Theorem 2, with the upper bound of tandem

coding exponent obtained by using the geometric characteristics of e(R, W ) and E(R, W ).

The proofs of Theorems 7 and 8 are given in Appendices B and C, respectively. These

conditions can be readily computed since it only requires the knowledge of Rcr(W ) and

Eex(0, W ). Note that the condition Eex(0, W ) < ∞ in Theorem 7 is satisfied by the DMCs

with zero-error capacity equal to 0, see [19, p. 187]. Thus, Theorem 7 applies to equidistant

channels, in particular, to every channel with binary input alphabet. An expression of

Eex(0, W ) for the DMC with 0 zero-error capacity is given in [23, Problem 5.24].

Example 4 (When Does the JSCC Exponent Outperform the Tandem Coding

Exponent?) We apply Theorems 6, 7 and 8 to the binary DMS with distribution {q, 1−q}
and BSC with crossover probability ε, and the binary DMS {q, 1 − q} and the binary

erasure channel (BEC) with erasure probability α, under different transmission rates t. If

any one of the conditions in these theorems holds, then EJ > ET . The above conditions

are summarized by Region F in Fig. 7. Indeed, Region F shows that EJ > ET for a wide

range of (ε, q) or (α, q) pairs. Region G consists of the pairs (ε, q) or (α, q) such that

tH(Q) ≥ C; in this case, EJ = ET = 0. Finally, when (ε, q) or (α, q) falls in Region H,

we are not sure whether EJ is still strictly larger than ET .

Example 5 (By How Much Can the JSCC Exponent Be Larger Than the

Tandem Coding Exponent?) In the last example we have seen that EJ > ET holds for

a wide large class of source-channel pairs. Now we evaluate the performance of EJ over ET

by looking at the ratio of the two quantities. Recall that when Theorem 6 (a) is satisfied,

both EJ and ET are exactly determined. In this case we can directly compute EJ (using

the results of Section 3) and ET (using (55) and (56)). When EJ (respectively, ET ) is not

known, i.e., when tR
(s)
cr (Q) < Rcr(W ) (respectively, Eo(1, W )− tD(Q(γ) ‖ Q) < Rcr(W )),
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we can calculate the lower bound of EJ (respectively, the upper bound of ET ) instead

and thus obtain a lower bound for EJ/ET . For general DMCs, we lower bound EJ by its

random-coding lower bound Er(Q, W, t). For equidistant DMCs, particularly for binary

DMCs, when tR
(s)
cr (Q) < Rex(W ), we use the expurgated lower bound Eex(Q, W, t); when

tR
(s)
cr (Q) ≥ Rex(W ), we use the random-coding lower bound Er(Q, W, t). To calculate the

upper bound of ET , when Eo(1, W )− tD(Q(γ) ‖ Q) < Rcr(W ) ≤ R
(s)
cr (Q), or equivalently

when Ro < Rcr(W ) ≤ Rm, we can bound ET by

ET (Q, W, t) ≤ min
{
tD
(
Q(γ) ‖ Q

)
, Esp(Rs, W )

}
,

where Rs is the intersection of Esp(R, W ) and te(R/t, Q) if any; otherwise Rs = t log |S|.
When Eo(1, W ) − tD(Q(γ) ‖ Q) < Rcr(W ) and R

(s)
cr (Q) < Rcr(W ), we bound ET by

ET (Q, W, t) ≤ Esp(Rs, W ).

Table 1 exhibits EJ/ET (or its lower bound, which must be no less than 1) for the binary

DMS {q, 1 − q} and BSC (ε) system under transmission rates t = 0.5, 0.75 and 1. It

is seen that the ratio EJ/ET can be very close to 2 (its upper bound) for many (q, ε)

pairs. For other systems, we have similar results: EJ substantially outperforms ET . For

instance, for binary DMS {q, 1 − q} and BEC (α) with t = 1, we note that EJ/ET ≥ 1.4

for a wide range of (q, α)’s; for ternary DMS and BSC or for DMS and ternary symmetric

channel, if transmission rate t is chosen suitably (such that tH(Q) < C), we obtain that

EJ/ET ≥ 1.5 for many source-channel pairs.

4.3 Power Gain Due to JSCC for DMS over Binary-input AWGN

and Rayleigh-Fading Channels with Finite Output Quanti-

zation

It is well known that M -ary modulated additive white Gaussian noise (AWGN) and

memoryless Rayleigh-fading channels can be converted to a DMC when finite quantization

is applied at their output. For example, as illustrated in [4], [41], we know that the

concatenation of a binary phase-shift keying (BPSK) modulated AWGN or Rayleigh-

fading channel with m-bit soft-decision demodulation is equivalent to a binary-input,

2m-output DMC (cf. Fig. 8). We next study the JSCC and tandem coding exponent for

a system involving such channels to assess the potential benefits of JSCC over tandem

coding in terms of power or channel signal-to-noise ratio (SNR) gains.
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We assume that the BPSK signal Un ∈ {−1, +1} corresponding to the signal input

Xn is of unit energy, and Vn is a zero-mean independent and identically distributed (i.i.d.)

Gaussian random process with variance No/2. The channel SNR is defined by SNR ,

E[U2
n]/E[V 2

n ] = 2/No and the received signal is

Zn = AnUn + Vn, n = 1, 2, ...,

where An is 1 for the AWGN channel (no fading), and for the Rayleigh-fading channel,

{An} is the amplitude fading process assumed to be i.i.d. with probability density function

(pdf)

fA(a) =

{
2ae−a2

, if a > 0,

0, otherwise,

such that E[A2
n] = 1. We also assume for the Rayleigh-fading channel that An, Un and

Vn are independent of each other, and the values of An are not available at the receiver.

