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Abstract

The “δ-sequence” is defined and given an interpretation in terms of the exterior
derivative of symmetric polynomial functions. The exactness of the sequence is proved.
This leads to the formal Poincaré Lemma, which is a statement of the usual Poincaré
Lemma in the setting where the rôle of functions is played by formal power series.

Introduction. The formal Poincaré Lemma is what comes out when one tries a power
series approach to proving the usual Poincaré Lemma (which, it will be recalled, says that
a closed form is locally exact). The key to the constructions we give is the realisation that
the usual exterior derivative can be represented algebraically in terms of power series. We
accomplish this by first looking at the formal exterior derivative for homogeneous power
series (i.e., those where the coefficients are homogeneous polynomials). For this “fixed-
order” exterior derivative we produce a sequence which we show is exact. This is the
analogue of the Poincaré Lemma for this restricted class of differential forms. We then look
at the case where coefficients are general power series; this leads to the formal Poincaré
Lemma.

The rth δ-sequence. Although the δ-sequence as introduced by Spencer [1962] arises in
terms of partial differential equations modelled as fibred submanifolds of jet bundles, the
δ-sequence itself is purely an algebraic construction, (although with a differential interpre-
tation, as we shall see). We thus consider an n-dimensional vector space V. We shall be
interpreting V as a vector space and as a manifold. In the former case, elements of V will
be denoted by v, and in the latter case by x. By Sk(V∗) we denote the set of symmetric
(0, k)-tensors on V and by

∧
k(V

∗) the set of skew-symmetric (0, k)-tensors.
The following lemma concerning symmetric tensors will come up repeatedly. Let us

denote by

Pk(V) = {f : V → R | f(v) = A(v, . . . , v) for some A ∈ T 0
k (V)}

the symmetric homogeneous polynomial functions of degree k.

1 Lemma: (Characterisation of symmetric tensors) Let V be a R-vector space and let f ∈
Pk(V). Then there exists a unique Af ∈ Sk(V∗) such that Af (v, . . . , v) = f(v) for each
v ∈ V.
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Proof: Let A ∈ T 0
k (V) and denote by Sk the permutation group on k symbols. If f(v) =

A(v, . . . , v), v ∈ V, define

Af (v1, . . . , vk) =
1
k!

∑
σ∈Sk

A(vσ(1), . . . , vσ(k)).

It is evident that Af is symmetric and that f(v) = Af (v, . . . , v), v ∈ V. This gives the
existence part of the result.

Now we prove uniqueness. For k ∈ Z>0 and l ∈ {1, . . . , k}, let

S(k, l) = {{j1, . . . , jl} ⊂ {1, . . . , k} | r 6= s =⇒ jr 6= js}.

With this notation, the following result is useful.

1 Sublemma: For A ∈ T 0
k (V),

∑
σ∈Sk

A(vσ(1), . . . , vσ(k)) =
k∑

l=1

∑
{j1,...,jl}
∈S(k,l)

(−1)k−lA(vj1 + · · ·+ vjl
, . . . , vj1 + · · ·+ vjl

).

Proof: We prove this by examining the terms in the sum. For l ∈ {1, . . . , k} and for
{j1, . . . , jl} ∈ S(k, l), if we expand the expression

A(vj1 + · · ·+ vjl
, . . . , vj1 + · · ·+ vjl

)

using multilinearity of A, we obtain the sum of all terms of the form A(vr1 , . . . , vrk
) where

r1, . . . , rk ∈ {j1, . . . , jl}. Thus this is a sum with lk terms. Therefore, the right-hand side
of the expression in the statement of the sublemma will itself be a linear combination of
terms of the form A(vr1 , . . . , vrk

) where r1, . . . , rk ∈ {1, . . . , k}. To prove the sublemma we
shall show that the coefficient in the linear combination is 0 unless r1, . . . , rk are distinct.
When r1, . . . , rk are distinct, we shall show that the coefficient in the linear combination is
1. This will prove the lemma since the terms on the right-hand side corresponding to the
case when r1, . . . , rk are distinct correspond exactly to the terms on the left-hand side of
the expression in the sublemma.

