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Optimized Signaling of Binary Correlated Sources
over GMACs

Jian-Jia Weng, Fady Alajaji, and Tamás Linder

Abstract

This work focuses on the construction of optimized binary signaling schemes for two-sender uncoded transmis-
sion of correlated sources over non-orthogonal Gaussian multiple access channels. Specifically, signal constellations
with binary pulse-amplitude-modulation are designed for two senders to optimize the overall system performance.
Although the two senders transmit their own messages independently, it is observed that the correlation between
message sources can be exploited to mitigate the interference present in the non-orthogonal multiple access channel.
Based on a performance analysis under joint maximum-a-posteriori decoding, optimized constellations for various
basic waveform correlations between the senders are derived. Numerical results further confirm the effectiveness
of the proposed design.

I. INTRODUCTION

The requirement of transmitting correlated information appears in many practical scenarios. For example,
nearby measurement stations regularly report observed temperatures to a control center to track environ-
mental change. For transmitting correlated sources over Gaussian multiple access channels (GMACs), the
pioneering study in [1] proposed a random coding scheme to establish reliable communication from the
channel capacity perspective. Using powerful channel codes, e.g., low-density parity-check codes [2] or
turbo codes [3], practical code constructions with capacity approaching performance were also given for
various GMACs [4]-[6]. Unfortunately, most of these codes incur relatively high computational complexity
and long decoding delay. An alternative approach to channel coding is uncoded transmission in which
each source symbol is directly mapped to one channel input signal. This simple scheme is particularly
suitable for resource-limited systems such as wireless sensor networks [7]. However, in the absence of
the protection provided by channel codes, recovering the transmitted data from the received noisy signal
becomes challenging.

In this paper, we study the optimization of uncoded transmission of correlated sources over GMACs.
Our objective is to design binary signaling schemes for each sender such that the system joint error
rate is minimized. The basic setup is briefly summarized as follows. The two senders are assumed to
employ binary pulse-amplitude-modulation (BPAM) such that each sender has its own energy constraint.
The GMAC we consider is a non-orthogonal channel. The two BPAM signals are transmitted in the
same time slot and frequency band and hence multiple access interference will occur if the senders’
basic pulse waveforms are not orthogonal. Furthermore, the two senders are assumed to transmit their
own messages independently. Cooperative transmission is excluded in this paper because it is usually
infeasible for resource-limited networks with separated transmitters. Lastly, a joint maximum-a-posteriori
(MAP) decoder which can exploit the correlation between the source messages is used at the receiver.
We note that a similar problem has been tackled recently in [8], in which an orthogonal GMAC was
considered. Our work can be viewed as a substantial generalization of [8].

Under the above setting, it can readily be seen that using an identical BPAM signaling scheme at both
senders is inadequate because it results in a combined constellation for the transmitted pair of messages
in which the constellation of one user is exactly superposed to the constellation of the other user. In this
case, the receiver cannot decode the received signal without any error, even when the transmission is
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noise-free. To resolve this ambiguity, [9] and [10] respectively propose a rotation scheme and an energy
allocation scheme. While these schemes aim to enlarge the constrained constellation capacity for the
transmission of independent and uniformly distributed sources over GMACs, the proposed ideas may
also improve the error rate performance for correlated and non-uniform sources. However, as reported in
[11]-[14], symmetric constellations are often not optimal for non-uniformly distributed sources. Using the
modulated signals obtained by either the rotation or energy allocation scheme is then likely to be sub-
optimal. Instead of significantly altering the conventional antipodal BPAM constellation, we propose to
directly design signals. In this approach, we explicitly construct constellations by analytically optimizing
the system’s exact error rate or its upper bound for high signal-to-noise ratios (SNRs). More importantly,
the correlation between sources is not only exploited to boost the decoding performance, but it is also
used to mitigate the interference between the two independently transmitted signals.

We next briefly review some prior work related to the subject of this paper. In [15], the authors
characterize the capacity region of the two-sender GMAC using PAM signals based on the notions of
root-mean-square and factional out-of-band energy. Achievable rates for the two-sender GMAC with
uncoded PAM signals are derived in [16]. Prior work on designing non-binary constellations for non-
uniformly distributed sources sent over point-to-point channels, e.g., [12]-[14], [17], can be helpful when
higher order modulation schemes are considered for the GMAC. When the number of senders or the
modulation order increases, successive interference cancellation decoding [18] can be employed to reduce
the computational complexity of the receiver. Note that although our transmission model is simple, the
results obtained in this paper can be potentially applied to wireless ad-hoc networks [19], cognitive radios
[20], and non-orthogonal multiple access in the fifth generation (5G) mobile systems [21].

The rest of this paper is organized as follows. In Section II, we describe the system with a two-sender
GMAC and analyze its error rate performance under joint MAP decoding. In Section III, the design
procedure for correlated pulse waveforms is presented, and explicit optimized constellations are derived.
In Section IV, the performance of the proposed signaling schemes is systematically assessed via simulation.
Conclusions and future works are drawn in Section V.

II. SYSTEM DESCRIPTION AND ERROR RATE ANALYSIS

A. GMAC Transmission System
The transmission system we study is depicted in Fig. 1. The system comprises two senders and one

receiver. In each time slot, the senders simultaneously transmit their binary source messages over a
multiple access channel with additive white Gaussian (AWGN) noise. The source messages are assumed
to be correlated, and hence a joint MAP decoder is employed at the receiver to minimize the joint symbol
error rate. The binary messages of sender 1 and sender 2 are denoted by U and V , respectively, and they
have the joint probability distribution puv , Pr (U = u, V = v), for u, v ∈ {0, 1}. Let p1 = Pr(U = 0)
and p2 = Pr(V = 0). The joint distribution can be also described in terms of p1, p2, and the sources’
correlation coefficient as follows

p00 = 1− (1− p1)− (1− p2) + p11

p10 = (1− p1)− p11

p01 = (1− p2)− p11,

and
p11 = γm

√
p1(1− p1)p2(1− p2) + (1− p1)(1− p2).

where γm = Cov(U, V )/(σUσV ) denotes the correlation coefficient between U and V , Cov(·, ·) is the
covariance, and σU and σV are the standard deviations of U and V , respectively. To avoid uninteresting
cases, we will assume puv > 0 for all u and v.

To transmit data over the GMAC system, sender j uses BPAM with waveform signal ajbφj(t), where
ajb denotes the amplitude for modulating binary source message b ∈ {0, 1} and φj(t) is the sender’s
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V̂

Fig. 1: The block diagram of the GMAC transmission system.

basic BPAM pulse waveform. The φj(t)’s are assumed to be of finite duration T and unit energy, i.e.,∫ T
0
φ2
j(t) dt = 1. The correlation between φ1(t) and φ2(t) is denoted by γφ, where γφ =

∫ T
0
φ1(t)φ2(t) dt

and −1 ≤ γφ ≤ 1. Instead of using the continuous time description of signals, one can describe the
waveform signals in a two-dimensional signal space by choosing φ1(t) and (φ2(t)−γφφ1(t))/(

∫ T
0
φ2(t)−

γφφ1(t) dt) to form an orthonormal basis. For simplicity, the two basis vectors are identified with the
real and imaginary axes on the complex plane. The waveform signal ajbφj(t) can be now equivalently
described by a point Sjb on the complex plane obtained by projecting the waveform signal onto the signal
space.