At the receiver, as shown in Fig. 8, each Zn ∈ R is demodulated via an m-bit uniform

scalar quantizer with quantization step ∆ to yield Yn ∈ {0, 1}m. If the channel input

alphabet is X = {0, 1} and the channel output alphabet is Y = {0, 1, 2, ..., 2m − 1}, then

the transition probability matrix Π is given by

Π = [πij], i ∈ X , j ∈ Y,

where

πij , P (Y = j|X = i) = Q
(
(Tj−1 − (2i − 1))

√
SNR

)
−Q

(
(Tj − (2i − 1))

√
SNR

)

for the AWGN channel [41], and

πij , P (Y = j|X = i) = FZ|X(Tj|i) − FZ|X(Tj−1|i)

for the Rayleigh-fading channel [4]. Here FZ|X(z|i) = Pr{Z ≤ z|Z = i} is given by [4],

[49]

FZ|X(z|1) = 1−FZ|X(−z|0) = 1−Q
(

z√
No/2

)
−e−(z2/(No+1))

√
No + 1

×
[
1 −Q

(
z√

No(No + 1)/2

)]
,

where Q(x) is the complementary error function

Q(x) =
1√
2π

∫ ∞

x

exp
{
−t2/2

}
dt,
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and {Tj} are the thresholds of the receiver’s soft-decision quantizer given by

Tj =





−∞, if j = −1,

(j + 1 − 2m−1)∆, if j = 0, 1, ..., 2m − 2,

+∞, if j = 2m − 1

(69)

with uniform step-size ∆. For each channel SNR, the suitable quantization step ∆ is

chosen as in [41], [4] to yield the maximum capacity of the binary-input 2m-output DMC.

We compute the JSCC and tandem coding exponents for the binary source and the

binary-input 2m-output DMC converted from the AWGN (Rayleigh-fading, respectively)

channel under transmission rate t = 0.75 (t = 1, respectively), and illustrate the power

gain due to JSCC. In Figs. 9 and 10, we plot EJ and ET for binary DMS Q = {0.1, 0.9}
and m = 1, 2, 3 by varying the channel SNR (in dB). We point out that in both the two

figures, when SNR ≤ 6 dB for m = 2, 3 and when SNR ≤ 8 dB for m = 1, EJ and ET

are determined exactly. We observe that for the same SNR, EJ is almost twice as large

as ET . Furthermore, for the same exponent and the same (asymptotic) encoding length,

JSCC would yield the same probability of error as tandem coding with a power gain of

more than 2 dB. A similar behavior was noted for other values of transmission rate t.

5 JSCC Error Exponent with Hamming Distortion

Measure

Let S be a finite set and d(·, ·) be a distortion measure, i.e., a nonnegative valued function

d defined on S × S and extended to Sn × Sn by setting

d(sn, s̃n) ,
1

n

n∑

i=1

d(si, s̃i).

A JSC code with blocklength n and transmission rate t > 0 for a tn-length DMS

{Q : S} and a DMC {W : X → Y} with a threshold ∆ of tolerated distortion is a pair of

mappings fn : Stn −→ X n and ϕn : Yn −→ Stn. The probability of the code exceeding

the threshold ∆ is given by

P
(n)
∆ (Q, W, t) ,

∑

{(stn,yn):d(stn,ϕn(yn))>∆}

Qtn(stn)Pn,Y |X(yn | fn(stn)),

where Qtn and Pn,Y |X are the tn- and n-dimensional product distributions corresponding

to Q and PY |X respectively. P
(n)
∆ (Q, W, t) is also called the probability of excess distortion.
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We remark that for the JSCC with a distortion threshold, we allow that the source has a

uniform distribution.

Definition 3 The JSCC error exponent E∆
J (Q, W, t) is defined as the largest number E∆

for which there exists a sequence of JSC codes (fn, ϕn) with blocklength n and transmission

rate t such that

E∆ ≤ lim inf
n→∞

− 1

n
log P

(n)
∆ (Q, W, t).

When there is no possibility of confusion, E∆
J (Q, W, t) will often be written E∆

J . In

[18], Csiszár proved that for a DMS Q and a DMC W , the JSCC error exponent under

distortion threshold ∆ satisfies

E∆
r (Q, W, t) ≤ E∆

J (Q, W, t) ≤ E
∆

sp(Q, W, t), (70)

where

E∆
r (Q, W, t) , inf

R>0

[
tF

(
R

t
, Q, ∆

)
+ Er(R, W )

]
(71)

and

E
∆

sp(Q, W, t) , inf
R>0

[
tF

(
R

t
, Q, ∆

)
+ Esp(R, W )

]
. (72)

In the above,

F (R, Q, ∆) = inf
P :R(P,∆)>R

D(P ‖ Q) (73)

is the source error exponent with a fidelity criterion [37] and R(P, ∆) is the rate distortion

function (e.g., [16], [19]). Er(R, W ) and Esp(R, W ) are the random-coding and sphere-

packing bounds to the channel error exponent. Likewise, if the infimum in (71) or (72) is

attained for a rate larger than the channel critical rate, then the lower and upper bounds

coincide, and we can determine E∆
J exactly. Of course, the two bounds are nontrivial if

and only if tR(Q, ∆) < C by the JSCC theorem.

