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Chapter 1

Overview of Cryptography

1.1 Secure Communications

There are terms that are used in the field of cryptography

Definition 1.1

cryptology is the study of communications over nonsecure channels and related problems

cryptography is the process of designing systems to communicate over nonsecure channels

cryptanalysis is the breaking of such systems

The basic communication scenario is this. There are two parties, Alice and Bob, who want to
communicate with each other. There is a third party, Eve, who is a potential eavesdropper.

Alice wants to send a message, called the plaintext, to Bob. She encrypts the message using
a method prearranged with Bob. The encrypted message that Bob receives is called the
ciphertext, which he changes back to the plaintext, by means of a key.

Eve may want to

1. Read the message

2. Find the key and read all messages encrypted

3. Corrupt Alice’s message in order to mislead Bob

4. Impersonate Alice while communicating to Bob

1
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In cases 1 and 2, the third party is sometimes called Oscar (O for observer) instead of Eve.
In cases 3 and 4, the third party is called Mallory (M for malicious).

1.1.1 Possible Attacks

1. Ciphertext only Eve only has a copy of the ciphertext

2. Known Plaintext Eve has a copy of a ciphertext and the corresponding plaintext.

(a) Eve has an encrypted press release, which is published in decrypted form the next
day.

(b) Alice starts all of her messages to Bob with the same text, such as “Dear Bob,”

(c) Sending the same message repeatedly: “Nothing new to report.”

3. Chosen Plaintext: Eve has access to the encryption machine, which she uses to
encrypt plaintexts. She can then (try to) use the resulting ciphertexts to deduce the
key.

4. Chosen Ciphertext: Eve has access to the decryption machine, which she uses to
decrypt ciphertexts. She can then (try to) use the resulting ciphertexts to deduce the
key.

Kerckhoff’s Principle: In assessing the security of a cryptosystem, one should always
assume the enemy knows the method being used.

• It is too easy for Eve to obtain this info

– Encryption/decryption machine’s can be captured.

– Defections/captures

• Don’t want to change the whole system when Eve learns this. It is easier to change
the key.

• Analyze Eve’s difficulty in determining the key, assuming she knows the method.

1.1.2 Symmetric vs. Public Key Algorithms

Encryption methods can be divided into two categories, symmetric key and public key.

Definition 1.2 1. symmetric or private key: both Alice and Bob know both encryption
and decryption keys (possibly they are the same)

All of the systems before the 1970s were symmetric. Eg. DES, AES (Rijndael), his-
torical methods
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2. asymmetric or public key: Encryption key is public, but decryption key is private (or
vice-versa). This means that anyone can encrypt, but only the receiver (Bob) can
decrypt.

Public key systems have the added advantage of security, but this comes at a cost. Algorithms
can be computationally intensive. ie. it takes a lot of computing power to encrypt and/or
decrypt. Eg. RSA, discrete logarithms, El Gamel.

Symmetric ciphers are divided into two types,

Definition 1.3 1. stream ciphers: the data are fed into the encryption algorithm in small
pieces (bits or characters), and the output is produced in corresponding small pieces.

2. block ciphers: blocks of plaintext (in bits or characters) are encrypted into blocks of
ciphertext.

1.1.3 Key Length

One important property of a cryptographic algorithm is its security. Most algorithms employ
(numerical) keys. One way of cracking the key is to simply try every key. This is known as
a brute force attack or exhaustive attack.

The length of the key is related to how long it will take to check all keys.

If the key is 16 bits, then there are 216 = 65536 possible keys.

The DES algorithm has a 56-bit key and thus has 256 ≈ 7.2× 1016 possible keys.

A key length of 30 digits (≈ 150 bits) gives 1030 possible keys. A computer which can check
109 keys per second (1 year is ≈ 3 × 107 seconds) would take more than (3 × 1013) years,
which exceeds the predicted age of the universe.

Note: a simple substitution has 26! ≈ 4 × 1026 keys, but is easily broken, while DES has
much fewer keys (≈ 7.2× 1016), but is very hard to break.

1.2 Cryptographic Applications

1. Confidentiality: Eve should not be able to read Alice’s messages to Bob.

2. Data Integrity: Bob should know that Alice’s message has not been changed.

3. Authentication: Bob wants to be sure that only Alice could have sent the message he
received. This includes identification schemes and password protocols (in which case,
Bob is a computer).



CHAPTER 1. OVERVIEW OF CRYPTOGRAPHY 4

4. Non-repudiation: Alice cannot claim she did not send the message (nor can she
claim that Bob sent the message). Important in e-commerce: customer cannot deny
the authorization of a purchase.

5. Key establishment: Alice and Bob need to communicate what keys to use to commu-
nicate with each other. Important when large quantities of data are to be exchanged.
Public key is inefficient for large quantities, so private key must be used. How do Alice
and Bob establish a key securely?

6. E-commerce: carry out secure transactions over open channels

7. Games: Eg. dealing cards over the internet.

1.3 Conventions

1. plaintext is given in lower case.

ciphertext is given in UPPER CASE.

2. In many encryption schemes, we map the letters of the alphabet with the numbers
0, · · · , 25 according to their position in the alphabet, starting with 0 (this is probably
different from what you’re used to),

a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12
n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25

3. Spaces and punctuation are omitted. (Spaces give too much information about the
text.)



Chapter 2

Classical Cryptosystems

2.1 Caesar Cipher

The Caesar Cipher is also called a shift cipher.

1. The key is a number τ ∈ Z/26Z.

2. To encrypt, map the number n to n + τ (n is the number corresponding to the letter
in plaintext).

3. To decrypt, map the number m to m− τ (m is the number corresponding to the letter
in ciphertext)

Addition and subtraction are done modulo 26. If n + τ > 25, we subtract 26. Similarly, if
n− τ < 0 we add 26.

Example 2.1 Suppose that we want to send the plaintext

cryptography

using a Caesar cipher with key τ = 3.

First we map the letters in the plaintext to the corresponding numbers,

c 7→ 3, r 7→ 17, y 7→ 24, . . . , h 7→ 7, y 7→ 24

to get the sequence (3, 17, 24, 15, 19, 14, 6, 17, 0, 15, 7, 24) Now we add τ = 3 to each number
in this sequence to get

(6 + 3, 20 + 3, 24 + 3, . . .) = (6, 20, 27, 18, 22, 17, 9, 20, 3, 18, 10, 27)

5
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Two entries are greater than 25, so we subtract 26 from these entries to get

(6, 20, 1, 18, 22, 17, 9, 20, 3, 18, 10, 1)

Mapping theses numbers to the corresponding letters, we get the ciphertext

GUBSWRJUDSKB

To decrypt, we reverse this process. Letters 7→ numbers

GUB . . . 7→ (6, 20, 1, . . .)

Subtract τ = 3
(6− 3, 20− 3, 1− 3, . . .) = (3, 17,−2, . . .)

Add 26 to negative entries

(3, 17,−2 + 26, . . .) = (3, 17, 24, . . .)

Numbers 7→ letters
cry . . .

This system is simple enough that we didn’t need to go through all of these details. Instead,
the ciphertext for each letter can be found by shifting to the right by τ = 3 places in
the alphabet, wrapping around to the beginning of the alphabet if we reach the end. The
plaintext can be found by shifting to the left by τ = 3.

2.1.1 Attacks on Caesar Cipher

1. Ciphertext only attack: There are two possible methods.

(a) Exhaustive search: There are only 26 possible keys τ (actually 25, since τ = 0
means plaintext=ciphertext.) Check each one until something makes sense. (It’s
unlikely that two different keys will yield a meaningful plaintext)

(b) Frequency analysis: In an average text of English, the letters aren’t distributed
evenly. Some letters appear more than others. Examine the ciphertext for letters
that appear most frequently.

a b c d e f
0.082 0.015 0.028 0.043 0.127 0.022

g h i j k l
0.020 0.061 0.070 0.020 0.008 0.040

m n o p q r
0.024 0.067 0.075 0.019 0.001 0.060

s t u v w x
0.063 0.091 0.028 0.010 0.023 0.001

y z
0.020 0.001

Frequency analysis may fail if the plaintext does not contain a common letter.
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2. Known Plaintext Knowing 1 letter and its ciphertext is enough to find τ . For
example, if you know that t (= 19) encrypts to D(= 3), you know that 19 + τ = 3.
Therefore, τ = 3− 19 = −16 ≡ 10 mod 26.

3. Chosen Plaintext Choose a(= 0). It is encrypted to 0 + τ = τ , which is the key.

4. Chosen Ciphertext Choose A(= 0). It is decrypted to 0 − τ = −τ , the negative of
the key.

2.2 Affine Ciphers

Choose integers α and β such that gcd(α, 26) = 1.

• Encryption key: (α, β).

• Encryption function: x maps to αx+ β (reduced modulo 26).

• Decryption function: To decrypt, we need to solve

y = αx+ β for x

modulo 26.

Example 2.2 Use an affine cipher with key (9, 2) to encrypt the word “affine”.

Solution. The encryption function is x 7→ 9x+ 2

a↔ 0 7→ 9(0) + 2 = 2 7→ C

f ↔ 5 7→ 9(5) + 2 = 47 ≡ 21 mod 26 7→ V

f ↔ · · ·V

i↔ 8 7→ 9(8) + 2 = 74 ≡ 22 mod 26 7→ W

n↔ 13 7→ 9(13) + 2 ≡ 15 mod 26 7→ P

e 7→ 9(4) + 2 ≡ 12 mod 26 7→M

So
affine 7→ CV VWPM

2

Example 2.3 Find the decryption function for the previous example.
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Solution. To decrypt, we need to solve

y = 9x+ 2

for x. This is easy enough in ordinary arithmetic, but we need to solve it modulo 26. First,

y − 2 = 9x

Normally, we would divide by 9. Instead we multiply by the inverse of 9,

x = 9−1(y − 2)

In ordinary arithmetic, the (multiplicative) inverse of the number 9 is 9−1 = 1
9
. The number

1
9

has the property 9(1
9
) = 1. This property is what defines the inverse.

In arithmetic modulo 26, the situation is similar. If a is the multiplicative inverse of 9, then
a has the same property that 9a = 1, except that this equation must hold modulo 26. So if
9 has a multiplicative inverse1, then there is a number a between 0 and 25 such that 9a ≡ 1
mod 26. In that case a = 9−1. There are methods for finding multiplicative inverses modulo
n (if they exist), but for now, a brute force approach will do. We simply multiply 9 by all
numbers until we find one that reduces to 1 mod 26.

0(9) = 0 6≡ 1 mod 26

1(9) = 9 6≡ 1 mod 26

2(9) = 18 6≡ 1 mod 26

3(9) = 27 ≡ 1 mod 26

Since 3(9) ≡ 1 mod 26, the 9−1 = 3 mod 26.

Therefore, x = 3(y − 2) (modulo 26). 2

Example 2.4 Use the decryption function to decrypt the ciphertexts N and V

Using the formula x = 3(y − 2) and reducing modulo 26, Solution.

N 7→ 13 7→ 3(13− 2) = 33 ≡ 7 mod 26 7→ h

V 7→ 21 7→ 3(31− 2) = 57 ≡ 5 7→ 26 7→ f

2

1Not all integers modulo n have a multiplicative inverse
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Example 2.5 Suppose that we use the key (α, β) = (13, 4). If we apply the affine cipher to
the plaintexts “input” and “alter”, we get

input 7→ ERRER

alter 7→ ERRER

Two different plaintexts map to the same ciphertext. This is a problem, since there would
be no way to tell what the intended plaintext was if the ciphertext is ERRER.

Note that gcd(13, 26) = 13 6= 1. Thus, if the condition gcd(α, 26) = 1 must be satisfied,
otherwise the system could fail.

Note: There are 12 choices for α (no even numbers, no multiples of 13, need only consider
1 ≤ α ≤ 25). There are 26 choices for β (β can be anything between 0 and 25). Thus, the
keyspace has size 12× 26 = 312.

2.2.1 Attacks on Affine Ciphers

1. Ciphertext only: Use brute force or frequency analysis.

2. Known plaintext: Usually 2 letters (along with the corresponding ciphertext) suffice

Example 2.6 Suppose that
if 7→ PQ

8, 5 7→ 15, 16

Since x 7→ αx+ β for any plaintext letter x, for some numbers α and β, we have

8α + β = 15 mod 26

5α + β = 16 mod 26

3α = −1 mod 26

We saw in another example that 3 and 9 are inverses of each other modulo 26. There-
fore, we multiply this equation by 9 to get α = −9 ≡ 17 mod 26 and so β = 15−8α = 9
mod 26. Thus, the key is (α, β) = (17, 9).

Example 2.7 Suppose that
go 7→ TH

6, 14 7→ 19, 7

yielding equations
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6α + β = 19 mod 26

14α + β = 7 mod 26

−8α = 12 mod 26

Therefore,
−4α = 6 mod 13

But −4 ≡ 9 mod 13, so this is

9α = 6 mod 13

So
α = 3(6) ≡ 5 mod 13

Thus, α ≡ 5 or 18 mod 26.

Therefore, β = 15 mod 26 (plugging either of α = 5 or α = 8 into either of the original
equations), so the key is (α, β) = (5, 15) or (α, β) = (18, 15), but gcd(18, 26) = 2 6= 1,
so the key must be (5, 15).

Information about the key can be obtained even if only 1 letter of plaintext and its
ciphertext is known.

For example, suppose we know that g(= 6) in plaintext corresponds to T (= 19) in
ciphertex, then we know that 6α + β ≡ 19 mod 26. There are 12 possibilities for α
and each gives a corresponding β. The correct key can be found by an exhaustive
search.

3. Chosen plaintext: Choose ab as the plaintext. Then,

a↔ 0 7→ α(0) + β = β

b↔ 1 7→ α(1) + β = α + β

Example 2.8 Suppose that 0 7→ 2 and 1 7→ 11.

Then β = 2 and α + β = 11. Thus α = 11− β = 2. Thus the key is (α, β) = (9, 2).

4. Chosen ciphertext: Decrypt AB:

A↔ 0 7→ γ1

B ↔ 1 7→ γ2

(The ciphertext letters A and B are decrypted to the plaintext letters γ1 and γ2 (or
their numerical equivalents)) Since γ1, γ2 are the plaintext of A,B(= 0, 1),

αγ1 + β = 0

αγ2 + β = 1
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We can solve for α and β to find the encryption key as follows.

