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Abstract

We consider a public multi-user information embedding (watermarking) system in which two mes-
sages (watermarks) are independently embedded into two correlated covertexts and are transmitted
through a multiple-access attack channel. The tradeoff between the achievable embedding rates and
the average distortions for the two embedders is studied. For given distortion levels, inner and outer
bounds for the embedding capacity region are obtained in single-letter form. Tighter bounds are also
given for independent covertexts.

Index Terms: Capacity region, correlated covertexts, multiple accessattack, multi-user information embed-
ding, inner and outer bounds, public watermarking.

1 Introduction

In the last decade, the single-user (point-to-point) information-hiding (information-embedding, watermark-
ing) model has been thoroughly studied from an information-theoretic point of view; see, e.g., [1, 9, 15]
and the references therein. With the rapid development of wired and wireless communication networks,
situations arise where privacy protection is no longer a point-to-point problem. Therefore, it is of interest to
study information-hiding problems in multi-user settings.

In this paper we consider the scenario in which two secret messages (watermarks) are independently
embedded in two correlated sources (covertexts) and are then jointly decoded under multiple-access attacks.
This scenario is motivated by, for example, the practical situation where audio and video frames are wa-
termarked separately, but they are transmitted in a single bit stream and decoded by one multimedia player
(see [10, 12, 8]). The model is depicted in Fig. 1 and it assumes that two users separately embed their
watermarksW1 andW2 into two correlated discrete memoryless sources (DMSs),U1 andU2. Each user
can only access one of the two covertexts. The watermarked messages (stegotexts)Xn

1 andXn
2 are then
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sent through a multiple-access attack channel (MAAC) to a decoder which attempts to reconstruct the wa-
termarks. For this two-user information embedding system we are interested in determining the embedding
capacity region; i.e., the two-dimensional set of all achievable embedding rate pairs under constraints on the
embedding distortions.
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Figure 1: A multi-user information embedding system with two embedders.

Our main result (Theorem 1) is an inner bound for the embedding capacity region. The proof is based
on the approach of Gelfand and Pinsker [5] and a strong typicality coding/decoding argument. The encoders
first map the watermarksW1 andW2 and the correlated covertextsUn

1 andUn
2 to auxiliary codewordsT n

1

andT n
2 , and then generate two stegotextsXn

1 andXn
2 which are jointly typical with(Un

1 , U
n
2 , T

n
1 , T

n
2 ).

The decoder recovers the watermarks by examining the joint typicality of the received sequenceY n and all
auxiliary codeword pairs(T n

1 , T
n
2 ).

One major technical difficulty is the problem of how to separately construct the typical sequence en-
coders. In order to guarantee that the codewords together with the covertexts are jointly typical with a high
probability, we adopt a “Markov” encoding scheme from [11],which was originally proposed for Gaussian
multi-terminal source coding (see also [13] and [6]). The Markov encoders can be briefly described as fol-
lows. One of the encoders (embedders), say Encoder 1, first forms an estimate of the source sequence of the
other encoder, and then generatesT n

1 which is jointly typical with the observed source sequenceUn
1 and the

estimated source sequence. The other encoder, Encoder 2, first forms an estimate of the source sequence as
well as the auxiliary codeword of Encoder 1, and then generatesT n

2 which is jointly typical with the source
sequenceUn

2 and all the other sequences estimated. For the resulting scheme, an extended Markov lemma
(Lemma 3) ensures that the auxiliary codewordsT n

1 andT n
2 , although generated by separate encoders, are

jointly typical with the source sequences with a high probability.
We also derive an outer bound for the embedding capacity region with single-letter characterization

(Theorem 2), using Fano’s inequality and a standard information-theoretical bounding argument. We spe-
cialize the embedding capacity region to independent covertexts and obtain inner and outer bounds for this
case (Theorem 3). The inner bound is a consequence of Theorem1, while in the converse part we sharpen
the bound of Theorem 2 by making use of the independence condition.
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We note that the multi-user information embedding problem studied in this paper is related to the works
[12] and [8]. In [12], the authors present an achievable embedding region for correlated Gaussian covertexts
and parallel (independent) additive Gaussian attack channels (as opposed to the MAAC considered here).
In a recent work [8], the authors study the same system as oursand give an inner bound for the capacity
region without a proof, stating that this inner bound can be easily proved via the coding procedure in [12].
However, the proof in [12] seems to be incorrect because the encoders cannot guarantee the typicality of
the output sequences with respect to the covertexts sequences. Our code construction corrects this problem
and in Theorem 1 we show that the main result in [12] (the achievable region) and the inner bound given in
[8] are both correct. We also point out that a similar setup concerning a multi-user reversible information
embedding system was considered in [7] and [8] for two covertexts and a MAAC. Since in the reversible in-
formation embedding problem the secret messages and the covertexts are both reconstructed at the decoder,
Gelfand and Pinsker coding is not required and the coding strategy is fundamentally different from ours.

The remainder of this paper is organized as follows. We set upthe public multi-user embedding (wa-
termarking) problem, define the embedding capacity region,and present our main results in Section 2. The
proof of the inner bound is given in Section 3, while the proofof the outer bounds are deferred to the
Appendix. We close the paper with concluding remarks in Section 4.

2 Problem Formulation and Main Results

Let |X | denote the size of a finite setX . If X is a random variable (RV) with distributionPX , we denote itsn-
dimensional product distribution byP (n)

X . Similar notation applies to joint and conditional distributions. For
RVsX, Y , andZ with joint distributionPXY Z , we usePX , PXY , PY Z|X , etc., to denote the corresponding
marginal and conditional probabilities induced byPXY Z . The expectation of the RVX is denoted byE(X).
All alphabets are finite, and all logarithms and exponentials are in base 2.

Let U1 and U2 be two discrete memoryless host sources with alphabetsU1 and U2 and joint dis-
tribution QU1U2 . The watermarksW1 andW2 are independently and uniformly chosen from the sets
W1 , {1, 2, ...,M1} andW2 , {1, 2, ...,M2}, respectively. The attack channel is modeled as a two-sender
one-receiver discrete memoryless MAACWY |X1X2

having input alphabetsX1 andX2, output alphabetY,
and transition probability distributionWY |X1X2

(y|x1, x2). The probability of receivingy ∈ Yn conditioned

on sendingx1 ∈ X n
1 andx2 ∈ X n

2 is hence given byW (n)
Y |X1X2

(y|x1, x2).

Let di : Ui × Xi → [0,∞) be single-letter distortion measures and definedmax
i , max

ui,xi

di(ui, xi) for

i = 1, 2. Forui ∈ Un
i andxi ∈ X n

i , let di(ui, xi) =
∑n

j=1 di(uij , xij).

A two-sender one-receiver multiple-access embedding (MAE) code(f
(n)
1 , f

(n)
2 , ψ(n)) with block length

n consists of (see Fig. 1) two encoders (embedders)

f
(n)
1 : W1 × Un

1 −→ X n
1 and f

(n)
2 : W2 × Un

2 −→ X n
2

with embedding ratesRf1 = 1
n

log2M1 andRf2 = 1
n

log2M2, respectively, and a decoder

ψ(n) : Yn −→ W1 ×W2.

The system depicts a “public” embedding scenario since the covertexts are not available at the decoder.
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The probability of erroneously decoding the secret messages is given by

P (n)
e , Pr

(
ψ(n)(Y n) 6= (W1,W2)

)

=
1

2n(R1+R2)

M1∑

w1=1

M2∑

w2=1

∑

Un
1 ×Un

2

Q
(n)
U1U2

(u1,u2)W
(n)
Y |X1X2

(
y : ψ(n)(y) 6= (w1, w2)|x1, x2

)

wherexi , f
(n)
i (wi,ui) for i = 1, 2.

Definition 1 GivenQU1U2 ,WY |X1X2
, a rate pair(R1, R2) is said to be achievable with respect to distortion

levels(D1,D2) if there exists a sequence of MAE codes(f
(n)
1 , f

(n)
2 , ψ(n)) at embedding rates no smaller

thanR1 andR2, respectively, such thatlimn→∞ P
(n)
e = 0 and

lim sup
n→∞

1

n
E

[
di(U

n
i , f

(n)
i (Wi, U

n
i ))

]
≤ Di, i = 1, 2.

