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Averages of exponential twists of the Liouville function
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Abstract. Let l�n� denote the Liouville function and consider the sum S�x; a� �P
nUx l�n�e2pina. We prove that for all a of irrational type 1 (that includes all algebraic irra-

tionalities) S�x; a� � O�x4=5�e� for any e > 0. The method is extended to study more general
sums of the form

P
nUx a�n�e2pina for a general class of arithmetical functions a�n�. The main

technique is the Vinogradov±Vaughan method of studying exponential sums.

2000 Mathematics Subject Classi®cation: 11L07; 11N36.

1 Introduction

PoÂlya suggested the following approach to the Riemann hypothesis. Let l�n� be the
Liouville function which is the completely multiplicative function de®ned as l�pa� �
�ÿ1�a for prime powers pa. Now consider the sum,

S�x� � P
nUx

l�n�:

PoÂlya [P] conjectured that S�x�U 0 for xV 2 and noted that if this conjecture is true,
then the Riemann hypothesis follows. Indeed, we have

Py
n�1

l�n�
ns
� z�2s�

z�s�

and by partial summation,

z�2s�
z�s� � s

�y
1

S�x�
xs�1

dx:
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Thus, by a well-known theorem of Landau (see for example, [EM, p. 132]), we
deduce that the left hand side converges for Re�s� > a where a is the ®rst real singu-
larity of z�2s�=z�s�. Since z�s� has no real zeros, we see that the ®rst real singularity
occurs at s � 1=2. Hence, z�2s�=z�s� converges for Re�s� > 1=2. Therefore, z�s�0 0
for Re�s� > 1=2.

In 1958, Haselgrove [H] disproved the PoÂ lya conjecture. The smallest counter-example
is x � 906,150,257 for which S�x� � 1. Lehman [L] later found S�906,400,000� �
708. It can be shown that there are in®nitely many counter-examples. (See for ex-
ample, Anderson-Stark [AS].)

There is good reason to resurrect PoÂ lya's approach. In fact, in [Mu] an elliptic ana-
logue of the PoÂ lya conjecture is proposed and some heuristic and numerical evidence
are presented that predict its truth in the case of curves whose Mordell-Weil rank is at
least 4.

Indeed, if E is an elliptic curve over Q of Mordell-Weil rank at least 4 and LE�s� �Py
n�1 an=ns is the L-series of the elliptic curve, then the Riemann hypothesis and the

Birch and Swinnerton-Dyer conjectures suggest thatP
nUx

anl�n�V 0

for su½ciently large x. This conjecture is studied in greater detail in [Mu]. In this
paper, we focus on S�x� and its ``exponential twists'' (de®ned below).

Suppose now that we consider the hypothesis that for some y < 1,

�1� S�x� � O�xy�:

Then, the above argument easily yields that z�s�0 0 for Re�s� > y, which we refer to
as a quasi-Riemann hypothesis. In fact, the Riemann hypothesis is equivalent to the
assertion that (1) holds for every y > 1=2.

If instead of averages of the Liouville function, we consider the sum

S x;
a

q

� �
:� P

nUx

l�n�e�na=q�

where e�t� � e2pit, then the estimate

�2� S x;
a

q

� �
� O�xy�

is equivalent to the statement that the Dirichlet L-functions, L�s; w� where w is any
primitive character mod q, has no zeros in the half-plane Re�s� > y. To see this, note
that using Gauss sums, we may write
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S�x; w� :� P
nUx

l�n�w�n� � 1

t�w�
P

a mod q

w�a�S x;
a

q

� �

from which we see that the Dirichlet series

Py
n�1

l�n�w�n�
ns

converges for Re�s� > y. Since,

L�2s; w�
L�s; w� � s

�y
1

S�x; w�
xs�1

dx

we deduce that L�s; w� has no zeros for Re�s� > y.

Motivated by these considerations, it seems natural to consider the exponential sum:

S�x; a� :� P
nUx

l�n�e�na�

for any real a. The estimates we obtain for such sums depend on the type of a. Let
us recall this notion (see [KN, p. 121¨ ] for more details). Let c be a non-decreasing
positive function that is de®ned at least for all positive integers. The irrational number
a is said to be of type < c if qkqakV 1=c�q� holds for all positive integers q. If c is a
constant function, then an irrational a of type < c is also called of constant type. Let
h be a positive real number or in®nity. The irrational number a is said to be of type h
if h is the supremum of all g for which

lim inf
q!y

qgkqak � 0

where q runs through the positive integers.

