A remark on Artin's conjecture

Rajiv Gupta* and M. Ram Murty*ᄎ
${ }^{1}$ The Institute for Advanced Study, School of Mathematics, Princeton, N.J. 08540, USA
${ }^{2}$ Department of Mathematics, Mc Gill University, Montreal, Quebec, Canada

A famous conjecture of E . Artin [1] states that for any integer $a \neq \pm 1$ or a perfect square, there are infinitely many primes p for which a is a primitive root $(\bmod p)$. This conjecture was shown to be true if one assumes the generalized Riemann hypothesis by Hooley [5]. The purpose of this note is to exhibit a finite set S such that for some $a \in S, a$ is a primitive $\operatorname{root}(\bmod p)$ for an infinity of primes p.

To this end, let q, r and s denote three distinct primes. Define the following set:

$$
S=\left\{q s^{2}, q^{3} r^{2}, q^{2} r, r^{3} s^{2}, r^{2} s, q^{2} s^{3}, q r^{3}, q^{3} r s^{2}, r s^{3}, q^{2} r^{3} s, q^{3} s, q r^{2} s^{3}, q r s\right\}
$$

Theorem. For some $a \in S$, there is $a \delta>0$ such that for at least $\delta x / \log ^{2} x$ primes $p \leqq x, a$ is a primitive root $(\bmod p)$.

Our theorem is proved in the following way. First we show that there are at least $c x / \log ^{2} x$ primes $p \leqq x$ such that all odd prime divisors of $(p-1)$ exceed $x^{\frac{1}{4}+\varepsilon}$. For such primes, we prove that $\mathbb{F}_{p}^{*}=\langle q, r, s\rangle$ with at most $o\left(x / \log ^{2} x\right)$ exceptional primes $p \leqq x$. Hence, for at least $c x / \log ^{2} x$ primes $p \leqq x, \mathbb{F}_{p}^{*}$ has a generator of the form $q^{u} r^{v} s^{w}$ for some u, v, w. The final step is to show that we can find u, v, w bounded by three. In fact, we can take a generator as in the set S above.

Lemma 1. Fix a prime q, and $0<\varepsilon<\frac{1}{4}$. If $\alpha=\frac{1}{4}-\varepsilon$, there is a constant $c>0$ such that card $\left(p \leqq x:\left(\frac{q}{p}\right)=-1, t \mid(p-1)\right.$, t prime $\Rightarrow t=2$ or $\left.t>x^{\alpha}\right) \geqq \frac{c x}{\log ^{2} x}$.
Remark. Results of this nature are proved by using the lower bound sieve method and are very classical. Indeed, the lower bound Selberg sieve, coupled with the Bombieri-Vinogradov theorem on primes in arithmetic progressions yields the result with an exponent of $\alpha=\frac{1}{6}-\varepsilon$ instead of $\frac{1}{4}-\varepsilon$. A beautiful exposition of this can be found in Bombieri [2, p. 71-75]. The result with an exponent $\alpha=\frac{1}{4}-\varepsilon$ can be obtained from Theorem 1 of Iwaniec [7] by utilising the Bombieri-Vinogradov theorem. A weighted form of the latter theorem was proved for an extended range

[^0]of progressions beyond $x^{\frac{1}{2}}$, by Fouvry and Iwaniec [3]. Utilising this finer result in [6] yields Lemma 1 with an exponent $\alpha>\frac{1}{4}$. An $\alpha>0$ in Lemma 1 suffices to yield a finite set in Theorem 1. The size of the set decreases with any increasing value of α allowed by Lemma 1. We therefore assume Lemma 1 with $\alpha=\frac{1}{4}+\varepsilon$ to obtain an "optimal" set S.