By the first equation, γ1 = −βα−1.

By the second equation, γ2 = α−1 − βα−1︸ ︷︷ ︸
−γ1

, so α−1 = γ2 − γ1.

Since, x = α−1(y − β) = α−1︸︷︷︸
γ2−γ1

y − α−1β︸ ︷︷ ︸
γ1

, we can decrypt using x = (γ2 − γ1)y + γ1.

2.3 Substitution Cipher

The Caesar cipher and the Affine Cipher are both special cases of a monoalphabetic substi-
tution cipher:

Each plaintext letter is always encrypted to the same ciphertext letter.

Each ciphertext letter is always decrypted to the same plaintext letter.

In other words, a permutation of the alphabet is chosen and applied to the plaintext. The
key is the chosen permutation.

Caesar cipher: n→ n+ τ mod 26

Affine cipher: x 7→ αx+ β mod 26 ( Caesar is a special case, with α = 1.)

(In both cases, the ciphertext of a letter in plaintext is given by a formula, but this need not
be the case.)

2.3.1 Attacks on substitution cihpers

1. Ciphertext only Any substitution cipher is vulnerable to attacks based on frequency
analysis.

(a) Letters that occur the most frequently in the ciphertext probably correspond to
letters that occur frequently in an average English text.

(b) This can be used to guess what the more frequently occurring letters correspond
to. This may not be enough if the frequencies in the plaintext aren’t the same as
an average English text.

(c) Use analysis of digrams, that is, two letter sequences of letters.

• As with letters, digrams are not evenly distributed: some occur more fre-
quently than others.
For example, th is the most common digram. If BN occurs frequently in a
text, then probably

B ↔ t and N ↔ h
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• Around 80% of the letters preceding the letter n are vowels. Thus, if we know
which ciphertext letters are vowels, we can look for letters that are commonly
preceded by vowels. One of these is probably the ciphertext of n.

• rn occurs for more frequently than rn. Suppose we know that one of A,B
corresponds to r and the other corresponds to n. If AC occurs more frequently
than CA then probably

AC ↔ rn

so
A↔ r and C ↔ n

• After the most frequent letters have been decrypted, the remainder can be
filled in by educated guessing and knowledge of the language
For example, if you see

B A Y B N
t r t h

you could guess that Y ↔ u, giving the plaintext truth

2. Known plaintext If each letter of the alphabet occurs in the plaintext, then the key
can be found.

If not all letters of the alphabet occur, but another ciphertext is known (without the
plaintext) then, techniques from the ciphertext only attack may possibly be used to
find the key.

3. Chosen plaintext Encrypt abcdefghijklmnopqrstuvwxyz

4. Chosen ciphertext Decrypt ABCDEFGHIJKLMNOPQRSTUVWXYZ

2.4 Vigenère Cipher

The Vigenére Cipher is a variation of the Caesar cipher.

1. key: A vector k = (α1, α2, . . . , αn) of length n with entries from Z/26Z.

The key corresponds to a word that is easily remembered.

2. encryption: x 7→ (x+ αi mod n) mod 26

Thus, in a Vigenère cipher, the ith letter in plaintext gets shifted by αi where i is taken
modulo n. Thus, every nth letter gets shifted by the same amount. So for every nth
letter starting at position i, the Vigenère cipher is a Caesar cipher with key αi.

3. decrypting: y 7→ (y − αi mod n) mod 26

Example 2.9 Encrypt the phrase “It was the best of times” using a Vigenère cipher with
key corresponding to the word “vector”
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Solution.

The string to be sent is
itwasthebestoftimes

The key is k = (21, 4, 2, 19, 14, 17), and the length of k is n = 6.

The letters map as follows.

i↔ 8 7→ 8 + α1 = 8 + 21 ≡ 3 mod 26↔ D

t↔ 19 7→ 19 + α2 = 19 + 4 ≡ 23 mod 26↔ X

w ↔ 22 7→ 22 + α3 = 22 + 2 ≡ 24 mod 26↔ Y

...

t↔ 19 7→ 19 + α6 = 19 + 17 ≡ 10 mod 26↔ K

h↔ 7 7→ 7 + α1 = 7 + 21 ≡ 2 mod 26↔ C

e↔ 4 7→ 4 + α2 = 4 + 4 ≡ 8 mod 26↔ I

...

The results of the encryption are summarized in the following table,

(p.t.) i t w a s t h e b e s t o f t i m e s
(num) 8 19 22 0 18 19 7 4 1 5 18 19 14 5 19 8 12 5 18
(key) 21 4 2 19 14 17 21 4 2 19 14 17 21 4 2 19 14 17 21
(sum) 3 23 24 19 6 10 2 8 3 24 6 10 9 9 21 1 0 22 13
(c.t.) D X Y T G K C I D Y G K J J V B A W N

So the ciphertext is
DXY TGKCIDY GKJJV BAWN

Note that the same letter in the plaintext maps to different letters in the ciphertext, depend-
ing on position. For example, the first t 7→ X, while the second t 7→ K.

Likewise, the same letter in the ciphertext can represent different letters form the plaintext.
For example, o 7→ J and f 7→ J .

2

Example 2.10 Decrypt the (first few letters) of the ciphertext from the last example.
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Solution.

k = (21, 4, 2, 19, 14, 17)

D ↔ 3 7→ 3− α1 = 3− 21 ≡ 8 mod 26↔ i

X ↔ 23 7→ 23− α2 = 23− 4 ≡ 19 mod 26↔ t

Y ↔ 24 7→ 24− α3 = 24− 2 ≡ 22 mod 26↔ w

2

2.4.1 Attacks on Vigenère Ciphers

(The different types of attacks are presented in different order, since three of the types of
attack are fairly straightforward)

1. Known plaintext If the plaintext (along with the ciphertext, as usual) is known, then
the key can be obtained by subtracting the plaintext from the ciphertext.

2. Chosen plaintext Encrypt the plaintext aaaaaaa.... The resulting ciphertext will be
the key.

3. Chosen ciphertext Decrypt the ciphertext AAAAAAAA.... The resulting plaintext
will be the negative of the key.

4. Ciphertext only attack If the key length is known, then an attack can be mounted
based on frequency analysis. Say the key length is n. If we only consider every nth
letter, then the Vigenère cipher on these letters reduces to a shift cipher and frequency
analysis can be used to determine the key, since a shift cipher is a special case of
substitution cipher.

Thus, we find the key length. There are two methods.

• Method 1: Compare the ciphertext β1β2β3 . . . with itself displaced by l positions.

β1 β2 β3 β4 . . . βn−l
βl+1 βl+2 βl+3 βl+4 . . . βn

for each l. Then we record the number R(l) of times times the letter in the top
row and the bottom row are the same. That is R(l) = |{j|βj = βj+l}|. If there is
a spike in the value of R(l) for a certain value of l, say l = l0, then l0 is the key
length.

Example 2.11 In the example on the handout, there is a spike at a displacement
of 5, so the key length is (probably) 5.
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• Method 2 Search for repetitions of blocks in the ciphertext. I.e. search for
occurrences

βj+1βj+2 . . . βj+i = βk+1βk+2 . . . βk+i

and compute |k − j|.
The differences should match the key length.

Treat repetitions with i large more significantly.

Why these methods work

Consider a vector with English letter frequencies

A0 = (0.082, 0.015, 0.028, . . . , 0.020, 0.001)

Define Ai to be A0 rotated to the right by i positions. That is, entry j of Ai is entry
j − i mod 26 of A0. For example,

A2 = (0.020, 0.001, 0.082, 0.015, . . .)

When the plaintext is shifted by i to obtain the cipher text, then the probability that
a given letter will appear in the ciphertext is given by the corresponding entry of Ai.
For example, if the plaintext is shifted by 2, then A appears in the ciphertext with
probability 0.020 and B appears with probability 0.001 since the corresponding entries
of A2 are 0.020 and 0.001.

The dot product A0·A0 = (0.082)2+(0.015)2+(0.028)2+· · ·+(0.020)2+(0.001)2 = 0.066

In fact, Ai · Ai = 0.066 for any i. In general the dot products Ai · Aj are given in the
following table,

Ai · Aj 0.066 0.039 0.032 0.034 0.044 0.033 0.036
|i− j| 0 1 2 3 4 5 6

0.039 0.034 0.034 0.037 0.045 0.039 0.043
7 8 9 10 11 12 13

We stop at 13, since the numbers begin to repeat past 13. Note that Ai·Aj is maximized
when |i− j| = 0 and that the maximum value (0.066) is considerably larger than the
second largest value (0.044). (It’s not too surprising that it is the largest. Recall
that Ai · Aj = ‖Ai‖‖Aj‖ cos θ. But ‖Ai‖ = ‖Aj‖, so ‖Ai‖‖Aj‖ = ‖Ai‖2, and thus
Ai · Aj = ‖Ai‖2 cos θ. Also, since Ai > 0, cos θ < 1 unless Ai and Aj are parallel. But
Ai and Aj are parallel if and only if i = j (in which case, the vectors are equal). Thus
Ai · Aj < Ai · Ai).
Now, each letter βk in the top row of ciphertext corresponds to some English letter
shifted by i = αk mod n. The probability that βk = A is the first entry of Ai, (Ai)1.
The probability that βk = B is (Ai)2, and so forth.

Similarly, the letter βk+l, which appears below βk in the bottom row of displaced
ciphertext, corresponds to some letter of English shifted by j = αk+l mod n. The
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probability that βk+l = A is (Aj)1. The probability that βk+l = B is (Aj)2, and so
forth.

Thus, the probability that they are both A is (Ai)1(Aj)1, the probability that they are
both B is (Ai)2(Aj)2, and so on.

Therefore, the probability that the two letters are the same is the sum of these probabil-
ities over all letters of the alphabet, (Ai)1(Aj)1+(Ai)2(Aj)2+· · ·+(Ai)26(Aj)26 = Ai·Aj.
When i 6= j, Ai · Aj ≈ 0.038, but when i = j, Ai · Aj = Ai · Ai = 0.066. However, if
i = j, then the letters lying one above the other have been shifted by the same amount,
and this happens when the bottom copy of the ciphertext is displaced by an amount
equal to the key length (or a multiple of it). Thus, we expect more coincidences when
the displacement is equal to (a multiple of) the key length.

For example, the sample ciphertext given on the handout has 326 characters, so we
expect 0.066×326 = 21.5 coincidences when the displacement is equal to the key length,
whereas we expect 0.38 × 326 = 12.4 coincidences when it is not. These numbers are
comparable to the number of coincidences for the various displacements of the sample
ciphertext.

2.5 Playfair Cipher (A diagram substitution)

1. key To construct the key, first choose a keyword. Deleting 2nd, 3rd, etc. occurrences
of letters in the word. The resulting string of letters should have no repeats (and the
order of the letters in the string is the same as in the original word). Fill in a 5 × 5
square with the letters of the string, the square starting with the first square in the top
row, and moving right, then down, followed by the remaining letters of the alphabet,
and putting i and j in the same square. For example if we choose the word “Playfair”,
we delete the 2nd “a” to get the string “Playfir”. The first row is PLAY F , the seconds
begin with IR and continues with BCD, etc. The resulting square is

P L A Y F
I R B C D
E G H K M
N O Q S T
U V W X Z

2. Encryption: Divide the text into pairs of letters. Insert an x between repeated letters.
Add an x to complete the last block if necessary.

• If two letters are not in the same row or column, replace each letter by the letter
that is in its row and is in the column of the other letter

• If two letters are in the same row, replace each letter with the letter immediately
to its right (wrapping around if necessary)

• If two letters are in the same column, replace each letter with the letter immedi-
ately below it (wrapping around if necessary)
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3. Decryption: Reverse the procedure

Example 2.12 Use the above Playfair cipher to encrypt “attack by sea at night”

Solution. First, divide the text into pairs of letters

at ta ck by se ax at ni gh tx

In the row of a and the column of t of the key, there is an F , and in the row of t and the
column of a, there is a Q, so

at 7→ FQ

In the row of t, and column of a, there is a Q, and in the row of a and column of t there is
an F , so

ta 7→ QF

All blocks up to ni can be encrypted similarly, since the letters in each of these blocks do
not appear in the same row or column. Since n and i are in the same column of the key and
the letters U and E lie below the letters n and i respectively,

ni 7→ UE

Since g and h are in the same row, and the letters H and K lie to the right of g and h
respectively,

gh 7→ HK

So the ciphertext is

FQ QF KS CA NK YW FQ UE HK SZ

(The encrypted message is, of course, sent without the spaces.) 2

Example 2.13 Decrypt the ciphertext from the preceding example.

Solution. In the row of F and the column of Q, there is an a, and in the row of Q and
column of F , there is a t, so FQ 7→ at

Both U and E are in the same column. The letters above U and E in the key are n and i,
so UE 7→ ni.

Both H and K are in the same row. The letters preceding H and K are g and h, so
HK 7→ gh. 2
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2.5.1 Attacks on Playfair

1. Ciphertext only attack:

• Digram frequencies are known.

– The most common digrams are th, he an in, re, es, etc. Common digrams
in the ciphertext should correspond to common digrams in the plaintext.

– Note that er and re are both common. If TB and BT are common in the
ciphertext, it is probable that B, T,E,R are the corners of a rectangle.

• Last row is predictable, unless keyword is long.

• Each plaintext letter has only 5 ciphertext equivalents.

2. Known plaintext: Reconstruct blocks from pairs of letters. For example, if ab→ CD
then we have either

a . . . C
...