It can be shown that F (R, Q, ∆) is a nondecreasing function in R. However, unlike

e(R, Q), F (R, Q, ∆) is not necessarily convex or even continuous in R [1], [37]. Therefore,

it is hard to analytically compute the JSCC exponent E∆
J in general. In this section we

only address the computation of E∆
J for a binary DMS and an arbitrary DMC under the

Hamming distortion measure dH(·, ·), given by

dH(s, s̃) =

{
1, if s 6= s̃,

0, if s = s̃.
(74)

We first need to derive a parametric form of F (R, Q, ∆). Define

E∆
s (ρ, Q) , (1 + ρ) log

(
q

1
1+ρ + (1 − q)

1
1+ρ

)
− ρhb(∆). (75)
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Lemma 7 For binary DMS Q , {q, 1 − q} (q ≤ 1/2) under the Hamming distortion

measure (74) and distortion threshold ∆ such that ∆ ≤ 1/2, the following hold.

F (R, Q, ∆) =





+∞, R > 1 − hb(∆),

supρ≥ρ0
[ρR − E∆

s (ρ, Q)], R(Q, ∆) < R ≤ 1 − hb(∆),

0, R ≤ R(Q, ∆),

(76)

where the rate-distortion function R(Q, ∆) = hb(q)−hb(∆) and ρ0 = 0 if q ≥ ∆; otherwise

R(Q, ∆) = 0 and ρ0 is the unique root of equation H(Q(ρ)) = hb(∆) such that ρ0 > 0.

The proof of this lemma is given in Appendix D. It can be easily verified that

F (R, Q, ∆) is continuous and convex in R ∈ (−∞, 1 − hb(∆)] if q ≥ ∆ and F (R, Q, ∆)

is continuous and convex in R ∈ (0, 1 − hb(∆)] and has a jump at R = R(Q, ∆) = 0 if

q < ∆. According to Lemma 7, the source error exponent tF (R/t, Q, ∆) is the convex

transform of tE∆
s (ρ, Q) in [ρ0, +∞). Define the binary divergence by

D̃(∆ ‖ q) , ∆ log
∆

q
+ (1 − ∆) log

1 − ∆

1 − q
. (77)

Adopting the approach of Section 3, we can apply Fenchel’s Duality Theorem to E∆
r (Q, W, t)

and E
∆

sp(Q, W, t) and obtain equivalent computable bounds.

Theorem 9 Given a binary DMS (q ≤ 1/2) and a DMC W under the Hamming dis-

tortion measure and distortion threshold ∆ (∆ ≤ 1/2), the JSCC exponent satisfies the

following.

1) Lower Bound: If 0 ≤ ∆ <
√

q/(
√

q +
√

1 − q), then ρ0 < 1 and

E∆
r (Q, W, t) = max

ρ0≤ρ≤1
[Tr(ρ, W ) − tE∆

s (ρ, Q)], (78)

Otherwise, if ∆ ≥ √
q/(

√
q +

√
1 − q), then

E∆
r (Q, W, t) = tD̃(∆ ‖ q) + E0(1, W ). (79)

2) Upper Bound:

E
∆

sp(Q, W, t) = sup
ρ≥ρ0

[Tsp(ρ, W ) − tE∆
s (ρ, Q)]. (80)

Since the above result is a simple extension of the results in Section 3, the proof is

omitted and we hereby only provide the following remarks.
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(a) Similar to the lossless case, if t(hb(q)−hb(∆)) ≥ C, then E∆
r (Q, W, t) = E

∆

sp(Q, W, t) =

0. If R∞(W ) > t(1 − hb(∆)), then E
∆

sp(Q, W, t) = +∞.

(b) Note that when ∆ ≥ √
q/(

√
q +

√
1 − q), E∆

r (Q, W, t) in (71) is achieved at R ↓ 0+,

and

E∆
r (Q, W, t) = lim

R↓0+

[
tF (

R

t
, Q, ∆) + Er(R, W )

]

= lim
R↓0+

[
t inf

P :R(P,∆)> R
t

D(P ‖ Q) + E0(1, W ) − R

]

= tD̃(∆ ‖ q) + E0(1, W ).

(c) In the special case where the binary source is uniform, i.e., q = 1/2, Theorem 9

reduces to

max
0≤ρ≤1

[−ρt(1 − hb(∆)) + Tr(ρ, W )] ≤ E∆
J (Q, W, t) ≤ sup

ρ≥0
[−ρt(1 − hb(∆)) + Tsp(ρ, W )] .

This is clearly equivalent to

Er (t(1 − hb(∆)), W ) ≤ E∆
J (Q, W, t) ≤ Esp (t(1 − hb(∆)), W ) (81)

by the definition of Tr(ρ, W ) and Tsp(ρ, W ). In other words, E∆
J is bounded by

the channel random-coding and sphere-packing bounds at rate t(1 − hb(∆)). If

t(1 − hb(∆)) ≥ Rcr(W ), then E∆
J is exactly determined.

(d) When the source is nonuniform, E∆
s (ρ, Q) = Es(ρ, Q) − ρthb(∆) is strictly concave

in ρ. In this case, the maximizer

ρ∆ , arg sup
ρ≥ρ0

[Tsp(ρ, W ) − tE∆
s (ρ, Q)]

is strictly larger than ρ0 if t(hb(q) − hb(∆)) < C and R∞(W ) ≤ t(1 − hb(∆)).

Particularly, ρ∆ < ∞ if R∞(W ) < t(1 − hb(∆)). As counterparts of Lemma 5

and Corollary 1, it can be shown that the upper bound E
∆

sp(Q, W, t) in (72) is

attained at R
∆

m = H(Q(ρ∆)) − hb(∆) and the lower bound in (71) is attained at

R∆
m = H(Q(ρ∆)) − hb(∆), where ρ∆ = min{ρ∆, 1}. Consequently, other similar

results to the lossless case regarding these optimizers can be obtained.