By this choice of basis, the signal points S10 and S11 are located on the real axis of the complex plane
with values S10 = a10 and S11 = a11, while the points S20 and S21 are generally complex-valued. There
are two cases where both S20 and S21 are either purely real-valued or imaginary-valued. When γφ = 0,
S20 and S21 lie on the imaginary axis of the complex plane with values S20 = ia20 and S21 = ia21,
where i denotes the imaginary unit. In this case, the basic pulse waveforms are orthogonal and thus no
interference from the other sender will be introduced during transmission, and the transmitted signals are
only perturbed by the channel noise. Another special case is when γφ = ±1, i.e., φ2(t) = ±φ1(t). In this
case, S20 and S21 are on the real axis. Here, strong multiple access interference occurs due to the high
correlation between the transmitted signals of the two senders. A simple example is when both senders
employ the same BPAM scheme, thereby producing S10 = S20 and S11 = S21. Later, we will see that even
under strong multiple access interference, it is possible to design appropriate BPAM signals to mitigate
the interference and improve the quality of transmission.

Let Sj represent the BPAM signal constellation of sender j so that S1 = {S10, S11} and S2 = {S20, S21}.
We additionally impose an average energy constraint on the constellation given by

pj|Sj0|2 + (1− pj)|Sj1|2 = Ej, j = 1, 2, (1)

where | · | denotes absolute value (magnitude) and Ej is the average energy for transmitting sender j’s
input source message. When the source messages (U, V ) are sent over the GMAC, the received signal at
the output of the matched filter can be written as

R = S1U + S2V +N, (2)

where N denotes complex-valued zero-mean Gaussian noise with variance σ2 per dimension, having
independent components that are also independent of (U, V ). Letting AUV = S1U + S2V , (2) can be
written as R = AUV + N . Let A = {S1u + S2v : u, v ∈ {0, 1}} denote the constellation that contains all
combined signal points AUV . Examples of the constellations S1, S2, and A are shown in Fig. 2. Note that
to avoid harmful interference, it is necessary to use constellations such that the mapping from S1×S2 to
A given by AUV = S1U + S2V is bijective.

Suppose that (U, V ) = (u, v) is sent. When the receiver observes signal R = r, the (optimal) joint MAP
decoder generates an estimate of the transmitted source messages based on the joint source distribution
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Fig. 2: An illustration of signal constellations of the two senders and the combined constellation.

pUV and the observation r via the decision rule

(û, v̂) = arg max
(l,m)∈{0,1}2

Pr
(
U = l, V = m|R = r

)
= arg max

(l,m)∈{0,1}2
plm ·

1

2πσ2
exp

(
−|r − Alm)|2

2σ2

)

= arg max
(l,m)∈{0,1}2

ln plm +
2 Re[rA∗lm]− |Alm|2

2σ2
,

where Re[z] and z∗ denote the real part and the conjugate of the complex number z, respectively. For
convenience, we define the random variable Hlm , ln plm+(2 Re[RA∗lm]−|Alm|2)/2σ2. Given R = r, the
realization of Hlm, denoted by hlm, can be viewed as a decision score for Alm. The joint MAP decoder
simply outputs the pair of source messages with the highest score so as to minimize the probability of
erroneous detection.

B. The Error Rate Performance of the Joint MAP Decoder
The conditional probability Pc,uv of correct decoding given that (U, V ) = (u, v) is sent over the channel

is given by

Pc,uv = Pr

 ⋂
(l,m)∈{0,1}2:(l,m)6=(u,v)

{Huv −Hlm > 0}

.
To simplify the notation, we define the scaled difference metric

∆uv,lm , −σ2 · (Huv −Hlm)

= Re[R(Alm − Auv)∗]−
|Alm|2 − |Auv|2

2
− σ2 ln

puv
plm

. (3)

By substituting R = Auv +N in (3), we obtain

∆uv,lm = Re[N(Alm − Auv)∗]−
|Alm − Auv|2

2
− σ2 ln

puv
plm

. (4)

Note that ∆uv,lm is a Gaussian random variable whose mean and variance are respectively given by

µuv,lm , −|Alm − Auv|
2

2
− σ2 ln

puv
plm

(5)

and

σ2
uv,lm , σ2 · |Alm − Auv|2. (6)
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The system’s error rate Perr under joint MAP decoding can be written as

Perr =
∑
(u,v)

puv Pr

(
(u, v) 6= arg min

(l,m)

∆uv,lm

)

= 1−
∑
(u,v)

puv Pr

(
(u, v) = arg min

(l,m)

∆uv,lm

)
= 1−

∑
(u,v)

puv Pr
(
∆uv,lm < 0 for all (l,m) 6= (u, v)

)
= 1−

∑
(u,v)

puvPc,uv. (7)

In general, the probabilities Pc,uv in (7) cannot be easily determined because the decision regions of the
combined signal points on the complex plane are often of irregular shape, requiring complicated numerical
integration. Nevertheless, when γφ = ±1, the decision regions become intervals on the real line. For this
case, we can directly identify the decision regions and calculate the probabilities Pc,uv. Specifically, for
γφ = ±1, the inequality ∆uv,lm < 0 can be expressed as

Duv,lm · Re[N ] <
D2
uv,lm

2
+ σ2 ln

puv
plm

, (8)

where Duv,lm , Auv − Alm = (S1u + S2v) − (S1l + S2m). Given D10,00, D01,00, and |D10,00| − |D01,00|,
(8) specifies a range of values in the form of an interval that Re[N ] can take. For each pair (u, v), the
decision region is specified by three such inequalities. Letting Ω be the intersection of the corresponding
intervals, we have

Pc,uv =

∫
Ω

(
1√

2πσ2

)
exp

(
−t2
2σ2

)
dt (9)

and the overall error probability is immediately obtained via (7). A detailed example for this procedure
is given in the Appendix.

For γφ 6= ±1, we can combine the techniques developed in [8] and [22] to find the error probability.
First, based on (4), it can be verified that

∆uv,ūv̄ = ∆uv,ūv + ∆uv,uv̄ + αuv (10)

with ē = 0 if e = 1 and ē = 1 if e = 0, and

αuv =

 σ2 ln p00p11

p01p10
− ζ, if (u, v) ∈ {(0, 0), (1, 1)}

σ2 ln p01p10

p00p11
+ ζ, if (u, v) ∈ {(0, 1), (1, 0)},

where ζ , Re[(A10 − A00)(A01 − A00)∗]. Using (10), we have

Pc,uv = Pr
(
{∆uv,ūv < 0} ∩ {∆uv,uv̄ < 0} ∩ {∆uv,ūv + ∆uv,uv̄ + αuv < 0}

)
.

Since each ∆uv,lm is an affine function of N , ∆uv,ūv and ∆uv,uv̄ are jointly Gaussian with joint probability
density function (pdf)

f∆uv,ūv ,∆uv,uv̄(x, y) =
1

2πσuv,ūvσuv,uv̄
√

1− γ2
exp

 −1

2(1− γ2)

(x− µuv,ūv
σuv,ūv

)2

−2γ
(x− µuv,ūv)(y − µuv,uv̄)

σuv,ūvσuv,uv̄
+

(
y − µuv,uv̄
σuv,uv̄

)2

 ,
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where µuv,lm and σuv,lm are respectively given in (5) and (6), and γ denotes the correlation coefficient
between ∆uv,ūv and ∆uv,uv̄ given by

γ ,
Cov(∆uv,ūv,∆uv,uv̄)

σuv,ūvσuv,uv̄
=

ζ

σ2|Aūv − Auv||Auv̄ − Auv|
.