D . . . b

, a C . . . b D or

a
C
· · ·
b
D

If ab 7→ BC then either

a b/B C or
a

b/B
C

If ab 7→ CA then

b a/A C or
b

a/A
C

3. Chosen plaintext: Encrypt various (judiciously chosen) letter pairs to fill in the
table. (Using techniques similar to those from pt. 2)

4. Chosen ciphertext: Decrypt various (judiciously chosen) letter pairs to fill in the
table.

2.6 ADFXG Cipher

As in the Playfair cipher, we put the letters into a 5 × 5 matrix with i and j in the same
entry, where the rows and columns are indexed by the letters ADFXG, in that order. For
example
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A D F G X
A p g c e n
D b q o z r
F s l a f t
G m d v i w
X k u y x h

Each plaintext letter is replaced by the label of its row and column. For example, s 7→ FA
because s is in row F and column A, and z 7→ DG since z is in row D and column G. Each
letter maps to a pair of letters If they plaintext is “Kaiser Wilhelm”, then the text (not
ciphertext) is

XA FF GG FA AG DX GX GG FD XX AG GD GA

Note that, a this stage, this is just a substitution cipher in disguise. Each letter has been
mapped to a pair of letters. The next step increases the complexity significantly. Choose
a keyword, Rhein for example, and put the ciphertext into the matrix whose columns are
labelled by the keyword:

R H E I N
X A F F G
G F A A G
D X G X G
G F D X X
A G F D G
A

Now, reorder the columns so that the labels are in alphabetical order

E H I N R
F A F G X
A F A G G
G X X G D
D F X X G
F G D G A

A

The ciphertext is obtained by reading down the columns in order (not including the labels):

FAGDFAGXFGFAXXDGGGXGXGDGAA

Decryption: From the length of the keyword, and the length of the ciphertext, the length
of each column is determined. If the key length is k and the length of the ciphertext is m,
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then number of “long” is the remainder from dividing m by k. The long columns go with
the first letters of the keyword, and the short columns go with the last word.

The letters are placed into columns, which are reordered to match the keyword. The matrix
can be used to recover the plaintext.

2.6.1 Attacks

We will only do a ciphertext only attack. Suppose that two messages begin with the same
text, and the same key is used for both. For example “Kaiser Wilhelm...” and “Kaiser will
leave...” Then we get

R H E I N
X A F F G
G F A A G
D X G X G
G F D X X
A G F D G
A

R H E I N
X A F F G
G F A A G
D X G X G
G F D F D
F D A G F
F G F A G

which then becomes

E H I N R
F A F G X
A F A G G
G X X G D
D F X X G
F G D G A

A

E H I N R
F A F G X
A F A G G
G X X G D
D F F D G
A D G F F
F G A G F
. . . . .

Thus, the ciphertexts for both are

FAGDF. . . AFXFG . . . FAXXD. . . GGGXG. . . XGDGAA. . .
FAGDAF. . . AFXFDG. . . FAXFGA. . . GGGDFG. . . XGDGFF. . .

When the two plaintexts begin with the same texts, the beginning of each column also starts
with the same text, and these yield blocks of ciphertext that start with the same letters.
Therefore, blocks of that are the same in both ciphertexts (may) correspond to columns that
are the same. The number of blocks is the key length. So we look for blocks of ciphertext
that start with the same letters.

Once the beginning of blocks are determined, each ciphertext is divided into short and long
blocks. If block i is long in both texts, they go to the left, if block i is short in both texts,
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they go on the right. If block i is short in one text, but long in the other, they go in the
middle.

Frequency analysis can be used to determine how to order the the different columns. For
example, e 7→ AG, causing AG to appear frequently after the first step. For each ordering,
look for frequently occurring pairs.

The letters ADFGX were chosen because their Morse code equivalents are not easily con-
fused. Later, an ADFGVX cipher was used, which allowed for the use of numbers and all
26 letters.



Chapter 3

Mathematical Tools

3.1 Divisibility

Definition 3.1 Let a, b ∈ Z, a 6= 0. We say that a divides b and write a|b if there is some
number x ∈ Z such that b = ax.

In other words, b/a ∈ Z. Instead of saying “a divides b”, we can also say b is divisible by a,
or a is a divisor of b.

Definition 3.2 If a|b and 0 < a < b, then a is a proper divisor of b.

Note:

1. a|0 for all a ∈ Z

2. 0|b does not make sense

The following theorem summarizes some useful properties of divisibility.

Theorem 3.1 1. If a|b, then a|bc for all c ∈ Z.

2. If a|b and b|c, then a|c.

3. If a|b and a|c, then a|(bx+ cy) for all x, y ∈ Z.

4. If a|b and b|a, then a = ±b.

5. If a|b and a > 0, b > 0, then a ≤ b.

22
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6. If a|b, then qa|qb for all q ∈ Z, q 6= 0,

Proof.

1. Since b = ma we have bc = mac.

2. Since b = ma and c = nb we have c = nb = n(ma).

3. Since b = ma and c = na we have bx+ cy = max+ nay = a(mx+ ny).

4. Since b = ma, a = nb we see that a = nma. Thus nm = 1 and so either n = m = 1 or
n = m = −1.

5. Since b = ma, m = b/a ∈ Z. Since both a and b are positive, so is m. Hence m is a
positive integer and so m ≥ 1. Thus ma ≥ a and thus b ≥ a.

6. Since b = na we have qb = nqa = (nq)a.

2

Theorem 3.2 (Division Algorithm) Let a, b ∈ Z with a ≥ 0. Then there are unique integrs
q, r ∈ Z such that b = qa+ r and 0 ≤ r < a

The number q is called the quotient, r is called the remainder, b is called the dividend, and
a is called the divisor.

Note: r = 0 if and only if a|b

Proof. Consider the sequence

. . . , b− 3a, b− 2a, b− a, b, b+ a, b+ 2a, . . .

Let r denote the smallest non-negative number in this sequence. Then 0 ≤ r < a and
r = b− qa for some integer q. Therefore, b = qa+ r.

Now, in order to prove the uniqueness of q and r suppose that b = q1a+ r1 and b = q2a+ r2.
We will show that r1 = r2 and q1 = q2.

First, we show that r1 = r2. We proceed by contradiction. So assume that r1 6= r2. Then,
without loss of generality, r1 > r2, so 0 ≤ r1 < r2 < a. Therefore

0 < r2 − r1 < a.

But r1 = b − q1a and r2 = b − q2a, so r2 − r1 = (−q2 + q1)a is divisible by a. Therefore
a ≤ r2− r1, a contradiction to r2− r1 < a. Thus r1 = r2. So b− q1a = b− q2a, and therefore
q1 = q2. 2

Note An algorithm exists to find q and r: long division.
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Definition 3.3 a ∈ Z is a common divisor of b and c if a|b and a|c.

Note: b 6= 0⇒ a ≤ |b| if a|b. Thus, if b 6= 0 or c 6= 0, then there is a greatest number among
{a : a|b and a|c}. This is called the greatest common divisor of a and b, denoted (a, b) or
gcd(a, b). Similarly we define (a, b, c) (or gcd(a, b, c)) to be the greatest integer dividing a, b
and c when at least one of these is non-zero.

Example 3.1

(−12,−18) = 6

(4,−5) = 1

(3,−9, 15) = 3

(0, b) = |b|
(6, 15,−21) = 3

Notes:

1. (0, 0) is not defined.

2. (a, b) ≥ 1.

Theorem 3.3 Let g = (b, c). Then there are numbers x0, y0 ∈ Z such that g = (b, c) =
bx0 + cy0. In fact, g is the smallest positive number of the form bx+ cy.

Proof. Let x0 and y0 be two integers which give the smallest positive number of the form
bx+ cy. That is, if bx+ cy > 0, then

bx+ cy ≥ bx0 + cy0

Let l = bx0 + cy0 and S = {bx+ cy|x, y ∈ Z, bx+ cy > 0}. Then l = minS.

Claim: l|b.

Proof of claim: By contradiction. Assume that l|b. Then b = ql + r, where 0 < r < l. Then
r = b− ql = bq(bx0 + cy0) = (1− qx0)b+ cqy0. Thus r ∈ S and r < l a contradiction.

By a similar argument, l|c.

Since g divides both b and c, b = gB and c = gC for some B,C ∈ Z and l = bx0 + cy0 =
gBx0 + gCy0. Therefore g|l, and so g ≤ l. But g < lis impossible, since g is the greatest
common divisor. Therefore, g = l. 2



CHAPTER 3. MATHEMATICAL TOOLS 25

3.1.1 Euclidean Algorithm

The Euclidean Algorithm makes use of the division algorithm to find the greatest common
divisor of two numbers.

If a, b ∈ Z where a 6= 0, then (a, b) is the last nonzero remainder in the following list of
equations obtained from the Division Algorithm.

b = q1a+ r1 where0 < r1 < |a| (3.1)

a = q2r1 + r2 where0 < r2 < r1 (3.2)

r1 = q3r2 + r3 where0 < r3 < r2 (3.3)
... (3.4)

rn−2 = qnrn−1 + rn where0 < rn < rn−1 (3.5)

rn−1 = qn+1rn + 0 (3.6)

Example 3.2 Find the greatest common divisor of 42823 and 6409.

Solution.

42823 = 6(6409) + 4369︸︷︷︸
=r1

6409 = (4369) + 2040︸︷︷︸
=r2

4369 = 2(2040) + 289︸︷︷︸
=r3

2040 = 7(289) + 17︸︷︷︸
=r4

289 = 17(17) + 0

2

Example 3.3 Find x and y such that

42823x+ 6409y = 17

Solution. We use the find xi and yi such that

42823x+ 6409y = ri



CHAPTER 3. MATHEMATICAL TOOLS 26

and then use x = x4 and y = y4. Set r0 = 6409 and r−1 = 42823. Then

xi(42823) + yi(6409) = ri = 42823

1(42823) + 0(6409) = r−1 = 42823

0(42823) + 1(6409) = r0 = 6409

1(42823)− 6(6409) = r1 = 4369

So

r2 = 2040 = 6409− 1(4369)

= 6409− 1[1(42823)− 6(6409)]

= −1(42823) + 7(6409)

So x2 = −1 and y2 = 7. Then

r3 = 289 = 4369− 2(2040)

= [1(42823)− 6(6409)]− 2[−1(42823) + 7(6409)]

= 3(42823)− 20(6409)

So x3 = 3, and y3 = −20. Finally,

r4 = 17 = 2040− 7(289)

= [−1(42823) + 7(6409)]− 7[3(42823)− 20(6409)]

= −22(42823) + 147(6409)

Note: There are other solutions (x, y) to

4283x+ 6409y = 17

2

Theorem 3.4 Let b1, . . . , bn be integers, not all zero. Let g = (b1, . . . , bn). Then there are
integers x1, . . . , xn such that

g = b1x1 + b2x2 + · · ·+ bnxn

Furthermore, g is the least integer in the set

S = {b1x2 + · · ·+ bnxn|x1, . . . , xn ∈ Z, b1x1 + · · ·+ bn > 0}

Proof. Similar to the preceding theorem. 2
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Theorem 3.5 Let m > 0,m ∈ Z. Then (ma,mb) = m(a, b).

Proof. (ma,mb) is the least positive value of max + mby. max + mby = m(ax + by) is m
times the least positive value of ax+by. m times the least positive value of ax+by is m(a, b).

2

Theorem 3.6 1. If d|a and d|b and d > 0, then (a/d, b/d) = 1
d
(a, b)

2. If g = (a, b) then (a/g, b/g) = 1

Proof.

1. Same as preceding proof, using m = 1/d

2. Take d = g in 1.: (a/g, b/g) = 1
g
(a, b) = 1

g
g = 1

2

Theorem 3.7 If (a,m) = (b,m) = 1, then (ab,m) = 1.

Proof. Write 1 = ax0 +my0 and 1 = bx1 +my1. Then

(ax0)(bx1) = (1−my0)(1−my1)
= 1−m(y0 + y1 −my0y1)

Therefore, 1 = ab(x0x1) +m(y0 + y1 −my0y1), so (ab,m) = 1. 2

Definition 3.4 We say that a and b are relatively prime if (a, b) = 1 and that a1, . . . , an are
relatively prime if (a1, . . . , an) = 1. We say that a1, . . . , an are pairwise prime if (ai, aj) = 1
for all i 6= j.

Theorem 3.8 If c|ab and (b, c) = 1, then c|a.

Proof. By Theorem 3.5 (ab, ac) = a(b, c) = a ·1 = a. Now, c|ab and c|ac, so c|(ab, ac) = a. 2
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Theorem 3.9

(a, b) = (b, a) = (−a, b)
(a, b) = (a, b+ ax) for all x ∈ Z

Definition 3.5 Let a1, . . . , ak be integers different from 0. Then b is a common multiple of
a1, . . . , ak if each ai|b. The smallest positive common multiple is the least common multiple
(lcm) which is denote [a1, . . . , ak].

Theorem 3.10 If b is any common multiple of a1, . . . , ak, then [a1, . . . , ak]|b. In other words,
if h = [a1, . . . , ak], then the only common multiples of a1, . . . , ak are 0,±h,±2h,±3h.

Proof. Let m be any common multiple. Divide m by h: m = qh+ r, 0 ≤ r < h.

We need to show that r = 0. Assume r 6= 0. Then ai|m and ai|h, so ai|r. Therefore, r is a
positive common multiple of a1, . . . , ak. But r < h, a contradiction. 2

Theorem 3.11 Let a, b be non-zero and m > 0. Then [ma,mb] = m[a, b]. Also, [a, b] ·
(a, b) = |ab|.

Proof. Let H = [ma,mb] and h = [a, b]. Then mh is a multiple of ma and mb. Therefore,
H ≤ mh. Also, H is a multiple of ma and mb, so H/m is a multiple of a and b, so H/m ≥ h.
Therefore, H ≥ mh.

Also, WLOG, a > 0, b > 0. First, consider (a, b) = 1. Then [a, b] = ma for some m. Now
b|ma and (a, b) = 1, so b|m. Therefore b ≤ m and ba ≤ ma. But ba is a common multiple of
a, b, so ba ≤ ma = [a, b]. Therefore, [a, b] = ab.

Now consider (a, b) = g > 1. Then (a/g, b/g) = 1, so (a/g, b/g)[a/g, b/g] = a
g
b
g
. Therefore,

g(a/g, b/g) · g[a/g, b/g] = ab i.e. (a, b)[a, b] = ab. 2

Definition 3.6 An integer p > 1 is prime if the only positive divisors of p are 1 and p.

Definition 3.7 If an integer a > 1 is not prime, then it is said to be composite.

Note: 0 and 1 and all negative numbers are neither prime nor composite.