The embedding capacity regionR(D1,D2) is the closure of the set of all achievable rate pairs(R1, R2).

Remark 1 It can be shown by using a time-sharing argument [4] thatR(D1,D2) is convex.

Definition 2 GivenQU1U2 ,WY |X1X2
, and a pair of distortion levels(D1,D2), letSD1,D2 be the set of RVs

(U1, T1, U2, T2,X1,X2, Y ) ∈ U1×T1×U2×T2×X1×X2×Y for some finite alphabetsT1 andT2 such that
the joint distributionPU1T1U2T2X1X2Y satisfies: (1)PU1T1U2T2X1X2Y = QU1U2PT1X1|U1

PT2X2|U2
WY |X1X2

,

(2) I(Ui;Ti) > 0, and (3)E[di(Ui,Xi)] ≤ Di, for i = 1, 2.

Definition 3 GivenQU1U2,WY |X1X2
, and a pair of distortion levels(D1,D2), letPD1,D2 be the set of RVs

(U1, T1, U2, T2,X1,X2, Y ) ∈ U1×T1×U2×T2×X1×X2×Y for some finite alphabetsT1 andT2 such that
the joint distributionPU1T1U2T2X1X2Y satisfies: (1)PU1T1U2T2X1X2Y = QU1U2PT1T2X1X2|U1U2

WY |X1X2
,

and (2)E[di(Ui,Xi)] ≤ Di, for i = 1, 2.

Note that the only difference between the two regions is thatin the definition ofSD1,D2, the conditional
distribution of(T1, T2,X1,X2) given (U1, U2) is restricted to be in the formPT1X1|U1

PT2X2|U2
. This of

course impliesSD1,D2 ⊆ PD1,D2.

The following are the main results of the paper.

Theorem 1 (Inner bound) LetRin(D1,D2) be the closure of the convex hull of all(R1, R2) satisfying

R1 < I(T1;T2, Y ) − I(U1;T1), (1)

R2 < I(T2;T1, Y ) − I(U2;T2), (2)

R1 +R2 < I(T1, T2;Y ) − I(U1, U2;T1, T2), (3)

for some(U1, T1, U2, T2,X1,X2, Y ) ∈ SD1,D2. ThenRin(D1,D2) ⊆ R(D1,D2).

The proof of the theorem is given in Section 3.

Remark 2 As we show in Appendix C, the cardinality of the alphabets of the auxiliary RVsT1 andT2 for
Rin(D1,D2) can be bounded as|Ti| ≤ |U1||U2||Xi| + 1, i = 1, 2.
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Remark 3 Although we only deal with discrete (finite-alphabet) sources and channels, it is not hard to
see that, with the appropriate changes in the proof, the achievable region is also valid for a system that
incorporates a pair of correlated memoryless Gaussian sources and a Gaussian MAAC. In particular, when
the MAAC is a pair of parallel (independent) additive Gaussian channels,Rin(D1,D2) is the achievable
region obtained in [12], even though the proof provided in [12] is not entirely correct. Note also that our
inner boundRin(D1,D2) is the same as the one given without proof in [8, Proposition 1].

Theorem 2 (Outer bound) LetRout(D1,D2) be the closure of the collection of all rate pairs(R1, R2) sat-
isfying conditions (1)–(3) for some(U1, T1, U2, T2,X1,X2, Y ) ∈ PD1,D2 . ThenR(D1,D2) ⊆ Rout(D1 +

δ,D2 + δ) for all δ > 0.

The proof of the theorem is given in Appendix A. The proof involves Fano’s inequality and a (by
now) rather standard information-theoretic argument thatgeneralizes the converse proof for a single-user
embedding system in [15].

Remark 4 The above theorem states thatR(D1,D2) ⊆
⋂

δ>0 Rout(D1 + δ,D2 + δ). If we could upper
bound the cardinality of the alphabet sizes of the auxiliaryRVsT1 andT2 in the definition ofRout(D1,D2),
it would be easy to show that

⋂
δ>0 Rout(D1 + δ,D2 + δ) = Rout(D1,D2), so thatR(D1,D2) ⊆

Rout(D1,D2). However, without such an upper bound, we can only state the theorem in the present weaker
form. The same remark applies to the outer bound in the next theorem.

We next consider the special case when the covertexts are independent; i.e.,QU1U2 = QU1QU2 . We then
have the following inner and outer bounds.

Theorem 3 Let QU1U2 = QU1QU2. Let R∗
in(D1,D2) be the closure of the convex hull of all(R1, R2)

satisfying

R1 < I(T1;Y |T2) − I(U1;T1) (4)

R2 < I(T2;Y |T1) − I(U2;T2) (5)

R1 +R2 < I(T1, T2;Y ) − I(U1;T1) − I(U2;T2) (6)

for some(U1, T1, U2, T2,X1,X2, Y ) ∈ SD1,D2, and letR∗
out(D1,D2) be the closure of all(R1, R2) satis-

fying (4)–(6) for some(U1, T1, U2, T2,X1,X2, Y ) ∈ PD1,D2. Then

R∗
in(D1,D2) ⊆ R(D1,D2) ⊆ R∗

out(D1 + δ,D2 + δ)

for all δ > 0.

The proof is given in Appendix B.

Remark 5 The cardinality of the alphabets of the auxiliary RVsT1 andT2 for R∗
in(D1,D2) can be bounded

as|Ti| ≤ |Ui||Xi| + 1, i = 1, 2; see Appendix C.

Remark 6 In the simple case of independent covertextsQU1U2 = QU1QU2 and parallel MAACWY |X1X2
=

WY1|X1
WY2|X2

(whereY = Y2 × Y2), the inner and outer bounds of Theorem 3 coincide and reduceto the
capacity formula of two parallel single-user watermarkingsystems [9], [15].
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Example Let the covertexts be independent binary sources withU1 = U2 = {0, 1} andQU1(U1 = 0) =

0.05 andQU2(U2 = 0) = 0.1. Let the MAAC be a binary additive channel withX1 = X2 = Y =

Z = {0, 1} andY = X1 ⊕ X2 ⊕ Z, whereZ is independent of(X1,X2) with Pr(Z = 1) = 0.02

and⊕ denotes modulo 2 addition. LetD1 = 0.45 andD2 = 0.4. Fig. 2 illustrates the numerically
computed inner and outer regions of Theorems 1 and 2 (which coincide with the regions of Theorem 3
sinceU1 andU2 are independent). To computeR∗

in(0.45, 0.4), we only need to consider auxiliary RVs
with alphabets|T1| = |T2| = 5. For comparison, we also plot two subsets of the regionR∗

out(0.45, 0.4)

by setting|T1| = |T2| = 6 and |T1| = |T2| = 7, respectively (recall that Theorem 3 does not give an
upper bound on the alphabet sizes forT2 andT2 for the outer bound). It is seen that there exist noticeable
gaps betweenR∗

in(0.45, 0.4) and the numerically obtained subsets ofR∗
out(0.45, 0.4). When computing

the above regions, we quantized the unit interval using a step-size of resolution 0.1 to calculate the joint
distributions. We can conclude that the obtained inner and outer bounds do not coincide, and furthermore,
that in case there exists a finite upper bound on the auxiliaryRV alphabet sizes for the outer region, this
upper bound must be at least7 for the binary problem.
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Figure 2: The inner boundR∗
in(0.45, 0.4) for the Example and two subsets ofR∗

out(0.45, 0.4) obtained by
setting|T1| = |T2| = 6 and|T1| = |T2| = 7. The obtained regions lie between the corresponding solid or
dashed lines and the horizontal and vertical axes.