(11)

Let Λ1 , (∆uv,ūv − µuv,ūv)/σuv,ūv and Λ2 , (∆uv,uv̄ − µuv,uv̄)/σuv,uv̄. Then,

Pc,uv =

∫ −µuv,uv̄
σuv,uv̄

−∞

∫ −µuv,ūv
σuv,ūv

−∞

1

2π
√

1− γ2
exp

( −1

2(1− γ2)

[
λ2

1 − 2γλ1λ2 + λ2
2

])
dλ1 dλ2 − β (12)

with β = 0 for αuv ≤ 0 and

β =

∫ 0

−αuv

∫ 0

−y−αuv
f∆uv,ūv ,∆uv,uv̄(x, y) dx dy

for αuv > 0. Although we still do not have a closed form expression for the Pc,uv’s, their values are now
easily computable. With the values of Pc,uv, the decoding error probability can be found via (7).

A special case where the error probability has a closed form expression is when γφ = 0 and the source
messages are uniformly distributed, i.e., p1 = p2 = 1/2. In this case, we have

Perr = 1−
(

1−Q
( |S11 − S10|

2σ

))(
1−Q

( |S21 − S20|
2σ

))
(13)

where Q(x) ,
∫∞
x

(1/
√

2π) exp
(
t2/2

)
dt is the Gaussian Q-function. This expression is in fact the symbol

error rate of the rectangular four quadrature-amplitude-modulation (4-QAM) in AWGN channels for
uniformly distributed source messages. This result is expected because the transmission of two orthogonal
signals S1U and S2V over a GMAC under joint MAP decoding can be viewed as a one-sender 4-QAM
transmission over an AWGN channel. When the two bits of a 4-QAM symbol are independent of each
other, the decoding of 4-QAM can be decomposed into two independent detections, one for each bit. The
decoding is correct only if the detection of both bits are correct, thereby yielding the expression in (13).

III. OPTIMIZED DESIGN OF BINARY CONSTELLATIONS FOR TWO-SENDER GMAC
For given sender waveforms φ1(t) and φ2(t), our objective is to find the coefficients {ajb : j =

1, 2, b = 0, 1} that minimize Perr. From a signal space viewpoint, this is equivalent to designing two
BPAM constellations on the complex plane. In what follows, for the sake of completeness, the designs
for all possible values of γφ are considered. Although for the case of γφ = 0, the optimized constellations
were already derived in [8], here we present a simpler way to arrive at the same conclusion. For γφ = ±1,
we derive the optimal constellations based on minimizing the error rate under joint MAP decoding in
the high SNR regime. For other values of γφ, since the expression of the exact error rate is generally
too complex, the union bound on the error rate in the high SNR regime is minimized. Specifically, let
Perr(S1,S2, σ

2) denote the system’s error rate when the constellations S1 and S2 are employed and the
noise variance is σ2. For γφ ∈ {0, 1,−1}, we determine constellations S1 and S2 such that

lim
σ2→0

Perr(S1,S2, σ
2)

Perr(S̃1, S̃2, σ2)
≤ 1 (14)

for any other constellations S̃1 and S̃2. For other values of γφ, the constellations S1 and S2 are optimized
in the sense that

lim
σ2→0

P
(UB)
err (S1,S2, σ

2)

P
(UB)
err (S̃1, S̃2, σ2)

≤ 1 (15)
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for any other constellations S̃1 and S̃2, where P (UB)
err denotes the union bound on the error rate.

Lemma 1. For j = 1, 2, the two signal points of Sj which are separated by the largest possible distance
under the average energy constraint given in (1) are in the form of Sj0 = −

√
(1− pj)Ej/pjeiη and

Sj1 =
√
pjEj/(1− pj)eiη, where η ∈ [0, 2π) and the largest separation distance is given by dj,max ,√

Ej/(pj(1− pj)).

Proof. Finding the signal points Sj0 and Sj1 which simultaneously achieve the largest separation distance
and satisfy the average energy constraint is equivalent to solving the constrained quadratic minimization
problem [23]:

maxxΣxT subject to ||x||2 = 1,

where (·)T and || · || respectively denote the transposition operation and the Euclidean norm, x =
(
√
pj/Ej Re[Sj0],

√
(1− pj)/Ej Re[Sj1],

√
pj/Ej Im[Sj0],

√
(1− pj)/Ej Im[Sj1]) is a row vector in which

Im[z] denotes the imaginary part of the complex number z, and the 4× 4 positive semidefinite matrix Σ
is given by

Σ =



Ej
pj

− Ej√
pj(1−pj)

0 0

− Ej√
pj(1−pj)

Ej
1−pj 0 0

0 0
Ej
pj

− Ej√
pj(1−pj)

0 0 − Ej√
pj(1−pj)

Ej
1−pj


.

It is easy to verify that the xΣxT = |Sj0−Sj1|2, and the constraint ||x||2 = 1 represents the average energy
constraint (1) for sender j. Using this formulation, the largest squared Euclidean distance and the corre-
sponding signal points can be immediately obtained by determining the largest eigenvalue of Σ and the as-
sociated eigenvector [24]. These are respectively given by Ej/(pj(1−pj)) and (−(1−pj)Ej/pj, pjEj/(1−
pj), 0, 0), yielding the signal points Sj0 = −

√
(1− pj)Ej/pj and Sj1 =

√
pjEj/(1− pj) with the

distance between them given by
√
Ej/(pj(1− pj)) , dj,max. Moreover, since any constellation obtained

by rotating Sj through an angle η about the origin has the same separation distance and also satisfies
the energy constraint, the desired binary signals have the general form Sj0 = −

√
(1− pj)Ej/pjeiη and

Sj1 =
√
pjEj/(1− pj)eiη, where η ∈ [0, 2π).

We remark that the binary constellation given in Lemma 1 is in fact the optimal binary constellation
for a single sender system with a non-uniformly distributed source [11].

We now give a few definitions. When the constellations designed for two senders are constructed by
only considering the marginal probabilities p1 and p2, the design is called an individually optimized design.
If the constellation design is based on the joint probability distribution pUV , we call it a jointly optimized
design. Based on the optimality criteria presented in (14) and (15), we next derive the jointly optimized
constellations for γφ = 0, γφ = ±1, and other values of γφ.

A. Design of Signal Constellations for γφ = 0

Theorem 2. The optimized constellations for the orthogonal transmission in the high SNR regime in the
sense of (14) are given by

S10 = −
√

1− p1

p1

E1, S11 =

√
p1

1− p1

E1 (16)

and

S20 = −i
√

1− p2

p2

E2, S21 = i

√
p2

1− p2

E2. (17)
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TABLE I: The probability of correct decoding for γφ = ±1 in the high SNR regime.