The relationship between these two de®nitions is that an irrational number a is of
type h if and only if for every t > h there is a constant c � c�t; a� such that a is of
type < c where c�q� � cqtÿ1. (See [KN, p. 121])

A celebrated theorem of Khintchine (see for example [La, p. 23]) states that if C�q� is
a positive function such that

Py
q�1

C�q�

converges, then for almost all a,

kqakgC�q�
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for all q su½ciently large. If

Py
q�1

C�q�

diverges, then for almost all a, there exist in®nitely many q such that

kqakUC�q�:

Therefore, almost all numbers are of type 1. By virtue of Roth's theorem, we know
that all algebraic irrationalities a satisfy

aÿ p

q

���� ����g 1

q2�e
:

Hence all algebraic irrationalities are of type 1.

Our goal in this paper is to prove:

Theorem 1. For all a of type 1 (which necessarily includes all algebraic irrationalities),

we have

S�x; a� � O�x4=5�e�

for any e > 0.

Observe that by Parseval's formula, we have

�1

0

jS�x; a�j2 da � x�O�1�

so that it is reasonable to expect that for any e > 0, S�x; a� � O�x1=2�e� for almost all
a. Indeed, if we let

E�x; d� � fa : jS�x; a�j > x1=2�dg

then E�x; d� is measurable and Parseval's formula gives that its measure cannot
exceed xÿ2d.

As pointed out to us by J. OesterleÂ, one can use Carleson's theorem [C] to deduce
more. Recall that the celebrated theorem of Carleson says that if

Py
k�0

jckj2 <y
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then the Fourier series

Py
k�0

cke�ky�

converges for almost all y A R. If
Py

k�0 bk is convergent, and f �n� is an increasing
function, then by partial summation, it is easily seen thatP

kUn

bk f �k� � o� f �n��

as n!y. Indeed, given e > 0, choose n0 such that jPn
k�m bkjU e for nVmV n0.

Then,

Pn
k�n0

bk f �k� � A�n� f �n� ÿ Pnÿ1

k�n0

A�k�� f �k � 1� ÿ f �k��

where A�k� �Pk
j�n0

bj. The right hand side is clearlyfef �n� from which the result is
immediate. Now if ak is a sequence of complex numbers of absolute value 1, and
Sn�x� �

Pn
k�0 ake�x�, then setting f �x� � x1=2�e, then

Py
k�1

1=j f �k�j2 <y

so that by Carleson's theorem,

Py
k�1

ak

f �k� e�ky�

converges almost everywhere. Thus, the partial sums satisfyP
kUx

ake�ky�fO�x1=2�e�

for almost all y. It is clear that this result holds for ak � O�k e� as well. Of course,
Carleson's theorem gives us no idea to which y the result applies.

The above argument can be re®ned in the obvious way. In fact, we can take f �x� �
x1=2�log x�1=2�e to deduce

P
kUx

ake�ky� � O�x1=2�log x�1=2�e�

for almost all y whenever

Py
k�1

jakj2
j f �k�j2 <y:
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It seems that Davenport [D] was the ®rst to consider the sums S�x; a� and the cognate
sums:

M�x; a� :� P
nUx

m�n�e�na�

where m denotes the MoÈbius function. Davenport proves that for every a, M�x; a� �
O�x=�log x�A� for any A > 0 uniformly in a. At the end of his paper, he remarks that
a similar treatment works for S�x; a�. See also the related paper of Bateman and
Chowla [BC].

In a paper of Hajela and Smith [HS], they also investigate the sum M�x; a� and
obtain various improvements of the results of Davenport. For instance, they show
that M�x; a� � O�x exp�ÿc�log x�1=2�� for some su½ciently small c > 0 under the
assumption that none of the L�s; w� have Siegel zeros. If the generalised Riemann
hypothesis holds, they prove that M�x; a� � O�x5=6�e�. Baker and Harman [BH] im-
proved the Hajela-Smith exponent of 5=6 to 3=4 under the same hypothesis. We will
show below (see Corollary 4) that M�x; a� � O�x4=5�e� for all a of type 1.