3 Proof of Theorem 1

We first recall some notation and facts regarding stronglyǫ-typicality. Let V , (X1,X2, ...,Xm) be a
superletter (a collection of RVs) taking values in a finite set V , X1 × X2 × · · · × Xm and having joint
distributionPV (x1, ..., xm), which for simplicity we also denote byPV (v). Denote byT (n)

ǫ (V ) or T (n)
ǫ

the set of all stronglyǫ-typical sequences [4, p. 326] with respect to the joint distribution PV (v). Let
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IV , {1, 2, ...,m}, andIG ⊆ IV . We then letG = (Xg1 ,Xg2 , ...,Xg|IG|
) ∈ G be a “sub-superletter”

corresponding toIG such thatgi ∈ IG. Let G, K, andL be sub-superletters ofV such thatIG, IK ,
IL are disjoint, and letPG, PK andPG|K be the marginal and conditional distributions induced byPV ,

respectively. Denote byT (n)
ǫ (G) the projection ofT (n)

ǫ (V ) to the coordinates ofG. Given anyk ∈ Kn,

denoteT (n)
ǫ (G|k) ,

{
(Gn, k) ∈ T

(n)
ǫ (G,K)

}
. ClearlyT (n)

ǫ (G|k) = ∅ if k /∈ T
(n)
ǫ (K). The following

lemma (see, e.g., [4, pp. 342–343]) restates the well known exponential bounds for the cardinality of
strongly typical sets. In the lemmaη = η(ǫ, n) is a generic positive term such thatlimǫ→0 limn→∞ η(ǫ, n) =

0.

Lemma 1 [4]

1) For any0 < ǫ0 < 1 we haveP (n)
G|K(T

(n)
ǫ (G|k)|k) > 1 − ǫ0 for n sufficiently large.

2) 2n(H(K)−η) ≤
∣∣∣T (n)

ǫ (K)
∣∣∣ ≤ 2n(H(K)+η).

3) For anyk ∈ T
(n)

ǫ (K), 2n(H(G|K)−η) ≤
∣∣∣T (n)

ǫ (G|k)
∣∣∣ ≤ 2n(H(G|K)+η).

Finally, we recall the Markov lemma for joint strongǫ-typicality.

Lemma 2 (Markov lemma [4, p. 579]) LetG → K → L form a Markov chain in this order. For any
0 < ǫ0 < 1 and(g, k) ∈ T

(n)
ǫ (G,K),

P
(n)
L|K

(
(g, k, Ln) ∈ T (n)

ǫ (G,K,L)
∣∣∣ k

)
> 1 − ǫ0

for n sufficiently large, independently of(g, k).

3.1 Outline of Proof

It is enough to show that for givenQU1U2, WY |X1X2
, and any(R1, R2) ∈ Rin(D1,D2), there exists a

sequence of codes(f (n)
1 , f

(n)
2 , ψ(n)) such thatP (n)

e → 0 asn→ ∞ and for anyδ > 0,

1

n
E[di(U

n
i , f

(n)
i (Wi, U

n
i ))] ≤ Di + δ, i = 1, 2

for n sufficiently large. Once this is proved, a standard subsequence diagonalization argument can be used
to prove a similar statement withδ = 0, which then directly implies the theorem.

Fix (PT1|U1
, PX1|U1T1

, PT2|U2
, PX2|U2T2

) such thatI(Ui;Ti) > 0 and the following are satisfied for some
ǫ′ > 0,

R1 < I(T1;T2, Y ) − I(U1;T1) − ǫ′, (7)

R2 < I(T2;T1, Y ) − I(U2;T2) − ǫ′, (8)

R1 +R2 < I(T1, T2;Y ) − I(U1, U2;T1, T2) − ǫ′, (9)

E[di(Ui,Xi)] ≤ Di, i = 1, 2. (10)

We will choosef (n)
1 andf (n)

2 in a random manner. Forǫ < δ
2max{dmax

1 ,dmax
2 } , define

P
(n)
i , Pr

( 1

n
di

(
Un

i , f
(n)
i (Wi, U

n
i )

)
> Di + ǫdmax

i

)
, i = 1, 2.
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The technically challenging part of the proof is to show thatfor any 0 < ǫ1 ≤ δ
6max{dmax

1 ,dmax
2 } , the

probabilitiesP (n)
e , P (n)

1 , andP (n)
2 , when averaged over the random choice off

(n)
1 andf (n)

2 , satisfy

E[P (n)
e ] ≤ ǫ1, E[P

(n)
1 ] ≤ ǫ1, E[P

(n)
2 ] ≤ ǫ1

for n sufficiently large. ThenE{P (n)
e + P

(n)
1 + P

(n)
2 } ≤ 3ǫ1, which guarantees that there exists at least one

pair of codes (f (n)
1 , f

(n)
2 ) such thatP (n)

e +P
(n)
1 +P

(n)
2 ≤ 3ǫ1 and henceP (n)

e ≤ 3ǫ1,P (n)
1 ≤ 3ǫ1,P (n)

2 ≤ 3ǫ1
are simultaneously satisfied forn sufficiently large. Finally, it can be easily shown thatP

(n)
i ≤ 3ǫ1 implies

for n sufficiently large that

1

n
E

[
di(U

n
i , f

(n)
i (Wi, U

n
i )

]
≤ Di + ǫdmax

i + P
(n)
i dmax

i ≤ Di + δ.

3.2 Random Code Design

In what follows, the stronglyǫ-typical setT (n)
ǫ is defined under the joint distribution

PU1U2T1T2X1X2Y = QU1U2PT1|U1
PX1|U1T1

PT2|U2
PX2|U2T2

WY |X1X2
(11)

and all the marginal and conditional distributions, e.g.,PU2T2 , PU1|U2T2
, etc, are induced by the joint distri-

bution. The parameterǫ, which is chosen to be sufficiently small, will be specified inthe proof.

Generation of codebooks. Fori = 1, 2 and everywi ∈ Wi, generate a codebook

Cwi
= {ti(wi, 1), ti(wi, 2), ..., t i(wi, Li)}

with Li = 2n[I(Ui;Ti)+4ǫ] codewords such that eachti(wi, li) is independently selected with uniform distri-
bution from the typical setT (n)

ǫ (Ti). Denote the entire codebook for Encoderi by C(i) = {Cwi
}Mi

wi=1, where
we recall thatMi = 2nRi . For eachui and codewordti(wi, li) (1 ≤ wi ≤ Mi, 1 ≤ li ≤ Li), generate a
codewordxi according toP (n)

Xi|UiTi
(xi|ui, ti). Denote the codebook of all the codewordsxi by B(i).

Encoder f (n)
1 : Encoderf (n)

1 is the concatenation of a pre-encoderϕ
(n)
1 : W1 × Un

1 −→ T n
1 and a

mappingg(n)
1 : Un

1 × T n
1 −→ X n

1 .
To defineϕ(n)

1 , we need the following notation adopted from [11]. We introduce a conditional probability

A(n)(u1, t1) , P
(n)
U2T2|U1T1

(
(u2, t2) : (u2, t2) ∈ T (n)

ǫ (U2T2|u1, t1)
∣∣∣ u1, t1

)
.

Forµ ∈ (0, 1), let

F (n)
µ,ǫ (U1, T1) ,

{
(u1, t1) : A(n)(u1, t1) ≥ 1 − µ

}
.

By definition, we haveF (n)
µ,ǫ (U1, T1) ⊆ T

(n)
ǫ (U1, T1).

We now describe the pre-encoding functionϕ(n)
1 = ϕ

(n)
1 (w1,u1) which maps every pair(w1,u1) to a

codeword inC(1) ⊆ T n
1 . Givenw1 ∈ {1, 2, ...,M1} andu1, ϕ(n)

1 seeks the first codewordt1(w1, l1) (if any)
in Cw1 such that(u1, t1(w1, l1)) ∈ F

(n)
µ,ǫ (U1, T1). If there is no such codeword,ϕ(n)

1 outputst1(w1, 1). Next,
for each outputt1(w1, l1) andu1, g(n)

1 sends out the associated codewordx1(w1,u1) to the channel. Thus,

f
(n)
1 (w1,u1) = g

(n)
1

(
u1, ϕ

(n)
1 (w1,u1)

)
.
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Encoder f (n)
2 : Encoderf (n)

2 is the concatenation of a pre-encoderϕ
(n)
2 : W2 × Un

2 −→ T n
2 and a

mappingg(n)
2 : Un

2 × T n
2 −→ X n

2 .
To defineϕ(n)

2 , let

B(n)
ϕ1

(u2, t2) ,
1

2nR1

M1∑

w1=1

P
(n)
U1|U2T2

(
u1 : (u1, ϕ

(n)
1 (w1,u1)) ∈ T (n)

ǫ (U1T1|u2, t2)
∣∣∣ u2, t2

)
.