Example 6 For a binary DMS {q, 1 − q} (q ≤ 0.5) and a BSC (ε) under transmission

rate t = 1, we compute the JSCC error exponent under the Hamming distortion measure
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with distortion threshold ∆ (∆ < 1
2
). In Fig. 11, if the pair (ε, q) is located in region B,

then the corresponding JSCC exponent can be determined exactly (the lower and upper

bounds are equal). If (ε, q) is located in region C1, then E∆
J is bounded by (78) and (80).

If (ε, q) is located in region C2, then E∆
J is bounded by (79) and (80). When (ε, q) ∈ A,

E∆
J is zero, and the error probability of this communication system converges to 1 for n

sufficiently large. So we are only interested in the cases when (ε, q) ∈ B ∪ C1 ∪ C2.

Fig. 12 shows the JSCC error exponent lower bound of the binary DMS {q, 1 − q}
(q ≤ 0.5) and BSC (ε) pairs under different distortion thresholds. We fix the BSC

parameter ε = 0.2, and vary q from 0 to 0.5. In Fig. 12, Segment 1 is determined by (79),

and Segments 2 and 3 are determined by (78). Furthermore, the lower bound coincides

with the upper bound (80) in Segment 3; i.e., the JSCC exponent is exactly determined

in Segment 3.

6 Conclusions

In this work, we establish equivalent parametric representations of Csiszár’s lower and

upper bounds for the JSCC exponent EJ of a communication system with a DMS and

a DMC, and we obtain explicit conditions for which the JSCC exponent is exactly de-

termined. As a result, the computation of the bounds for EJ is facilitated for arbitrary

DMS-DMC pairs. Furthermore, the bounds enjoy closed-form expressions when the chan-

nel is symmetric. A byproduct of our result is the fact that Csiszár’s random-coding lower

bound for EJ is in general larger than Gallager’s lower bound [23].

We also provide a systematic comparison between EJ and ET , the tandem coding error

exponent. We show that JSCC can at most double the error exponent vis-a-vis tandem

coding by proving that EJ ≤ 2ET and we provide the condition for achieving this doubling

effect. In the case where this upper bound is not tight, we also establish sufficient explicit

conditions under which EJ > ET . Numerical results indicate that EJ ≈ 2ET for a large

class of DMS-DMC pairs, hence illustrating the substantial potential benefit of JSCC

over tandem coding. This benefit is also shown to result into a power saving gain of more

than 2 dB for a binary DMS and a BPSK-modulated AWGN/Rayleigh channel with finite

output quantization. Finally, we partially investigate the computation of Csiszár’s lower

and upper bounds for the lossy JSCC exponent under the Hamming distortion measure,

and obtain equivalent representations for these bounds using the same approach as for

the lossless JSCC exponent.
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A Proof of Theorem 2 and Corollary 1

Theorem 2 can be shown by a left- and right- derivatives argument combined with the

results of Lemma 5. Let sl(R) and sr(R) be the left and right-slopes (or left- and right-

derivatives) of Esp(R, W ) at each R > R∞(W ). Let rl(R) and rr(R) be the left and

right slopes of Er(R, W ) at each R ≥ 0. Let ρ(R) be the slope of te(R/t, Q) for any

R ∈ [tH(Q), t log |S|]. It is easy to verify that these slopes have the following properties

(cf. [13], [23], [43]):

(a) sl(R) and sr(R) exist for every R > R∞(W ) and are nondecreasing in R.

(b) rl(R) and rr(R) exist for every R ≥ 0 and are nondecreasing in R.

(c) sl(R) ≤ sr(R) < −1 for R < Rcr(W ), −1 ≤ sl(R) ≤ sr(R) ≤ 0 for Rcr(W ) < R < C,

and sl(R) = sr(R) = 0 for R > C. sl(Rcr(W )) ≤ −1 ≤ sr(Rcr(W )) and sl(C) ≤ 0 =

sr(C).

(d) rl(R) = rr(R) = −1 for R < Rcr(W ), rl(R) = sl(R) for R > Rcr(W ), and

rr(R) = sr(R) for R ≥ Rcr(W ). rl(Rcr(W )) = −1 ≤ rr(Rcr(W )).

(e) ρ(R) is a strictly increasing function of R and is determined by R = tH
(
Q(ρ(R))

)
for

tH(Q) ≤ R ≤ t log |S|. Specifically, ρ(tH(Q)) = 0 and ρ(t log |S|) = ∞.

(f) ρ∗ = ρ(Rm), where ρ∗ and Rm are defined in (37) and (39), respectively.

(a) and (b) follows from the convexity of Esp(R, W ) for R > R∞(W ) and Er(R, W )

for R ≥ 0, see [43, pp. 113–114]. Recalling that Er(R, W ) involves a straight-line section

with slope −1 for R ∈ [0, Rcr(W )] and Er(R, W ) = Esp(R, W ) only for R ≥ Rcr(W ),

where they both are equal to 0 for R ≥ C, we obtain (c) and (d) from (a) and (b). From

(24), we know that te(R/t, Q) = tD
(
Q(ρ∗) ‖ Q

)
for tH(Q) ≤ R ≤ t log |S|, where ρ∗ is

the unique root of tH(Q(ρ)) = R. Also, it is easy to verify [13] that such ρ∗ is exactly the

slope of te(R/t, Q) at R, i.e.,
∂te(R/t, Q)

∂R
= ρ∗.