Now consider

$$
\Gamma=\left\{q^{a} r^{b} s^{c}: a, b, c \in \mathbb{Z}\right\}
$$

Let Γ_{p} be the reduction of $\Gamma(\bmod p)$, for any prime $p>\max (q, r, s)$.
Lemma 2. The number of primes p satisfying

$$
\left|\Gamma_{p}\right|<y
$$

is $O\left(y^{\frac{4}{3}}\right)$.
Proof. We consider all triples (a, b, c) such that $|a|+|b|+|c| \leqq Y$. The number of such triples is easily seen to be $\frac{4}{3} Y^{3}+O\left(Y^{2}\right)$. Choosing $Y=y^{\frac{1}{3}}$, we find that if p is a prime satisfying $\left|\Gamma_{p}\right|<y$, then for at least two distinct such triples (a, b, c) and (α, β, γ) we have

$$
q^{\alpha} r^{\beta} s^{\eta} \equiv q^{a} r^{b} s^{c}(\bmod p)
$$

Hence, p divides the numerator of $\left(q^{\alpha-a} r^{\beta-b} s^{y-c}-1\right)$. The number of primes dividing the numerator is $<|\alpha-a|+|\beta-b|+|\gamma-c| \leqq 2 Y$. If p is a prime such that $\left|\Gamma_{p}\right|<y$, then p divides the numerator of $\left(q^{u} r^{v} s^{w}-1\right.$) for some (u, v, w) satisfying $|u|+|v|+|w| \leqq 2 Y$. The number of such triples is

$$
\frac{4}{3}(2 Y)^{3}+O\left(Y^{2}\right)
$$

and each such triple gives rise to at most $O(Y)$ prime factors of the numerator. The total number of primes is therefore $O\left(Y^{4}\right)=O\left(y^{\frac{4}{3}}\right)$, as desired.
Lemma 3. There is $a \delta>0$ such that for at least $\delta x / \log ^{2} x$ primes $p \leqq x$, we have $\mathbb{F}_{p}^{*}=\langle q, r, s\rangle$.
Proof. Let p be a prime $\leqq x$ such that p does not split in $\mathbb{Q}(\sqrt{q})$ and so that any odd prime divisor of $p-1$ is $>x^{\frac{1+\varepsilon}{4}}$. By Lemma 1 , the number of such primes $p<x$ is $\delta x / \log ^{2} x$. For these primes, we count how often $\mathbb{F}_{p}^{*} \neq\langle q, r, s\rangle$. Let t be a prime dividing the index of $\langle q, r, s\rangle$ in \mathbb{F}_{p}^{*}. Then $t=2$ or $\left.t\right\rangle x^{\frac{1}{4}+\varepsilon}$. If $t=2$, then $2 \mid\left(\mathbb{F}_{p}^{*}:\langle q\rangle\right)$, but then q must be a quadratic residue $\bmod p$, contrary to our choice of p. Therefore, if $t \mid\left(\mathbb{F}_{p}^{*}:\langle q, r, s\rangle\right)$ then $\left.t\right\rangle x^{\frac{1}{t}+\varepsilon}$. Hence,

$$
|\langle q, r, s\rangle|<x^{\frac{3}{4}-\varepsilon} .
$$

By Lemma 2, we find the number of such primes is $O\left(x^{1-\varepsilon}\right)$. This estimate counts the exceptional primes and we have the desired result.

Now suppose we are given a 3-tuple of non-negative integers $u=\left(u_{1}, u_{2}, u_{3}\right)$. We shall write $(q, r, s)^{u}$ for $q^{u_{1}} r^{u_{2}} s^{u_{3}}$.
Lemma 4. Suppose we have a set \tilde{S} of thirteen 3-tuples satisfying:
(i) $u \neq(0,0,0)(\bmod 2)$ for any $u \in \tilde{S}$,
(ii) for each $u \in \widetilde{S}$, there is at most one $u^{\prime} \in \tilde{S}, u^{\prime} \neq u$ with $u \equiv u^{\prime}(\bmod 2)$,
(iii) for each two dimensional subspace V of $(\mathbb{Z} / 2 \mathbb{Z})^{3}$, any three elements of $S_{V}=\{u \in \tilde{S}: u \neq v(\bmod 2)$ for any $v \in V\}$ are linearly independent.