Let us fix r1, . . . , rk ∈ {1, . . . , k} (not necessarily distinct) and examine how many terms
of the form A(vr1 , . . . , vrk

) appear in the sum on the right in the statement of the sublemma.
This will depend on how many distinct elements of {1, . . . , k} appear in the set {r1, . . . , rk}.
Let us suppose that there are s distinct elements. For l ≥ s, in the set S(k, l) there will be
D(k, l, s) members which contain {r1, . . . , rk} as a subset, where

D(k, l, s) =
(k − s)!

(l − s)!(k − l)!
.

To see this, note that to each member {j1, . . . , jl} ∈ S(k, l) that contains {r1, . . . , rk} as
a subset, there corresponds a unique subset of l − s elements of a set of k − s elements
(the complement to {r1, . . . , rk} in {j1, . . . , jl}). There are D(k, l, s) such subsets after we
note that D(k, l, s) =

(
k−s
l−s

)
. This means that there will be D(k, l, s) terms of the form

A(vr1 , . . . , vrk
) which appear in the sum∑

{j1,...,jl}
∈S(k,l)

(−1)k−lA(vj1 + · · ·+ vjl
, . . . , vj1 + · · ·+ vjl

).



The formal Poincaré Lemma 3

Therefore, there will be
∑k

l=s(−1)k−lD(k, l, s) terms of the form A(vr1 , . . . , vrk
) in the right-

hand side of the expression in the sublemma. We claim that

k∑
l=s

(−1)k−lD(k, l, s) =

{
1, s = k,

0, s < k.

For s = k the equality is checked directly. For s < k we note that, for x, y ∈ R and for
k − s > 0, we have

(x + y)k−s =
k−s∑
j=0

(
k − s

j

)
xjyk−s−j =

k∑
l=s

D(k, l, s)xl−syk−l.

Letting x = 1 and y = −1 we obtain

k∑
l=s

(−1)k−lD(k, l, s) = 0,

as desired. H

Now, if A ∈ Sk(V∗) satisfies f(v) = A(v, . . . , v) for all v ∈ V we must have

A(v1, . . . , vk) =
1
k!

∑
σ∈Sk

A(vσ(1), . . . , vσ(k))

=
1
k!

( k∑
l=1

∑
{j1,...,jl}
∈S(k,l)

(−1)k−lf(vj1 + · · ·+ vjl
)
)

=
1
k!

( k∑
l=1

∑
{j1,...,jl}
∈S(k,l)

(−1)k−lAf (vj1 + · · ·+ vjl
, . . . , vj1 + · · ·+ vjl

)
)

=
1
k!

∑
σ∈Sk

Af (vσ(1), . . . , vσ(k))

= Af (v1, . . . , vk),

where we have used the symmetry of A in the first step and the symmetry of Af in the last
step. �

The key point of the lemma is that a symmetric tensor is defined as soon as one knows
its values on the diagonal in

∏k
j=1 V. We shall use this idea frequently.

The following simple result is key to developing any intuition about the δ-sequence.

2 Proposition: (Characterisation of
∧

s(V
∗)⊗Sr(V∗)) Let r, s ∈ Z≥0. The map φs,r from∧

s(V
∗)⊗ Sr(V∗) to the set of differential s-forms on the manifold V satisfying

φs,r(α⊗A)(v1, . . . , vs) = A(x, . . . , x)α(v1, . . . , vs), v1, . . . , vs ∈ TxV ' V,

is a monomorphism of R-vector spaces.



4 A. D. Lewis

Proof: The map is clearly linear. To see that it is injective, suppose that φs,r(α1 ⊗ A1 +
· · ·+ αk ⊗Ak) = 0. This means that the differential s-form

x 7→ A1(x, . . . , x)α1 + · · ·+ Ak(x, . . . , x)αk

is zero. This means that

A1(x, . . . , x)α1(v1, . . . , vs) + · · ·+ Ak(x, . . . , x)αk(v1, . . . , vs) = 0

for every x, v1, . . . , vs ∈ V. Now let u1, . . . , ur, v1, . . . , vs ∈ V. Following the proof of
Lemma 1, for each j ∈ {1, . . . , k} we have

Aj(u1, . . . , ur) =
k∑

l=1

∑
{j1,...,jl}
∈S(k,l)

(−1)k−lA(uj1 + · · ·+ ujl
, . . . , uj1 + · · ·+ ujl

).