Case d1 d2 |d1| ≶ |d2| P̃c

I > 0 > 0 > 1−Q
(
d2
2σ

)
− (p10 + p01)Q

(
d1−d2

2σ

)
II > 0 > 0 < 1−Q

(
d1
2σ

)
− (p10 + p01)Q

(
d2−d1

2σ

)
III > 0 < 0 > Q

(
d2
2σ

)
− (p00 + p11)Q

(
d1+d2

2σ

)
IV > 0 < 0 < (p10 + p01)−Q

(
d1
2σ

)
+ (p00 + p11)Q

(
d1+d2

2σ

)
V < 0 > 0 > (p10 + p01)−Q

(
d2
2σ

)
+ (p00 + p11)Q

(
d1+d2

2σ

)
VI < 0 > 0 < Q

(
d1
2σ

)
− (p00 + p11)Q

(
d1+d2

2σ

)
VII < 0 < 0 > Q

(
d2
2σ

)
− (p10 + p01)Q

(
d2−d1

2σ

)
VIII < 0 < 0 < Q

(
d1
2σ

)
− (p10 + p01)Q

(
d1−d2

2σ

)

To prove this theorem which recovers the result of [8], we need the following lemma. Here, P̂err(S1,S2, σ
2)

denotes the right-hand-side of (13).

Lemma 3. For given constellations S1 = {S10, S11} and S2 = {S20, S21} with γφ = 0 and any source
distribution PUV , the error probability under joint MAP decoding is asymptotically given by (13) as
σ2 → 0, i.e., lim

σ2→0
P̂err(S1,S2, σ

2)/Perr(S1,S2, σ
2) = 1.

Proof. If γφ = 0, then γ = 0 because of ζ = 0 (see (11)) and the joint pdf f∆uv,ūv ,∆uv,uv̄(x, y) can be
written as a product of two Gaussian density functions. When σ2 → 0, we further have αuv → 0 and
β → 0 for all (u, v) ∈ {0, 1}2. It is easy to see that for any (u, v)

lim
σ2→0

1

Pc,uv

(
1−Q

( |S11 − S10|
2σ

))(
1−Q

( |S21 − S20|
2σ

))
= 1, (18)

which implies the lemma.

The result presented in Lemma 3 is intuitively clear since joint MAP decoding reduces to maximum
likelihood decoding for high SNRs, where the decoding performance is mainly dominated by the distance
between signal points independently of the source distribution. Based on the two previous lemmas, we
now prove Theorem 2.

Proof of Theorem 2. By Lemma 3, to minimize the error probability in the high SNR regime, the mag-
nitudes of S11 − S10 and S21 − S20 in (13) should be as large as possible. Under the energy constraint
(1), the signal points with the largest separation distance are given in Lemma 1. By respectively choosing
η = 0 and η = π/2 for sender 1 and sender 2, the optimized constellations are obtained.

B. Design of Signal Constellations for γφ = ±1

Given signal constellations S1 and S2 (which lie on the real line in this case) and source distribution pUV ,
the decision region for each message pair on the combined constellation can be identified and the MAP
decoding performance can be readily evaluated. In the Appendix, we provide an example to demonstrate
this procedure, in which certain set of conditions such as D10,00 > 0, D01,00 > 0, and |D10,00|−|D01,00| > 0
are imposed on the signal points in order to explicitly characterize the decision region Ω given in (8).
However, to design optimal constellations, all such possible conditions on the signs of D10,00, D01,00,
and |D10,00| − |D01,00| must be taken into account. According to the relative position of S1u and S2v,
u, v ∈ {0, 1}, and the distance between them, there are eight cases that need to be considered. Based on
(8), each of these cases will lead to a different decision region for which we derive the MAP decoding
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performance in closed form. Then the case that achieves the minimum error rate is chosen as the optimal
design.

Although the above approach is straightforward, we note that tedious numerical computations and
comparisons are required to obtain the optimal constellation. To avoid designing signal constellations
numerically, we construct constellations under the high SNR assumption as in the case γφ = 0. In this
way, an explicit construction of the constellation is obtained, and we will see later that such a construction
results in an negligible performance degradation relative to the truly optimal construction.

For j = 1, 2, let dj , Sj1 − Sj0. Here, dj is real-valued with |dj| ∈ (0, dj,max], where dj,max is given in
Lemma 1. Without loss of generality, we assume that p1, p2, E1, and E2 are such that d2,max ≤ d1,max.
For the case of d2,max > d1,max, we only need to swap the role of the two senders in the main result.

Theorem 4. Suppose that d2,max ≤ d1,max. For γφ = ±1 and high SNRs, the optimized constellation (in
the sense of (14)) for sender 1 is given by (16), while the optimized constellation for sender 2 is given by

S20 = −
√

1− p2

p2

E2, S21 =

√
p2

1− p2

E2

if |d2| ≥ d2,max, and otherwise we have

S20 = S21 − d2, S21 = d2p2 ±
√

(d2)2p2(p2 − 1) + E2

where

d2 =

 −4σ2 ln(p10 + p01)/d1,max + d1,max/2, if (p00 + p11) ≥ (p10 + p01),

4σ2 ln(p11 + p00)/d1,max − d1,max/2, if (p00 + p11) < (p10 + p01),

with d1,max =
√
E1/(p1(1− p1)).

To prove this theorem, for each case we first find a closed form expression of the system’s correct
decoding probability P̃c in the high SNR regime. The conditions on the signal points for all eight cases
are listed in Table I. For Case I, P̃c is obtained using the derivation in the Appendix by applying the
high SNR assumption. The other P̃c’s are derived in a similar fashion. From Table I, we observe that by
symmetry some cases can be disregarded without degrading our design. We need the following lemmas
to simplify the procedure.

Lemma 5. The maximum of P̃c(Case VII) is the same as the maximum of P̃c(Case I).

Proof. For Case VII, by defining d̄j = −dj for j = 1, 2, the correct decoding probability for high SNRs
can be expressed as

P̃c(Case VII) = Q

(
−d̄2

2σ

)
− (p01 + p10)Q

(
d̄1 − d̄2

2σ

)

= 1−Q
(
d̄2

2σ

)
− (p01 + p10)Q

(
d̄1 − d̄2

2σ

)
,

where d̄j ∈ (0, dj,max]. The above expression reduces to P̃c(Case I) after the substitutions d1 → d̄1 and
d2 → d̄2. Moreover, the domain of the parameters are also the same, i.e., dj, d̄j ∈ (0, dj,max], j = 1, 2.
Therefore, for any noise variance σ2, we have

max
d1,d2

P̃c(Case I) = max
d̄1,d̄2

P̃c(Case VII).
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The argument of Lemma 5 can be extended to Cases II and VIII, Cases III and V, and Cases IV and
VI. Since the corresponding proofs are almost identical, we omit the details. Based on these results, we
can exclude Cases IV, V, VII, and VIII from consideration.

Lemma 6. The maximum of P̃c(Case II) cannot be less than the maximum of P̃c(Case I).

Proof. Define

G(y1, y2) = 1−Q
(
y1

2σ

)
− (p10 + p01)Q

(
y2

2σ

)
for y1, y2 > 0. For the maximum of correct decoding we have

P̃ ∗c (Case I) , max
y1∈(0,d2,max]

max
y2∈(0,d1,max−y1]

G(y1, y2)

and
P̃ ∗c (Case II) , max

y1∈(0,d2,max]
max

y2∈(0,d2,max−y1]
G(y1, y2).

Since d1,max ≥ d2,max, we obtain P̃ ∗c (Case I) ≥ P̃ ∗c (Case II).