Thus (e) follows. Recalling also that in Lemma 5 we have shown the relation Rm =
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tH(Q(ρ∗)), since there is unique ρ satisfying this equation, we obtain (f).

Based on the above setup, the following lemma illustrates the geometric conditions for

which Er(Q, W, t) and Esp(Q, W, t) are attained.

Lemma 8 Let tH(Q) < C and let R∞(W ) < t log |S|. The minimum in (30) is attained

at Rm if and only if −sl(Rm) ≥ ρ(Rm) ≥ −sr(Rm), and the minimum in (29) is attained

at Rm if and only if −rl(Rm) ≥ ρ(Rm) ≥ −rr(Rm).

Proof :

1. Forward part: We only show the case for the upper bound Esp(Q, W, t), since the

case for the lower bound can be shown in a similar manner. We first show that a rate

R1 ∈ [tH(Q), t log |S|] satisfying −sl(R1) ≥ ρ(R1) ≥ −sr(R1) must achieve the minimum

in Esp(Q, W, t). Define functions

f1(R) ,

{
Esp(R, W ) if R ≤ R1,

Esp(R1, W ) − |sl(R1)|+|ρ(R1)|
2

(R − R1) if R ≥ R1.

and

g1(R) ,

{
te
(

R
t
, Q
)

if R ≤ R1,

te
(

R1

t
, Q
)

+ |ρ(R1)|+|sl(R1)|
2

(R − R1) if R ≥ R1.

Since −sl(R1) ≥ ρ(R1) implies sl(R1) ≤ −(|sl(R1)| + |ρ(R1)|)/2 and ρ(R1) ≤ (|ρ(R1)| +
|sl(R1)|)/2, we claim that f1(R) and g1(R) are both convex functions and hence their sum

is convex,

f1(R) + g1(R) =

{
te
(

R
t
, Q
)

+ Esp(R, W ) if R ≤ R1,

te
(

R1

t
, Q
)

+ Esp(R1, W ) if R ≥ R1.

Since the convex function f1(R)+g1(R) is constant for R ≥ R1 (noting that the convexity

is strict in the interval [tH(Q), R1]), we may write

min
tH(Q)≤R≤R1

[
te

(
R

t
, Q

)
+ Esp(R, W )

]
= te

(
R1

t
, Q

)
+ Esp(R1, W ).

Similarly, using the relation ρ(R1) ≥ −sr(R1) we can construct convex functions

f2(R) ,

{
Esp(R, W ) if R ≥ R1,

Esp(R1, W ) + sr(R1)−ρ(R1)
2

(R − R1) if R ≤ R1.
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and

g2(R) ,

{
te
(

R
t
, Q
)

if R ≥ R1,

te
(

R1

t
, Q
)

+ ρ(R1)−sr(R1)
2

(R − R1) if R ≤ R1,

and use them to show that the minimum

min
R1≤R≤t log |S|

[
te

(
R

t
, Q

)
+ Esp(R, W )

]

is attained at R1. Thus, R1 is the minimizer of Esp(Q, W, t), i.e.,

min
tH(Q)≤R≤t log |S|

[
te

(
R

t
, Q

)
+ Esp(R, W )

]
= te

(
R1

t
, Q

)
+ Esp(R1, W ).

2. Converse part: We assume Rm ∈ (R∞(W ), t log |S|) achieves the minimum in (30) but

ρ(Rm) < −sr(Rm). Note that ρ(t log |S|) = ∞ > −sr(t log |S|) provided that t log |S| >

R∞(W ). Now let R1 be the smallest rate in [R∞(W ), t log |S|] satisfying ρ(R1) ≥ −sr(R1).

According to our assumption together with (a) and (e), R1 > Rm. However, using our

previous method, we can construct two convex functions f1(R) and g1(R) associated with

R1 to show

min
tH(Q)≤R≤R1

[
te

(
R

t
, Q

)
+ Esp(R, W )

]
= te

(
R1

t
, Q

)
+ Esp(R1, W ).

This is clearly contradicted with the assumption that the minimum is attained at Rm, a

rate smaller than R1, since there is unique minima due to the strict convexity. Thus, at

Rm we must have ρ(Rm) ≥ −sr(Rm). Consequently, we can show in a similar manner

that ρ(Rm) ≤ −sl(Rm). �

The following facts immediately follow from Lemma 8.

Lemma 9 We have the following relations between Rm and Rm:

(1). If Rm > Rcr(W ) or Rm > Rcr(W ), then Rm = Rm > Rcr(W ) and Esp(Q, W, t) =

Er(Q, W, t).

(2). If Rm = Rcr(W ), then Rm ≤ Rcr(W ).

(3). Rm ≥ Rm.

Proof : (1) is trivial since Er(R, W ) = Esp(R, W ) for R ≥ Rcr(W ). If Rm = Rcr(W ),

then by Lemma 8 and (d), ρ(Rcr(W )) ≥ −sr(Rcr(W )) = −rr(Rcr(W )). Using Lemma 8

again we obtain (2). To show (3), we only need to show the case when Rm < Rcr(W ).
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According to Lemma 8 together with (c) and (d), we see ρ(Rm) > 1 and ρ(Rm) = 1. It

follows from (e) that Rm > Rm.

�

This lemma emphasizes that when the JSCC error exponent upper bound is achieved

at a rate equal to the channel critical rate Rcr(W ), the lower bound could be achieved at

a rate smaller than Rcr(W ).

In the sequel we shall use properties (c)-(f), and Lemmas 5, 8 and 9 to prove Theorem 2.