Example 3.4 2,3,5,7,11, 17 are all prime.

4,6,8,9,10 are composite.
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Theorem 3.12 (Fundamental Theorem of Arithmetic) Every integer greater than 1 can be
expressed as a product of primes. Furthermore, this expression is unique except for the order
of the factors.

Example 3.5 (non-example). Let E be the set of all even numbers. Then 2, 6, 10, 30 are
“prime” in E. That is, there are no divisors of these numbers in E, other than 1 and
themselves. 60 = 2(30) and 60 = 6(10), and 36 = 6(6) = 2(18). In both cases, there are two
distinct factorizations of the numbers into primes in E.

Example 3.6 (non-example) Let F = Q[
√
−6] = {a + b

√
−6|a, b ∈ Q}. 10 = (2)(5) and

10 = (2 +
√
−6)(2−

√
−6)

Before we prove the FTA, we prove the following theorem

Theorem 3.13 Let p be a prime. If p|ab, then p|a or p|b. More generally, if p|a1 . . . an then
p|ai for some i.

Proof. We proceed by induction on n. First consider the case n = 2. Suppose that p|a1a2.
If p 6 |a1, then (a1, p) = 1 and so, by a previous theorem, p|a2. Therefore, p|a1 or p|a2.

Now we assume that the theorem is true for n− 1 and show that it holds for n. So we make
the following induction hypothesis: If p|a1 · · · an−1 means then p|a1 or p|a2 or · · · or p|an−1.
Suppose further that p|a1a2 . . . an. If p 6 |an, then (p, an) = 1. Since p|(a1 · · · an)an but p 6 |an,
we must have p|a1a2 · · · an−1. Therefore, by the induction hypothesis, p|a1 or p|a2 or · · · or
p|an−1, and therefore, p|a1 or p|a2 or · · · or p|an 2

Proof.(Proof of the fundamental Theorem of Arithmetic) We proceed by contradiction. So
suppose the theorem is false. Then there is a number N with two different factorizations
N = p1 · · · pr = q1 · · · qs. If any prime occurs on both sides of the equation, we may cancel
it from both sides to get a number M = p1 · · · pm = q1 · · · qn where p1 6∈ {q1, · · · , qn}. But
p1|M = q1 · · · qn. Thus, there is a number i such that p1|qi. But q1 is a prime, so p1 = qi,
contradicting distinct prime factors. 2

Theorem 3.14 (Due to Euclid) There is an infinite number of primes

Proof. Suppose not. Then there are only r primes, p1 = 2, p2 = 3 p3 = 5 . . . pr. Define
n = p1p2 · · · pr + 1. Then p1 6 |n, p2 6 |n,. . . pr 6 n, because division by pi produces a remainder
of 1 for all i. But n is either prime or has a prime factor other than p1, . . . , pr. Thus, there
are more than r primes, and so there cannot be finitely many primes. 2

Note: 2 · 3 · 5 · 7 · 9 · 11 · 13 + 1 = 59 · 509
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Theorem 3.15 There are arbitrarily large gaps in the sequence of primes. I.e. for any
k ∈ N, there is a sequence of k composite integers.

Proof. Consider the sequence (k + 1)! + 2, (k + 1)! + 3, . . . , (k + 1)! + (k + 1). We have
j|(k + 1)! + j for each j from 2 to k + 1. Hence each of the numbers in the sequence is
composite. 2

3.2 Binomial Theorem

Let n, k ∈ N . Then we define(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
=

n!

k!(n− k)!

Theorem 3.16 If S is a set of n different objects, then there are exactly
(
n
k

)
subsets of S

of size k.

Proof. Let S = {1, 2, . . . , n}. There are n! permutations of S (ordered sequences) σ1σ2 · · · σn:

n choices for σ1

n− 1 choices for σ2

...

1 choice for σn

Now pick a subset A ⊆ S with |A| = k. We get a permutation of S via a permutation
a1, a2, . . . ak of A followed by a permutation b1, . . . , bn−k of S \ A: a1, . . . , ak, b1, . . . , bn−k.

Now, using A, we get k!(n − k)! of the permutation of S this way. Doing this for all sets
A1, . . . , Ax of size k we get xk!(n− k)! = n!, so x = n!/(k!(n− k)!). 2

Theorem 3.17 The product of k consecutive integers is divisible by k!

Proof.Let m = n(n− 1)(n− 2) = (n− k) · · · (n− k + 1).

• If n ≥ k, then n(n−1)···(n−k+1)
k!

= m
k!

Therefore, m = k!
(
n
k

)
and m is divisible by k!.

• If 0 ≤ n ≤ k, then m = 0.
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• If n < 0, then

m = n(n− 1) · · · (n− k + 1)

= (−n)(−n+ 1) · · · (−n+ k − 1)(−1)k

= (−1)k
(
−n+ k − 1

k

)
k! where −n+ k − 1 ≥ k

Therefore, m
k!

= (−1)k
(−n+k−1

k

)
∈ Z by the previous theorem.

2

Note:
(
n
k

)
=
(

n
n−k

)
.

Theorem 3.18 (Binomial Theorem)

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k

3.3 Congruences

Let m ∈ Z, m 6= 0. If m divides a− b, then we say that a is congruent to b modulo m and
we write a ≡ b( mod m). Otherwise we write a 6≡ b mod m. Sometimes we write a ≡ b(m)
instead of a ≡ b mod m, or just ≡ with (m) or mod m understood.

Example 3.7 1. 12 ≡ 32 mod 10

2. 12 6≡ 32 mod 7

3. 29 ≡ −1 mod 3

4. −28 ≡ 0 mod 14

Note: Since a ≡ b mod m if and only if a ≡ b mod − m, we usually work only with
positive moduli.

Theorem 3.19 Let a, b, c, d ∈ Z, m ∈ Z, m 6= 0. Then

1. a ≡ b mod m if and only if b ≡ a mod m if and only if b− a ≡ 0 mod m

2. If a ≡ b mod m and b ≡ c mod m, then a ≡ c mod m

3. If a ≡ b mod m and c ≡ d mod m, then a+ c ≡ b+ d mod m

4. If a ≡ b mod m and c ≡ d mod m then ac = bd mod m
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5. If a ≡ b mod m and d|m, then a ≡ b mod d.

6. If a ≡ b mod m then ac ≡ bc mod mc.

Proof.

1. a ≡ b (mod m) if and only if m|(b − a) if and only if m|(a − b) if and only if b ≡ a
(mod m). Finally b−a ≡ 0 (mod m) if and only if m|(b−a)−0 if and only if m|b−a.

2. Suppose a ≡ b (mod m) and b ≡ c (mod m). Thus m|(b−a) and m|(c− b). Therefore
m|(c− b) + (b− a) = c− a. Therefore a ≡ c (mod m).

3. Suppose a ≡ b (mod m) and c ≡ d (mod m). Thus m divides both b − a and d − c.
Therefore m divides (b− a) + (d− c) = (b+ d)− (a+ b). Thus a+ c ≡ b+ d (mod m).

4. Suppose a ≡ b (mod m) and c ≡ d (mod m). Then there exists q1, q2 ∈ Z with
b− a = q1m and d− c = q2m. Therefore bd = (q1m+ a)(q2m+ c) = q1q2m

2 + aq2m+
cq1m+ ac = (q1q2m+ aq2 + cq1)m+ ac. Thus m|(bd− ac) and so ac = bd (mod m).

5. Suppose a ≡ b (mod m) and d|m. Then m|(b − a) and so d|(b − a). Therefore a ≡ b
(mod d).

6. Suppose a ≡ b (mod m). Thus b−a = qm for some integer q. Therefore bc−ac = qmc
so mc|(bc− ac), i.e., ac ≡ bc (mod mc).

2

Theorem 3.20 Let f be a polynomial with integral coefficients. If a ≡ b mod m then
f(a) ≡ f(b) mod m.

Proof. Let f(x) = c0 + c1x+ c2x
2 + · · · cnxn

Since a ≡ b mod m, we have a2 ≡ b2 mod m, . . . , an ≡ bn mod m (follows from part 4 of
previous theorem). Therefore, c ≡ c0(m), c1a ≡ c1b(m), c2a

2 ≡ c2b2 mod (m), . . . , cna
n ≡

cnb
n(m) (also follows from part 4 of previous theorem)

Therefore, c0 + c1a+ · · ·+ cna
n︸ ︷︷ ︸

f(a)

≡ c0 + c1a+ · · · cnbn︸ ︷︷ ︸
f(b)

mod n 2

Note: If ax = ay and a 6= 0, then x = y when a, x, y ∈ R. However, if ax ≡ ay and a 6≡ 0,
it is not always true that x ≡ y. For example, If a = 10, x = 2, y = 23, and m = 42, then
ax = 20 and ay = 230 = 20 mod 42, so ax ≡ ay mod 42, but a = 10 6≡ b = 23 mod 42.
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Theorem 3.21 1. ax ≡ ay mod m if and only if x ≡ y
(

mod m
(a,m)

)
2. If ax ≡ ay( mod m) and (a,m, ) = 1, then x ≡ y

3.

x ≡ y mod m1

x ≡ y mod m2
...

x ≡ y mod mr

if and only if x ≡ y mod [m1,m2, · · · ,mr]

Proof.

1. If ax ≡ ay mod m then ay − ay = mz for some z ∈ Z. Therefore

a

(a,m)
(x− y) =

m

(a,m)
z

So
m

(a,m)
| a

(a,m)

But (
m

(a,m)
,

a

(a,m)

)
=

1

(a,m)
(a,m) = 1

Thus, m
(a,m)
|(x − y) i.e. x ≡

(
mod m

(a,m)

)
Conversely, if x ≡ y

(
mod m

(a,m)

)
, then

ax = ay
(

mod m
(a,m)

)
. Therefore ax = ay mod m (sinc m| am

(a,m))

2. This is a special case of part 1.

3. (⇒)mi|(x−y) for all i. Therefore, x−y is a common multiple of mi, . . . ,mn. Therefore
[m1, . . . ,mr]|(x− y). That is, x = y mod [m1,m2, . . . ,mr]

(⇐) If x ≡ y mod [m1, . . . ,mr], then x ≡ y( mod mi) since mi|[m1,m2, . . . ,mr]

2

Definition 3.8 A set of m integers {a1, . . . , am} is a complete residue system modulo m if
for every integer x, there is a unique i such that x ≡ ai mod m.

Clearly, there are infinitely many. For example both {0, 1, 2, . . . ,m1} and {1, 2, . . . ,m}
are complete residue systems module m. Also, both {0, 1, 2, 3, 4, 5} and {1, 5, 8, 12, 28,−3}
complete residue systems modulo 6.

The set {x|x ≡ a( mod m)} for some fixed a is the congruence class modulo m of a. This
is the set of numbers a, a±m, a± 2m, a± 3m, . . .
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Theorem 3.22 If b ≡ c( mod m), then (c,m) = (b,m).

Proof. If b ≡ c mod m, then m|(b − c). Therefore, b − c = mx for some x ∈ Z. Then
b = c+mx and so

(b,m) = (c+mx,m) = (c,m)

2

Definition 3.9 A reduced residue system modulo m is a set {a1, . . . , ar} such that for all
x ∈ Z with (x,m) = 1, there is a unique i such that x ≡ ai mod m.

For example, if m = 6, then {1, 5} is a reduced residue system modulo m. If m = 15, then
{1, 2, 4, 7, 8, 11, 13, 14} is a reduced residue system modulo m

Note: by the previous theorem, we my construct a reduced residue system modulo m by
delete from a complete residue system modulo m all ai such that (ai,m) > 1. Furthermore,
every reduced residue system modulo m contains the same number of elements. We denote
this number by φ(m). The function m 7→ φ(m) is called the Euler totient function.

Theorem 3.23 (Fermat’s Little Theorem) Let p be prime.

1. Then ap ≡ a mod p for all a ∈ Z

2. If p 6 |a, then ap−1 ≡ 1 mod p

We shall prove the following theorem

Theorem 3.24 (Euler’s Generalization of Fermat’s Little Theorem) If (a,m) = 1, then
aφ(m) ≡ 1 mod m

Proof. Let {r1, . . . , rφ(m)} be a reduced residue system modulo m. Then {ar1, . . . , arφ(m)} is
also. Hence for all i there is a unique j such that ri ≡ arj mod m. That is

{r1, . . . , rφ(m)} = {ar1, . . . , arφ(m)}

in some order. Therefore,
φ(m)∏
i=1

ari ≡
φ(m)∏
i=1

ari mod m

Therefore

aφ(m)

φ(m)∏
i=1

ri ≡
φ(m)∏
i=1

mod m

Now (r1,m) ≡ 1 for all i. Therefore, (
∏φ(m)

i=1 ,m) = 1, and so aφ(m) ≡ 1 mod n 2
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Theorem 3.25 If (a,m) = 1 then there exists an x such that ax ≡ 1 mod m. Furthermore,
if ax1 ≡ ax2 ≡ 1 then x1 ≡ x2 mod m. Furthermore, if ax1 ≡ ax2 ≡ 1 then x1 ≡ x2(m). If
(a,m) > 1, then there is no x such that ax ≡ 1 mod m.

Proof. If (a,m) = 1, then there is some x, y such that ax+m1 = 1 ie. ax = 1 mod m. The
furthermore is immediate.

Conversely, if ax = 1, then m|ax− 1, say ax− 1 = my. Then 1 = ax−my = ax+m(−y).
Therefore 1 = (a,m). 2

Notation: We denote by a the residue class such that aa ≡ 1 mod m and reserve a−1 for
1
a
∈ R.

Note: a = aφ(m)−1

Lemma 3.26 Let p be a prime. Then x2 ≡ 1 mod p if and only if x ≡ ±1 mod p

Proof.

x2 ≡ 1 ⇔ x2 − 1 ≡ 0 mod p

⇔ (x− 1)(x+ 1) ≡ 0 mod p

⇔ p|(x− 1)(x+ 1)

⇔ p|(x− 1) or p|(x+ 1)

⇔ x ≡ 1 mod p or x ≡ −1 mod p

2

Theorem 3.27 (Wilson’s Theorem) If p is a prime then (p− 1)! ≡ −1 mod p

Proof. It is easy to check for p = 2 or 3. Therefore, suppose p ≥ 5. Let 1 ≤ a ≤ p− 1. Then
(a, p) = 1 and there is a unique number a such that 1 ≤ a ≤ p− 1 and aa = 1.