By a similar argument, we can also show that P̃ ∗c (Case VI) ≤ P̃ ∗c (Case III). Consequently, it suffices
to design the optimized constellations for Cases I and III, and the design with the larger P̃c of the two
cases is the best design. The next two lemmas help us explicitly derive the optimized constellations for
these two cases.

Lemma 7. For any fixed d2 ∈ (0, d2,max], P̃c(Case I) is increasing in d1.

Proof. Taking the partial derivative of P̃c(Case I) with respect to d1 yields

∂P̃c(Case I)
∂d1

= (p01 + p10)
1√
2πσ

exp

(
−(d1 − d2)2

8σ2

)
> 0.

Lemma 8. P̃c(Case I) is a concave function in d2 for d1 = d1,max.

Proof. By taking partial derivatives of P̃c(Case I) with respect to d2, we have

∂P̃c(Case I)
∂d2

=
1

2
√

2πσ2

exp

(
−d2

2

8σ2

)
−(p01 + p10) exp

(
−(d1,max − d2)2

8σ2

)
and

∂2P̃c(Case I)
∂d2

2

=
1

16σ2
√

2π

exp

(
−d2

2

8σ2

)
(−2d2) −(p01 + p10) exp

(
−(d1,max − d2)2

8σ2

)
2(d1,max − d2)

 .

(19)

Since d2,max ≤ d1,max, the second derivative given in (19) is non-positive for all d2 ∈ (0, d2,max]. Hence,
P̃c(Case I) is a concave function of d2 on the interval (0, d2,max].

Similarly, one can show that for any d1 ∈ (0, d2,max], Pc(Case III) is increasing in d2, where d1 is
upper bounded by d2,max due to the condition |d1| < |d2|. Also, for d2 = d2,max, P̃c(Case III) is a concave
function in d1 for d1 ∈ (0, d2,max], Since the proofs of these statements are almost identical to the proof
for Case I, the details are omitted. Based on the previous lemmas, we are readily to prove Theorem 4.
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Proof of Theorem 4. First, we show that if p00 + p11 ≥ p10 + p01, then P̃ ∗c (Case I) ≥ P̃ ∗c (Case III), which
implies that we only need to consider Case I. By letting d̄2 = −d2, we can rewrite P̃c(Case III) as

P̃c(Case III) = Q

(
−d̄2

2σ

)
− (p00 + p11)Q

(
d1 − d̄2

2σ

)

= 1−Q
(
d̄2

2σ

)
− (p00 + p11)Q

(
d1 − d̄2

2σ

)
, (20)

where d1 ∈ (0, d1,max] and d̄2 ∈ (0, d2,max]. Based on this expression and the correspondence d2 ↔ d̄2,
the feasible set for P̃c(Case III) is observed to be identical to that for P̃c(Case I). Moreover, the new
expression for P̃c(Case III) only differs from P̃c(Case I) in the coefficient of the third term. Therefore,
when p00 + p11 ≥ p10 + p01, we have maxd1,d2 P̃c(Case I) ≥ maxd1,d̄2

P̃c(Case III) and the optimized
constellations for Case I should be selected. In contrast, when p00 + p11 < p10 + p01, the optimized
constellations for Case III is chosen. Next, we explicitly derive the optimal constellations for Cases I and
III to complete the proof.

To find the optimized constellation S1 that maximizes P̃c(Case I), d1 should be set to its maximum
possible value d1 = d1,max according to Lemma 7. By setting η = 0 in Lemma 1, this choice of d1

immediately gives the optimal constellation for sender 1:

S10 = −
√

1− p1

p1

E1, S11 =

√
p1

1− p1

E1. (21)

Moreover, based on the concavity property in Lemma 8, the maximum of P̃c(Case I) in the variable d2

is known to occur at either where the partial derivative is zero or at the boundary of its support interval.
Solving ∂P̃c(Case I)

∂d2
= 0 for d2, we obtain

d2 = − 4σ2

d1,max

ln(p10 + p01) +
d1,max

2
. (22)

By substituting S21 − S20 = d2 into the average energy constraint p2|S20|2 + (1 − p2)|S21|2 = E2, the
optimized S2 is obtained. In summary, when d2

2p2(p2 − 1) +E2 > 0 with d2 given in (22), there are two
optimized constellations:

S20 = S21 − d2, S21 = d2p2 +
√
d2

2p2(p2 − 1) + E2

and
S20 = S21 − d2, S21 = d2p2 −

√
d2

2p2(p2 − 1) + E2.

When d2
2p2(p2 − 1) + E2 ≤ 0, the optimized constellation for sender 2 is

S20 = −
√

1− p2

p2

E2, S21 =

√
p2

1− p2

E2

which follows from the result that the maximum of P̃c(Case I) occurs at d2 = d2,max and from Lemma 1.
With the help of the expression in (20) and the above derivation, the optimal constellations for Case III

can be easily derived. For sender 1, the optimized constellation S1 is the same as the one given in (21)
because the choice d1 = d1,max also maximizes P̃c(Case III). For sender 2, solving ∂P̃c(Case III)

∂d̄2
= 0 gives

d̄2 = − 4σ2

d1,max

ln(p00 + p11) +
d1,max

2
.
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By substituting S20−S21 = d̄2 into p2|S20|2 + (1− p2)|S21|2 = E2, there are two optimized constellations
S2 in case of d̄2

2p2(p2 − 1) + E2 > 0 given by

S20 = S21 + d̄2, S21 = d̄2p2 +
√
d̄2

2p2(p2 − 1) + E2

and
S20 = S21 + d̄2, S21 = d̄2p2 −

√
d̄2

2p2(p2 − 1) + E2.

When d̄2
2p2(p2 − 1) + E2 ≤ 0, the optimized constellation S2 is given by

S20 =

√
1− p2

p2

E2, S21 = −
√

p2

1− p2

E2.

C. Design of Signal Constellations for γφ /∈ {0, 1,−1}
When γφ /∈ {0, 1,−1}, the design procedure becomes more difficult since the performance of joint

MAP decoding is usually not known in closed form even at high SNRs. Instead, we use the union bound
to facilitate the design procedure. Specifically, a closed form upper bound for the error probability of MAP
decoding is first obtained via the union bound. The optimized constellations are then derived analytically
based on the minimization of this upper bound in the high SNR regime. Although this design approach is
less accurate than optimizing the exact system error rate (or errror bounds that are tighter than the union
bound [25]), its effectiveness has been extensively demonstrated in, e.g., [26]-[28].