Our main tool is Vaughan's method which we outline in section 2. It is applicable, in
a wider context. In fact, in the ®nal section of the paper, we show that one can expect
an estimate of the type

P
nUx

c�n�e�na�f xc

for all a of type 1 and c < 1 for a wide class of functions c�n� satisfying the estimate
c�n� � O�ne�. More precisely:

Theorem 2. Suppose that for two functions a and b satisfying a�n� � O�ne� and b�n� �
O�ne�, there exist y < 1 and f < 1 respectively such that for all a of type 1,

�3� P
nUx

a�n�e�na�f xy min 1;
1

kak
� �

�4� P
nUx

b�n�e�na�f x f min 1;
1

kak
� �

where kak denotes the distance of a to the nearest integer. Then, there is a c < 1 such

that

P
nUx

c�n�e�na�f xc min 1;
1

kak
� �

where c�n� is de®ned by the recursion
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a�n� �P
djn

b�d�c�n=d�:

This result has an interesting algebraic interpretation. If we consider the set of
Dirichlet series

Py
n�1 a�n�=ns satisfying (3), with a�1�0 0, then the collection is an

abelian group under multiplication of Dirichlet series.

In the special case B�s� � z�s�, one can derive more precise results:

Theorem 3. Let
Py

n�1 c�n�=ns � A�s�=z�s� where A�s� �Py
n�1 a�n�=ns. Suppose that

(3) is satis®ed. Then, for all a of type 1,P
nUx

c�n�e�na�f x4=5�e � x�2�3y�=5�e:

Let us observe that in Theorem 3, the x4=5�e dominates whenever y < 2=3.

One cannot expect the result in Theorem 3 to hold for all a. Indeed, if a � a=q is
a rational number with �a; q� � 1, then, in the special case A�s� � ÿz 0�s�, we have

P
nUx

L�n�e n
a

q

� �
@

m�q�
f�q� x

as x!y. A similar remark applies to Theorem 2. One does not, however, expect
this phenomenon to persist for the exponential twists of the Liouville function or the
MoÈbius function.

Corollary 4. For all a of type 1,P
nUx

m�n�e�na�f x4=5�e:

The following corollary is of course implicit in [D, p. 143].

Corollary 5. Let L�n� denote the usual von Mangoldt function. Then, for all a of type 1,P
nUx

L�n�e�na�f x4=5�e:

If A�s� � zK�s�, the Dedekind zeta function of a number ®eld K, then Chan-
drasekharan and Narasimhan [CN] have shown thatP

nUx

a�n�e�na�f xy

for some y < 1 whenever K is a quadratic extension of Q. This leads us to the
following application:

Averages of twists of the Liouville function 279



Corollary 6. If a�n� denotes the number of integral ideals of norm n in a quadratic ®eld

K, and

c�n� �P
djn

m�d�a�n=d�;

then for all a of type 1,P
nUx

c�n�e�na�f xc

with c < 1.

The interest in Corollary 6 is that it is expected to be true for any ®eld K. In fact, it
is related to a classical conjecture of Dedekind which predicts that

Py
n�1 c�n�=ns

extends to an entire function if c�n� is de®ned as above and a�n� is the number of
integral ideals of norm n in the ®eld K. The Riemann hypothesis for Dedekind zeta
functions would imply that

P
nUx c�n� � O�x1=2�e�. However, this is not known. In

fact, it is not even known if the above sum is O�xy� for some y < 1 for a general
number ®eld K.

There seem to be two results in the literature aiming to treat general sums of the form
(3). The ®rst is a paper of Daboussi and Delange [DD] which shows thatP

nUx

f �n�e�na� � o�x�

as x!y for a irrational and f multiplicative satisfyingP
nUx

j f �n�j2 � O�x�:

See also the related work of Goubin [G] and Delange [De]. The second result is due
to Montgomery and Vaughan [MV] where they show that for almost all a including
algebraic irrationalities,

P
nUx

f �n�e�na�f x

log x

for any multiplicative function f satisfying j f �n�jU 1. Theorem 2 can be seen as a
variation of this theme and an extension of the result of Montgomery and Vaughan
[MV].

There are several other sporadic results for special arithmetical functions, scattered in
the literature. We will cite a few exemplary ones. For instance, Chowla [Ch] proved
that for all irrational a,P

nUx

d�n�e�na� � o�x log x�
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as x!y, where d�n� denotes the number of divisors of n. ErdoÈs [E] proved thatP
nUx

d�n�e�na� � O�x1=2 log x�

for almost all a. Our remarks concerning the application of Carleson's theorem would
give (using a standard Tauberian argument to derive the necessary asymptotics)P

nUx

d�n�e�na� � O�x1=2�log x�2�e�

for almost all a which is only slightly weaker than the result of ErdoÈs. In the same
paper, ErdoÈs [E] proves that if r�n� denotes the number of ways of writing n as a sum
of two squares, thenP

nUx

r�n�e�na� � O�x1=2 log x�

for almost all a. Here, however, our remarks give an improvement. Indeed, by
applying Carleson's theorem as indicated above, we getP

nUx

r�n�e�na� � O�x1=2�log x�1=2�e�

for almost all a using standard results in analytic number theory. We leave the details
as an exercise to the reader.