If $\mathbb{F}_{p}^{*}=\langle q, r, s\rangle$, then for some $u \in \tilde{S},(q, r, s)^{u}$ is a primitive root $(\bmod p)$ provided that $(p-1)$ has at most three odd prime divisors, all sufficiently large.
Proof. Let g be a primitive root $(\bmod p)$ and let us write $q \equiv g^{a_{1}}, r \equiv g^{a_{2}}$, $s \equiv g^{a_{3}}(\bmod p)$. Set $a=\left(a_{1}, a_{2}, a_{3}\right)$. Since $\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}, p-1\right)=1, a$ is not the zero vector mod2. Therefore, the orthogonal complement V of the subspace of $(\mathbb{Z} / 2 \mathbb{Z})^{3}$ generated by a has dimension two. Conditions (i) and (ii) imply that $\left|S_{V}\right| \geqq 7$. An element $u \in S_{V}$ will correspond to a primitive root $(q, r, s)^{u}$ if and only if $\operatorname{gcd}(a \cdot u, p-1)=1$, where $a \cdot u=a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}$. Suppose that none of the odd divisors of $p-1$ divides the determinant corresponding to any three elements of S_{V}. Then for each odd prime $t \mid(p-1)$, at most two of the numbers $a \cdot u, u \in S_{V}$ are divisible by t. Moreover, $2 \nmid a \cdot u$ for any $u \in S_{V}$. Thus, for some $u_{0} \in S_{V}, \operatorname{gcd}\left(a \cdot u_{0}, p-1\right)=1$ and $(q, r, s)^{u_{0}}$ is a primitive root $(\bmod p)$.
Proof of the Theorem. In view of Lemmas 3 and 4, it suffices to write down a set \tilde{S} satisfying the given conditions. Indeed,

$$
\begin{gathered}
\tilde{S}=\{(1,0,2),(3,2,0) ;(2,1,0),(0,3,2) ;(0,2,1),(2,0,3) ;(1,3,0),(3,1,2) ; \\
(0,1,3),(2,3,1) ;(3,0,1),(1,2,3) ;(1,1,1)\} .
\end{gathered}
$$

(The pairs between semi-colons are congruent modulo 2 .) We need only verify condition (iii) as (i) and (ii) are evident.
We consider two cases:
(a) $u_{1}, u_{2}, u_{3} \in S_{V}$ are incongruent $(\bmod 2)$.

If v_{1}, v_{2}, v_{3} are the reductions $(\bmod 2)$ of u_{1}, u_{2}, u_{3}, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of $(\mathbb{Z} / 2 \mathbb{Z})^{3}$. This is because $v_{3} \neq v_{1}+v_{2}$ as $a \cdot v_{1} \neq 0(\bmod 2), a \cdot v_{2} \neq 0(\bmod 2)$ implies $a \cdot\left(v_{1}+v_{2}\right) \equiv 0(\bmod 2)$. Thus $\operatorname{det}\left[u_{1}, u_{2}, u_{3}\right]$ is odd and u_{1}, u_{2}, u_{3} are linearly independent.
(b) $u_{1} \equiv u_{2}(\bmod 2)$. The cross product of u_{1} and u_{2} is a multiple of one of the six vectors $(2,-3,-1),(-1,2,-3),(-3,-1,2),(-3,1,4),(4,-3,1),(1,4,-3)$. For each of these, the only vectors in S which are perpendicular are u_{1} and u_{2}. Thus u_{1}, u_{2}, u_{3} are linearly independent in this case as well.

This completes the proof.
Remark. The largest prime dividing any of the determinants is 19 . To apply Lemma 4, it suffices to have all the odd prime divisors of $(p-1)$ greater than 19.