The union bound on the error rate of the joint MAP decoder is

Perr ≤ P (UB)
err =

∑
(u,v)

∑
(l,m)6=(u,v)

puv Pr
(
∆uv,lm > 0

)
. (23)

In the high SNR regime, we further have that

lim
σ2→0

Q
(
|Alm−Auv |

2σ

)
Pr
(
∆uv,lm > 0

) = 1

for all (u, v) 6= (l,m), and hence the right-hand-side of (23) can be approximated for σ2 sufficiently small
by P̃ (UB)

err given by

P̃ (UB)
err = Q

( |d1|
2σ

)
+Q

( |d2|
2σ

)
+ (p00 + p11)Q

(√
|d1|2 + |d2|2 + 2|d1||d2| cosψ

2σ

)

+(p01 + p10)Q

(√
|d1|2 + |d2|2 − 2|d1||d2| cosψ

2σ

)
, (24)

where d1 = S11 − S10 and d2 = S21 − S20 are generally complex-valued and ψ is the angle measured
counterclockwise from d1 to d2 on the complex plane. We note that taking partial derivatives to minimize
(24) results in transcendental equations, so another method is proposed here. Our design procedure is to
first find optimal |d1|, |d2|, and ψ that minimize (24), and then derive optimized signals based on the
energy constraints. We first note that for given basic waveforms with γφ = cos θ, where θ denotes the
angle between the signal subspaces induced by φ1(t) and φ2(t) on the complex plane, due to symmetry
it is sufficient to consider θ ∈ (0, π). Also, by definition, ψ can take value in {θ, θ + π}.

Next, we give an example to illustrate our design approach. Suppose that γφ > 0 and (p00+p11) ≥ (p01+
p10). In this case, we have 0 < θ < π/2. To minimize (24), due to the possible values of ψ, the symmetry
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|d2|
0 |d2,max|

(a)

|d2|
0 |d2,max|

(b)

|d2|
0 |d2,max|

(c)

Fig. 3: The possible locations of the maximum of min(|d2|2, |d1|2 + |d2|2 − 2|d1||d2| cosψ), in which
the maximum of (a) and (b) occurs at the boundary of support and the maximum of (c) happens at the
intersection of the two curves.

of the arguments of the Q function in the third and forth terms of (24), and (p00 + p11) ≥ (p01 + p10), we
first choose ψ = θ. Also, since the Q function is decreasing and

lim
σ2→0

c∗Q(d∗)

P̃ (UB)
err

= 1, (25)

where d∗ denotes the minimum value among the arguments of the Q function in P̃ (UB)
err , and c∗ is the

associated coefficient of that term, we next maximize

min(|d1|2, |d2|2, |d1|2 + |d1|2 − 2|d1||d2| cosψ) (26)

over |d1| ∈ (0, d1,max], |d2| ∈ (0, d2,max], and d2,max ≤ d1,max. Note that due to |d1|2 + |d1|2 +2|d1||d2| cosψ
> |d1|2 + |d1|2 − 2|d1||d2| cosψ, the term |d1|2 + |d1|2 + 2|d1||d2| cosψ has been excluded in (26).

To find |d1| and |d2| that maximize (26), we use a two-step procedure. Roughly speaking, for an arbitrary
but fixed |d1|, we first identify the candidates for an optimal |d2| in (26). These are either constants or
functions of |d1|. Using these candidates, we re-examine (26) to find the optimal |d1|. A few pairs of |d1|
and |d2| which possibly maximize (26) are then formed for further evaluation. We summarize the obtained
results in the next lemma; the details of the two-steps procedure are given in the proof.

Lemma 9. For any 0 < ψ < π/2, the optimal |d1| and |d2| that maximize (26) are given by |d1| = d1,max

and |d2| = d1,max/(2 cosψ) if d2
1,max + d2

2,max − 2d1,maxd2,max cosψ ≤ (d1,max/2 cosψ)2 ≤ d2
2,max, and

|d2| = d2,max otherwise.

Proof. For the given 0 < ψ < π/2, we fix |d1| ∈ (0, d1,max] and define w(|d2|) = min(|d2|2, |d1|2 + |d2|2−
2|d1||d2| cosψ). Note that (26) can be now expressed as min(|d1|2, w(|d2|)). We first analyze w(|d2|). Since
|d2|2 is increasing in |d2| and |d1|2 + |d2|2 − 2|d1||d2| cosψ is a quadratic function of |d2| on (0, d2,max],
the maximum value of w(|d2|) appears at either the interval boundary or at the intersection of the two
curves. These cases are illustrated in Fig. 3. For cases (a) and (b), the optimal |d2| is simply d2,max. For
case (c), the optimal |d2| can easily be found by solving the equation |d1|2 + |d2|2−2|d1||d2| cosψ = |d2|2
for |d2|, which immediately gives |d2| = |d1|/(2 cosψ). Two possible candidates for optimal |d2| are then
obtained. We note that the method of finding |d2| in the latter case does not take the domain of |d2| into
account so that we have to check whether or not the obtained |d2| is on (0, d2,max]. If not, then this case
degenerates to the former one and we have |d2| = d2,max. With the two candidates for the optimal |d2|,
the function min(|d1|2, w(|d2|)) can be rewritten as

min

(
|d1|2,

|d1|2
(2 cosψ)2

, |d1|2 + d2
2,max − 2|d1|d2,max cosψ, d2

2,max

)
. (27)

In (27), it is observed that the first three terms are increasing in |d1| and the fourth term is a constant so
that we choose |d1| = d1,max to maximize the minimum value. Consequently, two possibly optimal pairs
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(|d1|, |d2|) are formed. Moreover, to provide conditions for identifying the optimal pair, it suffices to find
the case where the maximum value of (27) is achieved by |d1| = d1,max and |d2| = d1,max/(2 cosψ). As
illustrated in Fig. 3(c), finding the condition is straightforward. The intersection is located between the
boundary values of the two curves at |d2| = d2,max, i.e.,

d2
1,max + d2

2,max − 2d1,maxd2,max cosψ ≤
(
d1,max

2 cosψ

)2

≤ d2
2,max.

Combining the above observations, the lemma follows.

We are now ready to derive the optimized constellations for the case γφ > 0 and (p00+p11) ≥ (p01+p10).
By the choice |d1| = d1,max, S1 is the same as in (16). For sender 2, if the best choice of |d2| is d2,max,
then by Lemma 1 the optimized constellation S2 is given by

S20 = −
√

(1− p2)E2

p2

eiη and S21 =

√
p2E2

1− p2

eiη

with η = ψ. In contrast, if the best choice of |d2| is d1,max/(2 cos θ), the optimized constellation of sender
2 can be obtained by solving the equation |S21 − S20| = |d2| under the average energy constraint. After
some algebra, the optimized constellation is found to be

S20 = S21 − |d2|eiψ

and
S21 =

(
p2|d2| ±

√
p2(p2 − 1)|d2|2 + E2

)
eiψ

where both choices of S21 result in optimized signals. The results for the general cases are summarized in
the following theorem. We remark that the above derivations rely on the assumption that d2,max ≤ d1,max.
There is no loss of generality because for d2,max > d1,max we only need to swap the roles of senders 1
and 2 in Lemma 9 and the main theorem. The proofs are almost identical as before.

Theorem 10. Suppose that d2,max ≤ d1,max. For given γφ = cos θ with θ ∈ (0, π), the optimized
constellation for sender 1 is the same as the one given by (16) in Theorem 4. For sender 2, the optimized
constellation is given by

S20 = S21 − |d2|eiψ

and
S21 =

(
p2|d2| ±

√
p2(p2 − 1)|d2|2 + E2

)
eiψ

where the value of ψ for the cases p00 + p11 ≥ p10 + p01 and p00 + p11 < p10 + p01 is respectively θ and
θ + π and |d2| = d1,max/|2 cosψ| if d2

1,max + d2
2,max − 2d1,maxd2,max| cosψ| ≤ (d1,max/|2 cosψ|)2 ≤ d2

2,max,
and |d2| = d2,max otherwise.