Note: a = a if and only if aa =≡ 1 if and only if a ≡ ±1 mod p. Therefore

p−2∏
a=2

a ≡ 1 mod p

and so

(p− 1)! =

p−1∏
a=1

a =

p−2∏
a=2

a · 1 · (p− 1) ≡ 1 · 1(p− 1) ≡ −1 mod p

2
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Theorem 3.28 Let p be a prime. Then x2 ≡ −1(p) for some x if and only if p = 2 or ≡ 1
mod 4.

Proof. If p = 2, then take x = 1. Now suppose that p is odd. Then, by Wilson’s Theorem,

−1 ≡
(

1 · 2 · 3 · · · · · p− 1

2

)(
p+ 1

2
· · · · · (p− j) · · · · · (p− 2) · (p− 1)

)
mod p

I.e.

−1 ≡
(p−1)/2∏
j=1

j(p− j) mod p

≡
(p−1)/2∏
j=1

−j2(−1)(p−1)/2

(p−1)/2∏
j=1

j2 mod p

(⇐) If p ≡ 1 mod 4, this gives −1 ≡
∏(p−1)/2

j=1 j2 =
(∏(p−1)/2

j=1 j
)2

and therefore, x =∏(p−1)/2
j=1 j is a solution.

(⇒) Conversely, assume that x2 = −1 mod p. Then p 6 |x, clearly (p > 2 still) Therefore,

(x2)(p−1)/2 ≡ (−1)(p−1)/2 mod p

and so
xp−1 ≡ (−1)(p−1)/2 mod p

But, by Fermat’s little theorem, xp−1 = 1 mod p. Therefore, (−1)(p−1)/2 ≡ 1 mod p. If
(−1)(p−1)/2 = −1, this means p|2, a contradiction. So (−1)(p−1)/2 = 1. I.e. p ≡ 1 mod 4. 2

Lemma 3.29 If p is a prime number and p ≡ 1 mod 4, then there are numbers a, b such
that p = a2 + b2.

Proof. By the previous theorem, there is a number x such that x2 ≡ 1 mod p.

Define f(u, v) = u+ xv and K = [
√
p] ∈ N ([x] is x rounded down to nearest). Then

K <
√
p < K + 1

Consider pairs (u, v) such that 0 ≤ u ≤ K and 0 ≤ v ≤ K. There are (k + 1)2 such pairs.
Also, since (k + 1) >

√
p, (K + 1)2 > p. By the pigeonhole principle, there are two pairs

(u1, v1) and (u2, v2) with 0 ≤ ui, vi ≤ K, f(u1, vi) ≡ f(u2, v2) mod p, and (u1, v1) 6= (u2, v2).
I.e. u1 + xv1 ≡ u2 + xv2 mod p. Define a = u1 − u2, b = v1 − v2 ( (a, b) 6= (0, 0)). Then
a ≡ −xb. Therefore, a2 ≡ x2b2 > 0. Also, 0 ≤ u1, u2 ≤ K. So a ≤ K and−K ≤ a. Similarly,
K ≤ b ≤ K. Therefore a2 ≤ K2 < p. and b2 ≤ K2 < p. Therefore, 0 < a2 + b2 < 2p. Since
p|a2 + b2, we must have p = a2 + b2. 2
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Theorem 3.30 Let q be prime and assume q|a2 + b2. If qq ≡ 3 mod 4, then q|a and q|b.

Proof. If q 6 |a or q 6 |b and q|a2 + b2 then q 6≡ 3 mod 4.

Assume, without loss of generality, that q 6 |a and q|a2 + b2. Since q 6 |a, we have (q, a) = 1.
Then there is some number a such that aa = 1 mod q. Multiply a2 ≡ −b2 mod q by a2

to get 1 = −a2b2 mod q. Then x = ab is a solution of x2 ≡ −1 mod q. Therefore q ≡ 1
mod 4 or q = 2 and so q 6≡ 3 mod 4. 2

Theorem 3.31 (Fermat) Factor n into primes as

n = 2α
∏

pi≡1(4)

pβii
∏

qj≡3(4)

q
γj
j

. Then there are numbers a, b such that n = a2 + b2 if and only if each γj is even.

Proof. Note: (a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2 for all a, b, c, d ∈ R. Thus, if m and
n are both the sum of two squares then so is mn.

Also, 2 = 12 + 12 and if p ≡ 1 mod 4, then p is the sum of 2 squares. Also, if q2 = q2 + 02.
This proves (⇐)

Now, suppose that n = a2+b2, q ≡ 3 mod 4, q ≡ 3 mod 4 and γ > 0. Then by the previous
lemma, q|a and g|b. Therefore q2|n. I.e. γ ≥ 2. Then

n

q2
=

(
a

q

)2

+

(
b

q

)2

Applying the same argument to n
q2

, we see that if γ > 2, then γ ≥ 4. Since this process must

terminate, we conclude that γ is even and qγ/2 divides a and b. 2

3.4 Solutions of Congruences

Consider a polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

with ai ∈ Z. If u ∈ Z and f(u) ≡ 0 mod m then we say u is a solution of the congruence

f(x) ≡ 0 mod m

This depends on both f and m.

Note: An earlier theorem shows that if u ≡ v( mod m) then f(u) ≡ f(v). Hence, we will
say that x ≡ u mod m is a solution to f(x) ≡ 0 mod m if f(u) ≡ 0 mod m.
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Example 3.8 x2 − 2x+ 6 ≡ 0 mod 14 has solutions x ≡ 4 and x ≡ 12.

Example 3.9 x2 − 7x+ 2 ≡ 0 mod 10 has x ≡ 3, 4, 8, 9 as (only) solutions.

Definition 3.10 Let r1, . . . , rm denote a complete residue system modulo m. The number
of solutions of f(x) ≡ 0 mod m is the number of ri such that f(ri) ≡ 0 mod m

Example 3.10 x2 + 1 ≡ 0 mod 5 has 2 solutions.

x2 + 1 ≡ 0 mod 7 has no solutions.

x2 − 1 ≡ 0 mod 8 has 4 solutions.

Definition 3.11 Let f(x) = anx
n+an−1x

n−1 + · · · a0. Let j be the largest integer such that
a 6≡ 0 mod m (if such a j exists) Then the degree of the congruence f(x) ≡ 0 mod m is j.
If no such j exists, we don’t assign a a degree.

For example, each of the polynomials in the last example have degree 2. The degree of the
congruence 5x4+2x3+1 ≡ 0 mod 5 is 2, since the coefficient of x4 is congruent to 0 mod 5.

3.4.1 Linear Congruences

A congruence of degree 1 is called a linear congruence

Theorem 3.32 Let a, b ∈ Z,m ∈ N(m 6= 0). Let g = (a,m). The congruence ax ≡ b
mod m has a solution if and only if g|b. If g|b then the solutions form an arithmetic sequence
with common difference m/g and length g.

Example 3.11 Consider the congruence 6x ≡ 9 mod 21. g = (6, 21) = 3|9 so the congru-
ence has a solution. The common difference of the solutions is 21/3 = 7, and the length of
the solution sequence is 3. Since 5 is a solution, the solutions are 5, 5 + 7, and 5 + 2 · 7 = 19.

Proof. By the definition of congruence, we want want to determine whether or not there are
x and y such that

ax+my = b

(⇒)Since g = (a,m), we know that g divides the LHS. Hence, if g 6 |b, then no solutions
exist.
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(⇐) Now, suppose that g|b. Write b = gβ, a = gα, and m = gµ. Thus, we want to determine
whether or not there are x and y such that

gαx+ gµy = gβ

That is, such that
αx+ µy = β

Claim: There is some number α such that αα ≡ 1 mod µ.

Proof of Claim Because (α, µ) = 1, there are numbers A and B such that Aα + Bµ = 1.
Therefore Aα ≡ 1 mod µ. Pick α = A.

Now, multiply by α to get ααx+ αµy = αβ. Then

x ≡ αβ mod µ.

Thus x = αβ, αβ+µ, αβ+ 2µ, . . . , αβ+ (g−1)µ are all solutions to ax ≡ b mod m. Note
αβ + gµ = αβ +m ≡ αβ mod m 2

3.5 Chinese Remainder Theorem

Theorem 3.33 Suppose (m,n) = 1. Given integers a and b, there exists exactly one solution
x mod mn to the simultaneous congruences

x ≡ a mod m, x ≡ b mod n

Example 3.12 Solve the system of congruences

x ≡ 3 mod 7

x ≡ 5 mod 15

Solution. Since (7, 15) = 1, there exists exactly one solution x between 0 and 7 · 5 = 105.
List numbers congruent to 5 mod 15, and reduce them mod 7 until we find one congruent
to 3 mod 7. The numbers congruent to 5 mod 15 are

5, 20, 335, 50, 65, 80, 95, . . .

Reducing mod 7, these numbers are

5, 6, 0, 1, 2, 3, 4

Since we want 3 mod 7, we choose 80. 2
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The technique used in the last example works for small numbers, but is inefficient for larger
numbers. For larger numbers, we use the following technique, based on the technique in the
preceding example. If x ≡ b mod n, then

x = b+ nk

for some integer k. So we solve

b+ nk ≡ a mod m

for k. This can be written
nk ≡ a− b mod m

Since (m,n) = 1, there is a number n such that nn ≡ 1 mod m. Therefore,

k ≡ (a− b)n

Substituting k into b+ nk and reducing modulo mn gives the required value of x.

Returning to the previous example, we want to find k such that 5 + 15k = 3 mod 7, which
is the same as

15k = −2 mod 7

Since 15 ≡ 1 mod 7, the inverse of 15 is 1 (or itself, since 15 and 1 are equivalent). Therefore,
k = −2 mod 7 so

x = 5 + 15(−2) ≡ −20 mod 5 · 7 ≡ 80 mod 105

Example 3.13 Solve x2 ≡ 1 mod 35

Solution. Note that 35 = 5 · 7. Then, using the CRT, we have

x2 ≡ 1 mod 35⇔
{
x2 ≡ 1 mod 7
x2 ≡ 1 mod 5

Now x2 ≡ 1 mod 5 has two solutions x ≡ ±1 mod 5 and x2 ≡ 1 mod 7 also has two
solutions x ≡ ±1 mod 7

There are four different ways that these can be put together

x ≡ 1 mod 5, x ≡ 1 mod 7 → x ≡ 1 mod 35

x ≡ 1 mod 5, x ≡ −1 mod 7 → x ≡ 6 mod 35

x ≡ −1 mod 5, x ≡ 1 mod 7 → x ≡ 29 mod 35

x ≡ −1 mod 5, x ≡ −1 mod 7 → x ≡ 34 mod 35

2

Theorem 3.34 (Chinese Remainder Theorem, General Form) Let m1, . . . ,mk be integers
with gcd(mi,mj) = 1 whenever i 6= j. Given integers a1, . . . , ak there exists exactly one
solution x mod m1 · · ·mk to the simultaneous congruences

x ≡ a1 mod m1, x ≡ a2 mod m2, . . . , x ≡ a1 mod m1
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3.6 Fast Exponentiation

Frequently when using modular arithmetic for cryptographic applications, we need to com-
pute numbers of the form xa, reduced modulo n. There are some examples of this in the
homework. We can use Fermat’s little theorem, along with the following technique, known
as fast exponentiation. Suppose we want to compute 21234 mod 789.

1. First approach: compute 21234, then reduce modulo 789. This is impractical. 21234 is
too big for Matlab.

2. Second approach: compute consecutive powers and reduce mod 789. Ie.

Compute 22, reduce mod 789,

compute 23 = 22 · 2 mod 789 using reduced form of 22 mod 789, reduce mod 789

compute 24 = 23 · 2 mod 789 using reduced form of 23 mod 789, reduce mod 789

...

compute 2n+1 = 2n · 2 mod 789 using reduced form of 2n mod 789, reduce mod 789

• never have to work with large numbers (good)

• requires 1233 calculations. tractable, but still too slow for practical use. (bad)

3. Third approach: We start with 22 ≡ 4 mod 789 and repeatedly square both sides to
obtain the following congruences

24 ≡ (22)2 ≡ 42 ≡ 16

28 ≡ (24)2 ≡ 162 ≡ 256

216 ≡ (28)2 ≡ 2562 ≡ 49

232 ≡ (216)2 ≡ 34

264 ≡ 367

2128 ≡ 559

2256 ≡ 37

2512 ≡ 580

21024 ≡ 256

Next, we write 1234 (the exponent) as a sum of powers of 2,

1234 = 1024 + 128 + 64 + 16 + 2

Then

21234 = 21024+128+64+16+2

= 21024212826421622

≡ 286 · 559 · 367 · 49 · 4 ≡ 481 mod 789
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The third approach can be generalized, providing a method for computing ab mod n in at
most 2 log2(b) multiplications mod n, and we never have to work with numbers larger than
(n− 1)2. The algorithm is as follows,

1. Write b as a sum of powers of 2,

b = bm2n + bm−12
n−1 + · · ·+ b12 + b0

for some m ∈ Z, bi ∈ {0, 1} (there is a unique way to do this).

2. Recursively compute a2
i

for 1 ≤ i ≤ m, reduced modulo n at each step,

a2
i+1

= (a2
i

)2 = ai
2 mod n

where ai ≡ a2
i

mod n and ai ∈ {0, . . . , n− 1}

3. Then

ab = abm2m+bm−12m−1+···+b12+b0

= abm2mabm−12m−1 · · · · · ab12 + ab0

≡ abmm a
bm−1

m−1 · . . . · ab11 ab00 mod n

The amount work needed can sometimes be further reduced using Fermat’s last Theorem
(or Euler’s generalization).

Recall,
ap−1 ≡ 1 mod p

when p is a prime and (a, p) = 1, and more generally,

aφn ≡ 1 mod n

when (a, n) = 1. Since b = q(p− 1) + r for some q, r, 0 ≤ r < p− 1, we have

ab = aq(p−1)ar = (ap−1)qar mod p

≡ 1qar mod p Since ap−1 ≡ 1 mod p

≡ ar mod p

Thus, if n = p, then we can then apply the method above using r instead of b. When n is
not prime, we can use Euler’s generalization to obtain a similar result.
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Modern Cryptosystems

We now have the mathematics tools to describe the modern cryptographic schemes.