To show A ⇐⇒ B ⇐⇒ C, we only need to show: A =⇒ B (Forward) and B =⇒ C =⇒ A

(Converse).

1. Converse Part. We start from

ρ∗ < 1 =⇒ ρ(Rm) < 1 (by (f))

=⇒ Rm < tR
(s)
cr (Q) (by (e))

and sr(Rm) > −1 (by Lemma 8)

=⇒ Rm ≥ Rcr(W ) (by (c))

=⇒ tR
(s)
cr (Q) > Rm = Rm > Rcr(W ) (by Lemma 9 (1)) (82)

or tR
(s)
cr (Q) > Rm = Rcr(W ) ≥ Rm (by Lemma 9 (2)) (83)

=⇒ 0 < ρ∗ = ρ∗ < 1 (84)

and tR
(s)
cr (Q) > Rm = Rm ≥ Rcr(W ), (85)

where (84) and (85) are explained as follows. We first claim ρ∗ < 1, because ρ∗ = 1

would yield Rm ≥ tR
(s)
cr (Q) by Lemma 5 (3), which is contradicted with (82) and (83).

Since now ρ∗ < 1, from Lemma 8 and (d) we know Rm ≥ Rcr(W ). Thus in (83) we must

have Rm = Rcr(W ) and consequently (82) and (83) can both be summarized by (85).
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Meanwhile, ρ∗ = ρ∗ follows by Lemma 5. If now

ρ∗ = 1 =⇒ ρ(Rm) = 1 (by (f))

=⇒ Rm = tR
(s)
cr (Q) (by (e))

and sl(Rm) ≤ −1 ≤ sr(Rm) (by Lemma 8)

=⇒ Rm ≥ Rcr(W ) (by (c))

=⇒ tR
(s)
cr (Q) = Rm = Rm > Rcr(W ) (by Lemma 9 (1)) (86)

or tR
(s)
cr (Q) = Rm = Rcr(W ) ≥ Rm (by Lemma 9 (2)) (87)

=⇒ ρ∗ = ρ∗ = 1 (88)

and tR
(s)
cr (Q) = Rm = Rm ≥ Rcr(W ), (89)

where (88) and (89) are explained as follows. We first claim that ρ∗ = 1. If ρ∗ < 1, then

by Lemma 5 (3) we have Rm < tR
(s)
cr (Q). In (86), we see Rm = tR

(s)
cr (Q), contradicted.

In (87), it is still impossible that Rm < tR
(s)
cr (Q) = Rcr(W ), because in that case we have

ρ(Rm) < ρ(tR
(s)
cr (Q)) = 1 by (e), which violates Lemma 8 since Rm < Rcr(W ) implies

ρ(Rm) = 1. Thus we must have ρ∗ = 1 and (88) follows. According to Lemma 5 (3)

again, ρ∗ = 1 implies Rm ≥ tR
(s)
cr (Q). Hence in (87) we must have Rm = tR

(s)
cr (Q). (86)

and (87) can both be summarized by (89). Next if

ρ∗ > 1 =⇒ ρ(Rm) > 1 (by (f))

=⇒ Rm > tR
(s)
cr (Q) (by (e)) (90)

and sl(Rm) < −1 (by Lemma 8)

=⇒ Rm ≤ Rcr(W ) (by (c))

=⇒ Rm ≤ Rm ≤ Rcr(W ) (by Lemma 9 (1) and (3))

=⇒ Rm < Rcr(W ) (91)

=⇒ rl(Rm) = −1 = rr(Rm) (by (d))

=⇒ ρ(Rm) = 1 (by Lemma 8)

=⇒ Rm = tR
(s)
cr (Q) (by (e)) (92)

=⇒ ρ∗ = 1 (by Lemma 5 (3))

and Rm > Rm. (by (90) and (92)).

To see (91), we let Rm = Rm = Rcr(W ). Then using (d) and Lemma 8 yields ρ(Rm) ≤ 1,

which is contradicted with the assumption ρ(Rm) = ρ(Rm) > 1. To show the last step,
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we assume ρ∗ < 1, then Lemma 5 (3) ensures Rm = tH(Q(ρ∗)) < tR
(s)
cr (Q), which is

contradicted with the last second step.

2. Forward Part. First recall that ρ(tR
(s)
cr (Q)) = 1 by (e). Now if tR

(s)
cr (Q) ≥ Rcr(W ), then

Rm cannot be strictly larger than tR
(s)
cr (Q) because in that case ρ(Rm) > ρ(tR

(s)
cr (Q)) = 1,

−sl(Rm) ≤ 1 by (c), which violates Lemma 8. It then follows Rm ≤ tR
(s)
cr (Q) and hence

ρ∗ ≤ 1 by (e). Conversely, if tR
(s)
cr (Q) < Rcr(W ), then Rm cannot be less than (or equal

to) tR
(s)
cr (Q) because in that case ρ(Rm) ≤ ρ(tR

(s)
cr (Q)) = 1, −sr(Rm) > 1 by (c), which

violates Lemma 8. It then follows Rm > tR
(s)
cr (Q) and hence ρ∗ > 1 by (e).

Finally, we should note that when tR
(s)
cr (Q) < Rcr(W ), or ρ∗ > 1, the lower bound is

achieved by Rm = tR
(s)
cr (Q) < Rcr(W ) and ρ∗ = 1. Thus

Er(Q, W, t) = te

(
Rm

t
, Q

)
+ Er(Rm, W )

=
[
ρ∗Rm − tEs(ρ

∗, Q)
]
+
[
E0(1, W ) − ρ∗Rm

]

= E0(1, W ) − tEs(1, Q).