Proof of Theorem 10. For the case γφ > 0 and (p00 + p11) ≥ (p01 + p10), the optimized constellations
have been derived above. The same procedure can be applied to other cases. To shorten the proof, we
only point out some key points when applying the same procedure to other cases. Taking the case that
γφ > 0 and (p00 + p11) < (p01 + p10) as an example, here, ψ should set to be θ+ π to minimize (24). By
this choice of ψ and (25), we should maximize

min(|d1|2, |d2|2, |d1|2 + |d1|2 + 2|d1||d2| cosψ).

By defining ψ̄ = ψ − π, we can rewrite cosψ as − cos ψ̄ and obtain an expression identical to (26).
From that expression, based on our previous argument, the optimal pair (|d1|, |d2|) and the optimized
constellations can be easily obtained. Extending to the case of γφ < 0 is straightforward and hence we
omit the details.



15

TABLE II: The BPAM constellations for sources with p
UV,Case1

, where γφ = 1, E1 = E2 = 1, and SNR
= 18dB.

[S10, S11] [S20, S21] [A00, A01, A10, A11]

Conventional Antipodal BPAM [−1, 1] [−1, 1] [−2, 0, 0, 2]

Individually Optimized BPAM [−3, 1/3] [−3, 1/3] [−6,−8/3,−8/3, 2/3]

Jointly Optimized BPAM [−3, 1/3] [−2.421,−0.678] [−5.421,−3.678,−2.088,−0.345]

Numerically Optimized BPAM [−3, 1/3] [−2.401,−0.686] [−5.401,−3.686,−2.068,−0.353]

TABLE III: The BPAM constellations for sources with p
UV,Case2

, where γφ = 1, E1 = E2 = 1, and SNR
= 18dB.

[S10, S11] [S20, S21] [A00, A01, A10, A11]

Conventional Antipodal BPAM [−1, 1] [−1, 1] [−2, 0, 0, 2]

Individually Optimized BPAM [−2, 0.5] [−1, 1] [−3,−1,−0.5, 1.5]

Jointly Optimized BPAM [−2, 0.5] [−1.408,−0.131] [−3.408,−2.131,−0.908, 0.369]

Numerically Optimized BPAM [−2, 0.5] [−1.406,−0.151] [−3.406,−2.151,−0.906, 0.349]

We close this section with some observations.

Observation 1: The optimized constellation for γφ = ±1 can possibly be constructed using (15) in-
stead of (14). For example, letting θ = 0 in Theorem 10, we observe that the optimized constellation
based on (15) is identical to that given in Theorem 4 for high SNRs. This result is expected because
lim
σ2→0

Perr(S1,S2, σ
2)/P

(UB)
err (S1,S2, σ

2) = 1. However, since the error rate approximation 1− P̃c(S1,S2, σ
2)

is tighter than P
(UB)
err (S1,S2, σ

2) at high SNR, the optimized constellation given in Theorem 4 is better
than that obtained from Theorem 10.

Observation 2: Unlike the 4-PAM constellation designed for single sender AWGN channels with a non-
uniformly distributed source, the signal points at the boundary position of the combined constellation
may not have the highest probability. This is because the optimized constellation is not only designed to
combat channel noise but also to mitigate user interference.

Observation 3: When the two sources U and V are uniformly distributed, the optimal combined constel-
lation for γφ = 1 depends on the SNR and their signals are not equally spaced. This is related to the
fact that the conventional uniform 4-PAM constellation for single sender AWGN channels is not optimal
under the average energy constraint [29]. However, when the SNR increases, the combined constellation
signals become equally spaced.

Observation 4: When E1 = E2 and the marginal probability distributions of the sources are very biased
(p1 � p2), the jointly optimized constellations are identical to the individually optimized constellations.
This indicates that if S10 and S11 are separated by a large distance, the interference from sender 2 becomes
negligible. For example, suppose that S10 and S11 can be separated by d1,max and d2,max � d1,max. In
this case, the system’s error rate is expected to be dominated by the distance |d2| between the two signal
points of sender 2. Hence, S20 and S21 should be separated by the largest possible distance |d2| = d2,max

to lower the error rate, which results in the same constellation optimized only for p2.

IV. SIMULATION RESULTS

In this section, we evaluate the effectiveness of our constellation designs via simulations. We let E1 =
E2 = 1, and the SNR is defined as (E1 + E2)/N0 = 2/N0, where N0 = σ2 if γφ = ±1 and N0 = 2σ2

otherwise. For performance comparison, the conventional antipodal BPAM is considered. For γφ = 1,
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these BPAM signals simply correspond to the signal points S10 = S20 = 1 and S11 = S21 = −1 on the
complex plane. The optimal constellation designed for a single sender AWGN channel with a non-uniform
binary source is also included [11]. As before, we call such a constellation individually optimized. The
decoding performance of numerically optimized constellations, i.e., constellations that minimize the exact
system error rate and are obtained by exhaustive search, is also provided as a reference

We only present simulation results for γφ 6= 0 because the constellation design for orthogonal transmis-
sion (γφ = 0) was tackled in [8]. The joint source distributions we consider are p

UV,Case1
, [p00, p01, p10, p11] =

[0.091, 0.009, 0.009, 0.891] with p1 = p2 = 0.1 and p
UV,Case2

= [0.18, 0.02, 0.32, 0.48] with p1 = 0.2 and
p2 = 0.5. Here, the first source distribution has a stronger correlation than the second. The individually
optimized constellations are simply generated by Lemma 1, while the jointly optimized constellations for
γφ = ±1 and γφ 6= 0,±1 are constructed using Theorems 4 and 10, respectively.

A. Results for γφ = ±1

We consider the case γφ = 1, which results in the strongest user interference. For the joint distribution
p
UV,Case1

, the signal points for various BPAMs at SNR = 18dB are listed in Table. II, and their decoding
performance is shown in Fig. 4. From the simulation results, the conventional antipodal BPAM is observed
to exhibit poor decoding performance. This is partly due to the fact that identical BPAM at both sender
introduces an ambiguity for the transmitted signals, i.e., A01 = A10 = 0 (recall that Auv = S1u+S2v). The
same is true for the individually optimized BPAM because of the identical marginal distributions. However,
since the individually optimized constellation achieves a larger average separation distance between the
combined signals, its decoding performance can be slightly better than the conventional BPAM. This
result indicates that not all non-bijective combined constellation are equally bad. In contrast, the jointly
optimized constellation derived from our analysis is shown to provide significant improvement. Compared
with the performance of the numerically optimized constellations, the difference is negligible.

For γφ = 1 and p
UV,Case2

, the constellations designed for SNR = 18dB are listed in Table III. As
already noted, using the conventional antipodal BPAM for γφ = 1 unavoidably leads to an ambiguity
for the transmitted signals and is also sub-optimal for non-uniform message sources. Nevertheless, due
to the distinct marginal distribution for U and V , the individually optimized BPAM now has different
constellations at the two transmitters, thereby resulting in some performance improvement. Our designed
constellation still significantly outperforms the individually optimized BPAM. The decoding performance
of our designed constellation and the numerically optimized constellation are also nearly identical.