4.1 The RSA scheme

Historically speaking, the RSA scheme is first of the modern cryptographic systems. Unlike
the classical cryptosytems, the RSA scheme is a public key cryptosytem. This means that
there is a key that is distributed publicly that can be use to encrypt messages. Only the
intended recipient can decrypt the message using a secret key. The method was developed
by Rivest, Shamir, and Adelman in 1978. In fact it was known before then by the British
Military, but it was never published (not surprisingly).

1. key

(a) Alice chooses two secret prime numbers p and q.

(b) Alice choose e such that (e, p− 1, q − 1) = 1.

(c) Alice computes d = e mod (p− 1)(q − 1)

• Alice’s public key is n = pq and e

• Alice’s secret key is p, q, d and φ(n) = (p− 1)(q − 1)

2. Encryption Bob encrypts a message m, where 0 ≤ m < n as c :≡ me mod n

m 7→ c ≡ me mod n

3. Decryption Alice decrypts via m ≡ cd mod n

c 7→ m ≡ cd mod n

43
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Why this works

cd ≡ (me)d ≡ med mod n

Now, since d ≡ e mod (p− 1)(q− 1), ed ≡ 1 mod (p− 1)(q− 1). Therefore, by the definition
of congruence, ed = 1 + k(p− 1)(q − 1) for some k ∈ Z, so

cd ≡ med mod n

≡ m[m(p−1)(q−1)]k mod n Since ed = 1 + k(p− 1)(q − 1)

≡ m[mφ(n)]k mod n

≡ m · 1k mod n

≡ m

Example 4.1 Suppose that p = 17 and q = 43, and let e = 29. Then n = pq = 731. Also,
gcd(17 − 1, 43 − 1, 29) = 1. The public key is then n = 731 and e = 29. To complete the
private key, Alice needs to find d ≡ e = 29 mod 672. To do this, she uses the extended
Euclidean algorithm.

672 = 23 · 29 + 5

29 = 5 · 5 + 4

5 = 1 · 4 + 1

Therefore,

1 = 5− 1 · 4
= 5− 1(29− 5 · 5) = 6 · 5− 1 · 29

= 6(672− 23 · 29)− 1 · 29

= 6(672)− 139(29)

Therefore, 29(−139) ≡ 1 mod 672, so d = 29 ≡ −139 ≡ 533 mod 672

The plaintext space is {m|0 ≤ m ≤ 730}. Note that 262 = 676 < 730, so we can use
{m|0 ≤ m ≤ 675} instead, to map pairs of letters to numbers (with a little extra room left
over).

To encrypt, we map the letter pair (α, β) 7→ m = 26α + β 7→ c :≡ me mod 731

For example, hi 7→ (7, 8) 7→ 26 ·7+8 = m 7→ m29. We use the method of fast exponentiation
to compute m29. First, we write the exponent 29 as a sum of powers of 2,

29 = 16 + 8 + 4 + 1

Then we square repeatedly, reducing modulo 731 at each step.

292 ≡ 281 mod 731

294 ≡ (292)2 ≡ 13

298 ≡ 169

2916 ≡ 52
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Thus,

c = m29 ≡ 19029 = 19016+8+4+1

= (190)16(190)8(190)4(190)1

≡ (52)(169)(13)(190)

≡ (16)(13)(190) ≡ 208(190)

≡ 46 mod 731

So the encrypted message sent is 46.

To decrypt, Alice computes m = cd = c533. Using fast exponentiation (as an exercise, fill in
the details),

m = c533 ≡ 46533

= (46)512(46)16(46)4(46)

= (154)(324)(81)(46)

= 190 mod 731

Then 190 = 26α+ β for some numbers α and β. In fact, α is the quotient and β remainder
on division of 190 by 26. Thus α = 7 and β = 8, giving the plaintext hi.

4.2 Miller-Rabin Primality Test

Recall the following lemma,

Lemma 4.1 If p is prime, then

x2 ≡ 1 mod p⇔ x ≡ x ≡ ±1 mod p

Note: This can fail for composite numbers. For example, 92 = 81 ≡ 1 mod 20 but 9 6≡
±1 mod 20.

We use this property to distinguish primes. Take a number n and write n− 1 = 2km where
m is odd. Let 1 < a < n − 1. If n is prime, then an−1 = a2

km ≡ 1 mod n. Therefore,
bk−1 = a2

k−1m satisfies b2k−1 ≡ 1 mod n (if n is prime).

If bk−1 ≡ 1 mod n, we consider bk−2 = a2
k−2m mod n, etc.

Thus, we have

b0 ≡ am, b1 = (b0)
2 ≡ a2m, b2 = (b1)

2 ≡ a4m, . . . , bk = (bk−1)2 ≡ a2
km = an−1

If n is prime, the sequence b0, b1, . . . , bk mod n ends with a sequence of 1’s, bt = bt+1 =
· · · bk = 1. Either t = 0 or bt−1 = −1.

The M-R test checks wether this happens. The algorithm is as follows,
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• Choose 1 < a < n− 1 (at random, or a = 2, or...)

• Form the sequence

b0 ≡ am, b ≡ (b0)
2, b2 ≡ (b1)

2, . . . , bk ≡ (bk−1)
2

• Find the smallest t such that bt+1 ≡ 1 mod n

– If there is no such t, then n is composite (bk ≡ 1 if n is prime).

– If b0 ≡ 1 mod n, then n passes the M-R test and is “probably” prime.

– If t + 1 ≥ 1 and bt ≡ −1 mod n, then n passes the M-R test and n “probably”
prime.

– If bt+1 ≡ 1 and bt 6≡ ±1 then n is composite.

Fact: If n passes the test for 1 choice of a, then the probability that this was wrong and n
is really composite is < 1/4. Therefore, if we apply the test r times and n passes all r tests,
the probability that the test is wrong and n is composite is < (1/4)r.

Note: The smallest composite number n which passes the test for a = 2, 3, 5, 7, 11, 13, 17, 19
satisfies n > 1014 (n is known)

Example 4.2 n = 561, a = 2. Then 561− 1 = 16(35) = 24 · 35. Using fast exponentiation,

235 ≡ 263 mod 561

270 ≡ 166

2140 ≡ 67

2280 ≡ 1

Because 2280 ≡ 1, but 2140 6≡ ±1, n fails the M-R test and 561 is composite.

4.3 Analysis of Attacks

In practice, the primes p and q in the RSA scheme are chosen to be very large, about 100
digits (in base 10 notation). Then φ(n) = (p − 1)(q − 1) is about 200 digits long, which
makes φ(n) hard to factor. Thus, we assume that it is “hard” to factor n and ask what Eve
can do given this assumption.

Eve knows n, e, and c. She does not know p, q, and d.

Claim 1 If Eve knows n and φ(n)

1. She can factor n
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2. She can find d.

Proof.

1. n − φ(n) + 1 = pq − (p − 1)(q − 1) + 1 = p + q. Therefore, Eve knows pq and p + q.
The polynomial

x2 − (n− φ(n) + 1)x+ n = x2 − (p+ q)x+ pq

has roots p and q. But these can easily be determined from the quadratic formula

2. Use the method Alice used to find d.

2

Summary: Assuming Eve cannot factor n implies Eve cannot find φ(n).

Example 4.3 If Eve knows n = 221 and φ(n) = 192, she considers x2− (221− 192 + 1)x+
221 = x2 − 30 + 221. Then, by the quadratic polynomial,

p, q =
30±

√
900− 4(221)

2
= 13, 17

Claim 2 If Eve knows d and e, then she can probably factor n.

Proof. Recall that ed ≡ 1 mod φ(n), so de = kφ(n) + 1 for some k. Thus,

ade−1 = (aφ(n))k ≡ 1 mod n

for all a with (a, n) = 1. This means Eve can use the Method for Universal Exponents to
factor n. 2

4.3.1 Universal Exponent Factorization Method

This method is based on the same principles as the Miller-Rabin algorithm, but rather than
testing to see if a number is prime, the method is used to find factors.

Suppose r > 0 is such that ar ≡ 1 mod n for all a with (a, n) = 1. (Such an r always exists.
For example, r = φ(n))

• Write r = 2km with m odd.
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• Choose a random value a with 1 < a < n− 1.

• If (a, n) 6= 1, we have a factor of n and so we may assume that (a, n) = 1.

• Set b0 := am mod n and bj+1 := b2j mod n for 1 ≤ j ≤ k − 1

• If b0 ≡ 1 mod n then stop and choose a new a

• If bj ≡ −1 mod n for some j then stop and choose a new a

• Otherwise, there is a number j such that

bj 6≡ ±1 mod n, but bj+1 ≡ 1 mod n

Then n|(b2j−1) = (bj−1)(bj +1), so gcd(bj−1, n) gives a non-trivial factor of n. Using
a few values of a, we have a high probability of factoring n.

Example 4.4 132 ≡ 32 mod 40, but 13 6≡ ±3 mod 40, so 40 is composite.

4.3.2 Trial Division

Suppose n has 100 decimal digits. Then
√
n ≈

√
10100 = 1050. By the Prime Number

Theorem, there are approximately

1050

ln(1050)
=

1050

50 ln 10
=

1050

115.1
≈ 8.18× 1047 = 1048

prime numbers less than 1050.

It takes 160 bits or 20 bytes to store a 48 digit number. THus, to store the list of primes
less than 1050 would take

20× 1048 = 2× 1049

bytes. This would take 2× 1037 1 terabyte hard drives.

4.3.3 Common Modulus Protocol Failure

Suppose that Frank and Bob use the same modulus, n = pq but different public exponents eF
and eB. Alice encrypts the same message m to both Bob and Frank. Assuming (m,n) = 1,
Eve may easily decode: she finds a and b such that aeF + beB = 1. Then

(cF )a(cB)b = (meF )a(meB)b = maeF+beB ≡ m1 mod n
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4.3.4 Small Decryption Exponent Attack

Theorem 4.2 Let p, q be prime with q < p < 2p and let n = pq. Suppose d < 1
3
n1/4. Given

n and e such that de ≡ 1 mod φ(n) there is an efficient procedure for computing d.

• This produced uses continued fractions for e/n.

• Conclusion

1. p and q should be slightly different sizes.

2. d should be large.

4.3.5 Partial Disclosure Attack

Theorem 4.3 Let n = pq have r digits. If we know the first r/4 or the last r/4 digits of p,
we can efficiently factor n.

Theorem 4.4 Suppose n and e form an RSA public key and n has r digits. Let d be the
decryption exponent. If we know the last r/4 digits of d we can efficiently find d in time that
is linear in e log2 e

• This is useful if e is small. If e ≈ n, this is not useful.

4.4 Factorization Methods

We now consider various factorization methods and their relevance to the RSA scheme.

4.4.1 Fermat Factorization

Here, we try to express n as a difference of squares, n = x2 − y2. Then n = (x− y)(x+ y).

Example 4.5 To factor n = 295927, we compute

n+ 12, n+ 22, n+ 33, . . .

until we find a square. Here, 295927 + 32 = 295936 = (544)2. Therefore,

n = 295927 = (544)2 − (3)3

= (544− 3)(544 + 3) = (541)(547)
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This method works well if n = pq. where |p − q| is small. It takes 1
2
|p − q| steps to find a

factorization of n.

For this reason, p and q are chosen in RSA with |p− q| not too small.

If p and q are both random 100 digits primes, then |p− q| will also be 100 digits.

4.4.2 Pollard’s p− 1 Factoring Algorithm (to factor n− 1)

1. Choose an integer a > 1 (Often a = 2).

2. Choose a bound B.

3. Compute b ≡ aB! (b1 ≡ a, bi+1 = bi+1
i , bB = b)

4. Let g = (b− 1, n).

5. If g > 1, we have a non-trivial factor of n.

Why this works

Suppose p is a prime factor of n such that p − 1 has only small (≤ B) prime factor. Then,
probably, p−1|B!, so B! = (p−1)k for some k. Then b ≡ aB! ≡ (ap−1)k ≡ 1 mod p Therefore,
p|((b− a), n) = g

What if (b − 1, n) = n. If q is another prime factor of n it is unlikely b ≡ 1 mod q (unless
q − 1 has only small prime factors), thus (b− 1, n) is probably not n.

Even if g = n, we ma still proceed, for in this case, we know a and r = B! such that
ar ≡ 1 mod n. Therefore, we may apply the exponent factorization method

Or, we may repeat the above method with a smaller value of B.

Conclusion For RSA with n = pq, we want both p−1 and q−1 to have large prime factors.

We may do this as follows. Suppose we want p to have 100 digits. Choose a large prime p0,
say with 40 digits. Consider integers of the form kp0 + 1 with k ≈ 1060. Use Miller-Rabin to
find a prime number of the form kp0 + 1. On average, this should take less than 100 steps
to find kp0 + 1 primes.

4.5 Quadratic Sieve

Proposition 4.5 Suppose x2 ≡ y2 mod n but x 6≡ ±y mod n then n is composite. Moreover,
(x− y, n) is a nontrivial factor of n
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Proof. Set d := (x − y, n). Then d 6= n since x 6= y mod n. Suppose that d = 1. Since
n|(x−y)(x+y), (x−y, n) = 1 means that n|x+y, and so x =≡ −y, which is a contradiction.

2

Suppose we want to factor n = 3837523. Observe,

93982 ≡ 55 · 19 mod n

1900952 ≡ 22 · 5 · 11 · 13 · 19 mod n

19542 ≡ 32 · 32 · 133 mod n

170782 ≡ 26 · 32 · 11

Multiply these together,

(9398 · 19095 · 1964 · 17078)2 ≡ (24 · 32 · 53 · 11 · 13 · 19)2 mod n

i.e. (2230382)2 ≡ (2586705)2 mod n

But 2230387 6≡ ±(2586705) mod n

(2230387− 2586705, n) = 1093 n = (1093)(3511)

How did we do this?