Also, for ν ∈ (0, 1), define

F (n)
ϕ1,ν,ǫ(U2, T2) ,

{
(u2, t2) : B(n)

ϕ1
(u2, t2) ≥ 1 − ν

}
.

By definition, it is seen thatF (n)
ϕ1,ν,ǫ(U2, T2) ⊆ T

(n)
ǫ (U2, T2).

We now describe the pre-encoding functionϕ(n)
2 = ϕ

(n)
2 (w2,u2) which maps every pair(w2,u2) to a

codeword inC(2) ⊆ T n
2 . Givenw2 ∈ {1, 2, ...,M2} andu2, ϕ(n)

2 seeks the first codewordt2(w2, l2) (if any)
in Cw2 such that(u2, t2(w2, l2)) ∈ F

(n)
ϕ1,ν,ǫ(U2, T2). If there is no such codeword,ϕ(n)

2 outputst2(w2, 1).
Next, for each outputt2(w2, l2), g

(n)
2 sends out the associated codewordx2(w2,u2) to the channel. Thus,

f
(n)
2 (w2,u2) = g

(n)
2

(
u2, ϕ

(n)
2 (w2,u2)

)
.

Decoder ψ(n): Giveny, ψ(n) seekst1(ŵ1, l̂1) ∈ C(1) andt2(ŵ2, l̂2) ∈ C(2) such that

(t1(ŵ1, l̂1), t2(ŵ2, l̂2), y) ∈ T (n)
ǫ (T1, T2, Y ).

If such a pair(t1(ŵ1, l̂1), t2(ŵ2, l̂2)) exists for a unique (̂w1, ŵ2), thenψ(n) outputsŵ1 andŵ2 as the decoded
messages. If there is no such pair(ŵ1, ŵ2), or it is not unique, a decoding error is declared. Letting
ti(wi, li) = ϕ

(n)
i (wi,ui), it is easy to see that if there is a decoding error, then at least one of the following

events occurs:

1) E1: (t1(w1, l1), t2(w2, l2), y) /∈ T
(n)

ǫ (T1, T2, Y ),

2) E2: there existl′1 andw′
1 6= w1 andl′2 (l′2 may or may not be equal tol2) such that

(t1(w′
1, l

′
1), t2(w2, l

′
2), y) ∈ T (n)

ǫ (T1, T2, Y ),

3) E3: there existl′2 andw′
2 6= w2 andl′1 (l′1 may or may not be equal tol1) such that

(t1(w1, l
′
1), t2(w

′
2, l

′
2), y) ∈ T (n)

ǫ (T1, T2, Y ),

or

4) E4: there existl′1 andw′
1 6= w1 andl′2 andw′

2 6= w2 such that

(t1(w′
1, l

′
1), t2(w

′
2, l

′
2), y) ∈ T (n)

ǫ (T1, T2, Y ).

In the following, we will bound the probabilitiesP (n)
e , P (n)

1 andP (n)
2 averaged over the random choice

of all codesB(1), B(2), C(1), andC(2). To simplify the notation we abbreviateEB(1),B(2),C(1),C(2) [ · ] asEΩ[ · ].
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3.3 BoundingEΩ[P
(n)
e ]

To analyze the average probability of error, we need the following lemmas.

Lemma 3 For anyw1 ∈ W1, w2 ∈ W2, and anyǫ0, ǫ ∈ (0, 1), one can chooseµ, ν ∈ (0, 1) small enough
such that

EC(1),C(2)

[
P

(n)
U1U2

(
(ϕ

(n)
1 (w1,u1),u1,u2, ϕ

(n)
2 (w2,u2)) ∈ T (n)

ǫ (T1, U1, U2, T2)
)]

≥ 1 − ǫ0

for n sufficiently large, where the expectation is taken with respect to the random codesC(1) andC(2).

The proof of Lemma 3 is very similar to the proof of the extended Markov lemma in [11, Lemma 3] for
correlated Gaussian sources and is hence omitted; readers may also refer to [14, Section 5.4.5].

Since the watermarks are independently and uniformly distributed, and by the symmetry of the code
construction, we can assume without the loss of generality that some fixedw1 ∈ W1 andw2 ∈ W2 are the
transmitted watermarks. Thus we bound the probability of error as

P (n)
e = Pr

({
ψ(n)(Y n) 6= (w1, w2)

})

≤ Pr(A1) + Pr
({
ψ(n)(Y n) 6= (w1, w2)

}∣∣∣Ac
1

)
(12)

whereA1 is the event

A1 : (t1(w1, l1),u1,u2, t2(w2, l2), x1, x2) /∈ T (n)
ǫ (T1, U1, U2, T2,X1,X2).

Recall thatti(wi, li) = ϕ
(n)
i (wi,ui), i = 1, 2. We also letti(wi, l

′
i) andti(w′

i, l
′
i) be thel′i-th codeword in

the codebookCwi
andCw′

i
, respectively.

We then introduce the event

A0 : (t1(w1, l1),u1,u2, t2(w2, l2)) /∈ T (n)
ǫ (T1, U1, U2, T2).

Taking expectation in (12) and using the union bound, we have

EΩ[P (n)
e ] ≤ EΩ Pr (A0) + EΩ Pr (A1|A

c
0) + EΩ Pr (E1|A

c
1) +

4∑

k=2

EΩ Pr (Ek|A
c
1) . (13)

It immediately follows from Lemma 3 that

EΩ Pr (A0) = EC(1),C(2) Pr (A0) ≤ ǫ0 (14)

for n sufficiently large, where we setǫ0 = ǫ1/7 for a givenǫ1 ≥ 0 throughout the proof. WhenAc
0 holds,

sincex1 and x2 are respectively drawn according to the conditional probabilities P
(n)
X1|U1T1

(·|u1, t1) and

P
(n)
X2|U2T2

(·|u2, t2), andy is drawn according to the conditional distributionW (n)
Y |X1X2

(·|x1, x2), it follows
from two successive applications of Lemma 2 that

EΩ Pr (A1|A
c
0) ≤ EΩ[ǫ0] = ǫ0 (15)
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and

EΩ Pr (E1|A
c
1)

≤ EΩ Pr
({(

ϕ
(n)
1 (w1, U

n
1 ), Un

1 , U
n
2 , ϕ

(n)
2 (w2, U

n
2 ), f

(n)
1 (w1, U

n
1 ), f

(n)
2 (w2, U

n
2 ), Y n

)
/∈ T (n)

ǫ

}∣∣∣Ac
1

)

≤ EΩ[ǫ0] = ǫ0 (16)

for n sufficiently large. It remains to boundEΩ Pr {Ek|A
c
1} for k = 2, 3, 4. Using the union bound we

write

EΩ Pr (E2|A
c
1)

≤
∑

w′
1 6=w1

L1∑

l′1=1

Pr
({

(T n
1 (w′

1, l
′
1), Y

n, T n
2 (w2, l

′
2)) ∈ T (n)

ǫ (T1, T2, Y )
}∣∣∣Ac

1

)
, (17)

whereT n
1 (w′

1, l
′
1) is a RV uniformly drawn fromT (n)

ǫ (T1) which is independent of(T n
2 (w2, l

′
2), Y

n) since
w′

1 6= w1. Thus we have

Pr
({

(T n
1 (w′

1, l
′
1), Y

n, T n
2 (w2, l

′
2)) ∈ T (n)

ǫ (T1, T2, Y )
}∣∣∣Ac

1

)

=
∑

(t2,y)∈T (n)
ǫ (T2,Y )

∑

t1∈T
(n)

ǫ (T1|t2,y)

Pr
(
T n

2 (w2, l
′
2) = t2, Y n = y

∣∣Ac
1

)

Pr
(
T n

1 (w′
1, l

′
1) = t1

∣∣T n
2 (w2, l

′
2) = t2, Y n = y, Ac

1

)

=
∑

(t2,y)∈T (n)
ǫ (T2,Y )

∑

t1∈T
(n)

