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A famous conjecture of E. Artin [1] states that for any integer a #+ + 1 or a perfect
square, there are infinitely many primes p for which a is a primitive root (mod p).
This conjecture was shown to be true if one assumes the generalized Riemann
hypothesis by Hooley [5]. The purpose of this note is to exhibit a finite set S such
that for some a €S, a is a primitive root (mod p) for an infinity of primes p.

To this end, let ¢, r and s denote three distinct primes. Define the following set:

g2 3,2 22,32 .2 23 3 3.2 .3 23 3 33
S={qs* @r*,q*r,r’s*, r*s,q* s>, qr*, ¢* rs*, rs®,¢*r*s, ¢*s, qr? s, qrs}.

Theorem. For some a€S, there is a & > 0 such that for at least 5 x/log? x primes
P < x, ais a primitive root (mod p).

Our theorem is proved in the following way. First we show that there are at least
ex/log? x primes p < x such that all odd prime divisors of (p — 1) exceed x**°. For
such primes, we prove that IF} = {qg,r, s> with at most o(x/log”x) exceptional
primes p < x. Hence, for at least cx/log? x primes p < x, IF} has a generator of the
form ¢*r”s* for some u, v, w. The final step is to show that we can find u, v, w
bounded by three. In fact, we can take a generator as in the set S above.

Lemma 1. Fix aprime q, and0 < ¢ < }. If o = % — ¢, there is a constant ¢ > 0 such

that card (p < x: (g) =—1L1t{(p—1), tprime=1=20r1>x") 2 10(;;)6.

Remark. Results of this nature are proved by using the lower bound sieve method
and are very classical. Indeed, the lower bound Selberg sieve, coupled with the
Bombieri-Vinogradov theorem on primes in arithmetic progressions yields the
result with an exponent of « = ¢ — ¢ instead of £ — . A beautiful exposition of this
can be found in Bombieri {2, p. 71-75]. The result with an exponent o = % — & can
be obtained from Theorem 1 of Iwaniec [7] by utilising the Bombieri-Vinogradov
theorem. A weighted form of the latter theorem was proved for an extended range
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of progressions beyond x*, by Fouvry and Iwaniec [3]. Utilising this finer result
n [6] yields Lemma 1 with an exponent « > 4. An « > 0 in Lemma 1 suffices to
yield a finite set in Theorem 1. The size of the set decreases with any increasing value
of o allowed by Lemma 1. We therefore assume Lemma 1 with o =  + ¢ to obtain
an “‘optimal” set S.
Now consider
r={q"r’s:a,b,ceZ}.

Let I', be the reduction of I' (mod p), for any prime p > max (g, r, ).

Lemma 2. The number of primes p satisfying

Tl <y

is O(y9).
Proof. We consider all triples (a, b, ¢) such that |a| + |b] + [c| £ Y. The number of
such triples is easily seen to be 2 ¥ + O (Y?2). Choosing Y = y*, we find thatif pisa
prime satisfying |I',| < y, then for at least two distinct such triples (a, b, ¢) and
(o, B,y) we have

g*rfs¥ = ¢°rb s (modp).
Hence, p divides the numerator of (g* *rf~%s'7¢ — 1). The number of primes
dividing the numeratoris < |a—a|+ |f—b| + |y —c| £ 2Y. If pis a prime such
that |I,| <y, then p divides the numerator of (¢“r*s” — 1) for some (u,v, w)
satisfying |u| + {v| + [w| £ 2Y. The number of such triples is

52 +0(Y?)

and each such triple gives rise to at most O (Y) prime factors of the numerator. The
total number of primes is therefore O (Y*) = O (y?), as desired.

Lemma 3. There is a 6 > 0 such that for at least dx|log* x primes p < x, we have
IF}=<q,r,5.

Proof. Let pbea prime < x such that p does not split in Q@ (}/q) and so that any odd
prime divisor of p — 1is > x**¢, By Lemma 1, the number of such primes p < x is
dx/log® x. For these primes, we count how often IF}¥ + {q,r, s) Let ¢ be a prime
dividing the index of {g,r,s> in IFy. Then = 2 or > xi+te If =2, then
2|(F}: {g>), but then g must be a quadratlc residue mod p, contrary to our choice
of p. Therefore, if ¢|(IF}: (q,r,5)) then ¢ > x*+2 Hence,

3
I<g, )| < x*7%

By Lemma 2, we find the number of such primes is O (x* ~¢). This estimate counts
the exceptional primes and we have the desired result.

Now suppose we are given a 3-tuple of non-negative integers u = (u,, u,, u;).
We shall write (q, 7, 5)* for g*1r*25%s.