Acknowledgements. The ®rst author would like to thank the Tata Institute of
Fundamental Research for its hospitality during his visit there in January 1999 at
which time this work was done. Both authors would like to thank J. OesterleÂ for his
comments on a preliminary version of this paper as well as Michael Reid for doing
some calculations related to S�x�.

2 Vaughan's method

We begin with a description of Vaughan's method which has its roots in earlier work
of I. M. Vinogradov on the Goldbach conjecture. This is exposed for example in [D].
For any A;B0 0 and F ;G, we have the formal identity:

A

B
� �1ÿ BG�A

B
� AG

� �1ÿ BG� F � A

B
ÿ F

� �� �
� AG

� F ÿ BGF � AG � A

B
ÿ F

� �
�1ÿ BG�:
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Now let

A�s� � Py
n�1

a�n�
ns

B�s� � Py
n�1

b�n�
ns

A�s�
B�s� �

Py
n�1

c�n�
ns

1

B�s� �
Py
n�1

~b�n�
ns

F�s� � P
nUU

c�n�
ns

G�s� � P
nUV

~b�n�
ns

be de®ned for s � Re�s�V s0. Here U and V are arbitrary parameters to be chosen
later satisfying U ;V V 1.

Lemma 1. We have

c�n� � a1�n� � a2�n� � a3�n� � a4�n�
where

a1�n� � c�n� for nUU

0 otherwise

�
a2�n� � ÿ

P
der�n

eUV; rUU

b�d�~b�e�c�r�

a3�n� �
P

de�n
eUV

a�d�~b�e�

a4�n� � ÿ
 P

de�n
d>U ; e>V

c�d�
 P

tr�e
rUV

b�t�~b�r�
!!

Proof. This follows easily from the formal identity indicated above and we refer the
reader to Davenport [Da, p. 139] for details.

Lemma 2. We have

l�n� � a1�n� � a2�n� � a3�n� � a4�n�
where

a1�n� � l�n� if nUU

0 otherwise

�
a2�n� � ÿ

P
der�n

eUV; rUU

m�e�l�r�
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a3�n� �
P

d 2e�n
eUV

m�e�

a4�n� � ÿ
P

de�n
d>U ; e>V

l�d�
 P

tr�e
rUV

m�r�
!
:

Proof. The proof is immediate from Lemma 1 upon taking A�s� � z�2s�, B�s� � z�s�,
F �s� �PnUU l�n�=ns, G�s� �PnUV m�n�=ns and noticing that ~b�n� � m�n�, b�n� �
1, c�n� � l�n� and a�n� � 1 if n is a square and zero otherwise.

3 Estimates for exponential subsums

We denote by kuk the distance of u from the nearest integer. Let

Si�x� �
P

nUx

ai�n�e�na�

where ai�n� for i � 1; 2; 3; 4 are the functions de®ned in Lemma 2.

ErdoÈs [E] proved that for almost all a

Pn
m�1

1

mkmak � �1� o�1�� log2 n:

By partial summation, we deduce that for almost all a,

Pn
m�1

1

kmak f n�log n�3:

If we know the type of a, more precise results can be obtained as the following lemma
shows.

Lemma 3. Let a be of type < c. Then,

Pn
m�1

1

mkmak fc�2n� log n� Pn
m�1

c�2n� log n

n
:

In particular, if a is of constant type, then the sum is O�log2 n�. If a is of type h, then the

sum above is O�nhÿ1�e�. Also,

Pn
m�1

1

kmak � O�n1�e�

for a of type 1.
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Proof. See Lemma 3.3 in [KN, p. 123]. The last assertion follows from partial
summation of the estimate for the previous sum.

We now begin our estimation of the sums Si�x� for i � 1; 2; 3; 4.

Lemma 4. We have

jS1�x�jUU :

Proof. This is clear.

Lemma 5. For all a of type 1, we have

S2�x�f �UV�1�e

for any e > 0.