1. Find numbers m such that m2 mod n has only small prime factors (“small” : < B in
factor base). For example, in the previous example, the factor base is {2, 3, 5, 7, 11, 13, 17, 19}
and B = 20.

2. List the resulting relations as rows in a matrix

2 3 5 7 11 13 17 19
9398 0 0 5 0 0 0 0 1

19095 2 0 1 0 1 1 0 1
1964 0 2 0 0 0 3 0 0

17078 6 2 0 0 1 0 0 0
8077 1 0 0 0 0 0 0 1
3397 5 0 1 0 0 2 0 0

14262 0 0 2 2 0 1 0 0

Now, look for mod2 relations among the rows. Here are 3 such relations,

1. R1 +R5 +R6 ≡ 0 mod 2

2. R1 +R2 +R3 +R4 ≡ 0 mod 2

3. R3 +R7 ≡ 0 mod 2

Each such relation among the rows expresses a congruence of squares modn.
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1. (9398 · 8077 · 3397)2 ≡ 26 · 26 · 132 · 192

2. (9398 · 19095 · 1964 · 17078)2 ≡ (23 · 32 · 53 · 11 · 132 · 19)2

3. (1964 · 14262)2 ≡ (3 · 5 · 7 · 132)2

Thus we have 3 expressions x2 ≡ y2 mod n. If x 6 ±y mod n, then gcd(x − y, n) yields a
nontrivial factor of n. If x ≡ ±y then gcd(x − y, n) = 1 and we get nothing. Of the three
give relations,

1. (35905233)2 ≡ (247000)2, but 3590523 ≡ −247000, so we get nothing.

2. (2230387)2 ≡ (2586705)2 and gcd(2230387− 2586705, n) = 1093

3. (1147907)2 ≡ (17745)2, and gcd(1147907− 17745, n) = 1093

Now we consider how we find squares whose residues have only small factors.

The idea is to find numbers m such that m2 is slightly larger than some multiple of n. To do
this, we take m = [

√
in+ j] for j small. Then m2 ≈ in+ 2j

√
in+ j2 ≈ 2j

√
in+ j2 mod n. If

i is not too large, this number is fairly small and so there is a good chance it will have only
small prime factors. For example 8077 = [

√
17n + 1] and 9398 = [

√
23n + 4]. This method

is the basis of the best known public factoring method (NFS). The main problem is to find
relations of the form x2 ≡ Product of Small Primes mod n

• An improved version of this method is called the quadratic sieve

• A further improvement is a new method called the number field sieve

• Every non-trivial relation x2 ≡ y2 yields x ≡ ±y at most half the time. Thus, if we
have many relations, (say the matrix has several more rows than columns), we have a
good chance of factoring n.

In 1978, when RSA was made public, the authors publicized an n with 129 digits and
e = 9007 and a ciphertext and challenged people to break it.

At that time, they estimated it would take 4 × 1016 years using 1978 methods to factor n.
They risked offering a $100 prize for the first decryption done before April 1, 1982.

In 1994, Atkins, Graff, Lenstra, and Leyland factored n.

They used a factor base of 524339 “small” primes. i.e. all primes less than B = 16333610,
(plus two “large” primes between 16333610 and 230). The Birthday Paradox (see below)
implies that there should be several cases where the same large prime occurs in more than
1 relation.
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Six hundred people using 1600 computers found congruences of the desired type. These were
emailed to a central machine which verified them and removed duplicates.

Over 7 months they obtained a matrix with 524339 column and 569466 rows. The matrix
was sparse. Using Gaussian Elimination, this was reduced to a non-sparse 188614× 188160
matrix in 12 hours. 45 more ours produced 205 dependencies. The first 3 yielded trivial
factorizations. the 4th factor n and gave them the plaintext “the magic words are the
squeamish ossifrage”

4.6 Pollard Rho

4.6.1 Random Sequences

Suppose you have a 20-sided (fair) die, with faces numbered from 1 to 20. Throw the die
repeatedly to get a sequence

x0, x1, x2 . . . , ...

of integers in the range 1 ≤ xi ≤ 20. Eventually, the number that appears after a roll of the
dice will be the same as an earlier roll. That is, There is an integer k such that

• x0, x1, . . . , xx−1 are all distinct, but

• xk = xj for some 0 ≤ j < k

Question 4.1 How large is k on average? That is, how many rolls should you expect to
make before the first duplicate shows up?

The average (mean) value of k is 5.29 (rounded to 2 decimal places). That is, on average we
expect the first repeat to appear somewhere near x5.

If we replace the 20-sided die by an n-sided die, we can ask the same question: How many
throws do you expect to make before the first repeat shows up? A general formula is

Average value of k =
n∑
j=1

n!

nj(n− j)!

(As an exercise, show that n!/(nj(n − j)!) is the probability that the first j throws are all
distinct. The formula follows.)

A very good approximation to this formula is

Average value of k ≈
√
nπ

2
− 1

3
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Example 4.6 (The Birthday Paradox) Let n = 366, the possible number of birthdays.
Using the previous formula, the average value of k is around

Average value of k ≈
√

366π/2− 1/3 ≈ 23.6

Thus, if there are 24 or more people in a room, it is likely that at least two people in the
room have the same birthday.

More precisely, if there are exactly 23 people in the room, the probability of a shared birthday
is

1− 366!

343!36623
= 0.506

So the probability of a shared birthday is greater than 50%. For a room of 41 people, the
probability is 90%, for 58 it’s 99%.

(These results assume that each birthday is equally likely, which isn’t true. Feb 29 is ob-
viously less common than the rest, but even among the rest, certain birthdates are more
common than others. Thus, the probabilities are actually underestimates.)

Example 4.7 (The Powerball) Each draw of the multi-state ‘Powerball’ produces 5 distinct
integers in the range 1 to 55, along with a powerball number between 1 and 42. The total
number of possible combinations is

55!

50!5!
· 42 = 146107962

Since there are two drawings every week, how many years would you expect the Powerball
to run before a duplicate draw is made?

With n = 146107962,
√
nπ/2 ≈ 15419, so a repeated drawing is expected after 15149 draws.

There are 104 drawings per year, so a repeat is expected at

14607962

104
≈ 148

years. It could happen much soon. For example, the chance that a repeat drawing occurs
within 55 years is 10%.

The Pollard Rho factorization method is based on these ideas.

4.6.2 The Pollard Rho Factorization Method

Suppose that n is a composite integer. Define a sequence x0, x1, x2, . . . of integers xi in the
range 0 ≤ xi < n recursively as follows,

x0 = 0, xk+1 = (x2k + 1) mod n, k ≥ 1

(That is xk+1 is x2k + 1 reduced modulo n, so that xk+1 is at least 0 and less than n)
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Example 4.8 Suppose that n = 527. Then the sequence starts

0, 1, 2, 5, 226, 150, 367, 350, 274, etc.

There are only finitely many possible values for n, so the sequence repeats eventually. Now
we make the following leap of faith: The initial part of the sequence (before first repeat)
behaves like a random sequence. Then we expect the first repeat somewhere around

√
nπ/2.

Now let p be the smallest prime divisor of n (so p ≤
√
n), and define a sequence y0, y1, . . . ,

of integers by yi = xi mod p. Then

yk+1 ≡ xk+1 mod p

≡ x2x + 1 mod p

≡ y2k + 1 mod p

And hence yk+1 = (y2k + 1) mod p, so the 4yi obey a similar recurrence to the xi and by the
same leap of faith, we expect the sequence of y values to repeat after around

√
pπ/2 steps.

Note that since p ≤
√
n, we have

√
pπ/2 ≤ 1.26n1/4

In the example above, the smallest prime factor of n is 17, and the sequence yi starts

0, 1, 2, 5, 9, 14, 10, 16, 2, 5, 9, . . .

Here is the key observation: even though we don’t know what p is, we can detect when the
sequence yi starts to repeat. For any indices j and k,

yj = yk ⇒ xj ≡ xk mod p

⇒ p|(xk − xj)

Since p|n, we have
p| gcd(xk − xj, n)

In particular, it follows that

yj = yk ⇒ gcd(xk − xj, n) 6= 1

As long as xk 6= xj, gcd(xk − xj, n) must be a proper (not equal to n) nontrivial (not equal
to 1) factor of n.

This suggests the following algorithm,

• Compute the sequence x0, x1, . . . as above

• For each xk, calculate
g = gcd(xk − xj, n), 0 ≤ j < k

until values of j and k are found for which g 6= 1. Then gcd(xk − xj, n) is (hopefully)
a proper factor of n
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We expect the first successful value of k to be of the same order of magnitude as
√
pπ/2.

In the example above, with n = 527, we find that gcd(x5 − x4) = 31, from which the
factorization 527 = 31 · 17

This not practical because,

• Large amount of storage for xk values.

• Requires cp steps (c a constant), making the algorithm no better than trial division.

We can make the Pollard-Rho method practical with the help of the following Lemma

Lemma 4.6 Suppose that yj = yk for some 0 ≤ j < k. Let m be the smallest positive
multiple of k− j for which m ≥ j. Then m ≤ k and ym = y2m. Hence gcd(x2m−xm, n) 6= 1
is a nontrivial factor of n.

We then have the Pollard Rho algorithm

Suppose n is a composite integer. To factorize n.

1. Set x0 = 0. For each k

2. Compute xk = (x2k−1 + 1) mod n

3. Compute x2k = (((x22k−2 + 1) mod n) + 1) mod n

4. Compute g = gcd(x2k − xk, n). If g 6= 1, stop: g is a nontrivial factor of n. Otherwise,
try the next k.

When the algorithm terminates, g will be a nontrivial factor of n.

Using n = 527 again (as in the previous examples)

Example 4.9
k xk x2k gcd(x2k − xk, 527)
0 0 0 527
1 1 2 1
2 2 26 1
3 5 367 1
4 26 274 31

Thus, the Pollard-Rho shows that 31 is a factor of n.
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4.7 Discrete Logarithms and ElGamel Encryption

Let p be a fixed prime and let α and β be integers modulo p. The problem of finding an
integer x such that

β ≡ αx mod p

(if one exists) is called the discrete logarithm problem. In general, if there is a solution x,
then will be more than one solution. However, if n is the smallest possible integer such that
αn ≡ 1 mod p, then we may assume that 0 ≤ x < n. In that case, we denote

x = Lα(β)

and call x the discrete logarithm of β with respect to α. The prime p is omitted from the
notation (and is usually clear from context).

Example 4.10 Let p = 11 and let α = 2. Since 26 = 9 mod 11, x = 6 is a solution to

2x ≡ 9 mod p

Therefore, L2(9) ≤ 6. But the smallest positive integer n such that 2n = 1 is n = 10 (by
inspection), and 0 ≤ 6 < 10, so L2(9) = 6.

Note that x = 16 and x = 26 are also solutions, but x > 10 in both cases so neither 16 nor
26 are the discrete logarithm.

Let α be an integer modulo p. If
β ≡ αx mod p

has a solution for every integer β modulo p, then α is called a primitive root modulo p.

Example 4.11 1. The nonzero powers of 2 modulo 7 are

21 = 2, 22 = 4, 23 ≡ 1, 24 ≡ 2, 25 ≡ 4, 26 ≡ 1

2x 6≡ 3, 5 for any number x, so 2 is not a primitive root mod 7.

2. The nonzero powers of 3 modulo 7 are

31 = 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 = 5, 36 = 1

Each nonzero integer β mod 7 can be written as 2x for some x, so 3 is a primitive root
mod 7.

Often α is taken to be a primitive root modulo p. The discrete log behaves in many ways
like the usual logarithm. For example, if α is a primitive root modulo p, then

Lα(β1β2) ≡ Lα(β1) + Lα(β2)

When p is small, discrete logs can be found by an exhaustive search. When p is large, this is
not feasible. It is believed that computing discrete logs is hard in general, which is the basis
of several cryptosystems.
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4.8 The ElGamel Public Key Cryptosystem

Plaintexts: Integers modulo p

Ciphertexts: pairs of integers (r, t) mod p.

Suppose Alice wants to send a message m to Bob.

Bob constructs a public key as follows. Bob

1. Chooses

(a) A large prime p

(b) A primitive root α

(c) A secret integer a

2. Computes β ≡ αa mod p

3. Publishes (p, α, β)

To encrypt, Alice

1. Downloads (p, α, β)

2. Chooses a secret random intger k and computes r = αk mod p

3. Computes t = βkm mod p

4. Sends the pair (r, t) to Bob

To Decrypt, Bob computes
tr−a ≡ m mod p

Why this works

tr−a ≡ βkm(ax)−a ≡ (αa)kmα−ak ≡ m mod p

Security

If Eve determines a, then she can decrypt by the same procedure as Bob. The number x = a
is a solution to the congruence

β ≡ αx mod p

That is, a = Lα(β). Since it is difficult to compute discrete logs, a is kept secure.



CHAPTER 4. MODERN CRYPTOSYSTEMS 59

If Eve finds k, she can decrypt by computing tβ−k ≡ m. But the number k is also a discrete
logarithm Lα(r), so it is secure.

Suppose that Alice sends messages m1 and m2 to Bob using the same value of k for both
messages. Then r = αk for both messages and

t1 = βkm1 and t2 = βkm2

so the ciphertexts are (r, t1) and (r, t2). Note that

t1
m1

≡ βk ≡ t2
m2

so
m2 ≡ t2

m1

t1
mod p

Thus, if Eve determines m1, she can determine m2. Therefore, it is essential that different
values of k are used for different messages.

4.8.1 Computing Discrete Logarithms

For simplicity, we assume that α is a primitive root modp, so p− 1 is the smallest positive
exponent n such that αn = 1 mod p. This means that

αm1 ≡ αm2 ⇔ m1 ≡ m2 mod p− 1

Suppose that
β ≡ αx, 0 ≤ x < p− 1

The Pohlig-Helman Algorithm

We can use the following method when the prime factors of p− 1 are small.

To find the discrete logarithm Lα(β) modulo p,

1. Factor p− 1 into prime powers

p− 1 =
∏
i

qrii

where the qi are distinct.

2. For each factor qrii compute the discrete logarithm modulo qrii (if possible). That is,
we find ai such that

ai ≡ Lα(β) mod qrii
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3. Recombine using the Chinese Remainder Theorem to find x = Lα(β).

x ≡ a1 mod qr11
x ≡ a2 mod qr22
x ≡ a3 mod qr33

...