Lemma 4. Suppose we have a set S of thirteen 3-tuples satisfying:
(i) u =% (0,0,0) (mod2)for any ueS§,
(i) for each ueS, there is at most one ' €S, w' + u with u = v’ (mod 2),
(iii) for each two dimensional subspace V of (Z/2Z)°, any three elements of
S, = {ueS: u % v(mod 2) for any v eV} are linearly independent.
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IfTFy ={q,r,s), then for some u S, (g, r, s)" is a primitive root (mod p) provided
that (p — 1) has at most three odd prime divisors, all sufficiently large.

Proof. Let g be a primitive root (modp) and let us write ¢ = g“, r = g%,
s = g3 (modp). Set a = (a,,a,,a;). Since ged(a,,a,,a;,p—1) =1, a is not the
zero vector mod 2. Therefore, the orthogonal complement V' of the subspace
of (Z/2Z)> generated by a has dimension two. Conditions (i) and (ii) imply that
ISyl 2 7. An element ueS, will correspond to a primitive root (g, r, s)* if and
only if ged{a-u,p —1) =1, where a-u = a,u, + a,u, + asu;. Suppose that none
of the odd divisors of p — 1 divides the determinant corresponding to any three
elements of §,. Then for each odd prime ¢|{(p — 1), at most two of the numbers
a-u, ueS, are divisible by t. Moreover, 24 a-u for any ueS,. Thus, for some
ugeSy, ged(a-uy,p—1) =1 and (g, r, s)"° is a primitive root (mod p).

Proof of the Theorem. In view of Lemmas 3 and 4, it suffices to write down a set §
satisfying the given conditions. Indeed,

§'=1{(1,0,2), (3,2,0); (2,1,0), (0, 3,2); (0,2, 1), (2,0, 3); (1, 3,0), 3, 1,2);
0,1,3),(2,3,1);(3,0,1), (1,2,3); (1,1, D} .

(The pairs between semi-colons are congruent modulo 2.) We need only verify
condition (iii) as (i) and (ii) are evident.
We consider two cases:

(a) u,, u,,u; €S, are incongruent (mod 2).

Ifv,,v,, v, are the reductions (mod 2) of u, , u,, u5, then {v,,v,, v;} is a basis of
(Z/2Z)*. This is because vy v, + v, as a-v; £ 0 (mod2), a'v, % 0 (mod2)
implies a-(v; +v,) = 0(mod2). Thus det[u,,u,,u;] is odd and wu,,u,,u; are
linearly independent.

(b) 4, = u, (mod?2). The cross product of u, and u, is a multiple of one of the six
vectors (2, —3, —1), (—1,2, —3), (=3,-1,2), (=3,1,4), (4, -3,1), (1,4, —3).
For each of these, the only vectors in S which are perpendicular are u, and u,. Thus
u,,u,,uy are linearly independent in this case as well.

This completes the proof.

Remark. The largest prime dividing any of the determinants is 19. To apply
Lemma 4, it suffices to have all the odd prime divisors of (p — 1} greater than 19.

One can show that the set of thirteen elements above is “‘optimal”. If u, ..., u;,
are 3-tuples of non-negative integers and (p — 1) has three distinct odd prime
factors, q,, ¢,, 45, then it is not hard to see that one can find a v, € (Z/22Z)3, v, + 0
such that at least six of the numbers u;- v, are = 0 (mod 2); say ;' v, = 0 (mod 2),
for 1 £i < 6. Then we can find a v(q,) €(Z/q,Z)*, v(q,) £ 0 (mod g,), with

u; v(qy) = ug-v(g,) = 0(mod q,)

and similarly ug-v(g,) =uy0°v(g2) =0 (modg,), usy v(gs) =u127v(g3) =0
(mod g,). By the Chinese remainder theorem, there is some a = (a,,a,,d;)€
(Z/(p —1)Z)* with a = v,(mod 2), a = v(g;) (mod g;). If g is a generator of IF¥,
then IF¥ ={g%, g%, g*> but none of the twelve numbers (g4, g=, g=)4,
1 £i< 12 is a primitive root (mod p).



130 R. Gupta and M.R. Murty

Finally, we remark that an analogous result can be established for the elliptic
curve analogue of the Artin conjecture as formulated by Lang and Trotter [8].
Indeed, in 4], it was shown that if E is an elliptic curve over @ with complex
multiplication by the full ring of integers in an imaginary quadratic field and rank
E(Q) = 6, then there is a finite set S of rational points such that for some a €S,
E(IF,) is generated by the reduction of a (mod p) for infinitely many primes p.
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