Meanwhile, Corollary 1 immediately follows by the above argument. �

B Proof of Theorem 7

We first recall that if −t log(|S|Q(s)) < E(t log |S|, W ), then there is no intersection

between te(R/t, Q) and E(R, W ). Clearly, the tandem coding exponent satisfies

ET (Q, W, t) = E(t log |S|, W )

= Er(t log |S|, W ) (93)

< Er(Rm, W ) (94)

≤ EJ(Q, W, t),

Here, (93) follows by hypothesis Rcr(W ) ≤ t log |S|. (94) holds since Rm must be a

quantity smaller than t log |S| by Corollary 1.

We hence assume that −t log(|S|Q(s) ≥ E(t log |S|, W ), i.e., we assume that te(R/t, Q)

and E(R, W ) intersect at rate Ro. If Ro ≥ Rcr(W ), which means that Eo(1, W ) −
Rcr(W ) ≥ te(Rcr(W )/t, Q), then Theorem 6 guarantees that EJ > ET . If Rm ≥ Rcr(W ),

which implies tR
(s)
cr (Q) ≥ Rcr(W ) by Corollary 2. This ensures EJ > ET by Theorem 6.
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Furthermore, if Rcr(W ) > Rm ≥ Ro, then

EJ(Q, W, t) ≥ te

(
Rm

t
, Q

)
+ Er(Rm, W )

> te

(
Rm

t
, Q

)

≥ te

(
Ro

t
, Q

)

= ET (Q, W, t).

In the remaining, we assume that te(R/t, Q) and E(R, W ) intersect at rate Ro and

that Rm < Ro < Rcr.

For a DMC with Eex(0, W ) < ∞, we may define the upper bound of the channel error

exponent by

Es(R, W ) ,

{
Esl(R, W ), 0 ≤ R ≤ Rs,

Esp(R, W ), Rs ≤ R ≤ C,

where Esl(R, W ) is the straight-line upper bound for the channel error exponent, and Rs

is the rate where the straight-line upper bound is tangent to the sphere-packing bound

and Rs ≤ Rcr(W ) [19], [23]. Clearly, Es(R, W ) is also convex in 0 ≤ R ≤ C, and it is

shown in [19], [23] that

Es(0, W ) = Esl(0, W ) = Eex(0, W ).

Now connect (0, Es(0, W )) and (Rcr(W ), Es(Rcr(W ), W )) with a straight line, denoted by

l1, where

Es(Rcr(W ), W ) = Er(Rcr(W ), W ) = E0(1, W ) − Rcr(W ).

Again, connect (Rm, te(Rm/t, Q)) and (t log |S|, te(log |S|, Q)) with a straight line, de-

noted by l2, where

te

(
Rm

t
, Q

)
= tD(Q(1) ‖ Q),

and

te(log |S|, Q) = −t log(|S|Q(s)).

Suppose that the intersection of Es(R, W ) and te(R/t, Q) is (R1, te(R1/t, Q)), and that

the intersection of l1 and l2 is (Rl, ERl
). By assumption, Ro, the intersection of te(R/t, W )

and E(R, W ), is strictly larger than Rm and strictly less than Rcr(W ); hence by definition,

R1, the intersection of te(R/t, W ) and Es(R, W ), must be strictly larger than Rm and
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strictly less than Rcr(W ), i.e., Rm < R1 ≤ Ro < Rcr(W ). Likewise, it is easily seen that

Rm < Rl < Rcr(W ). Furthermore, because of the convexity of te(R/t, Q) and Es(R, W )

in the region [Rm, Rcr(W )], ERl
must be strictly larger than te(R1/t, Q) (as te(R/t, W )

is strictly convex in this interval). It follows that

EJ(Q, W, t) ≥ E0(1, W ) − tEs(1, Q) ≥ ERl
> te

(
R1

t
, Q

)
≥ te

(
Ro

t
, Q

)
= ET (Q, W, t).

�

C Proof of Theorem 8

As in the previous proof, we only consider the case −t log2(|S|Q(s)) ≥ E(t log2 |S|, W )

and Rm < Ro < Rcr(W ). Thus, we can upper bound ET by

ET (Q, W, t) = te(
Ro

t
, Q)

< te

(
Rcr(W )

t
, Q

)

= tD
(
Q(γ) ‖ Q)

)

by the strict monotonicity of the source error exponent. On the other hand, Theorem 2

gives that

EJ(Q, W, t) ≥ E0(1, W ) − tEs(1, Q).

By assumption, if E0(1, W ) − tEs(1, Q) ≥ tD
(
Q(γ) ‖ Q)

)
, then EJ > ET . �

D Proof of Lemma 7

Recall that the rate-distortion function R(Q, ∆) for a binary DMS Q = {q, 1 − q} under

the Hamming distortion measure is given by (e.g., [16])

R(Q, ∆) =

{
hb(q) − hb(∆), 0 ≤ ∆ ≤ q,

0, ∆ > q.
(95)

Clearly, F (R, Q, ∆) = 0 for R ≤ 0 since the infimum in (73) is attained at P = Q. Simi-

larly, since R(P, ∆) ≤ 1 − hb(∆) for all P , F (R, Q, ∆) = ∞ for R > 1 − hb(∆). For the
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remainder of the proof, we assume 0 < R ≤ 1 − hb(∆).

(1)Case of 0 ≤ ∆ ≤ q. For R ≤ R(Q, ∆) = hb(q) − hb(∆), we have

F (R, Q, ∆) = inf
P :R(P,∆)>R

D(P ‖ Q) = D(P ‖ Q)

∣∣∣∣
P=Q

= 0.