ǫ (T1|t2,y)

Pr
(
T n

2 (w2, l
′
2) = t2, Y n = y

∣∣Ac
1

)
Pi

(
T n

1 (w′
1, l

′
1) = t1

)

=
∑

(t2,y)∈T (n)
ǫ (T2,Y )

Pr (T n
2 (w2, l2) = t2, Y n = y|Ac

1)
|T

(n)
ǫ (T1|t2, y)|

|T
(n)

ǫ (T1)|

≤
2n[H(T1|T2,Y )+η]

2n[H(T1)−η]

∑

(t2,y)∈T (n)
ǫ (T2,Y )

Pr
(
T n

2 (w2, l
′
2) = t2, Y n = y

∣∣Ac
1

)

≤ 2−n[I(T1;T2,Y )−2η], (18)

where the first inequality follows from Lemma 1. Recalling thatη → 0 asn→ ∞ andǫ→ 0, we can make
sure that2η < ǫ′ − 4ǫ by choosingǫ small enough andn large enough. Thus from (17)

EΩ Pr (E2|A
c
1) ≤ 2n[R1+I(U1;T1)+4ǫ−I(T1;T2,Y )+2η]

≤ 2n[R1+I(U1;T1)−I(T1;T2,Y )+ǫ′]

≤ ǫ0 (19)

for ǫ sufficiently small andn sufficiently large, where (19) follows from the assumption (7). Similarly we
have

EΩ Pr (E3|A
c
1) ≤ ǫ0 (20)

for ǫ small enough andn sufficiently large. We next bound

EΩ Pr (E4|A
c
1)

≤
∑

w′
1 6=w1

L1∑

l′1=1

∑

w′
2 6=w2

L2∑

l′2=1

Pr
({

(T n
1 (w′

1, l
′
1), T

n
2 (w′

2, l
′
2), Y

n) ∈ T (n)
ǫ (T1, T2, Y )

}∣∣∣Ac
1

)
,
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whereT n
1 (w′

1, l
′
1) andT n

2 (w′
2, l

′
2) are RVs independently drawn fromT (n)

ǫ (T1) andT (n)
ǫ (T2) according to

the uniform distribution, respectively. We have

Pr
({

(T n
1 (w′

1, l
′
1), T

n
2 (w′

2, l
′
2), Y

n) ∈ T (n)
ǫ (T1, T2, Y )

}∣∣∣Ac
1

)

=
∑

y∈T (n)
ǫ (Y )

∑

(t1,t2)∈T
(n)

ǫ (T1,T2|y)

Pr(Y n = y|Ac
1)

Pr(T n
1 (w′

1, l
′
1) = t1, T n

2 (w′
2, l

′
2) = t2|Ac

1, Y
n = y)

=
∑

y∈T (n)
ǫ (Y )

∑

(t1,t2)∈T
(n)

ǫ (T1,T2|Y )

Pr(Y n = y|Ac
1)

1

|T
(n)

ǫ (T1)|

1

|T
(n)

ǫ (T2)|

≤
∑

y∈T (n)
ǫ (Y )

Pr(Y n = y|Ac
1)

2n[H(T1,T2|Y )+η]

2n[H(T1)−η]2n[H(T2)−η]

≤ 2−n[I(T1,T2;Y )+I(T1;T2)−3η]

and hence

EΩ Pr (E4|A
c
1)

≤ 2n[R1+R2+I(U1;T1)+I(U2;T2)−I(T1,T2;Y )−I(T1;T2)+8ǫ+3η]

≤ 2n[R1+I(U1,U2;T1,T2)−I(T1,T2;Y )+ǫ′]

≤ ǫ0 (21)

for n sufficiently large andǫ small enough (such that8ǫ+3η < ǫ′), where the second inequality holds by the
Markov chain relationT1 → U1 → U2 → T2 imposed in Definition 2, and the last inequality follows from
the assumption (9). Finally, substituting (14)–(16), (19), (20) and (21) into (13) yieldsEΩ[P

(n)
e ] ≤ 7ǫ0 = ǫ1

for ǫ sufficiently small andn sufficiently large.

3.4 BoundingEΩ[P
(n)
i ]

We only boundEΩ[P
(n)
i ] for i = 1, since the casei = 2 can be dealt with similarly. When(u1, x1(w1,u1)) ∈

T
(n)

ǫ (U1,X1),
1

n
d1

(
u1, x1(w1,u1)

)
≤ E[d1(U1,X1)] + ǫdmax

1 ≤ D1 + ǫdmax
1

for n sufficiently large, where the first inequality follows from the definition of strong typicality and the
second inequality follows from (10). This means that if1

n
d1

(
Un

1 , f
(n)
1 (W1, U

n
1 )

)
> D1 + ǫdmax

1 , then we

must have
(
Un

1 , f
(n)
1 (W1, U

n
1 )

)
/∈ T

(n)
ǫ (U1,X1) for n sufficiently large. Thus, we can bound

Pr
( 1

n
d1(U

n
1 , f

(n)
1 (W1, U

n
1 )) > D1 + ǫdmax

1

)

≤ Pr
((
Un

1 , f
(n)
1 (W1, U

n
1 )

)
/∈ T (n)

ǫ (U1,X1)
)

≤ Pr
((
Un

1 , ϕ
(n)
1 (W1, U

n
1 ), f

(n)
1 (W1, U

n
1 )

)
/∈ T (n)

ǫ (U1, T1,X1)
)

≤ Pr
((
Un

1 , ϕ
(n)
1 (W1, U

n
1 )

)
/∈ T (n)

ǫ (U1, T1)
)

+ Pr
((
Un

1 , ϕ
(n)
1 (W1, U

n
1 ), f

(n)
1 (W1, U

n
1 )

)
/∈ T (n)

ǫ (U1, T1,X1)
∣∣∣ (Un

1 , ϕ
(n)
1 (W1, U

n
1 )) ∈ T (n)

ǫ (U1, T1)
)
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≤ Pr
((
ϕ

(n)
1 (W1, U

n
1 ), Un

1 , U
n
2 , ϕ

(n)
2 (W2, U

n
2 )

)
/∈ T (n)

ǫ (T1, U1, U2, T2)
)

+ Pr
((
Un

1 , ϕ
(n)
1 (W1, U

n
1 ), f

(n)
1 (W1, U

n
1 )

)
/∈ T (n)

ǫ (U1, T1,X1)
∣∣∣ (Un

1 , ϕ
(n)
1 (W1, U

n
1 )) ∈ T (n)

ǫ (U1, T1)
)
.

(22)

Now taking expectation on both sides, the first term of (22) isbounded byǫ1
2 by Lemma 3, and the sec-

ond term is bounded byǫ12 for sufficiently largen by Lemma 1. This completes the proof of the bound

EΩ[P
(n)
1 ] ≤ ǫ1 for n sufficiently large. �

4 Concluding Remarks

We have studied a multi-user information embedding system consisting of two information embedders and
one joint decoder connected via a multiple-access attack channel. We have obtained an inner bound for
the capacity region in a computable single-letter form. We also derived an outer bound for the capacity
region, but in this case the auxiliary random variables involved in the region’s characterization have no
upper bounds on their alphabet’s cardinality. Consequently, there may not exist an algorithm to compute
the outer bound with arbitrary precision. We have also addressed the special case when the covertexts are
independent of each other and inner and outer bounds for the capacity region of this simplified system are
provided. Finally, we remark that using a similar techniqueinner and outer bounds are derived in [14,
Chapter 5] for the capacity region of private multi-user embedding systems with quantization.

Appendix

A Proof of Theorem 2

The proof is a generalization of the proof of the converse in [15] for a single-user embedding system.
We need to show that any MAE code(f (n)

1 , f
(n)
2 , ψ(n)) with achievable rate pair(R1, R2) must satisfy

(1)–(3) for some auxiliary RVsT1 andT2 with joint distributionPU1U2T1T2X1X2Y ∈ PD1,D2. It follows
from Fano’s inequality that

H(W1,W2|Y
n) ≤ n(R1 +R2)P

(n)
e +H(P (n)

e ) , nǫn.