We may then write

k∑
j=1

αj(v1, . . . , vj)Aj(u1, . . . , ur)

=
k∑

j=1

∑
{j1,...,jl}
∈S(k,l)

(−1)k−lαj(v1, . . . , vs)Aj(uj1 + · · ·+ ujl
, uj1 + · · ·+ ujl

).

The terms on the right vanish since α1 ⊗ A1 + · · · + αk ⊗ Ak ∈ ker(φs,r), and so we have
α1 ⊗A1 + · · ·+ αk ⊗Ak = 0, giving injectivity of φs,r. �

This gives a handy identification of
∧

s(V
∗)⊗Sr(V∗) with a subspace of the vector space

of differential s-forms on the manifold V. The next result shows that the set of all such
differential forms is closed under exterior differentiation. We denote by ds the exterior
derivative on the manifold V restricted to differential s-forms.

3 Proposition: (Invariance under exterior differentiation) Let r ∈ Z>0 and s ∈ Z≥0. If
α1 ⊗ A1 + · · · + αk ⊗ Ak ∈

∧
s(V

∗) ⊗ Sr(V∗) then there exists β1 ⊗ B1 + · · · + βl ⊗ Bl ∈∧
s+1(V

∗)⊗ Sr−1(V∗) such that

dsφs,r(α1 ⊗A1 + · · ·+ αk ⊗Ak) = φs+1,r−1(β1 ⊗B1 + · · ·+ βl ⊗Bl).

Proof: Let us first consider the case when s = 0. In this case, elements of
∧

s(V
∗)⊗ Sr(V∗)

are to be thought of, under the map φs,r, as polynomial functions on V that are symmetric
and homogeneous of degree k. Explicitly, if A ∈ Sr(V∗) then we have the function fA : x 7→
A(x, . . . , x). The exterior derivative satisfies

〈d0fA(x); v〉 = A(v, x, . . . , x).

Now define A′ ∈ V∗ ⊗ Sr−1(V∗) by asking that

A′(v, u, . . . , u) = rA(v, u, . . . , u), u, v ∈ V.
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Note that this uniquely defines A′ by Lemma 1. Clearly we have φ1,r−1(A′) = dφ0,r(A), so
proving the result when s = 0.

For s > 0 we note that an arbitrary element in image(φs,r) is a finite linear combination
of elements of the form x 7→ fA(x)α for A ∈ Sr(V∗) and α ∈

∧
s(V

∗), thinking of α as a
constant section of

∧
s(T

∗V). We can write this differential s-form as fA ∧α. We then have

ds(fA ∧ α) = d0fA ∧ α− fA ∧ dsα = d0fA ∧ α,

using the fact that α is closed since it is constant. The definition of wedge product gives

(d0fA ∧ α)(v1, . . . , vs+1) =
∑
σ

sign(σ)d0fA(vσ(1))α(vσ(2), . . . , vσ(s+1)),

where the sum is over all permutations σ of {1, . . . , s + 1} which satisfy

σ(2) < σ(3) < · · · < σ(s + 1).

This amounts to

(d0fA ∧ α)(v1, . . . , vs+1) =
s+1∑
j=1

(−1)j+1d0fA(vj)α(v1, . . . , v̂j , . . . , vs+1),

where ·̂ means the term is omitted from the argument. In the above expressions we have
suppressed the base point x ∈ V at which all tensors are evaluated. Restoring this, and
supposing that v1, . . . , vs+1 ∈ TxV, we have

d0fA(x) ∧ α(x)(v1, . . . , vs+1) =
s+1∑
j=1

(−1)j+1A′(vj , x, . . . , x)α(v1, . . . , v̂j , . . . , vs+1).

Now define ω ∈
∧

s+1(V
∗)⊗ Sr−1(V∗) by asking that

ω(v1, . . . , vs+1, u, . . . , u) =
s+1∑
j=1

(−1)j+1A′(vj , u, . . . , u)α(v1, . . . , v̂j , . . . , vs+1).