For hb(q) − hb(∆) < R ≤ 1 − hb(∆), we have

F (R, Q, ∆) = inf
P :R(P,∆)>R

D(P ‖ Q)

= min
P,{p,1−p}:R(P,∆)=R

D(P ‖ Q) (96)

= min
p:hb(p)−hb(∆)=R

D(P ‖ Q)

= e(R + hb(∆), Q), for H(Q) ≤ R + hb(∆) ≤ log |S| (97)

= sup
ρ≥0

[ρ(R + hb(∆)) − Es(ρ)] (98)

= sup
ρ≥0

[ρR − E∆
s (ρ, Q)].

Here (96) follows from the facts that the continuous function θ(p) , p log p
q
+(1−p) log 1−p

1−q

is increasing for p ≥ q and R(P, ∆) given in (95) is continuous and increasing in p for

∆ ≤ p ≤ 1
2
. In (97), we note that H(Q) = hb(q) and that log |S| = 1 as the source

is binary. (98) follows by the well known parametric form of source exponent function

introduced by Blahut [13] and noting that R′ , R + hb(∆) ∈ [H(Q), log |S|].

(2) Case of ∆ > q. For 0 < R ≤ 1 − hb(∆), similarly as (97), we have

F (R, Q, ∆) = e(R′, Q) = sup
ρ∈A

[ρR′ − Es(ρ)],

where R′ = R + hb(∆) such that H(Q) < hb(∆) < R′ ≤ 1 = log |S| and

A =

{
ρ∗ :

∂[ρR′ − Es(ρ)]

∂ρ

∣∣∣∣
ρ=ρ∗

= 0, hb(∆) ≤ R′ ≤ 1

}

=
{
ρ∗ : hb(∆) ≤ R′ = H(Q(ρ∗)) ≤ 1

}

= {ρ∗ : ρ0 ≤ ρ∗ < ∞}, (99)

where ρ0 is the unique root of equation H(Q(ρ)) = hb(∆) and ρ0 > 0. Here (99) follows

from the monotone property of H(Q(ρ)). Therefore, we write

F (R, Q, ∆) = sup
ρ≥ρ0

[ρR − E∆
s (ρ, Q)].

In fact, it can be shown that ρ0 is the right slope of F (R, Q, ∆) at R = R(Q, ∆). �
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Figure 1: Example of a 6-ary input, 4-ary output DMC (see [23, Fig. 5.6.5]) for which

E0(ρ, W ) is not concave.
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Figure 2: Csiszár’s random-coding and sphere-packing bounds for the system of Exam-

ple 1.
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Figure 4: The regions for the (ε, q) pairs in the binary DMS {q, 1−q} and BSC (ε) system

of Example 2 for different transmission rates t. Note that EJ = 0 on the boundary between

A and B; EJ is exactly determined on the boundary between B and C. In A, EJ = 0.

In B, EJ is positive and known exactly. In C, EJ is positive and can be bounded above

and below.
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Figure 5: The regions for the (α, q) pairs in the binary DMS {q, 1 − q} and BEC (α)

system of Example 3 with t = 1. Note that EJ = 0 on the boundary between A and B;

EJ is determined on the boundary between B and C1; The random-coding bound and

expurgated bound to EJ are equal on the boundary between C1 and C2.
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EJ/ET t=0.5, q=0.1 t=0.75, q=0.1 t=0.75, q=0.15 t=1, q=0.05

ε = 0.0005 1.0† 1.60† 1.58† 1.87†

ε = 0.001 1.0† 1.70† 1.68† 1.93†

ε = 0.005 1.36† 1.94† 1.89 1.99

ε = 0.01 1.70† 1.95 1.91 2.0

ε = 0.04 1.85 1.97 1.95 2.0

ε = 0.08 1.91 1.99 1.96 2.0

ε = 0.12 1.95 1.97 2.0 2.0

ε = 0.16 1.96 1.95 N/A 2.0

ε = 0.2 1.86 N/A N/A N/A

Table 1: EJ/ET for the binary DMS and BSC pairs of Example 5. “N/A” means that

tH(Q) > C such that EJ = ET = 0. “†” means that this quantity is only a lower bound

for EJ/ET .
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Figure 7: The regions for binary DMS-BSC (q, ε) pairs and binary DMS-BEC (q, α) pairs

under different transmission rates t. In region F (including the boundary between F and

H), EJ > ET > 0; in region G (including the boundary between G and F), EJ = ET = 0;

and in region H, EJ ≥ ET > 0.
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Figure 8: Binary-input AWGN or Rayleigh-fading channel with finite output quantization.
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Figure 11: The regions for the (ε, q) pairs in the binary DMS {q, 1−q} and BSC (ε) system

of Example 6 with Hamming distortion for different values of the distortion threshold ∆

with t = 1. Note that E∆
J = 0 on the boundary between A and B, and E∆

J > 0 is

determined on the boundary between B and C1.
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Figure 12: Fix ε = 0.2. The JSCC exponent lower bound of the binary DMS {q, 1 − q}
(q ≤ 0.5) and BSC (ε) pairs under Hamming distortion with t = 1. For ∆ = 0, E∆

J is

determined if q ∈ [0.0001, 0.0481], which is the same as the random-coding lower bound for

the lossless JSCC error exponent. For ∆ = 0.1, E∆
J is determined if q ∈ [0.0209, 0.2129].

For ∆ = 0.2, E∆
J is determined if q ∈ [0.0955, 0.5]. For ∆ = 0.3, E∆

J is determined if

q ∈ [0.2854, 0.5].
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