It is clear thatǫn → 0 if P (n)
e → 0 and

H(W1|Y
n) ≤ H(W1,W2|Y

n) ≤ nǫn,

H(W2|Y
n) ≤ H(W1,W2|Y

n) ≤ nǫn.

BecauseW1 is uniformly drawn from the message set{1, 2, ..., 2nR1} and is independent ofUn
1 , we have

nR1 = H(W1) = I(W1;Y
n) +H(W1|Y

n) ≤ I(W1;Y
n) − I(W1;U

n
1 )︸ ︷︷ ︸

=0

+nǫn.
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Hence we can write

I(W1;Y
n) − I(W1;U

n
1 )

(a)
=

n∑

k=1

[
I(W1;Yk|Y

k−1
1 ) − I(W1;U1k|U

n
1,k+1)

]

=
n∑

k=1

[
H(Yk|Y

k−1
1 ) −H(Yk|W1, Y

k−1
1 , Un

1,k+1) − I(Yk;U
n
1,k+1|W1, Y

k−1
1 )

−H(U1k|U
n
1,k+1) +H(U1k|W1, U

n
1,k+1)

]

(b)
=

n∑

k=1

[
H(Yk|Y

k−1
1 ) −H(Yk|W1, Y

k−1
1 , Un

1,k+1) − I(U1k;Y k−1
1 |W1, U

n
1,k+1)

−H(U1k|U
n
1,k+1) +H(U1k|W1, U

n
1,k+1)

]

(c)
=

n∑

k=1

[
H(Yk|Y

k−1
1 ) −H(Yk|W1, Y

k−1
1 , Un

1,k+1)

−H(U1k) +H(U1k|W1, Y
k−1
1 , Un

1,k+1)
]

≤
n∑

k=1

[
H(Yk) −H(Yk|W1, U

n
1,k+1, Y

k−1
1 ) − I(U1k;W1, Y

k−1
1 , Un

1,k+1)
]

=

n∑

k=1

[
I(Yk;W1, U

n
1,k+1, Y

k−1
1 ) − I(U1k;W1, Y

k−1
1 , Un

1,k+1)
]

(d)

≤
n∑

k=1

[
I(W2, U

n
2,k+1, Y

k−1
1 , Yk;W1, U

n
1,k+1, Y

k−1
1 ) − I(U1k;W1, Y

k−1
1 , Un

1,k+1)
]

(e)
=

n∑

k=1

[I(L2k, Yk;L1k) − I(U1k;L1k)]

where in (a)Y k−1
1 , (Y1, Y2, ..., Yk−1) andUn

1,k+1 , (U1,k+1, U1,k+2, ..., U1,n), (b) follows from the
“summation by parts” identity [3, Lemma 7], (c) holds since the sourceU1 is memoryless, in (d)Un

2,k+1 ,

(U2,k+1, U2,k+2, ..., U2,n), and in (e)L1k , (W1, Y
k−1
1 , Un

1,k+1) andL2k , (W2, Y
k−1
1 , Un

2,k+1). Hence
we obtain the bound

R1 ≤
1

n

n∑

k=1

[I(L1k;L2k, Yk) − I(U1k;L1k)] + ǫn. (23)

Similarly, we can show that

R2 ≤
1

n

n∑

k=1

[I(L2k;L1k, Yk) − I(U2k;L2k)] + ǫn. (24)

To bound the sum of the rates, we write

n(R1 +R2) = H(W1,W2) = I(W1,W2;Y
n) +H(W1,W2|Y

n)

≤ I(W1,W2;Y
n) − I(W1,W2;U

n
1 , U

n
2 )︸ ︷︷ ︸

=0

+nǫn (25)
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and

I(W1,W2;Y
n) − I(W1,W2;U

n
1 , U

n
2 )

=
n∑

k=1

[
I(W1,W2;Yk|Y

k−1
1 ) − I(W1,W2;U1k, U2k|U

n
1,k+1, U

n
2,k+1)

]

=
n∑

k=1

[
H(Yk|Y

k−1
1 ) −H(Yk|W1, U

n
1,k+1, Y

k−1
1 ,W2, U

n
2,k+1) − I(Yk;U

n
1,k+1, U

n
2,k+1|W1,W2, Y

k−1
1 )

−H(U1k, U2k|U
n
1,k+1, U

n
2,k+1) +H(U1k, U2k|W1,W2, U

n
1,k+1, U

n
2,k+1)

]

=

n∑

k=1

[
H(Yk|Y

k−1
1 ) −H(Yk|W1, U

n
1,k+1, Y

k−1
1 ,W2, U

n
2,k+1) − I(U1k, U2k;Y

k−1
1 |W1,W2, U

n
1,k+1, U

n
2,k+1)

−H(U1k, U2k) +H(U1k, U2k|W1,W2, U
n
1,k+1, U

n
2,k+1)

]

=

n∑

k=1

[
H(Yk|Y

k−1
1 ) −H(Yk|W1, U

n
1,k+1, Y

k−1
1 ,W2, U

n
2,k+1)

−H(U1k, U2k) +H(U1k, U2k|W1,W2, U
n
1,k+1, U

n
2,k+1, Y

k−1
1 )

]

≤
n∑

k=1

[
H(Yk) −H(Yk|W1, U

n
1,k+1,W2, U

n
2,k+1, Y

k−1
1 ) − I(U1k, U2k;L1k, L2k)

]

=

n∑

k=1

[
I(Yk;W1, U

n
1,k+1,W2, U

n
2,k+1, Y

k−1
1 ) − I(U1k, U2k;L1k, L2k)

]

=

n∑

k=1

[I(Yk;L1k, L2k) − I(U1k, U2k;L1k, L2k)],

which implies

R1 +R2 ≤
1

n

n∑

k=1

[I(L1k, L2k;Yk) − I(U1k, U2k;L1k, L2k)] + ǫn. (26)

We next introduce a time-sharing RV to simplify the bounds (23), (24), and (26) using a single-letter
characterization. Define a RVV with alphabet{1, 2, ..., n} and distributionPV (v) = 1/n. We next intro-
duce RVsU1 andU2 such that

Pr(U1 = u1, U2 = u2) = Pr(U1k = u1, U2k = u2) = QU1U2(u1, u2)

for all (u1, u2) ∈ U1 × U2, which are independent ofV . Furthermore, we define new RVsL1, L2,X1, X2,
andY by

Pr(L1 = l1, L2 = l2,X1 = x1,X2 = x2, Y = y|V = k)

= Pr(L1k = l1, L2k = l2,X1k = x1,X2k = x2, Yk = y)
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for all (l1, l2, x1, x2, y) ∈ L1 × L2 ×X1 ×X2 × Y. It follows that

1

n

n∑

k=1

[I(L1k;L2k, Yk) − I(U1k;L1k)]

= I(L1;L2, Y |V ) − I(U1;L1|V )

= H(L1|V ) −H(L1|L2, Y, V ) −H(U1|V ) +H(U1|L1, V )

(a)

≤ H(L1) −H(L1|L2, Y, V ) −H(U1) +H(U1|L1, V )

= I(L1;L2, Y, V ) − I(U1;L1, V )

≤ I(L1, V ;L2, Y, V ) − I(U1;L1, V )

(b)
= I(T1;T2, Y ) − I(T1;U1)

where (a) holds since conditioning reduces entropy andU1 is independent ofV , and in (b)T1 , (L1, V )

andT2 , (L2, V ). This shows that

R1 ≤ I(T1;T2, Y ) − I(T1;U1) + ǫn. (27)

By a similar argument, we can show

R2 ≤ I(T2;T1, Y ) − I(T2;U2) + ǫn (28)

and
R1 +R2 ≤ I(T1, T2;Y ) − I(U1, U2;T1, T2) + ǫn. (29)

For such RVs(U1, U2, T1, T2,X1,X2, Y ), it can be readily seen that the Markov chain relation(U1, U2, T1, T2) →

(X1,X2) → Y holds. In fact,

Pr(Y = y|U1 = u1, U2 = u2, T1 = t1 = (l1, k), T2 = t2 = (l2, k),X1 = x1,X2 = x2)

= Pr(Y = y|U1 = u1, U2 = u2, L1 = l1, L2 = l2,X1 = x1,X2 = x2, V = k)

= Pr(Yk = y|U1k = u1, U2k = u2, L1k = l1, L2k = l2,X1k = x1,X2k = x2)

= Pr(Yk = y|X1k = x1,X2k = x2)

= WY |X1X2
(y|x1, x2).