Proof. We have

S2�x� � ÿ
P

nUx

 P
der�n

eUV; rUU

m�e�l�r�
!

e�dera�

� ÿ P
tUUV

P
er�t

eUV; rUU

m�e�l�r� P
dUx=t

e�dta�:

Observe that the inner sum is a geometric series, so that���� P
dUx=t

e�dta�
���� � 1ÿ e�xa�

1ÿ e�ta�
���� ����f 1

ktak :

Thus, by Lemma 3, we obtain

S2�x�f
P

tUUV

d�t�ktakÿ1 f �UV�1�e

for all a of type 1, which completes the proof of the Lemma.

Lemma 6. For all a of type 1, we have

S3�x�f x1=4V 3=4�log x�2:

Proof. For any real a and b, let

J � Pt

m�1

e�am2 � bm�:
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Then, (see for example, [ECT, p. 99]), we have

jJj2 U t� 2
Ptÿ1

j�1

min�t; jcosec�2pa j�j�

U t� 2
Ptÿ1

j�1

k jakÿ1

f t1�e

for all a of type 1, by Lemma 3. Thus,

S3�x� �
P

nUx

 P
d 2e�n
eUV

m�e�
!

e�d 2ea�

� P
eUV

m�e� P
dU

�����
x=e
p e�d 2ea�:

By the penultimate estimate, we deduce that

S3�x�f
P

eUV

x1=4log2x

e1=4
f x1=4V 3=4�log x�2;

for all a of type 1. This completes the proof of the lemma.

Lemma 7. For all a of type 1, we have

S4�x�f x1�e�Uÿ1=2 � Vÿ1=2�:

Proof. We have

S4�x� � ÿ
P

de�nU x
d>U ; e>V

l�d� f1�e;V�e�dea�

where

j f1�e;V�j �
���� Ptr�e

rUV

m�r�
����U d2�e�;

the number of divisors of e. Let

J1 �
P

W<d<2W
e>V ;deUx

l�d� f1�e;V�e�dea�;
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where W VU . By Cauchy-Schwarz inequality, we obtain

jJ1jU
 P

W<d<2W
dUx=V

l�d�2
!1=2 P

W<d<2W
dUx=V

�����
P

e>V ;
e<x=d; e<x=W

f1�e;V�e�dea�
�����

2!1=2

which we ®nd easily to be

�5� fW 1=2
 P

W<d<2W ;
dUx=V

P
V<e1<x=d;x=W
V<e2<x=d;x=W

f1�e1;V� f1�e2;V�e��e1 ÿ e2� da�
!1=2

:

The sum corresponding to e1 � e2 contributes a quantity to the right hand side which
does not exceed in absolute value

W 1=2
 P

W<d<2W
dUx=V

P
V<e<x=d;x=W

d4�e�
!1=2

where d4�e� denotes the number of 4-tuples of positive integers whose product is e. By
a well-known estimate [ECT, p. 313], this is easily seen to be

fW 1=2 x2

VW
log3 x

W

� �1=2

f
x�log x�3=2����

V
p :

For e1 0 e2; and ®xed j, the equation e1 ÿ e2 � j determines a unique solution e2 for
every ®xed e1. Hence the sum corresponding to e1 0 e2 contributes a quantity to the
right hand side of (5) which does not exceed in absolute value

W 1=2x e P
jUx=W

j

k jak

 !1=2

which is, by Lemma 3, bounded by

x1�2e=
������
W
p

for all a of type 1. Combining all the estimates, we obtain

jJ1jf x����
V
p �log x�3=2 � x1�2e������

W
p :

Now we take W � 2 tU ; where t � 0; 1; 2; . . . �log2�x=UV�� which runs over O�log x�
intervals so that the result follows from the above estimate.
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4 Proof of Theorem 1

From Lemmas 3 to 6, we see that

S�x; a�fU � �UV�1�e � x1=4�eV 3=4 � x
1�����
U
p � 1����

V
p

� �
x e;

for all a of type 1. We choose U � V � x2=5 to obtain a ®nal estimate of x4=5�e as
desired.

5 Proof of Theorem 2

The method used above to treat the sumP
nUx

l�n�e�na�

can also be used to treat more general sums.