One can show that the set of thirteen elements above is "optimal". If u_{1}, \ldots, u_{12} are 3 -tuples of non-negative integers and $(p-1)$ has three distinct odd prime factors, q_{1}, q_{2}, q_{3}, then it is not hard to see that one can find a $v_{2} \in(\mathbb{Z} / 2 \mathbb{Z})^{3}, v_{2} \neq 0$ such that at least six of the numbers $u_{i} \cdot v_{2}$ are $\equiv 0(\bmod 2)$; say $u_{i} \cdot v_{2} \equiv 0(\bmod 2)$, for $1 \leqq i \leqq 6$. Then we can find a $v\left(q_{1}\right) \in\left(\mathbb{Z} / q_{1} \mathbb{Z}\right)^{3}, v\left(q_{1}\right) \equiv 0\left(\bmod q_{1}\right)$, with

$$
u_{7} \cdot v\left(q_{1}\right) \equiv u_{8} \cdot v\left(q_{1}\right) \equiv 0\left(\bmod q_{1}\right)
$$

and similarly $u_{9} \cdot v\left(q_{2}\right) \equiv u_{10} \cdot v\left(q_{2}\right) \equiv 0\left(\bmod q_{2}\right), u_{11} \cdot v\left(q_{3}\right) \equiv u_{12} \cdot v\left(q_{3}\right) \equiv 0$ $\left(\bmod q_{3}\right)$. By the Chinese remainder theorem, there is some $a=\left(a_{1}, a_{2}, a_{3}\right) \in$ $(\mathbb{Z} /(p-1) \mathbb{Z})^{3}$ with $a \equiv v_{2}(\bmod 2), a \equiv v\left(q_{i}\right)\left(\bmod q_{i}\right)$. If g is a generator of \mathbb{F}_{p}^{*}, then $\mathbb{F}_{p}^{*}=\left\langle g^{a_{1}}, g^{a_{2}}, g^{a_{3}}\right\rangle$ but none of the twelve numbers $\left(g^{a_{1}}, g^{a_{2}}, g^{a_{3}}\right)^{u^{u}}$, $1 \leqq i \leqq 12$ is a primitive root $(\bmod p)$.

Finally, we remark that an analogous result can be established for the elliptic curve analogue of the Artin conjecture as formulated by Lang and Trotter [8]. Indeed, in [4], it was shown that if E is an elliptic curve over \mathbb{Q} with complex multiplication by the full ring of integers in an imaginary quadratic field and rank $E(\mathbb{Q}) \geqq 6$, then there is a finite set S of rational points such that for some $a \in S$, $E\left(\mathbb{F}_{p}\right)$ is generated by the reduction of $a(\bmod p)$ for infinitely many primes p.

References

1. Artin, E.: The Collected Papers of Emil Artin (S. Lang and J. Tate, Eds.). Reading, Mass.: AddisonWesley 1965; Math. Rev. 31, \# 1159
2. Bombieri, E.: Le grand crible dans la théorie analytique des nombres, Astérisque 18, Societé Mathematique de France, 1974
3. Fouvry, E., Iwaniec, H.: Primes in arithmetic progressions. Acta Arithmetica 42, 197-218 (1983)
4. Gupta, R., Ram Murty, M.: Primitive points on elliptic curves (to appear)
5. Hooley, C.: On Artin's conjecture. J. Reine Angew. Math. 225, 209-220 (1967)
6. Iwaniec, H.: A new form of error term in the linear sieve, Acta Arith. 37, 307-320 (1980)
7. Iwaniec, H.: Rosser's sieve. Acta Arith. 36, 171-202 (1980)
8. Lang, S., Trotter, H.: Primitive points on elliptic curves. Bull. Amer. Math. Soc., 83, 289-292 (1977)

[^0]: * Research partially supported by an NSF grant.
 ** Research partially supported by NSERC grant \# U0237.