Next we bound the distortionsE[di(Ui,Xi)]. Since(R1, R2) is achievable under the sequence of codes
(f

(n)
1 , f

(n)
2 , ψ(n)), this implies that for anyδ > 0 and alln large enough, we have

Di + δ ≥
1

n

1

2nRi

Mi∑

wi=1

∑

Un
i

Q
(n)
Ui

(ui)di

(
ui, f

(n)
i (wi,ui)

)

=
1

n

∑

Un
i
×Xn

i

Pr(Un
i = ui,X

n
i = xi)di(ui, xi)

=
1

n

n∑

k=1

∑

Un
i
×Xn

i

Pr(Un
i = ui,X

n
i = xi)di(uik, xik)

=

n∑

k=1

PV (V = k)
∑

Ui×Xi

Pr(Uik = uik,Xik = xik)di(uik, xik)
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=

n∑

k=1

PV (V = k)
∑

Ui×Xi

Pr(Ui = ui,Xi = xi|V = k)di(ui, xi)

=

n∑

k=1

∑

Ui×Xi

Pr(Ui = ui,Xi = xi, V = k)di(ui, xi)

=
∑

Ui×Xi

PUiXi
(ui, xi)di(ui, xi).

Thus we obtained thatE[di(Ui,Xi)] ≤ Di + δ for i = 1, 2. Combined with (27)–(29) and recalling that
limn→∞ ǫn = 0 and thatR(D1,D2) is closed, we conclude thatR(D1,D2) ⊂ Rout(D1 + δ,D2 + δ) as
claimed. �

B Proof of Theorem 3

The forward part (achievability) is a consequence of Theorem 1 since(U1, T1) and(U2, T2) are independent
and henceI(T1;T2, Y ) = I(T1;Y |T2), I(T2;T1, Y ) = I(T2;Y |T1), andI(U1, U2;T1, T2) = I(U1;T1) +

I(U2;T2). To prove the converse part, we need to sharpen the bounds in the last proof. We start from

I(W1;Y
n) − I(W1;U

n
1 )

=

n∑

k=1

[
I(Yk;W1, U

n
1,k+1|Y

k−1
1 ) − I(U1k;W1, Y

k−1
1 , Un

1,k+1)
]

=

n∑

k=1

[
H(W1, U

n
1,k+1|Y

k−1
1 ) −H(W1, U

n
1,k+1|Y

k−1
1 , Yk) − I(U1k;W1, Y

k−1
1 , Un

1,k+1)
]

(a)
=

n∑

k=1

[
H(W1, U

n
1,k+1|W2, U

n
2,k+1, Y

k−1
1 ) −H(W1, U

n
1,k+1|W2, U

n
2,k+1, Y

k−1
1 , Yk)

−I(U1k;W1, Y
k−1
1 , Un

1,k+1)
]

=

n∑

k=1

[
I(W1, U

n
1,k+1;Yk|W2, U

n
2,k+1, Y

k−1
1 ) − I(U1k;W1, Y

k−1
1 , Un

1,k+1)
]

≤
n∑

k=1

[
I(W1, U

n
1,k+1, Y

k−1
1 ;Yk|W2, U

n
2,k+1, Y

k−1
1 ) − I(U1k;W1, Y

k−1
1 , Un

1,k+1)
]

=
n∑

k=1

[I(L1k;Yk|L2k) − I(U1k;L1k)]

where (a) follows since(W1, U
n
1,k+1) is now independent of(W2, U

n
2,k+1), and in the last equality we still

let L1k , (W1, Y
k−1
1 , Un

1,k+1) andL2k , (W2, Y
k−1
1 , Un

2,k+1). Thus, using Fano’s inequality we have

R1 ≤
1

n

n∑

k=1

[I(L1k;Yk|L2k) − I(U1k;L1k)] + ǫn.

Similarly we can obtain

R2 ≤
1

n

n∑

k=1

[I(L2k;Yk|L1k) − I(U2k;L2k)] + ǫn.
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To bound the sum of the rates, we have

n(R1 +R2) = H(W1,W2) = I(W1,W2;Y
n) +H(W1,W2|Y

n)

≤ I(W1,W2;Y
n) − I(W1;U

n
1 ) − I(W2;U

n
2 ) + nǫn (30)

and

I(W1,W2;Y
n) − I(W1;U

n
1 ) − I(W2;U

n
2 )

=
n∑

k=1

[
I(W1;Yk|Y

k−1
1 ) + I(W2;Yk|W1, Y

k−1
1 ) − I(W1;U1k|U

n
1,k+1) − I(W2;U2k|U

n
2,k+1)

]

=
n∑

k=1

[
H(Yk|Y

k−1
1 ) −H(Yk|W1, Y

k−1
1 , Un

1,k+1) − I(Yk;U
n
1,k+1|W1, Y

k−1
1 )

+H(Yk|W1, Y
k−1
1 ) −H(Yk|W1,W2, Y

k−1
1 , Un

2,k+1) − I(Yk;U
n
2,k+1|W1,W2, Y

k−1
1 )

−H(U1k|U
n
1,k+1) +H(U1k|W1, U

n
1,k+1) −H(U2k|U

n
2,k+1) +H(U2k|W2, U

n
2,k+1)

]

=

n∑

k=1

[
H(Yk|Y

k−1
1 ) −H(Yk|W1, Y

k−1
1 , Un

1,k+1) − I(U1k;Y k−1
1 |W1, U

n
1,k+1)

+H(Yk|W1, Y
k−1
1 ) −H(Yk|W1,W2, Y

k−1
1 , Un

2,k+1) − I(U2k;Y
k−1
1 |W1,W2, U

n
2,k+1)

−H(U1k) +H(U1k|W1, U
n
1,k+1) −H(U2k) +H(U2k|W1,W2, U

n
2,k+1)

]

=

n∑

k=1

[
H(Yk|Y

k−1
1 ) −H(Yk|W1, Y

k−1
1 , Un

1,k+1)

+H(Yk|W1, Y
k−1
1 ) −H(Yk|W1,W2, Y

k−1
1 , Un

2,k+1)

−H(U1k) +H(U1k|W1, U
n
1,k+1, Y

k−1
1 ) −H(U2k) +H(U2k|W1,W2, U

n
2,k+1, Y

k−1
1 )

]

=

n∑

k=1

[
I(Yk;W1, U

n
1,k+1|Y

k−1
1 ) + I(Yk;W2, U

n
2,k+1|W1, Y

k−1
1 )

−I(U1k;W1, U
n
1,k+1, Y

k−1
1 ) − I(U2k;W2, U

n
2,k+1, Y

k−1
1 )

]

=

n∑

k=1

[
H(W1, U

n
1,k+1|Y

k−1
1 ) −H(W1, U

n
1,k+1|Y

k−1
1 , Yk)

+H(W2, U
n
2,k+1|W1, Y

k−1
1 ) −H(W2, U

n
2,k+1|W1, Y

k−1
1 , Yk)

− I(U1k;W1, U
n
1,k+1, Y

k−1
1 ) − I(U2k;W2, U

n
2,k+1, Y

k−1
1 )

]

(a)
=

n∑

k=1

[
H(W1, U

n
1,k+1|Y

k−1
1 ) −H(W1, U

n
1,k+1|Y

k−1
1 , Yk)

+H(W2, U
n
2,k+1|W1, U

n
1,k+1, Y

k−1
1 ) −H(W2, U

n
2,k+1|W1, U

n
1,k+1, Y

k−1
1 , Yk)

− I(U1k;W1, U
n
1,k+1, Y

k−1
1 ) − I(U2k;W2, U

n
2,k+1, Y

k−1
1 )

]

=
n∑

k=1

[
H(W1, U

n
1,k+1,W2, U

n
2,k+1|Y

k−1
1 ) −H(W1, U

n
1,k+1,W2, U

n
2,k+1|Y

k−1
1 , Yk)