(The Chinese Remainder Theorem guarantees that there is a unique number x satis-
fying all of these equations, up to congruence modulo p− 1.)

Steps 1 and 3 have already been covered in earlier sections. We now see how to do step 2.
Suppose that qr = qrii . We write

x = x0 + x1q + x2q
2 + . . .+ xr−1q

r−1, 0 ≤ xi ≤ q − 1

and successively determine the coefficients x0, x1, . . . , xr−1

Note that

x

(
p− 1

q

)
= x0

(
p− 1

q

)
+ (p− 1)(x1 + x2q + x3q

2 + . . .)

= x0

(
p− 1

q

)
+ (p− 1)n

For some integer n. Now raise both sides of the congruence β ≡ αx to the (p−1)/q to obtain

β(p−1)/q ≡ αx(p−1)/q ≡ αx0(p−1)/q(αp−1)n ≡ (α(p−1)q)x0 mod p

The last congruence follows from Fermat’s Little Theorem. To find x0, we use an exhaustive
search, looking at powers

(α(p−1)/q)k mod p, k = 0, 1, 2, . . . , q − 1

until some k yields β(p−1)/q. Then x0 = k. Suppose, now, that q2|p− 1. Let

β1 ≡ βα−x0 ≡ αq(x1+x2q+··· ) mod p

Raise both sides to the (p− 1)/q2,

β
(p−1)/q2

1 ≡ α(p−1)(x1+x2q+··· )/q

≡ α(p−1)/q(αp−1)x2+x3q+···

≡ (α(p−1)/q)x1 mod p

where, again, the last congruence follows from Fermat’s Little Theorem and we can use an
exhaustive search to find x1.

In general, to find x0, x1, x2 . . . , we do the following.

Let β0 = β. For each i ≥ 1 such that qi+1|p− 1.
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1. Let
βi = βi−1α

−xi−1/qi−1

2. Find k such that
(α(p−1)/q)k = β

(p−1)/qi+1

i , k = 1, . . . , q − 1

using an exhaustive search.

3. Then xi = k

We repeat this for all (distinct) prime factors of p− 1.

Example 4.12 Let p = 41, α = 7, and β = 12. We want to solve

7x ≡ 12 mod 41

Solution. First, we factor p− 1 = 41− 1 into powers of distinct primes

40 = 23 · 5

Thus, we need to find
x mod 23

and
x mod 5

We find x mod 8 first. Write x = x0 + 2x1 + 22x2 mod 8 (Note: for each of x0, x1, and x2,
there are only 2 possible values, 0 or 1). First, find x0,

β(p−1)/2 ≡ 1220 ≡ 40 ≡ −1 mod 41

and
α(p−1)/2 ≡ 720 ≡ −1 mod 41

Since
β(p−1)/2 ≡ (α(p−1)/2)x0

we have x0 = 1. Next,
β1 ≡ βα−x0 ≡ 12 · 7−1 ≡ 31 mod 41

Also,

β
(p−1)/(22)
1 ≡ 3110 ≡ 1 mod 41

Since
β
(p−1)/(22)
1 ≡ (α(p−1)/2)x1 mod 41

we have x1 = 0. Continuing, we have

β2 ≡ β1α
−2x1 ≡ 31 · 70 ≡ 31 mod 41
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and
β
(p−1)/q3

2 ≡ 315 ≡ −1 ≡ (α(p−1)/2)x2 mod 41

Therefore, x2 = 1. We have obtained

x ≡ x0 + 2x1 + 4x2 ≡ 1 + 4 ≡ 5 mod 8

Now, we let q = 5 and find x mod 5. We have

β(p−1)/5 ≡ 128 ≡ 18 mod 41

and
α(p−1)/q ≡ 78 ≡ 37 mod 41

Trying the possible values of k yields

370 ≡ 1, 371 ≡ 37, 372 ≡ 16, 373 ≡ 18, 374 ≡ 10, mod41

Therefore, 373 gives the desired answer, so x ≡ 3 mod 5.

By the Chinese Remainder Theorem, there is a unique x such that

x ≡ 5 mod 8 and x ≡ 3 mod 5

Using the technique from Chapter 3, we find that x ≡ 13 mod 41. A quick calculation shows
that

713 ≡ 12 .

2

4.9 Data Encryption Standard

4.9.1 Introduction

In 1973, the US government issued a request for a cryptosystem to become the national
standard. IBM submitted an algorithm called LUCIFER in 1974. The NSA reviewed it and
modified it producing an algorithm that is now called the Data Encryption Standard (DES).
In 1975, the National Bureau of Standards released a free licence for its use and in 1977, the
NBS made it the official data encryption standard.

It is not as secure as a public key system, but it is much faster. It remained the standard
until 2000.
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4.9.2 A Feistel Cipher

A Feistel cipher is a simplified DES-like algorithm. We will encrypt a block of plaintext M
consisting of 12 bits. We split M into two halves, M = L0R0 each with 6 bits. The secret
key K has 9 bits. K is used to generate a key sequence K = K0, K1, . . . , Kn. We repeatedly
perform the same steps, each “round” transforming the 12-bit string Li−1Ri−1 into the 12
bit string LiRi.,

(L0, R0) → (L1, R1) → (L2, R2) → · · · → (Ln, Rn)
K = K0 → K1 → K2 → · · · → Kn

In general, (Li, Ri) = F (Li−1, Ri−1, Ki). We choose F so that

• Li := Ri−1

• Ri := Li−1 ⊕ f(Ri−1, Ki). (the symbol ⊕ stands for XOR, equivalent to addition
mod2).

where f is any function
f : {0, 1}6 × {0, 1}9 → {0, 1}6

Question: How do we decrypt (Ln, Rn) to get back to (L0, R0)?

Answer. Use the same algorithm with input (Rn, Ln) and the keys in the orderKn, Kn−1, . . . , K0.

That is,

(Rn, Ln) 7→ (Ln, Rn ⊕ f(Ln, Kn))

= (Rn−1, Ln−1 ⊕ f(Rn−1, Kn)⊕ f(Ln, Kn))

= (Rn−1, Ln−1 ⊕ f(Rn−1, Kn)⊕ f(Rn−1, Kn))

= (Rn−1, Ln−1)

using the substitutions Ln = Rn−1 and Rn = Ln−1⊕ f(Rn−1, Kn). Repeating another round
gives

(Rn−1, Ln−1) 7→ (Rn−2, Ln−2)

and after n rounds, we are back to the original message M = (L0, R0).

Notes:

• Decryption and Encryption are essentially the same.

• Any function f will work.

• Any sequence K = K0, . . . , Kn of keys will work.
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Some choices of f and key sequence are better than others. The Ki are usually chosen so
that Ki is constructed from Ki−1.

Example 4.13 Suppose that Li−1Ri−1 = 011100|100110, Ki = 01100101, and

f(Ri−1, Ki) = 000100

as above.

f(Ri−1, Ki)⊕ Li−1 = 000100⊕ 011100

= 011000 =: Ri

and Li = Ri−1. Therefore LiRi = 100110|011000. This is the input for the next round.

The security of a Feistel cipher depends on f and the choice of key sequence.

4.9.3 DES

A block of plaintext is 64 bits. The key has 56 bits, but is expanded to a 64 bit string K by
setting parity bits b8, b16, b24, . . . , b64 so that the Hamming weights (defined below) of

wt(b1, . . . , b8) ≡ 1 mod 2

wt(b9, . . . , b16) ≡ 1
...

wt(b57, . . . , b64) ≡ 1

where wt(v) is the number of 1s in v. This is done for error correcting purposes.

The ciphertext is 64 bits.

DES Algorithm

Input: m (64 bits)

Output: c (64 bits)

1. A fixed permutation π ∈ Σ64 is applied to m,

m0 := π(m)
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2. For 1 ≤ i ≤ 16

Li := Ri−1

Ri := Li−1 ⊕ f(Ri−1, Ki)

where Ki is 48-bits, obtained from K.

3. Switch left and right
(L16, R16) 7→ (R16, L16)

4. Apply π−1:
c := π−1(R16, L16)

Notes:

• Since we switch left and right in Step 3, decryption works in exactly the same way
using the keys in the reverse order.

• π gives no cryptographic security and appears to have been introduced for hardware
reasons. Steps 1, 3, and 4 are straightforward.

Step 2 is a Feistel Cipher of 16 rounds, which requires a key sequence K and a function f .
In order to apply the algorithm then, we need to know how to compute f from Ri−1 and Ki

and we need to know how to produce Ki.

4.9.4 Finding f(Ri−1, Ki)

We use the following procedure to compute f(R,K) used in the algorithm.

1. Expand R to 48 bits R 7→ E(R) (See below)

2. Compute E(R)⊕K = B1|B2|B3|B4|B5|B6|B7|B8 so that each Bi is 6 bits.

3. Apply functions S1 . . . , S8 called S-boxes to the Bi.

Each S-box is a (carefully chosen) function

Si : {0, 1}6 → {0, 1}4 not 1-1

(In 1974, the largest S-box that would fit on 1 chip was 6-input bits and 4-output bits)

Let
Ci = Si(Bi), 1 ≤ i ≤ 8

This gives
C = C1C2 . . . C8 =: f(R,K) (32bits)
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4. (Different sources say different things at this point. In one source, including the text-
book for this course, a permutation is applied to C, in others, this step is absent.)

S-boxes are chosen so that

1. they are highly non-linear

2. Si is onto

3. If two inputs differ in only 1 spot, then their outputs must differ in at least 2 bits

4. S(a1a2b3b4) 6= S(α1α2β2β4) if (a1, a2) 6= (α1, α2)

5. There are 32 pairs of inputs having a given XOR.

For each such pair (a,b) compute S(a)⊕ S(b)

No more than 8 pairs should yield the same output XOR

6. A criterion similar to 6 but involving 3 S-boxes

6 and 7 are to avoid an attack via differential cryptography (such attacks were introduced
in 1990)

The function f is built by compusing two types of functions

1. Expanders

2. S-boxes

The following are simplified examples of each.

1. The following expander expands a 6-bit string to an 8-bit string.

b1, . . . , b6 7→ B1, . . . , B8

where

B1 := b1

B2 := b2

B3 := b4

B4 := b3

B5 := b4

B6 := b3

B7 := b5

B8 := b6

Thus, for example 011001 7→ 01010101
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2. Two examples of S-boxes

S1 :
101 010 001 110 011 100 111 000
001 100 110 010 000 111 101 011

S2 :
100 000 110 101 111 001 011 010
101 011 000 111 110 010 001 100

An S-box takes as input 4 bits and an output of 3 bits. The first input bit indicates which
row of the S-box to use. The next the bits represent a binary number specifying the column.
The output is the entry in that row and column.

Note: These S-boxes map from {0, 1}4 to {0, 1}3, rather than {0, 1}6to{0, 1}4, but the idea
is the same.

Example 4.14 Consider the string 1010 and suppose we are using the first S-box. The
first bit of 1010 is 1, so we use the second row. The next 3 bits are 010, corresponding to
the number 2, so we use the second column. Therefore 1010 maps to the entry in row 2 and
column 2 of S1

1010
S1→ 100

An S-box is just a map from {0, 1}n → {0, 1}m (chosen to satisfy certain properties).

4.9.5 Key schedule

K is 64 bits (including 8 parity bits). We want to generate K1, K2, . . . , K16, each of 48 bits.

We drop the 8 parity bits and apply a fixed permutation τ ∈ Σ56

τ(K) = D0|E0 D0,E0 each of 28 bits

For 1 ≤ j ≤ 16,
Di = Leftshiftj(Di−1)

Ei = Leftshiftj(Ei−1)

where Leftshiftj is a left shift of either 1 or 2 places, according to the table

j (Round) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Shift 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Use a fixed projection
proj
i

Di|Ei︸ ︷︷ ︸
56 bits

→ Ki︸︷︷︸
48 bits
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For example, proj(a1, . . . , a56) = (a14, a17, a11, a24, a1, a5, . . . , a32)

It turns out that each bit of K is used in approximately 14 of the 16 rounds. Each bit of
c should depend on all the bits of the plaintext. The expansion E(R) is designed so this
happens in just a few rounds.

4.9.6 Breaking DES

A few months after DES was released in 1977, Diffie and Hellman proposed building a
machine designed to attack DES via a brute force search of the key space (of size 256). They
estimated the machine would cost $20 million (in 1977 dollars)

In 1987 DES underwent its second five year review. The NSA advocated replacing DES with
an algorithm whose inner workings only they would know. Eventually DES was recertified
in both 1987 and 1992.

In 1993, a Bell-Northern research designed a device that would attack DES efficiently using
(fast) telephone switching technology. By 1996, it was also proposed to use a distributed
computer using 10s of thousands of machines.

In 1997 RSA Security offered $10,000 for someone to decrypt a DES encrypted message. This
was done in 5 months using a distributed computation. 25% of the key space was searched.

In 1998, RSA re-issued the challenge. It was met in 39 days, again using a distributed
computation, after searching 85% of the key space.

In the summer of 1998 a special purpose machine “DES Cracker” was built for $200,000.

Des Cracker

Took 2 64-bit blocks of cihpertext. 1500 Chips each containing 24 search units.

Each search unite took a key and used it to decrypet the 1st 64 bit block. If this decryption
was interesting (i.e. only a through z, A through Z, 0 through 9, punctuation) the search
unite used the same key to decrypt the 2nd 64-bit block.

If both blocks decrypted to interesting text the key is reported back to the control module.

• Probability of 1 byte being interesting is 69
256
≈ 1

4

• Probability of 8 bytes=1 block being interesting is ≈
(
1
4

)
= 1

65536

• Probability of 2 interesting blocks ≈
(

1
65536

)2
DES cracker took ≈ 4.5 days on average to find the secret key.
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Solutions

• Triple DES: DESK3(DESK2(DESK1(m)))

• Use 3 keys and apploy
DESK2(K1 ⊕m)⊕K3

This scheme is known as DES-X

• E=encrypt in DES, D = decrypt EK1(DK2(EK3(m))) just as good as triple DES. But
if K2 = K3, we get a single DES.