By Lemma 1 this uniquely defines an element of
∧

s+1(V
∗) ⊗ Sr−1(V∗). Moreover, by

construction we have φs+1,r−1(ω) = dφs,r(α⊗A). The result now follows by R-linearity of
the exterior derivative and of φs,r. �

This enables us to define δs,r :
∧

s(V
∗) ⊗ Sr(V∗) →

∧
s+1(V) ⊗ Sr−1(V∗) by asking that

the diagram ∧
s(V

∗)⊗ Sr(V∗)
δs,r //

φs,r

��

∧
s+1(V

∗)⊗ Sr−1(V∗)

φs+1,r−1

��
Γ∞(

∧
s(TV))

ds

// Γ∞(
∧

s+1(TV))

commute. Explicitly, δs,r is defined by its satisfying

(δs,r(α⊗A))(v1, . . . , vs+1, u1, . . . , ur−1)

=
s+1∑
j=1

(−1)j+1rα(v1, . . . , v̂j , . . . , vs+1)A(vj , u1, . . . , ur−1).
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We adopt the usual convention of simply denoting δs,r by δ when this is convenient, sup-
posing any possible ambiguity to be resolvable from context.

The rth δ-sequence is then given by

0 // Sr(V∗) δ // V∗ ⊗ Sr−1(V∗) δ // ∧
2(V

∗)⊗ Sr−2(V∗) δ // · · ·

· · · δ // ∧
n(V∗)⊗ Sr−n(V∗) // 0

(1)

The rth δ-sequence is exact. It is clear, since ds+1 ◦ds = 0, that δs+1,r−1 ◦δs,r = 0.
Thus ker(δs+1,r−1) ⊂ image(δr,s). However, more is true; namely the δ-sequence is exact.

4 Proposition: (Exactness of the rth δ-sequence) For each r ∈ Z>0, the sequence (1) is
exact.

Proof: For each s, r ∈ Z>0 we shall define a map Hs,r :
∧

s+1(V
∗) ⊗ Sr−1(V∗) →

∧
s(V

∗) ⊗
Sr(V∗) with the property that Hs+1,r−1 ◦δs+1,r−1 + δs,r ◦Hs,r is the identity map on∧

s+1(V
∗)⊗ Sr−1(V∗). For β ⊗B ∈

∧
s+1(V

∗)⊗ Sr−1(V∗) define

Hs,r(β ⊗B)(v1, . . . , vs, u, . . . , u) =
1

r + s
B(u, . . . , u)β(u, v1, . . . , vs),

for u, v1, . . . , vs ∈ V, noting that this uniquely defines Hs,r(β ⊗ B) ∈
∧

r(V
∗) ⊗ Ss(V∗) by

Lemma 1. Using the definition of δs,r we compute

δs,r ◦Hs,r(β ⊗B)(v1, . . . , vs+1, u, . . . , u)

=
1

r + s

(s+1∑
j=1

(−1)j+1(r − 1)B(vj , u, . . . , u)β(u, v1, . . . , v̂j , . . . , vs+1)

+
s+1∑
j=1

(−1)j+1B(u, . . . , u)β(vj , v1, . . . , v̂j , . . . , vs+1)
)
, (2)

for u, v1, . . . , vs+1 ∈ V. Using the definition of δs+1,r−1 we have

δs+1,r−1(β ⊗B)(v1, . . . , vs+2, u, . . . , u)

=
s+2∑
j=1

(−1)j+1(r − 1)B(vj , u, . . . , u)β(v1, . . . , v̂j , . . . , vs+2)

for u, v1, . . . , vs+2 ∈ V. Therefore, using the definition of Hs+1,r−1,

Hs+1,r−1 ◦δs+1,r−1(β ⊗B)(v1, . . . , vs+1, u, . . . , u)

=
1

r + s

(
(r − 1)B(u, . . . , u)β(v1, . . . , vs+1)

+
s+1∑
j=1

(−1)j(r − 1)B(vj , u, . . . , u)β(u, v1, . . . , v̂j , . . . , vs+1)
)

(3)
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for u, v1, . . . , vs+1 ∈ V. Combining (2) and (3) we arrive at

(Hs+1,r−1 ◦δs+1,r−1 + δs,r ◦Hs,r)(β ⊗B)(v1, . . . , vs+1, u, . . . , u)

=
1

r + s

(
(r − 1)B(u, . . . , u)β(v1, . . . , vs+1)