− I(U1k;W1, U
n
1,k+1, Y

k−1
1 ) − I(U2k;W2, U

n
2,k+1, Y

k−1
1 )

]
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=

n∑

k=1

[
I(W1, U

n
1,k+1,W2, U

n
2,k+1;Yk|Y

k−1
1 ) − I(U1k;W1, U

n
1,k+1, Y

k−1
1 ) − I(U2k;W2, U

n
2,k+1, Y

k−1
1 )

]

≤
n∑

k=1

[
H(Yk) −H(Yk|W1, U

n
1,k+1,W2, U

n
2,k+1, Y

k−1
1 ) − I(U1k;W1, U

n
1,k+1, Y

k−1
1 )

−I(U2k;W2, U
n
2,k+1, Y

k−1
1 )

]

=
n∑

k=1

[
I(W1, U

n
1,k+1,W2, U

n
2,k+1, Y

k−1
1 ;Yk) − I(U1k;W1, U

n
1,k+1, Y

k−1
1 ) − I(U2k;W2, U

n
2,k+1, Y

k−1
1 )

]

=

n∑

k=1

[I(L1k, L2k;Yk) − I(U1k;L1k) − I(U2k;L2k)]

where (a) holds since (W1, U
n
1,k+1) is independent of (W2, U

n
2,k+1) andL1k , (W1, Y

k−1
1 , Un

1,k+1) and

L2k , (W2, Y
k−1
1 , Un

2,k+1) in the last equality. The above implies

R1 +R2 ≤
1

n

n∑

k=1

[I(L1k, L2k;Yk) − I(U1k;L1k) − I(U2k;L2k)] + ǫn.

The rest of the proof proceeds the same way as the proof of Theorem 2. �

C Upper Bounds on|Ti| for R∗
in(D1, D2) and Rin(D1, D2)

We only bound the cardinality ofT1 andT2 for the regionR∗
in(D1,D2). The bounds for|T1| and|T2| for the

regionRin(D1,D2) can be derived in a similar manner. We will need the followingsupport lemma, which
is based on Carathéodory’s theorem on the convex hull of a set in a finite-dimensional vector space.

Lemma 4 ([2, Support lemma, p. 311]) LetP(X ) be the set of distributions defined on a finite setX (rep-
resented as the probability simplex inR

|X |) and letfj, j = 1, 2, ..., k be real-valued continuous functions on
P(X ). For any probability measureµ on the Borelσ-algebra ofP(X ), there existk elementsP1, P2, ..., Pk

of P(X ) andk non-negative realsα1, α2, ...αk with
∑k

i=1 αi = 1 such that for everyj = 1, 2, ..., k

∫

P(X )
fj(P )µ(dP ) =

k∑

i=1

αifj(Pi).

Using this lemma, we will show that for any givenPX1T1|U1
andPX2T2|U2

, there exists a RV̂T1 with
|T̂1| ≤ |U1||X1| + 1 only depending onU1 andX1 such that the following hold

I(T̂1;Y |T2) − I(U1; T̂1) = I(T1;Y |T2) − I(U1;T1) (31)

I(T2;Y |T̂1) − I(U2;T2) = I(T2;Y |T1) − I(U2;T2) (32)

I(T̂1, T2;Y ) − I(U1; T̂1) − I(U2;T2) = I(T1, T2;Y ) − I(U1;T1) − I(U2;T2), (33)

and that the expectation of the distortion betweenU1 andX1 is preserved whenT1 is replaced bŷT1. Note
that the upper bound on|T̂1| does not depend on|T2|.
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We first rewrite

I(T1;Y |T2) − I(U1;T1) = H(Y |T2) −H(Y |T1, T2) −H(U1) +H(U1|T1),

I(T2;Y |T1) − I(U2;T2) = H(Y |T1) −H(Y |T1, T2) − I(U2;T2),

and

I(T1, T2;Y ) − I(U1;T1) − I(U2;T2) = H(Y ) −H(Y |T1, T2) −H(U1) +H(U1|T1) − I(U2;T2).

Recall that the joint distribution of(U1, U2, T2, T2,X1,X2, Y ) can be factorized as

PU1T1U2T2X1X2Y = QU1U2PT1X1|U1
PT2X2|U2

WY |X1X2
.

We note that there exists a Markov chain(T1,X1) → U1 → U2 → (T2,X2). Writing

PU1T1U2T2X1X2Y = PT1PU1X1|T1
PU2|U1

PT2X2|U2
WY |X1X2

,

and noting thatPU2|U1
, PT2X2|U2

andWY |X1X2
are fixed, to apply the support lemma, we needm − 1

functions to preserve the joint distribution of(U1,X1) (see (34) below), wherem , |U1||X1|. Specifically,
we define the following real-valued continuous functions ofdistributionPU1X1|T1

(·, ·|t1) on U1 × X1 for
fixed t1 ∈ T1,

fu1,x1(PU1X1|T1
(·, ·|t1)) , PU1X1|T1

(u1, x1|t1)

for all (u1, x1) ∈ U1×X1 except one pair(u1, x1). Furthermore, we define real-valued continuous functions

fm(PU1X1|T1
(·, ·|t1)) , −HP (Y |T1 = t1, T2) +HP (U1|T1 = t1),

fm+1(PU1X1|T1
(·, ·|t1)) , HP (Y |T1 = t1) −HP (Y |T1 = t1, T2),

where the entropies are taken under the joint distribution induced byPU1X1|T1
(·, ·|t1). According to the

support lemma, there must exist a new RVT̂1 (jointly distributed with(U1,X1)) with alphabet size|T̂1| =

m+1 = |U1||X1|+1 such that the expectation offi, i = 1, 2, ...,m+1, with respect toPT1 can be expressed
in terms of the convex combination ofm+ 1 points; i.e.,

PU1X1(u1, x1) =
∑

t1∈T1

PT1(t1)fu1,x1(PU1X1|T1
(·, ·|t1))

=
∑

bt1∈bT1

PbT1
(t̂1)fu1,x1(PU1X1| bT1

(·, ·|t̂1)), (34)

−H(Y |T1, T2) +H(U1|T1) =
∑

t1∈T1

PT1(t1)fm(PU1X1|T1
(·, ·|t1))

=
∑

bt1∈bT1

PbT1
(t̂1)fm

(
P

U1X1|bT1
(·, ·|t̂1)

)

= −H(Y |T̂1, T2) +H(U1|T̂1),

H(Y |T1) −H(Y |T1, T2) =
∑

t1∈T1

PT1(t1)fm+1(PU1X1|T1
(·, ·|t1))

=
∑

bt1∈bT1

PbT1
(t̂1)fm+1(PU1X1| bT1

(·, ·|t̂1))

= H(Y |T̂1) −H(Y |T̂1, T2).
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This implies that (31)–(33) hold. It should be point out thatthis RV T̂1 maintains the prescribed distortion
level, sincePU1X1(u1, x1) is preserved. Similarly, for any givenPX1T1|U1

andPX2T2|U2
, we can show that

there exists a RV̂T2 with |T̂2| ≤ |U2||X2| + 1 only depending onU2 andX2 such that

I(T1;Y |T̂2) − I(U1;T1) = I(T1;Y |T2) − I(U1;T1) (35)

I(T̂2;Y |T1) − I(U2; T̂2) = I(T2;Y |T1) − I(U2;T2) (36)

I(T1, T̂2;Y ) − I(U1;T1) − I(U2; T̂2) = I(T1, T2;Y ) − I(U1;T1) − I(U2;T2), (37)

and the distortion constraint betweenU2 andX2 is preserved. Thus we conclude that the cardinality ofTi

can be bounded by|Ui||Xi| + 1, i = 1, 2.
Finally, we remark that the support lemma cannot be straightforwardly used to bound the cardinality

for T1 andT2 for the regionRout(D1,D2) andR∗
out(D1,D2). For example, to bound the cardinality ofT1

for Rout(D1,D2), we need|U1||U2||X1||X2||T2| − 1 real-valued continuous functions to preserve the joint
distribution of(U1, U2, T2,X1,X2). Therefore, we may need|U1||U2||X1||X2||T2|+1 letters and this upper
bound depends on|T2|. �
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