As before, let us set,

A�s� � Py
n�1

a�n�
ns

B�s� � Py
n�1

b�n�
ns

A�s�
B�s� �

Py
n�1

c�n�
ns

1

B�s� �
Py
n�1

~b�n�
ns

F�s� � P
nUU

c�n�
ns

G�s� � Py
n�1

~b�n�
ns

:

We assume that a�n�; b�n�; ~b�n� satisfy an estimate of the type O�n e� for any e > 0.
We suppose that for all a of type 1,

�6� P
nUx

a�n�e�na�f xy min 1;
1

kak
� �

for some y < 1 and

�7� P
nUx

b�n�e�na�f x f min 1;
1

kak
� �

for some 0U f < 1. Then, there is a c < 1 such that

T�x� :� P
nUx

c�n�e�na�f xc min 1;
1

kak
� �

Averages of twists of the Liouville function 287



for all a of type 1. We will only give a brief indication of the proof since it follows the
line of thought similar to the proof of Theorem 1. We have by Lemma 1,

c�n� � a1�n� � a2�n� � a3�n� � a4�n�

and the corresponding sums

Si�x� �
P

nUx

ai�n�e�na�:

Clearly, jS1jUU 1�e. Also,

S2�x� � ÿ
P

tUUV

P
er�t

eUU ; rUV

c�e�~b�r�
 ! P

dUx=t

b�d�e�dta�;

which by (7) gives

S2�x�f x f�UV�1ÿf�e:

For S3�x�, we have by (6),

S3�x� � ÿ
P

eUV

~b�e� P
dUx=e

a�d�e�da�f xyV 1ÿy�e:

Finally,

S4�x� �
P

de�nUx
d>U ; e>V

c�d� f �e;V�e�dea�

where

f �e;V� � P
tr�e
rUV

b�t�~b�r�:

As before, we break this sum into dyadic intervals:

J2 �
P

W<d<2W
e>V ;deUx

c�d� f �e;V�e�dea�

so by Cauchy-Schwarz, we get

jJ2jUW 1=2�e
 P

W<d<2W
d<x=V

�����
P

e>V
e<x=d;x=W

f �e;V�e�dea�
�����

2!1=2
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which we ®nd satis®es

jJ2jfW 1=2�e
 P

W<d<2W
dUx=V

P
V<e1<x=d;x=W
V<e2<x=d;x=W

f �e1;V� f �e2;V�e��e1 ÿ e2� da�
!1=2

:

The sum corresponding to e1 � e2 gives a contribution

W 1=2�e
P

W<d<2W
dUx=V

�x=W�1�2e
 !1=2

f x1�eVÿ1=2:

For e1 0 e2, the contribution is x1�eWÿ1=2 as before. Combining these estimates
gives

T�x�fU 1�e � x f�UV�1ÿf�e � xyV 1ÿy�e � x1�e�Uÿ1=2 � Vÿ1=2�:

We choose U � V to get

�8� T�x�f x fV 2ÿ2f�e � xyV 1ÿy�e � x1�eVÿ1=2 � V 1�e:

Since y; f < 1, we see that for V � xd for some su½ciently small d, we get the desired
result.

6 Proof of Theorem 3

In (8), we set f � 0 since

P
nUx

e�na�fmin 1;
1

kak
� �

:

The corresponding T�x� is

fV 2�e � xyV 1ÿy�e � Vÿ1=2x1�e:

Now set V 2�e � Vÿ1=2x1�e so that V 5=2�e � x1�e. This gives the stated estimate.

One can derive a slightly more precise result by making the following observation.
From inequality (8), we have

T�x�f x fV 2ÿ2f�2e � xyV 1ÿy�e � x1�eVÿ1=2 � V 1�e:

We choose V such that xyV 1ÿy � xVÿ1=2 so that V � x2�1ÿy�=�3ÿ2y�. Hence,

T�x�f xf�4�1ÿy��1ÿf�=�3ÿ2y��2e � xy�2�1ÿy�2=�3ÿ2y��2e:
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Note that if y > 1=2, then

f� 4�1ÿ y��1ÿ f�
3ÿ 2y

< 1

and

y� 2�1ÿ y�2
3ÿ 2y

< 1:

So we can take in this case, any c satisfying

c > max f� 4�1ÿ y��1ÿ f�
3ÿ 2y

; y� 2�1ÿ y�2
3ÿ 2y

( )
:

In the case 2f < y < 1, we choose V such that

x fV 2ÿ2f � xyV 1ÿy

which allows us to take any c satisfying the inequality

c > max f� 2�1ÿ f��yÿ f�
1� yÿ 2f

; 1ÿ yÿ f

2�1� yÿ 2f�
� �

7 Proofs of the corollaries

To deduce Corollary 4, we let A�s� � 1, B�s� � z�s�. To deduce Corollary 5, we let
A�s� � ÿz 0�s� and B�s� � z�s�. We must estimateP

nUx

�log n�e�na�:

But this is easily done by partial summation:

P
nUx

�log n�e�na�f �log x�min 1;
1

kak
� �

:

Therefore, we can take y � e to deduce the result.
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