+
s+1∑
j=1

(−1)j+1B(u, . . . , u)β(vj , v1, . . . , v̂j , vs+1)
)

=
1

r + s

(
(r − 1)B(u, . . . , u)β(v1, . . . , vs+1)

+ (s + 1)B(u, . . . , u)β(v1, . . . , vs+1)
)

= B(u, . . . , u)β(v1, . . . , vs+1)
= β ⊗B(v1, . . . , vs+1, u, . . . , u)

for u, v1, . . . , vs+1 ∈ V. By extending the above computations using linearity and by us-
ing Lemma 1, it follows that Hs+1,r−1 ◦δs+1,r−1 + δs,r ◦Hs,r is the identity on

∧
s+1(V

∗) ⊗
Sr−1(V∗).

Now, if δs+1,r−1(β1 ⊗ B1 + · · · + βk ⊗ Bk) = 0 for βj ⊗ Bj ∈
∧

s+1(V
∗) ⊗ Sr−1(V∗),

j ∈ {1, . . . , k}, then we define αj ⊗ Aj ∈
∧

s(V
∗) ⊗ Sr(V∗) by αj ⊗ Aj = Hs,r(βj ⊗ Bj),

j ∈ {1, . . . , k}. Then

δs,r

( k∑
j=1

αj ⊗Aj

)
= δs,r ◦Hs,r

( k∑
j=1

βj ⊗Bj

)

= (δs,r ◦Hs,r + Hs+1,r−1 ◦δs+1,r−1)
( k∑

j=1

βj ⊗Bj

)
=

k∑
j=1

βj ⊗Bj ,

showing that image(δs,r) ⊂ ker(δs+1,r−1) as desired. �

5 Remark: The proof above is an adaptation of one of the more common proofs of the
usual Poincaré Lemma to the specific case needed, using the fact that δs,r is the restriction
of ds to image(φs,r). The proof we adapted may be found in, for example, [Warner 1983]. •

The formal Poincaré Lemma. Recall that the Poincaré Lemma says that, for a man-
ifold M, if ω ∈ Γ∞(

∧
s+1(TM)) satisfies ds+1ω = 0, then for any x0 ∈ M there exists a

neighbourhood U of x0 and θ ∈ Γ∞(
∧

s(TU)) such that ω|U = dsθ. In the case when M
and ω are analytic, one can imagine constructing θ by Taylor expanding ω, computing the
exterior derivative in terms of the Taylor expansion, and then using this to determine the
Taylor expansion of θ. If the Taylor expansion converges (and it does), then this can be
used to define θ. Note that this construction involves only looking at things defined at x0,
and so is really an algebraic construction. The formal Poincaré Lemma simply eliminates
all the annoyance of convergence dictated by analyticity, and works instead with formal
power series. The exterior derivative is then just defined using the maps δs,r defined above,
so eliminating any obligation to talk about limits in the definition of derivatives, etc.

First let us try to be a little careful about what we mean by a formal power series about
x0 ∈ M. To make the ties with the above discussion clear, and to emphasise the point that
this construction only involves objects defined at x0, let us denote V = Tx0M.
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6 Definition: (Formal power series) A formal power series at x0 is an element of the
direct product

∏
r∈Z≥0

Sr(V∗) of R-vector spaces. The set of formal power series at x0 is
denoted by R[[V]]. •

Let us be clear about what is meant by a formal power series at x0. It is a map
P : Z≥0 → ∪r∈Z≥0

Sr(V∗) which satisfies P (r) ∈ Sr(V∗). If one want to understand how
a formal power series P relates to Taylor series, one can choose a coordinate chart (U, φ)
about x0 for which φ(x0) = 0. Then one can attempt to define a function by

fP (x) =
∑

r∈Z≥0

P (r)(φ(x), . . . , φ(x)), x ∈ U.

The matter of convergence of this series depends only on P , and so one can speak of the
subset of R[[V]] consisting of convergent power series; we denote this subset by R̂[[V]].