B. Results for γφ /∈ {0, 1,−1}
We next present simulation results for γφ = 0.924, in which the user interference due the non-orthogonal

transmission is less harmful than in the previous examples. The error rate graphs corresponding to the
joint probability distributions p

UV,Case1
and p

UV,Case2
are plotted in Figs. 6 and 7, respectively. From the

simulation results, the conventional antipodal BPAM is found to be adequate because the ambiguity has
been resolved. However, due to the non-uniform distribution of the sources, the individually optimized
BPAM is still better than the conventional BPAM. Moreover, for both source distributions, our BPAM
designs provide nearly optimal performance in the high SNR region. We note from Figs. 6 and 7 that at
an error rate of 10−5, our joint designs achieve about a 1dB and 2dB SNR gain, respectively, over the
individually optimized design. The minor performance degradation observed in the low SNR region is in
fact the drawback of using the union bound in signal design.

C. Other Results
In Fig. 8, we depict the decoding performance under various correlation values between the senders’

basic pulse waveforms for the joint probability distribution p
UV,Case2

. The values γφ = 0, 0.383, 0.707, 0.924

and 1 correspond to the angles θ = π/2, 3π/8, π/4, π/8 and 0, respectively. As expected, the smaller γφ,
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the better the decoding performance of the conventional BPAM and individually optimized BPAM. We
observe that the orthogonal waveform transmission provides the best performance as intuitively expected.
Moreover, it is worth mentioning that our design for γφ = 1 is better than both the conventional and
individually optimized BPAM for γφ = 0.924 in the high SNR regime. This observation has practical
importance because if orthogonal waveform transmission is unavailable for resource-limited networks,
we may simply employ identical waveforms, i.e., γφ = 1, with our proposed constellations to achieve a
good decoding performance. This way, the receiver only needs one matched filter for processing received
signals.

Lastly, we present an example in which the two senders transmit their signals with different average
energy E1 = 2E2. Here, the case p

UV,Case1
and γφ = 1 is considered, and the simulation results are depicted

in Fig. 9. Clearly, due to the unequal energy allocation, the signal sets of both conventional antipodal
BPAM and the individually optimized BPAM for the two senders are distinct, thereby yielding a better
error rate performance than that of equal energy allocation (see Fig. 4). At an error rate of 10−5, the jointly
optimized constellation achieves about 3dB gain over the individually optimized design. Also, there is
about 1dB SNR gain from the unequal energy allocation for our design (compare Figs. 4 and 9). This
example demonstrates that combining the energy allocation scheme [10] with our design for two-sender
GMAC can further improve the decoding performance.

V. CONCLUSIONS

In this work, we investigated the design of optimized binary signaling schemes for sending correlated
binary sources over non-orthogonal GMAC. For a wide range of SNRs and correlated source distributions,
the error rate performance of the analytically derived signaling schemes was found to be quite close to
the optimal performance under joint MAP decoding. In our experiments, the SNR gain achieved by our
schemes is at least 2dB over the individually optimized design for an error rate of 10−5 and strong
interference. Future research directions include optimal energy allocation for different senders, nonbinary
signaling, signaling design for the GMAC with more than two senders, fading channels, and constellation
design for coded transmission.

APPENDIX

We consider the case D10,00 > 0, D01,00 > 0, and |D10,00| − |D01,00| > 0, and evaluate (9) explicitly.
For other cases, the same procedure applies. Recall that d1 = S11−S10 and d2 = S21−S20. Note that for
the considered case we have S10 < S11, S20 < S21, and S21−S20 < S11−S10. Based on these conditions,
each of the four events in (7) is investigated as follows. Define E1 , {∆00,10 < 0}, E2 , {∆00,01 < 0},
and E3 , {∆00,11 < 0}
Case 1. When (U, V ) = (0, 0), the ranges of N specified by E1, E2, and E3 are respectively given by

Re[N ] <
1

d1

·
[
σ2 ln

p00

p10

+
d2

1

2

]
, q11

Re[N ] <
1

d2

·
[
σ2 ln

p00

p01

+
d2

2

2

]
, q12

Re[N ] <
1

(d1 + d2)
·
[
σ2 ln

p00

p11

+
(d1 + d2)2

2

]
, q13,

Since Re[N ] is a zero mean Gaussian random variable with variance σ2, we then have

Pc,00 = Pr
(
Re[N ] < min(q11, q12, q13)

)
= Q

(−min(q11, q12, q13)

σ

)
.
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Case 2. When (U, V ) = (1, 0), the constraints on N specified by E1, E2, and E3 are respectively given by

Re[N ] >
−1

d1

·
[
σ2 ln

p10

p00

+
d2

1

2

]
, q21

Re[N ] <
1

d2

·
[
σ2 ln

p10

p11

+
d2

2

2

]
, q22

Re[N ] >
1

d2 − d1

·
[
σ2 ln

p10

p01

+
(d2 − d1)2

2

]
, q23.

According to the values of q21, q22, and q23, we have

Pc,10 =


Q
(
q21

σ

)
−Q

(
q22

σ

)
, if q23 < q21 < q22

Q
(
q23

σ

)
−Q

(
q22

σ

)
, if q21 < q23 < q22

0, otherwise.

Case 3. When (U, V ) = (0, 1), we obtain

Re[N ] >
−1

d2

·
[
σ2 ln

p01

p00

+
d2

2

2

]
, q31

Re[N ] <
1

d1

·
[
σ2 ln

p01

p11

+
d2

1

2

]
, q32

Re[N ] <
1

d1 − d2

·
[
σ2 ln

p01

p10

+
(d1 − d2)2

2

]
, q33.

Therefore,

Pc,01 =


Q
(
q31

σ

)
−Q

(
q33

σ

)
, if q31 < q33 < q32

Q
(
q31

σ

)
−Q

(
q32

σ

)
, if q31 < q32 < q33

0, otherwise.

Case 4. When (U, V ) = (1, 1), we have

Re[N ] >
−1

d1

·
[
σ2 ln

p11

p01

+
d2

1

2

]
, q41

Re[N ] >
−1

d2

·
[
σ2 ln

p11

p10

+
d2

2

2

]
, q42

Re[N ] >
−1

d1 + d2

·
[
σ2 ln

p11

p00

+
(d1 + d2)2

2

]
, q43.

Consequently, we have

Pc,11 = Pr
(
Re[N ] > max(q41, q42, q43)

)
= Q

(
max(q41, q42, q43)

σ

)
.

Using the above results, the decoding performance for one-dimensional combined constellation can be
obtained via (7).
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Fig. 4: The decoding performance of various BPAM for correlated sources with p
UV,Case1

, where γφ = 1
and E1 = E2.
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Fig. 5: The decoding performance of various BPAM for correlated sources with p
UV,Case2

, where γφ = 1
and E1 = E2.
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Fig. 6: The decoding performance of various BPAM for p
UV,Case1

, where γφ = 0.924 and E1 = E2.

SNR (dB)
4 6 8 10 12 14 16 18 20

S
y
m

b
o
l 
E

rr
o
r 

R
a
te

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Conventional Antipodal BPAM
Individually Optimized BPAM
Jointly Optimizd BPAM
Numerically Optimized BPAM
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UV,Case2

, where E1 = E2.

SNR (dB)
0 2 4 6 8 10 12 14 16 18

S
y
m

b
o

l 
E

rr
o

r 
R

a
te

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Conventional Antipodal BPAM
Individually Optimized BPAM
Jointly Optimized BPAM
Numerically Optimized BPAM
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