There is a natural R-vector space structure defined on R[[V]] by

(P1 + P2)(r) = P1(r) + P2(r), (aP )(r) = a(P (r))

(this is just the vector space structure of the direct product). There is also a commutative
ring structure on R[[V]] as follows. Let P1 ∈ Sr1(V

∗) and P2 ∈ Sr2(V
∗) and note that

these are elements of R[[V]] since Sr(V∗) is a subspace of R[[V]] for every r ∈ Z≥0. Define
P1P2 ∈ R[[V]] by

(P1P2)(u, . . . , u︸ ︷︷ ︸
r1+r2
times

) = P1(u, . . . , u︸ ︷︷ ︸
r1 times

)P2(u, . . . , u︸ ︷︷ ︸
r2 times

), u ∈ V.

This defines P1P2 ∈ Sr1+r2(V
∗) is the usual manner by noting that a symmetric tensor is

uniquely defined by its values when all entries are equal, cf. Lemma 1. Indeed, fiddling with
permutations gives P1P2 ∈ Sr1+r2(V

∗) by the formula

(P1P2)(v1, . . . , vr1+r2) =
∑
σ

P1(vσ(1), . . . , vσ(r1))P2(vσ(r1+1), . . . , vσ(r1+r2)),

where the sum is over all permutations satisfying

σ(1) < σ(2) < · · · < σ(r1), σ(r1 + 1) < σ(r1 + 2) < · · · < σ(r1 + r2).

This gives the product of elements of the subspaces Sr(V∗), r ∈ Z≥0, and this definition
can be extended to all of R[[V]] by linearity. If one restricts consideration to the set R̂[[V]]
of convergent power series, the sum and product in R[[V]] corresponds to the sum and
product of analytic R-valued functions. Put more precisely, the subring R̂[[V]] of R[[V]]
is isomorphic to the ring C ω

x0
(M) of germs of analytic functions at x0. However, the ring

structure in R[[V]] makes sense, even for formal power series that do not converge.
Now note that

∧
s(V

∗)⊗R[[V]] can be thought of as the vector space of those differential
s-forms on V with coefficients in R[[V]] in exactly the way that

∧
s(V

∗) ⊗ Sr(V∗) is, by
Proposition 2, to be thought of as the set of differential s-forms with coefficients that are
homogeneous polynomials functions. Indeed, if one wishes to be a little more precise about
this, one notes that ∧

s(V
∗)⊗ R[[V]] '

∏
r∈Z≥0

∧
s(V

∗)⊗ Sr(V∗), (4)
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and so
∧

s(V
∗) ⊗ R[[V]] is isomorphic to the direct product of the subspaces image(φs,r),

r ∈ Z≥0, of differential forms on V. Of course, this only makes sense formally. But if one
restricts to R̂[[V]], one recovers bona fide analytic differential s-forms. The R-vector space∧

s(V
∗)⊗ R[[V]] has the structure of a module over the ring R[[V]] if one defines the scalar

product to satisfy
P (α⊗Q) = α⊗ (PQ).

The module
∧

s(V
∗)⊗ R̂[[V]] over the ring R̂[[V]] is then isomorphic to the module of germs

of analytic differential s-forms on M at x0 which is thought of as a module over the ring
C ω

x0
(M) (using the fact that this latter ring is isomorphic to R̂[[V]]).
We now define the analogue of the exterior derivative for the module

∧
s(V

∗)⊗ R[[V]].

7 Definition: (Formal exterior derivative) For s ∈ Z≥0 define δs :
∧

s(V
∗) ⊗ R[[V]] →∧

s+1(V
∗)⊗ R[[V]] to satisfy

(δs(α⊗ P ))(r) = δs,r(α⊗ P (r))

(using the identification (4)). •
If one restricts to

∧
s(V

∗)⊗ R̂[[V]], then δs is the representation of ds under the isomor-
phism of

∧
s(V

∗)⊗ R̂[[V]] with the germs of analytic differential s-forms at x0. Again, when
it is convenient we shall simply write δ for δs.

This leads to the sequence

0 // R[[V]] δ // V∗ ⊗ R[[V]] δ // ∧
2(V

∗)⊗ R[[V]] δ // · · ·

· · · δ // ∧
n(V∗)⊗ R[[V]] // 0

(5)

One can now recast Proposition 4 as the following result, which tells us that the Poincaré
Lemma holds for formal power series, even when they do not converge.

8 Theorem: (Formal Poincaré Lemma) The sequence (5) is exact.
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